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Geometrically simply connected 4–manifolds and
stable cohomotopy Seiberg–Witten invariants

KOUICHI YASUI

We show that every positive definite closed 4–manifold with bC2 > 1 and without
1–handles has a vanishing stable cohomotopy Seiberg–Witten invariant, and thus
admits no symplectic structure. We also show that every closed oriented 4–manifold
with bC

2 6� 1 and b�
2 6� 1 .mod 4/ and without 1–handles admits no symplectic

structure for at least one orientation of the manifold. In fact, relaxing the 1–handle
condition, we prove these results under more general conditions which are much
easier to verify.

57R55; 57R17, 57R65

1 Introduction

A compact connected 4–manifold is called geometrically simply connected if it admits a
handle decomposition without 1–handles. The condition “without 1–handles” is equiva-
lent to “without 3–handles” for a closed 4–manifold, as seen from dual decompositions.
Clearly, every geometrically simply connected 4–manifold is simply connected, but
the converse has been an open problem; see Kirby’s problem list [23, Problem 4.18].

Problem 1.1 Is every simply connected, closed, smooth 4–manifold geometrically
simply connected?

This problem is closely related to the existence problem of exotic (ie homeomorphic
but not diffeomorphic) smooth structures on the two smallest 4–manifolds S4 and
CP2 (see [37]), and many closed 4–manifolds were shown to be geometrically simply
connected (eg Harer [15], Mandelbaum [30], Akbulut and Kirby [2], Gompf [13] and
Gompf and Stipsicz [14]). Furthermore, geometrically simply connected, exotic smooth
structures on the small 4–manifolds CP2 # nCP2 .6 � n � 9) were constructed by
the author [37; 39], and a long standing potential counterexample (Harer, Kas and
Kirby [16]) to Problem 1.1 was disproved by Akbulut [1] and independently by the
author [38], but the problem remains unsolved.
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In this paper, we study gauge-theoretical properties of geometrically simply connected,
closed 4–manifolds to reveal properties that hold for all simply connected closed
4–manifolds and/or to give potential methods for constructing counterexamples to
Problem 1.1. Let us recall that a positive definite 4–manifold is an oriented 4–manifold
whose intersection form is positive definite. We first discuss the following question:

Question 1.2 Does there exist a simply connected, positive definite, closed, smooth
4–manifold that has a nonvanishing gauge-theoretical invariant of smooth structures?

Any such 4–manifold would be an exotic nCP2 for some n, but it has been an open
problem whether nCP2 admits an exotic smooth structure. Interestingly, Hom and
Lidman [17] recently proved that, regarding the Ozsváth–Szabó 4–manifold invariant
(with Z=2Z–coefficients) coming from Heegaard Floer homology, the answer to
Question 1.2 is negative for geometrically simply connected 4–manifolds with bC

2
> 1.

Remark 1.3 According to Zemke [41] (see also Juhász, Thurston and Zemke [21]),
the invariance of the Ozsváth–Szabó 4–manifold invariant [32] is currently proved only
for Z=2Z–coefficients. This invariant is thus expected to be equivalent to the mod 2

version of the (ordinary) Seiberg–Witten invariant. We note that the Seiberg–Witten
invariant is strictly stronger than its mod 2 version, that is, there exists an exotic pair of
closed 4–manifolds that have distinct Seiberg–Witten invariants whose mod 2 versions
are the same. Indeed, Fintushel and Stern’s knot surgery [10] produces many such
examples.

Here we answer Question 1.2 negatively for geometrically simply connected 4–mani-
folds with bC

2
>1, regarding the stable cohomotopy Seiberg–Witten invariant introduced

by Bauer and Furuta [6], which is strictly stronger than the Seiberg–Witten invariant.

Theorem 1.4 Every geometrically simply connected, positive definite, closed, smooth
4–manifold with bC

2
> 1 has a vanishing stable cohomotopy Seiberg–Witten invariant.

It is likely that our proof works for the bC
2
D 1 case as well, but we do not pursue this

point here, since this invariant requires some care in the bC
2
D 1 case (see Bauer [5]).

We note that our approach is very different from that of Hom and Lidman. It would be
natural to ask whether this theorem holds without the condition “geometrically”. If not,
there exists a counterexample to Problem 1.1.

We obtain the following corollary:
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Corollary 1.5 Every geometrically simply connected, positive definite, closed, smooth
4–manifold with bC

2
> 1 has a vanishing Seiberg–Witten invariant.

