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Inradius collapsed manifolds

TAKAO YAMAGUCHI

ZHILANG ZHANG

We study collapsed manifolds with boundary, where we assume a lower sectional
curvature bound, two side bounds on the second fundamental forms of boundaries
and upper diameter bound. Our main concern is the case when inradii of manifolds
converge to zero. This is a typical case of collapsing manifolds with boundary. We
determine the limit spaces of inradius collapsed manifolds as Alexandrov spaces with
curvature uniformly bounded below. When the limit space has codimension one, we
completely determine the topology of inradius collapsed manifold in terms of singular
I –bundles. General inradius collapse to almost regular spaces are also characterized.
In the general case of unbounded diameters, we prove that the number of boundary
components of inradius collapsed manifolds is at most two, where the disconnected
boundary happens if and only if the manifold has a topological product structure.
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1 Introduction

We are concerned with collapsing phenomena of Riemannian manifolds with boundary
under a lower sectional curvature bound. The study of collapse of closed manifolds
has a long history. In the case of two side bounds on sectional curvatures, a deep
general theory was established by Cheeger, Fukaya and Gromov [7]. Then for the case
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of lower sectional curvature bound, in Yamaguchi [32], Fukaya and Yamaguchi [9]
and Kapovitch, Petrunin and Tuschmann [14], the structure of the first Betti numbers
and the fundamental groups with their topological rigidity were determined through a
fibration theorem. Later on, those results were partly extended to the case of a lower
Ricci curvature bound by Cheeger and Colding [5; 6], Colding and Naber [8] and
Kapovitch and Wilking [15]. In particular, the general manifold structure results of
lower-dimensional collapsed manifolds under a lower sectional curvature bound were
established by Shioya and Yamaguchi [27; 28] and Yamaguchi [34].

In those results, it is crucial to study Alexandrov spaces with curvature bounded
below which appear as the Gromov–Hausdorff limit spaces. In particular, Perelman’s
topological stability theorem has played significant roles. In connection with the
study of Alexandrov spaces, the collapsing phenomena of three-dimensional closed
Alexandrov spaces with curvature bounded below has been classified in recent work of
Mitsuishi and Yamaguchi [19].

For collapsing Riemannian manifolds with boundary, there is pioneering work by
J Wong [30; 31] on this subject after the investigation in the noncollapsing and
bounded curvature case due to Kodani [16] and Anderson, Katsuda, Kurylev, Lassas
and Taylor [2]. In the study of convergence and collapsing Riemannian manifolds with
boundary, it is obvious that the main problem is to control the boundary behavior in
a geometric way. It is in [30] that a nice extension procedure over the boundary was
first carried out to study collapsed manifolds with boundary under a lower sectional
curvature bound. The study of collapse of three-dimensional Alexandrov spaces with
boundary is now undergoing in the work [18] of Mitshuishi and Yamaguchi, where all
the details of collapses will be made clear.

In the present paper, partly motivated by [18], we develop and extend results in [31] to a
great extent. Let M.n; �; �; d/ denote the set of all isometry classes of n–dimensional
compact Riemannian manifolds M with boundary whose sectional curvature, second
fundamental form and diameter satisfy

KM � �; j…@M j � �; diam.M /� d:

Every Riemannian manifold in M.n; �; �; d/ can be glued with a warped cylinder along
their boundaries in such a way that the resulting space becomes an Alexandrov space
with curvature bounded below having C 0 –Riemannian structure and that its boundary
is totally geodesic [30]. Investigating such a cylindrical extension, Wong proved that
M.n; �; �; d/ is precompact with respect to the Gromov–Hausdorff distance. He also
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proved that if M.n; �; �; d; v/ denotes the set of all elements M 2M.n; �; �; d/

having volume vol.M /� v > 0, then it contains only finitely many homeomorphism
types.

Under the situation above, the main problem we are concerned with in this paper is as
follows:

Problem 1.1 Let Mi be a sequence in M.n; �; �; d/ converging to a length space N

with respect to the Gromov–Hausdorff distance.

(1) Characterize the structure of N .

(2) Find geometric and topological relations between Mi and N for large enough i .

The inradius of M is defined as the largest radius of metric ball contained in the
interior of M,

inrad.M / WD sup
x2M

d.x; @M /:

In the present paper, we first consider the case of inrad.Mi/ converging to zero. We
prove in Corollary 3.13 that if inrad.Mi/ converges to zero, then Mi actually dimension
collapses in the sense that any limit space N has dimension

dim N � n� 1:

Therefore, in this case, we say that Mi inradius collapses. The inradius collapse is a
typical case of collapsing of manifolds with boundary. Actually in the forthcoming
paper [35], we show that if a sequence Mi in M.n; �; �; d/ converges to a topological
closed manifold or a closed Alexandrov space, then Mi inradius collapses.

The main results in this paper are stated as follows. The first one is about the limit
spaces of inradius collapse.

Theorem 1.2 Let Mi 2M.n; �; �; d/ inradius collapse to a length space N with
respect to the Gromov–Hausdorff distance. Then N is an Alexandrov space with
curvature � c.�; �/, where c.�; �/ is a constant depending only on � and �.

It should be noted that Mi are not Alexandrov spaces unless II@Mi
� 0, and that

the constant c.�; �/ really depends on both � and �. Moreover, if one assumes only
II@Mi

� ��2 or II@Mi
� �2 instead of jII@Mi

j � �2 , there are counterexamples to
Theorem 1.2 (see Examples 3.16, 3.17, 3.18 and 3.19).
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Let M.n; �; �/ denote the set of all isometry classes of n–dimensional complete
Riemannian manifolds M satisfying

KM � �; jII@M j � �:

This family is also precompact with respect to the pointed Gromov–Hausdorff conver-
gence. Theorem 1.2 actually holds true for the limit of manifolds in M.n; �; �/ with
respect to the pointed Gromov–Hausdorff convergence (see Theorem 6.3).

Next we discuss the topological structure of inradius collapsed manifolds. First con-
sider the case of inradius collapse of codimension one. We can give a complete
characterization of codimension-one inradius collapsed manifolds as follows:

Theorem 1.3 Let Mi 2M.n; �; �; d/ inradius collapse to an .n�1/–dimensional
Alexandrov space N . Then there is a singular I –fiber bundle

I !Mi
�i
�!N

whose singular locus coincides with @N .

Remark 1.4 Let D2
C.i/ be the upper half-disk on xy –plane of radius �i with �i! 0

as i!1, and Ji WDD2
C.i/\fy D 0g. It follows from the proof of Theorem 1.3 that

Mi becomes a gluing of the I –bundle N z�Ii over N and D2
C.i/–bundle @N z�D2

C.i/

over @N ,
Mi DN z� Ii [ @N z�D2

C.i/;

where IiD Œ��i ; �i � and the gluing is done via @N z�IiD @N z�Ji , and z� denotes either
the product or a twisted product. Thus Mi collapses to N as the result of shrinking of
D2
C.i/ and Ii to points. In particular, Mi has the same homotopy type as N .

Next, we consider inradius collapse to almost regular spaces. An Alexandrov space N

is called �–almost regular if any point of N has the space of directions whose volume
is greater than vol Sdim N�1 � � , where Sm denotes the unit m–sphere. We say that
N is almost regular if N is �–almost regular for an � > 0 small enough compared
with dim N .

Theorem 1.5 Let a sequence Mi in M.n; �; �; d/ inradius collapse to an Alexandrov
space N , and suppose that the limit of @Mi is almost regular and

vol.†x.N // > 1
2

vol Sdim N�1

for all x 2N . Then the topology of Mi can be classified into the following two types:
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(a) There exists a locally trivial fiber bundle

Fi � I !Mi!N;

where Fi is a closed almost nonnegatively curved manifold in a generalized
sense as in [32].

(b) There exists a locally trivial fiber bundle

Capi!Mi!N;

where Capi (resp. @Capi ) is an almost nonnegatively curved manifold with
boundary (resp. a closed almost nonnegatively curved connected manifold ) in a
generalized sense as in [32].

In general, �–almost regularity of N implies that of the limit of @Mi (Proposition 4.30).
However the converse is not true (see Example 3.21).

It should also be pointed out that several fibration theorem were obtained in [31] in
some cases, where the nonnegativity of the second fundamental form II@Mi

� 0, or the
upper bound KMi

� �2 and the lower bound for the injectivity radius inj.Mi/� i0 > 0

were assumed.

Next we discuss the number of boundary components of inradius collapsed manifolds,
where we do not assume the diameter bound.

Theorem 1.6 There exists a positive number �D�n.�; �/ such that if M in M.n; �; �/

satisfies inrad.M / < � , then

(1) the number k of components of @M is at most two;

(2) if k D 2, then M is diffeomorphic to W � Œ0; 1�, where W is a component
of @M.

Theorem 1.6(1) was stated in [31, Theorem 5]. However it seems to the authors that
the argument there is unclear (see Remark 6.1). Theorem 1.6 may be considered as
a generalization of a result of Gromov [10] and Alexander and Bishop [1], where
an I –bundle structure was found for an inradius collapsed manifold under the two-
sides bound on sectional curvature. It should be pointed out that the constants �.�; �/
in [10; 1] are explicit and independent of n while our constant �n.�; �/ is neither. This
is because our argument is by contradiction.
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The organization and the outline of the proofs are as follows.

In Section 2, we first recall basic notions and facts on the Gromov–Hausdorff con-
vergence and Alexandrov spaces with curvature bounded below. Then we focus on
Wong’s extension procedure of a Riemannian manifold with boundary by gluing a
warped cylinder along their boundaries. By Kosovski [17], the result of the gluing is a
C 1;˛–manifold with C 0 –Riemannian metric, and becomes an Alexandrov space with
curvature bounded below. This construction is quite effective and used in an essential
way in the present paper.

In Section 3, we describe limit spaces of glued Riemannian manifolds with boundary.
The limit spaces also have gluing structure. In this section we focus on the estimate of
multiplicities of gluing, the intrinsic metric structure of the limit space and a general
description of the limit spaces of extensions.

In Section 4, we determine the metric structure of limit spaces. First we study the spaces
of directions of the limit space at gluing points, and prove that the gluing map preserves
the length of curves. This implies that the gluing in the limit space is done metrically
in a natural manner, and yields significant structure results (see Theorem 4.32) on the
limits including Theorem 1.2.

Those structure results are applied in Section 5 to obtain the fiber structures of inradius
collapsed manifolds. Theorems 1.3 and 1.5 are proved there. To prove Theorem 1.3,
we need to analyze the singularities of the singular I –fiber bundle in details. To prove
Theorem 1.5, we apply an equivariant fibration-capping theorem from [34].

To prove Theorem 1.6, we consider the case of unbounded diameters in Section 6.
Applying the results in Section 4, we obtain basically three types on local connectedness
of the boundary of an inradius collapsed complete manifold, according to the types
of the local limit spaces. After such local observation, Theorem 1.6 follows from a
monodromy argument.

Our approach can be applied to the general case of noninradius collapse of Riemannian
manifolds with boundary. As a continuation of the present paper, in [35], we obtain the
structure of limit spaces, stabilities of topological types and volumes, in the general
framework of noninradius collapse/convergence, and get an obstruction to the general
collapse.

Acknowledgements The authors would like to thank the referee for valuable com-
ments on the first version of our paper.

Geometry & Topology, Volume 23 (2019)



Inradius collapsed manifolds 2799

Yamaguchi was supported by JSPS KAKENHI Grant Numbers 26287010, 15K13436,
15H05739. Zhang was supported by NSFC 11871150, 11901089 and Starting Research
Fund from Foshan University.

2 Preliminaries

In order to make the paper more accessible, we fix some basic definitions, notation and
conventions:

� �.ı/ is a function such that limı!0 �.ı/D 0.

� For topological spaces X and Y , X � Y means X is homeomorphic to Y .

� The distance between two points x and y in a metric space is denoted by
d.x;y/, jx;yj or jxyj.

� For a point x and a subset A of a metric space X, B.x; r/ D BX .x; r/ and
B.A; r/D BX .A; r/ denote open r –balls in X around x and A, respectively.

� For a metric space .X; d/ and r > 0, the rescaled metric space .X; rd/ is
denoted by rX.

� The Euclidean cone K.†/ over a metric space .†; �/ is †� Œ0;1/ equipped
with the metric d defined as

d..x1; t1/; .x2; t2//D
�
t2
1 C t2

2 � 2t1t2 cos.minf�.x1;x2/; �g/
�1=2

for any two points .x1; t1/; .x2; t2/ 2†� Œ0;1/.

� For a subspace M of a metric space . �M ; d �M /, M ext denotes .M; d �M /, which
is called the exterior metric of M.

� The metric d of a connected metric space .X; d/ induces a length metric dint

of X defined as the infimum of the length of all curves joining two given points.
We denote by X int the new metric space .X; dint/.

� The length of a curve  is denoted by L. /.

2.1 The Gromov–Hausdorff convergence

A (not necessarily continuous) map f W X ! Y between two metric spaces X and Y

is called an "–approximation if it satisfies

(1) jd.x;y/� d.f .x/; f .y//j< " for all x;y 2 Y ,

(2) f .X / is "–dense in Y , ie B.f .X /; "/D Y .
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The Gromov–Hausdorff distance dGH.X;Y / is defined as the infimum of those " such
that there are "–approximations f W X ! Y and gW Y !X.

A map f W .X;x/! .Y;y/ between two pointed metric spaces is called a pointed
"–approximation if it satisfies

(1) f .x/D y ,

(2) jd.x;y/� d.f .x/; f .y//j< " for all x;y 2 BX .x; 1="/,

(3) f .BX .x; 1="// is "–dense in BY .y; 1="/.

The pointed Gromov–Hausdorff distance dpGH..X;x/; .Y;y// is defined as the infimum
of those " such that there are pointed "–approximations f W .X;x/ ! .Y;y/ and
gW .Y;y/! .X;x/.

Consider a pair .X; ƒ/ of a metric space X and a group ƒ of isometries of X. For
such pairs .X; ƒ/ and .Y; �/, a triple .f; ';  / of maps f W X ! Y , 'W ƒ! � and
 W �!ƒ is called an equivariant "–approximation from .X; ƒ/ to .Y; �/ if

(1) f is an "–approximation;

(2) if � 2ƒ and x 2X, then d.f .�x/; .'�/.f x// < ";

(3) if  2 � and x 2X, then d.f . . /x/;  .f x// < ".

The equivariant Gromov–Hausdorff distance deGH..X; ƒ/; .Y; �// is defined as the
infimum of those " such that there are "–approximations from .X; ƒ/ to .Y; �/ and
from .Y; �/ to .X; ƒ/.

2.2 Alexandrov spaces

Let X be a geodesic metric space, where every two points of X can be joined by a
shortest geodesic. For a fixed real number � and a geodesic triangle �pqr in X with
vertices p , q and r , denote by z�pqr a comparison triangle in the complete simply
connected model surface M 2

� with constant curvature � . This means that z�pqr has
the same side lengths as the corresponding ones in �pqr . Here we suppose that the
perimeter of �pqr is less than 2�=

p
� if � > 0. The metric space X is called an

Alexandrov space with curvature � � , or sometimes Alexandrov space for short if we
do not emphasize the lower curvature bound, if each point of X has a neighborhood U

satisfying the following: for any geodesic triangle in U with vertices p , q and r and
for any point x on the segment qr , we have jpxj � j zpzxj, where zx is the point on
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the segment zqzr satisfying jzqzxj D jqxj. From now on we assume that an Alexandrov
space is always finite-dimensional.

For an Alexandrov space X with curvature bounded below by � , let ˛W Œ0; s0�!X

and ˇW Œ0; t0�!X be two geodesics parametrized by unit speed starting from a point x .
The angle between ˛ and ˇ is defined by †.˛; ˇ/ D lims;t!0

z†˛.s/xˇ.t/, where
z†˛.s/xˇ.t/ denotes the angle of a comparison triangle z�˛.s/xˇ.t/ at the point zx .
Two geodesics ˛ and ˇ from x 2X are called equivalent if †.˛; ˇ/D 0. We denote
by †0x.X / the set of equivalent classes of geodesics emanating from x . The space of
directions at x , denoted by †x D†x.X /, is the completion of †0x.X / with the angle
metric. A direction of minimal geodesic from p to x is also denoted by "x

p . Let X be
n–dimensional. Then †x is an .n�1/–dimensional compact Alexandrov space with
curvature � 1.

A point x 2 X is called regular if †x is isometric to Sn�1 . Otherwise we call x

a singular point. We denote by X reg (resp. X sing ) the set of all regular points (resp.
singular points) of X.

The tangent cone at x 2X, denoted by Tx.X /, is the Euclidean cone K.†x/ over †x .
It is known that Tx.M /D limr!0

�
1
r
M;x

�
.

For a closed subset A of X and p 2A, the space of directions †p.A/ of A at p is
defined as the set of all � 2 †p.X / which can be written as the limit of directions
in †p.X / from p to points pi 2A with jp;pi j ! 0:

� D lim
i!1

"
pi
p :

For x;y 2 X n A, consider a comparison triangle on M 2
� having the side-length

.jA;xj; jx;yj; jy;Aj/ whenever it exists. Then z†Axy denotes the angle of this
comparison triangle at the vertex corresponding to x .

For x;y; z 2X, we denote by †xyz (resp. z†xyz ) the angle between the geodesics
yx and yz at x (resp. the geodesics zyzx and zyzz at zx in the comparison triangle
z4xyz D4zx zyzz ).

