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On the symplectic cohomology of log Calabi–Yau surfaces

JAMES PASCALEFF

We study the symplectic cohomology of affine algebraic surfaces that admit a com-
pactification by a normal crossings anticanonical divisor. Using a toroidal structure
near the compactification divisor, we describe the complex computing symplectic
cohomology, and compute enough differentials to identify a basis for the degree
zero part of the symplectic cohomology. This basis is indexed by integral points in
a certain integral affine manifold, providing a relationship to the theta functions of
Gross, Hacking and Keel. Included is a discussion of wrapped Floer cohomology of
Lagrangian submanifolds and a description of the product structure in a special case.
We also show that, after enhancing the coefficient ring, the degree zero symplectic
cohomology defines a family degenerating to a singular surface obtained by gluing
together several affine planes.
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1 Introduction

Log Calabi–Yau manifolds (see Definition 1.1 below) have a rich symplectic geometry.
They are the subject of a mirror symmetry conjecture: if U is a log Calabi–Yau
manifold, then in favorable situations, there is a mirror variety U_ such that the Floer
theory of U is reflected in the algebraic geometry of U_ . For instance, as conjectured
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by Gross, Hacking and Keel [20], one expects to find the ring of regular functions
on U_ sitting inside the symplectic cohomology of U. Furthermore, the symplectic
cohomology should come with a natural basis corresponding to a collection of “theta
functions” on U_ ; see [20] and Gross and Siebert [21]. This article contains results
towards this conjecture in complex dimension two.

Symplectic cohomology is a version of Hamiltonian Floer homology that applies to
open symplectic manifolds. In particular, given a smooth complex affine variety U, we
can equip U with an exact symplectic structure coming from a projective compactifi-
cation Y by an ample divisor D, which exists by a result of Hironaka. The symplectic
cohomology does not depend on the choices involved — see Seidel [32, Section 4b] —
so we may speak of the symplectic cohomology SH�.U / of the affine variety U.

Let us briefly describe the geometry that is involved in the definition of SH�.U /. It
is the cohomology of a cochain complex SC �.U /, which, for an appropriate choice
of Hamiltonian function, contains both the ordinary cohomology of U as well as
generators corresponding to periodic Reeb orbits in a contact hypersurface at infinity.
Both the cochain complex SC �.U / and its cohomology SH�.U / are in general infinite-
dimensional, even in a single degree. The differential on the complex counts maps of
cylinders into U satisfying an inhomogeneous pseudoholomorphic map equation.

Symplectic cohomology is interesting from several points of view in symplectic topol-
ogy. One application is the Weinstein conjecture [37]: if a certain canonical map
H�.U /! SH�.U / is not an isomorphism, then the contact hypersurface at infinity
must contain a periodic Reeb orbit. However, the motivating interest in this paper
comes from homological mirror symmetry (HMS). Symplectic cohomology is the
closed string sector of a two-dimensional field theory that forms the A–side of one
version of HMS for an open symplectic manifold U, whose open string sector is the
wrapped Fukaya category of Abouzaid and Seidel [6]; Ganatra’s thesis [17] is a deep
study of this relationship between open and closed string sectors. The B–side is an
appropriate category of sheaves C on a dual space U_ , for which the closed string
sector is the Hochschild cohomology HH�.C/.

This line of thinking leads to interesting predictions about the symplectic cohomology
of U in terms of the algebraic geometry of U_ . We beg the reader to bear with this
rather conjectural paragraph. Let us adopt the ansatz that the mirror U_ is a smooth
affine algebraic variety over a base field K. HMS suggests that the derived wrapped
Fukaya category DbW.U / is equivalent to the derived category of coherent sheaves
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Db CohU_ , and hence that their Hochschild cohomologies SH�.U / and HH�.U_/
are isomorphic. But now

(1) HHp.U_/Š

pM
iD0

H i .U_; ƒp�iTU_/ŠH
0.U_; ƒpTU_/;

where the first isomorphism is a Hochschild–Kostant–Rosenberg-type isomorphism
(see Kontsevich [24, page 131], citing Gerstenhaber and Schack [19]), and the second
holds because of the ansatz that U_ is affine (Cartan and Serre’s Theorem B; see
Hartshorne [22, Theorem III.3.7]). Setting p D 0,

(2) SH 0.U /ŠHH 0.U_/ŠH 0.U_;OU_/:

Since U_ is affine, U_ D SpecH 0.U_;OU_/. Thus we find

(3) U_ Š SpecSH 0.U /;

giving us a way to reconstruct the mirror U_ from the symplectic cohomology of U.

This argument raises some basic questions. First of all, it requires that SH�.U /
be a ring. This ring structure is well known in Hamiltonian Floer homology as the
pair-of-pants product. More surprisingly, it implies that SH�.U / is Z–graded. The
Z–grading may not seem like a central issue from a symplectic topology point of view,
but it is closely related to the Calabi–Yau nature of mirror symmetry. The symplectic
geometry definition of SH�.U / yields only a Z=2Z–grading, and in general this can
be lifted to a Z–grading when c1.U /D 0. Even then, the actual Z–grading depends
on a trivialization of the canonical bundle of U. Therefore, in order to make the
isomorphism (2) work, the class of symplectic manifolds U under consideration must
be restricted and extra data may need to be included on the A–side.

The relevant definition here is that of a log Calabi–Yau manifold. In this paper we
consider the case of surfaces only.

Definition 1.1 Let U be a smooth complex quasiprojective surface. U is log Calabi–
Yau if there is a smooth projective surface Y containing an at worst nodal anticanonical
divisor D such that U ŠY nD. If D is actually nodal, .Y;D/ is known as a Looijenga
pair, or is said to have maximal boundary.

In this definition, by “at worst nodal divisor” we include the condition that D is
effective and reduced (each component has multiplicity equal to one); see Section 3 for
a fuller explanation of these conditions. It turns out that the divisor D in this situation
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must either be a smooth genus one curve, a nodal genus one curve or a cycle of rational
curves meeting at nodes (Lemma 3.3).

Since D is anticanonical there is an isomorphism !Y .D/ Š OY , where !Y is the
sheaf of holomorphic 2–forms. Thus there is a unique-up-to-scalar section � 2

H 0.Y; !Y .D//, which is a meromorphic 2–form whose divisor of poles and zeros is
exactly �D. Since D is effective and reduced, � is a meromorphic volume form on Y
with simple poles along D (and no other zeros or poles). Thus the restriction �jU is a
nowhere-vanishing complex volume form on U that gives a specific trivialization of
the canonical bundle, showing c1.U /D 0. It turns out that the homotopy class of this
trivialization does not depend on the choice of compactification .Y;D/ (Lemma 3.5).

To illustrate the sort of restriction this places on U, consider log Calabi–Yau manifolds
of complex dimension one. Besides elliptic curves, which satisfy the definition with
U D Y and D D∅, the condition that D must be effective and anticanonical implies
Y Š P1 , and that the support of D is at most two points. Thus U is either C or C� .
Both of these satisfy c1.U /D 0, as does any punctured curve, but only U DC� (with
D D 0C1) is log Calabi–Yau in our definition, since the divisor D D 21 is not
reduced. In terms of symplectic cohomology, the contrast is stark, as SH�.C/ D 0
(which is the cohomology of the empty set), while SH�.C�/ŠKŒx; x�1; � �, where x
is in degree zero, � is in degree one and �2D 0. Observe that SH 0.C�/ is isomorphic
to KŒx; x�1�, the coordinate ring of the expected mirror Gm .

In this paper, we make two other assumptions, namely that U is affine, and so is an
exact symplectic manifold with a well-defined symplectic cohomology, and also that
the complex dimension is two, which is the first interesting low-dimensional case. This
case was also studied extensively in an algebrogeometric context by Gross, Hacking
and Keel [20], who proposed that the degree zero symplectic cohomology should be
the coordinate ring of the mirror, in favorable cases. They approach the construction
of the mirror from another direction, and actually define the coordinate ring of the
mirror using tropical geometry (an essentially combinatorial theory). Our goal is to
verify some of their predictions in terms of symplectic geometry and Floer theory, so
we actually work with maps of Riemann surfaces into the symplectic manifold.

The first step towards verifying the Gross–Hacking–Keel prediction is to compute the
symplectic cohomology additively. In their work [20] they find that �.U_;OU_/ is
additively generated by a basis f�p j p 2 U trop.Z/g, where the elements are indexed
by integral points of a certain integral affine manifold U trop associated to U (we also
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describe a construction of this manifold). These elements �p are the so-called theta
functions on the mirror U_ [20; 21].

By actually looking at the periodic Hamiltonian orbits used to define symplectic
cohomology, we also find an additive basis for the degree zero part of symplectic
cohomology whose indexing set is in correspondence with U trop.Z/, via a geometrically
natural bijection.

Theorem 1.2 Let U be an affine log Calabi–Yau surface with maximal boundary. We
construct a set of cochains f�p j p 2U trop.Z/g having degree zero in the Z–grading on
symplectic cohomology induced by a log Calabi–Yau compactification .Y;D/. They
are closed and form a basis of the degree zero cohomology:

(4) SH 0.U /D spanf�p j p 2 U trop.Z/g:

The element �p is defined with reference to a particular Liouville structure on U,
which is deformation equivalent to the Stein structure, and a particular Hamiltonian
H W U ! R. With this in mind, �p a degree zero element arising from perturbation
of a periodic torus of the Hamiltonian flow. Such tori are in a geometrically natural
bijection with U trop.Z/.

Let us outline briefly how this computation goes. In Section 4, we construct a Liouville
structure on U, which admits a Lagrangian torus fibration over the cylindrical end
of U. This construction is based largely on [32, Section 4], with some tweaks using
the extra symmetry of our situation. This structure has another convenient property,
namely the contact manifold on which the cylindrical end is modeled satisfies a certain
“convexity” condition.1 With an appropriate Hamiltonian, the periodic orbits can be
explicitly described. In fact, there are entire tori that are periodic for the Hamiltonian
flow, so this is a Morse–Bott situation. After small time-dependent perturbation of the
Hamiltonian, these tori break up into several nondegenerate orbits of various degrees.
There is a Morse–Bott spectral sequence converging to the symplectic cohomology
whose E1 page reproduces the cohomologies of the periodic tori. We show that the
degree zero element for each torus is closed for all higher differentials in the spectral
sequence, and is never exact. The corresponding cochain is what we call �p .

The crucial point is to understand the differential, and in particular to show that �p
is closed, so that it is actually a cocycle rather than just a cochain element. For the

1This condition is independent of the contact condition, which may also be regarded as a convexity
condition.
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definitions see Section 2. The convexity condition is important for understanding the
holomorphic curves that contribute to the differential, as it actually allows us to show
that certain moduli spaces are empty for energy reasons. At this point in the argument
we use some ideas coming from symplectic field theory, adapted to the framework of
Hamiltonian Floer homology, namely a neck-stretching argument due to Bourgeois and
Oancea [11], and an adaptation of a technique developed by Bourgeois and Colin [9]
to compute contact homology of toroidal manifolds. To get from these techniques to
the algebraic fact that �p is closed, we use the way the differential interacts with the
Batalin–Vilkovisky operator and the pair-of-pants product, so we also obtain some
limited information about these operations as well. This is done in Section 6.

Above we described how HMS applied to Hochschild cohomology leads to the expecta-
tion that SH 0.U / is isomorphic the ring of global functions on the mirror U_ . However,
there is another, more obvious way to extract this ring from the category of coherent
sheaves on U_ , namely as Hom.OU_ ;OU_/. Under the ansatz that U_ is affine,
there are no higher Ext–groups, so we should expect to be able to find a Lagrangian
submanifold L in U corresponding to OU_ , having wrapped Floer cohomology
HW�.L;L/ concentrated in degree zero, and such that SH 0.U / is isomorphic to
HW0.L;L/. In Section 7 we consider Lagrangian submanifolds with these properties,
which are candidates for the mirror to OU_ . In the case where U is the complement
of a smooth conic in C2 , we can combine the results of this paper with our results
in [29] to understand the ring structure and show that

(5) SH 0.U /ŠKŒx; y�Œ.xy � 1/�1�:

Section 3 contains some basic results on log Calabi–Yau surfaces. Section 5 describes
the affine manifold U trop from a topological viewpoint.

The paper is organized so that Sections 2, 4 and 6 are a continuous thread of argument.
Sections 3 and 5 can be read as interludes describing the algebrogeometric and piecewise-
linear context of our study.

We conclude the paper with Section 8, containing some results on the product structure
that provide a closer connection to [20]. Here, for a chosen compactification Y , we
define a certain strictly convex cone P �H2.Y IZ/ containing the cone of effective
curves in Y , and we show how to enhance the coefficient ring of SH 0.U / to the
monoid ring KŒP �. This makes SpecSH 0.U / into a family over Spec KŒP �. We
show that the central fiber of this family is isomorphic to a singular surface Vn (called
the vertex) consisting of n copies of A2 glued together along coordinate axes in a cycle.
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Thus the symplectic cohomology of U provides a deformation of Vn . An analogous
result was obtained in [20] using theta functions. In fact, along the way to proving this
result, we use a symplectic-topological imitation of the broken lines of [20], which
may be of independent interest. This is done in Section 8.3, where we associate to a
holomorphic curve in the cylindrical end of U a graph (or tropical curve) in the affine
manifold U trop .
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2 Symplectic cohomology and holomorphic curves

This section reviews material about pseudoholomorphic curves in the case of manifolds
with contact-type boundary and cylindrical ends, and a description of the versions of
Floer cohomology that we use. We hope that this section will make the paper more
self-contained for algebrogeometrically minded readers.

2.1 Conventions

In this section, we set out the conventions for symplectic manifolds and symplectic
cohomology. In large part our conventions follow [32; 30].

Definition 2.1 An exact symplectic form on a manifold M is an exact nondegenerate
two-form ! . Thus

(6) ! D d�

for some one-form �, which is called a Liouville one-form. The corresponding Liouville
vector field Z is defined by duality with respect to ! :

(7) �Z! D !.Z; � /D �:
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Thus the one-form � determines the two-form ! and the vector field Z .

A Liouville domain [32] is a compact manifold with boundary, equipped with a one-
form �, such that the two-form ! D d� is symplectic and the Liouville vector field Z
points strictly outward along the boundary.

Definition 2.2 Let L�M be a Lagrangian submanifold. The Liouville one-form �

defines a class Œ�jL� 2H 1.L;R/, called the Liouville class.

Definition 2.3 Let .M;!/ be a symplectic manifold. An almost complex structure J
on M is compatible with ! if the bilinear form g defined by

(8) g.X; Y /D !.X; J Y /

is symmetric and positive definite at every point of M. Thus g is a Riemannian metric
associated to the choice of J.

Definition 2.4 If H W M ! R is a differentiable function, the Hamiltonian vector
field XH associated to H is defined by the relation

(9) ��XH! D !. � ; XH /D dH:

In the presence of a compatible almost complex structure J and associated metric g ,
we may take the gradient rH with respect to g . As a consequence of our conventions,
this is connected to XH by

(10) XH D JrH:

Example 2.5 Let M D C be the complex affine line, coordinatized by z D xC iy .
We take the Euclidean structures ! D i

2
dz ^ dxz D dx ^ dy , J to be multiplication

by i and g D dx2C dy2 . For � we choose

(11) �D d c
�
1
4
jzj2

�
D

i
4
.z dxz�xz dz/D 1

2
.x dy �y dx/;

where we have taken advantage of the complex analytic structure of M to write � in
terms of a Kähler potential. Here d c D�i.@�x@/ as in [38], for example.

The corresponding Liouville vector field is

(12) Z D
1

2

�
z
@

@z
Cxz

@

@xz

�
D
1

2

�
x
@

@x
Cy

@

@y

�
:

Since the vector field Z points radially outward, we find that any disk fjzj � Rg
becomes a Liouville domain when equipped with the restrictions of these structures.
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Now consider the function H D 1
2
.x2Cy2/. We have

rH D x
@

@x
Cy

@

@y
;(13)

XH D JrH D�y
@

@x
C x

@

@y
:(14)

Thus the flow of XH rotates the plane about the origin in the counterclockwise direction
with period 2� .

Lemma 2.6 If .M; �/ is a Liouville domain of real dimension 2n, then ˛ 2�1.@M/

defined by

(15) ˛ D �j@M

is a contact one-form on the boundary @M, which is to say ˛^ .d˛/2n�2 is a volume
form on @M.

Definition 2.7 Let .N; ˛/ be a contact manifold with contact one-form ˛ . We have
the contact distribution � D ker˛ . The Reeb vector field is defined by the conditions
�R d˛ D 0 and ˛.R/ D 1. The symplectization of .N; ˛/ is an exact symplectic
structure on N �R. Letting � denote the coordinate on the R factor, the Liouville
one-form, symplectic form, and Liouville vector field are

�D e�˛;(16)

! D e�.d�^˛C d˛/;(17)

Z D
@

@�
:(18)

Symplectic manifolds of the form N �R are also called cylindrical symplectic mani-
folds.

An almost complex structure J on N�R is cylindrical if it is invariant under translation
in the �–direction and it respects the product structure in the following way: with
respect to the decomposition

(19) T .N �R/D TN ˚hZi D �˚hRi˚ hZi

we require that J preserves � and J.Z/DR . Thus J j� is an almost complex structure
on � . The full structure J is compatible with ! if and only if J j� is compatible
with d˛j� , which is a symplectic form on � .
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A noncompact exact symplectic manifold M is said to have a cylindrical end if there
is a compact set K such that M nK is isomorphic to the positive part N �RC of a
cylindrical symplectic manifold. An almost complex structure on such an M is also
called cylindrical if it satisfies the above conditions on the end only.

A basic fact is that any Liouville domain M may be converted into a manifold with a
cylindrical end by attaching a copy of the positive part of the symplectization of the
contact boundary @M �RC [32, (2a)].

Definition 2.8 A .n�1/–dimensional submanifold ƒ � N is called Legendrian if
Tƒ� � D ker˛ . A n–dimensional submanifold L�N is called pre-Lagrangian if
d˛jL D 0. The one-form ˛ then defines a class Œ˛jL� 2 H 1.L;R/, also called the
Liouville class. Observe that, in the symplectization, L lifts to L�f0g �N �R, which
is a Lagrangian submanifold with the same Liouville class.

Lemma 2.9 Let N �R be a cylindrical symplectic manifold , and let H W N �R!R

be a function which depends on � only. Thus H.x; �/ D h.e�/ for some function
hW .0;1/!R. Then the Hamiltonian vector field XH is tangent to each slice N �f�g,
and is proportional to the Reeb vector field R :

(20) XH D h
0.e�/R:

If J is a compatible cylindrical almost complex structure , with corresponding metric g ,
then XH D JrH, where

(21) rH D h0.e�/
@

@�
:

Definition 2.10 Let .M; �/ be an exact symplectic manifold, and H W M ! R a
Hamiltonian function. The symplectic action of a loop  W R=Z!M, whose domain
is parametrized by t 2 Œ0; 1/, is given by

(22) A./D�

Z
R=Z

��C

Z 1

0

H..t// dt:

The critical points of this action functional are those loops  such that �� P d�D dH,
which in light of Definition 2.4 means P DXH . In other words, the critical points are
1–periodic orbits of XH .

Remark 2.11 More generally we may consider a time-dependent Hamiltonian function
H W R=Z�M !R, which can be thought of as a family of Hamiltonians Ht W M !R
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depending on t 2 R=Z. Then the Hamiltonian vector field XH is a time-dependent
vector field whose value at time t is XHt . There is also a version of the action
functional A in this context, where the second term has an explicit t –dependence. The
correspondence between critical points of A and time-1 periodic orbits of XH still
holds.

2.2 Holomorphic curves

In this section we recall some elementary facts about inhomogeneous pseudoholomor-
phic maps that will be used in the paper. Throughout, let C be a Riemann surface with
complex structure j.

Definition 2.12 Let .M; J / be an almost complex manifold. A map uW C !M is
pseudoholomorphic if J ı duD du ı j.

Definition 2.13 Let .M;!; J / be a symplectic manifold with compatible almost
complex structure. Let H W M ! R be a Hamiltonian function, with Hamiltonian
vector field XH D JrH. Let ˇ 2 �1.C / be a one-form. A map uW C !M is an
inhomogeneous pseudoholomorphic map if

(23) J ı .du�XH ˝ˇ/D .du�XH ˝ˇ/ ı j:

Let M D N �R be a cylindrical symplectic manifold and J a cylindrical almost
complex structure. Then we may write any map uW C !N �R as uD .f; a/, where
f W C ! N and aW C ! R. Let �� W TN ! � denote the projection whose kernel
is the Reeb field R , and let �RW TN ! hRi denote the complementary projection.
Observe that �R.X/D ˛.X/R . Let J� denote the � component of J.

Proposition 2.14 The map uD .f; a/W C !N �R is pseudoholomorphic if and only
if

J� ı�� ı df D �� ı df ı j;(24)

J ı daD �R ı df ı j:(25)

If we identify da with a one-form on C, the second equation may be expressed as

(26) daD ˛ ı df ı j D .f �˛/ ı j:

The system says that �� ıdf W TC ! � is complex linear, and the one-form .f �˛/ı j

is exact, with a being an antiderivative.

Proof Clear by decomposing the tangent space to the target as in (19).
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Proposition 2.15 Let H D h.e�/ be a Hamiltonian function on N �R that depends
only on the R–coordinate � , and let ˇ 2�1.C /. Then uD .f; a/W C !N �R is a
solution of (23) if and only if

J� ı�� ı df D �� ı df ı j;(27)

J ı daD .�R ı df �XH ˝ˇ/ ı j:(28)

If we identify da with a one-form on C, the second equation may be expressed as

(29) daD .˛ ı df �˛.XH /ˇ/ ı j:

Note that the expression ˛.XH /D h0.ea/ depends functionally on a but not on f .

Proof First observe that the condition on H implies that XH is proportional to R ,
thus ��.XH /D 0, and �R.XH /DXH D ˛.XH /R . By considering the � –component,
we obtain the first equation. The R component of du�XH ˝ˇ is �R ıdf �XH ˝ˇ ,
while the Z component is da .

By comparing these two propositions we see that, in both cases, for a map uD .f; a/
to solve the equation it is necessary that �� ı df be complex linear, in which case a
can be more or less reconstructed from f if it exists. This motivates the definition of a
pseudoholomorphic curve in a contact manifold.

Definition 2.16 Let .N; ˛/ be a contact manifold, and J� an almost complex structure
on � D ker˛ compatible with d˛ . A map f W C !N is called pseudoholomorphic if

(30) J� ı�� ı df D �� ı df ı j:

The next proposition expresses the familiar principle that “holomorphic curves are
symplectic”.

Proposition 2.17 Let f W C ! N be a pseudoholomorphic map. Then f �d˛ is a
nonnegative 2–form (with respect to the complex orientation of C ). Furthermore,
f �d˛ can only vanish at a point where �� ıdf W TC ! � vanishes as a linear transfor-
mation , or equivalently df maps TC into the line spanned by R . Also , for any point
p , �� ı dfp has rank either zero or two.

Proof For any vector v 2 TC, we have an oriented basis hv; jvi of TC. We compute

(31) f �d˛.v; jv/D d˛.df .v/; df ı j.v//D d˛.�� ı df .v/; �� ı df ı j.v//

D d˛.�� ı df .v/; J� ı�� ı df .v//D k�� ı df .v/k
2
g�
� 0
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and the expression can only vanish if �� ı df .v/D 0, which is to say that df .v/ is
proportional to R . For the last assertion, observe that if �� ı dfp has rank less than
two, by choosing v in the kernel we have f �d˛.v; jv/D 0.

Following [10, Section 5.3], we define notions of energy for holomorphic curves in
symplectizations.

