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Shake genus and slice genus

LISA PICCIRILLO

An important difference between high-dimensional smooth manifolds and smooth
4–manifolds that in a 4–manifold it is not always possible to represent every middle-
dimensional homology class with a smoothly embedded sphere. This is true even
among the simplest 4–manifolds: X0.K/ obtained by attaching an 0–framed 2–
handle to the 4–ball along a knot K in S3. The 0–shake genus of K records the
minimal genus among all smooth embedded surfaces representing a generator of
the second homology of X0.K/ and is clearly bounded above by the slice genus
of K . We prove that slice genus is not an invariant of X0.K/ , and thereby provide
infinitely many examples of knots with 0–shake genus strictly less than slice genus.
This resolves Problem 1.41 of Kirby’s 1997 problem list. As corollaries we show
that Rasmussen’s s invariant is not a 0–trace invariant and we give examples, via the
satellite operation, of bijective maps on the smooth concordance group which fix the
identity but do not preserve slice genus. These corollaries resolve some questions
from a conference at the Max Planck Institute, Bonn (2016).

57M25, 57R65

1 Introduction

One of the key differences between smooth 4–manifolds and higher-dimensional
smooth manifolds is the ability to represent any middle-dimensional homology class
with a smoothly embedded sphere. For 4–manifolds this is not always possible even in
the simplest case: 4–manifolds Xn.K/ obtained by attaching an n–framed 2–handle
to the 4–ball along a knot K in S3. We call such a manifold the n–trace of K .
The n–shake genus of K , denoted by gn

sh.K/, measures this failure to find a sphere
representative by recording the minimal genus among smooth embedded generators of
the second homology of Xn.K/.

Recall that the slice genus of K , denoted by g4.K/, is defined to be the minimal genus
of a smooth properly embedded surface † ,! B4 such that @†DK � S3. When we
attach a 2–handle to B4 along K , any such † can be capped off to a closed surface y†
of the same genus. So we see that for all integers n and knots K the n–shake genus
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is bounded above by the slice genus. Since y† is embedded in a restrictive manner
( y† intersects the cocore of the handle in one point) one might expect that the n–shake
genus can be strictly less than the slice genus. Indeed, for n¤ 0 such examples are
well known; see Akbulut [2; 3], Lickorish [19], Abe, Jong, Omae and Takeuchi [1]
and Cochran and Ray [9]. All of these examples rely on the same proof technique:
produce two knots K and K0 with Xn.K/ diffeomorphic to Xn.K

0/, then show that
g4.K/¤ g4.K

0/. This paper concerns the case nD 0.

There are a few issues with using the n ¤ 0 proof outline to show that there exist
K such that g0

sh.K/ < g4.K/. A longstanding conjecture of Akbulut and Kirby
[15, Problem 1.19] held that if the 3–manifolds S3

0
.K/ and S3

0
.K0/ obtained by

0–framed Dehn surgery on knots K and K0 are homeomorphic, then K and K0 are
(smoothly) concordant. Since S3

0
.K/ arises naturally as @X0.K/, any attempt to use

the n¤ 0 argument to show there exist K such that g0
sh.K/ < g4.K/ must disprove

this conjecture along the way. It is a priori possible to show that there exist knots K

with g0
sh.K/ < g4.K/ without exhibiting a counterexample to the Akbulut Kirby

conjecture, but to do so one would need to demonstrate that there exists a knot K with
g0

sh.K/<g4.K/ and such that for any smooth embedded minimal genus surface � gen-
erating H2.X0.K// there is no description of X0.K/ consisting of only one 0– and one
2–handle in which � can be isotoped to meet the cocore of the 2–handle transversely in
a point. The existence of such a knot seems to be a subtle problem; it is not resolved here.

In 2015 Yasui disproved the Akbulut–Kirby conjecture [25], and it was later demon-
strated by A N Miller and the author that there exist nonconcordant knots with diffeo-
morphic 0–traces [21]. These results give some evidence that it might in fact be possible
to show that there exist K with g0

sh.K/ < g4.K/ by producing knots K and K0 with
X0.K/ diffeomorphic to X0.K

0/ and g4.K/¤ g4.K
0/.