Let X be an n–dimensional Alexandrov space with curvature bounded below by � .
For ı > 0, a system of n pairs of points fai ; big

n
iD1

is called an .n; ı/-strainer at
x 2X if it satisfies

z†� aixbi >��ı; z†� aixaj >
1
2
��ı; z†� bixbj >

1
2
��ı; z†� aixbj >

1
2
��ı
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for every 1 � i ¤ j � n. If x 2 X has an .n; ı/–strainer, then we say x is .n; ı/–
strained. In this case, we call x ı–regular. We call X almost regular if every point
of X is ın –regular for some ın < 1=.100n/. It is known that a small neighborhood of
any almost regular point is almost isometric to an open subset in Rn .

Inductively on the dimension, the boundary @X is defined as the set of points x 2X

such that †x has nonempty boundary @†x . We denote by D.X / the double of X,
which is also an Alexandrov space with curvature � � (see [21]). By definition,
D.X /DX q@X X, where two copies of X are glued along their boundaries.

A boundary point x 2 @X is called ı–regular if x is ı–regular in D.X /. We say that
X is almost regular with almost regular boundary if every point of X is ı–regular in
D.X / for ı < 1=.100n/.

In Section 5.1, we need the following result on the dimension of the interior singular
point sets. We set int X WDX n @X.

Theorem 2.1 ([4]; see also [20]) We have

dimH .X
sing
\ int X /� n� 2; dimH .@X /

sing
� n� 2;

where .@X /sing DD.X /sing\ @X.

Theorem 2.2 ([21; 22]; see also [13]) If a sequence Xi of n–dimensional com-
pact Alexandrov spaces with curvature � � Gromov–Hausdorff converges to an n–
dimensional compact Alexandrov space X, then Xi is homeomorphic to X for large
enough i .

A subset E of an Alexandrov space X is called extremal [23] (see also [26]) if every
distance function f D distq with q 2M nE has the property that if f jE has a local
minimum at p 2E, then dfp.�/� 0 for every � 2†p.X /. Extremal subsets possess
quite important properties.

Theorem 2.3 [23] Let E be an extremal subset of X.

(1) For every p 2E, †p.E/ is an extremal subset of †p.X /;

(2) E is totally quasigeodesic in the sense that any nearby two points of E can be
joined by a quasigeodesic (see [24]).

(3) E has a topological stratification.

Theorem 2.3(1)–(2) implies the following:
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Corollary 2.4 For an extremal subset E of X and p 2E, dim†p.E/� dim E � 1.

Suppose that a compact group G acts on X as isometries. Then the quotient space X=G

is an Alexandrov space [4]. Let F denote the set of G –fixed points.

Proposition 2.5 [23] �.F / is an extremal subset of X=G, where � W X !X=G is
the projection.

Boundaries of Alexandrov spaces are typical examples of extremal subsets.

Proposition 2.6 [34, Proposition 5.10] Let X be an Alexandrov space with curvature
bounded below having nonempty boundary @X which is not necessarily compact. Then
@X has a collar neighborhood.

An n–dimensional Alexandrov space is called smoothable if it is a Gromov–Hausdorff
limit of n–dimensional closed Riemannian manifolds with a uniform lower sectional
curvature bound.

Theorem 2.7 [12] Let X be a smoothable Alexandrov space. Then for any p 2X,
every iterated space of directions

†�k
.†k�1.� � � .†�1

.†p.X // � � � //

is homeomorphic to a sphere, where

�1 2†p.X /; �2 2†�1
.X /; : : : ; �k 2†�k�1

.� � � .†�1
.†p.X // � � � //:

2.3 Manifolds with boundary and gluing

In this section, we consider a Riemannian manifold M with boundary in M.n; �; �; d/.
First, we recall some fundamental properties of @M, which were derived by Wong [30].
We also recall Wong’s cylindrical extension procedure based on Kosovski’s gluing
theorem [17].

Let M be a Riemannian manifold with boundary, and @M ˛ denote a boundary com-
ponent of @M. Then .@M ˛/int means @M ˛ with intrinsic length metric.

The following is an immediate consequence of the Gauss equation.

Proposition 2.8 For every M 2 M.n; �; �/, @M has a uniform lower sectional
curvature bound K@M �K , where K DK.�; �/.

Geometry & Topology, Volume 23 (2019)
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Proposition 2.9 [30] Let M 2M.n; �; �; d/.

(1) There exists a constant D DD.n; �; �; d/ such that any boundary component
@M ˛ has intrinsic diameter bound

diam..@M ˛/int/�D:

(2) @M has at most J components, where J D J.n; �; �; d/.

It follows from Proposition 2.9 that every boundary component of M 2M.n; �; �; d/

is an Alexandrov space with curvature �K and diameter �D, where K DK.�; �/

and D DD.n; �; �; d/.

In general, a Riemannian manifold with boundary is not necessarily an Alexandrov
space. Wong [30] carried out a gluing of warped cylinders and M along their boundaries
in such a way that the resulting manifold becomes an Alexandrov space having totally
geodesic boundary.

This is based on Kosovski’s gluing theorem:

Theorem 2.10 [17] Let M0 and M1 be Riemannian manifolds with boundaries �0

and �1 , respectively, with sectional curvature KMi
� � for i D 0; 1. Assume that

there exists an isometry �W �0! �1 , and let M denote the space with length metric
obtained by gluing M0 and M1 along their boundaries via � . Let Li for i D 0; 1

be the second fundamental form of � WD �0 Š� �1 �M with respect to the normal
inward to Mi . Then M is an Alexandrov space with curvature � � if and only if the
sum L WDL1CL2 is positive semidefinite.

Remark 2.11 Actually, for every ı > 0, a smooth Riemannian metric gı on M is
constructed in [17] in such a way that the sectional curvature of gı is greater than �.ı/
with limı!0 �.ı/D � and that .M;gı/ Gromov–Hausdorff converges to M as ı! 0.

Now let us recall the extension construction in [30].

Let M be an n–dimensional complete Riemannian manifold with boundary satisfying

KM � �; �� � II@M � �
C;

where II@M denotes the second fundamental form of @M with respect to the inward
unit normal to M. Let x� WD minf0; ��g. Then for arbitrary t0 > 0 and 0 < "0 < 1
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there exists a monotone nonincreasing function �W Œ0; t0�!RC satisfying

�00.t/CK�.t/� 0; �.0/D 1; �.t0/D "0; �1< �0.0/� x�; �0.t0/D 0

for some constant K D K.�; "0; t0/. Now consider the warped product metric on
@M � Œ0; t0� defined by

g.x; t/D dt2
C�2.t/g@M .x/;

where g@M is the Riemannian metric of @M induced from that of M. We denote by
@M �� Œ0; t0� the warped product. It follows from the construction that

(2-1) � II@M�f0g � jminf0; ��gj,

� II@M�ft0g
� 0,

� the sectional curvature of @M �� Œ0; t0� is greater than a constant c D

c.�; �˙; "0; t0/,

� the second fundamental form of @M � ftg is given by

II@M�ftg.V;W /D
�0.t/

�.t/
g.V;W /

for vector fields V;W on @M � ftg.

Clearly, @M � f0g in @M �� Œ0; t0� is canonically isometric to @M. Thus we can glue
M and @M �� Œ0; t0� along @M and @M � f0g. The resulting space

�M WDM q@M .@M �� Œ0; t0�/

carries the structure of a differentiable manifold of class C 1;˛ with C 0 –Riemannian
metric [17]. Obviously M is diffeomorphic to �M.

Proposition 2.12 [30] For M 2M.n; �; �/, we have

(1) �M is an Alexandrov space with curvature � z� , where z� D z�.�; �/;

(2) the exterior metric M ext is L–bi-Lipschitz homeomorphic to M for the uniform
constant LD 1="0 ;

(3) diam. �M /� diam.M /C 2t0 .

The notion of warped product also works for metric spaces.
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Let X and Y be metric spaces, and �W Y ! RC a positive continuous function.
Then the warped product X �� Y is defined as follows (see [29]). For a curve
 D .�; �/W Œa; b�!X �Y , the length of  is defined as

L�. /D sup
j�j!0

kX
iD1

p
�2.�.si//j�.ti�1/; �.ti/j

2
Cj�.ti�1/; �.ti/j

2;

where �W aD t0 < t1 < � � � < tk D b and si is any element of Œti�1; ti �. The warped
product X �� Y is defined as the topological space X �Y equipped with the length
metric induced from L� .

Proposition 2.13 [29, Proposition B.2.6] Let Xi be a convergent sequence of length
spaces. If Y is a compact length space, we have

limGH.Xi �� Y /D .limGH Xi/�� Y:

3 Descriptions of limit spaces and examples

Under the notation in Section 2.3, throughout this section unless otherwise stated,
we assume Mi 2M.n; �; �; d/ Gromov–Hausdorff converges to a compact length
space N , where inrad.Mi/! 0. Let �Mi converge to a compact Alexandrov space Y ,
and M ext

i converge to a closed subset X of Y under the convergence �Mi! Y .

Here we fix some notation used later on:

� CMi
denotes @Mi �� Œ0; t0�.

� CMi ;t denotes the subspace @Mi �� ftg in CMi
.

� For CMi
� �Mi , C ext

Mi
denotes .CMi

; d �Mi
/.

In this section, we first investigate the relation between the limit C (resp. C0 ) of CMi

(resp. of @Mi ) and Y (resp. X ), and discuss the intrinsic structure of X and prove
that X int is isometric to N (Proposition 3.9). Then we describe the metric structure
of Y (Proposition 3.11)

3.1 Descriptions of X and Y

Under the notation presented in the beginning of this section, in view of Proposition 2.9
and (2-1), passing to a subsequence, we may assume that CMi

converges to some
compact Alexandrov space C with curvature � K D K.�; �/. Here CMi

is not
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necessarily connected, and therefore the convergence CMi
! C should be understood

componentwisely. It follows from Proposition 2.13 that

C D C0 �� Œ0; t0�; C0 D lim
i!1

.@Mi/
int;

where .@Mi/
int denotes @Mi endowed with length metric induced by its original metric.

For simplicity we write

C0 WD C0 � f0g; Ct WD C0 � ftg � C:

Since the identity map �i W CMi
! C ext

Mi
is 1–Lipschitz, we can define a surjective

1–Lipschitz map �W C ! Y in the limit. More precisely, define �W C ! Y by

�D lim
i!1

gi ı �i ıfi ;

where fi W C ! CMi
and gi W

�Mi ! Y are componentwise "i –approximations with
lim "i D 0.

From now on, we consider

�0 WD �jC0�f0gW C0!X;

which is also a surjective 1–Lipschitz map with respect to the exterior metrics of C0

and X, and hence with respect to the interior metrics, too.

The following two lemmas are obvious.

Lemma 3.1 The map �W C nC0! Y nX is a bijective local isometry.

Lemma 3.2 For .p; t/ 2 C nC0 , we have j�.p; t/;X j D t .

We now study the multiplicities of the gluing map �0 .

Lemma 3.3 For every x 2X, we have the following:

(1) #��1
0
.x/� 2.

(2) Suppose #��1
0
.x/ D 2 for some x 2 X, and take pk 2 C0 for k D 1; 2 with

�0.pk/D x . Then †x.Y / is isometric to a spherical suspension with the two
vertices f�1; �2g, where

�k WD"
�.pk ;t0/
x :
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Proof Suppose that #��1
0
.x/ � 3 and take pi 2 �

�1
0
.x/ and let yi WD �.pi ; t/ for

some t > 0 and for i D 1; 2; 3. We show that jyi ;yj j D 2t , or, equivalently,

(3-1) z†yixyj D �;

if t < 1
2
�.t0/jpipj jC int

0
, where i < j and i; j 2 f1; 2; 3g. It turns out that the geodesics

y1y2 and y1y3 branch at x , which is impossible since Y is an Alexandrov space with
curvature bounded below. The conclusions (1) and (2) follow immediately.

Let  W Œ0; `�! Y be a minimal geodesic in Y joining yi and yj . If  meets X, we
certainly have jyi ;yj j D 2t . Suppose that  does not meet X. Then z D ��1. /

is well defined by Lemma 3.1 and is a minimal geodesic joining .pi ; t/ and .pj ; t/.
Write z as z .s/D .�.s/; �.s// 2 C0 �� Œ0; t0�. Then we have

L. /DL.z /D

Z `

0

p
�2.�.s//j P�.s/j2CjP�.s/j2 ds

�

Z `

0

�.t0/j P�.s/j dt � �.t0/jpi ;pj jC int
0
:

Thus we have jyi ;yj j D L. / � �.t0/jpi ;pj jC int
0

. On the other hand, the triangle
inequality shows that jyi ;yj j � 2t < �.t0/jpi ;pj jC int

0
. This is a contradiction, and

therefore  meets X and jyi ;yj j D 2t .

Next we construct a good approximation map �Mi ! Y , which helps us to grasp a
whole picture on several convergences.

Let  i W @Mi D CMi ;0! C0 be an �i –approximation with limi!1 �i D 0.

Lemma 3.4 [29] The map ‰i W CMi
! C defined by

‰i.p; t/D . i.p/; t/

is an �0i –approximation with limi!1 �
0
i D 0. Actually, for any approximation map

‰0i W CMi
! C there is a  i W @Mi D CMi ;0! C0 such that j‰i.p; t/; ‰

0
i.p; t/j < �

0
i

for ‰i D . i ; id/.

Proof This follows from Proposition 2.13.

Recall that �W C nC0! Y nX is a locally isometric bijection. In particular, for every
y D .p; t0/ 2 Ct0

� Y , there is a unique minimal geodesic y W Œ0; t0�! Y between X
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and y such that y.0/ 2X and  .t0/D y . Actually y is defined as y.t/D �.p; t/.
Define g�i W C

ext
Mi
! Y by

g�i .p; t/D � ı‰i ı �
�1
i .p; t/D �. i.p/; t/:(3-2)

Proposition 3.5 The map g�i W C
ext
Mi
!Y defined above provides an �00i –approximation,

where lim �00i D 0.

Let gi W C
ext
Mi
! Y be any �i –approximation such that gi D g�i on CMi ;t0

, namely
gi.p; t0/D g�i .p; t0/.

For the proof of Proposition 3.5, it suffices to show the following:

Lemma 3.6 jgi.p; t/;g
�
i .p; t/j< �

00
i for all .p; t/ 2 C ext

Mi
.

Proof We have to show that

lim
i!1

sup
.p;t/2CMi

jgi.p; t/;g
�
i .p; t/j D 0:

Suppose the contrary. Then there are subsequence fj g � fig and .pj ; tj / 2 CMj
such

that

(3-3) jgj .pj ; tj /;g
�
j .pj ; tj /j � c > 0

for some constant c independent of j . Passing to a subsequence, we may assume that
. j .pj /; tj / converges to .p1; t1/ 2C. Let j .t/D .pj ; t/ for 0� t � t0 , which is a
minimal geodesic in C ext

Mj
between @Mj and CMi ;t0

. Now g�j ı j .t/D �. j .pj /; t/

converges to a minimal geodesic 1.t/D �.p1; t/ realizing the distance between X

and .p1; t0/ 2Ct0
� Y . Since gj is an �j –approximation, any limit of gj ıj , say y ,

must also be a minimal geodesic between X and .p1; t0/. From the uniqueness of
such geodesics, we have 1.t/D y1.t/, which contradicts (3-3).

Remark 3.7 Proposition 3.5 will be effectively used in Section 6.

Next, we determine the intrinsic structure of X, and prove Proposition 3.9 below, which
will be crucial in our start for the description of Y in terms of N (see Proposition 3.11)

Recall that X � Y is the limit of M ext
i under the convergence �Mi ! Y . By

Proposition 2.12, the identity �i W M ext
i !Mi is an L–bi-Lipschitz homeomorphism.

Therefore we have that:
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Lemma 3.8 For a subsequence, �i W M ext
i ! Mi converges to an L–bi-Lipschitz

homeomorphism �1W X !N .

Proposition 3.9 X int is isometric to N .

Sublemma 3.10 X is connected.

Proof Take an �i –approximation 'i W
�Mi! Y such that 'i.Mi/�X and lim �i D 0.

For every x;y 2 X, choose pi ; qi 2Mi such that 'i.pi/! x and 'i.qi/! y . Let
i W Œ0; 1�!Mi be a minimal geodesic in Mi joining pi to qi . Then the Lipschitz
curve ��1

i ıi W Œ0; 1�!M ext
i converges to a Lipschitz curve in X joining x to y under

the convergence �Mi! Y .

Proof of Proposition 3.9 Passing to a subsequence if necessary, we may assume that
the L–Lipschitz map �i W M ext

i !Mi , where LD 1=�0 , converges to a surjective map
hW X !N satisfying

jx;yjY � jh.x/; h.y/jN �Ljx;yjY

for every x;y 2X. Let � W Œ0; d �!N be a minimal geodesic joining h.x/ and h.y/.
Then we have

jh.x/; h.y/jN DL.�/�L.h�1.�//� jx;yjX int :

Next we show the reverse inequality. Let  W Œ0; `�!X be a minimal geodesic in X int

joining x to y . For any " > 0, take a subdivision � of  : x D x0 < x1 < � � � <

x˛ < � � �xk D y such that, denoting by � the broken geodesic consisting of minimal
geodesics joining x˛�1 and x˛ in Y for 1� ˛ � k , we have

(1) jL.�/� jx;yjX int j< ";

(2) maxt j�.t/;X j< ".