Definition 2.18 Let uD .f; a/W C !N �R be a map. The d˛–energy of u is

(32) Ed˛.u/D

Z
C

f �d˛;

while the ˛–energy is

(33) E˛.u/D sup
�2C

Z
C

.� ı a/ da^f �˛;

where C is the set of functions �W R!R that are nonnegative, compactly supported
and of integral 1. The energy of u is the sum E.u/DEd˛.u/CE˛.u/.

Note that the d˛–energy only depends on f , the N –component of u. The key property
of maps satisfying E.u/<1 is that they are asymptotic to Reeb orbits at the punctures
of C [10, Proposition 5.6].

Proposition 2.19 Let C be a Riemann surface with punctures and let uD .f; a/W C!
N �R be a map satisfying E.u/ <1. Suppose that the Reeb flow on N has Morse–
Bott manifolds of Reeb orbits. Then u is asymptotic to a Reeb orbit at each puncture.
Namely, with respect to holomorphic cylindrical coordinates .s; t/ 2 Œ0;1/�S1 near
a puncture, there is a Reeb orbit  of period T such that

(34) lim
s!1

f .s; t/D .˙T t/;

where the sign on the right-hand side is positive if lims!1 a D 1 and negative if
lims!1 aD�1.

2.3 Floer cohomology

The moduli spaces of inhomogeneous pseudoholomorphic maps to a fixed symplectic
target M may be used to set up a TQFT-type structure of which the symplectic
cohomology is a part. Fix a base field K. Assume that M comes with a cylindrical
end with natural coordinate � . The relevant references are [32; 34; 30].
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Definition 2.20 A Hamiltonian HmW M ! R that is of the form Hm D me�CC

for large � is said to have linear of slope m at infinity. A Hamiltonian HQ that is of
the form HQ D C.e�/2CD for large � is said to be quadratic at infinity.

The rough idea is that we can work either with a quadratic Hamiltonian HQ, or with
a family of linear Hamiltonians fHmg, and take the limit as m goes to infinity to
eliminate the dependence on m. To explain the latter version, let m 2R be a number
so that all 1–periodic orbits of XHm lie in a compact subset of M. Equivalently, we
require that m is not equal to the period of any Reeb orbit in the contact hypersurface
f�D 0g. Let J be a compatible almost complex structure that is cylindrical for large � .

Take a time-dependent perturbation KW S1 �M ! R of Hm such that K.t; x/ D
Hm.x/ for x outside a compact subset of M, which is such that all the 1–periodic
orbits of XK are nondegenerate. These 1–periodic orbits form a basis of the cochain
complex CF�.Hm/. This complex receives a Z–grading by Conley–Zehnder index
as soon as we pick a trivialization of the canonical bundle ƒnCTM, and homotopic
trivializations produce the same grading.

The differential d , of degree 1, is defined as follows. Take a time-dependent family of
compatible almost complex structures J.t; x/ that are equal to the given cylindrical
J.x/ outside of a compact subset, which is chosen so as to make the moduli space of
Floer trajectories regular. This is the moduli space of inhomogeneous pseudoholomor-
phic maps u.s; t/W R�S1!M satisfying the equation

(35)
�
@suCJ.t; u/.@tu�XK.t; u//D 0;

lims!˙1 u.s; t/D ˙.t/;

where ˙ are generators of CF�.Hm/. The signed count of solutions to this equation
(modulo the R–translation action that shifts the coordinate s on the domain) yields
the coefficient of � in d.C/. The cohomology of this cochain complex is the Floer
cohomology HF�.Hm/.

The Floer cohomologies HF�.Hm/ for various values of the slope parameter m are
not isomorphic, but are related by continuation maps, which count solutions to Floer’s
equation where the inhomogeneous term XK.t; u/ now depends on s as well (breaking
the R–translation symmetry) and it interpolates between the corresponding terms used
to define CF�.Hm/ (at s� 0) and CF�.Hm0/ (at s� 0). Assuming that m0 � m
and the interpolation satisfies a monotonicity condition, this leads to a chain map (of
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degree 0)

(36) cm;m0 W CF�.Hm/! CF�.Hm0/:

The continuation maps form a directed system, and by passing to the direct limit
(category-theoretical colimit), we get a definition of the symplectic cohomology of M :

(37) SH�.M/D lim
m!1

HF�.Hm/:

By further continuation map arguments, one can show that SH�.M/ (and even
HF�.Hm/) is independent of the choices of Hamiltonians and almost complex structures
up to canonical isomorphism [32, (3e)].

We will have use for a few other parts of the structure, namely the Batalin–Vilkovisky
(BV) operator and the product. The BV operator ı also counts cylinders, but where the
perturbation data are allowed to vary in a one-parameter family, parametrized by r 2S1 .
Since this operation involves a family of domains, it is not part of the TQFT studied by
Ritter [30], but rather part of larger structure known as a topological conformal field
theory (TCFT). The following discussion of the BV operator is based on Seidel and
Solomon [34, Section 3].

To define the BV operator ıW CF�.Hm/ ! CF��1.Hm/, we use a perturbation
Kı.r; s; t; x/ and family of almost complex structures Jı.r; s; t; x/ that also depend on
the s–coordinate of the domain and an auxiliary parameter r 2 S1 . On the ends of the
domain cylinder, these are required to be compatible with the data used to define the
differential as follows: for s� 0, they simply agree, namely Kı.r; s; t; x/DK.t; x/
and Jı.r; s; t; x/D J.t; x/, while for s� 0, they agree after a shift depending on r ,
namely Kı.r; s; t; x/D K.t C r; x/ and Jı.r; s; t; x/D J.t C r; x/. The asymptotic
condition at the s � 0 end then becomes lims!1 u.s; t/ D C.t C r/. Counting
solutions that are isolated even as the parameter r is allowed to vary yields the degree �1
map ı . One finds that ı is a chain map, and that compatibility of the ı for various m
yields a BV operator �W SH�.M/!SH��1.M/. A useful property is that � vanishes
on the image of the canonical map H�.M/! SH�.M/.

The product is the TQFT operation associated to the pair of pants. It defines a map

(38) HF�.Hm/˝HF�.Hm0/! HF�.Hm00/

as long as m00 �mCm0. Passing to the limit as m!1 and m0!1, this induces a
product on SH�.M/.
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In the setup where a quadratic Hamiltonian is used, the periodic orbits will not in general
be contained in any compact set, meaning that in order to achieve nondegeneracy and
transversality, the perturbation of the Hamiltonian and complex structure cannot neces-
sarily be compactly supported. This makes the compactness for pseudoholomorphic
curves more subtle. Ritter [30] provides two approaches for overcoming this difficulty
and defining the TQFT structure using quadratic Hamiltonians.

2.4 Example of the complex torus

In the rest of the paper we are interested in complex dimension two, but in this section
let the dimension be general n. Let N Š Zn be a lattice, M D Hom.N;Z/. Let
T DN ˝Z C� Š .C�/n be the complex torus. Let zi be a set of coordinates on T in
bijection with a basis of M. For the purpose of grading Floer cohomology, we use the
complex volume form �D

Qn
iD1 dzi=zi . Then

(39) SHp.T /Š ZŒN �˝ƒpM Š ZŒx˙11 ; : : : ; x˙1n �˝ƒpŒx_1 ; : : : ; x
_
n �;

where xi and x_i represent dual bases of N and M, respectively.

This computation is a special case of the symplectic homology of cotangent bundles
[1; 31; 36]. Since we are using the cohomological convention and the convention that
the canonical map H�.�/! SH�.�/ has degree zero, the isomorphism relating the
symplectic cohomology to the loop space of a spin manifold Q is

(40) SHn��.T �Q/ŠH�.LQ/:

Note that (40) “implicitly fixes all the conventions used in the present paper (homology
versus cohomology, the grading, and the inclusion of noncontractible loops)” [33].

The subspace xa11 x
a2
2 � � � x

an
n ƒ
�Œx_1 ; : : : ; x

_
n � is the cohomology of the component

of LT n consisting of loops representing a certain class .a1; : : : ; an/2N DH1.T n;Z/,
since this component is homotopy equivalent to T n . The isomorphism (40) maps this
subspace in the manner of Poincaré duality to the homology of the loop space.

For a manifold Q , string topology shows [13] that the space LQ has a product given
by composing families of loops when they are incident, and a BV operator given
by spinning the parametrization of the loops. The isomorphism (40) identifies these
structures as well (see [2] for the product and [4] for the full BV structure).

We will briefly explain how this computation can be done from a symplectic viewpoint,
previewing the method used for general log Calabi–Yau surfaces. The complex torus
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can in some way serve as a local model for the general computation. We will describe
in Section 4 a general method for finding “nice” Liouville structures on log Calabi–Yau
surfaces. The main feature of such a “nice” structure is that it contains a contact-type
hypersurface † � .C�/n fibered by Lagrangian tori such that the Reeb flow acts
preserving the tori, and rotating each by some amount. Let LogW .C�/n!Rn be the
standard torus fibration given in each coordinate by the logarithm of the absolute value.
Let S � Rn be some large sphere centered at the origin, and let †D Log�1.S/ be
the union of the torus fibers sitting over S. We arrange that † is contact-type, with
the evident torus fibration � W †! S, that the Reeb vector field is tangent to the fibers
of � and that the Reeb flow acts on each fiber ��1.s/ as a linear translation on the
torus, say translation by the vector v.s/. What is important is that the direction of
translation depends on the point in the base. Given the basepoint s , represent the
torus ��1.s/ as Rn=Zn ; if the direction of v.s/ is rational in this representation, the
Reeb flow on ��1.s/ is periodic (with some period T .s/). Now, for each such s and
each multiplicity r 2 NC , we have a torus Ts;r � L.C�/n of periodic orbits lying
on ��1.s/ that wrap a primitive orbit r times. In fact, we can arrange that the pairs
.s; r/ indexing the tori correspond bijectively to the nonzero elements in H1..C�/n;Z/
(under the Hurewicz map LM !H1.M;Z/).

If we use either a Hamiltonian H with linear or quadratic growth on the cylindrical
end, these periodic Reeb orbits correspond to tori of Hamiltonian orbits of period 1
(with the exception that the Reeb period must be less than the asymptotic slope in
the linear case). These orbits are evidently degenerate since they come in continuous
families, but a generic time-dependent perturbation of the Hamiltonian near each
torus Ts;r (possibly different for each s and r ) breaks this manifold of orbits into
several nondegenerate orbits. The differential counts cylinders, hence can only connect
orbits that are homologous, and so orbits corresponding to different tori Ts;r are not
connected by differentials.

Using the isomorphism with loop-space homology, we see that, within the set of orbits
corresponding to a single torus Ts;r , the Floer cohomology complex computes the
cohomology of the component of the loop space containing Ts;r . As this component
is homotopy equivalent to Ts;r , we identify this cohomology with H�.Ts;r/. The
contractible orbits of H contribute the ordinary cohomology of .C�/n . Another
expression for the cohomology of .C�/n is then

(41) SH�..C�/n/ŠH�..C�/n/˚
M
s;r

H�.Ts;r/:
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This shows us that the degree 0 generators of symplectic cohomology correspond to
the fundamental classes of the iterates of the periodic tori.

We can use this computation to draw some conclusions about the structure of symplectic
cohomology near a periodic torus. Since all the classes in H�.Ts;r/ are linearly
independent in Floer cohomology, we see that the perturbation of Hamiltonian near
each periodic torus must create at least

�
n
k

�
orbits of Conley–Zehnder index k .

We record now some facts about the BV operator and the product that will be used in
the computation of the differential on symplectic cohomology in Section 6.

The BV operator on symplectic cohomology is identified with the rotation of loops
H�.LT /!H�C1.LT /. Thus the action of � on H�.Ts;r/ is Poincaré dual to the
operation of taking a cycle Ts;r and rotating the parametrization of the loops. Under
the isomorphism H�.Ts;r/Šƒ

�Kn , this corresponds to contraction with the class of
the orbit.

The product structure is also straightforward. There are maps

(42) H�.Ts;r/˝H
�.Ts0;r 0/!H�.Ts00;r 00/

that can be characterized as follows. If we let a.s; r/ 2 �0.L.C�/2/ŠH1..C�/2;Z/
denote the component of the free loop space containing Ts;r , the map above is nontrivial
precisely when a.s; r/C a.s0; r 0/D a.s00; r 00/, and in this case it is given by a sort of
cup product; this follows from the identification of this product with the Chas–Sullivan
product on the free loop space homology. In particular, if we consider s D s0 D s00

and r 00 D r C r 0, then the map is nontrivial, and the degree zero component of the
target is in the image. In the symplectic cohomology, this product is represented by a
pair of pants that is a small perturbation of an r 00 -to-1 branched covered cylinder (the
ramification at one end, corresponding to the inputs, has two components mapping with
multiplicities r and r 0, while at the other end we have one component mapping with
multiplicity r 00.) These cylinders will appear again later as low-energy contributions to
the product the general case.

3 Log Calabi–Yau surfaces

3.1 Basics

Our main objects of study are log Calabi–Yau pairs .Y;D/ with positive, maximal
boundary. We define these notions presently. For the reader who finds this terminology
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perverse we note that this combination of conditions is equivalent to saying that Y is a
surface and D is a nodal reduced anticanonical divisor such that D supports an ample
divisor class. Readers who are familiar with these notions may skip this section but
should note Lemma 3.3, which is relied on throughout the paper.

Let Y denote a smooth projective surface over the complex numbers. The canonical
bundle is denoted by �2Y , and the canonical divisor class is denoted by KY . Let D be
an effective divisor on Y .

Definition 3.1 The pair .Y;D/ is a log Calabi–Yau pair if KY CD is a principal
divisor, that is, D lies in the anticanonical divisor class. Equivalently, there is an
isomorphism �2Y .D/Š OY .

In this paper we will usually assume that D is a normal crossings divisor.

Definition 3.2 An effective divisor D on a surface Y is a normal crossings divisor
if D is a reduced Cartier divisor, and, writing D D

P
i Di with irreducible com-

ponents Di , each Di is a smooth or nodal curve intersecting the other components
transversely (so that .D�Di /jDi is a reduced divisor on Di ).

There is a restriction on the topology of the pair .Y;D/ when D is normal crossings.
The proof is an exercise in adjunction.

Lemma 3.3 Let D be a connected normal crossings divisor in a smooth projective
surface Y such that the pair .Y;D/ is log Calabi–Yau. Then either

(1) D is a smooth genus one curve,

(2) D is a irreducible nodal curve of arithmetic genus one, or

(3) D is a sum of smooth rational curves, whose intersection graph is a cycle.

Proof The arithmetic genus of the possibly nodal curve D is given by the adjunction
formula and the assumption KY CD � 0,

(43) pa.D/D
1
2
.KY CD/ �DC 1D 1:

If D is irreducible, it falls under one of the first two cases.

Suppose that D D
P
i2I Di is reducible with components Di . Let �.D/ be the

intersection graph of D. The vertex set I is the index set for the components, each
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vertex is labeled by the arithmetic genus of the component, and we draw as many edges
between two vertices as there are intersections between the corresponding components.
Our assumption is that �.D/ is connected and has at least two vertices.

We claim that each vertex of �.D/ has valence at least two. Suppose �.D/ has a
vertex of valence one, say k . Then .D�Dk/ �Dk D 1. Using �KY �D,

(44) �KY �Dk D .D�Dk/ �DkCDk �Dk D 1CDk �Dk :

Reducing modulo 2,

(45) KY �Dk 6�Dk �Dk .mod 2/;

which is impossible by the adjunction formula. Thus every vertex of �.D/ has valence
at least two.

Since every vertex as valence at least two, �.D/ cannot be a tree. Therefore it contains
a cycle. By genus considerations there can only be one cycle, and every component
of D is rational. Since �.D/ is connected and contains only one homological cycle,
�.�.D//D 0. Thus the numbers of vertices and edges are equal. Since each vertex
has valence at least two, and

P
i2I

1
2

valence.i/D # edges, each vertex has valence
exactly two. Thus �.D/ is a cycle.

To see that the assumption that D is connected is necessary, consider Y D E �P1

where E is an elliptic curve, with D DE � f0g[E � f1g.

Definition 3.4 A log Calabi–Yau pair .Y;D/ satisfying the hypotheses of Lemma 3.3
is said to have maximal boundary, or is called a Looijenga pair, if it falls under cases (2)
or (3) of the conclusion.

For the grading on symplectic cohomology of U D Y nD, it is important to actu-
ally specify the trivialization of �2U . There is a preferred trivialization, given by a
meromorphic two-form on Y that is nonvanishing and holomorphic on U with simple
poles along D. We have the following proposition, which in particular shows that the
homotopy class of the trivialization does not depend on the choice of compactification.

Lemma 3.5 Let .Y;D/ be a log Calabi–Yau pair with maximal boundary. The
complement U DY nD carries a nonvanishing holomorphic two-form �, characterized
up to a scalar multiple by the property that � has simple poles along D. If .Y;D/ and
.Y 0;D0/ are two log Calabi–Yau compactifications of a given U, then the corresponding
two-forms � and �0 differ by a scalar multiple.
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Proof The second assertion implies the first, so it suffices to consider two pairs .Y;D/
and .Y 0;D0/ such that Y nD D U D Y 0 nD0. Let � (resp. �0 ) be any meromorphic
form on Y (resp. Y 0 ) that is nonvanishing and holomorphic on U and has simple poles
along D (resp. D0 ). There is a birational map pW Y Ü Y 0 that is the identity on U.
The pullback p��0 is a meromorphic form on Y that is nonvanishing and holomorphic
on U. Thus the ratio f D p��0=� is a rational function on Y , whose divisor of zeros
and poles is contained in D.

When Y and Y 0 are the same, the condition that both � and �0 have the same divisor
of poles implies that f has no zeros or poles, and hence is constant.

If Y and Y 0 are distinct, then since any birational map factors into blowups, it suffices
to prove the lemma when pW Y Ü Y 0 is a blowup of Y 0. The exceptional locus is
necessarily contained in D, and by Lemma 3.3, the exceptional curves of p must map
to nodes of D0.

Now we make use of another property of �, namely that it has nonzero residue at any
node of D. This residue is the integral of � on a small torus linking the node. Indeed,
picking local analytic coordinates .z1; z2/ such that the node takes the form fz1z2D 0g,
the condition that � has simple poles along D is equivalent to the condition that its
lowest-order term is proportional to dz1 ^ dz2=z1z2 .

Since � is a closed form on U (being a holomorphic top form), we must obtain the
same residue by integrating over any homologous torus, and since the boundary divisor
is a cycle of rational curves, the tori at each of the nodes are homologous to each
other. Furthermore, since pW Y Ü Y 0 is a blowup at some nodes of D0, the homology
classes of the linking tori in Y and Y 0 correspond under pjU .

The form �0 on Y 0 also has a nonzero residue at any linking torus of D0. Since this
residue is given by an integral inside U, the same must be true of p��0 on Y .

Suppose now that the ratio f is not constant. Then f must have zeros somewhere in Y .
Since it is nonvanishing in U, we conclude that it vanishes along some component D1
of D. But then, writing p��0 D f �, we see that the zero of f cancels the pole of �
on D1 , implying that p��0 would have zero residue at any node of D involving D1 ,
which is a contradiction.

Definition 3.6 A reduced divisor D D
Sn
iD1Di is said to support an ample divisor

if some linear combination of the irreducible components AD
Pn
iD1 aiDi is ample.

If there is such a combination with all coefficients ai strictly positive, then D is called
positive.
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Lemma 3.7 Let D be a connected divisor in a projective surface Y . If D supports an
ample divisor, then D supports an ample divisor AD

Pn
iD1 aiDi where all coefficients

ai are strictly positive.

Proof This proof is drawn from [16, Section 2.4] via [39]. Consider the set

(46) SD
˚
AD

P
i2I aiDi j I � f1; : : : ; ng; ai > 0 and A �Di > 0 for all i 2 I

	
:

In words, S is the set of effective divisors, supported on D, that have positive intersection
with any irreducible component of their support. The conclusion follows once we
know that S contains a divisor B whose support is all of D. By definition, B contains
every Di with a strictly positive coefficient ai . The Nakai–Moishezon criterion implies
that B is ample: First, by definition B �Di > 0 for every irreducible component of D.
Then we also see that B2D

Pn
iD1 ai .B �Di / > 0. Lastly, if we consider an irreducible

curve C that is not a component of D, we have C �Di � 0 for all i . The fact that D
supports an ample divisor implies that C is not disjoint from D, so C �Di > 0 for
some i . Thus B �C > 0.

It remains to show that S contains an element whose support is all of D. First we show
that S is not empty. Start with some ample divisor AD

P
i aiDi supported on D, and

write AD P �N, where P and N are effective and have no components in common.
Let Di be contained in the support of P. As A �Di > 0, we have P �Di > N �Di .
Since Di is not contained in the support of N, we have N �Di � 0, and so P �Di > 0.
Thus P 2 S.

Now we must add the other components of D while staying in S. Let Dj be an
irreducible component of D that is not contained in P, but which does intersect P
nontrivially. Then mP CDj 2 S for m� 0. Indeed, .mP CDj / �Dj > 0 as long as
m > �D2j =P �Dj (the denominator is greater than zero by the assumption that Dj
intersects P and is not contained in it).

Because we assumed that D is connected, we may iterate the previous step to add each
time an irreducible component of D that is not contained in the support but which
intersects it nontrivially. Thus S contains an element whose support is all of D.

3.2 Examples

Observe that a pair .Y;D/ is a log Calabi–Yau pair with maximal boundary and D
ample if and only if Y is a del Pezzo surface and D is a nodal reduced anticanonical
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divisor. However, the weaker assumption that D merely supports an ample divisor
includes infinitely many more types of surfaces. For example, we can take Y D P2

blown up any number of times, as long as these blowups all lie on a single conic. We
let DDQ[L be the union of the proper transform of that conic Q with some line L.
This D is anticanonical and nodal, and mLCQ is ample for m� 0.

Here we list some examples of log Calabi–Yau pairs.

3.2.1 The projective plane Let Y DP2 . As �n
P2
ŠOP2.�3/, any cubic curve will

serve for D. There are essentially four possibilities. In going from each case to the
next, we smooth a node of D. This changes the complement U by adding a 2–handle.

(1) D is the union of three lines in general position. Then U D Y nD Š .C�/2 ,
and the Betti numbers are b1 D 2 and b2 D 1.

(2) D is the union of a conic and a line in general position. The Betti numbers of U
are b1 D 1 and b2 D 1. Floer cohomology for Lagrangian submanifolds in U
was studied in [29].

(3) D is a nodal cubic curve. The Betti numbers of U are b1 D 0 and b2 D 1.

(4) D is a smooth cubic curve. The pair .Y;D/ does not have maximal boundary.
The Betti numbers of U are b1 D 0 and b2 D 2.

3.2.2 A cubic surface Let Y be a smooth cubic surface in P3 . As is well known, Y
contains 27 lines, and it is possible to choose three of them intersecting in a 3–cycle so
that their sum is an anticanonical divisor. To see this, realize Y as the projective plane
blown up in six general points p1; : : : ; p6 , giving six exceptional curves E1; : : : ; E6 .
Let Lij denote the proper transform of the line through pi and pj (there are 15 of
these). Let Ck denote the proper transform of the conic through five of the points, all
except pk (there are six of these). The curves Ei , Lij and Ck are the 27 .�1/–curves
that are mapped to lines by the anticanonical embedding Y ! P3 .

For two indices a and b , consider the configuration Lab , Eb , Ca . This means the
line through pa and pb , the exceptional curve over pb , and the conic that does not
contain pa . Clearly Lab and Eb intersect over pb , while Ca and Eb intersect since
Ca passes over pb . Also, Lab and Ca intersect since their projections to P2 intersect
in two points: one point is pb , and the other point is none of the pi (which are assumed
to be in general position), and this latter intersection point persists in the blowup.

