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On the asymptotic dimension of the curve complex
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We give a bound, linear in the complexity of the surface, to the asymptotic dimension
of the curve complex as well as the capacity dimension of the ending lamination space.
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1 Introduction

Let † be a closed orientable surface, possibly with punctures. The curve complex
C.†/ of † has played a fundamental role in recent work on the geometry of mapping
class groups. Its hyperbolicity was established by Masur and Minsky [21], who also
introduced many tools used to study its geometry. In [4] Bell and Fujiwara used the
notion of tight geodesics of [21] and a finiteness theorem of Bowditch [7] to prove that
C.†/ has finite asymptotic dimension. This fact was then used by Bestvina, Bromberg
and Fujiwara [5] to show that mapping class groups have finite asymptotic dimension.

Recall that a metric space X has asymptotic dimension � n provided that for every
R > 0 there exists a cover of X by uniformly bounded sets such that every metric
R–ball in X intersects at most nC 1 elements of the cover.

Bowditch’s finiteness theorem was nonconstructive and, as a result, Bell and Fujiwara
were not able to derive any explicit upper bounds on the asymptotic dimension of C.†/.
More recently, Richard Webb [27] gave a constructive proof of Bowditch’s theorem
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2228 Mladen Bestvina and Ken Bromberg

and gave an explicit upper bound, exponential in the complexity of the surface, on the
asymptotic dimension of C.†/.

Asymptotic dimension of any visual ı–hyperbolic space X is closely related to the
topology of its Gromov boundary @X. Buyalo [8] introduced the notion of the capacity
dimension of a metric space and showed that asdimX � capdim @X C 1, where @X is
equipped with a visual metric. (In the context of this paper, capacity dimension is the
same as the Assouad–Nagata dimension.) Subsequently, Buyalo and Lebedeva [10]
showed that when X is a hyperbolic group, equality holds above, and, moreover,
capdim @X D dim @X.

Klarreich [18] identified the boundary of the curve complex with the space EL of
ending laminations, which is a subquotient of the space PML of projective measured
laminations.

In his work on the topology of the ending lamination space, Gabai [11] produced upper
bounds on the covering dimension of EL: dim EL � 4gC p � 4 if † has genus g
and p > 0 punctures, and dim EL� 4g� 5 if † is closed of genus g . We also note
that the case of the 5–times punctured sphere was worked out earlier by Hensel and
Przytycki [16].

Main Theorem capdim EL� 4gCp�4 if p >0 and capdim EL� 4g�5 if pD 0.

Corollary 1.1 asdim C.†/� 4gCp�3 if p > 0 and asdim C.†/� 4g�4 if pD 0.

We note that these numbers are very close to the virtual cohomological dimension
vcdMCG.†/ of the mapping class group, established by Harer [15]: if p D 0 then
vcdD 4g � 5, if p > 0 and g > 0 then vcdD 4gCp � 4, and if g D 0 and p � 3
then vcdD p� 3.

Behrstock, Hagen and Sisto [3] used the Main Theorem to establish a quadratic bound on
the asymptotic dimension of mapping class groups. It is an intriguing question whether
asymptotic dimension for these groups is strictly bigger than the virtual cohomological
dimension. There are groups — see eg Sapir [25] — that have finite cohomological but
infinite asymptotic dimension. However, the authors are not aware of examples where
both are finite but not equal.

Our method is to directly construct required covers of EL via train track neighborhoods
in PML. Exactly such a strategy was employed by Gabai in proving his upper bounds
on covering dimension but we will need to do extra work to gain more metric control
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of the covers. Roughly speaking, train tracks give a cell structure on PML and a cell
structure has a natural dual “handle decomposition” which gives an open cover of the
space of multiplicity bounded by the dimension of the cell structure. By making the
cell structure finer and showing that the multiplicity of the cover does not increase
in EL, Gabai obtains his upper bound. Note that cells of small dimension will not
contain ending laminations, which is why in both Gabai’s work and ours the dimension
bound is smaller than the dimension of PML.

To bound the capacity dimension one needs to find, for any sufficiently small � > 0,
covers that have bounded multiplicity and where all elements have diameter bounded
above by � while the Lebesgue number is bounded below by a fixed fraction of � . This
last property will not be satisfied by the family of covers constructed by Gabai.

The main motivation for this work is an attempt to find an alternative proof of the finite-
ness of asymptotic dimension of the curve complex, one that would generalize to the hy-
perbolic Out.Fn/–complexes and provide an approach to proving asdim Out.Fn/ <1.
The notion of tight geodesics, used in the Bell–Fujiwara argument, does not seem to
carry over to the Out.Fn/–complexes, and we hope that the ideas in this paper will
provide a new blueprint for attacking this question.

For readers familiar with train tracks we give a brief sketch of the construction of the
cover which will highlight the difficulties in our approach. The set of laminations
carried by a train track � is naturally parametrized by a polyhedron P.�/ in Rn .
(In what follows we will blur the distinction between a measured lamination and a
projective measured lamination.) Note that � carries both ending laminations and
simple closed curves. We denote the former as P1.�/ and the latter as S.�/. A
basepoint � in C.†/ determines a visual metric � on EL. To estimate the visual
diameter of P1.�/ we take the curve a 2 S.�/ that is closest to � in C.†/ and then
the diameter of P1.�/ is coarsely A�d.a;�/ for some fixed constant A.