Proof By [6, Proposition 3.3; 5, Proposition 4.4], a closed, oriented, smooth 4–
manifold with a nonvanishing Seiberg–Witten invariant has a nonvanishing stable
cohomotopy Seiberg–Witten invariant. Hence this corollary follows from the above
theorem.

We note that Hom and Lidman proved their vanishing result on the Ozsváth–Szabó 4–
manifold invariant by utilizing the knot filtration on the Heegaard Floer chain complex
and its relationship with Dehn surgery, but their argument does not work for the Seiberg–
Witten invariant due to lack of the corresponding tools in Seiberg–Witten theory. By
contrast, we can give a short proof of Corollary 1.5 relying only on classical results
about the (ordinary) Seiberg–Witten invariant.

The above corollary implies the following two results, which were originally proved
by Hom and Lidman [17] using the vanishing result on the Ozsváth–Szabó invariant.

Corollary 1.6 Every geometrically simply connected, positive definite, closed, smooth
4–manifold with bC

2
> 1 admits no symplectic structure.

Proof By a result of Taubes [36], the Seiberg–Witten invariant of a closed, oriented,
symplectic 4–manifold with bC

2
> 1 does not vanish (even for the mod 2 version).

Hence the claim follows from Corollary 1.5.

Corollary 1.7 If a simply connected, positive definite, closed, symplectic 4–manifold
admits a handle decomposition without 1– and 3–handles, then the 4–manifold is
diffeomorphic to CP2 .

Proof Corollary 1.6 shows that a 4–manifold satisfying the assumption has bC
2
D

b2D1. The claim thus follows from the fact that a closed, oriented, smooth 4–manifold
with b2D 1 having a handle decomposition without 1– and 3–handles is diffeomorphic
to either CP2 or CP2 (see [37, Proposition 6.4]).

We next discuss the following question:

Question 1.8 Does there exist a simply connected, closed, oriented, smooth 4–
manifold with bC

2
> 1 that admits symplectic structures for both orientations of the

manifold?
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We note that the answer to this question is affirmative if either the condition “simply
connected” or “bC

2
> 1” is removed (eg T 4 and S2 � S2 ). A similar question for

complex structures was intensively studied by Beauville [8] and Kotschick [24; 25],
and several results of Kotschick [24; 25] work for our question as well. For example,
if a simply connected, closed, oriented 4–manifold with bC

2
> 1 and b�

2
> 1 admits

symplectic structures for both orientations, then the 4–manifold does not contain
a smoothly embedded 2–sphere representing a nontrivial second homology class,
and both bC

2
and b�

2
are odd integers. Here we answer the question negatively for

geometrically simply connected 4–manifolds with a mild condition on bC
2

and b�
2

,
giving a potential approach to Problem 1.1.

Theorem 1.9 Every geometrically simply connected, closed, oriented, smooth 4–
manifold with bC

2
6� 1 and b�

2
6� 1 .mod 4/ admits no symplectic structure for at least

one orientation of the manifold.

In fact, we prove our main results under more general conditions, relaxing the geo-
metrically simply connected condition. These conditions are much easier to verify,
and furthermore many closed 4–manifolds including nonsimply connected ones satisfy
these conditions. See Theorems 2.3 and 2.4 and Corollary 2.5.

2 Proof

We introduce the following definition to prove our main results.

Definition 2.1 Let X be an oriented smooth 4–manifold and let ˛ be a class of
H2.X IZ/. We say that ˛ is represented by a 2–handle neighborhood if X has a
codimension-zero submanifold W satisfying the following conditions:

� The submanifold W is diffeomorphic to a 4–manifold obtained from the 4–ball
by attaching a single 2–handle. (This submanifold will be called a 2–handle
neighborhood.)

� ˛ is the image of a generator of H2.W IZ/ Š Z by the inclusion-induced
homomorphism H2.W IZ/!H2.X IZ/.

Remark 2.2 According to [29, Section 1], a second homology class ˛ of a compact,
oriented, smooth 4–manifold X is represented by a 2–handle neighborhood if and
only if ˛ is represented by a PL embedded 2–sphere in X.
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For an oriented 4–manifold X, let X denote the 4–manifold X equipped with the
reverse orientation. We prove the following theorems:

Theorem 2.3 If a closed, connected, positive definite, smooth 4–manifold X with
bC

2
> 1 admits a nontorsion second homology class represented by a 2–handle neigh-

borhood, then the stable cohomotopy Seiberg–Witten invariant of X vanishes.