The divisor D D LabCEbCCa is anticanonical and very ample.
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3.2.3 The degree 5 del Pezzo surface Let Y be the (unique) degree 5 del Pezzo
surface, realized as the blowup of P2 at 4 general points p1 , p2 , p3 and p4 . There are
10 .�1/–curves in Y , namely the 4 exceptional curves Ei coming from the blowups,
and

�
4
2

�
D 6 proper transforms of the lines passing through two of the points Lij .

To get an anticanonical divisor, choose a partition of the set f1; 2; 3; 4g into fi; j g
and fk; `g (there are 12 such choices). Then take D D Lki CEi CLij CEj CLj` .
Thus D is a 5–cycle of .�1/–curves which is anticanonical and ample.

3.2.4 “Punctured” An Milnor fibers Let V D fx2Cy2CznC1D 1g �C3 be the
Milnor fiber of the two-dimensional An singularity. It is possible to compactify V
by adding two rational curves [15, Section 7.1]. Start with P2 , with homogeneous
coordinates Œx W y W z�. Blow up the nC 1 points Œ�k W 0 W 1� along the x–axis, where
�k D exp.2�ik=.nC 1//, and call the result Y . Let Pt be pencil on Y that is the
preimage of the pencil of lines through Œ0 W1 W0�. In an affine chart these are depicted as
the lines parallel to the y–axis. The line at infinity fzD 0g is a fiber of this pencil, P1 .
The pencil Pt on Y has nC1 singular fibers, where the line passes through a blown-up
point. Let C denote the proper transform of the x–axis; it is a section of the pencil
and passes through all of the exceptional curves. The complement Y n .P1[C/ is
isomorphic as a complex manifold to the Milnor fiber V [15, Lemma 7.1].

Although V satisfies c1.V /D 0, it is not log Calabi–Yau in the sense of this paper.
The anticanonical class of Y is

(47) �KY � 3H �

nX
iD1

Ei � 2P1CC;

where H denotes the pullback of the hyperplane class on P2 . The issue is the coefficient
of 2 in front of P1 , which means that a holomorphic volume form on V will have a
pole of order 2 along P1 .

We can get something that falls into our setting by removing another smooth fiber of the
pencil, say P0 . Write U D Y n .P0[P1[C/. We call U the punctured An Milnor
fiber, since we puncture the line parametrizing the pencil on V . As �KY �P0CP1CC,
this is a log Calabi–Yau surface.

The self-intersections are P 20 D 1, P 21D 1 and C 2D 1�n. The compact surface Y is
not Fano unless n� 2, since �KY �C D 3�n. Nevertheless, the divisor P0[P1[C
supports an ample divisor. Indeed, aP0C bP1CC is ample as long as a > 0, b > 0
and aC b > n� 1.
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Remark 3.8 The point of view that U is the form of the Milnor fiber that is “truly
Calabi–Yau” comes from the Strominger–Yau–Zaslow (SYZ) picture and is discussed
in [5, Section 9.2]. This lines up well with [20], which also used the SYZ picture (in
the form of the Gross–Siebert program) as its starting point.

4 Construction of the Liouville domain

In this section we will construct a Liouville domain associated to a log Calabi–Yau pair
.Y;D/ where D is positive. In order to obtain symplectic forms, we use Lemma 3.7,
and choose an ample divisor AD

P
aiDi supported on D such that each coefficient ai

is strictly positive. The Liouville domain we construct is the symplectic model for the
complement U D Y nD. Since we are ultimately interested in symplectic cohomology,
and symplectic cohomology is an invariant of Liouville deformation, we are free to
take a particular representative of the Liouville deformation class that has convenient
properties.2 This idea was used by Seidel [32] and Mark McLean [26] to understand the
growth rate of symplectic cohomology. In fact, the first four steps of the construction
follow [32, Section 4] very closely, though at some points we extract more precise
information for our particular cases. The fifth step is new, and highlights an interesting
property of contact hypersurfaces in U.

4.1 Basic Liouville structure on an affine variety

Let Y be a smooth projective variety with a positive divisor D, and let AD
P
aiDi be a

strictly positive combination of components that is ample. Then there is a holomorphic
line bundle L ! Y and a section s 2 H 0.Y;L/ such that A D s�1.0/. The line
bundle L admits a Hermitian metric k � k such that, if F is the curvature of the unique
connection compatible with the metric and the holomorphic structure, then ! D 2iF is
a Kähler form. On the complement U D Y nD, the function � D�log ksk is a Kähler
potential since

(48) 2iF jU D dd
c.�log ksk/:

Thus the symplectic form ! on U is exact and �D d c� is a primitive. Here d c D
�i.@�x@/, and for a function f this means d cf D�df ıJ.

2In particular, the symplectic cohomology does not depend on the choice of ample divisor AD
P
aiDi ,

although the coefficients ai will appear in the local expressions for the Liouville class.
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The function � is clearly proper and bounded below. A simple lemma [32, Lemma 4.3]
shows that the set of critical points of � is compact when D has normal crossings, so
by choosing a sufficiently large regular value C, we find that U D ��1.�1; C � is a
compact subset containing all of the topology of U.

The Liouville vector field is defined by the condition �Z! D �. Thus

(49) 0� g.Z;Z/D !.Z; JZ/D �.JZ/D�d� ıJ.JZ/D d�.Z/

and equality can only hold when Z D 0, whence � D 0, whence d� D 0. Thus Z
points strictly outwards along @U D ��1.C /.

Thus U equipped with the structures ! , � and Z is a Liouville domain.

4.2 Refinements of the basic construction

We assume that, in addition to being positive, D is anticanonical, so that .Y;D/ is a log
Calabi–Yau pair. We also assume that the pair has maximal boundary, which means that
D is normal crossings with at least one node. By Lemma 3.3, D is either isomorphic
to the irreducible nodal genus one curve or it is a cycle of rational curves. While the
case of an irreducible nodal curve appears exceptional, it can be subsumed into the
other case by blowing up the node; this replaces the irreducible nodal genus one curve
with a cycle of two smooth rational curves. Because blowing up a node on D does
not change U D Y nD, we may compute the symplectic cohomology after the blowup.
After this modification, we can assume that D is a cycle of smooth rational curves.

To begin with we start with a basic Liouville structure ! , � and Z on U as in the
previous section.

4.2.1 Step 1: constructing local torus actions along the divisor This step is basi-
cally the same as in [32], but we get a little more structure along the smooth parts of
the divisors.

Let us write DD
Sr
iD1Di , where each irreducible component Di is a smooth rational

curve, and the components are ordered cyclically according to some chosen orientation
of the intersection graph. So Di �DiC1D 1. The first thing to do is to make consecutive
divisors symplectically orthogonal. According to [32, Section 4, Step 1] we may choose
the metric on L so that in local coordinates .z1; z2/ near Di \DiC1 , the divisor is
D D fz1z2 D 0g and the Kähler form is standard. This neighborhood therefore admits
a Hamiltonian T 2 action that rotates the complex coordinates .z1; z2/, with moment
map m.z1; z2/D 1

2
.jz21 j; jz

2
2 j/.
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Remark 4.1 Our strategy is to progressively extend these T 2 actions to larger subsets
of Y . This will involve constructing a group action on some subset, and saying that it
agrees with ones previously constructed on the overlap. To say that two group actions
“agree” really means to say that there is an isomorphism of the acting groups that
intertwines the actions. Thus when we say “such and such T 2 actions agree”, we
should really add “up to an element of Aut.T 2/Š GL.2;Z/”. Alternatively, since all
of the actions we consider are faithful, we may simply speak of agreement of subgroups
of the diffeomorphism group.

The next thing to do is to construct a Hamiltonian S1 action in a neighborhood of
each Di . This is also present in [32, Section 4, Step 1], but we shall provide full details
since we need to extend the argument. Here is the precise claim:

Claim 4.2 For each i , there is a Hamiltonian S1 action in a neighborhood of Di ,
fixing Di and rotating its normal bundle, that is furthermore compatible with the
previously constructed T 2 actions at the nodes in the sense that, in a neighborhood of
the intersection Di \Di˙1 , the S1 rotating the normal bundle of Di agrees with the
one-parameter subgroup of T 2 that rotates Di˙1 and fixes Di .

Proof The tool to achieve this is the symplectic tubular neighborhood theorem, which
says that the only local invariants of a symplectic embedding are the symplectic structure
on the submanifold itself and the normal bundle as a symplectic vector bundle. Since
rank two symplectic vector bundles over surfaces are determined by their degree, it
will suffice to consider the model space Xi that is a degree D2i complex line bundle
over Di . The space Xi admits Kähler structures that are invariant under the S1 action
that rotates the fibers of the bundle projection pi W Xi !Di . We want such a Kähler
structure with the property that, if q 2Di is a nodal point (a point where Di intersects
another component of D ), there is a neighborhood V of q such that Xi jV is trivial as
a bundle of Kähler manifolds (so it is metrically the product of V and p�1i .q/). This
may be done by choosing any Kähler metric g on Xi that has the desired behavior
near the nodal points, and then averaging it with respect to the holomorphic S1 action
to obtain xg ; since the desired behavior near q forces g to S1–invariant there, xg D g
near the nodal points.

Now we must compare neighborhoods of Di in Xi and in the actual log Calabi–
Yau Y . By scaling xg , we can ensure that Di has the same symplectic area in Xi
as it does in Y . In order to apply the symplectic tubular neighborhood theorem,
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we must construct an isomorphism of symplectic normal bundles  W N.Di=Xi /!
N.Di=Y / covering a symplectomorphism of Di . We take the map on Di to be the
identity near the nodal points, and we also prescribe that near the nodal points the
isomorphism of symplectic normal bundles matches the trivializations coming from the
local product structures on Xi and Y , respectively. Now we consider the composition
expY ı  ı exp�1Xi , where expY and expXi are the exponential maps of the chosen
Kähler metrics on Y and Xi . By the differentiable tubular neighborhood theorem, this
map is a diffeomorphism between some neighborhoods of Di in the two manifolds, and
because of the care we have taken near the nodal points, it matches the local product
structures in neighborhoods of the nodal points, and so the S1 actions match as well.
Finally, we use the Moser argument to correct this map to be a symplectomorphism
everywhere (see [25, Lemma 3.14]); an analysis of the Moser argument in this situation
shows that it does not change the map in neighborhoods of the nodal points, where the
symplectic structures already match. Carrying over the S1 action on Xi through the
symplectomorphism, we are done.

The last thing to do is to show that a whole neighborhood of Di admits a T 2 action that
is compatible with all previously constructed actions. Note that this will only work if
Di is a sphere containing exactly two nodal points, whereas the preceding paragraphs
in this subsection work for any normal crossings divisor in an algebraic surface.

Claim 4.3 For each i , there is a Hamiltonian T 2 action in a neighborhood of Di such
that the previously constructed S1 action agrees with the action of a one-parameter
subgroup of T 2 , and such that near the nodes this T 2 action agrees with the one
previously constructed.

Proof We start from the proof of the previous claim, where we showed that a neigh-
borhood Vi of Di in Y is symplectomorphic to a neighborhood of Di in Xi . Since
pi W Xi!Di is a vector bundle with symplectic fibers, we find that Vi has the structure
of a symplectic fibration over Di ; we use the same letter to denote the projection
pi W Vi !Di . The fibers here are disks, and the S1 action preserves the fibers. Let q0
and q1 denote the two nodal points in Di . Near q0 , we have the T 2 action already
constructed. Let �0W S1! T 2 be the one-parameter subgroup that rotates the base
direction at q0 and fixes the fiber p�1i .q0/. Let m0 be the local moment map for this
action. Because of the local product structure near q0 , m0 has the form h0 ıpi , where
h0 is a function on Di defined near q0 . We may assume that h0 has a local minimum
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at q0 , by inverting the one-parameter subgroup if necessary. Analogously, near q1 ,
let �1W S1! T 2 be the one-parameter subgroup that rotates the base and fixes the
fiber p�1i .q1/. It has a local moment map m1 D h1 ı pi , where we assume that
h1 has a local maximum at q1 .

Now we use crucially the fact that Di is a two-sphere and there are only two nodal
points on it. We claim that there is a constant c 2R and a function hW Di !R such
that hD h0 near q0 and hD h1C c near q1 , and which has no other critical points.
That is to say, there is a perfect Morse function on the two-sphere with minimum at
q0 , maximum at q1 , and prescribed differential near these points. This is elementary.

Now consider the function mD h ıpi W Vi !R, and the Hamiltonian vector field Xm .
There is no reason for Xm to generate a circle action, but we will show that it does
generate an R action on Vi . Let f be the Hamiltonian generating the S1 action that
rotates the fibers of pi W Vi !Di . We claim that m and f Poisson commute. Indeed,
we have

(50) ff;mg D !.Xf ; Xm/D dm.Xf /D dh.dpi .Xf //D 0;

where dpi .Xf /D 0 because the S1 action preserves the fibers, and so Xf is tangent
to the fibers. Since m commutes with f , Xm is tangent to the level sets of f ; since
these level sets are compact (they are circle bundles over Di , together with the critical
level that is Di itself), the flow of Xm is complete. Thus Xm generates an R action
on Vi .

Thus the pair .m; f / is a maximal collection of Poisson commuting functions on Vi ,
generating an R� S1 action. Our T 2 action will come from an application of the
Arnold–Liouville theorem, so let us study the orbit structure of this action. The orbits
are contained in the level sets of the map .m; f /W Vi ! R2 . The zero-dimensional
level sets consist of the nodal points fq0g and fq1g, where both df and dm vanish;
these are the zero-dimensional orbits. The one-dimensional level sets are of two kinds:
some are the regular level sets of h sitting in Di , where df D 0 and dm¤ 0, and
there are also the S1 orbits in the fibers p�1i .q0/ and p�1i .q1/, where dmD 0 and
df ¤ 0; these are the one-dimensional orbits. All other level sets are two-dimensional
compact tori; indeed, they are the intersection of a regular level of f , which is a circle
bundle over the two-sphere, with a set of the form p�1i .h�1.C //, where h�1.C / is
some circle on the two-sphere. At a point on such a level set, Xf and Xm are linearly
independent, since Xf is tangent to the fiber of pi and Xm is symplectically orthogonal
to it. Thus these level sets are two-dimensional orbits.
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Now we apply the Arnold–Liouville theorem [7]. This yields a set of action coordinates
.f1; f2/W Vi !R2 that when taken as Hamiltonians generate a T 2 action having the
same orbits as the pair .m; f /. The action coordinates are uniquely determined up to
integral affine transformations. It is possible to arrange that our original f is one of the
action coordinates, which shows that the S1 action constructed previously agrees with
a one-parameter subgroup of this T 2 action. Near the nodal points, the pair .m; f /
that generates the previously constructed T 2 action is a system of action coordinates,
and so they are related to .f1; f2/ by an integral affine transformation (it will not
necessarily be the same transformation at the two nodal points). Thus the T 2 actions
agree at the nodal points as well.

Let us summarize the outcome of this construction. In a neighborhood of each Di , there
is a Hamiltonian T 2 action. At the nodes, where two such neighborhoods overlap, the
T 2 actions agree in the sense that there is an automorphism of T 2 that intertwines them,
and moment maps of the two T 2 actions are related by an integral affine transformation.
The orbits of all the T 2 actions are compact isotropic submanifolds; each is either a
node of D, a circle on some component of D, or else a Lagrangian torus. In particular,
a neighborhood of D, minus D itself, is fibered by Lagrangian tori, and these tori are
fibers of the local moment maps.

Observe at this point that, since the torus fibers near D are Lagrangian, the restriction
of � to those fibers is closed. This means that each such torus L has a well-defined
Liouville class Œ�jL� 2H 1.LIR/; we shall study these classes later on.

4.2.2 Step 2: making the Liouville form symmetric near the crossings This step
is identical to [32, Section 4, Step 2] so we will be brief. The outcome is that there
is a smooth function k on Y such that �0 D �C dk is T 2–invariant near each of
the crossings, and that the sublevel set U D ��1.1; C � (for a large regular value C )
equipped with the restriction of �0 is still a Liouville domain. This Liouville structure
is deformation equivalent to the original structure.

4.2.3 Step 3: making the boundary torus-invariant The goal is to construct an
exhausting family of Liouville domains U 0�U such that the boundary @U 0 is invariant
under the local torus actions. This condition tells us what to do: in a portion of the
neighborhood of the divisor where the moment map is defined, let S be a path that
goes very close to the boundary of the moment map image. More precisely, we take
the boundary of the moment map image, push it off into the interior of this image, and
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p

T
S.NpD/

Figure 1: Tori in the normal bundle to a rational curve Di . At left, a circle
fiber of the normal bundle projecting to a point on Di . At right, a torus
projecting to a circle on Di .

then round the corners in the simplest way. See Figure 2. Then let † be the union
of the torus orbits over this path. By looking in several charts we may define † as
a closed real three-dimensional manifold contained in a neighborhood of the divisor,
which has the topology of a T 2–bundle over the circle S.

We take U 0 to be the inside of the real hypersurface †, namely the side not containing D.
The arguments of [32, Section 4, Step 3] apply to this hypersurface † to show that
if the path S is taken close enough to the boundary, the Liouville vector field Z0

from Step 2 points outward along †. We also find that .U ; �0jU / and .U 0; �0jU 0/ are
Liouville isomorphic.

Di

DiC1 †

�

Figure 2: Moment map picture for the contact hypersurface near a node.
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4.2.4 Step 4: making the contact form torus-invariant This is the same as in [32]
but we use the T 2 action instead of just the S1 action. Near the crossings, �0 is
already T 2–invariant, as is †, so �0j† is a T 2–invariant contact form. Away from
the crossings, we find that Z0 points outwards all along the torus fibers of †, so
by averaging over the local T 2 actions we obtain a Liouville form �00 defined in
a neighborhood of † that is T 2–invariant, and whose dual vector field Z00 points
outwards along †. (Even though the T 2 actions are only locally defined, they are
compatible; if we average in one region, and then another region, the second averaging
does not destroy invariance in the first region.) The desired contact form is ˛ D �00j† .
The contact structure is isomorphic to the one induced by �0, and hence, just as in
[32, Section 4, Step 4], we can find a Liouville structure on U 0 isomorphic to the one
induced by �0 and such that @U 0 has the contact form ˛ .

Let us now quote the following explicit description of the Reeb dynamics of .@U 0; ˛/
from [32, Section 4, Step 4], which will be used crucially in the paper: Over the
parts of the boundary lying close to the smooth points of D, the Reeb flow is a circle
action. Near the nodes, the local model is R� T 2 , and the Reeb flow translates the
torus fsg �T 2 with some speed �.s/D .�1.s/; �2.s// 2R2

C
. We have �.s/D .�C; 0/

for large s � S and �.s/D .0; ��/ for s � �S, so that the Reeb flow matches with
the circle actions over the smooth parts of D. The function �.s/ will depend on the
choice of boundary we made in Step 3, but by a suitable choice we can ensure that for
�S < s < S, we have @s�1 > 0 and @s�2 < 0.

4.3 Reeb dynamics and Liouville classes

Now we investigate further the contact boundary .†; ˛/ that is the output of Step 4.
Recall that † is a torus bundle over a circle S,

(51)

T 2 // †

�

��

S

and the contact form ˛ is invariant under the local T 2 action. Note that † is not a
principal T 2–bundle since there is no global T 2 action, and, indeed, the structural
group of the fiber bundle is not T 2–translations but rather diffeomorphisms of the torus.

Let I � S be some interval, and consider †jI D ��1.I /. Then †jI has a T 2 action,
and by choosing a section � jI W I ! †jI of the fibration, we obtain an equivariant
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diffeomorphism

(52) †jI Š T
2
� I:

Introduce coordinates .�1; �2; s/ on T 2�I, where .�1; �2/ are 2� –periodic coordinates
on the fiber, and s 2 I is a coordinate on the base. Since the contact form ˛ is a
T 2–invariant one-form, in this coordinate system it can be written

(53) ˛ D f .s/ d�1Cg.s/ d�2C h.s/ ds

for some functions f , g and h that depend on s but not on the angular coordinates.
We compute

(54) d˛ D f 0.s/ ds ^ d�1Cg
0.s/ ds ^ d�2 D ds ^

@˛

@s
;

where the partial derivative @˛=@s is taken with respect to the coframe .d�1; d�2; ds/.
The volume form is

(55) ˛^ d˛ D ˛^ ds ^
@˛

@s
D�ds ^˛^

@˛

@s
D�

ˇ̌̌̌
f .s/ g.s/

f 0.s/ g0.s/

ˇ̌̌̌
ds ^ d�1 ^ d�2:

4.3.1 An orientation convention The orientation on † is induced from the filling U 0

by the “outward normal first” convention, which is the same as the orientation induced
by the volume form ˛^d˛ . Since we have a fibration structure where the total space is
canonically oriented, an orientation of the base is equivalent to an orientation of the fiber.
The convention is that for F !E!B a fibration, ƒmaxT �EŠƒmaxT �B˝ƒmaxT �F .
Assuming that the base is oriented by the form ds , we see that the fiber is oriented by
the volume form

(56) �

ˇ̌̌̌
f .s/ g.s/

f 0.s/ g0.s/

ˇ̌̌̌
d�1 ^ d�2:

By switching the roles of f and g and of �1 and �2 if necessary, we may assume that
the determinant is negative, so that d�1 ^ d�2 is a positive volume form. A change in
the orientation of the base also leads to a switch of this form.

4.3.2 The Reeb vector field The Reeb vector field R is determined by the conditions
�R d˛ D 0 and ˛.R/D 1. Expanding R in the coordinate frame,

(57) RDR1@�1 CR2@�2 CRs@s:

We find that

(58) Rs D 0; f 0R1Cg
0R2 D 0; fR1CgR2 D 1:
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s1 s2 s3

Figure 3: The characteristic foliation on various torus fibers.

Observe that R is vertical, that is, tangent to the fibers of � . Since the Reeb vector
field spans the characteristic foliation on †, we see that this foliation is tangent to the
torus fibers, and on each torus fiber it consists of lines of some (rational or irrational)
slope. The slope of this foliation varies as the fiber moves. See Figure 3.

4.3.3 The Liouville class Now consider the torus fibers T 2 � fsg. By (54) we see
that d˛jT 2�fsg D 0, that is, each torus is pre-Lagrangian. Thus we have the Liouville
class

(59) A.s/D Œ˛jT 2�fsg�D f .s/Œd�1�Cg.s/Œd�2� 2H
1.T 2 � fsg;R/:

The cohomology-valued function A may be regarded as a section of the rank two vector
bundle

(60) R1��.R/! S

whose fibers are the first cohomology groups of the torus fibers T 2 � fsg. This vector
bundle has a flat Gauss–Manin connection r , defined so that the parallel transport
coincides with transporting cohomology classes from fiber to fiber using the local
product structure. Denote the monodromy of this connection by � 2 SL2.Z/. In
particular, the expression rA defines a one-form on S with values in this bundle. The
cup product on the fibers then yields an element

(61) A[rA 2�1.S;R2��.R//:

Here R2��.R/ is a bundle whose fiber at s is H 2.T 2 � fsg;R/ŠR, and this vector
bundle is trivializable using the orientation convention discussed above.
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4.3.4 Legendrian sections and elimination of h.s/ We observe that the condition
that ˛ is contact is equivalent to the nonvanishing of the determinant in the last
expression of (55). Since this determinant does not involve h.s/, we may change
it arbitrarily while preserving the contact condition, and, by Gray’s theorem, the
isomorphism class of the contact structure. The following lemma will be used to
eliminate the h.s/ ds term by a change of coordinates.