To construct our cover we will repeatedly split train tracks along large branches. The pro-
cess of splitting � gives two train tracks �C and �� such that P.�C/[P.��/DP.�/
and P.�C/ \ P.��/ D P.�/, where � D �C \ �� is a train track with P.�/ a
codimension one face of both P.�C/ and P.��/. To start the construction we take a
cell structure on PML determined by a finite collection of train tracks. If the visual
diameter of any of the top-dimensional cells is larger than a fixed � > 0 then we
split. We continue this process and stop splitting a top-dimensional cell only when its
diameter is � � .
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At any finite stage of this construction we will obtain a cell structure on all of PML. In
particular every simple closed curve will be carried on some train track. For example,
one of the cells must contain the basepoint � and therefore will have large visual
diameter. It immediately follows that we will need to split infinitely many times to get
a collection of cells that have small visual size.

At the end of the construction we will have a countable collection of train tracks
�1; �2; : : : , each determining a top-dimensional cell. The collection of these cells is
locally finite and covers all filling laminations. To complete the proof we will need to
establish the following facts:

� Lemma 5.6 All cells P1.�i / have visual diameter bounded above by � and
bounded below by a fixed fraction of � .

� Proposition 3.21 The cells of dimension less than dimPML obtained by
intersecting P.�i / also have the form P.�/ and if P1.�/ is nonempty its
visual diameter is also bounded below by a fraction of � .

� Proposition 4.4 If a 2 S.�i / and b 2 S.�j / are curves that are close in C.†/
then both a and b are close to either
(i) a curve in S.�/D S.�i /\S.�j / where � is a subtrack of both �i and �j ,

or

(ii) the basepoint � (when compared to maxfd.�; S.�i //; d.�; S.�j //g).

The key to proving the first bullet is the work of Masur and Minsky on splitting
sequences (see Theorem 3.10). The second bullet follows from an adaptation of the
work of Hamenstädt [14, Lemma 5.4] (see Propositions 3.19 and 3.20). The third
bullet is the key technical advance of the paper and is proved using a version of Sela’s
shortening argument. (See Lemma 3.23.)

Plan of the paper In Section 2 we consider a subdivision process on polyhedral cell
structures abstractly. In Section 3 we review train track theory, and prove our main
technical result, Lemma 3.23. In Section 4 we apply this analysis and show that the
visual size of the cover of FPML we produce is controlled. In Section 5 we finish
the argument by producing the required “handle decomposition” from our cover and
checking that it satisfies the definition of capacity dimension. Finally, in the appendix
we prove a technical result (Corollary A.6) about train tracks that is presumably known
to the experts. It was a surprise to us that there are nonorientable train tracks that carry
only orientable laminations, and large birecurrent train tracks that do not carry filling
laminations. These phenomena are discussed in the appendix.
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2 Good cell structures

In this section we consider abstract cell structures obtained by successively subdividing
cells in an initial cell structure.

2.1 Polytopes

A polytope in a finite-dimensional vector space V Š Rn is a finite intersection of
closed half-spaces.1 The dimension of a polytope U � V is the dimension of its affine
span. A face of U is the intersection U \H for a hyperplane H � V such that U is
contained in one of the two closed half-spaces of H. The relative interior of a face
is its interior as a subspace of H. Faces of a polytope are also polytopes, a polytope
has finitely many faces, and a face of a face is a face. The union of proper faces of a
polytope is its boundary, and the complement of the boundary is the (relative) interior.
See [13] or [28]. Our main example of a polytope is the set (a cone) V.�/ of measured
laminations carried by a train track � on a surface †.

2.2 Cell structures

Definition 2.1 Let U � V be a polytope. A finite collection C of subsets of U which
are also polytopes of various dimensions, called cells, is a cell structure on U if

(C1)
S
C2C C D U,

(C2) when two cells intersect, their intersection is a union of cells,

(C3) distinct cells have disjoint relative interiors,

(C4) every face of every cell in C is a union of cells.

Remark 2.2 We are really thinking about the filtration (into skeleta) U 0 � U 1 �
� � � � U n D U, so that the components of U i �U i�1 are open i –dimensional convex
polytopes whose faces are subcomplexes.

1Some authors require polytopes to be compact. Our polytopes will be cones on compact spaces.
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Figure 1: A hexagon subdivided 3 times results in a good cell structure with
twelve 0–cells, fifteen 1–cells and four 2–cells.

Definition 2.3 A cell structure C on an n–dimensional polytope U is good if

(C5) for every i < n, every i –dimensional cell C 2 C is the intersection of i –
dimensional faces of >i –dimensional cells in C that contain C.

For example, a convex polygon with subdivided edges is not a good cell structure since
(C5) fails. However, starting with a convex polygon and subdividing by line segments
results in a good cell structure. See Figure 1.