Some concerns with that outline remain; first, there is a brief classical argument —
see Kirby and Melvin [16] — showing that if a knot K shares a 0–trace with a slice
knot K0 then K is slice. As such, the standard outline cannot be used to show that
there exist 0–shake slice knots which are not slice; the existence of such knots remains
open. Second, the 0–surgery of a knot, and hence the 0–trace, determines fundamental
slice genus bounds such as the Tristram–Levine signatures, Casson–Gordon signatures
and signature invariants associated to the filtration of Cochran, Orr and Teichner [8].
In fact there was only one smooth concordance invariant known not to be a 0–trace
invariant, and that invariant does not give slice genus bounds; see [21]. Nevertheless,
we have:
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Theorem 1.1 There exist infinitely many pairs of knots K and K0 such that X0.K/

is diffeomorphic to X0.K
0/ and g4.K/¤ g4.K

0/.

Corollary 1.2 There exist infinitely many knots K with g0
sh.K/ < g4.K/.

This solves Problem 1.41 of [15].

The constructive half of the proof of Theorem 1.1 relies on a reinterpretation of a
classical technique of Lickorish [19] and Brakes [5] to produce K and K0 with X0.K/

diffeomorphic to X0.K
0/. Lickorish and Brakes’ technique can be used to produce

all of the knots K0 that have been used to show gn
sh.K

0/ < g4.K
0/ for n¤ 0 in the

literature. However, all the knots K and K0 considered in any of the n¤ 0 literature
have g4.K/� 1 and g4.K

0/� 1 and as such cannot be used to prove Theorem 1.1.

With our new perspective (Theorem 2.1) we produce pairs of knots K and K0 with
diffeomorphic 0–traces which a priori should be expected to have large slice genus.
In Theorem 2.3 we then give a more restrictive construction allowing us to build such
a pair where K , surprisingly, has some prescribed small slice genus. This second
construction is nonsymmetric in K and K0, so one still expects that g4.K

0/ is large.
We give an infinite family where this occurs, as well as several isolated examples. To
give lower bounds on g4.K

0/ we use J Rasmussen’s s invariant. Hence:

Corollary 1.3 Rasmussen’s s invariant is not a 0–trace invariant.

This addresses Problem 12 of [10], which was given by Tetsuya Abe. It is still unknown
whether Ozsváth and Szabó’s � invariant is an invariant of the 0–trace of K .

Let � denote smooth concordance and C WD fknots in S3g=� be the concordance
group. Any pattern P in a solid torus induces a well-defined map P W C ! C by
taking P .ŒK�/ WD ŒP .K/�, where P acts on knots by the satellite operation. Since
one is interested in understanding C one might hope that P sometimes induces an
automorphism; in fact it unknown whether a satellite operator P can ever induce a
homomorphism of C and it is conjectured by Hedden that it cannot [13, Problem 3.6.2].
More generally, one asks what sort of maps on C can be obtained via the satellite
operation. With an eye toward better understanding C, this is in particular an interesting
question when attention is restricted to satellite operators with winding number 1.

It has been shown that winding number 1 satellite operators can induce nonsur-
jective maps — see Levine [18] — and interesting bijective maps — see Gompf and
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Miyazaki [11] and Miller and Piccirillo [21] — and that there exist patterns J such that
J.U /� U but with g4.J.K// > g4.K/ for some K ; see Cochran, Franklin, Hedden
and Horn [6]. It is still unknown whether winding number 1 satellite operators can
induce noninjective maps [9]. Problem 7 of [10], which was given by Daniele Celoria,
asked whether there exist winding number 1 patterns J such that J.U /� U but with
g4.J.K// < g4.K/ for some K ; we resolve this as a corollary of our main theorem.

Corollary 1.4 There exist satellite operators J such that J.U /� U and such that J

induces a bijection on C but does not preserve slice genus.