Lemma 4.4 The fibration � W †! S admits a section � W S ! † whose image is a
Legendrian circle in †.

Proof Choose a global smooth section �0W S ! † (it exists because the base is a
circle and the fiber is connected). Letting s denote a coordinate on S and @s the
coordinate vector field, consider ˛.T�0.@s//, which is a function on S. Then

(62) ˛t D ˛� t ��
�
�
˛.T�0.@s// ds

�
is a family of contact forms starting from ˛0 D ˛ and such that �0.S/ is a Legendrian
circle for ˛1 . Denote the corresponding contact structures by �t . By Gray’s theorem,
there is an isotopy  t W † ! † such that T t .�0/ D �t . Thus  �11 .�0.S// is a
Legendrian circle for the contact form ˛0 .

To see that this circle is still a section of � , we look closer at the application of Moser’s
trick that is used to construct the isotopy [18, page 60]. The isotopy  t is the flow of
the time-dependent vector field Xt 2 �t which is chosen to satisfy

(63) P̨ t C �Xt d˛t D �t˛t ;

where

(64) �t D P̨ t .Rt /:

Since d˛t is independent of t , we find that all the Reeb vector fields Rt are vertical,
and since the deformation term is pulled back from the base, they are actually all the
same. Since P̨ t is pulled back from S and Rt D R is vertical, we see that �t � 0.
Equation (62) becomes

(65) ���
�
˛.T�0.@s// ds

�
C �Xt d˛ D 0:

Due to the specific form of d˛ in (54), we see that Xt is vertical and is invariant
under the local T 2 actions at all times. We conclude that the isotopy  t acts vertically
(preserving the fibers) and equivariantly for the local T 2 actions. Thus � D  �11 ı �0
is a Legendrian section.
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From now on we will pick some Legendrian section � W S!†. Restricting � to some
interval I � S, we obtain an equivariant diffeomorphism †jI ! T 2 � I such that ˛
has the form

(66) ˛ D f .s/ d�1Cg.s/ d�2:

The h.s/ ds term from (53) is not present since the lines f.�1; �2/g � I are now
Legendrian, and so ˛.@s/D 0. We now observe that such a contact form ˛ is entirely
determined by the Liouville class A.s/ from (59).

4.3.5 Properties of the Liouville class Observe that for a (pre-)Lagrangian torus
L�†� U 0, we have

(67) Œ˛jL�D Œ�
00
jL�D Œ.�.Z

00/!/jL�;

where �00 and Z00 are from the Liouville structure that is the output of Step 4. The
properties of the Liouville class we need to use are just a translation of the properties
of Z00 that are ensured by the construction in Section 4.2. However, the Liouville class
is easier to compute since, being a cohomology-level object, it is more stable under
deformations.

Proposition 4.5 Let L�†� U 0 be a Lagrangian torus near the boundary divisor D
which is an orbit of the local torus actions , as constructed in Step 1. Then the Liouville
class Œ�00jL� for the Liouville structure coming from Step 4 is equal to the Liouville
class Œ�jL� for the Liouville structure after Step 1.

Proof Step 2 does not alter the Liouville class because it changes the one-form by a
globally exact form:

(68) �0 D �C dk:

Step 3 involves no change in the Liouville structure. Step 4 changes the Liouville
structure by averaging �0 over the local torus actions. Since L is assumed to be an
orbit of the torus action, we find

(69) �00 D

Z
T 2
..t1; t2/

��0/
dt1 dt2

.2�/2
;

but all the forms .t1; t2/��0 in the integrand are cohomologous (since they are isotopic
closed forms, this follows from the Cartan homotopy formula). So at the cohomology
level we are just averaging a constant function.
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Because of the stability expressed in Proposition 4.5, we can compute the Liouville
classes of our tori using the Liouville structure coming from Step 1. Recall that this
Liouville structure comes from Kähler geometry: D D s�1.0/ for some section s of
the ample line bundle L, we have chosen k � k an Hermitian metric on L such that
� D�log ksk is the Kähler potential, and in Step 1 we ensured that the Kähler form is
standard near the crossings.

Now we describe this in an analytic coordinate chart V � Y , possibly containing part
of the divisor D. Over V we also choose a holomorphic trivialization LjV Š OjV .
With respect to this trivialization, the holomorphic section s becomes a holomorphic
function, which we also denote by s . The Hermitian metric k � k is, at each point, a
positive multiple of the absolute value norm on O, so ksk D e jsj for some function
 W V !R. Thus

(70) � D�log ksk D �log e jsj D � � log jsj:

Now, since s is holomorphic and vanishes on D, we find that �log jsj is a function
which is discontinuous along D, and dd c.�log jsj/ D 0 on the complement of D
(that is, �log jsj is pluriharmonic outside of D ; this follows from (48) and the fact
that the trivial bundle is flat). If we interpret the formula in terms of weak derivatives,
dd c.�log jsj/ is a current supported along D (the Poincaré–Lelong formula). Thus,
on the complement of D, � is another Kähler potential for the same form.

However, the term �log jsj contributes greatly to the Liouville one-form � D d c� .
Consider the case near a crossing. We may choose the holomorphic coordinate chart V
and the holomorphic trivialization of L so that s D za11 z

a2
2 in local coordinates. If

zj D exp.�j C i�j /,

(71) d c.log jzj j/D d�j :

Thus

(72) �D d c� D�d c � a1 d�1� a2 d�2:

The term �d c extends continuously across the divisor D, while the other terms do
not. Thus we may write, with zj D xj C iyj,

(73) �d c D ˇ1 dx1Cˇ2 dy1Cˇ3 dx2Cˇ4 dy2;

where the coefficients ˇ1 , ˇ2 , ˇ3 and ˇ4 are bounded continuous functions on the
chart V .
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Now suppose that i W T 2!V is the embedding of a crossing torus fjz1jD �1; jz2jD �2g

(74) i.�1; �2/D .�1 cos �1; �1 sin �1; �2 cos �2; �2 sin �2/:

Then clearly i�dxj and i�dyj are both in the class O.�j / d�j (big-O notation). Thus

(75) i�.�d c�/DO.�1/ d�1CO.�2/ d�2

and the Liouville class is

(76) Œ�jT 2 �D .�a1CO.�1//Œd�1�C .�a2CO.�2//Œd�2�:

A similar analysis works along the smooth parts of the divisors. The smooth part of
each divisor is complex analytically a C� , and we can take an analytic coordinate zB
there (B stands for base). We restrict zB to lie in some large annulus A in order to
avoid going right up to the nodes. The normal bundle of D restricted to A is then
holomorphically trivial, and we let zF be a coordinate on the fibers (F stands for
fiber). We may write s D zaF . We have

(77) �D d c.�log ksk/D�d c � d c.log jzaF j/D�d
c � a d�F ;

where d�F is the angular one-form on the fibers of the normal bundle. The tori
in question are not necessarily standard in these coordinates, but if we take a torus
i W T 2! V which is within distance � of the divisor, we have

(78) Œ�jT 2 �D .�aCO.�//Œd�F �CˇŒd�B �;

where we do not assume any control over the function ˇ .

4.3.6 Step 5: making the Liouville class “locally convex” Using the estimates (76)
and (78), we can plot the Liouville class A in the first cohomology of the torus. The class
A is a section of the flat vector bundle R1��.R/! S with monodromy � 2 SL2.Z/.
Choose a basepoint s0 2 S and a parametrization � W Œ0; 1� ! S such that �.0/ D
�.1/D s0 . The flat connection trivializes the bundle pulled back to Œ0; 1� and identifies
all the fibers of the bundle with a model H 1.T 2;R/. With these identifications, the
class A.s/ 2H 1.��1.s/;R/ then becomes a path in H 1.T 2;R/, which is such that

(79) A.�.1//D �A.�.0//:

The picture is of a path in H 1.T 2;R/ such that the endpoint is the monodromy image
of the starting point; see Figure 4.
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H 1.T 2;R/

�

A.s/

Figure 4: The Liouville class as a path in H 1.T 2;R/ .

The local model of the Reeb dynamics near the divisor from Step 4, together with the
preceding analysis, implies the following properties of the Liouville class A.s/:

� The contact condition ˛^ d˛ > 0 becomes the condition that A.s/ as a path is
always rotating clockwise with respect to the origin, once we orient everything as
in Section 4.3.1 (see (55)). This is equivalent to the condition A.s/^A0.s/ < 0.

� Because the Reeb flow near the smooth parts of the divisors is a circle action, we
find that the derivative A0.s/ must have constant direction in these regions, as
the Reeb vector field is orthogonal to A0.s/ from (58). Thus A0.s/^A00.s/D 0
in these regions.

� Recall that we have set things up in Step 4 so that the local model of the Reeb
flow near the nodes is a translation by �.s/ D .�1.s/; �1.s//, where �.s/ D
.�C; 0/ for s � S, �.s/ D .0; ��/ for s � �S, and for �S < s < S, we have
@s�1 > 0 and @s�2 < 0. Thus A0.s/ (with respect to the dual frame) equals
f .s/.��2.s/; �1.s//, for some nonvanishing function f .s/, and we can easily
compute that for �S < s < S,

(80) A0.s/^A00.s/D f 2.��2@s�1� �1.�@s�2// < 0:

The condition we wish to ensure is that this path is locally convex with respect to the
origin.

Definition 4.6 Let  W Œ0; 1�!R2 be a path. Then  is locally convex with respect
to the origin if sufficiently short secant lines of  lie closer to the origin than  does.
For a C 2 path such that  ^  0 ¤ 0, this becomes the differential condition

(81)
 0 ^  00

 ^  0
> 0:
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Since the path A.s/ has the property that A ^ A0 < 0, we just need to ensure that
A0 ^ A00 < 0 as well. Another way to say this is that, in addition to A.s/ rotating
clockwise, A0.s/ should always be turning to the right. According to the points above,
we have that A0 ^A00 � 0 everywhere. The only problem is that A0 ^A00 D 0 on the
parts of † that are not near the nodes.

Lemma 4.7 There is a conformal rescaling of A (and hence of the contact form ˛ )
such that A0 ^A00 < 0.

Proof Since A0 ^A00 � 0, the only problem occurs in segments where the direction
of A0 is constant. In these regions A is a straight segment. The idea is to introduce
a small “bulge” in the path A such that A0 ^A00 < 0. An explicit prescription is as
follows. Let Œs0; s1� be a maximal interval of parameter values such that the direction
of A0.s/ is a constant vector v for s 2 Œs0; s1�. For small � > 0, v0 WD A0.s0 � �/
lies to the left of v , and v1 WD A0.s1C �/ lies to the right of v . Then, on the interval
Œs0� �; s1C ��, we modify A.s/ so that the direction of A0.s/ slowly makes a small
right turn from v0 to v1 . Then we have A0 ^A00 < 0.

Remark 4.8 Contact structures on torus bundles with locally convex Liouville class
were briefly considered in the work of Hutchings and Sullivan [23, Section 12.2.2].

This modification is effected by a conformal rescaling of the contact form ˛ by a
function that depends only on s , so it does not change the underlying contact structure
or destroy the toroidal symmetry. Hence there is an isomorphic Liouville structure
on U 0 whose boundary contact form is exactly the locally convex ˛ .

So as not to completely lose the reader with this somewhat strange definition, we put
here the crucial lemma that this modification makes possible.

Lemma 4.9 Let � 2H1.��1.s0/;Z/ be a class of loops such that

(82)
Z
�

A.s0/ > 0;

Z
�

A0.s0/D 0:

By parallel transport , extend to � 2H1.��1.s/;Z/ for nearby fibers (s near s0 ). If
A.s/ is locally convex, then the period integral

(83) I.s/D

Z
�

A.s/

has a nondegenerate local maximum at s D s0 .
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Before the proof, we observe that by Section 4.3.2, the hypothesis is satisfied whenever
� is the homology class represented by a closed Reeb orbit (see Section 6.4.1).

Proof First observe that s0 is a critical point:

(84) I 0.s0/D

Z
�

A0.s0/D 0:

It remains to show that I 00.s0/ < 0. The local convexity condition

(85)
A00 ^A0

A^A0
< 0

means that A and A00 lie on opposite sides of the line spanned by A0. Since
R
� is a

linear function that vanishes on that line, it must take opposite signs on A and A00.
Since it is positive on A, it must be negative on A00 :

(86) I 00.s0/D

Z
�

A00.s0/ is opposite to
Z
�

A.s0/ > 0:

5 The affine manifold

We recall the construction of the affine manifolds from [20], but with an emphasis on
how it follows from the topology of the neighborhood of the boundary divisor. This
section consists of elementary 4–dimensional topology.

5.1 Initial data

Let D be a cycle of m rational curves. By this we mean a curve with m nodes
whose normalization is the disjoint union of m rational curves, and such that the dual
intersection complex is a cycle. If mD 1 this means a nodal elliptic curve. In what
follows we assume m� 2; we can reduce to this case by blowing up the node if mD 1.
As a matter of notation, we will index the nodes by i 2 Z=mZ, and we will index the
rational curves by either a single index or a pair:

(87) Di DDi;iC1 connects node i to node i C 1.

Suppose that �W D! Y is an embedding of the singular curve D into an algebraic
surface Y . If m > 1 then each component Di Š P1 is embedded and has a normal
bundle of some degree ki ,

(88) Ni D �
�T Y=TDi Š OP1.ki /:
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If mD 1, we mean N1D .�ı�/�.T Y /=TP1 , where �W P1!D is the normalization
of the nodal elliptic curve. The topology of a neighborhood of D in Y is completely
determined by the numbers ki , which are also characterized as the self-intersection
numbers in Y :

(89) ki DD
2
i :

5.2 The local model for nodes

Let �D fjzj � 1g and �� D� n f0g denote the complex unit disk and its punctured
version.

Let us consider the i th node. Here the two divisors Di�1;i and Di;iC1 intersect
transversely. Let us take a neighborhood Vi and local analytic coordinates .zi ; wi / 2
���Š Vi such that, locally near the node,

Di�1;i D fwi D 0g;(90)

Di;iC1 D fzi D 0g:(91)

We may define certain 1–cycles,

�zi D f.zi ; wi /D .e
�i� ; 1/ j � 2 Œ0; 2�/g;(92)

�wi D f.zi ; wi /D .1; e
�i� / j � 2 Œ0; 2�/g:(93)

The local model for U D Y nD near the node is simply .zi ; wi / 2�� ��� , which is
fibered by the tori Tr;s D fjzi j D r; jwi j D sg where 0 < r; s � 1. The loops �zi and
�wi are a basis for the first homology of this neighborhood in U.

Remark 5.1 The orientation is such that �zi winds clockwise in the zi –plane around
fzi D 0g D Di;iC1 . In a later section this will be justified by the observation that
Reeb orbits near the node are homologous to nonnegative linear combinations of �zi
and �wi .

5.3 The local model for divisors

The divisor Di has a tubular neighborhood isomorphic to a disk bundle DNi in the
normal bundle Ni ŠO.ki /. Let SNi denote the boundary of this tubular neighborhood;
it is a circle bundle over Di and is diffeomorphic to a lens space L.�ki ; 1/. Two points
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on Di DDi;iC1 are distinguished: the i th and .iC1/st nodes. Let Wi;iC1 denote the
complement of Vi and ViC1 (the neighborhoods of the nodes) in DNi ,

(94) Wi;iC1 DDNi n .Vi [ViC1/:

For sufficiently small DNi , Wi;iC1 is a disk bundle over an annulus, namely the
2–sphere Di;iC1 with two disks removed at the nodes, which we denote by Ai;iC1 .
The associated circle bundle SWi;iC1DWi;iC1\SNi is the lens space SNi with two
solid tori removed, and it is noncanonically diffeomorphic to a product T 2 � I. The
complement of D in this neighborhood Wi;iC1 nDi;iC1 deformation retracts onto the
circle bundle, so it has the same first homology.

The circle fibration gives a long exact sequence in homotopy groups, which reduces to

(95) 0! �1.F /! �1.SWi;iC1/! �1.Ai;iC1/! 0;

where F is the circle fiber over some basepoint in Ai;iC1 . As all three fundamental
groups are abelian, this sequence holds with �1 replaced by H1 , and we will use this
notation from now on to sidestep concerns over basepoints. The sequence (95) is split,
but not canonically. In fact, we have two geometric splittings, induced by the bases
.�zi ; �wi / and .�ziC1 ; �wiC1/ at the two nodes, as we shall now elaborate.

Near the i th node, Di;iC1 is given by the equation zi D 0. Thus �zi is a loop which
links the divisor Di;iC1 , and hence is homologous to the circle fiber of SWi;iC1
equipped with some orientation. Similarly, near the .iC1/st node, Di;iC1 is given by
the equation wiC1 D 0, and so �wiC1 is a loop which links the divisor, and is also
homologous to the circle fiber equipped with some orientation. In fact these orientations
agree, as each is a loop in the fiber of the normal bundle which encircles zero clockwise
with respect to the natural orientation of the fibers of the normal bundle as complex
lines. Thus,

(96) �zi � f � �wiC1 ;

where f 2H1.F / is the class of the fiber with appropriate orientation and � means
“is homologous to”.

Near the i th node the loop �wi projects onto Di;iC1 as a loop encircling the i th node
clockwise with respect to the complex orientation on Di;iC1 . Near the .iC1/st node,
the loop �ziC1 projects onto Di;iC1 as a loop encircling the .iC1/st node clockwise.
So together these loops form the oriented boundary of the annulus Ai;iC1 , and we find

(97) ����wi � b � ���ziC1 ;
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where � W SWi;iC1!Ai;iC1 is the circle bundle over the annulus and b 2H1.Ai;iC1/
is an appropriate generator.

Lemma 5.2 It holds that

(98) ��wi � �ziC1 C kif:

Proof It is clear from the above discussion that ��wi � �ziC1C f̨ in H1.SWi;iC1/
for some constant ˛ to be determined. We must show ˛ D ki .

An elementary computation with the clutching functions of Ni Š OP1.ki / shows how
˛ is related to ki . Write P1 as the union of two complex coordinate charts U Df� 2Cg

and V D f� 2Cg, glued by the correspondence � D 1=�. Let LD OP1.p/ be a line
bundle of degree p . Then we have local trivializations

.�; �/ 2 U �C Š LjU ;(99)

.�; / 2 V �C Š LjV ;(100)

.�; �/D .1=�; �p/:(101)

For p � 0, one verifies that the sections s given by

� D .sjU /.�/D �
r ;(102)

 D .sjV /.�/D �
p�r(103)

for 0 � r � p are valid holomorphic sections, so this line bundle really does have
degree p .

Let � D `.�/D ei� be a loop in P1 . We may lift this loop to the U –trivialization as
.�; �/D `0.�/D .ei� ; 1/, and to the V –trivialization as .�; /D `0.�/D .e�i� ; e�pi� /
(these loops are geometrically identical). On the other hand, we have the lift `00.�/
given by .�; �/D `00.�/D .ei� ; epi� / and .�; /D `00.�/D .e�i� ; 1/.

Let f .�/D .1; e�i� / be a loop in the fiber over the point � D �D 1, which encircles
the zero section clockwise; this loop is given by the same formula in either trivialization.
Let Z D LjU\V n .U \ V / be the complement of the fibers over � D 0;1 and the
zero section. Then H1.ZIZ/DZ2 , and the classes Œ`0�, Œ`00� and Œf � are elements of
this group. Evidently, we have the relation

(104) Œ`0�D Œ`00�CpŒf �:
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The space Z is homotopy equivalent to SWi;iC1 , taking p WD ki . Under this cor-
respondence, Œf � corresponds to the class of f as in (96), Œ`0� corresponds to the
class of ��wi , and Œ`00� corresponds to the class of �ziC1 . Comparing equations (98)
and (104), we see that ˛ D p D ki .

5.4 Affine charts and gluing

For each node, indexed by i 2Z=mZ, define an integral cone Qi that is the nonnegative
span of �zi and �wi :

(105) Qi WD faŒ�zi �C bŒ�wi � j a; b 2 Z�0g:

These sums may be interpreted as classes in H1.Vi nDIZ/, where we recall that Vi is
the neighborhood of the node.

We shall show how these cones glue up into an integral linear manifold. Recall that an
integral affine structure on a manifold is an atlas with transition maps in GL.n;Z/ËZn .
An integral linear structure has all transition maps in GL.n;Z/, basically meaning
that the manifold has a well-defined origin.

The analysis of Section 5.3 indicates how to glue Qi and QiC1 . Equations (96)
and (98) tell us that

(106) a�zi C b�wi � a
0�ziC1 C b

0�wiC1 ()

�
a0

b0

�
D

�
0 �1

1 �ki

��
a

b

�
;

where the homological relation in (106) holds in SWi;iC1 . When we identify the
lattices H1.Vi nDIZ/ and H1.ViC1 nDIZ/ using this linear transformation, we find
that the images of Qi and QiC1 intersect along the ray spanned by �zi � �wiC1 :

(107) Qi \QiC1 D Z�0 � Œ�zi �D Z�0 � Œ�wiC1 �:

Thus we may glue Qi to QiC1 along this common edge to define an integral linear
structure on the union Qi [QiC1 . This structure is the one induced by embedding the
two cones into a common lattice as above.

There is another characterization of this linear structure in terms of the intersection
form of Y . A integral linear structure is determined by the corresponding sheaf of
integral linear functions. An integral linear function f W Qi [QiC1!Z is determined
by three numbers ˛ D f .�wi /, ˇ D f .�zi / D f .�wiC1/ and  D f .�ziC1/, as the
linear structure within each cone is standard. In order for f to be linear we need

(108) ˛ D f .�wi /D f .��ziC1 � ki�wiC1/D� � kiˇ:
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Or, in other words, ˛C kiˇC  D 0. Recalling that ki DD2i , and Di�1 and DiC1
are transverse to Di , this is equivalent to the orthogonality condition

(109) .˛Di�1CˇDi C DiC1/ �Di D 0:

We define a singular integral linear manifold U trop to be the union of the cones Qi ,
glued along edges as above. An example is depicted in Figure 6. This manifold has
Qi [QiC1 as charts, but there is no way to extend the linear (or even affine) structure
to the origin (the triple overlaps of the charts), so we simply regard that as a singularity.
As the manifold U trop is defined over Z, we use the notation U trop.Z/ or U trop.R/ to
denote integral and real points, respectively. The real points U trop.R/nf0g form an affine
manifold in the usual sense. A special feature of the surface case is that U trop.R/ (with
the singular point included) is actually a topological manifold homeomorphic to R2 .

A locally linear function f W U trop n f0g ! Z is determined by its values on the rays

j̨ D f .�zj / and the condition of global linearity is equivalent to the orthogonality
condition

(110)
� mX
jD1

j̨Dj

�
�Di D 0 for all i:

6 The differential on symplectic cohomology

In this section we compute the differential on symplectic cohomology and prove
Theorem 1.2.

6.1 Holomorphic curves in †

The basis for our method of computation is the following nonexistence result. It is
proved by adapting a method of Bourgeois and Colin [9]. We remark that this approach
very much uses the low-dimensionality of our situation. Throughout this subsection,
it may be helpful to have in mind Figure 5, which depicts the projection to † of a
holomorphic curve in relation to the torus fibration � W †! S. The following theorem
concerns holomorphic curves with several positive and negative punctures, but in the
case where there is more than one positive puncture, we require all the corresponding
Reeb orbits to lie in a single periodic torus (there is no analogue without this condition).

Theorem 6.1 Let .†; ˛/ be as above, so that the Liouville class is locally convex.
Let f W C !† be a map with finite energy satisfying J� ı�� ıdf D�� ıdf ıj, where
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�

S

Figure 5: The projection to † of a holomorphic curve in relation to the
projection � W †! S.

the domain Riemann surface C has genus zero, with several positive punctures and
several negative punctures asymptotic to Reeb orbits in †. We assume that all Reeb
orbits at the positive punctures lie in a single periodic torus in † (this is automatic if
there is only one positive puncture). Then f is trivial , that is, the image of f is a
closed integral curve of the Reeb field R .