2.3 Subdivision

Let C be a good cell structure on a polytope U of dimension n and let W be the
intersection of a codimension 0 cell � 2 C with a hyperplane (thus we are assuming
dim� D dimU D n). We will assume that the hyperplane intersects the relative
interior of �. Construct a new collection C0 by “cutting by W ”. More precisely,
replace each cell E 2 C which is contained in � and with the property that E �W
is disconnected by the following three cells: E \W and the closures E1 and E2
of the two complementary components of E �W . Thus W is a codimension 1 cell
of C0. The cells Ei have the same dimension as E, while dim.E \W /D dimE � 1.
Figure 1 represents three consecutive subdivisions of a good cell structure consisting
of a hexagon and its faces.

Lemma 2.4 The collection C0 obtained from a good cell structure C by subdividing is
a good cell structure.

Proof As in the notation of the definition of subdivision we subdivide a codimension 0
cell � 2 C by a codimension 1 cell W . We leave it as an exercise to prove that C0

is a cell structure and argue only that it is good. We show that an i –cell C 0 of C0
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with i < n is the intersection of i –faces of >i –cells containing C 0. Let D be this
intersection. Note that D � C 0 so we only need to show that C 0 is not a proper subset
of D.

Let C 2 C be the smallest cell containing C 0. Note that either dimC D dimC 0 (and
possibly C D C 0 ) or dimC D dimC 0C 1. Let E 2 C be a cell that has a face F that
contains C. Then there will be a cell E 0 �E (possibly equal to E ) in C0 with a face
F 0 �F and F 0 �C 0. By letting E vary over all cells that have faces containing C we
see that D �C. If C DC 0 we are now done. If not then C is disconnected by W and
in C becomes three cells, C1 , C2 and C \W , with C 0 being one of these three cells.
Similarly, after subdivision � becomes three cells, �1 , �2 and �\W DW , with C1
and C2 contained in a face of �1 and �2 , respectively. In particular, if C 0 D C1 (or
C 0 D C2 ) then C is contained in a face of �1 (or �2 ) but that face doesn’t contain
any points in CnC 0 so we must have that C DD. If C 0 D C \W then C 0 is a face
of W but since W doesn’t contain any points in CnW we have that C DD in this
case also.

Remark 2.5 When E has codimension 1 and U is a manifold (eg when U is a
polytope), the intersection in (C5) consists of (at most) two elements. But when the
codimension is > 1 the argument does not produce a uniform bound on the number of
faces required.

Corollary 2.6 Suppose C is a good cell structure. If a cell E 2 C of dimension
i < n has m codimension 1 faces, then E can be written as the intersection of �m
i –dimensional faces of cells in C of dimension > i .

Definition 2.7 A (finite or infinite) sequence C0; C1; : : : of cell structures on U is
excellent if

(E1) C0 consists of Up ’s and their faces,

(E2) for i �1, Ci is obtained from Ci�1 by the subdivision process along codimension
0 cells described above, or else Ci D Ci�1 .

By Lemma 2.4, the cell structures in an excellent sequence are good cell structures.

Remark 2.8 Easy examples in R3 show that it is not true in general that an i –cell is
the intersection of i –faces of codimension 0 cells. eg consider the plane x D 0 and
half-planes z D 0, x � 0 and y D 0, x � 0.
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Remark 2.9 This lemma is where our cell structure differs from Gabai’s. For our
cell structure we only subdivide cells of positive codimension if they are induced by
subdivisions of top-dimensional cells. The proposition insures that when doing this all
cells are defined via train tracks (ie they are of the form V.�/ where � is a train track;
see Proposition 3.19). Gabai also needs this property but he achieves it by subdividing
cells of positive codimension. We do not want to do this as the visual diameter of these
cells may become arbitrarily small. See Figure 2.

Figure 2: The cell drawn in a thick line arises as the intersection of top-
dimensional cells. We do not want to subdivide it further as this would make
the visual size too small.

3 Train tracks

3.1 Notation and background

Fix a surface † of finite type. In what follows all constants will depend on the topology
of †. We will assume the reader is familiar with the theory of train tracks. The standard
reference is [24]. See also [21; 14] for introductions to the theory. A quick definition
is that a train track in a surface † is a smooth graph with a well-defined tangent line
at every point, including at the vertices, such that no complementary component is a
(smooth) disk, a monogon, a bigon or a punctured disk, and so that every edge can
be extended in both directions to a smoothly immersed path (these are called legal
paths or train paths). All our train tracks will always be generic (ie all vertices have
valence 3) and in general they will be recurrent and transversely recurrent (birecurrent).
However, there will be occasions when nonrecurrent tracks will appear. A train track
� � † is large if each complementary component is homeomorphic to a disk or a
once-punctured disk. A train track is maximal if all complementary components are
triangles or punctured monogons, with the exception of the punctured torus, where a
maximal train track contains a single punctured bigon in its complement.
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3.1.1 Transverse measures The edges of the train track are branches and the vertices
are switches. At each switch of a generic train track � � † there are three incident
half-branches. Two of these are tangent (ie determine the same unit tangent vector)
and are called small, while the third is a large half-branch. A branch whose both
half-branches are large is called large. If both half-branches are small then the branch
is small. Otherwise the branch is mixed.

A transverse measure on a (generic) train track is an assignment of nonnegative weights
to each branch that satisfy the switch equations. That is, at each switch the sum of
the weights of the two small half-branches should be equal to the weight of the large
half-branch. A transverse measure determines a unique measured lamination on †.
These are the laminations carried by � .