Satellite operators which induce bijections that fix the identity give candidates for
automorphisms of C. Motivated by checking whether the examples used to prove
Corollary 1.4 are automorphisms, we give a pair of obstructions to a satellite map
inducing a homomorphism on C. One of the obstructions is given below; the second is
somewhat technical to state and is relegated to Section 4. While these obstructions are
not particularly difficult and may be known to experts, we cannot find proofs in the
literature so we produce them here.

Theorem 1.5 Let P be a winding number w pattern and suppose that there exists
some knot K and additive slice genus bound � such that

wg4.K/ < �.P .K//:

Then P is not a homomorphism.

Corollary 1.6 The satellite operators used to prove Corollary 1.4 do not induce auto-
morphisms on C.

In a similar spirit, we show:

Theorem 1.7 Suppose a pattern P induces a homomorphism on C. If P has winding
number 0 then P .K/ has stable slice genus 0 for all K . If P has winding number 1

then P .K/ #�K has stable slice genus 0 for all K .

The only known examples of knots with stable slice genus 0 are the amphichiral knots,
which have 2–torsion in C. As such, Theorem 1.7 can be read as evidence that winding
number 0 and 1 satellite operators never induce interesting homomorphisms. See
Section 4 for further discussion.
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All manifolds, submanifolds, maps of manifolds and concordances are smooth through-
out this work, all homology has integer coefficients and all knots and manifolds are
taken to be oriented. We will use Š to denote diffeomorphic manifolds, ' to denote
isotopic links and � to denote concordant knots. We will assume familiarity with
handle calculus; for the details see Gompf and Stipsicz [12].
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2 Constructing knots with diffeomorphic traces

We begin by constructing pairs of knots with diffeomorphic traces. Theorem 2.1 was
motivated by an inside-out take on the well-known dualizable patterns construction.

Let L be a three-component link with (blue, green and red) components B, G and R

such that the following hold: the sublink B [R is isotopic in S3 to the link B [�B ,
where �B denotes a meridian of B, the sublink G [R is isotopic to the link G [�G ,
and lk.B;G/D 0. From L we can define an associated 4–manifold X by thinking
of R as a 1–handle, in dotted circle notation, and B and G as attaching spheres of
0–framed 2–handles. See Figure 4 for an example of such a handle description. In a
moment we will also define a pair of knots K and K0 associated to L.

Theorem 2.1 X ŠX0.K/ŠX0.K
0/:

Proof Isotope L to a diagram in which R has no self-crossings (hence such that R

bounds a disk DR in the diagram) and in which B \DR is a single point. Slide G
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B G

L

B G

L00

Figure 1

over B as needed to remove the intersections of G with DR . After the slides we can
cancel the 2–handle with attaching circle B with the 1–handle and we are left with a
handle description for a 0–framed knot trace; this knot is K0.

To construct K and see X Š X0.K/, perform the above again with the roles of B

and G reversed.

Remark 2.2 By modifying the framing hypotheses in Theorem 2.1 this technique can
be easily modified to produce knots J and J 0 with Xn.J /ŠXn.J

0/ for any integer n.

For a link L in S3, define �L to be the mirror of L with its orientation reversed. Two
n–component links L0 and L1 are said to be strongly concordant if they cobound
a smoothly embedded surface † in S3 � Œ0; 1� such that † is a disjoint union of n

annuli and †\ .S3 � f0g/D�L0 and †\ .S3 � f1g/DL1 . When nD 1 we omit
the word “strongly”.

Theorem 2.3 Let X be a 4–manifold with a handle description L WDR[B [G as
in Theorem 2.1. Further, suppose that G � U and the link B [G is split. If K arises
from L as in Theorem 2.1 then K � B.

Proof Since B [G is split, there exist finitely many crossing changes of B with R

which change L into the link L0 in Figure 1. As such there is a finite sequence of bands
fˇig of B, as in Figure 2, which change L into the link L00 in Figure 1. Then there is
a diagram of L obtained by performing the dual bands to the given diagram of L00 ;
isotope L to this diagram and decorate it with the bands fˇig. Then slide B across G

Figure 2
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B

Figure 3

at all points of B \DR so that we can cancel the 2–handle G with the 1–handle. We
obtain a diagram of K � S3 decorated with bands, and such that when these bandings
of K are performed we obtain the link J.G/, where J is the pattern in Figure 3. Since
G is slice we obtain that the link J.G/ is strongly concordant to J.U /; hence, K is
concordant to B.