Proof By definition, the map f satisfies

(111) J� ı�� ı df D �� ı df ı j;

where j is the complex structure on the domain C, �� W T†! � is the projection
with kernel spanned by the Reeb vector, and J� is the almost complex structure on the
contact distribution. Consider the two-form f �d˛ on C. By Proposition 2.17, f �d˛
is nonnegative and only vanishes at points where df maps TC into the line spanned
by R .

We furthermore consider the composition of f with the projection to the base � W †!S.
We first show that if � ı f is constant then the conclusion of the theorem follows.
Observe that the tangent map d� maps � surjectively onto TS with a one-dimensional
kernel. If � ıf is constant, then df .v/ lies in ker d� for every v , and so �� ıdf .v/
lies in the line bundle ker d� \ � for every v . Thus �� ı df .v/ and �� ı df .jv/ are
proportional, and their symplectic pairing under d˛ vanishes. Thus �� ı df .v/D 0
for every v . Hence df .v/ is always proportional to R , and the image of f must
necessarily be a closed integral curve of R , which was to be shown.

It remains to rule out the possibility that � ı f is nonconstant. This is due to a local
energy obstruction to the existence of maps with certain topologies. We have split off
this part of the argument into the following lemma, which completes the proof of the
theorem.
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Lemma 6.2 Let f satisfy the hypothesis of Theorem 6.1. Then the composition � ıf
is constant.

Proof Suppose that the projection � ı f is nonconstant. At each puncture, f is
asymptotic to a Reeb orbit, which by assumption lies entirely within a torus fiber of � .
We may compactify C to C by adding a circle around every puncture and extend f
to a continuous map C !†, which we also denote by f , that maps these boundary
circles to the Reeb orbits. Because these Reeb orbits are mapped to points by � , the
composite map � ı f W C ! S may be extended to a continuous map whose domain
is CP1 . Hence a small loop around the puncture maps to a null-homotopic loop in S.
As the fundamental group of C is generated by such loops, we see that � ı f is
null-homotopic. If z� W z†! zS is the pullback of the torus fibration to the universal
cover of the base, we find that f W C ! † lifts to zf W C ! z†. Now consider the
projection z� ı zf W C ! zS, and note zS ŠR. As C is compact, we find that z� ı zf has
a global maximum and minimum. Since � ıf is assumed nonconstant and all positive
punctures are assumed to be asymptotic to orbits lying in a single periodic torus, at
most one of these global extrema can be the limit of a positive puncture. So we obtain
a point s0 2 zS which is a global extreme value of z� ı zf and which is not the limit of a
positive puncture.

Now we claim that s0 must be the limit at a negative puncture. If not, then let s1 2 zS be
a regular value of z� ı zf that lies between s0 and the nearest point which is a limit of a
puncture. Then P D .z� ı zf /�1Œs0; s1��C is a compact submanifold whose boundary
is a collection of smooth curves. These boundary curves map to the fiber z��1.s1/. We
claim

(112)
Z
P

d˛ D

Z
@P

˛ D 0:

This follows once we show that uj@P is null-homologous in the fiber torus z��1.s1/,
since ˛ is closed on this torus. But, indeed, the capping surface ujP can be pushed
entirely inside of this fiber, since the torus fibration over the interval Œs0; s1� is trivial.
Now we have that ujP is a holomorphic curve with vanishing d˛–area. Thus u.P /
must be contained in a closed integral curve of R , contradicting the construction of P.

The only remaining possibility is that the extremum s0 is the limit at a negative
puncture. In the contact manifold z†, the map zf is asymptotic to a closed Reeb orbit
at that puncture. Since the puncture is negative, the orientation of this curve by the
vector field R is opposed to the orientation of this curve as the boundary of C (where
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we compactify C to C by adding a circle around every puncture). Again choose a
regular value s1 between s0 and the nearest point which is a limit of a puncture. Then
P D .z� ı zf /�1Œs0; s1� � C is a compact surface in C whose boundary consists of
some circles @1P � z��1.s1/, along with some circles in the fiber @0P � z��1.s0/.
We orient the boundary so that @P D @1P � @0P, and then the circles that form @0P

are all geometrically Reeb orbits with the Reeb orientation.

Because, as before, the entire surface P can be pushed into one fiber of z� , we find
that each of the regular level sets .z� ı zf /�1.s/ represents the same homology class
in the torus fiber for s0 < s < s1 . Call this class � . Looking at @0P, we see that this
class � is a strictly positive multiple of the class of the primitive Reeb orbit in the
fiber z��1.s0/.

Now we shall apply Lemma 4.9. Consider the “period integral”

(113) I.s/D

Z
�

A.s/:

By applying Lemma 4.9 to � , we find that I.s/ has a nondegenerate local maximum
at s D s0 . Now the d˛–area of f is

(114)
Z
P

d˛ D

Z
@1P

˛�

Z
@0P

˛ D

Z
�

A.s1/�

Z
�

A.s0/D I.s1/� I.s0/ < 0;

which is impossible.

Corollary 6.3 Let uW C !†�R be a pseudoholomorphic curve in the symplectiza-
tion of † (where the complex structure on †�R is cylindrical ) such that all positive
punctures are asymptotic to Reeb orbits lying in a single periodic torus. Then u is
trivial , that is , the image of its projection to † consists of a closed integral curve of R .

Let H W † � R ! R be a function that depends only on the R component. Let
uW C !†�R be an inhomogeneous pseudoholomorphic curve with Hamiltonian H
satisfying the same condition on the positive punctures. Then u is trivial.

Proof Clear from Propositions 2.14 and 2.15.

6.2 Neck stretching

It is possible to combine these nonexistence results with an SFT-style neck-stretching
argument to prove nonexistence in other situations. This neck-stretching technique was
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introduced by Bourgeois and Oancea [11, Section 5] in order to construct an exact
sequence relating symplectic cohomology and contact homology. We comment that
the main result of Bourgeois and Oancea has stringent technical hypotheses (expected
to be alleviated using the polyfold theory of Hofer, Wysocki and Zehnder) related to
transversality of holomorphic curve moduli spaces. However, in the present paper, we
only use the “compactness” direction of their argument, and we neither “count” nor
“glue” holomorphic curves in any situation where transversality cannot be achieved by
perturbation of H and J.

Remark 6.4 Diogo’s thesis [14], as well as forthcoming work of Diogo and Lisi,
expand on the idea of using the neck-stretching process to understand symplectic
cohomology, in situations relevant to the present paper, namely manifolds obtained as
the complement of a symplectic hypersurface in a compact symplectic manifold.

For symplectic cohomology, we have a Hamiltonian function H on the manifold
M D U 0 [††� Œ0;1/ which is zero in the interior and depends only on � on the
cylindrical end and its time-dependent perturbation KW S1 �M !R, and we have a
time-dependent perturbation of the almost complex structure J.t; x/. We will consider
a deformation of these structures parametrized by t 2 Œ1;1/:

(1) As t !1, we deform the almost complex structure by “stretching the neck”
along a contact type hypersurface †0 constructed as follows. Recall that our
manifold M D U 0 [††� Œ0;1/ is composed of the interior U 0 and the end
†� Œ0;1/. The Hamiltonian is C 2–small on the interior, and grows on the
end. Take a hypersurface †0 that is obtained by pushing † into U 0 by the
compressing Liouville flow, so that †0 sits in the region where the Hamiltonian
is C 2–small. This in particular means that all Hamiltonian orbits corresponding
to Reeb orbits are “outside” the hypersurface we stretch along.

(2) As t !1, we take the perturbation of the Hamiltonian to zero, making the
Hamiltonian closer to the original autonomous, radial Hamiltonian. This in
particular means that the Hamiltonian becomes zero in the stretching region.

(3) As t !1, the almost complex structure J.t; x/ becomes time-independent
and cylindrical in both the stretching region and the end.

This deformation is chosen so that we can invoke the SFT compactness theorem [10],
which is stated for pseudoholomorphic curves without Hamiltonian perturbation.
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We shall consider this neck-stretching for four different operations. Three of them use
the cylinder as domain: the differential d , the BV operator � and the continuation
map � . The fourth is the product �n � �m of two generators corresponding to iterates
of the same periodic torus, where the domain is a pair of pants. We emphasize that
we are not presently considering the product of generators corresponding to different
periodic tori. We remark that, in the case of the continuation map, we have two different
Hamiltonians; we assume that both are converging to Hamiltonians that vanish in the
stretching region and which are radial on the end.

Definition 6.5 If  is a Hamiltonian orbit that is obtained from perturbation of the
torus corresponding to the mth iterate of a periodic torus of Reeb orbits, we call m the
multiplicity of  and write mult./Dm. We call  primitive if mult./D 1.

Proposition 6.6 Let M.�; C/ be a moduli space of solutions to Floer’s equation on
a cylinder , asymptotic to Hamiltonian orbits � (at the output) and C (at the input)
in the cylindrical end of M, that is counted either by the differential , the BV operator or
a continuation map. If there are arbitrarily large values of the neck-stretching parameter
t 2 Œ1;1/ such that M.�; C/ is nonempty , then � and C correspond to iterates of
the same periodic torus. Furthermore , the multiplicities satisfy mult.�/�mult.C/.

Proof Suppose there is a sequence of parameter values ti converging to infinity such
that M.�; C/ is always nonempty. Then, by the SFT compactness theorem [10],
after possibly passing to a subsequence, there is a sequence of Floer solutions for each
of these parameter values that converges to a generalized holomorphic building. The
bottom level of this building is a holomorphic curve in M for the complex structure J,
the top level is a Floer solution for the radial Hamiltonian and cylindrical complex
structure in the symplectization †�R, and any intermediate levels are holomorphic
curves in †�R. The curves in these various levels are asymptotic to Reeb orbits in †.

Since the original asymptotics � and C are in the end, there must be at least one
symplectization level. Since the original curves all have the topology of a cylinder,
each component of the curve in each level has at most one positive puncture. Thus
Corollary 6.3 implies that all such curves are trivial. This in particular applies to the
top level, so � and C must correspond to iterates of the same periodic torus. If this
top level has any other negative punctures, they must also correspond to iterates of the
same periodic torus. Since the total multiplicity of � and these negative punctures
must equal the multiplicity of C , we find that the multiplicity of � is less than or
equal to that of C .
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Proposition 6.7 Let 1;C and 2;C be Hamiltonian orbits corresponding to iterates
of the same periodic torus. Let M.�; 1;C; 2;C/ be the moduli space of pairs of
pants used to compute the coefficient of � to the product of 1;C and 2;C . If
there are arbitrarily large values of the neck-stretching parameter t 2 Œ1;1/ such
that M.�; 1;C; 2;C/ is nonempty, then � corresponds to an iterate of the same
periodic torus as 1;C and 2;C . Furthermore, the multiplicities satisfy mult.�/ �
mult.1;C/Cmult.2;C/.

Proof This proof is analogous to the previous one but uses Corollary 6.3 in the
case where there is more than one positive puncture, but both positive punctures are
asymptotic to orbits corresponding to the same periodic torus.

The building that we obtain from SFT compactness has several levels, but we are
only interested in the top one. Since, in the top level, both positive punctures are
asymptotic to orbits lying on the same torus, namely 1;C and 2;C , we find that by
Corollary 6.3 that level is trivial. Thus � , which also lives in the top level, must
correspond to the same torus as 1;C and 2;C . Furthermore, any other negative
punctures on that level must also correspond to the same torus, from which we obtain
mult.�/�mult.1;C/Cmult.2;C/.

Remark 6.8 The preceding proposition has an extension to the case where either
1;C or 2;C is an interior generator, where we interpret interior generators as having
multiplicity zero. Without loss of generality assume that 2;C is an interior generator.
We contend that mult.�/�mult.1;C/ for any possible � appearing in the product.
We apply the neck-stretching as in the preceding propositions, and obtain a limiting
Morse–Bott building. In this case, the top level has only one positive puncture corre-
sponding to 1;C (the other input 2;C remains inside the interior), and the argument
proceeds as in the proof of Proposition 6.6.

6.3 The complex torus as a local model

In this section we will revisit from our current standpoint the case of the complex
torus U D .C�/2 that was discussed in Section 2.4. We know there is a Viterbo
isomorphism SH�..C�/2/ŠH2��.LT 2/ that intertwines the product and BV operator.
We shall give a more explicit description of how this isomorphism and the operations
on SH�..C�/2/ behave at the chain level (or at least on the E1 page of a Morse–Bott
spectral sequence), since this will be used as a local model for computations in the
general case.
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If we compactify .C�/2 to a toric variety Y , we get a log Calabi–Yau pair .Y;D/
where D is the toric boundary divisor. The constructions of Sections 4 and 5 lead to
the following picture. The contact boundary † is a trivial fibration T 2 � S1! S1 ,
so the monodromy is trivial. In this case, the affine manifold U trop is just R2 . The
Liouville class A.s/ is a locally convex loop in H 1.T 2IR/. Thus A0.s/ is also a loop
that rotates monotonically. For each parameter value s such that A0.s/ vanishes on
some integral vector in H1.T 2IZ/, the Reeb flow has a periodic torus. Thus there is
one periodic torus for each rational direction in H1.T 2IZ/ (recall that a direction is
called rational if the line in that direction contains an integral vector).

Taking a radial quadratic Hamiltonian H, we find that each periodic torus creates a
family of tori of Hamiltonian orbits corresponding to all the iterates of simple Reeb
orbits on a single torus. Each torus of Hamiltonian orbits has a corresponding class in
H1..C�/2IZ/, namely the class represented by a single orbit in that torus. Observe each
nonzero class in H1..C�/2/ is represented by exactly one such torus of Hamiltonian
orbits; this is a key consequence of our assumption that A.s/ is locally convex.

Proposition 6.9 Taking a small perturbation of the radial Hamiltonian H and close
to the neck-stretching limit, we obtain a Morse–Bott spectral sequence converging to
SH�..C�/2/ whose E1 term is

(115) E1 DH
�.T 2/˚

� M
p2H1..C�/2IZ/nf0g

H�.Tp/

�
;

where Tp denotes the torus of Hamiltonian orbits representing the class p . This spectral
sequence degenerates at E1 . Furthermore, the Viterbo isomorphism carries H 0.T 2p /

isomorphically onto the component of H2.LT 2/ supported on loops in the class p .

Proof After a small nonautonomous perturbation is added to the Hamiltonian, each
torus of periodic orbits breaks into several nondegenerate orbits. We assume that the
nonautonomous term is supported in a union of small pairwise disjoint neighborhoods
of the periodic tori; this is possible since the tori are not arbitrarily close to one another.

First we claim that the orbits created by perturbation of the Hamiltonian stay near
the torus Tp . This is because outside a small neighborhood of the Tp , the flow is
unperturbed, and is given by translation along the fibers of � � idW †�R! S1 �R.
Thus there are no trajectories connecting the unperturbed region to the perturbed region,
and we find that all trajectories starting in the perturbed region remain within it.
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Next we claim that the Floer trajectories connecting two orbits C and � coming
from the perturbation of Tp lie in a neighborhood of Tp . We use the idea from
the proof of Proposition 6.6. There we showed that in the neck-stretching limit, a
sequence of cylinders under consideration has a subsequence converging to a Morse–
Bott inhomogeneous pseudoholomorphic building such that all levels mapping to
the symplectization are trivial. Since mult.C/Dmult.�/ by assumption, the only
possibility is that the building has a single level consisting of a trivial cylinder, together
with two Morse trajectories on the torus Tp , one at each end of the cylinder. The limit
cylinder has energy exactly zero, and its image is some Reeb orbit contained in Tp .
This shows that the original sequence of cylinders has a subsequence that converges
uniformly to a map whose image is contained in Tp . Given � > 0, if there were a
sequence of cylinders that is not eventually contained in an �–neighborhood of Tp ,
this condition would be violated, so we conclude that near the neck-stretching limit the
cylinders connecting C and � all lie near Tp .

As is standard in the Morse–Bott situation, the cohomology with respect to differential
that counts the low-energy cylinders remaining close to the torus recovers the coho-
mology of the original torus of orbits. In the interior, we take the Hamiltonian to be
C 2–small, so we just recover the ordinary cohomology. This is the E1 page written
above.

The fact that the spectral sequence must degenerate at E1 is in this particular case a
consequence of the Viterbo isomorphism. For any manifold M, both SH�.M/ and
Hn��.LM/ have decompositions according to homology classes of loops, and this
decomposition is respected by all operations and by the Viterbo isomorphism. Take
a class p 2 H1..C�/2IZ/. The p–summand of the E1 page is four-dimensional,
which is the same as the dimension of the p–summand of the loop space homology.
Therefore there can be no further differentials.

The isomorphism of H 0.Tp/ with the component of H2.LT 2/ supported on loops in
the class p now follows from degree considerations.

Remark 6.10 The contribution of each periodic torus to the E1 page, here and below
(Proposition 6.16) is an example of the local Floer homology as studied by McLean [27].

Now, since the BV operator and the product respect the action filtration, they are
compatible with the spectral sequence, and give rise to operations on the E1 page. We
shall now describe these operations explicitly.
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Proposition 6.11 On the E1 page, the BV operator preserves the subspaces H�.Tp/,
and it is given by counting cylinders that remain near the periodic tori of H. The
product is homogeneous with respect to the grading by p 2 H1..C�/2IZ/, and for
fixed primitive class p and r; r 0; r 00 > 0 such that r 00 D r C r 0, the component of the
product

(116) H�.Trp/˝H
�.Tr 0p/!H�.Tr 00p/

is given by counting pairs of pants contained in a small neighborhood of the trivial
cylinder over the torus of Reeb orbits in the class p .

Proof The fact that the operations are homogeneous with respect to the H1..C�/2IZ/–
grading is obvious from the fact that they count maps of Riemann surfaces.

In the proof of Proposition 6.9, we saw that the cylinders contributing to the differential
remain close to the periodic torus. The same argument (based on Proposition 6.6)
applies to the cylinders contributing to the BV operator.

For the statement about the products of elements corresponding to iterates of the same
primitive class, we adapt the argument using Proposition 6.7. Once again, in the
neck-stretching limit any pairs of pants contributing to the product must limit to a
Morse–Bott inhomogeneous pseudoholomorphic building, all of whose levels mapping
to the symplectization are trivial, and all Reeb orbits involved correspond to iterates
of Tp . Since no combination of such orbits is homologically trivial in .C�/2 , the
building can have no level mapping to the interior. Thus the pair of pants in question
must eventually be contained in a neighborhood of the trivial cylinder over Tp .

At various points in the following arguments we will want to argue that the lowest-
energy contribution to an operation involving certain generators is the corresponding
operation in the case of .C�/2 . The idea behind this is as follows. Let .†; ˛/ denote
the contact boundary of our U and let .†0; ˛0/ denote the contact boundary in the
case of .C�/2 considered above. Both of these manifolds are torus bundles over the
circle; let z† and z†0 denote the pullbacks over the universal covering R! S1 .

Lemma 6.12 Both z† and z†0 are diffeomorphic to R�T 2 , and there is a reparametri-
zation of the base R that makes them isomorphic as contact manifolds, and such that
the contact forms differ by a scaling factor that depends only on the base coordinate
s 2 R. Any genus zero pseudoholomorphic map in the symplectization of † or †0
will lift to the respective coverings.
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Proof The reason why z† and z†0 are isomorphic is that the contact structure is in
both cases determined by the Liouville class A.s/ up to scale, and in both cases this
Liouville class A.s/W R!H 1.T 2IR/ is a (locally convex) path that winds infinitely
many times around the origin.

For a genus zero curve, we see that since all orbits in question project to contractible
loops in S1 , the image of the fundamental group of the domain in the fundamental
group of S1 is trivial. Thus it can be lifted to the covering.

The upshot of this lemma is that, when we are comparing the Floer theory of U to that
of .C�/2 , the contributions to the operations that come from curves living entirely in
the cylindrical end must correspond to one another, since both can be pulled back to
z†�RŠ z†0 �R. On the other hand, there may be some difference coming from the
presence of curves that leave the cylindrical end and enter the interior of the manifold.
However, these curves will have higher energy than the curves contained in the end,
and so they must contribute to higher action terms in the output.

6.4 Generators of symplectic cohomology

We continue the analysis of Section 4, picking up with the output of Step 5, a Liouville
structure on U 0 such that the boundary contact form is toroidally symmetric and the
Liouville class is locally convex.

6.4.1 Periodic orbits Recalling Section 4.3.2, we have that the Reeb vector field R
is vertical with respect to the torus fibration, and it is locally torus symmetric. Thus
the Reeb flow translates each torus by some amount. If R D R1@�1 C R2@�2 is
the Reeb vector field and ˛ D f .s/ d�1 C g.s/ d�2 is the contact form, recall that
f 0R1Cg

0R2 D 0 determines the direction of the Reeb field. Thus the torus ��1.s/
is periodic whenever

(117) A0.s/? D

�
� 2H1.�

�1.s/;R/
ˇ̌̌ Z
�

A0.s/D 0

�
�H 1.��1.s/;R/

is a rational subspace, meaning that it contains an integral vector. An equivalent
condition for the torus ��1.s/ to be periodic is that R1.s/ and R2.s/ satisfy a linear
equation with rational coefficients. Each such periodic torus leads to a T 2 of simple
(not multiply covered) Reeb orbits, and an NC �T 2 family of periodic Reeb orbits,
where NC keeps track of multiplicity.
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Recall from Section 5.4 that associated to each node i of D there is an integral cone
Qi �H1.Vi nD;Z/, where Vi is a neighborhood of the node i . We denote by Qi;R
the real version of this cone.

Lemma 6.13 For each i , there is an interval s2 Œs1;i ; s2;i � of values of the s parameter
such that the space A0.s/? passes through each rational direction in Qi;R exactly once.
In this interval, the Reeb orbits represent homology classes in Qi . Hence each primitive
integral point in Qi corresponds to a periodic torus, and each integral point corresponds
to a periodic torus and a particular multiplicity.

Proof This is a recasting of the description of the Reeb flow from Step 5 above
(Section 4.3.6) in the language of the affine manifold from Section 5. At some point
near each divisor, the Reeb flow coincides with the circle action rotating the normal
circle to the divisor, and hence the line A0.s/? is spanned by the class of the normal
circle to the divisor. For the divisor connecting node i to node iC1, define s2;iD s1;iC1
to be the s–value where this occurs.

A local analysis shows that the Reeb flow winds negatively around the divisor, so,
at s2;i D s1;iC1 , the simple Reeb orbit represents the class �zi � �wiC1 considered
in Section 5. These are the rays in the affine manifold. Between s1;i and s2;i , we
have the local model described in Section 4.3.6, where near each node the direction
of translation on the torus fiber rotates between the normal circle directions of the
two divisors. Thus the Reeb orbits appearing for s 2 Œs1;i ; s2;i � are homologous to
nonnegative linear combinations of the classes �wi and �zi , so these classes lie in Qi .
The local convexity condition means that the subspace A0.s/? rotates monotonically,
so rational directions are never repeated.

Recall from Section 2.1 that when we complete U 0 along the boundary †, we get a
manifold M DU 0[††� Œ0;1/ with a cylindrical end. The Hamiltonian H D 1

2
.e�/2

has periodic orbits that correspond to Reeb orbits, so that a periodic Reeb orbit of
period T corresponds to a periodic orbit of XH of period 1 sitting in the hypersurface
e� D T . Thus we have:

Corollary 6.14 The time-1 periodic orbits of the Hamiltonian H D 1
2
.e�/2 in the

cylindrical end form a disjoint union of tori, and these tori are in bijective correspon-
dence with the integral points of the affine manifold U trop.Z/.
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Figure 6: Integral points in the affine manifold. The axes and the diagonal
ray bound quadrants corresponding to nodes.