A train track is recurrent if it admits a transverse measure which is positive on every
branch. All of our train tracks are going to be transversally recurrent; see [24] for
the definition. We will not use this property directly, but most results in the literature
assume it, and further there is no harm doing so as transverse recurrence persists
under splits and subtrack moves. A train track is birecurrent if it is both recurrent and
transversally recurrent.

The set of all measured laminations on † is denoted by ML and the set of measured
laminations carried by � is denoted by V.�/. Thus V.�/ is the closed positive cone
in the vector space of real weights on the branches of � satisfying the (linear) switch
equations; in particular, V.�/ is a polytope. We denote by PML the projective space
of measured laminations and for a train track � we let P.�/ � PML be the set of
projective measured laminations carried by � . Then P.�/ can be identified with the
projectivization of V.�/�f0g. We will often blur the distinction between a measured
lamination and its projective class.

We also denote by FPML� PML the subset of those laminations that are filling, ie
whose complementary components are disks or punctured disks. Given a measured
lamination � 2ML (or PML/ we let Œ�� be the underlying geodesic lamination.

We have a quotient map FPML! EL to the space of ending laminations, defined
by � 7! Œ��. Recall that Klarreich [18] showed that EL is the Gromov boundary of the
curve complex C.†/. Note that in general if �i 2 FPML is a sequence with limit �
then Œ�� may be a proper subset of the Hausdorff limit of Œ�i �.

For a train track � let P1.�/D P.�/\FPML.
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At each switch the tangent direction gives a way to compare the orientation of each
branch adjacent to the switch. A train track is orientable if each branch can be given
an orientation that is consistent at each switch.

When � is a generic birecurrent train track we have 1
3
jbj D 1

2
jvj D ��.�/, where jbj

and jvj denote the numbers of branches and switches, respectively.

Lemma 3.1 [24, Lemma 2.1.1] Let � be a connected recurrent train track. Then the
dimension of V.�/ is 1

3
jbj if � is nonorientable and 1

3
jbjC 1 if � is orientable.

Sketch of the proof Suppose first that � is nonorientable. Given a switch v , there
is a train path that starts and ends at v , and the initial and terminal half-branches are
the two small half-branches at v . This path assigns weights to the branches of � that
satisfy all switch equations except at v . This shows that the switch equations are
linearly independent, proving the assertion.

Now suppose � is orientable. Choose an orientation and write each switch equation
as the sum of incoming branch(es) equals the sum of outgoing branch(es). Then
summing all switch equations yields an identity, with each branch occurring once on
both sides. Thus one switch equation is redundant, and we need to argue that the
others are independent. Let v and w be two distinct switches. Choose a train path that
connects v to w . This path assigns weights to all edges, and the switch equations are
satisfied except at v and w . This proves the claim.

3.1.2 Faces of V.� / There is a bijection between faces of V.�/ and recurrent sub-
tracks of � . (Here we allow train tracks to be disconnected and to contain components
that are simple closed curves.) A subtrack of � may not be recurrent but any track has
a unique maximal recurrent subtrack.

3.1.3 Splitting Starting with a maximal, birecurrent train track � we will describe
a splitting operation on train tracks that will us to subdivide V.�/ and produce an
excellent sequence of cell structures on V.�/. We describe this now.

If b is a large branch of � , one can produce two new train tracks �1 and �2 by
splitting b . See Figure 3. We say that �1 is obtained by the left split and �2 by the
right split.

Every lamination that is carried by � will be carried by either �1 or �2 . If a lamination
is carried by both �1 and �2 then it will be carried by the central split � D �1\ �2 ,
obtained from either �1 or �2 by removing the diagonally drawn branch.
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e

�1 �2�

Figure 3: A large branch e in the middle is split in two ways to give train
tracks �1 and �2 .

We have the following facts:

� [24, Lemma 1.3.3(b)] If � is transversely recurrent, so are �1 and �2 and � .

� [24, Lemma 2.1.3] If � is recurrent, then either all three of �1 , �2 and � are
recurrent, or exactly one is recurrent.

It is also easy to see that �1 and �2 are orientable if and only if � is.

3.1.4 Subdivision Now suppose � is a birecurrent train track and b a large branch
of � . We describe a process that subdivides V.�/. There are several cases. Denote by
�1 , �2 and � the left, right and central splits of � along b .

(S1) If all three of �1 , �2 and � are recurrent, the cell V.�/ is a codimension 1 hyper-
plane in V.�/ and cuts it into V.�1/ and V.�2/. Thus dimV.�/D dimV.�i /D

dimV.�/C 1. In this case we are subdividing V.�/ as in Section 2.3.

(S2) If �1 is recurrent but �2 and � are not recurrent then V.�/ D V.�1/ while
V.�2/D V.�/ will be a proper face of V.�/ (possibly empty).