Example 2.4 Let m be an integer and Lm be the decorated link on the left-hand side
of Figure 4, which describes a 4–manifold Xm , and observe that Lm satisfies the
hypotheses of Theorem 2.3. After the indicated slides we obtain a diagram of Xm as
the 0–trace of a knot we call Km . By Theorem 2.3, Km is concordant to B, which we
see is isotopic to the right-hand trefoil for all m. We then isotope Lm to get a handle
diagram for Xm as the 0–trace of a knot we call K0m . See Figure 5.

Remark 2.5 In Figure 4 we have illustrated bands fˇig such that banding along fˇig

in the left-hand diagram changes B into a three-component link split from G, where
two components are isotopic to �R , as in the proof of Theorem 2.3. We also kept

0

0m

ˇ1
ˇ2

0

m

Figure 4: A handle diagram for Xm and diffeomorphism to X0.Km/ .
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0

0m 0

�3

m

Figure 5: The same handle diagram for Xm and diffeomorphism to X0.K
0
m/ .

track of fˇig through the diffeomorphism. In practice neither exhibiting nor keeping
track of the bands is necessary; we have included it here to build intuition for the proof
of Theorem 2.3 and demonstrate how Theorem 2.3 can be used to give an explicit
description of the implied concordance.

The diagram we give of Km in Figure 4 can certainly be simplified, but since we
will only be concerned with Km up to concordance and we understand ŒKm� by
Theorem 2.3, we don’t pursue this. This illustrates the usefulness of Theorem 2.3; if
one wants to compare the concordance properties of knots with diffeomorphic traces
one can get a tractable pair by choosing L so that K0 remains relatively simple (in
crossing number perhaps, or whatever is convenient) and since we understand ŒK� it
does not matter if the knot K is complicated.

0

0

Figure 6
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Remark 2.6 The split hypothesis of Theorem 2.3 is essential. For example, consider
the handle diagram L in Figure 6 and let K be the knot obtained from L as in
Theorem 2.1. K is isotopic to the pretzel knot P .5;�3;�3/, which is not slice.

3 Rasmussen’s invariant calculations

In [14], Khovanov introduced a link invariant which takes the form of a bigraded
abelian group. We refer to this group as the Khovanov homology Khi;j .L/. Later,
Lee showed that Kh.L/ can be viewed as the E2 page of a spectral sequence which
converges to Q˚Q [17] and Rasmussen used this to define an integer valued knot
invariant s.K/ [22]. It will suffice for this work to recall the following properties
of s.K/:

Theorem 3.1 [22] For any knot K in S3, the following hold :

(1) js.K/j � 2g4.K/.

(2) The map s induces a homomorphism from C to Z.

(3) rank.Kh.K/0;s.K /˙1/¤ 0.

Corollary 3.2 [22] Suppose KC and K� are knots that differ by a single crossing
change, from a positive crossing in KC to a negative one in K� . Then

s.K�/� s.KC/� s.K�/C 2:

Proof of Theorem 1.1 For a fixed m � 0 let Km and K0m be the knots from
Example 2.4. By Theorem 2.1, X0.Km/ŠX0.K

0
m/, and as remarked in Example 2.4,

g4.Km/D 1 for all m. For m� 0 we will bound the slice genus of K0m from below
by bounding s.K0m/ from below. See Figure 7 for a somewhat reduced diagram of K0

0

with approximately 40 crossings. We make use of the JavaKh routines, available at [4],
to compute Khi;j .K0

0
/. We plot the values rank.Khi;j .K0/˝Q/ in Table 1.

By Theorem 3.1(3) we have s.K0
0
/D 4, and by Corollary 3.2 we have s.K0m/� 4 for

all m� 0. We conclude by appealing to Theorem 3.1(1).