We index the tori of periodic orbits by pairs p D .s; r/, where s 2 S is a point where
the Reeb vector is rational and r 2N� is a positive integer giving the multiplicity of
iteration of the orbit. The torus of periodic orbits is called Ts;r or Tp . See Figure 6.

6.4.2 Maslov and Conley–Zehnder indices Recall from Lemma 3.5 that U carries
a holomorphic volume form � that is determined up to a constant multiple by the
condition that it has simple poles on D. In the following, we always use this � to
trivialize the canonical bundle of U.

Proposition 6.15 The Lagrangian tori L � † � U 0 near the boundary divisor (see
Proposition 4.5) have vanishing Maslov class in Y nD.

Proof First assume that L is near a node, so that in a local coordinate chart .z1; z2/
near a node, � and L have the form

(118) �D f .z/
dz1

z1
^
dz2

z2
; LD fjz1j D �1; jz2j D �2g;

where f .z/ is holomorphic and nonvanishing along D. Recall that the phase function
arg.�jL/W L! U.1/ is defined to be the phase of .�jL/=� , where � is a real volume
form on L. In order to show that L has vanishing Maslov class, it suffices to show
that the phase function admits an R–valued lift.

Take � D d�1 ^ d�2 as the volume form on L. The phase of L at .z1; z2/ D
.�1e

i�1 ; �2e
i�2/ is that of

(119) �jL D f .z1; z2/.i d�1/^ .i d�2/D�f .z1; z2/ �:
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Since f is nonvanishing for small .z1; z2/, the argument function arg.f jL/W L!U.1/
admits a lift to R, and so does arg.�jL/.

Since all the tori L are Lagrangian isotopic to a torus near a node, they all also have
vanishing Maslov class.

Now we will formulate the analogous spectral sequence to the one described in
Proposition 6.9.

Proposition 6.16 A small perturbation of the Hamiltonian breaks the torus Tp of
periodic orbits into several nondegenerate orbits. There are at least

�
2
k

�
orbits of

Conley–Zehnder index k for k D 0; 1; 2. In the neck-stretching limit , the Floer
trajectories connecting these orbits stay in a neighborhood of the torus and yield a
differential d0 whose cohomology can be identified with the ordinary cohomology of
the torus H�.Tp/. Summing over all p , the cohomology of d0 is the E1–page of a
spectral sequence converging to SH�.U /:

(120) E�1 DH
�.U /˚

� M
p2U trop.Z/nf0g

H�.Tp/

�
:

Proof All of the statements to be proved are local near the Reeb periodic torus L under-
lying the torus of periodic orbits Tp . Just as in the case of the complex torus .C�/2 , we
assume that the nonautonomous term is supported in a union of small pairwise disjoint
neighborhoods of the periodic tori; this is possible since the tori are not arbitrarily close
to one another. In fact, locally each torus of periodic orbits looks like one in the case
of .C�/2 , so we can use that case as a local model to understand the perturbation, and
in particular the degrees of the generators. Just as in the proof of Proposition 6.9, we can
arrange our perturbations so that the orbits created by perturbation of the Hamiltonian
stay near the torus Tp , and so that the Floer trajectories connecting two orbits C
and � coming from the perturbation of Tp lie in a neighborhood of Tp .

The statement about Conley–Zehnder indices necessarily holds up to an overall shift,
since the differences between the Conley–Zehnder indices does not depend on the
choice of trivialization of the canonical bundle. To fix the overall shift, we argue by
comparison with the .C�/2 case.

To see that the homotopy classes of trivializations of the canonical bundle match, note
that in both U and .C�/2 , the Lagrangian torus L on which the orbits lie has Maslov
class zero. Since L carries all the topology of a neighborhood of L, we find that the
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trivialization of the canonical bundle of this neighborhood is determined by the Maslov
class of L. Since these Maslov classes both vanish, the corresponding trivializations
match.

Since our Liouville class is locally convex, we find that there is a Liouville structure
with locally convex Liouville class in the .C�/2 case containing a periodic torus whose
neighborhood is isomorphic to a neighborhood of our given torus in U. Since, in the
.C�/2 case, local convexity implies that the spectral sequence degenerates at E1 , the
local contribution to the E1 page from this torus must match with the cohomology in
the .C�/2 case, showing that the degrees must match as stated.

Remark 6.17 If we did not assume that the Liouville class were locally convex, we
would find that some periodic tori contributed shifted copies of H�.T 2/ to the E1 page.
This can already be seen in the .C�/2 case, where if the Liouville class is not locally
convex, there are multiple periodic tori containing homologous Reeb orbits, and there
must be higher differentials connecting them in order for the Viterbo isomorphism to
hold.

The higher differentials in the spectral sequence count inhomogeneous pseudoholomor-
phic curves connecting different critical manifolds, and these are analyzed in Section 6.5.
Define �0D 1 2H 0.U / and �p DPDŒTp� 2H 0.Tp/ for p 2U trop.Z/nf0g. We now
reformulate Theorem 1.2.

Theorem 6.18 The degree 0 part of the spectral sequence degenerates at E1 , so

(121) SH 0.U /ŠE01 D spanf�p j p 2 U trop.Z/g:

The preceding results are formulated in terms of a Hamiltonian that is quadratic at
infinity. If we use a Hamiltonian Hm that is linear at infinity, analogous results hold
for the Floer homology HF�.Hm/. The difference is that only the periodic tori whose
Reeb length p̀ D

R
p
˛ satisfies p̀ <m contribute to HF�.Hm/. There is a spectral

sequence converging to HF�.Hm/ whose E1 page is

(122) E�1 DH
�.U /˚

� M
p;`p<m

H�.Tp/

�
:

Theorem 6.19 The degree 0 part of the spectral sequence for HF�.Hm/ degenerates
at E1 , so

(123) HF0.Hm/ŠE01 D spanf�p j p 2 U trop.Z/; p̀ <mg:
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For the rest of the computation, we will work with the linear Hamiltonians. This
is because the computation of HF0.Hm/ requires us to choose perturbations with
favorable properties, and it is not necessarily possible to choose these perturbations in a
way that works for the entire cochain complex associated to the quadratic Hamiltonian.
Furthermore, as the asymptotic slope m increases, new generators are added to the
complex, and we may need to modify the perturbations in order to accommodate these
new generators into the method used to compute the differential.

This choice to work with linear Hamiltonians then requires us to analyze the continuation
maps HF�.Hm/! HF�.Hm0/ for m�m0. We show in Section 6.6 that these maps
are injective on HF0 , and therefore that, in the colimit used to construct SH 0.U /

from HF0.Hm/, all classes at each stage survive to the limit, finishing the proof of
Theorem 6.18.

6.5 Computation of differentials

The purpose of this section is to prove that the higher differentials in the spectral
sequence vanish on any degree zero element � 2E01 .

Let � be a degree zero generator corresponding to the fundamental class of a periodic
torus of Reeb orbits. A boundary generator is one coming from the periodic Reeb orbits
in the contact boundary, while an interior generator is one coming from the H�.U /
component of the E1 page.

The strategy for proving d� D 0 has several ingredients. We use the way that the
differential d interacts with the BV operator � and the product, namely that � is
a chain map and d is a derivation of the product. We also combine this with the
nonexistence results for Floer cylinders in Section 6.2. All of these results in this
section therefore require that the structures be sufficiently close to the neck-stretching
limit. Furthermore, we use some aspects of the computation of symplectic cohomology
for the complex torus .C�/2 . We described the BV operator and product in Section 2.4.
The general principle here is that the structures of the operations near a single periodic
torus are the same as those in the case of .C�/2 as long as we only consider the
contributions of inhomogeneous pseudoholomorphic curves that stay near that torus
(the “low-energy” contributions). Of course there may be other contributions to these
operations coming from holomorphic curves that extend outside of this neighborhood,
but they will have higher energy.
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For p 2 U trop.Z/ n 0, we denote by Tp the corresponding torus of orbits for the
unperturbed Hamiltonian H. We denote by CF�.H/p and E�1 .H/p the corresponding
components of the Floer cochain complex and the E1 page, respectively. We denote by
d0 the low-energy component of the differential; recall that E1.H/p is the cohomology
of CF.H/p with respect to d0 .

Remark 6.20 Since the Morse–Bott manifolds of orbits Tp are all tori and the torus
admits a perfect Morse function, one could actually assume that the perturbations
are made in such a way that d0 vanishes on CF�.H/p for p 2 U trop.Z/ n 0. In the
arguments that follow, we have not assumed this so as to make the structure of the
argument clearer.

Proposition 6.21 Suppose p is primitive. For any � 2 CF�.H/p , we have

(124) d� D d0�C .interior generators/:

Proof We must show the matrix element of the differential connecting � to any other
boundary generator ˇ not counted in d0� is zero. This matrix element is a count of
inhomogeneous pseudoholomorphic cylinders connecting � at the positive puncture
to ˇ at the negative puncture. By Proposition 6.6, this moduli space of cylinders will
eventually be empty in the neck-stretching limit unless ˇ corresponds to an iterate of
the same periodic torus and mult.ˇ/ � mult.�/. Since mult.�/ D 1, we find that ˇ
must correspond to the same torus as � . Then, since � and ˇ have approximately the
same action, any differentials connecting them would have low energy, and are counted
in d0� .

Proposition 6.22 Suppose p is primitive. Let � 2 E01 .H/p . Then there is a lift
z� 2 CF0.H/p and a element � 2 CF1.H/p such that d0�D 0 and

(125) �.�/D z� C .interior generators/:

Proof We know that for any � 2 CF1.H/p , its image �.�/ will be of the form
ˇC .interior generators/ for some ˇ 2 CF0.H/p . Indeed, Proposition 6.6 says that
in the neck-stretching limit all cylinders contributing to �.�/ end on generators cor-
responding to iterates of the same periodic torus as �, of lower or equal multiplicity.
Since � is primitive, the only possible terms in �.�/ are ˇ 2 CF0.H/p and interior
generators.
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It remains to show that we can arrange things so that � is d0–closed and �.�/ contains
z� that projects to � 2E01 .H/p .

Let � 2E01 .H/p be given. Since that space is one-dimensional, it will suffice to prove
the proposition for the basis element, which is the Poincaré dual of the fundamental
class of Tp .

Let Tp � LM be the torus of parametrized orbits corresponding to p . There is a
circle action on Tp given by rotating the parametrization of the orbit. Denoting the
class of the orbit of this circle action by a 2H1.TpIZ/, let b 2H1.TpIZ/ be a class
that is dual to a . Let x� 2H 1.Tp/�E

1
1 .H/p denote the Poincaré dual of b , and let

� 2 CF1.H/p denote a lift of x�. Note that � necessarily satisfies d0�D 0.

We know that �.�/DˇC.interior generators/ for some ˇ2CF0.H/p , and we need to
show that this ˇ is a lift of � . By the same argument as in the proof of Proposition 6.11,
all of the curves that contribute to the ˇ term remain within a small neighborhood V
of the torus Tp .

Now we can argue by comparison with the .C�/2 case. We can set up the computation
in the .C�/2 case so that it contains a neighborhood where all of the structures match
those in V . The BV operator in this case was described in Section 2.4. The Viterbo
isomorphism and the fact that the spectral sequence degenerates at E1 determine this
operation: �.x�/ is the class Poincaré dual to the class swept out by b under the circle
action. This is the fundamental class of the torus, that is, � . Lifting to the chain level,
we find that �.�/D z� , where z� is a lift of � .

Proposition 6.23 Suppose p is primitive. Let � 2E01 .H/p be a primitive degree zero
generator. Then there is a lift z� 2 CF0.H/p such that d z� D d.interior generators/.
Therefore � is closed for all higher differentials in the spectral sequence.

Proof Given � , Proposition 6.22 gives us � and z� such that �.�/D z� Cx , where x
is an interior cochain. Using the fact that � ı d C d ı�D 0 (as � is an odd chain
map), we obtain

(126) ��.d�/D d�.�/D d z� C dx:

On the other hand, by Proposition 6.21, d�Dd0�C.interior generators/; since d0�D0,
we find d�D y , where y is an interior cochain. Thus we obtain

(127) ��.y/D d z� C dx:
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Now we use the fact that � vanishes on the cohomology of the interior. At the chain
level, this says that �.y/D dz for some interior cochain z . Thus

(128) �dz D d z� C dx

and so d z� D�d.xC z/, as claimed.

For the last claim, recall that the higher differentials in the spectral sequence are just
the original differential restricted to certain subquotients of the complex. But at any
page after the first, d.xC z/D d0.xC z/ is identified with zero.

Remark 6.24 There is another class in the image of the BV operator — call it � 2
H 1.Tp/ — which is the image of the Poincaré dual of the point class in H 2.Tp/.
Geometrically it represents a single orbit of the circle action. The conclusion of
Proposition 6.23 also holds for the class � corresponding to a torus of primitive orbits.

Proposition 6.25 Fix p 2U trop.Z/ primitive. For r > 0, denote by �rp 2E01 .H
00/rp

the Poincaré dual of the fundamental class of Trp . Then �rp admits a lift z�rp 2
CF0.H 00/p , constructed by induction on r , such that , if � denotes the product

CF0.H/˝CF0.H 0/! CF0.H 00/

(where the asymptotic slope of H 00 is at least the sum of the asymptotic slopes of H
and H 0 ), we have

(129) z�rp D z�p � z�.r�1/pCX;

where X 2 CF0.H 00/0˚
Lr�1
sD1 CF0.H 00/sp is a sum of interior generators and gener-

ators corresponding to iterates of p of multiplicity < r , and z�p and z�.r�1/p are the
lifts constructed earlier in the induction.

Proof For fixed p , we construct the lifts by induction on r . For r D 1, we take
the lift provided by Proposition 6.23. Suppose that z�sp has been constructed for all
s < r . We now consider what terms may appear in the product z�p � z�.r�1/p . It follows
immediately from Proposition 6.7 that in the neck-stretching limit z�p � z�.r�1/p can
only contain terms from CF�.H 00/0˚

Lr
sD1 CF0.H 00/rp , that is, interior generators

and generators corresponding to iterates of p up to multiplicity r . We define z�rp to
be the component of z�p � z�.r�1/p that sits in CF0.H 00/rp . It remains to show that z�rp
is a lift of �rp 2E01 .H

00/.
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For this we use comparison with the .C�/2 case. Proposition 6.7 shows us that all
curves contributing to the rp–component of z�p�z�.r�1/p remain in the end; in fact, since
these curves approach trivial cylinders, the computation localizes to a neighborhood of
T �R in the symplectization, where T �† is the periodic torus corresponding to p .
We may set up the corresponding computation in the .C�/2 case so that it contains a
subset where all of the structures match those in this neighborhood. Then, since the
spectral sequence degenerates at E1 in the .C�/2 case, the Viterbo isomorphism tells
us that �p � �.r�1/p D �rp in the .C�/2 case. This means that z�p � z�.r�1/p is a lift
of �rp in the .C�/2 case. Transporting this back to U, we have the result.

Proposition 6.26 Let �rp 2E01 .H/rp , where p is primitive and r > 0. Then there is
a lift z�rp such that d z�rp D dX, where X is a sum of interior generators and generators
corresponding to iterates of p of multiplicity < r . Therefore �rp is closed for all
higher differentials in the spectral sequence.

Proof We take z�rp as provided by Proposition 6.25. We proceed by induction on r .
For r D 1, this is Proposition 6.23. Suppose that for all s < r , z�sp has the property that
d z�spDdXs , where Xs is a sum of interior generators and generators of multiplicity <s .
Then we have

(130) z�rp D z�p � z�.r�1/pCY;

where all terms in Y have multiplicity < r . Apply d to this equation and use the fact
that it is a derivation of the product to obtain

(131) d z�rp D dX1 � z�.r�1/pC z�p � dXr�1C dY:

We see that all terms on the right-hand side correspond to either interior generators or
generators of multiplicity < r , using Propositions 6.6 and 6.7 and Remark 6.8.

Now we use the fact that multiplicity corresponds to action, namely that higher iterates
have more negative action. Thus what we have shown is that z�rp satisfies d z�rp D
d.higher action terms/. This means that, by the time we reach the page where the differ-
ential of �rp might land, its value has already been killed by the higher action terms.

Since the elements �rp for p primitive and r > 0, together with 1 2H 0.U /, span E01 ,
Proposition 6.26 shows that all elements of E01 are closed for all higher differentials in
the spectral sequence. Since the E1 page has nothing in negative degrees, we see that
the degree zero part of the spectral sequence degenerates at E1 . This completes the
proof of Theorem 6.19.
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6.6 Continuation maps

In order to complete the proof of Theorem 6.18, the last aspect we need to address to tie
the calculation together is the continuation maps relating the various Floer cohomology
groups used in the definition of symplectic cohomology. Recall, from Section 2.3, one
way to define symplectic cohomology is using Hamiltonian functions that are linear
at infinity. A Hamiltonian with slope m is denoted by Hm . The prohibited values
for m are the lengths of the periodic Reeb orbits in the contact hypersurface †, but
otherwise we get a Floer cohomology group HF�.Hm/. There are continuation maps
HF�.Hm/! HF�.Hm0/ when m�m0. These maps are isomorphisms when mDm0,
even if two different Hamiltonians of the same asymptotic slope are used to define the
source and target spaces. The symplectic cohomology is defined as the limit of the
directed system constructed from the continuation maps,

(132) SH�.U /Š lim
m!1

HF�.Hm/:

The significance of the continuation maps is that, in the computations of the various
groups HF�.Hm/, we must choose perturbations of the Hamiltonian and other struc-
tures, and the continuation maps express in a canonical way the invariance of HF�.Hm/,
or, more precisely, its dependence solely on the asymptotic slope m. Furthermore, as
we increase this asymptotic slope, we may need to modify the perturbations used to
define the various generators �p , and the continuation map from slope m to slope m0

expresses in a canonical way how the generator �p defined in HF�.Hm/ is related to
the generator with the same name in HF�.Hm0/.

Proposition 6.27 Let m�m0. The continuation map �W HF0.Hm/! HF0.Hm0/ is
injective. For p2U trop.Z/, let �mp and �m

0

p be the degree zero generators in HF0.Hm/

and HF0.Hm0/ corresponding to the same torus of periodic orbits Tp . There a choice
of Hamiltonians that ensures that �.�mp /D �

m0

p C .higher action terms/.

Proof First observe that, by an action filtration argument, the claim concerning �.�mp /
implies the claim that � is an embedding. Indeed, using the elements �mp and �m

0

p ,
ordered by decreasing levels of action, as basis of the source and target spaces, we find
that the matrix of � is upper triangular (a fact which is true for continuation maps in
all situations). The claim of the proposition amounts to saying that the matrix elements
along the diagonal are equal to one, so that � is an embedding.

Up to this point we have not been particularly specific about our choice of Hamiltonians,
since it is largely immaterial, but here we will make a more specific choice. Assume that
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both Hm and Hm0 approximate the same quadratic Hamiltonian. By this we mean that
Hm is a piecewise polynomial function of e� , with a quadratic piece and a linear piece:
it is equal to the quadratic HQ D h.e�/ up to the point where e� D .h0/�1.m/, and it
is linear of slope m afterward. As a result the function is C 1 . The Hamiltonian Hm0

is similar, but it stays quadratic over a longer interval up to when e� D .h0/�1.m0/. As
a result, Hamiltonian periodic tori for Hm are precisely a subset of those for Hm0 , and
the actions of these periodic tori are the same when computed using either Hamiltonian.
Therefore, after perturbation, the actions of �mp and �m

0

p are approximately equal.
Since the continuation map always increases action, we find that �.�mp / contains a
possible contribution from �m

0

p , and all other terms have higher action.

It remains to justify that �m
0

p has a nonzero coefficient in �.�mp /. When computing
HF0.Hm/ and HF0.Hm0/, the Hamiltonians are perturbed in potentially different ways.
Nevertheless, the orbits �mp and �m

0

p remain close to each other, and the cylinders
connecting them have small energy.

We can relate the desired computation to the case of .C�/2 . One can set up the
computation in that case so that there is a small neighborhood zV where all of the
structures (Liouville form, Hamiltonians and complex structures) match with the
structures in V . Denote the corresponding generators in the .C�/2 case by z�mp and z�m

0

p .
Since the Liouville class is locally convex, the spectral sequence degenerates at E1 for
both HF..C�/2;Hm/ and HF..C�/2;Hm0/. Hence z�mp and z�m

0

p can be canonically
identified with their images in cohomology.

We need to show that the generator �m
0

p appears in �.�mp / with coefficient 1. By
Proposition 6.6, near the neck-stretching limit the cylinders contributing to this map
are close to trivial and hence remain in a small neighborhood of the periodic torus Tp .
This local computation is the same in U and in .C�/2 . Since the generators of the
form �mp and �m

0

p represent the same class in SH 0..C�/2/ŠH2.LT 2/, this matrix
element of this continuation map in the case of .C�/2 must be one.

The same idea is also used to relate the Floer cohomologies HF0.Hm/ of Hamiltonians
with linear growth to the Floer cohomology HF0.HQ/ of a Hamiltonian with quadratic
growth. The flow of the quadratic Hamiltonian HQ creates at once all of the periodic
orbits we need to consider, and after perturbation we get degree zero generators
�
Q
p 2CF0.HQ/ corresponding to the torus of periodic orbits Tp . There are continuation

maps �W CF0.Hm/!CF0.HQ/ from the finite slope version to the quadratic version.
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Proposition 6.28 For any m, the continuation map �W HF0.Hm/! HF0.HQ/ is in-
jective. If �mp 2E

0
1 .H

m/p and �Qp 2E01 .H
Q/p are the classes corresponding to a torus

of periodic orbits Tp , then there are lifts z�mp 2 CF0.Hm/p and z�Qp 2 CF0.HQ/p and
a choice of Hamiltonians that ensures �.z�mp /D z�

Q
p C.higher action terms/, and �Qp is

closed for all higher differentials in the spectral sequence.

Proof Let z�mp be the lift whose existence is guaranteed by Proposition 6.26. The
same argument as in Proposition 6.27 shows that there is a d0–closed cochain z�Qp 2
CF0.HQ/p representing �Qp 2E01 .H

Q/ such that �.z�mp /D z�
Q
p CY , where Y consists

of terms of higher action. Since d z�mp D dX for some cochain X of higher action, we
find that

(133) 0D �.d z�mp � dX/D d�.
z�mp /� d�.X/D d

z�Qp C dY � d�.X/:

Thus z�Qp is closed up to the differential of terms of higher action, and so �Qp is closed
for higher differentials in the spectral sequence, and this spectral sequence degenerates.

This in particular shows that the continuation map �W HF0.Hm/ ! HF0.HQ/ is
triangular with respect to the action filtration, with ones along the diagonal, and
therefore that � is injective on cohomology.

To deduce Theorem 6.18 and hence Theorem 1.2, we take �p D �
Q
p .

Remark 6.29 The fact that the continuation maps are triangular with respect to the
action filtration (rather than strictly diagonal) is unsatisfying if we want to claim to
have found a “canonical basis” for the symplectic cohomology. It seems to the author
quite likely that the higher action terms in �.�mp / vanish if the Hamiltonian is chosen
correctly. Knowing this would make the result somewhat sharper, in that we would have
a more compelling reason to identify the basis elements �p with the canonical basis
elements of Gross, Hacking and Keel. But even if we were able to prove that, it seems to
the author that the only true test of whether these �p really are the Gross–Hacking–Keel
theta functions will come when one matches up the product structure on SH 0.U / with
the product of theta functions.