Take pi
˛ 2Mi converging to x˛ under the convergence �Mi! Y , and denote by  i

�

a broken geodesic consisting of minimal geodesics joining pi
˛�1

and pi
˛ in �Mi for

1� ˛ � k . Note that, for large enough i ,

(1) jL.�/�L. i
�
/j< ";

(2) maxt j
i
�
.t/;Mi j< ".
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Let �i WD �i ı 
i
�

, where �i W
�Mi ! Mi is the canonical projection defined by

�i.p; t/ D p . From the warped product metric construction, we have L. i
�
/ �

�."/L.�i/ for large i . It follows that

jx;yjX int �L.�/� " >L. i
�/� 2"� �."/L.�i/� 2"� �."/jpi ; qi jMi

� 2";

where pi! x and qi! y under �Mi! Y . Letting j�j! 0 and i!1, we conclude
that jx;yjX int � jh.x/; h.y/jN . This completes the proof.

Let X int[�0
C0 �� Œ0; t0� denote the length space obtained by the result of gluing of

the two length spaces X int and C0 �� Œ0; t0� by the map �0W C0 � 0!X int .

Proposition 3.11 Y is isometric to the length space

X int
[�0

C0 �� Œ0; t0�:

Proof Let Z WDX int[�0
C0 �� Œ0; t0�, and ˆW Y !Z be the canonical map. Note

that ˆ is bijective. For every y0;y1 2 Y , let  W Œ0; `�! Y be a minimal geodesic
joining y0 and y1 . Decompose  into the two parts

 D Y nX [ X ;

where Y nX D  \ .Y nX / and X D  \X. Let Y nX D [˛˛ be the at-most
countable union consisting of open arc components of Y nX . For any � > 0, take ˛
of length � � such that the endpoints z˛ and w˛ of ˛ are contained in X if such a
˛ exists. Take pi ; qi 2Mi such that pi! z˛ and qi! w˛ under the convergence�Mi! Y . For a minimal geodesic i joining pi and qi in �Mi , let �i WD �i.i/, where
�i W

�Mi ! Mi is the projection. Note that max ji.t/;Mi j < � . Using the warped
metric structure, we have L.i/� �.�/L.�i/, which implies

jz˛; w˛jY � jpi ; qi j �Mi
� oi � �.�/jpi ; qi jMi

� oi ;

where lim oi D 0. Letting i !1, we have jz˛; w˛jY � �.�/jz˛; w˛jX int . Now we
replace ˛ by a minimal geodesic joining z˛ and w˛ in X int . Repeating this procedure
at most countably many times if necessary, we construct a Lipschitz curve y joining
y0 to y1 such that in the decomposition

y D yY nX [ yX ;
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yY nX (resp. yX ) consists of finitely many Y –minimal geodesics each of length � �
(resp. finitely many X –minimal geodesic) and that

jy0;y1jY DL. /� �.�/L.y /� �.�/jˆ.y0/; ˆ.y1/jZ :

Letting �! 0, we conclude that jy0;y1jY � jˆ.y0/; ˆ.y1/jZ .

Next, taking a Z–minimal geodesic joining ˆ.y0/ and ˆ.y1/ and replacing it by
a Lipschitz curve in a similar way, we obtain the reverse inequality jy0;y1jY �

jˆ.y0/; ˆ.y1/jZ . This completes the proof.

Remark 3.12 Both Propositions 3.9 and 3.11 hold true for pointed Gromov–Hausdorff
limits of inradius collapsed manifolds (see Section 6). Moreover, in the above proofs,
we do not need the assumption of inradius collapse. Therefore Propositions 3.9 and 3.11
also hold for Gromov–Hausdorff limits of noninradius collapsed manifolds.

The reason why we use the naming of inradius collapse partly comes from the following
corollary:

Corollary 3.13 If Mi 2M.n; �; �; d/ inradius collapses to N , then we have

(1) dim Mi > dim N ;

(2) lim vol.Mi/D 0.

Proof (1) From Lemma 3.8 and Proposition 3.11, we have

dim Mi D dim �Mi � dim Y � dim X C 1D dim N C 1:

(2) We proceed by contradiction. Suppose vol.Mi/ > v0 > 0 for some constant v0

independent of i . By Proposition 2.12, there is a uniform bound V with vol.@Mi/�V .
Choose any �0 2 .0; 1/ and t0 2 .0; v0=.2V //, and perform the extension procedure
with warping function as in Section 2.3. Then CMi

has volume

vol.CMi
/ < V t0 <

1
2
v0:

Passing to a subsequence, we may assume that �Mi converges to Y . Since vol. �Mi/�v0 ,
we have dim Y D n. It follows from the volume convergence that

vol.Y /D lim vol. �Mi/� v0:

However,

vol.Y /D vol.Y nX /C vol.X /D vol.C0 �� Œ0; t0�/ < V0t0 �
1
2
v0;

which is a contradiction.
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Remark 3.14 Wong proved dim Mi > dim N in [31, Lemma 1] under the condition
that N is an absolute Poincaré duality space. In [35], we shall show that if N is a closed
topological manifold or a closed Alexandrov space, then Mi inradius collapses. Hence
Corollary 3.13 gives another version of Wong’s result. It should also be noted that the
conclusion of Corollary 3.13 holds for limit spaces of inradius collapsed manifolds
with respect to the pointed Gromov–Hausdorff topology (see Corollary 6.2).

Definition 3.15 In view of Lemma 3.3 and Proposition 3.11, we make an identification
N DX int and set, for k D 1; 2,

Nk DXk WD fx 2X j#��1
0 .x/D kg; C k

0 WD fp 2 C0 j �0.p/ 2Xkg:

3.2 Examples

We exhibit some examples of collapse of manifolds with boundary. All the examples
except Example 3.23 are inradius collapses.

Example 3.16 Let Sn.r/ WD
˚
x D .x1; : : : ;xnC1/ 2RnC1 j

PnC1
iD1 .xi/

2 D r2
	

. For
0 � a < r and small � > 0, define M� WD fx 2 Sn.r/ j a � xnC1 � aC �g. Then
KM�

D 1=r2 and

�
aC �

r
p

r2� .aC �/2
�…@M�

�
a

r
p

r2� a2
:

Now M� inradius collapses to N WD Sn�1.
p

r2� a2 /, where the limit space is an
Alexandrov space with curvature � 1=.r2� a2/. Note that N2 DN , and that the limit
Y of �M� is isometric to the form

Y D .Sn�1.
p

r2� a2 /qSn�1.
p

r2� a2 //�� Œ0; t0�=.f .x/; 0/� .x; 0/;

where f is the canonical involution on Sn�1.
p

r2� a2 /qSn�1.
p

r2� a2 /. Equiv-
alently, Y is isometric to the warped product

Sn�1.
p

r2� a2 /�z� Œ�t0; t0�;

where z�.t/D �.jt j/.

Example 3.17 Let T 2 �R3 be a torus smoothly imbedded in R3 , and let M� be a
closed �–neighborhood of T 2 in R3 for small � > 0. Then, as �! 0, M� inradius
collapses to T 2 , where the limit space T 2 has negative curvature somewhere, while
M� is flat.
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Examples 3.16 and 3.17 show that the lower Alexandrov curvature bound of the limit
in Theorem 1.2 really depends on the lower sectional curvature bound KM � � and
�� j…@M j.

Example 3.18 [31] Let N � R2 � 0 � R3 be a nonconvex domain with smooth
boundary, and let M 0

� denote the closure of �–neighborhood of N in R3 . After a
slight smoothing of M 0

� , we obtain a flat Riemannian manifold M� with boundary such
that …@M�

� �� for some � > 0 independent of � . Note that M� inradius collapses
to N , where N has no lower Alexandrov curvature bound.

This example shows that Theorem 1.2 does not hold if one drops the upper bound
��…@M .

Example 3.19 Let N �R2 be the union of the unit circle f.x;y/ j x2Cy2D 1g and
the segment f.x;y/ j x D 0; �1 � y � 1g. Let M� be the intersection of the closed
�–neighborhood of N in R2 and the unit disk f.x;y/ j x2C y2 � 1g. After slight
smoothing of M� , it is a compact surface with KM�

� 0 and II@M�
� �2 for some �.

However inf II@M�
!�1 as �! 0, and M� inradius collapses to N, which is not

an Alexandrov space with curvature bounded below.

This example shows that Theorem 1.2 does not hold if one drops the lower bound
��2 � II@M .

Example 3.20 Let � W P !N be a Riemannian double covering between closed Rie-
mannian manifolds with the deck transformation 'W P ! P. Define ˚ W P � Œ��; ��!
P � Œ��; �� by

˚.x; t/D .'.x/;�t/;

and consider M� WD P � Œ��; ��=˚ , which is a twisted I –bundle over N. Note that
M� 2M.n; �; 0; d/ for some � and d , and that M� inradius collapses to N as �! 0.
In this case, we have N2 DN . Note that the limit Y of �M� is isometric to the form

Y D P �� Œ0; t0�=.'.x/; 0/� .x; 0/;

or, equivalently, Y is doubly covered by the warped product

P �z� Œ�t0; t0�:

Example 3.21 Let N be a convex domain in Rn�1�0�RnC1 with smooth boundary.
Let M 0

� denote the intersection of the boundary of the �–neighborhood of N in RnC1
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with the upper half space HCDf.x1; : : : ;xnC1/ j xnC1� 0g. After a slight smoothing
of M 0

� , we obtain a nonnegatively curved Riemannian manifold M� with totally
geodesic boundary. Note that M� inradius collapses to N as �! 0. Note also that
.@M�/

int , a smooth approximation of the boundary of �–neighborhood of N in Rn ,
converges to the double D.N / of N . It follows that N1D @N and N2DN n@N , and
that the limit Y of �M� is isometric to the form

Y DD.N /�� Œ0; t0�=.r.x/; 0/� .x; 0/;

where r W D.N /!D.N / denotes the canonical reflection of D.N /.

Next let us consider more general examples. The following ones come from Example 1.2
in [32], where general examples of collapse of closed manifolds were given.

Example 3.22 Let y� W M ! N be a fiber bundle over a closed manifold N with
fiber F having nonempty boundary and with the structure group G such that

(1) G is a compact Lie group;

(2) F has a G–invariant metric gF of nonnegative curvature which smoothly
extends to the double D.F /.

Fix a bi-invariant metric b on G and a metric h on N . Let � W P!N be the principal
G –bundle associated with y� W M !N . Define a G –invariant metric g� on P by

g�.u; v/D h.d�.u/; d�.v//C �2b.!.u/; !.v//;

where ! is a G –connection on P. Define a metric zg� on P �D.F / as

zg� D g�C �
2gF :

For the G –action on P�D.F / defined by .p; f /�gD .pg;g�1f /, zg� is G –invariant
and invariant under the action of reflection of D.F /. Therefore it induces a metric
gD.M /;� on D.M /D P �D.F /=G. Since gD.M /;� is invariant under the action of
reflection of D.M /, it induces a metric gM;� on M with totally geodesic boundary
such that .M;gM;�/ inradius collapse to .N; h/ under a lower sectional curvature
bound.

Example 3.23 Let M be a compact manifold with boundary, and suppose that a
compact Lie group of positive dimension effectively acts on M which extends to the
action on D.M /. Suppose that D.M / has a G–invariant and reflection-invariant
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smooth metric g . As in Example 1.2 of [32], one can construct a metric gD.M /;�

on D.M / which collapses to .D.M /;gD.M /;�/=G under a lower curvature bound. It
follows that the metric .M;gM;�/ induced by gD.M /;� also collapses to .M;gM;�/=G

under a lower curvature bound. Note that .M;gM;�/ has totally geodesic boundary.

4 Metric structure of limit spaces

Let X � Y and N be as in Section 3. The main purpose of this section is to show that
Y and N are actually isometric to C=�0 and C0=�0 , respectively. To study how this
gluing is made, we first analyze the tangent cones of C, C0 , Y and X at gluing points,
and their relations via the differential d�0 of the gluing map �0 . It turns out that the
identification map �0 preserves length of curves. Finally, we see that N is isometric
to a quotient of C int

0
by an isometric Z2 –action. (see Proposition 4.30), which implies

Theorems 1.2 and 4.32.

4.1 Preliminary argument

In this subsection, we study geodesic behavior in C and the property of a rescaling
limit of the map �W C ! Y . These will be useful in the next subsection to investigate
geodesic behavior in Y .

Let z� W C ! C0 and � W Y ! X be the projections. To be precise, let �.y/ WD
�0ız�.�

�1.y//, which is a surjective Lipschitz map. For every p2C0 , let zC.t/D.p; t/
and C.t/D �.z .t// for t 2 Œ0; t0�. We call zC (resp. C ) a perpendicular to C0 (resp.
to X ) at p (resp. at �0.p/). The map z� and � are the projections along perpendiculars.
Note that �W C nC0! Y nX is a locally isometric bijective map. Therefore C nC0

and Y nX are isometric to each other with respect to their length metrics.

For simplicity, we use the notation

Ct WD fx 2 C j d.C0;x/D tg; C Y
t WD fy 2 Y j d.X;y/D tg

for every t 2 .0; t0�. We also denote by

z�t W C ! Ct ; �t W Y nX ! Ct ;

the canonical projections along perpendiculars. Recall that

X1 D fx 2X j #��1
0 .x/D 1g; X2 D fx 2X j #��1

0 .x/D 2g;

C k
0 D fp 2 C0 j �0.p/ 2Xkg for k D 1; 2:
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First we investigate the behavior of geodesics in C. To do this we make use of the
Gromov–Hausdorff convergence CMi

! C.

Recall that for every t 2 Œ0; t0�, we set

CMi ;t D fx 2 CMi
j d.x; @Mi/D tg:

We also use t to denote the distance functions on C and CMi
from C0 and @Mi ,

respectively.

Let  W Œ0; `�! C be a unit-speed geodesic, and � D @
@t

the unit vector field on C.
Take a geodesic i in CMi

such i!  . We denote by …i
t the second fundamental

form of CMi ;t ,

…i
t .V;W /D�hrV �i ;W i for V;W 2 T .CMi ;t /;

where �iD @
@t

is the unit vector field on CMi
. Consider the function �i.s/D t.i.s//D

ji.s/; @Mi j. We have

�0i.s/D h�i.i.s//; Pi.s/i;

�00i .s/D hr PT
i
�i ; P

T
i i D �…. P

T
i ; P

T
i /D

�0.�i.s//

�.�i.s//
j PT

i .s/j
2;

where PT
i .s/ is the component of Pi.s/ tangent to CMi ;�i .s/ . Note that 0��00i .s/��c

for some uniform constant c > 0. In particular, we have:

Lemma 4.1 �i and � are concave functions.

Lemma 4.2 For every t 2 Œ0; t0� and p1;p2 2 Ct , we haveˇ̌̌̌
jp1;p2jC int

t

jp1;p2jC
� 1

ˇ̌̌̌
<O.jp1;p2j

2
C /:

Proof Let  W Œ0; `�! C be a unit-speed minimal geodesic joining p1 to p2 . Take a
unit-speed minimal geodesic i W Œ0; `i �! CMi

such that i!  under the Gromov–
Hausdorff convergence CMi

! C. We may assume that �i.i.0//D �i.i.`i//D t .
Putting

�i.s/D �i.i.s//D ji.s/; @Mi j;

�i.s/ takes a maximum tiD�i.ui/> t at some ui 2 .0; `/. By the mean value theorem,
we obtain

�i.ui/� t

ui
D �0i.vi/;

t � �i.ui/

`i �ui
D �0i.v

0
i/;

�0i.v
0
i/� �

0
i.vi/

v0i � vi
D �00.wi/
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for some 0< vi < ui < v
0
i < ` and vi <wi < v

0
i . Adding the first two equalities, we

get

(4-1) �i.ui/� t �
.`i �ui/ui

`i
.v0i � vi/.��

00
i .wi//� cji.0/; i.`i/j

2:

Setting t� WDmaxŒ0;`� � and letting i !1, we have

(4-2) t�� t Dmax
Œ0;`�

�� t � cjp1;p2j
2;

and hence

(4-3)
ˇ̌̌̌
�.t/

�.t�/
� 1

ˇ̌̌̌
� c0jp1;p2j

2:

Let �t W C ! Ct be the canonical projection. Since �t has Lipschitz constant �.t/

�.t�/
on the domain bounded by Ct and Ct� , it follows from (4-3) that

jp1;p2jC int
t
�L.�t ı  /�

�.t/

�.t�/
jp1;p2j< .1CO.jp1;p2j

2/jp1;p2j:(4-4)

This completes the proof.

Lemma 4.3 For every p1;p2 2 Ct and unit-speed minimal geodesic  W Œ0; `�! C

joining p1 to p2 , we have
�0.0/� C jp1;p2j;

where �.s/D j .s/;Ct j.

Proof Let �.s/ take the maximum at s D s0 . Using the mean value theorem, we
obtain ��0.0/=s0 � inf �00 � �c , from which the conclusion is immediate.

Next we discuss a rescaling limit of the map �W C!Y . Fix p 2C0 and xD�0.p/2X,
and let ti be an arbitrary sequence of positive numbers with lim ti D 0. Passing to a
subsequence, we may assume that

�i D �W
�

1

ti
C;p

�
!