Theorem 2.4 If a closed, connected, oriented, smooth 4–manifold X satisfying
bC

2
6� 1, b�

2
6� 1 .mod 4/ and b1 D 0 admits a nontorsion second homology class

represented by a 2–handle neighborhood, then at least one of X and X does not admit
a symplectic structure.

As we will see, Theorems 1.4 and 1.9 easily follow from these theorems. We note that
many closed 4–manifolds including nonsimply connected ones admit nontorsion second
homology classes represented by 2–handle neighborhoods (see [14]), and clearly this
condition is much easier to verify than the geometrically simply connected condition.
In fact, it is often not necessary to construct a handle decomposition of an entire
4–manifold. For example, there are many closed minimal symplectic 4–manifolds that
contain cusp neighborhoods representing nontorsion classes and thus admit desired
second homology classes (eg [33]).

Theorem 2.3 implies the following corollary, as seen from the proofs of Corollaries 1.5
and 1.6:

Corollary 2.5 If a closed, connected, positive definite, smooth 4–manifold X with
bC

2
> 1 admits a nontorsion second homology class represented by a 2–handle neigh-

borhood, then the Seiberg–Witten invariant of X vanishes. Consequently, X does not
admit any symplectic structure.

We begin the proofs of these theorems with the lemma below. For a second homology
class ˛ of an oriented 4–manifold X, let x̨ denote the class ˛ of X.

Lemma 2.6 Let X be a compact oriented smooth 4–manifold and let ˛ be a second
homology class of X represented by a 2–handle neighborhood. Then the class ˛� x̨
of H2.X # X IZ/ŠH2.X IZ/˚H2.X IZ/ is represented by a smoothly embedded
2–sphere with self-intersection number zero.

Proof Assume that ˛ is represented by a 2–handle neighborhood W that is obtained
from the 4–ball by attaching a 2–handle along an n–framed knot K . Then X # X

contains the boundary connected sum W \W as a submanifold. Let K denote the
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mirror image of the knot K . Clearly W \W is obtained from the 4–ball by attaching
two 2–handles along an n–framed knot K and a .�n/–framed knot K , where these
two framed knots are located in two disjoint 3–balls in S3 . By sliding the 2–handle
K over K , we obtain a new 2–handle of W \W attached along the slice knot K # K

with the 0–framing. Clearly ˛ � x̨ is represented by this 2–handle neighborhood.
Since K # K is a slice knot and the framing is zero, the class ˛� x̨ is represented by a
smoothly embedded 2–sphere with self-intersection number zero.

Let us recall a few basic results about the stable cohomotopy Seiberg–Witten invariant
of 4–manifolds [6], also known as the Bauer–Furuta invariant. As shown in [6; 5], this
invariant is a refinement of the Seiberg–Witten invariant, and moreover strictly stronger
than the Seiberg–Witten invariant. Indeed, the following theorem of Bauer implies that
this invariant can distinguish 4–manifolds having the same (vanishing) Seiberg–Witten
invariants:

Theorem 2.7 (Bauer [4]; see also [5, Theorem 8.8]) If a closed , connected , oriented ,
smooth 4–manifold X satisfies either condition .1/ or .2/ below, then the stable
cohomotopy Seiberg–Witten invariant of X does not vanish :

(1) X is the connected sum X1 # X2 of closed , connected , oriented , smooth 4–
manifolds X1 with a nonvanishing stable cohomotopy Seiberg–Witten invariant
and X2 with bC

2
.X2/D 0.

(2) X is the connected sum #n
iD1 Xi of closed , connected , oriented , smooth 4–

manifolds X1;X2; : : : ;Xn satisfying the following conditions:

(i) bC
2
.Xi/� 3 .mod 4/ and b1.Xi/D 0 for each i .

(ii) Each Xi admits a spinc structure si compatible with an almost complex
structure satisfying SWXi

.si/� 1 .mod 2/.
(iii) 2� n� 4. Furthermore , if nD 4, then bC

2
.X /� 4 .mod 8/.

Furthermore, Ishida and Sasahira [19] extended the sufficient condition (2) to the case
b1 ¤ 0. For interesting examples and applications of these results, the readers can
consult [18; 3; 7; 20], for example.

As is well known to experts of Seiberg–Witten theory, the adjunction inequality holds
for the stable cohomotopy Seiberg–Witten invariant as well (eg [27, page 53; 35]). In
particular, the following special case holds:
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Theorem 2.8 Let X be a closed, connected, oriented, smooth 4–manifold with
bC

2
> 1 having a nonvanishing stable cohomotopy Seiberg–Witten invariant, and let ˛

be a nontorsion second homology class of X. If the self-intersection number of ˛ is
nonnegative, then ˛ cannot be represented by a smoothly embedded 2–sphere.