Remark 3.3 It is not hard to check that g4.K
0
m/� 2 for all m 2Z. Hence all bounds

in the above proof are sharp.

We now produce another isolated example of a pair of knots K and K0 with X0.K/Š

X0.K
0/ and g4.K/ ¤ g4.K

0/. This example could also be expanded to infinite

Geometry & Topology, Volume 23 (2019)
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0

�3

Figure 7

families as done with Example 2.4, but we do not pursue that here. This and the knots
in Example 2.4 are only special in that they have K0 with reasonably small crossing
number, allowing us to compute Kh.K0/. We anticipate that Theorem 2.3 can be used
to give abundant examples of knots K and K0 with diffeomorphic traces and distinct
slice genera.

Example 3.4 Let L be the decorated link in the left-hand side of Figure 8. By
Theorems 2.1 and 2.3, L gives a handle decomposition for X Š X0.K/ where K

is concordant to the right-hand trefoil. By performing the slides indicated in the left-
hand side of Figure 8 one obtains a knot K0 with X ŠX0.K

0/, not pictured. In the

0
0

�2

0

Figure 8
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–2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

47 1
45
43 1
41 1 1
39 1
37 1 1 1
35 1 1
33 1 2
31 2 1 1
29 1 1 1
27 1 3 1
25 1 2 1
23 1 1 1 1
21 2 2
19 1 1 1 1
17 1 1 1
15 1 1
13 1 1 1 1
11 1 1

9 1 2 1
7 1 1 1
5 1 1 1
3 1 2
1

–1 1

Table 1

right-hand side of Figure 8 we give a diagram of a knot K00 with fewer crossings; we
claim K00 is isotopic to K0. The isotopy between the diagram of K0 described and the
diagram of K00 given is nontrivial, we provide two options for the careful reader to
confirm the existence of an isotopy. First, they can use SnapPea [24] to confirm that the
diagrams present isotopic knots. Alternatively they can use the Kirby calculator [23]
to view the diffeomorphism f W X0.K

0/! X0.K
00/, which we have located on the

author’s website, and can check that this diffeomorphism sends a 0–framed copy of
�K 0 to �K 00 . We warn that the diffeomorphism f is tedious.

Having confirmed that K0 'K00 it suffices to compute s.K00/. As before we rely on
the JavaKh routines and Theorem 3.1(3). We suppress the output of JavaKh and present
the conclusion, which is that s.K00/ 2 f4; 6g. Since one checks that g4.K

0/� 2, we
conclude s.K0/D 4 and g4.K

0/D 2.
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4 Bijective maps on C which do not preserve slice genus, and
some satellite homomorphism obstructions

4.1 Definitions and notation

Let P W
F

n S1! V be an oriented link in a parametrized solid torus V WD S1 �D2.
By the usual abuse of notation, we use P to refer to both this map and its image.
Define �V D S1 � fx0g for some x0 2 @D

2, oriented so that P is homologous to a
nonnegative multiple n of �V . We call n the (algebraic) winding number of P. Define
the geometric winding number of P to be the minimal number of intersections of P

with the meridional disk for V over all patterns in the isotopy class of P.

Given a pattern P W S1! V , define P to be the pattern obtained from P by reversing
the orientation of both S1 and V ; note that P has diagram obtained from a diagram
of P by changing all crossings and the orientation of P.

For any knot K in S3 there is a canonical embedding iK W V !S3 given by identifying
V with �.K/ such that �V is sent to the unique curve on @�.K/ which is null-
homologous in the exterior of K . Then iK ıP W S1! S3 specifies an oriented knot
in S3, denoted by P .K/ and called the satellite of K by P . As such the pattern P

gives a map from fknots in S3g ! fknots in S3g, which we will also refer to as P. It
is not hard to show that P descends to a well-defined map P W C ! C.

4.2 Bijective operators not preserving slice genus

Theorem 4.1 [9, Proposition 6.13] For a knot K in S3, g0
sh.K/ D g4.K/ if and

only if g4.P .K//� g4.K/ for all winding number 1 satellite operators P with P .U /

slice.