�
1

ti
Y;x

�
converges to a 1–Lipschitz map

�1W .Tp.C /; op/! .Tx.Y /; ox/

between the tangent cones of the Alexandrov spaces. We may also assume that
�

1
ti

X;x
�

converges to a closed subset .T �x .X /; ox/ of .Tx.Y /; ox/ under the convergence�
1
ti

Y;x
�
! .TxY; ox/.
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Sublemma 4.4 �1W Tp.C / nTp.C0/! TxY nT �x .X / is a bijective local isometry.

Proof Let z�D j � ;C0j, �D j � ;X j. Under the 1=ti –rescaling, we may assume that z�
and � converge to the maps

z�1 D j � ;Tp.C0/j; �1 D j � ;T
�
x .X /j;

respectively, satisfying z�1D �1 ı�1 . For any zw 2 Tp.C /nTp.C0/, let �D z�1. zw/
and wD�1. zw/. Since �1.w/D � , it is easily checked that �1W B

�
zw; �

2

�
!B

�
w; �

2

�
is an isometry.

Next let us show that �1W Tp.C /nTp.C0/! TxY nT �x .X / is bijective. Suppose that
w WD �1. zw1/ D �1. zw2/ for zwj 2 Tp.C / n TP .C0/. Take qi

1
; qi

2
2 C such that qi

j

converges to zwj under the 1=ti –rescaling. Let �.qi
j /D yi

j . Since yi
j converges to the

same point w , any minimal geodesic joining yi
1

and yi
2

does not meet X. This implies
that jqi

1
; qi

2
jD jyi

1
;yi

2
j. However this must imply that zw1D zw2 . Hence �1 is injective

on Tp.C / n Tp.C0/. It is easy to see that �1W Tp.C / n Tp.C0/! TxY n T �x .X / is
surjective, and hence the proof is omitted.

4.2 Spaces of directions and differential of �0

In this subsection, we study the spaces of directions of C, C0 , Y and X at the points
where the gluing is done, and the relation between them. We also study the differential
of the gluing map �0 at those points.

Lemma 4.5 For every p 2 C0 , let zC.t/D .p; t/ and C.t/D �.z .t//. Then

(1) †p.C / is isometric to the half-spherical suspension fz 0C.0/g �†p.C0/;

(2) for every s 2 .0; t0/, †.p;s/.C / and †�.p;s/.�.C // are isometric to the spherical
suspensions f˙z 0C.s/g �†p.C0/ and f˙ 0C.s/g �†p.C0/, respectively.

Proof From the suspension structure C D C0�� Œ0; t0�, obviously we have Tp.C /D

Tp.C0/�Œ0;1/, which implies the conclusion (1). Since both zC and C are geodesic,
the splitting theorem shows (2).

Lemma 4.6 For every x2X and � 2Tx.Y /nK.†x.X // which is not a perpendicular
direction , assume that there is a geodesic  W Œ0; `�! Y with  0.0/D � , and let

z D ��1. /; z� D z� ı z ; � D � ı ; p WD z .0/:
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Let zC be the perpendicular to C0 at p , and set C D �.zC/. Put

z� D z 0.0/; z�C D z
0
C.0/; zv D z� 0.0/; �C D 

0
C.0/:

Then

(1) � defines a unique vector v D � 0.0/ 2K.†x.X // and we have

(4-5)
†.�C; �/D†.z�C; z�/; †.�; v/D†.z�; zv/;

†.�C; �/C†.�; v/D†.�C; v/D
1
2
� I

(2) there is a unique limit �1W Tp.C /! Tx.Y / of �t D �W
�

1
t
C;p

�
!
�

1
t
Y;x

�
as

t ! 0, and we have

�1.zv/D v; jzvj D jvj:

Proof Let � 2†x.X / be a direction defined by the curve � . By definition, this means
that � D limi!1 "

�.ti /
x for a sequence ti! 0. Since  is minimal, so is z . Note that

zv is uniquely determined since z� is a shortest curve. From Lemma 4.5, we have

(4-6) †.z�C; z�/C†.z�; zv/D†.z�C; zv/D
1
2
�:

Now we show (4-5). Consider the 1=ti –rescaling limits,

.Tx.Y /; ox/D lim
i!1

�
1

ti
Y;x

�
; .Tp.C /; op/D lim

i!1

�
1

ti
C;p

�
:

Let ti
(resp. zti

) be the perpendicular to X at �.ti/ (resp. to C0 at z�.ti/). Passing
to a subsequence, we may assume that the quadruplet .C; ; �; ti

/ converges to
.C1; 1; �1; 11/ under the convergence

�
1
ti

Y;x
�
! .Tx.Y /; ox/. For instance,

this explicitly means that the Lipschitz curve 1
ti
�.ti t/ converges to a Lipschitz curve

�1.t/ in Tx.Y /. Thus C1 and 11 are perpendicular to T �x .X / at ox and �1.1/
and 1 is the geodesic from ox with 1.1/ D � . Here we assume that

�
1
ti

X;x
�

converges to a closed subset .T �x .X /; ox/ of Tx.Y /; ox/.

Similarly passing to a subsequence, we may assume that the quadruplet .zC; z ; z�; zti
/

converges to .zC1; z1; z�1; z11/ under the convergence
�

1
ti

C;p
�
! .Tp.C /; op/.

Thus zC1 and z11 are perpendicular to Tp.C0/ at op and z�1.1/ and z1 is the
geodesic from op with z1.1/D z� .

We set
�.t/D jC0; z .t/j D jX;  .t/j:

Notice that:
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(1) j�; �1.1/j D jz�; z�1.1/j D �0.0/.

(2) �0.0/D jz�j sin†.z�; zv/.

Let z� be a minimal geodesic joining z� D z1.1/ to zC1 . Let �1W Tp.C /! Tx.Y /

be any limit of �ti
D �W

�
1
ti

C;p
�
!
�

1
ti

Y;x
�
. Since �1 is 1–Lipschitz, we have

jz�j sin†.z�C; z�/DL.z�/DL.�1 ı z�/� j�j sin†.�C; �/;

and hence

†.�C; �/�†.z�C; z�/:(4-7)

Next we show that

†.�; �/D†.z�; zv/:(4-8)

Put for simplicity

z� WD †.z�; zv/; z�i WD †.z
0.ti/;Tz.ti /C�.ti //;

� WD †.�; �/; �i WD †.
0.ti/;T.ti /C

Y
�.ti /

/:

From the warping product structure of C, we easily have

lim
i!1

z�i D
z�:

On the other hand, under the convergence
�

1
ti

C;p
�
! .Tp.C /; op/ (resp. under the

convergence
�

1
ti

Y;x
�
! .TxY; ox/), we may assume that Csti

converges to some
space, denoted by Cs1 . (resp. C Y

sti
converges to some space C Y

s1 ). Then we have

(1) z� D†.z 01.0/; z�
0
1.0//;

(2) z� D lim z�i D†.z
0
1.1/;Tz1.1/.C�0.0/1//.

Since †
�
z 01.1/; z

0
11
.�0.0//

�
D

1
2
� � z� , we have

†op z1.1/z�1.1//D
1
2
� � z�:(4-9)

On the other hand, since �W C nC0! C Y nX is a local isometry, we have

z�i D �i :

From the lower semicontinuity of angles, we have

lim �i D†.
0
1.1/;T1.1/.C�0.0/1//:
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It follows from the spherical suspension structure of †1.1/Tp.C / that

†
�
 01.1/; 

0
11.�

0.0//
�
D

1
2
� �†. 01.1/;T1.1/.C�0.0/1//D

1
2
� � z�;

and hence

†ox��1.1/D
1
2
� � z�:(4-10)

By (4-9) and (4-10), the two Euclidean triangles 4ox��1.1/ and 4op
z�z�1.1/ are

congruent to each other, and we conclude that †.�; �/D†.z�; zv/, as required.

The first variation formula immediately implies †.�C; �/� 1
2
� . It follows from (4-7)

and (4-8) that

(4-11) 1
2
� �†.�C; �/�†.�C; �/C†.�; �/�†.z�C; z�/C†.z�; zv/D

1
2
�:

Thus we conclude that

†.�C; �/C†.�; �/D†.�C; �/D
1
2
�;

which shows the uniqueness of � . Namely, � determines a unique direction at x . Note
that

(4-12)
v WD � 0.0/D lim

i!1

jx; �.ti/j

ti
� D jox; �1.1/j�;

jvj D jox; �1.1/j D jop; z�1.1/j D jzvj:

Since �1.zv/D v , this shows that �1 does not depend on the choice of ti! 0.

Remark 4.7 The argument in the proof of Lemma 4.6 also shows that

jz�j cos z� D jop; z�1.1/j D jox; �1.1/j �L.�1jŒ0;1�/�L.z�1jŒ0;1�/D cos z�;

which implies that

�1 is minimizing in the direction � 0.0/:(4-13)

Corollary 4.8 For every x 2X and � 2†x.Y /n†x.X / which is not a perpendicular
direction, there is a unique perpendicular direction �C 2†x.Y / to X at x and a unique
v 2†x.X / such that

(4-14) †.�C; �/C†.�; v/D†.�C; v/D
1
2
�:

Proof This immediately follows from Lemma 4.6 and a limit argument.
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By Lemma 4.6, for every geodesic  in Y starting from x 2 X such that  0.0/ 2
†x.Y / n†x.X /, the Lipschitz curve � D �. / determines a unique direction Œ� � 2
†x.X /. In general, we call such a direction Œ� � an intrinsic direction if � is a Lipschitz
curve in X starting from x and having a unique direction Œ� �D � 0.0/ in the sense that
for any sequence ti! 0, "�.ti /

x converges to Œ� �.

The next lemma shows that every direction in †x.X / can be approximated by intrinsic
directions.

Lemma 4.9 For every v 2†x.X /, we have the following:

(1) For any perpendicular direction �C 2†x.Y /, we have

†.�C; v/D
1
2
�:

(2) There are intrinsic directions Œ�i � 2†x.X / satisfying

limŒ�i �D v:

Proof For every v 2†x.X / take a sequence yi 2X with yi! x and vi WD"
yi
x ! v .

Let �i W Œ0; si �! Y be a minimal geodesic from x to yi . Let C be a perpendicular
to X at x with  0C.0/ D �C . Let �i be a minimal geodesic joining C.t0/ to yi .
Considering perpendiculars to X through the points of �i and taking the limit, we
obtain a perpendicular yi

to X at yi . Let i W Œ0; ti �! Y be a minimal geodesic
from x to yi

.si/, and set

�i.t/ WD �.i.t//; zi D �
�1.i/; z�i D z�.zi/:

By Lemma 4.6, �i defines a unique direction yvi 2†x.X / such that

†.�C; �i/C†.�i ; yvi/D†.�C; yvi/D
1
2
�;(4-15)

where �i D  0i .0/. Note that yi D �i.ti/.

We now use an argument similar to that of Lemma 4.6. Consider the convergence�
1

ti
Y;x

�
! .Tx.Y /; ox/;

�
1

ti
C;p

�
! .Tp.C /; op/:

Passing to a subsequence, we may assume that �i converges to some � 2 †x.Y / �

Tx.Y /. We may also assume that

(a) i.tis/ and �i.tis/ converge to a geodesic 1.s/ and a Lipschitz curve �1.s/,
respectively;

Geometry & Topology, Volume 23 (2019)



2824 Takao Yamaguchi and Zhilang Zhang

(b) zi.tis/ and z�i.tis/ converge to geodesics z1.s/ and z�1.s/ in Tp.C /, respec-
tively.

Let �1W .Tp.C /; op/! .TxY; ox/ be the 1–Lipschitz map defined in Lemma 4.6(2)
as the limit of

�i D �W
�

1

ti
C;p

�
!

�
1

ti
Y;x

�
:

Note that �1.z�1.s//D �1.s/. Consider the geodesic triangles

�ox
WD�ox1.1/�1.1/� Tx.Y /;

�op
WD�op z1.1/z�1.1/� Tp.C /:

An argument similar to that in Lemma 4.6 implies that

†ox1.1/�1.1/D†op z1.1/z�1.1/:(4-16)

It should be remarked that in the case of Lemma 4.6, the geodesic  W Œ0; `�! Y in
the direction � was given in the beginning, and we considered the points  .ti/ with
ti! 0. On the other hand, in the present case, we have only the geodesic i W Œ0; ti �!Y .
Therefore we take a point zi 2 Y instead, in such a way that

z†xi.ti/zi > � � oi ; ji.ti/; zi j D ti ;

where lim oi D 0. Then, with almost parallel argument, we obtain (4-16) and that
�ox

and �op
are congruent to each other as Euclidean flat triangles. In particular, we

conclude that

jox; �1.1/j D jop; z�1.1/j:(4-17)

Since L.�1/�L.z�1/, this implies that �1 is a minimal geodesic in the direction v .
As in Lemma 4.6, (4-16) also implies that

†.�C; �/C†.�; v/D†.�C; v/D
1
2
�;(4-18)

where � D lim �i . This proves (1). It follows from (4-15) and (4-18) that

(4-19) v D lim yvi ;

which shows (2).

Furthermore, it follows from

L.z�i/

ti
�

L.�i/

ti
�

L.�i/

ti
; lim

L.z�i/

ti
D jop; z�1.1/j; lim

L.�i/

ti
D jox; �1.1/j
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that

(4-20) lim
L.�i/

ti
DL.�1/:

Let †0
x.X / denote the set of intrinsic directions Œ� � 2 †x.Y / of Lipschitz curves

� W Œ0; �/!X starting from x such that the direction Œ� � is uniquely determined. From
Lemma 4.9, we immediately have the following:

Proposition 4.10 †x.X / coincides with the closure of †0
x.X / in †x.Y /.

The space of direction †x.X / was originally defined in an extrinsic way; see Section 2.2.
Proposition 4.10 shows that it coincides with the one defined in an intrinsic way.

For x 2X1 (resp. x 2X2 ), let �C 2†x.Y / (resp. �˙ 2†x.Y /) be the unique (resp.
the two) direction (resp. directions) of the perpendicular (resp. perpendiculars) to X

at x .

Corollary 4.11 For every x 2X, we have the following:

(1) If x 2X1 , then

†x.X /D
˚
v 2†x.Y / j †.�C; v/D

1
2
�
	
:

(2) If x 2X2 , then †x.Y / is isometric to the spherical suspension f�˙g �†x.X /.

In either case , †x.X / is an Alexandrov space with curvature � 1 of dimension equal
to dim Y � 2.

Proof (1) is a direct consequence of Corollary 4.8 and Lemma 4.9. (2) is a direct
consequence of Lemma 3.3, Corollary 4.8 and Lemma 4.9. In an Alexandrov space †
with curvature � 1, for any � 2 †, the set

˚
v 2 † j jv; �j � 1

2
�
	

is convex, which
implies the last conclusion.

Our next purpose is to show the following:

Proposition 4.12 Under the convergence limı!0

�
1
ı
Y;x

�
D .Tx.Y /; ox/,

�
1
ı
X;x

�
converges to the Euclidean cone

�
K.†x.X //; ox

�
as ı! 0.

We set
Tx.X /DK.†x.X //

and call it the tangent cone of X at x .

For the proof of Proposition 4.12, we need three lemmas.
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Lemma 4.13 For every minimal geodesic  W Œ0; `�!Y joining any x 2X and y 2Y ,
the curve �.t/ WD�. .t// has a unique direction at tD 0, and hence defines an intrinsic
direction Œ� � 2†x.X /.

Proof By Lemma 4.6, it suffices to consider only the case � WD  0.0/ 2 †x.X /.
Suppose that for sequences sj ! 0 and tj ! 0 we have limits

� WD lim
j!1

"
�.sj /
x ; � WD lim

j!1
"
�.tj /
x :

Take �i 2†x.Y / n†x.X / such that �i! � and the geodesic i in the direction �i is
defined. Set �i D� ıi . By Lemma 4.6, �i defines an intrinsic direction Œ�i �2†x.X /,
and passing to a subsequence we may assume that

†.�C; �i/C†.�i ; Œ�i �/D†.�; Œ�i �/D
1
2
�

for some perpendicular direction �C at x . It follows that †.�i ; Œ�i �/! 0 and Œ�i �! � .
From �i! � , we have

ji.t/;  .t/j< oi t;

where lim oi D 0. Since � is 1–Lipschitz, it follows that

j�i.t/; �.t/j< oi t;(4-21)

which implies that

(4-22) j�i.sj /; �.sj /j< oisj ; j�i.tj /; �.tj /j< oi tj :

Passing to a subsequence, we may assume that there are limits

˛ D lim
j!1

jx; �.sj /j

sj
; ˛i D lim

j!1

jx; �i.sj /j

sj
;

ˇ D lim
j!1

jx; �.tj /j

tj
; ˇi D lim

j!1

jx; �i.tj /j

tj
:

Inequality (4-21) implies ˛i! ˛ and ˇi! ˇ . On the other hand, since � 2†x.X /,
(4-12) shows j̨ ! 1 and ǰ ! 1, Thus we have ˛ D ˇ D 1. Since (4-22) implies

(4-23) j˛i Œ�i �; ˛�j � oi ; jˇi Œ�i �; ˇ�j � oi ;

we conclude that
jŒ�i �; �j � oi ; jŒ�i �; �j � oi ;

and hence the uniqueness �D � D � .
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Lemma 4.14 For every x;y 2X and every minimal geodesic �W Œ0; `�! Y joining
them , let � D � ı� and set �.t/D j�.t/;X j. Then we have

(1) max � �O.jx;yj2/;

(2) †.�0.0/; Œ� �/�O.jx;yj/;

(3) jL.�/=L.�/� 1j<O.jx;yj2/.