(S3) Suppose � is recurrent, but �1 and �2 are not. Then � is the maximal recurrent
subtrack of both �i and V.�/D V.�i /D V.�/. Since dimV.�/D dimV.�/,
Lemma 3.1 implies that � is nonorientable while � is orientable. Note that if
this case occurs every lamination carried by � is orientable. It may also happen
that � is large while � is not, so we have a situation that a large birecurrent train
track does not carry any filling laminations.
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3.2 Carrying maps, stationary and active sets

If � and � are train tracks then a map �! � is a carrying map if it is locally injective
on each edge and takes legal train paths to legal train paths. We also say � is carried
by � and we are implicitly assuming some explicit carrying map has been chosen. We
say that a carrying map �! � is fully carrying if it is a homotopy equivalence, and we
then write �� � . If � is a lamination carried by � , we write �! � for the carrying
map. If moreover this map induces a bijection between complementary components
that preserves the topology and numbers of sides and punctures, we say that � fully
carries � and we write �� � . Thus in this case splitting � according to � always
produces train tracks that fully carry �.

Our definition of a track fully carrying a lamination is stronger than what is used in [11],
where it is only assumed that any realization of � as a measured lamination will be in
the relative interior of V.�/.

If �1 is a splitting of � there is a unique (up to homotopy rel vertices) full carrying
map �1� � that is a bijection on vertices and is a homeomorphism outside a small
neighborhood of the large branch where the split occurs. If �1 is obtained from a finite
sequence of splittings of � , we will always assume that the carrying map �1� � is a
composition of such maps.

If � is obtained from � by some finite combination of splits and central splits, we write
� s
�! � . If � is obtained by a finite sequences of splits only then � is fully carried

by � , and we write � s
�� � .

We also use the notation � ss
�! � to mean that � is obtained from � by a sequence

of splits, central splits and passing to subtracks. A single move is either a split, a
central split or passing to a subtrack. The number of splitting moves in � ss

�! � is the
number of splits and central splits in the sequence. When we write � ss

�! � we will
be implicitly assuming that some sequence of splits and subtracks has been chosen.
However, the choice of a sequence is not unique and different choices of sequences
may have a different number of moves.

Given two sequences �1
ss
�! � and �2

ss
�! � , we would like to find a new train track �

with � ss
�! �i for i D 1; 2 and V.�/D V.�1/\V.�2/. To accomplish this we need

to develop some machinery about train tracks. The main technical result we need is
Proposition 3.19.

Given a sequence of � ss
�! � we now want to define the set of active and stationary

branches. To do so we first make some general comments about sets of branches
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and half-branches and their complements. Let S be a collection of branches and
half-branches of a train track � such that if S contains a branch then it contains both
half-branches, and if it contains a half-branch then it contains both other half-branches
at the same switch. Then the complementary branch set A contains a branch b if
neither b nor any of its half-branches are in S and contains a half-branch h if h is
not in S. Note that A will also have the property that if a branch is in A then both
half-branches will be in A but will also have the stronger property that if A contains
both half-branches of a branch then it will contain the branch. We also note that S [A
may not contain all branches of � but it will contain all half-branches. Let jSj be the
union of branches and half-branches in S. We think of half-branches as germs, so if
both half-branches of a branch b are in S but b is not in S, then jSj will be missing
an interval in the interior of b .

A convenient way to visualize the set S is to view the train track � as a graph. Then
switches with incident half-branches in S correspond to some vertices, and branches
in S to some edges in � . These vertices and edges define a subgraph �S of � . The
complementary set A similarly corresponds to the maximal subgraph of � disjoint
from �S .

Given train tracks � and � with � ! � a branch b in � is stationary if the carrying
map is a homeomorphism from a neighborhood of b to its image in � . We similarly
define a half-branch to be stationary and let S.� ss

�! � I �/ be the set of stationary
branches and half-branches in � . Note that a half-branch is contained in S.� ss

�! � I �/

if and only if the carrying map is a homeomorphism on a neighborhood of the switch
adjacent to the half-branch to its image. We emphasize that the stationary set depends
on the choice of carrying map and two homotopic carrying maps may have different
stationary sets. In particular, a choice of sequence � ss

�! � determines the carrying
map and hence the stationary set but a different choice of sequence may determine a
different stationary set.

The image of the stationary set in � will be a collection of branches and half-branches,
which we denote by S.� ! � I �/. The carrying map � ! � factors through a train
track � 0 if � ! � is the composition of carrying maps � ! � 0 and � 0! � and we
define S.�! � I � 0/ to be the image of S.�! � I �/ in � 0. The main example for us is
when we have a sequence � ss

�! � and � 0 is a track in the sequence.

The carrying map will restrict to a homeomorphism from jS.�!� I �/j to jS.�!� I �/j.
However, for a general carrying map, the preimage of jS.� ! � I �/j in � may be
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larger than the carrying set. For carrying maps that come from sequences � ss
�! � , this

does not happen.

Lemma 3.2 Let � and � be train tracks with � ss
�! � . The carrying map � ss

�! �

restricts to a homeomorphism from jS.� ss
�! � I �/j to jS.� ss

�! � I �/j and the preimage
of jS.� ss

�! � I �/j in � is jS.� ss
�! � I �/j.