7 Wrapped Floer cohomology

We will now describe a relationship between the symplectic cohomology of U and
the wrapped Floer cohomology of certain Lagrangian submanifolds in U, and make a
connection with the results of [29].
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We consider Lagrangian submanifolds L, which may be either compact or cylindrical
at infinity, meaning that, within the cylindrical end †� Œ0;1/ of the completion of our
Liouville domain, L has the form ƒ� Œ0;1/, where ƒ is a Legendrian submanifold
of †.

Given two such Lagrangians L and K , the wrapped Floer cohomology HW�.L;K/ is
a K–vector space, which in the situation we consider will be Z–graded. The definition
is parallel to that of symplectic cohomology: We fix a Hamiltonian H. There is a
cochain complex CF�.L;KIH/ generated by time-1 chords of H starting on L and
ending on K (which are periodic orbits of H starting at L, if KDL). The differential
now counts pseudoholomorphic strips joining such chords, rather than cylinders. If we
choose a quadratic Hamiltonian HQ , we denote this complex by CW�.L;K/, and its
cohomology is HW�.L;K/. If we use a linear Hamiltonian Hm of slope m, then as
before we need to take a direct limit as m!1.

Using the wrapped Floer cohomology HW�.L;K/ as the space of morphisms from L

to K , we obtain the cohomology-level version of the wrapped Fukaya category W.U /.
At the chain level, W.U / is an A1–category [6], which forms the A–side of the HMS
correspondence for open symplectic manifolds. In particular, the endomorphisms of a
single object, HW�.L;L/, forms a ring. This will be our main object of interest.

To relate symplectic cohomology and wrapped Floer cohomology, we use closed-to-
open string maps [3]. There are various versions, all defined by counting pseudo-
holomorphic curves with boundary, and with a mixture of interior punctures (corre-
sponding to generators of symplectic cohomology) and boundary punctures (corre-
sponding to generators of wrapped Floer cohomology). The first of these is a map
CO0W SH

�.U /! HW�.L;L/. This map fits into a larger structure, a map

(134) COW SH�.U /!HH�.CW�.L;L//;

where HH�.CW�.L;L// denotes the Hochschild cohomology of the A1–algebra
CW�.L;L/ (with coefficients in itself). The map CO is a map of rings [17, Proposi-
tion 5.3].

7.1 Lagrangian sections

In the case of an affine log Calabi–Yau surface U with compactification .Y;D/, there is
a natural class of Lagrangian submanifolds to consider for wrapped Floer cohomology,
namely Lagrangians which are sections of the torus fibration near the divisor. By
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Lemma 4.4 there is a Legendrian section of the torus fibration � W †!S on the contact
hypersurface. What we desire is a Lagrangian L that caps off this circle in † to a disk
in U. For our present purposes, we say that a Lagrangian L is a section if

(1) L is diffeomorphic to a disk, and

(2) at infinity, L is a cylinder over a Legendrian section of the torus fibration on †.

The wrapped Floer cohomology HW�.L;L/ is simple to compute using a quadratic
Hamiltonian. Whereas in computing symplectic cohomology we encountered T 2

families of periodic orbits for the Hamiltonian, chords of the Hamiltonian flow joining
L to itself have less symmetry. Since L intersects each torus in † in one point, each
torus of periodic orbits (in the free loop space) contains exactly one orbit that is a
chord from L to L. As these tori are indexed by points p 2 U trop.Z/ n f0g, denote
by �L;p the corresponding chord. The chords �L;p are generators for CW�.L;L/;
they have degree zero by a comparison to the case of .R>0/2 � .C�/2 analogous to
Proposition 6.16. There is one more generator �L;0 2 CW0.L;L/ corresponding to
the ordinary cohomology H 0.L/, which has rank one since L is topologically a disk.
Because CW�.L;L/ is concentrated in degree zero, the differential vanishes trivially.

Proposition 7.1 Let L be a Lagrangian section. Then the wrapped Floer complex
CW�.L;L/ is concentrated in degree zero , is isomorphic to its cohomology and has a
basis of chords indexed by the points of U trop.Z/:

(135) CW0.L;L/Š HW0.L;L/Š spanf�L;p j p 2 U trop.Z/g:

Next we consider the closed-to-open string map CO0W SH
0.U /! HW0.L;L/. It is

useful to consider once again the case of the complex torus .C�/n (as always, with
locally convex Liouville class) as a model. For the Lagrangian section we take the real
positive locus LD .R>0/n � .C�/n . The wrapped Floer cohomology is isomorphic
(as a ring) to the space of Laurent polynomials:

(136) HW0.L;L/ŠKŒx˙11 ; : : : ; x˙1n �;

and hence abstractly isomorphic to SH 0..C�/n/. The map CO0 implements this
isomorphism concretely, by counting disks satisfying an inhomogeneous pseudoholo-
morphic map equation with one interior puncture corresponding to the input, one
boundary puncture corresponding to the output and a Lagrangian boundary condition
on L. The map CO0 sends the degree zero generator in SH 0..C�/n/ corresponding to
a torus of periodic orbits to the unique chord in HW0.L;L/ corresponding to the same
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torus. Indeed, since L is contractible, HW0.L;L/ carries a grading by H1..C�/nIZ/,
as does SH 0..C�/n/, and CO0 is a homogeneous map. Therefore there can be no
disks even topologically connecting �p to �L;q for q ¤ p .

In the general situation of a Lagrangian section L in a log Calabi–Yau surface U, the
leading-order term of the map CO0 looks the same as in the case of .C�/2 .

Proposition 7.2 For a Lagrangian section L in an affine log Calabi–Yau surface with
maximal boundary U, the closed–open map

(137) CO0W SH
0.U /! HW0.L;L/

is a ring isomorphism that satisfies

(138) CO0.�p/D �L;pC .higher action terms/:

Proof Given degree zero generator �p 2 SH 0.U /, there are low-energy pseudoholo-
morphic curves connecting �p to the corresponding generator �L;p 2HW0.L;L/. The
proof is analogous to Proposition 6.27. For this, we need the analogue of Proposition 6.6
in the case of the closed–open map, which in turn depends on the analogues of
Theorem 6.1 and Corollary 6.3. In fact, there is such an analogue for curves with
boundary on a Lagrangian section. In order to adapt the proofs to this case, first note
that since L is a section, Reeb chords on L correspond to a subset of the closed Reeb
orbits. The key argument is based on intersecting a holomorphic curve with the fibers
of the projection � W †! S, and analyzing the integral of the contact form over the
resulting 1–manifolds which are arcs that may have boundary on L. But since L is a
cone over a Legendrian section of � (intersecting each fiber in a single point), they are
in fact still closed cycles in the fibers of � , and the argument can proceed as before.

Since the closed–open map is triangular with respect to the action filtration with ones
along the diagonal, it is an isomorphism.

In many cases, it is simple to construct a Lagrangian submanifold with the desired
properties. In the toric case, we take LD .R>0/2 � .C�/2 . Variations on this work
in other cases. When Y is obtained by the blowup of CP2 in several points, we can
often arrange for the blowup points and the anticanonical divisor to be compatible with
the real structure on CP2 . Removing the anticanonical divisor will then disconnect
the real locus of Y into several components. If done right, one of them will be a disk.
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For example, in the case of the cubic surface with a triangle of lines (Section 3.2.2),
we can take the blowup points p1; : : : ; p6 to be real. The anticanonical divisor has
the form D D LabCEbCCa . If we choose this so that Ca is represented in the real
picture as an ellipse and the region bounded by Ca and Lab contains pb as the only
blowup point on its boundary, then this region is a connected component of the real
locus of Y nD, which we may take as our Lagrangian section.

In the case of the degree 5 del Pezzo surface (Section 3.2.3), we blow up CP2 in
four points p1; : : : ; p4 , which we take to be real. When we remove an anticanonical
5–cycle, one component of the real locus is a disk. In fact, removing all 10 of the
.�1/–curves at once disconnects the real locus (which is a nonorientable surface of
Euler characteristic �3) into 12 disks (which are combinatorially pentagons).

Another way to find appropriate Lagrangians is to explicitly consider the Lagrangian
torus fibration on the whole of U, rather than just near the boundary, and try to construct
a section thereof. Such a torus fibration exists on U due to the existence of a toric
model [20], and the results of Symington on almost-toric structures on blowups [35].
For example, in the case of a punctured An Milnor fiber U (Section 3.2.4), there is
a Lefschetz fibration on U !C� whose fibers are affine conics with nC 1 singular
fibers at the points �k D exp.2�ik=.nC 1//. Following the sort of construction found
in [8], we can construct a Lagrangian torus by taking a circle of radius r in the base C� ,
and looking at the family of circles at some fixed “height” in the conic fibers. Such tori
foliate U, and there is one singular fiber, which is a torus with nC1 nodes. To construct
a Lagrangian section of this torus fibration, begin with a path ` in the base C� joining
0 to 1, and not passing through any critical value. Over a particular point in `, the
fiber is an affine conic, also isomorphic to C� , and we may take again an infinite path
joining the two ends. Under the symplectic parallel transport along `, this path in the
fiber sweeps out a Lagrangian in the total space, which is our L. If the path ` crosses
each circle centered at the origin once, and the path in the fiber crosses each circle
of constant “height” once, then L is actually a section of the torus fibration. If the
constructions of Section 4 are done compatibly with L, then L will be a section in the
above sense, so Proposition 7.2 applies.

7.2 The case of the affine plane minus a conic

In [29], the present author considered the case where U is the complement of a smooth
conic in C2 , which is to say the complement of a conic and a line in P2 . In this case
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the mirror U_ is likewise A2K minus a conic (an accident of low dimensions). The
ring of global functions on U_ is

(139) O.U_/ŠKŒx; y�Œ.xy � 1/�1�:

We considered a Lagrangian torus fibration on the whole of U and a Lagrangian
section L. This Lagrangian section fits into the discussion above, so its wrapped
Floer cohomology is concentrated in degree zero and there is no differential. Using
techniques particular to this case (and others like it), we computed the ring structure
on the wrapped Floer cohomology, and showed that it is isomorphic to the same ring:

(140) CW0.L;L/Š HW0.L;L/ŠKŒx; y�Œ.xy � 1/�1�:

This isomorphism carries the basis elements in HW0.L;L/ corresponding to chords
to the functions of the form

(141) fxayb.xy � 1/c j a � 0; b � 0; c 2 Zg:

With this result at hand, we can extend our discussion of the closed-to-open string map.
Since we know that CW�.L;L/ is a commutative ring concentrated in degree zero, we
find that HH 0.CW�.L;L//Š CW0.L;L/ŠO.U_/, where the second isomorphism
is proven in [29]. Since this ring is moreover smooth over K, the Hochschild–Kostant–
Rosenberg theorem implies that

(142) HHp.CW�.L;L//ŠH 0.U_;^pTU_/:

The degree zero piece of the map CO,

(143) COW SH 0.U /!HH 0.CW�.L;L//Š CW0.L;L/;

is just the map CO0 considered above. Since the map CO is naturally a ring map, we
can combine this with the previous discussion to obtain that SH 0.U / is isomorphic to
CW0.L;L/ as a ring, and thus

(144) SH 0.U /Š CW0.L;L/Š O.U_/:

This confirms the Gross–Hacking–Keel conjecture, including the ring structure, in this
example.

The results of [29] can also be used to treat the case of the punctured An Milnor fibers
(in which the affine manifold has “parallel monodromy-invariant directions”). See [12]
for a discussion of related cases.
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8 Coefficients in a positive cone and degeneration to the
vertex

From the point of view of algebraic geometry, one of the most interesting features
of the symplectic cohomology SH�.U / is that it is a graded commutative ring. In
particular, the degree zero part SH 0.U / is a commutative ring that is putatively the
ring of functions on the mirror of U. In this section we will discuss this ring structure
using the techniques developed in the previous sections. Since these techniques are
mainly suited for proving the emptiness of certain moduli spaces, we only obtain results
saying that a certain generator cannot appear in the product of two other generators.
A fuller analysis including an enumeration of the nonempty moduli spaces would be
required to prove the full strength of the Gross–Hacking–Keel conjecture.

In this section, we shall write H2.Y / for H2.Y IZ/. We will consider three variants
of the symplectic cohomology with different coefficient rings:

(1) SH�.U IK/, with coefficients in K. This is what we have been considering up
to this point.

(2) SH�.U IKŒH2.Y /�/, with coefficients in the group algebra KŒH2.Y /� of the
abelian group H2.Y /. This is constructed in Section 8.1.

(3) SH�.U IKŒP �/, with coefficients in the monoid algebra KŒP � of a certain
submonoid P �H2.Y /. This is constructed in Section 8.2.

The main result of this section is Theorem 8.11.

8.1 Homology class associated to a pair of pants

The product on symplectic cohomology is defined in terms of counting inhomogeneous
pseudoholomorphic maps of pairs of pants into M, the completion of the domain U 0.
For the rest of this section we will identify M and U. The punctures of the pairs
of pants map asymptotically to periodic orbits of the Hamiltonian function. To each
such map one can associate a relative homology class: if 1 , 2 and 3 are periodic
orbits and uW S ! U is a map contributing to the coefficient of 3 in the product of
1 and 2 , we obtain a relative homology class

(145) Œu� 2H2.U; 1[ 2[ 3/:

This class is awkward to work with, since the space it lives in depends on the periodic
orbits under consideration, but it is possible to promote it to an absolute homology class
in a compactification. Let Y be a fixed compactification of U by a cycle of rational
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curves as before. Letting C D 1[ 2[ 3 , the exact sequence of the pair .Y; C / is

(146) H2.C /D 0!H2.Y /!H2.Y; C /!H1.C /Š Z3:

We wish to split the map H2.Y /! H2.Y; C /. Since this sequence is left exact, it
suffices to split the map H2.Y; C /!H1.C /. This amounts to choosing a disk in Y that
bounds each periodic orbit i . For the given compactification Y , there is a natural way
to do this. The periodic orbits corresponding to the cohomology of U are contractible
by construction, and in fact each is localized in a neighborhood of a critical point of
the function used to perturb the Hamiltonian in the interior, so we simply use a small
disk in that neighborhood (this is independent of the compactification). For the orbits
near the divisor, we can use disks that pass through the divisor. To fix the remaining
ambiguity, we require that, for a orbit near the node Di \DiC1 , we use a disk that is
entirely contained in a neighborhood of that node (any two such disks are homologous
within the neighborhood). There are also orbits in the middle of each divisor, consisting
of normal circles to the divisor, and for these we use a normal disk to the divisor.

This prescription guarantees that, if  is a Reeb orbit that links the divisors Di
and DiC1 , the capping disk only intersects Di and DiC1 , with some multiplicities.
These multiplicities are nonpositive when the disk is oriented so that its boundary is 
with the orientation given by the Reeb flow.

We denote by �.u/ 2H2.Y IZ/ the homology class in the compactification given by
capping u with the disks chosen above. It is immediate that the preceding discussion
generalizes from the pair of pants to maps of any Riemann surface with punctures,
such that the punctures map asymptotically to periodic orbits.

Now we may define the symplectic cohomology SH�.U IKŒH2.Y /�/ with coefficients
in the group algebra KŒH2.Y /� whose basis elements are denoted by qc for c 2H2.Y /.
This is standard: all of the Hamiltonian Floer complexes used in the definition are now
taken to be free KŒH2.Y /�–modules spanned by the periodic orbits (rather than K–
vector spaces as before). Whenever a pseudoholomorphic map uW S ! U contributes
to an operation, this term counts with coefficient q�.u/ . This affects the differential,
the continuation maps, the BV operator and the product (as well as higher operations).
The original SH�.U IK/ is recovered by setting qc D 1 for all c 2H2.Y /.

8.2 A positive cone in H2.Y I Z/

Let NE.Y / denote the cone of curves, namely the cone in H2.Y IZ/ spanned by the
classes of effective curves, that is, linear combinations of homology classes of complex
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curves with nonnegative coefficients. The optimal goal would be to show that the
coefficient ring of symplectic cohomology, in the cases under consideration, can be
reduced to KŒNE.Y /�, the monoid ring of the cone of curves. For technical reasons,
we will actually work with a larger monoid P, defined as

(147) P DhŒD1�; : : : ; ŒDn�iChŒC � jC �Di � 0 for all i and C �D>0i�H2.Y IZ/:

In this context the angle brackets denote the submonoid generated by the enclosed
elements. Thus an element of P is either a positive combination of components of the
boundary divisor, or a class (not necessarily effective) that intersects each component
of the boundary nonnegatively and is not disjoint from D, or a sum of such. Note
that, in the case at hand, where D supports an ample divisor, the left summand in the
definition is contained in the one on the right. Note also that, since P is a monoid,
0 2 P. The reason for enlarging the monoid is that we are counting inhomogeneous
pseudoholomorphic curves rather than honest holomorphic curves for the integrable
complex structure. Thus it is not clear that the classes we get are effective in the
standard sense, while it is possible to show that they lie in P.

Proposition 8.1 The monoid P is strictly convex (that is , v2P nf0g implies �v…P ),
and it contains NE.Y /. If AD

P
aiDi is an ample divisor with all ai > 0, then A is

strictly positive on any nonzero element of P.

Proof To see that P contains NE.Y /, let C be an irreducible (effective) curve. Either
C coincides with a component of D, in which case ŒC � is in the first term of (147),
or C is not a component of D. In the latter case, C �Di � 0 follows by positivity of
intersection, as does C �D � 0. To prove the strict inequality C �D > 0, we use the
fact that D supports an ample divisor, so that C cannot be disjoint from D. Thus ŒC �
lies in the second term of (147).

The statement that P is strictly convex follows from the statement that A is strictly
positive on P n f0g. To prove the latter statement, it suffices to check the generators.
First, A �Di > 0 since A is ample and Di is effective. Second, if C is such that
C �Di � 0 and C �D > 0, then the numbers C �Di , as i varies, are nonnegative and
not all zero. Thus A �C D

P
ai .C �Di / > 0.

Now we can state the main result of this section. Let KŒP � � KŒH2.Y /� be the
subalgebra generated by P �H2.Y /.
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Proposition 8.2 There is a well-defined subspace

SH 0.U IKŒP �/� SH 0.U IKŒH2.Y /�/

spanned by KŒP �–linear combinations of periodic orbits. The homology classes
associated to pseudoholomorphic curves contributing to the product lie in P. Thus,
SH 0.U;KŒP �/ is closed under multiplication, and has the structure of a KŒP �–algebra.

Remark 8.3 Regarding the symplectic cohomology as a family over the base given by
the spectrum of the coefficient ring, we may interpret the change from K to KŒH2.Y /�

to KŒP � as changing the base first from a point to an algebraic torus containing that
point as its identity element, and then to a partial compactification of that algebraic torus.

The proof of Proposition 8.2 uses the same neck-stretching argument used to describe the
differential. Consider three periodic orbits 1 , 2 and 3 , and suppose that uW S!U

is a map from the pair of pants that is considered when computing the coefficient of 3
in 1 � 2 . This has some class �.u/ 2 H2.Y IZ/ given by capping off the periodic
orbits in the prescribed way. To show that �.u/ is in P, we deform the situation just
as in Section 6.2. Suppose that curves in class �.u/ contribute a nonzero count to the
coefficient of 3 in 1 � 2 , and that such curves persist throughout the neck-stretching
process, which also involves canceling the perturbation of the Hamiltonian to make H
radial. The limiting configuration is a building, with one level in U, and other levels in
†�R. The homology class of the limiting configuration is the sum of the homology
classes associated to each of the levels, where we may embed R�† into Y as a tubular
neighborhood of D with D itself removed. This involves capping off all of the Reeb
orbits where the curve breaks, but because different levels are joined along Reeb orbits,
all of the “caps” cancel out except for those associated to the original boundary orbits
1 , 2 and 3 . We will show that the homology class associated to each level of this
broken curve lies in P.

Lemma 8.4 If C is the homology class of the level of the broken curve lying in U,
then C is either zero, or else satisfies C �Di � 0 for all i and C �D > 0, and hence is
in P.

Proof Observe that the level in U has asymptotics at Reeb orbits in †, which are
oriented so that the orientation of the orbit given by the Reeb flow agrees with the
orientation as the boundary of the Riemann surface. We must cap these off using disks
whose boundary orientation is opposite to the Reeb orientation. Since the Reeb orbits
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wind negatively around the components of D, these caps intersect the components of D
positively. Thus C intersects each Di positively, if at all. If the product operation we
are computing involves orbits in the cylindrical end, then the level in U must have
some connection to the other levels, and so there must be at least one such Reeb orbit,
and a positive intersection with some Di . If this is not the case, then we must be
computing the product 1 � 1D 1, in which case the homology class is zero.

Lemma 8.5 If C is the homology class of any level of the broken curve lying in
†�R, then C 2 hŒD1�; : : : ; ŒDn�i � P.

Proof Let uW T ! † �R be an inhomogeneous pseudoholomorphic curve in the
symplectization that appears as one of the levels in the broken curve. Here the domain
Riemann surface T has several positive and negative punctures, and the inhomogeneous
term is given by a Hamiltonian function that depends only on the R component of the
target. To determine the homology class C D �.u/ associated to u, we embed †�R

into a normal neighborhood N.D/ of the divisor D, and we cap off all of the punctures
using disks that pass through D. Thus we may compute the homology class in the
group H2.N.D/IZ/ Š

Ln
iD1ZŒDi �, spanned by the irreducible components of D.

This involves projecting the image of u (and the various capping disks) onto the various
components of D, using a retraction r W N.D/! D. To construct such a retraction,
recall that N.D/ is topologically a plumbing of several spheres in a cycle. We may
construct r first over Di minus a neighborhood of the nodes so that it is a disk fibration,
and then extend these maps over neighborhoods of the nodes. One way to construct
the latter map is to consider the local model f.z1; z2/ 2 C2 j jz1j

2C jz2j
2 � 1g, and

consider the symplectic parallel transport for the Lefschetz fibration .z1; z2/ 7! z1z2

into the central fiber z1z2 D 0.

Recall that the contact manifold † is a torus bundle � W †! S, where S is a circle.
Consider a component Di . From Step 5 (Section 4.3.6) of the construction of the
Liouville domain, there is a particular value si 2S such that the Reeb orbits on the torus
��1.si / consist of orbits of the circle action along the smooth part of Di constructed
in Step 4 (Section 4.2.4). Consider a small interval .si � �; si C �/ about this point,
and the preimage V D ��1.si � �; si C �/. Recalling that † itself was chosen as the
boundary of a neighborhood of D, we can set up the retraction r W N.D/!D so that
r.V / is an annulus A in Di and r jV W V ! A is a circle fibration whose fibers are
orbits of the circle action along the smooth part of Di .
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Along the torus ��1.si /, the planes of the contact structure � are transverse to the
fiber of r jV , since this fiber is the Reeb orbit. Furthermore, under the projection r jV ,
the orientation of � agrees with the complex orientation of A � Di (recall that the
orientation of †�R, which agrees with the orientation of N.D/, is given by taking,
in order, the vector pointing radially towards D, the angular vector winding negatively
around D, and the contact plane � ). Therefore, adjusting � if necessary, we may
guarantee that at every point of V , the projection r jV maps the contact plane � onto
the tangent space of Di isomorphically preserving orientation.