If one ignores the “bijective” conclusion, then Corollary 1.4 follows immediately
from Corollary 1.2 and Theorem 4.1. It is also possible, though quite tedious, to use
the techniques of Cochran and Ray’s proof of Theorem 4.1 to construct an explicit
pattern Qm , not necessarily bijective, which lowers the slice genus of the knots K0m
from the proof of Theorem 1.1. Instead, we show in this section that dualizable patterns,
a classical technique for constructing knots with diffeomorphic 0–traces, readily yield
such a Qm which is bijective.

In order to prove Corollary 1.4 and give the examples, we state the facts we require
about dualizable patterns now. The proof of Proposition 4.2 requires recalling the
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dualizable patterns construction and is thus located in the appendix. It will suffice for
this work to recall the following properties of dualizable patterns; we give the definition
in the appendix.

Proposition 4.2 For any knots K and K0 that arise from Theorem 2.1 there exists
a dualizable pattern P with dual pattern P� such that P .U /'K and P�.U /'K0.
Conversely, for any dualizable pattern P one can express P .U /'K and P�.U /'K0

with K and K0 arising as in Theorem 2.1.

The proof of the above is constructive; in particular, given K and K0 the proof illustrates
how to write down an associated dualizable pattern P.

Theorem 4.3 [11, Proposition 2.4; 21, Theorem 1.12] For any dualizable pattern P

and knot K in S3, we have

P .P�.K//�K � P�.P .K//:

In other words, dualizable patterns induce bijective maps on C.

Proposition 4.4 [21, Proposition 4.3] If patterns J and P are both dualizable then
so is P ıJ.

Definition 4.5 For a pattern P, define P# to be the geometric winding number 1

pattern with P#.U /' P .U /.

Remark 4.6 All geometric winding number 1 patterns are dualizable.

Proof of Corollary 1.4 Let Km and K0m be the knots from the proof of Theorem 1.1
and let Pm be the dualizable pattern with Pm.U / ' Km as in Proposition 4.2 and,
as such, P�m.U /'K0m . The pattern Pm is illustrated in Figure 9. Define the pattern
Qm WD .Pm/# ıPm . By Proposition 4.4 and Remark 4.6, Qm is dualizable, hence by
Theorem 4.3 is bijective on C, and we see that Qm.U /' Pm.U / # Pm.U / is slice.
We conclude by observing

Qm.K
0
m/'Qm.P

�
m.U //' Pm.U / # Pm.P

�
m.U //� Pm.U /'Km;

where the concordance follows from Theorem 4.3.

Geometry & Topology, Volume 23 (2019)
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m

Figure 9

4.3 Satellite homomorphism obstructions

Satellite operators which induce bijections that fix the identity are a priori candidates
for automorphisms of C. Motivated by studying this for our examples, we prove
Theorems 1.5 and 4.8.

We use the shorthand nK to denote #n.K/ and define an additive slice genus bound
to be any knot invariant � with �.K/� g4.K/ and �.J # K/� �.J /C �.K/ for all
knots K and J. The classical knot signature, Tristram–Levine signatures, Rasmussen’s
s invariant, Ozsváth and Szabó’s � invariant and many other concordance invariants
from the HFK1 package all give examples of additive slice genus bounds. The slice
genus is not an additive slice genus bound.

We will require:

Proposition 4.7 [7, Proposition 6.3] For any winding number w satellite operators
P and J there is a constant CP;J such that, for all knots K ,

jg4.J.K//�g4.P .K//j � CP;J :

The proposition follows from observing that in S1 �D2 � Œ0; 1� there exists some
genus g cobordism between P and J, and taking CP;J WD g . For details, see [7].

Proof of Theorem 1.5 Suppose P does induce a homomorphism. Then for all n2ZC

we have

g4.P .nK//D g4.nP .K//� �.nP .K//� n�.P .K//� nwg4.K/C nr

for some positive r which is independent from n.