Proof (1) Let �.s�/Dmax � and take 0 � a < b � ` such that s� 2 .a; b/, � > 0

on .a; b/ and �.a/D�.b/D 0. Then z�D ��1.�jŒa;b�/ and z� D z�.z�/ are well defined.
By (4-1), we have

�.s�/D jz�.s�/;C0j �O.jz�.a/; z�.b/j2/�O.j�.a/; �.b/j2/�O.jx;yj2/:

(2) We may assume �0.0/¤ Œ� �. Take the smallest s1 2 .0; `� satisfying �.s1/ 2X.
Note that z� D ��1.�j0;s1�/ is well defined and jx; �.s1/j D jz�.0/; z�.s1/j. Since
�.s/D j�.s/;X j D jz�.s/;C0j for 0� s � s1 , Lemmas 4.6 and 4.3 imply

�0.0/D sin†.�0.0/; Œ� �/� C jz�.0/; z�.s1/j D C jx; �.s1/j � C jx;yj:

(3) Take at most countable disjoint open intervals .ai ; bi/ of Œ0; `� such that

� �.ai/; �.bi/ 2X and �..ai ; bi//� Y nX ;

� �.s/ 2X for all s 2 J WD Œ0; `� n[.ai ; bi/.

Set
�i D �jŒai ;bi �; �i D � jŒai ;bi �; z�i D �

�1.�i/; z�i D �
�1.�i/:

Let L.J / denote the measure of J. Since L.z�i/ D L.�i/, L.z�i/ � L.�i/ and
�.J /D �.J /, Lemma 4.2 implies that

L.�/D
X

L.�i/CL.J /

�

X
L.z�i/CL.J /

�

X
.1CO.jz�i.ai/; z�i.bi/j

2/L.z�i/CL.J /

D

X
.1CO.j�.ai/; �.bi/j

2/L.�i/CL.J /

� .1CO.jx;yj2/L.�/:

Lemma 4.15 For any v D Œ� � 2 †0
x.X /, if we consider the arc-length parameter

of � , �.ıt/ converges to the geodesic ray �1.t/ in Tx.Y / from the origin ox in the
direction v as ı! 0 under the convergence

�
1
ı
Y;x

�
! Tx.Y /; ox/.
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Proof Since � determines the unique direction v , we have, for any 0<R1 <R2 ,

lim
ı!0
"
�.ıR1/
x D lim

ı!0
"
�.ıR2/
x :

This implies that the image �1.Œ0;1// coincides with the ray in the direction v .

We denote by �.R j �/ a function satisfying lim�!0 �.R j �/D 0 for any fixed R.

Proof of Proposition 4.12 We have to show that the Gromov–Hausdorff distance
between

�
1
ı
B.x; ıRIX /;x

�
and .B.ox;RIK.†x.X //; ox/ converges to zero as ı!0

for any fixed R> 0. For every small � > 0 take an �–dense subset fŒ�i �g
I
iD1

of †0
x.X /,

and put K WD ŒR=��C 1. Taking small enough ı , we may assume that �i are defined
on Œ0; ıR� and that �i can be written as �i D �.i/, where i is a minimal geodesic
in Y joining x to �i.ıR/. Let us consider the sets

N �
1 WD

n
kR

K
Œ� �
ˇ̌
1� i � I; 0� k �K

o
� B

�
ox;RIK.†x.X //

�
;

N �
WD

n
�i

�
ıkR

K

� ˇ̌
1� i � I; 0� k �K

o
�

1

ı
B.x; ıRIX /:

First we show that both N �
1 and N � are .�.Rj�/C�.Rjı//–dense. For simplicity, set

vi;k D
kR

K
Œ� �; xi;k D �i

�
ıkR

K

�
:

For every y 2 B.x; ıRIX /, let  W Œ0; `�! Y be a minimal geodesic joining x to y ,
and let � WD�. /. Choose i and k with †.Œ� �; Œ�i �/ < � and j`�kR=Kj<R=K <� .
Since Lemma 4.14 implies that

†. 0.0/;  0i .0//�†.
0.0/; Œ� �/C†.Œ� �; �i �/C†.Œ�i �; 

0
i .0//� �C 2�.ı/;

we obtain

j .`/; i.`/j � C `.�C 2�.ı//:

It follows from Lemma 4.14 that

jy;xi;k j � j .`/; i.`/jC ji.`/; �i.`/jC j�i.`/;xi;k j

� c`.�C 2�.ı//C .ıR/2C
CıR

K

� ı.�.R j �/C �.R j ı//:

Thus N � is .�.Rj�/C�.Rjı//–dense in 1
ı
B.x; ıR/.
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For every v 2 B
�
ox;RIK.†x.X //

�
, take i and k satisfying †.v; Œ�i �/ < � and

jjvj � kR=Kj<R=K < � . Then we have

jv; vi;k j �
R

K
C �RD �.R j �/:

Hence N �
1 is �.Rj�/–dense in B

�
ox;RIK.†x.X //

�
.

Finally, define f W N �
1!N � by f .vi;k/D xi;k . For simplicity put

wi;k D
kR

K
 0i .0/; yi;k D i

�
ıkR

K

�
:

By Lemma 4.14, we then haveˇ̌
jxi;k ;xj ;`j � jyi;k ;yj ;`j

ˇ̌
< 2C.ıR/2;ˇ̌

jyi;k ;yj ;`j � jwi;k ; wj ;`j
ˇ̌
< �.R j ı/;ˇ̌

jwi;k ; wj ;`j � jvi;k ; vj ;`j
ˇ̌
< �.R j ı/;

which implies that f is �.Rjı/–approximation. In this way, we conclude that

dGH

��
1

ı
B.x; ıR/;x

�
;
�
B.ox;RITx.X //

��
< �.R j �/C �.R j ı/:

Lemma 4.16 Fix any x 2X and take p 2C0 with �0.p/D x . Then, for every y 2X,
there is a point q 2 ��1

0
.y/ such thatˇ̌̌̌

jx;yjY

jp; qjC
� 1

ˇ̌̌̌
< �x.jx;yjY /;

where �x.t/ is a function depending on x with limt!0 �x.t/D 0.

Proof Suppose the lemma does not hold. Then, since �0 is 1–Lipschitz, we have a
sequence yi 2X with lim yi D x such that for every qi 2 �

�1
0
.yi/,

jx;yi jY

jp; qi jC
< 1� �(4-24)

for some � > 0 independent of i .

We proceed as in the proof of Lemma 4.9. Let �i W Œ0; si �! Y be a minimal geodesic
from x to yi , and take a perpendicular yi

to X at yi . Let i W Œ0; ti �!Y be a minimal
geodesic from x to yi

.si/, and set

�i.t/ WD �.i.t//; zi D �
�1.i/; z�i D z�.zi/:
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Let qi WD z�.ti/. By passing to a subsequence if necessary, under the convergences�
1

ti
Y;x

�
! .Tx.Y /; ox/;

�
1

ti
C;p

�
! .Tp.C /; op/;

we may assume that the triplet .�i.tis/; i.tis/; �i.tis// (resp. the pair .zi.tis/; z�i.tis//

converges to a triplet .�1.s/; 1.s/; �1.s// (resp. a double .z1.s/; z�1.s//. From
(4-17), we see that

lim
jx;yi jY

ti
D jox; �1.1/j D jop; z�1.1/j D lim

jp; qi jC

ti
;

which yields a contradiction to the hypothesis (4-24),

lim
i!1

jx;yi jY

jp; qi jC
D 1:

For any p 2 C0 , by Lemma 4.6, as t ! 0, �0W
�

1
t
C0;p

�
!
�

1
t
X;x

�
converges to a

1–Lipschitz map .d�0/pW Tp.C0/!Tx.X /, which is called the differential of �0 at p .
Note that the surjectivity of �0W C0!X implies that of .d�0/pW Tp.C0/! Tx.X /.

Lemma 4.6 immediately implies the following:

Proposition 4.17 For every p 2 C0 , the differential d�0W Tp.C0/! Tx.X / satisfies

jd�0.zv/j D jzvj

for every zv 2 Tp.C0/. In particular, �0W C0 ! X preserves the length of Lipschitz
curves in C0 .

By Proposition 4.17, d�0 provides a surjective 1–Lipschitz map d�0W †p.C0/ !

†x.X /.

Remark 4.18 By Corollary 4.11, x 2 X2 is a regular point of Y if and only if the
tangent cone Tx.X / is isometric to Rm�1 , where mD dim Y . For this reason, in that
case we call x a regular point of X, and set X reg WD X \ Y reg . Later we show that
every x 2X1 is a singular point of X unless X DX1 (see Corollary 4.35).

Proposition 4.19 For every p 2 C 2
0

, we have:

(1) the differential d�p provides an isometry d�pW Tp.C /! TCx .Y / which pre-
serves the half suspension structures of both †p.C / D fz�Cg � †p.C0/ and
†Cx .Y / WD f�Cg �†x.X /, where TCx .Y /D Tx.X /�RC .

(2) p 2 C
reg
0

if and only if x 2 X reg . In this case, .d�0/pW Tp.C0/! Tx.X / is a
linear isometry.
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Proof (1) For every zv1; zv2 2†p.C0/, put vi WD d�0.zvi/. We show that †.zv1; zv2/D

†.v1; v2/. Let z�i (resp. �i ) be the midpoint of the geodesic joining z�C to zvi (resp.
�C to vi ). Note that d�.z�i/ D �i . We may assume that there are geodesics zi.t/

with z 0i .0/D z�i , and set i.t/ WD �.zi.t//. Since Tx.Y /D Tx.X /�R, any minimal
geodesic joining 1.t/ and 2.t/ does not meet X for any small t > 0. It follows from
the fact that �W C nC0! Y nX is locally isometric that

jz1.t/; z2.t/j D j1.t/; 2.t/j;

which implies that †.z�1; z�2/D†.�1; �2/. From the suspension structures, we conclude
that †.zv1; zv2/D†.v1; v2/.

(2) is an immediate consequence of (1).

4.3 Gluing maps

Using the results of the last subsection, we study the metric properties of the gluing
map.

From Lemma 3.3, we can define a map f W C0 ! C0 as follows: for an arbitrary
point p 2 C0 , let f .p/ WD q if fp; qg D ��1

0
.�0.p//, where q may be equal to p if

�0.p/ 2X1 . Note that f is an involutive map, ie f 2 D id. Moreover:

Lemma 4.20 f W C0! C0 is a homeomorphism.

Proof Since f is involutive, it suffices to prove that f is continuous. For a sequence
pi converging to a point p in C0 , we show that f .pi/! f .p/. Set x D �0.p/ and
xi D �0.pi/.

Case 1 (x 2 X1 ) In this case, f .p/ D p . If xi 2 X1 , then f .pi/ D pi , and we
have nothing to do. Suppose xi 2X2 . Let ˙xi

be the two perpendiculars to X at xi .
Letting si D jx;xi j, consider minimal geodesics ˙i joining x to ˙xi

.si/. If we set
z�˙i WD z� ı z

˙
i , where z˙i D �

�1.˙i /, then z�˙i are minimal geodesics joining p to pi

and f .p/ to f .pi/, respectively. Lemma 4.16 then shows thatˇ̌̌̌
jx;xi j

jp;pi j
� 1

ˇ̌̌̌
< �x.jx;xi j/;

ˇ̌̌̌
jx;xi j

jf .p/; f .pi/j
� 1

ˇ̌̌̌
< �x.jx;xi j/;(4-25)

which implies f .pi/! f .p/.
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Case 2 (x 2X2 ) In this case, f .p/¤ p . Let ˙x be the two perpendiculars to X

at x . By Corollary 4.11, we have

(4-26) †Cx .s0/xi
�
x .s0/� z† 

C
x .s0/xi

�
x .s0/ > � � �.s0/

for small enough s0 > 0. If xi 2 X1 , then both †.�Ci ;"

C
x .s0/

xi
/ and †.�Ci ;"

�x .s0/
xi

/

become small, yielding a contradiction to (4-26). Thus we have xi 2X2 . Then, in a
way similar to Case 1, we have the formula (4-25), which implies f .pi/! f .p/.

Corollary 4.21 �0jC 2
0
W C 2

0
!X2 is a double covering space and X2 is open in X.

Proof For x 2 X2 , set ��1
0
.x/ D fp1;p2g, and take an open neighborhood D1

of p1 in C0 such that D1 \ f .D1/ is empty. We set D2 D f .D1/. We show that
E WD �0.Di/ is open in X. Suppose that E is not open, and take y 2 E for which
there are yi 2 X nE converging to y . Let fq1; q2g WD ��1

0
.y/ with qk 2 Dk for

k D 1; 2. Applyinjg Lemma 4.16 to yi! y and qk 2 �
�1
0
.y/, we have qk;i 2 �

�1
0
.yi/

such that ˇ̌̌̌
jqk ; qk;i j

jy;yi j
� 1

ˇ̌̌̌
< �y.jy;yi j/ for k D 1; 2:

This implies that qk;i 2Dk and yi 2E for large i . Since this is a contradiction, E is
open. Similarly one can show that each restriction �0jDk

W Dk !E is an open map,
and hence is a homeomorphism.

Corollary 4.22 Y and X are homeomorphic to the quotient spaces C0 �� Œ0; t0�=f

and C0=f , respectively, where .x; 0/ and .f .x/; 0/ are identified for every x 2 C0 .

Corollary 4.23 If the inradius of Mi 2M.n; �; �; d/ converges to zero, then the
number of components of @Mi is at most two for large enough i .

Proof Since f is an involutive homeomorphism, f gives a transposition of two
components of C0 . The conclusion is immediate from the connectedness of X.

Remark 4.24 In Theorem 1.6, we remove the diameter bound to get the diameter-free
result.

Lemma 4.25 �0jC 2
0
W .C 2

0
/int!X int

2
is a local isometry.
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Proof For every p 2 C 2
0

, by Corollary 4.21 it is possible to take relatively compact
open subsets D 3p and E 3 �0.p/ of C 2

0
and X2 , respectively, such that �0W D!E

is a homeomorphism. We may assume that D and E are small enough so as to
satisfy that for every x;y 2 E, there is a minimal geodesic  W Œ0; 1�! X2 joining
x to y . We must show that �0W D ! E is an isometry with respect to the interior
distances of C0 and X, respectively. Since �0 is 1–Lipschitz, it suffices to show that
g WD ��1

0
W E!D is 1–Lipschitz. We do not know if g ı  is a Lipschitz curve yet.

However, by Proposition 4.17, g ı  has the speed vgı .t/ (see [3]),

vgı .t/D lim
�!0

jg ı  .t/;g ı  .t C �/j

j�j
;

which is equal to the speed v .t/ of  , and therefore

jx;yj DL. /D

Z 1

0

vgı .t/ dt DL.g ı  /� jg.x/;g.y/j:

Lemma 4.26 If X1 has nonempty interior in X, then X DX1 and �0W .C0/
int!X int

is an isometry.

Proof If the interior U of X1 is nonempty, then V WD ��1
0
.U / � C 1

0
is open

in C0 . From the nonbranching property of geodesics in Alexandrov spaces, we have
V D C0 and X D X1 . An argument similar to the proof of Lemma 4.25 shows that
�0W .C0/

int!X int is an isometry.

Proposition 4.27 f W .C0/
int! .C0/

int is an isometry.

Proof If C0 is disconnected, Lemma 4.25 immediately implies the conclusion. There-
fore we may assume that C0 is connected. For x 2 X2 with ��1

0
.x/D fq1; q2g, by

Lemma 4.25, we can take disjoint open sets Di 3 qi for i D 1; 2 and E 3 x such
that �i

0
WD �0jDi

W Di!E are isometries. Thus f jD1
D .�2

0
/�1 ı �1

0
W D1!D2 is an

isometry with respect to the interior distances. Note that f is the identity on C 1
0

, and by
Lemma 4.25, f W .C 2

0
/int! .C 2

0
/int is a local isometry. For every p1;p2 2C0 we show

that jf .p1/; f .p2/j D jp1;p2j. This is obvious if p1;p2 2C 1
0

. Let  W Œ0; 1�!C0 be
a minimal geodesic joining p1 to p2 . If p1;p2 2 C 2

0
, applying Lemma 4.25, we may

assume that  meets C 1
0

. Let t0 2 .0; 1/ be the smallest parameter with  .t0/2C 1
0

. By
Lemma 4.25, we have jf .p1/; f . .t0//j D jp1;  .t0/j. Therefore the nonbranching
property of geodesics in Alexandrov space implies that  \C 1

0
consists of only the
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single point  .t0/, and therefore we also have jf .p2/; f . .t0//j D jp2;  .t0/j. It
follows that

jf .p1/; f .p2/j � jf .p1/; f . .t0//jC jf . .t0//:f .p2/j

� jp1;  .t0/jC j .t0/;p2j D jp1;p2j:

Repeating this, we also have jp1;p2j� jf .p1/; f .p2/j and jf .p1/; f .p2/jD jp1;p2j.
The cases of p1 2 C 1

0
and p2 2 C 2

0
are similar, and hence are omitted.

4.4 Structure theorems

In this subsection, making use of the results on gluing maps in the last subsection, we
obtain structure results for limit spaces.

We begin with:

Lemma 4.28 X2 is convex in X.