Proof We induct on the number of moves in � ss
�! � . If � ss

�! � is a single move
then the lemma follows by direct examination. If � ss

�! � has m moves then we choose
a train track � 0 such that � ss

�! � 0 ss
�! � with � ss

�! � 0 having m � 1 moves and
� 0 ss
�! � a single move. As

S.� ss
�! � I � 0/D S.� ss

�! � 0I � 0/\S.� 0 ss
�! � I � 0/

and by the induction hypothesis, the carrying map � ss
�! � 0 restricts to a homeomor-

phism from jS.� ss
�! � I �/j to jS.� ss

�! � I � 0/j and the carrying map � 0 ss
�! � restricts

to a homeomorphism from jS.� ss
�! � I � 0/j to jS.� ss

�! � I �/j. Therefore � ss
�! �

restricts to a homeomorphism from jS.� ss
�! � I �/j to jS.� ss

�! � I �/j. A similar
argument show that the preimage of jS.� ss

�! � I �/j in � is jS.� ss
�! � I �/j.

Given trains tracks �1 and �2 in a sequence � ss
�! � and a collection of branches and

half-branches Bi � S.� ss
�! � I �i / for i D 1; 2, we write B1D B2 if the bijection from

S.� ss
�! � I �1/ to S.� ss

�! � I �2/ takes B1 to B2 .

We can define the set of active branches A.� ss
�! � I � 0/ to be the complementary

branch set of the stationary branches S.� ss
�! � I � 0/, where � 0 is a train track in the

sequence � ss
�! � .

Recall that in general if two half-branches of a track are in the stationary set, the full
branch may not be. However there is one special case where this does hold.

Lemma 3.3 Let � and � be train tracks with � ss
�! � . If b is a branch in � such that

both of its half-branches are contained in S.� ss
�! � I �/, then b 2 S.� ss

�! � I �/.

Proof We first observe how the lemma can fail for S.� ss
�! � I �/. Let b0 be a branch

in � with both half-branches in S.� ss
�! � I �/. Under the carrying map � ss

�! � the
branch b0 will map to a legal path that starts and ends at a switch. (Here we are using
that � ss

�! � takes switches to switches by construction.) Then b0 2 S.� ss
�! � I �/ if

and only if the legal path is a single branch in � .
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In our case the half-branches of b are in S.� ss
�! � I �/ and as the carrying maps are

good the preimage of each will be a single half-branch in � and therefore the preimage
of b will be a single branch b0 in � . Then, by the above paragraph, b0 2 S.� ss

�! � I �/

and its image, b , will be in S.� ss
�! � I �/.

Corollary 3.4 Let �1 , �2 and � be train tracks with �i
ss
�! � for i D 1; 2. Then

A.�1 ss
�! � I �/� S.�2 ss

�! � I �/ if and only if A.�2 ss
�! � I �/� S.�1 ss

�! � I �/.

Proof As the set of half-branches of � is the disjoint union of the half-branches in
S.�i ss
�! � I �/ and A.�i ss

�! � I �/, we only need to check full branches. In particular, if
A.�1 ss

�! � I �/�S.�2 ss
�! � I �/ and b is a full branch in A.�2 ss

�! � I �/, then we need
to show that b is in S.�1 ss

�! � I �/. If b is not in S.�1 ss
�! � I �/ then by Lemma 3.3

a half-branch h of b is not in S.�1 ss
�! � I �/ and therefore h 2 A.�1 ss

�! � I �/ �

S.�2 ss
�! � I �/. However, if h2 S.�2 ss

�! � I �/ then b …A.�2 ss
�! � I �/, contradicting

our assumption.

We say that �1
ss
�!� and �2

ss
�!� are disjoint if either of the conditions of Corollary 3.4

hold.

Lemma 3.5 Let �n
ss
�! �n�1

ss
�! � � �

ss
�! �0 be a sequence of moves and �0 another

train track such that �0
ss
�! �0 with �n

ss
�! �0 and �0

ss
�! �0 disjoint. Then there

exists a sequence �n
ss
�! �n�1

ss
�! � � �

ss
�! �0 such that

(a) �n
ss
�! �0 has the same number of moves and splitting moves as �n

ss
�! �0 ;

(b) �i
ss
�! �i where the sequence has the same number of moves and splitting moves

as �0
ss
�! �0 ;

(c) A.�i ss
�! �i I �i /� S.�n ss

�! �0I �i / and A.�i ss
�! �0I �i /� S.�i ss

�! �i I �i /;

(d) �i
ss
�! �i and �n

ss
�! �i are disjoint ;

(e) V.�i /D V.�i /\V.�0/.

Proof Assume that �i
ss
�! �i has been constructed. We will first construct a track

�iC1 with �iC1! �iC1 and then show that it can be realized as a sequence of moves.
The move �iC1

ss
�! �i is either a splitting move or a subtrack move on a branch b of �i .

As �i ! �i and �n
ss
�! �i are disjoint we have b 2 S.�i ! �i I �i /, so the preimage

of b in �i is a branch b0 of the same type and we can perform the same move on b0 to
form �iC1 . The carrying map �i ! �i gives a map from jS.�iC1 ss

�! �i I �iC1/j to

Geometry & Topology, Volume 23 (2019)



2242 Mladen Bestvina and Ken Bromberg

jS.�iC1 ss
�! �i I �iC1/j. If the move is a right or left split then the complement of the sta-

tionary set (for both �iC1
ss
�!�i and �iC1

ss
�!�i ) is the neighborhood of a small branch.