Geometry & Topology, Volume 23 (2019)
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By Proposition 4.7 there exists a constant CP;J such that

g4.P .nK//� CP;J Cg4.J.nK//;

where J is the .w; 1/ cable operator. But we also have

CP;J Cg4.J.nK//� CP;J Cwg4.nK/� CP;J Cwng4.K/:

Hence,
nr Cjwjng4.K/� CP;J Cjwjng4.K/:

By taking n large we get a contradiction.

Theorem 4.8 Suppose P has winding number w and that there exists a knot K ,
a winding number w pattern J, an additive slice genus bound � and a slice genus
bound x� such that

(1) �.P .K// > g4.K/,

(2) x�.J.K0//� �.K0/ for all knots K0 .

Then P is not a homomorphism.

Remark 4.9 (2) is a technical condition. When w D 1, we always have (2) by taking
x� D � and J to be the identity pattern. When w D 0 we never have (2), which is
consistent since the trivial pattern is a winding number 0 homomorphism which lowers
the slice genus of infinitely many K . If jwj > 1 and � behaves sufficiently well on
cables then we have (2) by taking J an appropriate cable and x� D � . For example,
when � 2 f�; sg, taking J to be the .w; 1/ cable works.

Proof Suppose P is a homomorphism. By hypothesis we have

�.nK/� n�.K/� nr C ng4.P .K//

for some r > 0 and all n � 0. By Proposition 4.7 there exists a constant CP;J such
that

g4.J.nK//� CP;J Cg4.P .nK//D CP;J Cg4.nP .K//� CP;J C ng4.P .K//;

where J is the .w; 1/ cable operator. Since by hypothesis

g4.J.nK//� x�.J.nK//� �.nK/;

we get
CP;J C ng4.P .K//� nr C ng4.P .K//:

By taking n large, we get a contradiction.
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Taken together, Theorems 1.5 and 4.8 indicate loosely that any winding number w¤ 0

satellite homomorphism P must have g4.K/�g4.P .K//�jwjg4.K/ for all knots K ,
at least insofar as can be detected by any additive slice genus bound.

We conclude by proving Theorem 1.7 as a final application of these ideas.

Definition 4.10 (see [20]) The stable four genus of a knot K is defined to be

gst.K/ WD lim
n!1

g4.nK/

n
:

It is not known whether there exist any nonamphichiral knots K with gst.K/D 0 or
whether gst.K/D 0 implies that K is torsion on C [20]. It is interesting then that the
existence of certain satellite homomorphisms gives rise to abundant examples of knots
with stable four genus 0 as follows.

Proof of Theorem 1.7 Suppose P and J are any winding number w satellite homo-
morphisms. By Proposition 4.7 there is a constant CP;J with g4.P .nK/�J.nK//�

CP;J for all knots K and integers n. Since P and J are homomorphisms,

P .nK/�J.nK/� nP .K/� nJ.K/' n.P .K/�J.K//:

Hence, g4

�
n.P .K/ � J.K//

�
� CP;J , so P .K/ � J.K/ has stable genus 0. The

conclusions follow by observing that the identity and zero maps arise as winding
number 1 and 0 satellite homomorphisms, respectively.

Appendix

Herein we define dualizable patterns, which are the fundamental object used in the
original construction of knots with diffeomorphic traces, and prove Proposition 4.2.
The definition of dualizable patterns was inspired by examples of Akbulut [2] and was
developed and formalized in work of Lickorish [19] and Brakes [5] independently at
around the same time. Several recent papers on the subject of constructing knots with
diffeomorphic traces, including one by the author, have erroneously failed to reference
Lickorish’s work.

To define dualizable patterns, we fix some conventions. For a pattern P �S1�D2DWV

define �P to be a meridian for P, oriented such that the linking number of P and �P

is 1, and define �V Dfx1g�@D
2 for some x1 2S1, oriented so that �V is homologous
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to a nonnegative multiple of �P . Finally, define the longitude �P of P to be the
unique framing curve of P in V which is homologous to a positive multiple of �V in
V X �.P /.

Definition A.1 Define �W S1 � D2 ! S1 � S2 by �.t; d/ D .t; 
 .d//, where

 W D2! S2 is an arbitrary orientation-preserving embedding. Then, for any curve
˛W S1! S1 �D2, we can define a knot in S1 �S2 by y̨ WD � ı˛W S1! S1 �S2.