Proof Suppose this is not the case. Then we have a minimal geodesic  W Œ0; 1�!X

joining points x;y 2 X2 such that  is not entirely contained in X2 . Let t1 be the
first parameter with  .t1/ 2X1 . Set z WD  .t1/. By Lemma 4.25, for any p 2 ��1

0
.x/,

there exists a unique geodesic z W Œ0; t1�!C0 such that z .0/Dp and �0 ı z .t/D  .t/

for every t 2 Œ0; t1�. Put zz WD z .t1/ 2C 1
0

, and take zv 2†zz.C0/ such that .d�0/zz.zv/D
d
dt
 .t0/ 2 †z.X /. Let z1W Œ0; t1�! C0 and 1W Œ0; t1�! X be the reverse geodesic

to z and Œ0;t1� , namely z1.t/D z .t1�t/, 1.t/D  .t1�t/, and set z2.t/ WDf .z1.t//.
Since .d�0/zz preserves norm and is 1–Lipschitz, we have

†.zv; z 0i .0//�†
�

d

dt
 .t1/;

d

dt
1.0/

�
D �

for i D 1; 2. Since z 0
1
.0/¤ z 0

2
.0/, this is impossible in the Alexandrov space C0 .

Lemma 4.29 For every x;y 2X, let  W Œ0; 1�!X be a minimal geodesic joining x

to y , and let p 2 C0 be such that �0.p/D x . Then there exists a minimal geodesic
z W Œ0; 1�! C0 starting from p such that �0 ı z D  . If x 2 X2 , then z is uniquely
determined.

In particular, if X1 is not empty, then C0 is connected.

Proof Suppose x 2X2 . It follows from Lemmas 4.25 and 4.28 and Proposition 4.27
together with the nonbranching property of geodesics in Alexandrov spaces that
 .Œ0; 1//�X2 .
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Suppose x 2X1 . If  �X1 , the conclusion is immediate. Otherwise, by an argument
similar to the above, we have  ..0; 1// � X2 . Thus we have a lift y W .0; 1/! C 2

0

of  j.0;1/ , which extends to a required lift z W Œ0; 1�! C0 of  .

Proposition 4.30 N DX int is isometric to C int
0
=f .

Proof In the case of X DX1 or X DX2 , the conclusion follows from Lemma 4.26
or Lemma 4.25, respectively. Next assume that both X1 and X2 are nonempty. We set
Z WD C int

0
=f , which is an Alexandrov space. Letting �W C int

0
!Z be the projection,

we decompose Z as

Z DZ1[Z2 with Zi WD �.C
i
0/ for i D 1; 2:

For every �.p/ 2 Z1 , †�.p/.Z/ is isometric to †p.C0/=f� , where f�W †p.C0/!

†p.C0/ is the isometry induced by f . Since X1 is a proper subset of X, f� defines
a nontrivial isometric Z2 –action on †p.C0/. Thus �.p/ is a singular point of Z , ie
�.p/ 2Zsing , and therefore Z1 �Zsing . Thus Zreg �Z2 . Now, by Proposition 4.19,
there exists an isometry F0W Z2 ! X int

2
. Since Zreg is convex in Z (see [25]),

F0 defines a 1–Lipschitz map F1W .Z
reg/ext!X which extends to a 1–Lipschitz map

F W Z!X, where .Zreg/ext denotes the exterior metric of Zreg .

Conversely, since X2 is convex in X by Lemma 4.28, F�1
0

defines a 1–Lipschitz
map G1W .X2/

int!Z2 which extends to a 1–Lipschitz map GW X int!Z satisfying
G ıF D 1Z . Therefore X int must be isometric to Z .

Proof of Theorem 1.2 By Proposition 4.27, f W C int
0
!C int

0
is an involutive isometry.

By Propositions 3.9 and 4.30, N is isometric to C int
0
=f . Since C int

0
is an Alexandrov

space with curvature � c.�; �/, so is N .

In view of Proposition 2.5, Proposition 4.30 immediately implies:

Corollary 4.31 X1 is an extremal subset of X int .

Theorem 4.32 Let Mi 2M.n; �; �; d/ inradius collapse to a compact length space N .
Let �Mi Gromov–Hausdorff converge to Y , and M ext

i converge to X � Y under the
convergence �Mi! Y . Then

(1) X int is isometric to N ;
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(2) Y is isometric to C int
0
�� Œ0; t0�=.f .x/; 0/� .x; 0/, or equivalently, isometric to

the quotient by an isometric involution zf D .f;�id/,

C int
0 �z�

Œ�t0; t0�= zf ;

where z�.t/D �.jt j/.

In particular, Y is a singular I –bundle over N, where singular fibers occur
exactly on X1 unless X DX1 .

Compare Examples 3.16, 3.20 and 3.21.

Proof of Theorem 4.32 (1) is just Proposition 3.9. (2) follows immediately from
Propositions 3.11 and 4.30.

Remark 4.33 Theorem 4.32 can be generalized to the unbounded diameter case (see
Section 6).

Proposition 4.34 If x2X1 then †x.X / is isometric to the quotient space †p.C0/=f�

and †x.Y / is isometric to the quotient space †p.C /=f� , where f�W †p.C0/ !

†p.C0/ is the isometry induced by f .

Proof Take an f –invariant neighborhood Up of p in C0 , where �0.p/D x . It is
easy to check that Vx WD �0.Up/ is a neighborhood of x isometric to Up=f . The
conclusion follows immediately.

Corollary 4.35 Let dim N Dm. Suppose that both X1 and X2 are nonempty. Then
every element x 2X1 satisfies that

vol†x.X /�
1
2

vol Sm�1:

In particular, dim.X1\ @X /�m� 1 and dim.X1\ int X /�m� 2.

Proof For x 2 X1 , take p 2 C0 with �0.p/ D x . Note that C0 is connected by
Lemma 4.29. If f�W †p.C0/!†p.C0/ is the identity, then the nonbranching property
of geodesics in Alexandrov spaces implies that f is the identity on C0 . Therefore,
f� must be nontrivial on †p.C0/. The conclusion follows since

vol†x.X /D
1
2

vol†p.C0/�
1
2

vol Sm�1:
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By Corollary 4.35, if every x 2X satisfies that

vol†x.X / >
1
2

vol Sm�1;

then X DX1 or X DX2 .

Next let us consider such a case. If X DX1 , then by Lemma 4.26, �0 is an isometry.
If X DX2 , then by Lemma 4.25, �0 is a locally isometric double covering. Therefore
it is straightforward to see the following:

Corollary 4.36 If X DX1 or X2 , then Y can be classified by N as follows:

(1) If X DX1 , then Y is isometric to N �� Œ0; t0�.

(2) If X DX2 , then either Y is isometric to the gluing

N �z� Œ�t0; t0�;

with length metric, or else Y is a nontrivial I –bundle over N, and is doubly
covered by

C int
0 �z�

Œ�t0; t0�;

where z�.t/D �.jt j/.

Compare Examples 3.16 and 3.20.

From now, we write for simplicity as C0 WD C int
0

.

5 Inradius collapsed manifolds with bounded diameters

In this section, we investigate the structure of inradius collapsed manifolds Mi , applying
the structure results for limit spaces in Section 4. First we study the case of inradius
collapse of codimension one to determine the manifold structure. To carry out this, some
additional considerations on the limit spaces are needed to determine the singularities
of singular I –fibered spaces. In the second part of this section, we study inradius
collapse to almost regular spaces.

5.1 Inradius collapse of codimension one

We consider Mi 2 M.n; �; �; d/ that inradius collapse to an .n�1/–dimensional
Alexandrov space N. Then, by Theorem 2.2, Mi is homeomorphic to Y , and by
Theorem 4.32, we have

Y D C0 �z�
Œ�t0; t0�= zf ; N D C0=f;
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where zf D .f;�id/ is an isometric involution. and the singular locus of the singular
I –bundle structure on Y defined by the above form coincides with C 1

0
unless X ¤X1 .

Later, in Lemma 5.5, we show that �0.C
1
0
/D @N .

Assuming that N has nonempty boundary, we begin with construction of singularity
models of singular I –fibered spaces around each boundary component of the limit
space N .

By Proposition 2.6, each component @˛N of @N has a collar neighborhood V˛ . Let
'W V˛! @˛N � Œ0; 1/ be a homeomorphism. Let � W Y !N be the projection. Then
the I –fiber structure on ��1'�1.fpg � Œ0; 1/ is isomorphic to the form

Rt0
WD Œ0; 1/� Œ�t0; t0�=.0;y/� .0;�y/;

with the projection � W Rt0
! Œ0; 1/ induced by .x;y/! x . Therefore ��1.V˛/ is an

Rt0
–bundle over @˛N .

Now we define two singularity models for the singular I –bundle ��1.V˛/: one is the
case when ��1.V˛/ is a trivial Rt0

–bundle over @˛N , and the other one is the case of
a nontrivial Rt0

–bundle.

Definition 5.1 (1) First, set

U1.@˛N / WD @˛N �Rt0
;

and define �W U1.@˛N /! @˛N � Œ0; 1/ by �.p;x;y/D .p;x/ for .p;x;y/ 2
@˛N �Rt0

. This gives U1.@˛N / the structure of a singular I –bundle over
@˛N � Œ0; 1/ whose singular locus is @˛N �0. We call this the product singular
I –bundle model around @˛N .

(2) For the second model, suppose that @˛N admits a double covering space
�W P˛! @˛N with the deck transformation ' . Let

U2.@˛N / WD .P˛ �Rt0
/=˚;

where ˚ is the isometric involution on P˛ � Rt0
defined by ˚ D .';g/,

where gW Rt0
!Rt0

is the reflection induced from .x;y/! .x;�y/. Define
�W U2.@˛N / ! @˛N � Œ0; 1/ by �

�
Œ.p; Œx;y�/�

�
D .�.p/;x/ for .p;x;y/ 2

P˛ � R� . This gives U2.@˛N / the structure of a singular I –bundle over
@˛N � Œ0; 1/ whose singular locus is @˛N � 0. The second model is a twisted
one, and is doubly covered by the first model U1.P˛/D P˛ �R� . We call this
the twisted singular I –bundle model around @˛N .
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Example 5.2 Let us consider the codimension one inradius collapse in Example 3.21.
Recall that the limit space Y of �M� is isometric to the form

Y DD.E/�z� Œ�t0; t0�=.x; t/� .r.x/;�t/;

where r W D.E/! D.E/ denotes the canonical reflection of D.E/. If � W Y ! E

denotes the projection, then ��1.V / is isomorphic to the product singular I –bundle
model around @E, where V is any collar neighborhood of @E.

Example 5.3 Let Q� denote the space obtained from the disjoint union of two copies
of the completion R� of R� glued along each segment 1� Œ��; �� of the boundaries,

Q� DR�q1�Œ��;��R�:

Let r W Q�!Q� be the reflection induced from .x;y/! .x;�y/. Let

M� D .S
1.1/�Q�/=.z;p/� .�z; r.p//:

As �! 0, M� inradius collapses to S1
�

1
2

�
� Œ0; 2�. Let ��W M�! S1

�
1
2

�
� Œ0; 2� be

the projection induced by Œz; .x;y/�! .z;x/. Then both ��1
�

�
S1
�

1
2

�
� Œ0; 1/

�
and

��1
�

�
S1
�

1
2

�
� .1; 2�

�
are solid Klein bottles and their I –fiber structures are isomorphic

to the twisted singular I –bundle model around respective boundary of S1
�

1
2

�
� Œ0; 2�.

The following is a detailed version of Theorem 1.3:

Theorem 5.4 Let Mi 2M.n; �; �; d/ inradius collapse to an .n�1/–dimensional
Alexandrov space N . Then there is a singular I –fiber bundle

I !Mi
�i
�!N

whose singular locus coincides with @N .

More precisely:

(1) If N has no boundary, then Mi is homeomorphic to a product N � I or a
twisted product N z� I.

(2) If N has nonempty boundary , each component @˛N of @N has a neighborhood
V such that ��1

i .V / is isomorphic to either the product or the twisted singular
I –fiber bundle around @˛N .

(3) If ��1
i .V / is isomorphic to the product singular I –fiber bundle for some com-

ponent @˛N , then Mi is homeomorphic to D.N /� Œ�1; 1�=.x; t/� .r.x/;�t/,
where r is the canonical reflection of the double D.N /.
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Recall that
Y D C0 �z�

Œ�t0; t0�= zf ;

where zf D .f;�id/, and C0 and Y are the noncollapsing limits of .@Mi/
int and �Mi ,

respectively. Therefore both C0 and Y nCt0
are smoothable spaces in the sense of [12].

See also Remark 2.11.

Let F �C0 denote the fixed-point set of the isometry f W C0!C0 . By Proposition 2.5
and Theorem 2.3, �0.F / is an extremal subset of N and it has a topological stratifica-
tion.

Lemma 5.5 �0.F / coincides with @N if f is not the identity.

We postpone the proof of Lemma 5.5 for a moment.

Proof of Theorem 5.4 (1) By Lemma 5.5, if N has no boundary, F is empty,
and therefore either N D N1 or N D N2 . If N D N1 , then C0 D N and Y is
homeomorphic to N � I. If N D N2 , then N D C0=f has no boundary, and Y is
homeomorphic to either N �I or C0� Œ�1; 1�=.x; t/� .f .x/;�t/, which is a twisted
I –bundle over N .

(2) Suppose N has nonempty boundary. Note that

N1 D �0.F /:

By Proposition 2.6, each component @˛N of @N has a collar neighborhood V˛ . Let
'W V˛ ! @˛N � Œ0; 1/ be a homeomorphism. Since Mi is homeomorphic to Y for
large i , the projection from Y to N induces a map �i W Mi!N .

By the I –fiber structure of Y , ��1
i .'�1.x � Œ0; 1// is canonically homeomorphic

to Rt0
. In particular, ��1

i .V˛/ is an Rt0
–bundle over @˛N. If this bundle is triv-

ial, ��1
i .V˛/ is isomorphic to the product singular I –bundle structure U1.@˛N / D

@˛N �Rt0
.

Suppose this bundle is nontrivial and let P˛ be the boundary of ��1
i

�
'�1

�
@˛N �

˚
1
2

	��
,

which is a double covering of @N˛ . Let ˚ D .';g/, and let �W P˛ ! @˛N be the
projection.

Lemma 5.6 ��1
i .V˛/ is isomorphic to the twisted singular I –bundle structure

U2.@˛N /D .P˛ �Rt0
/=˚:
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Proof Note that

U2.@˛N / WD .P˛ �Rt0
/=.p;x;y/� .'.p/;x;�y/;

��1
i .V˛/D �

�1
i '�1.@˛N � Œ0; 1/:

We define a map ‰W U2.@˛N /! ��1
i .V˛/ as follows: Note that for each .p;x/ 2

P˛ � Œ0; 1/, fp; '.p/g can be identified with the boundary of the I –fiber I�.p/;x WD

��1
i '�1.�.p/� fxg/. Define ‰.p;x;y/ for �t0 � y � t0 to be the arc on the fiber

I�.p/;x from p to '.p/. It is easy to see that ‰W U2.@˛N / ! ��1
i .V˛/ gives an

isomorphism between I fibered spaces.

(3) Put int N WDN n @N for simplicity.

Assertion 5.7 There is an isometric imbedding gW N ! C0 such that �0 ıg D 1N .

Proof Set F˛ WD �
�1
0
.@˛N /. Since the bundle ��1

i .V˛/ is nontrivial, we may assume
that F˛ is two-sided in the sense that the complement of F˛ in some connected
neighborhood of it is disconnected. Thus there is a connected neighborhood V˛

of @˛N in int N for which there is an isometric imbedding g˛W V˛ ! C0 nF such
that �0 ıg˛ D 1V˛ .

Let W be the maximal connected open subset of int N for which there is an isometric
imbedding g0W W ! C0 n F such that �0 ı g0 D 1W and g0.W / � g˛.V˛/. We
only have to show that W D int N. Otherwise, there is a point x 2 @W \ int N.
Take a connected neighborhood Wx of x in int N such that ��1

0
.Wx/ is a disjoint

union of open sets U1 and U2 such that �0W Ui ! Wx is an isometry for i D 1; 2.
Obviously one Ui , say U1 , meets g0.W / and the other does not. We extend g0 to
g1W W [Wx!C0nF by requiring g1jWx

D��1
0
W Wx!U1 . Since g1 is an isometric

imbedding, this is a contradiction to the maximality of W .

Thus we have an isometric imbedding g0W int N ! C0 nF. Since int N is convex and
�0 is 1–Lipschitz, g0 preserves the distance. It follows that g0 extends to an isometric
imbedding gW N ! C0 which preserves distance.

Assertion 5.7 shows that every component of F is two-sided. It follows that C0DD.N /

and that f is the reflection of the double D.N /. This completes the proof of
Theorem 5.4.

Proof of Lemma 5.5 Obviously @N � �0.F /. Suppose that �0.F /\ .int N / is not
empty.
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Sublemma 5.8 dim.�0.F /\ int N /�m� 2, where m WD dim N .

Proof If dim.�0.F / \ int N / D m � 1, then the top-dimensional strata S of the
intersection �0.F /\ int N is a topological .m�1/–manifold, and therefore it meets the
m–dimensional strata of N because N sing\int N has codimension � 2 (Theorem 2.1).
Take p 2 ��1

0
.S/. It is now easy to see that f is the reflection with respect to ��1

0
.S/

in a small neighborhood of p . It follows that S is a subset of @N , which contradicts
the hypothesis.