This theorem follows, for example, from the theorem below:

Theorem 2.9 (Frøyshov [11, Theorem 1.1]) Let X be a closed , connected , oriented ,
smooth 4–manifold with bC

2
> 1. Suppose that a closed , orientable , codimension-one

submanifold Y of X satisfies the following two conditions:

� Y admits a Riemannian metric with positive scalar curvature.

� The inclusion-induced homomorphism H 2.X IQ/!H 2.Y IQ/ is nonzero.

Then the stable cohomotopy Seiberg–Witten invariant of X vanishes.

Although Theorem 2.8 follows from the above theorem by a standard argument, we
include a proof for completeness. See also a recent preprint [22] for an alternative
proof that uses relative Bauer–Furuta invariants.

Proof of Theorem 2.8 Let n� 0 be the self-intersection number of ˛ , and let Z be
the 4–manifold X # nCP2 . We note that Z has a nonvanishing stable cohomotopy
Seiberg–Witten invariant by Theorem 2.7.

Now suppose, to the contrary, that ˛ is represented by a smoothly embedded 2–
sphere in X. Then, by blowing up, one can construct a smoothly embedded 2–
sphere S in Z with self-intersection number zero that represents a nontorsion sec-
ond homology class. Let Y denote the boundary of the tubular neighborhood �.S/
(Š S2 �D2 ) of S in Z . We note that Y is diffeomorphic to S2 � S1 , and thus
admits a Riemannian metric with positive scalar curvature. Since S represents a
nontorsion second homology class, we see that the inclusion-induced homomorphism
H 2.ZIQ/!H 2.�.S/IQ/ŠQ is nonzero. Composing this map with the inclusion-
induced homomorphism H 2.�.S/IQ/! H 2.Y IQ/ Š Q, one can check that the
inclusion-induced homomorphism H 2.ZIQ/!H 2.Y IQ/ŠQ is nonzero. Therefore
Theorem 2.9 shows that the stable cohomotopy Seiberg–Witten invariant of Z vanishes,
giving a contradiction.

We can now easily prove Theorems 2.3 and 2.4.
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Proof of Theorem 2.3 Let X be a closed, connected, positive definite, smooth 4–
manifold with bC

2
> 1, and assume that a nontorsion second homology class ˛ of X

is represented by a 2–handle neighborhood. Suppose, to the contrary, that the stable
cohomotopy Seiberg–Witten invariant of X does not vanish. Since the intersection
form of X is negative definite, the stable cohomotopy Seiberg–Witten invariant of
X # X does not vanish by Theorem 2.7. Hence, by Theorem 2.8, X # X does not
contain a smoothly embedded 2–sphere with self-intersection number zero representing
a nontorsion second homology class. On the other hand, by Lemma 2.6, the nontorsion
class ˛� x̨ is represented by such a 2–sphere in X # X, giving a contradiction.

Proof of Theorem 2.4 Let X be a closed, connected, oriented, smooth 4–manifold
satisfying bC

2
6�1, b�

2
6�1 .mod 4/ and b1D0, and assume that X admits a nontorsion

second homology class ˛ represented by a 2–handle neighborhood. In the case where
either bC

2
or b�

2
is an even integer, the claim immediately follows from the well-known

fact that bC
2
�b1 of a closed symplectic 4–manifold is odd (see [14, Corollary 10.1.10]).

We thus consider the case where bC
2
� b�

2
� 3 .mod 4/. We may assume that X admits

a symplectic structure. Suppose, to the contrary, that X also admits a symplectic
structure. Then by a result of Taubes [36], both X and X satisfies condition (2)(ii) of
Theorem 2.7. Since bC

2
.X /� bC

2
.X /� 3 .mod 4/, Theorem 2.7 thus shows that the

stable cohomotopy invariant of X #X does not vanish. Hence, by Theorem 2.8, X #X

does not contain a smoothly embedded 2–sphere with self-intersection number zero
representing a nontorsion second homology class. On the other hand, by Lemma 2.6,
the nontorsion class ˛ � x̨ of X # X is represented by such a 2–sphere, giving a
contradiction.

Theorems 1.4 and 1.9 easily follow from Theorems 2.3 and 2.4.