If it is a central split or a subtrack move then the complement will be the interior of two
branches. In all cases the map from jS.�iC1 ss

�! �i I �iC1/j to jS.�iC1 ss
�! �i I �iC1/j

extends to a carrying map �iC1
ss
�!�iC1 that is a homeomorphism in the complement of

the two stationary sets. In particular, the active set A.�iC1 ss
�! �iC1I �iC1/ is contained

in the stationary set S.�iC1 ss
�! �i / and the carrying map �iC1

ss
�! �i takes it homeo-

morphically to A.�i ss
�! �i I �i /. Therefore, as A.�i ss

�! �i I �i / � S.�n ss
�! �0I �i /,

we have A.�iC1 ss
�! �iC1I �iC1/ � S.�n ss

�! �0I �iC1/. The second inclusion in (c)
follows from the first exactly as in Corollary 3.4. The first inclusion in (c) implies that
A.�iC1 ss

�! �iC1I �iC1/� S.�n ss
�! �iC1I �iC1/ and therefore (d) holds.

To see that �iC1! �iC1 can be realized as a sequence we observe that if �0
ss
�! �0 is

a single move then so is �iC1! �iC1 . In general we induct on the number of moves
in �0

ss
�! �0 .

For (e) we observe that V.�iC1/ � V.�iC1/ \ V.�i /. Let � be a lamination in
V.�iC1/ \ V.�i / � V.�i /. Then � is realized by transverse measures mi , miC1
and m0i on �i , �iC1 and �i . Then mi and miC1 will agree on the stationary set of
�iC1

ss
�! �i and m0i and mi will agree on the stationary set of �i

ss
�! �i . By examining

the various cases we see that there is a transverse measure m0iC1 on �iC1 such that
m0iC1 agrees with m0i on the stationary set of �iC1

ss
�! �i and m0iC1 agrees with miC1

on the stationary set of �iC1
ss
�! �i . For any single move transverse measures on

each of the tracks that agree on the stationary set will determine the same lamination.
Therefore, m0iC1 realizes �, so V.�iC1/ D V.�i /\ V.�iC1/. As V.�iC1/ � V.�i /
and V.�i /D V.�i /\V.�0/, this implies that

V.�iC1/D V.�iC1/\V.�i /D V.�iC1/\V.�i /\V.�0/D V.�iC1/\V.�0/:

Lemma 3.6 Let b 2 A.� s
�! � I �/ be a large branch in � . Then there exists a train

track � 0 with � 0 s
�! � a single move on b and � s

�! � 0 with the sequence having at
most the same number of moves as � s

�! � .

Proof Assume that the sequence � s
�! � has been chosen so that the move on b occurs

as early as possible. More concretely, given any sequence � s
�! � there exist tracks �1

and �2 in the sequence such that �1
s
�! �2 is a single move, and b 2 S.�1 s

�! � I �/

but b … S.�2 s
�! � I �/. We assume that the sequence has been chosen minimizing the

number of moves in �2
s
�! � .
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Let �2
s
�! �3 be the next move in the sequence. This will be a move on a large

branch b0 in �3 . As b 2 S.�2 s
�! � I �2/ we also have b 2 S.�2 s

�! �3I �2/. In
particular, b is also a large branch in �3 and it is distinct from b0. We then let � 02

s
�! �3

be the same move on b as �1
s
�! �2 and note that b0 2 S.� 02

s
�! �3I �3/, so b0 is a

large branch in � 02 and we can choose � 01
s
�! � 02 to be the same move as �2

s
�! �3 .

By direct examination we see that � 01 D �1 , so we have made a new sequence � s
�! � ,

where the move on b occurs earlier, a contradiction.

Lemma 3.7 Let � and � be train tracks with � recurrent. If � ss
�! � and V.�/

intersects the relative interior of V.�/ then � s
�! � .

Proof If V.�/ intersects the relative interior of V.�/ then the carrying map � ss
�! �

must be surjective. Let � 0 ss
�! � be the first move. This map must be surjective and

for a single move this can only happen for a split or central split. If � ! � 0 is not
surjective, then � 0 s

�! � is a split and the image of � in � 0 includes all edges except
the diagonal. Thus we can replace the first split with the central split and proceed by
induction.

Lemma 3.8 Let � be a train track and b a branch. Then there exists a nonempty
collection of large branches B such that if � is a train track and � s

�! � with
b 2A.� s

�! � I �/, then every branch in B is in A.� s
�! � I �/.

Proof If b is large then BD fbg. If not, consider a small half-branch b1 of b . There
is a unique large half-branch b02 adjacent to b1 and let b2 be the other half-branch of
the branch B2 that contains b02 . If B2 (ie b2 ) is large then we note that B2 must be
split before b becomes active. If b2 is small, we continue inductively and construct
half-branches b3; b4; : : : ; bk ending in a large half-branch bk (see [24, page 127; 14,
page 574]) and note that the associated large branch Bk must split before b does.
The inductive process must terminate with a large half-branch for otherwise some
half-branch will repeat and, by the same argument, none of the branches listed will
ever be active. Thus B can be taken to have cardinality 1 or 2.