Take a point x D �0.p/ 2 �0.F / \ int N, and consider the directional derivative
f�W †p.C0/!†p.C0/ of f at p , which is again an isometric involution with fixed-
point set

F� WD†p.F /:

By Corollary 2.4 and Sublemma 5.8, dim F� � m� 3 while dim†p.C0/ D m� 1.
Repeating this, we have a finite sequence of directional derivatives of f , f� : : :, each
of which is an isometric involution

f�k W †�k.C0/!†�k.C0/;

where †�k.C0/ denotes a k –iterated space of directions,

†�k.C0/D†�k�1

�
� � �
�
†�1

.†p.C0//
�
� � �
�
;

and �i is taken from the fixed-point set of the iterated directional derivatives,

�1 2†p.F /; �2 2†�1
.F�/; : : : ; �k 2†�i�1

.F�.k�1//;

and F�i denotes the fixed-point set of f�i W †�i.C0/!†�i.C0/, which coincides with
†�i�1

.F�.i�1//.

Note that the iterated space of directions †�k.C0/ has dimension m � k , and the
iterated fixed-point set F�k � †�k.C0/ has dimension �m� k � 2. It follows that
for some k �m� 2, F�k becomes a finite set. It follows that for any �kC1 2 F�k ,

f�.kC1/W †�kC1
.†�k.C0//!†�kC1

.†�k.C0//

has no fixed points. Put
D WD C0 �z�

Œ�t0; t0�;

and let zf be an isometric involution on D defined by zf D.f;�id/. From Theorem 4.32,

Y DD= zf :
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Let x D �0.p/, p D .p; 0/ and �i 2 †�i�1
.F�.i�1// for 1 � i � k C 1 be as above.

Note that we have isometric identifications

†x.Y /D†p.D/= zf�; †x.X /D†p.C0/=f�:

Let �12†x.�0.F //�†x.X /�†x.Y / be the element corresponding to �12†p.F /�

†p.C0/�†p.D/. Note that

†p.D/D f�˙g �†p.C0/

and zf� D .f�;�id/ interchanges �C and �� and preserves †p.C0/. Next consider

†�1
.†x.Y //D†�1

.†p.D//= zf��;

where zf�� denotes the directional derivative of f� at �1 . Note that †�1
.†p.D// is

still isometric to f�˙g �†�1
.†p.C0// and zf�� D .f��;�id/ interchanges �C and ��

and preserves †�1
.†p.C0//. Similarly and finally we consider

†�kC1
.†�k.Y //D†�kC1

.†�k.D//= zf�kC1;(5-1)

where �kC1 2†�k.Y / is the element corresponding to �kC1 2†�k.D/, and zf�kC1D

.f�kC1;�id/ freely acts on †�kC1
.†�k.D//. Recall that

` WD dim†�kC1
.†�k.D//Dm� k � 2:

Note that the iterated spaces of directions of the smoothable spaces Y nCt0
must be all

homeomorphic to spheres (Theorem 2.7). However, (5-1) shows that †�kC1
.†�k.Y //

is homeomorphic to a quotient S`=Z2 for ` � 2 by a free Z2 –action, which is a
contradiction. This completes the proof of Lemma 5.5.

5.2 Inradius collapse to almost regular spaces

Next we consider the case where Mi inradius collapses to an almost regular Alexandrov
space N . The idea of using an equivariant fibration-capping theorem in [34] was inspired
by the recent work [18].

First we recall this theorem. Let X be a k –dimensional complete Alexandrov space
with curvature � � possibly having nonempty boundary. We denote by D.X / the
double of X, which is also an Alexandrov space with curvature � � . (see [21]). By
definition, D.X /DX [X � glued along their boundaries, where X � is another copy
of X.
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A .k; ı/–strainer f.ai ; bi/g of D.X / at p 2 X is called admissible if ai 2 X and
bj 2 X for every 1 � i � k and 1 � j � k � 1 (clearly, bk 2 X � if p 2 @X for
instance). Let RD

ı
.X / denote the set of points of X at which there are admissible

.k; ı/–strainers. It has the structure of a Lipschitz k –manifold with boundary. Note
that every point of RD

ı
.X /\ @X has a small neighborhood in X almost isometric to

an open subset of the half space Rk
C for small ı .

If Y is a closed domain of RD
ı
.X /, then the ıD –strain radius of Y is defined as the

infimum of positive numbers ` such that there exists an admissible .k; ı/–strainer of
length � ` at every point in Y , denoted by ıD –str rad.Y / .

For a small � > 0, we put

Y� WD fx 2 Y j d.@X;x/� �g:

We use the special notation

@0Y� WD Y� \fd@X D �g; int0 Y� WD Y� � @0Y� :

Let M n be another n–dimensional complete Alexandrov space with curvature � �
having no boundary. Let Rı.M / denote the set of all .n; ı/–strained points of M.

A surjective map f W M !X is called an �–almost Lipschitz submersion if

(1) it is an �–approximation;

(2) for every p; q 2M, ˇ̌̌̌
d.f .p/; f .q//

d.p; q/
� sin �p;q

ˇ̌̌̌
< �;

where �p;q denotes the infimum of †qpx when x runs over f �1.f .p//.

In the definition above, if dim X D n, sin �p;q is replaced by 1.

Now let a Lie group G act on M n and X as isometries. Let

deGH..M;G/; .X;G//

denote the equivariant Gromov–Hausdorff distance as defined in Section 2.1. We need
to assume the following on the existence of slice for G –orbits:

Assumption 5.9 For each p 2X, there is a slice Lp at p . Namely Up WD GLp pro-
vides a G –invariant tubular neighborhood of Gp which is G –isomorphic to G�Gp

Lp .
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Obviously, Assumption 5.9 is automatically satisfied if G is discrete. By [11], it also
holds true if G is compact.

Theorem 5.10 (equivariant fibration-capping theorem [34, Theorem 18.9]) Let
X and G be as above such that X=G is compact. Given k and � > 0 there
exist positive numbers ı D ık , �X ;G.�/ and � D �X ;G.�/ satisfying the follow-
ing: Suppose X D RD

ı
.X / and ıD –str rad.X / > �. Suppose M D Rın

.M / and
deGH..M;G/; .X;G// < � for some � � �X ;G.�/. Then there exists a G–invariant
decomposition

M DMint[Mcap

of M into two closed domains glued along their boundaries, and a G–equivariant
Lipschitz map f W M !X� such that

(1) Mint is the closure of f �1.int0 X�/, and Mcap D f
�1.@0X�/;

(2) the restrictions f jMint W Mint!X� and f jMcap W Mcap! @0X� are

(a) locally trivial fiber bundles;

(b) �.ı; �; �=�/–Lipschitz submersions.

Here, �.�1; : : : ; �k/ denotes a function depending on an a priori constant and �i

satisfying
lim
�i!0

�.�1; : : : ; �k/D 0:

Remark 5.11 If X has no boundary, then X� is replaced by X, Mcap D ∅ and
M DN in the statement above.

We go back to the situation of Theorem 1.5. Assume that Mi inradius collapses to an
almost regular Alexandrov space N . Let us consider the double and the partial double
of �Mi and Y , respectively,

D. �Mi/ WD �Miq@ �Mi

�Mi ; W WD Y qCt0
Y;

where two copies of Y are glued along Ct0
. From Perelman’s result [21], both

D. �Mi/ and W are Alexandrov spaces. Note that both D.Mi/ and W admit canonical
isometric Z2 –actions by the reflections.

The proof of the following lemma is standard, and hence omitted.

Lemma 5.12 .D. �Mi/;Z2/ converges to .W;Z2/ with respect to the equivariant
Gromov–Hausdorff convergence.
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Proof of Theorem 1.5 By Lemma 5.12, for any " > 0, if i is large,

deGH..D. �Mi/;Z2/; .W;Z2// < ":

By Theorem 4.32 together with our assumption on N , Y is almost regular with almost
regular boundary. Hence, W DRD

ı
.W / and ıD–str rad.W />� for some �>0. Thus,

by Theorem 5.10 and Remark 5.11, there exists a Z2 –equivariant capping fibration

zfi W D. �Mi/!W� ;

where

W� D fx 2W j d.x; @W /� �g:

Notice that W� is homeomorphic to W because of the form of Y . Obviously, zfi induces
a map fi W

�Mi ! Y . From Theorem 4.32, Y is isometric to C int
0
�z�

Œ�t0; t0�= zf with
zf D .f;�id/. Moreover, by the remark after Corollary 4.35, �0W C0!X is either an

isometry or a locally isometric double covering.

Case (a) (the action of f on C0 is nontrivial) In this case, Y is a nontrivial I –
bundle over N , and hence @Y D Ct0

. Hence W has no boundary. Thus in this case,
fi W

�Mi ! Y is a fiber bundle with fiber Fi which are closed, almost nonnegatively
curved manifolds. This implies that �Mi and hence Mi is an Fi�I –bundle over N .

Case (b) (the action of f on C0 is trivial) In this case, Y is isometric to N �� Œ0; t0�,
and therefore @Y consists of �.C0/DX and �.Ct0

/. Thus @W consists of two copies
of �0.C0/. Therefore, by Theorem 5.10, there exists a Z2 –invariant decomposition

D. �Mi/D .D. �Mi//int[ .D. �Mi//cap(5-2)

of D. �Mi/ into two closed domains glued along their boundaries such that

(1) .D. �Mi//int is the closure of zf �1
i .int0 W�/ and .D. �Mi//cap D zf

�1
i .@0W�/,

(2) zfi j.D. �Mi //int
W .D. �Mi//int ! W� and zfi j.D. �Mi //cap

W .D. �Mi//cap ! @0W� are
locally trivial fiber bundles,

where

@0W� WD fx 2W j d.x; @W /D �g; int0 W� WDW� n @0W� :

Since (5-2) is Z2 –invariant, it induces a decomposition

�Mi D . �Mi/int[ . �Mi/cap:
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Since zfi is Z2 –equivariant, these fibrations induce fibrations

Fi! . �Mi/int! Y� ; Capi! . �Mi/cap! @0Y� ;

where Y�Dfy 2Y jd.y;X /��g and @0Y� WDfy 2Y jd.x;X /D�g. By construction,
@Capi is homeomorphic to Fi . Note that every cylindrical geodesic in the warped
cylinder Ci �

�Mi is almost perpendicular to the fibers [32, Lemma 3.1; 33, Lemma 4.1].
This implies that . �Mi/int is homeomorphic to @1. �Mi/int � Œ0; 1�, where @1. �Mi/int is a
component of @. �Mi/int . Therefore �Mi and hence Mi is homeomorphic to . �Mi/cap .
Noting @0Y� is homeomorphic to N , we obtain a fiber bundle

Capi!Mi!N:

6 The case of unbounded diameters

In this section we provide the proof of Theorem 1.6. In view of Corollary 4.23, for
the proof of Theorem 1.6(1), it suffices to consider inradius collapsed manifolds with
unbounded diameters.

Remark 6.1 Theorem 1.6(1) was stated in [31, Theorem 5], where the following
argument was employed: if k � 3 and if p 2M is the furthest point from @M, then
B.p; r/, where r D inrad.M /, touches @M at least three points. However it seems to
the authors that this is unclear.

6.1 Description of pointed inradius collapse

In the case of unbounded diameter, we do not know the uniform boundedness of the
numbers of boundary components of inradius collapsed manifolds yet. This forces us
to reconsider the descriptions of limit spaces in Section 3.

Let M.n; �; �/ (resp. M.n; �; �/pt ) denote the set of all isometry classes of n–dimen-
sional complete Riemannian manifolds M (resp. pointed complete Riemannian mani-
folds .M;p/ with p 2 @M ) satisfying

KM � �; j…@M j � �:

We carry out the extension procedure for M to obtain �M. Let

�MM.n; �; �/pt
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denote the set of all . �M ;M;p/ with M 2M.n; �; �/ and p 2 @M. We let

@0
�MM.n; �; �/pt

be the set of all pointed Gromov–Hausdorff limit spaces .Y;X;x/ of sequences
. �Mi ;Mi ;pi/ in �MM.n; �; �/pt with

inrad.Mi/! 0:

From now on, . �Mi ;Mi ;pi/ and . �M ;M;p/ are always assumed to be elements in�MM.n; �; �/pt .

Now suppose that a sequence .Mi ;pi/ 2M.n; �; �/pt converges to a complete length
space .N; q/ with inrad.Mi/! 0, while . �Mi ;Mi ;pi/ converges to .Y;X;x/. In a
way similar to Proposition 3.9, we see that X int is isometric to N .

Next we describe Y as

Y DX [�0
C0 �� Œ0; t0�;

as in the bounded diameter case. In the bounded diameter case, the number of compo-
nents of @Mi is uniformly bounded, and C0 is the componentwise Gromov–Hausdorff
limit of @Mi . In the case of unbounded diameter, we do not know the boundedness of
the number of components of @Mi yet. This is why we need a bit careful consideration
to define C0 , which will be carried out in the following.

Let

C Y
t0
WD fy 2 Y j jX;yj D t0g:

We begin with the decomposition of C Y
t0

into the connected components,

C Y
t0
D

a
˛2A

C ˛
t0
:

Set
C ˛

0 WD
1

�.t0/
C ˛

t0
; C ˛

D C ˛
0 �� Œ0; t0�;

and

C WD
a
˛2A

C ˛; C0 D

a
˛2A

C ˛
0 � f0g:

Note that each component of C and C int
0

is an Alexandrov space with curvature
� c.�; �/.
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Each p 2C0 can be identified with the element of C Y
t0

, which we write as �.p; t0/, and
there is a unique perpendicular  �.p;t0/.t/ for 0� t � t0 to X satisfying  �.p;t0/.t0/D

�.p; t0/. We then define the surjective 1–Lipschitz map �W C ! Y as

�.p; t/D  �.p;t0/.t/:

Obviously �W C nC0! Y nX is a bijective locally isometric map.

Let 'i W B
�Mi .pi ; 1=ıi/! BY .x; 1=ıi/ be a ıi –approximation, with lim ıi D 0. Note

that for each component C ˛
t0

of C Y
t0

and any fixed point y˛ 2C ˛
t0

, there is a component,
say @˛ �Mi , of @ �Mi for which we have a point q˛i 2 @

˛ �Mi satisfying j'i.q
˛
i /;y˛j< ıi .

For a distinct component C
ˇ
t0

and yˇ 2 C ˇ
t0

, we also have a component @ˇ �Mi of
@ �Mi for which there is a point q

ˇ
i 2 @

ˇ �Mi satisfying j'i.q
ˇ
i /;yˇj < ıi . Since

jC ˛
t0
;C

ˇ
t0
j � 2t0 , it is easily checked that @˛ �Mi and @ˇ �Mi are distinct components,

and hence j@˛ �Mi ; @
ˇ �Mi j � 2t0 . Thus we have that

lim
i!1

.@˛ �Mi ; q
˛
i /D .C

˛
t0
;y˛/; lim

i!1
.@ˇ �Mi ; q

ˇ
i /D .C

ˇ
t0
;yˇ/;(6-1)

under the convergence . �Mi ;pi/ ! .Y;x/. In particular, the component @˛ �Mi is
uniquely determined by C ˛

t0
.

Now, for the map
�0 WD �jC0

W C0!X;

from an argument similar to the bounded diameter case, we see that

#��1
0 .x/� 2

for every x 2X. Thus we can define the involution f W C0! C0 as in Section 4. Note
that all the results in Sections 4.1, 4.2 and 4.3 still hold true for the present situation of
noncompact C0 , because the arguments there are local. In particular, we see that

the number of components of C0 is at most two.(6-2)

Thus we see that all the results in Section 4 holds true except Corollary 4.23, and
therefore we conclude that

Y D C int
0 �z�

Œ�t0; t0�= zf ;

where z�.t/D �.jt j/, and N DX int is isometric to C int
0
=f .

Now we immediately have the following:
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Corollary 6.2 If .Mi ;pi/ 2M.n; �; �/ inradius collapse to .N; q/ with respect to
the pointed Gromov–Hausdorff convergence, then we have dim Mi > dim N .

Theorem 6.3 Let a sequence of pointed complete Riemannian manifolds .Mi ;pi/ in
M.n; �; �/ inradius collapse to a pointed length space .N; q/ with respect to the pointed
Gromov–Hausdorff convergence. Then N is an Alexandrov space with curvature
� c.�; �/, where c.�; �/ is a constant depending only on � and �.

To have Corollary 4.23 in the case when Y is noncompact is a main purpose of the
rest of this section.

Remark 6.4 Property (6-2) only shows that there are at most two components of @Mi

meeting a bounded region from the reference point pi . Thus (6-2) does not immediately
imply that the number of components of @Mi is at most two. This is because the
convergence . �Mi ;pi/! .Y;p/ is only under the pointed Gromov–Hausdorff topology.
Namely, there is still a possibility that some component of @Mi disappears to infinity
under that convergence.

To overcome the difficulty stated in Remark 6.4, we investigate the local connectedness
of @Mi in more detail. To carry out this, it is helpful to consider a special pointed
Gromov–Hausdorff approximations similar to (3-2), which is verified below.

Let �@M W ..@M /int; d@M int/! ..@M /ext; d@M ext/ be the canonical map, where .@M /ext

is equipped with the exterior metric in M. For each p 2M take a point q 2 @M satisfy-
ing jp; qjD jp; @M j. Setting !.p/Dq , we define a nearest-point map !M W M!@M.
It should be noted that although !M is not continuous in general, it will not affect the
argument below (compare Proposition 3.5).