We warn the reader that Definition A.2 is somewhat nonstandard; for the equivalence
to the standard definition see [21].

Definition A.2 A pattern P in a solid torus V is dualizable if and only if yP is isotopic
to y�V in S1 �S2.

Since, for a dualizable pattern P, yP is isotopic to y�V in S1 � S2, we have that
S1 � S2 n �. yP / DW V � is a solid torus. By defining �V � to be the image of y�P in
S1 �S2 n �. yP / we equip V � with a natural parametrization. As such we can make
the following definition:

Definition A.3 Define P� to be y�V restricted to S1 �S2 n �. yP /D V �.

Proof of Proposition 4.2 We begin by proving the first assertion. Suppose X satisfies
the hypotheses of Theorem 2.1, and let L be the decorated link which presents the
handle decomposition in the statement of Theorem 2.1. Let ` denote the diffeomorphism
of X described in the proof of Theorem 2.1 obtained from sliding B over G, then
canceling G and R to obtain X0.K/, and let `� denote the analogous diffeomorphism
used to obtain X0.K

0/.

We will consider two other natural handle decompositions of X, described by decorated
links J and J� . To obtain J from L, isotope L so that R has no self-crossings in
the diagram and so that G [DR is a single point. Then slide G under the 1–handle
(across R) as needed until G has no self-crossings in the diagram. Let r denote the
number of slides this required, counted with sign. Then slide G across R �r times as
indicated in the left-hand side of Figure 10. At this point the framing on G is 0 and
lk.G;B/ D 0, but perhaps B \DG ¤ ∅. If this is the case, slide B across R until
B\DG D∅. Define J to be the decorated link associated to the handle decomposition
at this point and define f to be the diffeomorphism of X just described.
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Figure 10

The decorated link J� and diffeomorphism f� are defined in the same way, but with
the roles of B and G reversed.

Considering now the link B [G in the boundary of the 1–handlebody in the handle
description J, we see that both B and G are isotopic to S1 � fptg (to see this for B

consider its image under f� ı f �1 ). As such B � S1 �S2 n �.G/ gives a dualizable
pattern, which we’ll call P, and G � S1 �S2 n �.B/ its associated dual pattern P�.
Since we can cancel G and R in J, we see that X is diffeomorphic to X0.P .U //; let
g denote this handle-canceling diffeomorphism. Similarly let g� denote the canceling
diffeomorphism from J� to X0.P

�.U //.

Now we claim that K ' P .U /. To see this, observe that the orientation-preserving
diffeomorphism g ıf ı `�1j@W S

3
0
.K/! S3

0
.P .U // sends the surgery dual for K to

the surgery dual for P .U /, preserving the framings corresponding to the respective S3

surgeries. By performing these S3 surgeries, g ıf ı `�1j@ yields a map ˆW S3! S3

taking K to P .U /, hence K ' P .U /. That K0 ' P�.U / follows similarly.

The proof of the second statement is similar. Given a dualizable pattern P with dual
pattern P�, one can write down the decorated link J and diffeomorphism g as in the
proof of the first statement. From J we can obtain another handle decomposition of
X WDX0.P .U //; slide B across R until B is isotopic to S1�fptg. If this sequence of
slides required r slides, counted with sign, then perform another �r slides of B over R,
as in the right-hand side of Figure 10. Define L to be the decorated link associated to
the handle decomposition at this point and define h to be the diffeomorphism of X

just described.

Observe that L satisfies the hypothesis of Theorem 2.1, and as before let ` denote the
diffeomorphism of X obtained from sliding B over G, then canceling G and R to
obtain X0.K/, and let `� denote the analogous diffeomorphism used to obtain X0.K

0/.
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From L we use the diffeomorphism f� from before to define another handle diagram J�

of X. By the definition of P� the diffeomorphism g� from before gives a diffeo-
morphism from X to X0.P

�.U //. We then check that K 'P .U / and K0 'P�.U /,
as in the proof of the first statement.
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