Consider the map r ıuW T !D, mapping the open set .r ıu/�1.A/ to A. Combining
the previous paragraph with Proposition 2.17, we find that, at any point in the domain
mapping to the circle r.��1.si //, the rank of rıu is either zero or two (the characteristic
rank dichotomy for holomorphic maps between Riemann surfaces). This is because
the differential of the map r factors through the projection �� W T†! � , and �� ı du
has rank either zero or two. We claim that r ı u has a regular value sitting on the
circle r.��1.si //. To see why this is so, consider the further projection � mapping the
annulus A to the core circle r.��1.si //. By Sard’s theorem, the composite � ı .r ıu/
must have a dense set of regular values, where the rank at any point in the preimage is
one. Let p be one such regular value; we may assume that p is disjoint from any of the
capping disks used in the construction of �.u/, for if a capping disk intersects ��1.si /,
it means that the corresponding Reeb orbit lies in that torus, and in that case the capping
disk maps to a single point under r . This same value p is regular for rıu, for if not,
there would be a point in the domain where the rank of rıu is less than two, hence
zero by the dichotomy, and hence � ı .r ı u/ would also have rank zero at p . The
degree of the map rıu is nonnegative at p , because the maps �� ı duW T T ! � and
dr W �! TDi are orientation-preserving.

The coefficient of ŒDi � in the homology class C is equal to the degree at the regular
value p . One way to see this is to use Poincaré–Lefschetz duality in N.D/ and intersect
with the disk r�1.p/.

Lemmas 8.4 and 8.5 obstruct the existence of broken curves representing homology
classes outside of P. To apply them, we argue as follows. Suppose we wish to
compute one of the matrix coefficients with respect to a basis of periodic orbits of some
operation (differential, continuation map, product, and so on). We restrict attention to
the components of the relevant moduli space of maps representing homology classes
not in P. If this space is not eventually empty as we stretch the neck and turn off

Geometry & Topology, Volume 23 (2019)



2780 James Pascaleff

the perturbation of the Hamiltonian H, Gromov compactness yields a subsequence
that converges to a broken curve, which, by the nature of Gromov convergence, has a
homology class not in P, which is impossible. Thus, by deforming the situation close
enough to the limit, we guarantee that all curves contributing to the operation have
homology classes in P.

Remark 8.6 In this argument, it is of some importance that the a priori energy
bound in terms of action differences gives us compactness across all homology classes
simultaneously, rather than just one homology class at a time.

To construct SH 0.U IKŒP �/ we proceed as follows. First recall that HF0.Hm/ D

CF0.Hm/ (with any coefficients) since the differential vanishes. Therefore we may
take

(148) HF0.Hm
IKŒP �/D CF0.Hm

IKŒP �/� CF0.Hm
IKŒH2.Y /�/

to be the subspace spanned by KŒP �–linear combinations of periodic orbits. As
for the continuation maps HF0.HmIKŒH2.Y /�/! HF0.Hm0 IKŒH2.Y /�/, the neck-
stretching argument shows that we can set these up so that the curves all have homology
classes lying in P. Thus the continuation maps preserve the subspaces HF0.U IKŒP �/,
and we may define SH 0.U IKŒP �/ to be the limit of these subspaces. Finally, the neck-
stretching argument shows that the curves contributing to the product have homology
classes in P, so the product

HF0.Hm1 IKŒP �/˝HF0.Hm2 IKŒP �/! HF0.Hm1Cm2 IKŒP �/

makes sense and passes to a well-defined product on SH 0.U IKŒP �/. This completes
the proof of Proposition 8.2.

8.3 Broken line diagrams

Recall that associated to the log Calabi–Yau surface U there is an affine manifold U trop ,
which is in fact obtained by gluing together several quadrants .R�0/2 by SL2.Z/
transformations. In this section, we will show how to associate a diagram in U trop to
a holomorphic curve in †�R such as those appearing in the neck-stretching limits
discussed previously. These diagrams are graphs in U trop consisting of straight-line
segments and rays, which we call broken line diagrams. These diagrams are a specific
type of tropical curve in U trop . While we do not provide here an enumerative theory of
such curves, much less prove that the counts of holomorphic curves equal the putative
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Di

Di�1 DiC1

2

Figure 7: A example of a broken line diagram.

tropical analogue, they have some immediate topological applications. For instance,
the broken line diagram encodes some information about the homology class of the
holomorphic curve. The diagrams we describe are closely related to the tropical curves
called broken lines in [20] from which they get their name. (As for the difference
between the concepts, the diagrams described here may consist of several broken lines
put together.) In fact, it was by thinking about such broken lines and the putative
correspondence to holomorphic curves that we were led to the results of the present
paper.

Figure 7 shows an example of a broken line diagram. Two quadrants in the affine
manifold U trop are depicted, corresponding to the nodes Di�1\Di and Di \DiC1 .
We have assumed .Di /2 D 0. The tropical curve has three legs: an infinite horizontal
one with weight two, an infinite one of slope �1 and a finite leg going into the origin
with slope 1. This figure corresponds to a pair of pants contributing to the product of
the .2; 0/ class in the right-hand quadrant with the .1; 1/ class in the left-hand quadrant,
and resulting in the .1; 1/ class in the right-hand quadrant.

Rather than using any of the more standard techniques of tropical geometry (see
for instance [28]), our approach is almost completely topological, using the torus
fibration � W †! S on the contact hypersurface at infinity, and the Liouville class
A.s/2H 1.��1.s/IR/. By projecting a holomorphic curve to † and intersecting with a
generic torus fiber, we obtain a loop. The holomorphicity condition comes in to say that
the integral of A.s/ over this loop is monotonic as a function of s , and this is what allows
us to analyze the curve and translate it into a diagram in U trop , as we shall now explain.

First consider the general situation of a holomorphic curve uD .f; a/W T !†�R,
with several positive and negative punctures asymptotic to Reeb orbits. We are mainly
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interested in the †–component map f W T !†. We have the projection � ıf W T !S,
a map from the domain Riemann surface T to the circle S. Since Reeb orbits map
to points in S, the map � ıf extends continuously to the compactification T . The
level sets .� ıf /�1.s/, that is, the intersections of f .T / with the torus fibers of the
map � , induce a singular foliation of T . The leaves are circles except when s 2 S is a
critical value of �ıf , or when s is the image of a puncture point, which henceforth
we include in the set of critical values. The fiber .� ıf /�1.s0/ is generically a union
of several such circles, so let us consider one component � . Once we equip � with
an orientation, we obtain a homology class Œ�� 2H1.��1.s0/IZ/. For s near s0 , let
T ss0 denote the parallel transport acting on H1.��1.s/IZ/. Recall the Liouville class
A.s/D Œ˛j��1.s/� 2H

1.��1.s/IR/. For s near s0 , this yields a function

(149) I�.s/D hA.s/; T
s
s0
Œ��i D

Z
T ss0 Œ��

˛:

The building block of a holomorphic curve is a tube V in T , which is to say a
compact connected subset that is the union of smooth leaves. For such a tube V ,
the map .� ı f /jV W V ! S is a circle fibration. The image is some interval Œs0; s1�.
Call the boundary leaves �0 and �1 , and orient these as the boundary of V . Now,
Proposition 2.17 implies that f �d˛ is a positive two-form on V . Thus we obtain

(150) 0 <

Z
V

f �d˛ D

Z
�0

f �˛C

Z
�1

f �˛ D I�0.s0/C I�1.s1/:

Now observe that �0 and �1 are negatives of each other in the homology of ��1Œs0; s1�.
Thus we find that T ss0 Œ�0�D�T

s
s0
Œ�1� for any s 2 Œs0; s1�. Thus we obtain the inequal-

ities

0 < I�0.s0/� I�0.s1/;(151)

0 < I�1.s1/� I�1.s0/:(152)

These inequalities require some interpretation. Regard the circle fiber as moving and
tracing out the tube. We can think of it either moving to the right (from s0 to s1 ),
or moving to the left (from s1 to s0 ). Let us make the convention that the circle is
oriented as the boundary of its past: for the right-moving tube, the circle is oriented
like �1 , and for the left-moving tube, the circle is oriented like �0 . Now integrate the
Liouville class on this loop to obtain the function I�.s/. The above inequalities say
that I�.s/ is increasing in the direction of motion. Evidently, this is consistent because
reversing the direction of motion also reverses the orientation of the circle.
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The tropical analogue of a tube as defined above is a line segment. As motivation, there
is an analogue of the preceding inequality coming from elementary plane geometry.
Consider any line in R2 not passing through the origin. At any point along the line, we
may compute the dot product between the unit tangent vector (which depends on an
orientation of the line) and the unit radial vector pointing away from the origin. This
dot product is increasing in the direction of motion (and this fact is independent of
the orientation of the line). In the holomorphic-to-tropical correspondence, the radial
vector field can roughly be identified with the Liouville class A.s/, the unit tangent
vector with the class Œ��, and the dot product with the function I�.s/.

We wish to associate a line segment in U trop to a such tube V . First of all, there is a
correspondence between the base circle S and the set of rays from the origin in U trop .
For each s , the Liouville class A.s/ 2H 1.��1.s/IR/ determines two subspaces of
H1.�

�1.s/IR/:

H? D kerhA.s/;�i;(153)

Hk D kerhA0.s/;�i:(154)

These spaces are rank one and linearly independent (by the contact condition). There
is a natural element vReeb.s/ 2Hk defined by the condition hA.s/; vReeb.s/i D 1, and
a positive ray R�0 � vReeb.s/. Now, the space U trop has charts given by quadrants
in H1 of the various torus fibers. The correspondence is that s 2 S corresponds to the
ray in U trop that is identified with R�0 � vReeb.s/ in a chart. The construction of the
Liouville class A.s/, and particularly the local convexity condition, guarantees that
this correspondence is a bijection. Also, this correspondence provides a way to identify
the tangent spaces of U trop along the ray with H1.��1.s/IR/.

Now we associate a line segment in U trop to a tube V . For the purposes of this
discussion, we allow line segments to be infinite in one or both directions.

Proposition 8.7 Given a tube V , there is a line segment `.V / (that is, a path straight
with respect to the affine structure) associated to V , which is characterized up to radial
rescaling in U trop by the following properties:

(1) `.V / lies in the sector of U trop corresponding to the interval �.V /D Œs0; s1��S,
touching each ray sector exactly once.

(2) The tangent vector to `.V / is positively proportional to the homology class � of
the loop that is moving in V .
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Proof The second property requires us to check a consistency condition, since the
notion of the “loop that is moving” depends up to sign on the orientation of the
interval Œs0; s1�. Assuming this, the construction of the segment is simple. The class �
determines the slope, and we position the line segment in the appropriate sector. The
result is well defined up to radial rescaling.

For concreteness, let us regard the tube as right-moving, from s0 to s1 , so that �D �1 .
Since we want the line segment to move from the ray for s0 to the ray for s1 , a
consistency issue arises of whether this tangent vector actually points in the right
direction. This can be resolved using the inequality (152). At any point s 2 Œs0; s1�,
the vector � can be decomposed uniquely as

(155) �D �?C �k;

where hA.s/; �?i D 0 and hA0.s/; �ki D 0. Let us clarify that, at the chosen point s ,
we fix the decomposition of � , so the components �? and �k are not varying when
we differentiate with respect to s (other than by parallel transport between the fibers).
The inequality (152), taken in the limit s0! s1 D s , implies that d

ds
hA.s/; �i � 0. On

the other hand,

(156) d

ds
hA.s/; �ki D hA

0.s/; �ki D 0:

So we obtain d
ds
hA.s/; �?i D hA

0.s/; �?i � 0.

The local convexity condition on A.s/ implies that A.s/ and A0.s/ rotate in the same
direction with increasing s , namely clockwise in our conventions. Thus the rays
R�0 � vReeb.s/ are rotating clockwise, and the condition hA0.s/; �?i � 0 implies that
�? lies on the clockwise side of the ray R�0 � vReeb.s/, as needed for the picture to be
consistent. See Figure 8.

We can also say when the line segment will have an infinite direction. If it happens
that hA0.s/; �?i D 0, then actually �? D 0, and �D �k is a vector parallel to the ray.
It is not possible for this to occur at an interior point s 2 .s0; s1/, since Lemma 4.9
says that the functional I�.s/D hA.s/; �i has a nondegenerate maximum or minimum
at such a point, and so the inequality (152) will be violated on one side of such a point
or the other. It is possible for � D �k to occur at a boundary point. If this occurs at
s1 2 Œs0; s1�, then the inequality (152) implies that I�.s/ has maximum at s1 , so �
is positively proportional to vReeb.s1/. In this case, the line segment will actually be
infinite and parallel to the ray R�0 � vReeb.s1/. If �D �k occurs at s0 2 Œs0; s1�, then
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H? Hk

A.s/

R�0vReeb

�?

A0.s/

Figure 8: The relationships between Hk , H? , A.s/ , A0.s/ and �? .

the situation is reversed: � is negatively proportional to vReeb.s0/, and the segment is
infinite and antiparallel to R�0 � vReeb.s0/.

The line segment also has a weight, which is the divisibility of the tangent vector � in
the lattice H1.��1.s/IZ/.

Note that the line segment `.V / associated to a tube V is only well defined up to a
rescaling centered at the origin of U trop (which should not be interpreted as rescaling
the tangent vector �). When constructing more complicated tropical curves, we can
make use of this freedom to make different segments meet each other.

The general prescription for associating a tropical curve to a holomorphic curve
uW T ! † is to decompose the domain T into a collection of tubes. These meet
each other over the critical values of the map � ıuW T ! S (we regard the images of
the punctures as critical values). At each critical value, several of the tubes interact, and
we draw the corresponding segments as having a common endpoint. If necessary we
can rescale some of the segments so that they all meet at the same point. In principle,
this sort of arbitrary choice can create a consistency issue if the resulting graph contains
a cycle, but when considering genus zero operations such as the product, the graph will
be a tree.

There is a balancing condition enforced by the topology of T itself. When there is no
puncture involved, the balancing condition says that the integral tangent vectors of the
segments meeting at the vertex, taken in the direction away from the vertex, with the
appropriate weights, sum to zero. This is because the integer tangent vectors multiplied
by the weights correspond to the classes of the loops in the various tubes, and the
preimage of a small interval around the critical value yields a two-chain bounded by the
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sum of these loops. The situation is slightly different if there are punctures involved. If
the critical value is at s 2 S, then the punctures must be asymptotic to Reeb orbits at
this value of s . The homology class of such a loop is proportional to vReeb.s/, which is
the radial direction. Therefore, the balancing condition holds if we add radial segments
emanating from the vertex in question, pointing into the origin in the case of negative
punctures, and away from the origin in the case of positive punctures. This gives us
the broken line diagram of uW T ! V .

Remark 8.8 In this paper, we will only use broken line diagrams associated to genus
zero curves appearing in the operations involved in symplectic cohomology, but one
could ask if such a diagram could be associated to a more general class of curves.
Indeed, the broken line diagram, as we have defined it, is a topological approximation
to the tropicalization of the curve, which should exist more generally. In the case of
a truly arbitrary curve, say without a bound on its energy, one would have to worry
about the possibility that the diagram could have infinitely many edges. Also, as we
have said, in the case of higher-genus curves one would need to worry about whether
the various segments associated to the tubes can really be made to meet inside U trop .
We will set aside these questions for now since they are not necessary for this paper.

The prescription described above gives us a diagrammatic way to represent curves
contained in the cylindrical end †�R of U, and it is possible to read off the homology
class of such a curve from this diagram.

Proposition 8.9 The homology class associated to a broken line diagram may be
obtained as a sum of local contributions computed as follows. At each point where the
broken line diagram crosses a ray corresponding to vReeb.si /, take the tangent vector �
to the diagram and project it into the rank one lattice T U trop.Z/=vReeb.si /. If m� 1
denotes the divisibility of the image of � in this lattice, then the local contribution
is mDi . In the case where the intersection of the diagram with the ray corresponding
to vReeb.si / is singular, then we compute the same quantity slightly to either side of
the ray (and the result is independent of this choice).

Proof Lemma 8.5 shows that a curve in †�R represents a homology class that is a
nonnegative combination of the Di . The proof furthermore shows that the coefficients
in this decomposition can be obtained projecting the curve onto the divisor Di near
the region where the Reeb orbits are the normal circles to Di . The point is that this
degree can also be computed by looking at the homology class � 2 H1.��1.s/IZ/
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carried by the tubes entering this region. Let si 2 S be the point where the Reeb orbits
are normal circles to Di ; they represent the homology class vReeb.si /; in particular,
vReeb.si / is an integral class. In the portion of the fibration over .si � �; si C �/,
choose an integral basis of sections of H1.��1.s/IZ/ consisting of vReeb.si / and
another class vb . Of course, in the choice of vb there is freedom to add an integer
multiple of vReeb.si / or reverse the sign. Now decompose the homology class � as
�D nvReeb.si /Cmvb . The projection r of ��1.si � �; si C �/ onto Di collapses the
circle vReeb.si /, and maps vb to r.vb/, the homology class of a loop on the divisor.
Thus it maps �D nvReeb.si /Cmvb to mr.vb/. The arguments of Lemma 8.5 show
that the projection of � to r.vb/ has the same degree at every point, either 1 or �1
depending on orientations, so that the total degree is either m or �m. Since we already
know that the degree is nonnegative, we find that it equals jmj, and the tube carrying
the homology class � contributes jmjDi to the total homology class of curve. It is
clear that jmj is also the divisibility of � in the rank one lattice T U trop.Z/=vReeb.si /.

If the intersection of the graph with the ray vReeb.si / is singular (if it coincides with at
vertex of the graph), then we compute the same quantity slightly to either side of the
ray, and the balancing condition guarantees that the result is well defined.

Example 8.10 Consider the broken line diagram shown in Figure 7. The only ray that
it crosses is the one corresponding to Di . When it crosses this ray, its tangent vector is
.1;�1/, which projects to 1 in Z2=.0; 1/. Therefore mD 1, and the homology class
associated to this curve is ŒDi �.

8.4 Degeneration to the vertex

Let n denote the number of irreducible components of D. The vertex Vn is the singular
algebraic surface consisting of n copies of A2 intersecting along coordinates axes,
forming a cycle. Thus if x1; : : : ; xn are variables and A2xi ;xj D Spec KŒxi ; xj �, we
have

(157) Vn DA2x1;x2 [A2x2;x3 [ � � � [A2xn;x1 :

The ring of functions on Vn is generated by the variables x1; : : : ; xn , subject to
the conditions that xi and xiC1 generate a polynomial algebra (with indices taken
modulo n) and that two nonconsecutive variables (such as x1 and x3 ) multiply to zero.

As shown in [20], there is a relationship between a log Calabi–Yau pair .Y;D/ such that
D has n irreducible components and a deformation of the vertex Vn . In the context of
this paper, we may state the relationship as follows. Recall that, since P �H2.Y IZ/
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is a strictly convex cone, the monoid ring KŒP � has a maximal ideal mP generated
by all nonzero elements of P. Being a KŒP �–algebra, the degree zero symplectic
cohomology defines a family SpecSH 0.U IKŒP �/! Spec KŒP �.

Now we can state and prove the result alluded to in the introduction. It states that
the spectrum of the symplectic cohomology ring SH 0.U IKŒP �/ is a deformation
of the vertex Vn . The analogous result with the ring of theta functions instead of
symplectic cohomology was proven in [20]. Thus, this result can be regarded as further
evidence for the correspondence between the ring of theta functions and the symplectic
cohomology of U.

Theorem 8.11 The fiber at mP 2 Spec KŒP � of SpecSH 0.U IKŒP �/ is isomorphic
to Vn . The variables xi correspond to periodic orbits encircling once each of the
irreducible components of D.

Since SH 0.U IKŒP �/ is a free KŒP �–module, taking the fiber at mP yields a free
K–vector space on the same basis. The difference is in the product structure, since
in the fiber at mP we must set to zero any contributions to the product that involve
nonzero elements of P.

In considering such products, we begin again with an analysis of the possible limit
configurations under the neck-stretching process. Lemmas 8.4 and 8.5 imply that each
level individually represents a class in P. Since P is strictly convex, the only way that
the total homology class can be zero is if each level individually represents the zero
homology class. In fact, Lemma 8.4 shows that the interior level actually lives in mP .

On the other hand, there are nonzero contributions to the product in the zero homology
class. Near each node of D, there is a collection of periodic orbits corresponding to the
integral points in a quadrant. Just as in the case of .C�/2 , there are pairs of pants in a
neighborhood of a node, and these give rise to a product that corresponds to addition
of integral points. In U itself, there may be other contributions to the product, and
the point is to show that these others have nonzero homology classes. What is needed
is an enhancement of Lemma 8.5, dealing with a pair of pants representing the zero
homology class, saying that such curves cannot connect periodic orbits near different
nodes of D.

Recall (as in the proof of Lemma 8.5) that for each divisor Di , there is a point si 2 S ,
such that ��1.si /�† is a torus in which the Reeb orbit is the normal circle to Di .
The next lemma says that these points act as barriers that curves in the symplectization
cannot cross unless they have a nonzero homology class in Y .
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Lemma 8.12 Let uW T !†�R be a inhomogeneous pseudoholomorphic curve in the
symplectization , with connected genus zero domain T , such that �.u/D 02H2.Y IZ/.
Then there is some i such that u is localized near the node Di \DiC1 ; precisely,
�.u.T // is contained in the interval Œsi ; siC1�.

Proof We use the broken line diagrams described in Section 8.3. The homology class
being zero implies that the broken line diagram of such a u cannot cross any of the
rays vReeb.si / corresponding to the points where the Reeb orbit is a normal circle
to Di . Thus the broken line diagram lies entirely inside one quadrant of U trop , and the
conclusion follows.

Remark 8.13 Alternatively, and what amounts to the same thing, we can argue that,
if the curve touches the torus ��1.si /, then in order for there to be no term of Di
in �.u/, the intersection of u.T / with ��1.s/ must be homologous to a multiple
of vReeb.si /, for s near si . The inequalities (151) or (152) applied to the functional
IvReeb.si / say that this functional is strictly monotonic along the curve. On the other
hand, IvReeb.si / has maximum at si , so the curve cannot pass through this point.

To finish the proof of Theorem 8.11, we use that the contributions to the symplectic
cohomology product that lie entirely in the neighborhood of the one of the nodes
Di \DiC1 correspond to the products in SH 0..C�/2IK/, where we know that the
two elements �i and �iC1 corresponding to the loops around the two divisors generate
a polynomial algebra. Lemma 8.12 shows that all other products vanish, so we recover
the ring of functions on Vn from the symplectic cohomology by setting all products
with nonzero classes in P to zero.

Remark 8.14 The results of this section apply to the case where Y is a toric surface
and D is the toric boundary divisor. In that case U Š .C�/2 , and SH 0.U IK/ is
isomorphic to the ring of Laurent polynomials. Even in this case, the deformation
described above is not trivial, and it depends on the toric variety Y . This is due to the
fact that the curves contributing to products between generators living near different
nodes of D carry nontrivial classes in P.

For instance, if Y D P1 �P1 and D is the toric boundary, then KŒP �DKŒqa1 ; qa2 �,
where ai is the homology class of the i th factor. Then SH 0.U IKŒP �/ is generated
by four orbits x , y , x0 and y0, linking each of the four components of D, and the
relations are

(158) xx0 D qa1 ; yy0 D qa2 :
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Setting qa1 D qa2 D 1, one obtains the ring of Laurent polynomials, but setting
qa1 D qa2 D 0, one obtains the ring of functions on

(159) V4 DA2x;y [A2y;x0 [A2x0;y0 [A2y0;x :

On the other hand, if Y D P2 and D is the toric boundary, then KŒP �DKŒqa�, where
a is the class of a line. Then SH 0.U IKŒP �/ is generated by three orbits x , y and z ,
linking each of the three components of D, and the relation is

(160) xyz D qa:

Setting qa D 1, one once again obtains the ring of Laurent polynomials, but setting
qa D 0, one obtains the ring of functions on

(161) V3 DA2x;y [A2y;z [A2z;x :

Evidently, both the family for P1 �P1 and the family for P2 are nontrivial, since the
central fiber is not isomorphic to the general fiber in each case. Furthermore, the two
families are not isomorphic to each other since they have nonisomorphic central fibers,
and this is in spite of the fact that U Š .C�/2 in both cases.
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