For . �M ;M;p/ and .Y;X;x/ 2 @0MM.n; �; �/pt with

Y DX [�0
C0 �� Œ0; t0�;

as described above, set

@M int.p; 1=ı/ WD .@M \B
�M .p; 1=ı/; d@M int/;

C int
0 .p0; 1=ı/ WD .C0\BC .p0; 1=ı; dC int

0
/;

where p0 2 �
�1
0
.x/. Note that if q; q0 2 @M int.p; 1=ı/ belong to distinct components

of @M, then the distance between them in @M int.p; 1=ı/ is infinity: d@M int.q; q0/D1.
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Similarly, we also consider

@ �M int.p; 1=ı/ WD .@ �M \B
�M .p; 1=ı/; d

@ �M /;

Ct0
.p0; 1=ı/ WD .Ct0

\BC .p0; 1=ı/; dCt0
/:

Sublemma 6.5 The number of components of @Mi which intersect @M int
i .pi ; 1=ıi/

is at most two.

Proof Suppose that there are three points q˛i 2 @M
int
i .pi ; 1=ıi/ which belong to three

distinct components @˛Mi for 1� ˛ � 3. Let yq˛i 2 @ �M .pi ; 1=ı/ be the image of q˛i
under the projection to @ �Mi along perpendiculars, which belongs to the component
@˛ �Mi corresponding to @˛Mi . Since C0 as well as Ct0

has at most two components,
we may assume that 'i.q

1
i / and 'i.q

2
i / are in the same component of C0 . It turns out

that 'i.yq
1
i / and 'i.yq

2
i / are in the same component of Ct0

, which contradicts (6-1).

Definition 6.6 For . �M ;M;p/ and .Y;X;x/ 2 @0MM.n; �; �/pt with

Y DX [�0
C0 �� Œ0; t0�;

we define the pointed Gromov–Hausdorff starred distance

d�pGH..
�M ;M;p/; .Y;X;x//(6-3)

as the infimum of those ı > 0 such that

(1) there exists a componentwise ı–approximation

 W .@M /int.p; 1=ı/! C int
0 .x; 1=ı/I

(2) the map 'W BM ext
.p; 1=ı/! BX ext

.x; 1=ı/ defined by

' D �0 ı ı �
�1
@M ı!M

is a ı–approximation:

M ext !M
//

'

��

@M ext
��1
M
// @M int

 
��

X ext C int
0

�0
oo
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(3) the map ˚ W B �M .p; 1=ı/! BY .x; 1=ı/ defined by

˚.q/D

(
'.q/ if q 2M \B

�M .p; 1=ı/;

.'.q0/; t/ if q D .q0; t/ 2 @M �� Œ0; t0�\B
�M .p; 1=ı/;

is a ı–approximation.

This definition is justified by the following lemma:

Lemma 6.7 Let the sequence . �Mi ;Mi ;pi/ 2 �MM.n; �; �/pt converge to .Y;X;x/
in @0

�MM.n; �; �/pt for the usual pointed Gromov–Hausdorff topology. Then there
exists a componentwise ıi –approximation

 i W .@Mi/
int.pi ; 1=ıi/! C int

0 .x; 1=ıi/

with lim ıi D 0 such that the maps

'i W B
M ext

i .pi ; 1=ıi/! BX ext
.x; 1=ıi/; ˚i W B

�Mi .pi ; 1=ıi/! BY .x; 1=ıi/

defined as in Definition 6.6 via  i are ı0i –approximations with lim ı0i D 0.

Proof Let �i W B
�Mi .pi ; 1=�i/!BY .x; 1=�i/ be an �i –approximation with lim �iD0.

We may assume that when it is restricted to the boundary, it provides a componentwise
�i –approximation �t0

i W B
�Mi .pi ; 1=�i/\@ �Mi!BY .x; 1=�i/\C Y

t0
. Since @ �Mi and Ct0

are convex and 1=�.t0/–homothetic to .@Mi/
int and C0 , respectively, �t0

i gives a
componentwise �i=�.t0/–approximation

 i W .@Mi/
int�pi ; 1=.�.t0/�i/

�
! C int

0

�
p0; 1=.�.t0/�i/

�
:

Let ıi WD �.t0/�i , and define 'i and ˚i as in Definition 6.6. In a way similar to
Proposition 3.5, one can easily show that the restriction

˚i W B
�Mi .pi ; 1=ıi/ nMi! BY .x; 1=ıi/ nX

is a ı0i –approximation with lim ı0i D 0. In particular, this implies that

'i W B
M ext

i .pi ; 1=ıi/\ @Mi! BX ext
.x; 1=ıi/

is also a ı0i –approximation. Let �i WD inrad.Mi/. Since BM ext
i .pi ; 1=ıi/\ @Mi is �i –

dense in BM ext
i .pi ; 1=ıi/\ @Mi , 'i is certainly a ı00i –approximation with lim ı00i D 0.

Since ˚i is a natural extension of 'i , ˚i is also a ı00i –approximation.
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Lemma 6.8 For each ı > 0 there exists a positive number �D �.ı/ such that if .M;p/

in M.n; �; �/pt satisfies inrad.M / < � , then

d�pGH..
�M ;M;p/; .Y;X;x// < ı

for some .Y;X;x/ contained in @0
�MM.n; �; �/pt .

Proof Lemma 6.8 follows from Lemma 6.7 and the precompactness of �MM.n; �; �/pt

combined with a contradiction argument.

If .Y;X;x/ 2 @0MM.n; �; �/pt satisfies the conclusion of Lemma 6.8 for .M;p/ 2

M.n; �; �/pt , we call it a ı–limit of . �M ;M;p/, which is also denoted by Y.M;p/

for simplicity:
Y.M;p/D .Y;X;x/:

6.2 Local/global connectedness of boundary

In this subsection, using Lemma 6.8, we first investigate the local behavior of connect-
edness of boundary of a inradius collapsed manifold, and then provide the proof of
Theorem 1.6.

Definition 6.9 Let .Y;X;x/ 2 @0MM.n; �; �/ and y 2X. We call y a single point
(resp. double point) if #��1

0
.y/ D 1 (resp. #��1

0
.y/ D 2). We say that .Y;X;x/ is

single (resp. double) if every element of X is single (resp. double). If .Y;X;x/ is
neither single nor double, it is called mixed. We also say that .Y;X;x/ is single (resp.
double) in scale R if every element of X \ BY .x;R/ is single (resp. double). If
.Y;X;x/ is neither single nor double in scale R, it is called mixed in scale R.

From now on, to prove Theorem 1.6, we analyze the local structure of @M about the
connectedness when inrad.M / < � . By Lemma 6.8, for any p 2M, there exists a
ı–limit Y.M;p/D .Y;X;x/ together with

(1) a ı–approximation  W .@M /int.p;R/! C int
0
.p;R/;

(2) a ı–approximation ' WD �0 ı ı �
�1
@M
ı!M W B

M ext
.p;R/! BX ext

.x;R/.

Note that for every p1;p2 2 BM ext
.p;R/,

(6-4) j'.p1/; '.p2/jX int �Lj'.p1/; '.p2/jX ext

�L.jp1;p2jM ext C ı/�L.jp1;p2jM int C ı/:

Those approximation maps are effectively used in the proofs of the following lemma:
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Lemma 6.10 For any R> 0 there exists ı0 > 0 satisfying the following: For every
0 < ı � ı0 , let � D �.ı/ > 0 be as in Lemma 6.8. For each M in M.n; �; �/ with
inrad.M / < � and for each p 2 @M, we have the following: Let Y.M;p/ any ı–limit
of .M;p/.

(1) If Y.M;p/ is single in scale R, then every p1;p2 2 @M \B
�M .p;R/ can be

joined by a curve in @M of length �Ljp1;p2jM C .LC 1/ı .

(2) If Y.M;p/ is double in scale R, then there exists a point p0 2 @M with
jp;p0jM < ı such that every q 2 @M \B

�M .p;R/ can be joined to p or p0 by
a curve in @M of length �Ljp; qjM C .LC 2/ı .

(3) If Y.M;p/ is mixed in scale R, then there exists a point p0 2 @M \B
�M .p;R/

such that every point q in @M \B
�M .p;R/ can be joined to p0 by a curve

in @M of length Ljp0; qjM C .LC 2/ı .

Proof Let .Y;X;x/ WD Y.M;p/, and  , ' be approximation maps as above.

(1) Put xi WD'.pi/2X for iD1; 2. Take zxi 2C0 such that �0.zxi/Dxi . Lemma 4.29
shows jzx1; zx2j D jx1;x2j. Since  is a ı–approximation and  .pi/D zxi , it follows
from (6-4) that

jp1;p2j@M int < jzx1; zx2jC int
0
C ı D jx1;x2jX int C ı <Ljp1;p2jM C .LC 1/ı:

(2) Set x WD '.p/, y WD '.q/. Since .Y;X;x/ is double in scale R, we can put
fzx1; zx2g WD �

�1
0
.x/ and fzy1; zy2g WD �

�1
0
.y/. Let  W Œ0; 1�!X be a minimal geodesic

joining x to y . From Lemma 4.29, there are lifts zi W Œ0; 1�!C0 of  starting from zxi ,
where we may assume zi.1/D zyi and zx1 D  .p/. If  .q/D zy1 , then

jp; qj@M int < jzx1; zy1jC int
0
C ı D jx;yjX int C ı <Ljp; qjM C .LC 1/ı:

If  .q/ D zy2 , then take a point p0 with j .p0/; zx2j < ı . Then, similarly, we have
jp0; qj@M int <Ljp; qjM C .LC 2/ı .

(3) Let x0 2X be a single point with jx;x0j �R, and take zx0 2 C0 and p0 2 @M

such that �0.zx0/D x0 and j .p0/; zx0j< ı Let  W Œ0; 1�!X be a minimal geodesic
from x0 to '.q/. Since zx0 2 C 1

0
, there is a unique minimal geodesic z W Œ0; 1�! C0

from zx0 to  .q/ with �0 ı z D  . We then have

jp0; qj@M int < jzx0;  .q/jC int
0
C ı D jx0; '.q/jX int C ı

� j'.q/; '.p0/jX int Cj'.p0/;x0jX int C ı

�Ljp0; qjM C .LC 2/ı:
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From now on, for a fixed R > 0, let ı D ı0.n; �; �;R/ > 0 and � D �.ı/ > 0 be as
determined in Lemma 6.10.

Lemma 6.11 If M 2M.n; �; �/ has inradius inrad.M / < � and disconnected bound-
ary, then every ı–limit Y.M;p/ is double in scale R for every p 2 @M.

Proof Suppose that some ı–limit Y.M;p/D .Y;X;x/ is single or mixed in scale R.
First note that by Lemma 6.10(1), (3), any points q1; q2 in @M \ B

�M .p;R/ can
be joined by a curve in @M. Take a point p˛ 2 @M contained in a component
different from the component containing p . Let cW Œ0; `�!M be a unit-speed minimal
geodesic in M from p to p˛ . For each k with 1� k � Œ2`=R�, take pk 2 @M withˇ̌
pk ; c

�
1
2
kR
�ˇ̌

M
< � . Note that

B
�M .pk ;R/\B

�M .pkC1;R/\ @M ¤∅

for each 1� k � Œ2`=R��1. By applying Lemmas 6.10 to pk together with a standard
monodromy argument, we see that p˛ can be joined to p by a curve in @M, which is
a contradiction.

Lemma 6.12 Suppose that M 2M.n; �; �/ has inradius inrad.M / < � and discon-
nected boundary. For any p 2 @M, let .Y;X;x/ be any ı–limit for .M;p/. For any
y 2X, take distinct points y1 ¤ y2 2 C Y

t0
such that jyi ;yj D t0 . Then jy1;y2j D 2t0 .

Remark 6.13 In Lemma 6.12, we need the assumption on the disconnectedness of @M.
Namely, for some .Y;X;x/ which is double, the conclusion of Lemma 6.12 does not
hold. For instance, take the Möbius band

Y D S1
` z�z�

Œ�t0; t0�:

If the length ` of X D S1
`

is smaller than t0 , then jy1;y2j< 2t0 for every y 2X and
yi 2 C Y

t0
with jyi ;X j D t0 for i D 1; 2.

Proof of Lemma 6.12 First note that .Y;X;x/ is double in scale R. Suppose
jy1;y2j < 2t0 , and take a minimal geodesic  joining them in Y . Then  does
not meet X, and therefore we can project  to C Y

t0
. The obtained curve �t0

. / joins
y1 and y2 in C Y

t0
. Thus the two elements zy1 and zy2 of ��1

0
.y/ can be joined in C0 .

Take q1; q2 2 @M such that j .qk :/; zyk j < ı for k D 1; 2. Lemma 6.10(2) shows
that every p0 2 @M \B

�M .p;R/ can be joined to q1 or q2 by a curve in @M. By a
monodromy argument as in Lemma 6.11, we can conclude that every q 2 @M can be
joined to q1 or q2 by a curve in @M, which is a contradiction.
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We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6 We assume that inrad.M / < � .

(1) Suppose that @M is disconnected. By Lemma 6.11, every ı–limit Y.M;p/ is
double in scale R for every p 2M. Take p˛ and pˇ from distinct components of @M.
For every p 2 @M, let cW Œ0; `�! M be a unit-speed curve in M from p˛ to pˇ

through p . For each k with 1� k � Œ2`=R�, take pk 2 @M with
ˇ̌
pk ; c

�
1
2
kR
�ˇ̌

M
< � .

By applying Lemma 6.10(2) to each pk together with a standard monodromy argument
as in Lemma 6.11, we see that p can be joined to p˛ or pˇ by a curve in @M. Therefore
we conclude that the number of boundary components of M is at most two.

(2) Suppose that @M has two components. By Lemma 6.11, any ı–limit Y.M;p/D

.Y;X;x/ is double in scale R for every p 2 @M. Therefore, for any y 2X, there are
distinct y1 ¤ y2 2 C Y

t0
with jyk ;yj D t0 for k D 1; 2. Lemma 6.12 shows that

jy1;y2j D 2t0:

Let W be a component of @ �M, and consider the distance function dW from W . The
above observation shows that for any p 2M, there exists a point q 2 @ �M such that

z†Wpq > � � �.ı/:

That is, dW is 1
2
���.ı/–regular on a neighborhood of M in �M. This makes it

possible to define locally defined gradient-like vector fields for dW on neighborhoods
of the points of M. Then, by gluing those local gradient-like vector fields, we get a
globally defined gradient-like vector field V on �M whose support is contained in a
neighborhood of M. It is now straightforward to obtain a diffeomorphism between �M
and W � Œ0; 1� by means of integral curves of V .

Theorem 6.14 (Gromov [10]; Alexander and Bishop [1]) There exists a positive
number �D �.n; �; �/ such that if M 2M.n; �; �/ has the two side bounds on sectional
curvature jKM j � �

2 in addition and if the inradius satisfies inrad.M / < � , then either
M or its double cover is diffeomorphic to a product W � Œ0; 1�, where W is a closed
manifold.

The following example shows that Theorem 6.14 does not hold in the connected
boundary case if one drops the upper sectional curvature bound KM � �

2 . Namely
there are some M 2M.n; �; �; d/ with connected boundary and with small inradius
that are not finitely covered by any topological product of the form W � Œ0; 1�, where
W is a closed manifold.
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Example 6.15 Let N be a compact surface of genus one with connected boundary,
and consider a Riemannian metric on N such that @N has a cylindrical neighbor-
hood U� . Namely there is an isometric imbedding f W S1

`
� Œ0; �/! U� such that

f .S1
`
�0/D @N , where `DL.@N /. Consider a segment I D f.x; 0; 0/ j 0� x � 2�g

in the xyz–space R3 , and let D� denote the intersection of the boundary of the
�–neighborhood of I with fx � �; z � 0g. Let

J� WDD� \fx D �g; K� WDD� \fx � 0; z D 0g;

L� WDD� \fz D��g; E� WDD� \f0� x � �g:

Note that J� and K� (resp. L� ) are segments of length �� (resp. length � ). Since
there is an isometry 'W U� �

�
�

1
2
��; 1

2
��
�
! S1

`
�E� , we have an obvious gluing to

obtain a three-dimensional Riemannian manifold M� with totally geodesic boundary,

M� DN �
�
�

1
2
��; 1

2
��
�
q' S1

` �D�:

Note that after slight smoothing of M� , we may assume that M� 2M.3; �; 0; d/ for
some � and d , and it inradius collapses to N as �!0. Note that M� is homeomorphic
to N � I [ @N �D2 as in Theorem 5.4.

Note that any finite cover �M� of M� is not homeomorphic to W � Œ0; 1� for any closed
surface. Otherwise a finite cover �M� of M� is homeomorphic to W � Œ0; 1� as above.
Since M� has the same homotopy type as N , �1.M�/ is a free group generated by two
elements. It turns out that �1. �M�/D �1.W / is a free group, which is a contradiction.

7 Remark on locally convex manifolds

In the argument so far, the assumption jII@M j � �2 was used to have lower sectional
curvature bound K@M � c.�; �/. It is a challenging problem to study the case where
only the lower bound II@M � �� is assumed.

In the case of locally convex boundary in the sense that II@M � 0, the Gauss equation
implies K@M � � as long as KM � � . Therefore, taking �.t/ D 1 as the warping
function, we can extend M to �M DM[@M�Œ0; t0�, and proceed by the same argument
as in the previous sections, to obtain the results corresponding to Theorems 1.3, 1.5
and 1.6.
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