Proof of Theorems 1.4 and 1.9 We note that, for any compact, 4–dimensional
handlebody with b2 ¤ 0 and without 1–handles, the handlebody has a 2–handle
representing a nontorsion second homology class, since the second homology group is
generated by 2–handles. Theorem 1.4 thus follows from Theorem 2.3. For Theorem 1.9,
we may assume b2 ¤ 0, since any simply connected, closed 4–manifold with b2 D 0

does not admit a symplectic structure. Theorem 1.9 thus follows from Theorem 2.4.

Remark 2.10 We can prove Corollary 1.5 and, more generally, the b1.X /D 0 case
of Corollary 2.5 (and hence also Corollaries 1.6 and 1.7) without using the stable
cohomotopy Seiberg–Witten invariant. Indeed, as seen from the proof of Theorem 1.4,
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these corollaries can be shown by using the blow-up formula [9; 26, Proposition 2; 12,
Corollary 14.1.1] and the adjunction inequality [28; 31; 9] (see also [14, Theorem 2.4.8])
for the Seiberg–Witten invariant together with Lemma 2.6. Note that the blow-up
formula holds for a connected sum with an arbitrary closed, negative definite 4–
manifold satisfying b1 D 0 [26, Proposition 2].

Remark 2.11 (1) Problem 4.18 in Kirby’s problem list [23] asks not only Problem
1.1 in this paper but also the stronger problem of whether every simply connected,
closed, oriented, smooth 4–manifold admits a handle decomposition without 1–
and 3–handles. Indeed, many 4–manifolds were shown to admit such handle
decompositions (eg references mentioned in Section 1). Also, Rasmussen’s
paper [34] states the vanishing of the Ozsváth–Szabó 4–manifold invariants for
homotopy S2 �S2 ’s without 1– and 3–handles.

(2) For simply connected, closed 4–manifolds having handle decompositions without
1– and 3–handles, the proofs of Theorems 1.4 and 1.9 and Corollary 1.5 can be
simplified using the following fact: for any simply connected, closed, oriented,
smooth 4–manifold X without 1– and 3–handles, X # X is diffeomorphic to
either n.S2 � S2/ or nCP2 # nCP2 , where n D b2.X / (see Corollary 5.1.6
of [14]).

3 Questions

Finally we discuss two more questions, motivated by Problem 1.1 and our results. We
note the following lemma:

Lemma 3.1 If X is a geometrically simply connected, compact, oriented, smooth
4–manifold, then every second homology class of X is represented by a 2–handle
neighborhood.

Proof We fix a handle decomposition of X having no 1–handles, and consider the
2–chain group generated by 2–handles of the decomposition. Let ˛ be a second
homology class of X. Then ˛ is represented by a linear combination of 2–handles. By
introducing a canceling pair of 2– and 3–handles, and sliding the newly introduced
2–handle over the original 2–handles, one can construct a 2–handle that is homologous
to the linear combination, showing that ˛ is represented by this 2–handle neighborhood.
Note that the newly introduced 2–handle represents the zero element in the second
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homology group, and each handle slide corresponds to an addition or subtraction in the
2–chain group.

Now, it would be natural to ask the following questions:

Question 3.2 (1) Does every simply connected, closed, oriented, smooth 4–mani-
fold with b2 ¤ 0 admit a nonzero second homology class represented by a
2–handle neighborhood?

(2) For any simply connected, closed, oriented, smooth 4–manifold, is every second
homology class represented by a 2–handle neighborhood?

If the answer to question (1) is affirmative, then Theorems 1.4 and 1.9 hold even in the
case where the condition “geometrically simply connected” is replaced with “simply
connected”, as seen from the proofs. If the answer to the stronger question (2) is
negative, then by Lemma 3.1, there exists a counterexample to Problem 1.1. We note
that answer to the question (1) is negative if the simply connected condition is removed.
Indeed, the product of two closed, oriented surfaces of positive genera is a nonsimply
connected counterexample, since this 4–manifold satisfies b2 ¤ 0 and �2 D 0, but
a second homology class given by a 2–handle neighborhood must be represented by
an immersed 2–sphere. Of course, this argument does not work for simply connected
4–manifolds.

In [40], we will answer the question (1) negatively for simply connected nonclosed
4–manifolds, namely, we will show that there exists a simply connected compact
oriented smooth 4–manifold that does not admit a nonzero second homology class
represented by a 2–handle neighborhood (and hence by a PL embedded 2–sphere).
In fact, we will produce many such examples including those homotopy equivalent
to S2 . Moreover, we will show that this property does depend on the choice of smooth
structures of such a 4–manifold. We will prove these results by applying ideas of this
paper to a new type of exotic 4–manifolds constructed in [40].
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