3.3 Splitting sequences and excellent cell structures

Given a maximal birecurrent train track � we describe a construction of an excellent
sequence of cell structures Cj for j D 0; 1; : : : on the polytope V.�/.

We start by defining C0 to consist of V.�/ and its faces. Inductively, each top-
dimensional cell E of Cj will correspond to a birecurrent track �E such that EDV.�E /.
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To define CjC1 , choose a top-dimensional cell E of Cj and a large branch b of �E .
Let �1 , �2 and � be the left, right and central splits of �E along b . We now consider
the three cases (S1)–(S3) as in Section 3.1.4.

If all three of �1 , �2 and � are recurrent, we split E D V.�E / along the hyper-
plane V.�/, yielding new top-dimensional cells V.�1/ and V.�2/, and we subdivide
all cells that are cut by this hyperplane as described in Section 2.3.

If �1 is recurrent but �2 and � are not, then V.�1/D V.�E / and we define CjC1D Cj
and �E D �1 . We proceed similarly if �2 is recurrent but �1 and � are not.

The last case is when � is recurrent, but �1 and �2 are not. However, this would imply
that � is not maximal and therefore not a top-dimensional cell by Lemma 3.1.

A sequence Cj obtained in this way is said to be obtained by a splitting process from � .
Note that if E D V.�E / is a top-dimensional cell in Ci and if E 0 D V.�E 0/ is a
top-dimensional cell in Cj such that j > i and E ¨ E 0, then �E 0

s
�! �E and the

sequence of splits and central splits contains at most one central split.

We have two goals for the next few sections:

� We will show that every every cell of Cj has the form V.�/ for a suitable
birecurrent train track � . Here the key is to show (under suitable restrictions)
that if �1 and �2 are train tracks then V.�1/\V.�2/D V.�/ for a train track � .
One difficulty is that the dimension of the intersection may be less then the
dimension of the original cells.

� We also need to control the “size” of the individual cells. We need to both
show that for any ending lamination � 2 V.�/ we can subdivide so that the
cell containing � is small but also that the size of any proper face of cell is
comparable to the size of the cell.

The main result we need is Proposition 3.21.

3.3.1 The curve graph and vertex cycles We denote by C.†/ the curve graph of †.
Its vertices are isotopy classes of essential simple closed curves on †, and two vertices
are connected by an edge if the corresponding classes have disjoint representatives.
When † has low complexity, C.†/ can be empty or discrete, and in the sequel we
will always assume that C.†/ contains edges. In that case, C.†/ is connected and the
edge–path metric is ı–hyperbolic [21].

Geometry & Topology, Volume 23 (2019)



On the asymptotic dimension of the curve complex 2245

The train track � carries a curve that crosses each branch at most twice, and if it crosses
a branch twice, it does so with opposite orientations. Such curves are the vertex cycles
of � . To a train track � � † we associate the sets B.�/ � C.†/ consisting of all
vertex cycles for � , and the set S.�/� C.†/ of all curves carried by � . We think of
B.�/� S.�/ as a thick basepoint of S.�/. It is a nonempty uniformly bounded subset
of S.�/.

3.3.2 Splitting sequences and the geometry of the curve graph We begin with an
elementary lemma relating a single splitting to the geometry of the curve graph.

Lemma 3.9 Suppose � ss
�! � is a single move. Then

d.B.�/; B.�//

is uniformly bounded.

Proof Vertex cycles in subtracks are also vertex cycles in the track. In the case of
splittings, the intersection number between a vertex cycle of � and a vertex cycle of �i
is uniformly bounded, and so is the distance in C.†/.

Given a sequence � ss
�! � , the previous lemma implies that the corresponding sequence

of vertex cycles is a coarse path in C.†/. It is a theorem of Masur and Minsky that
given a sequence of carrying maps of birecurrent train tracks whose vertex cycles are a
coarse path in C.†/, the sequence of vertex cycles are an unparametrized quasigeodesic.
In our case we know that if � is transversely recurrent then every track in the sequence
will also be transversely recurrent. However, even if � is recurrent, the other tracks
in the sequence need not be, so we don’t automatically get a sequence of birecurrent
tracks. On the other hand, for any carrying map �! � , if � is recurrent then its image
in � will be contained in the largest recurrent subtrack and, furthermore, the largest
recurrent subtrack has the same vertex cycles as the original track. In particular, if we
replace each track in a sequence of moves with its larges recurrent subtrack, we have
the following:

Theorem 3.10 [23, Theorem 1.3; 2, Theorem 1.1] Let �i be a sequence of trans-
versely recurrent train tracks such that �iC1

ss
�!�i is a single move. Then the sequence

B.�i / is a reparametrized quasigeodesic in C.†/ with constants depending only on †.

Lemma 3.11 Let � be a train track. Then S.�/ is quasiconvex, with uniform con-
stants.
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Proof Let a 2 S.�/. Split � towards a . This gives a nested sequence of tracks and
thus a quasigeodesic ga from B.�/ to a that remains in S.�/.

If a; b 2S.�/ then, by hyperbolicity, Œa; b� is coarsely contained in ga[gb �S.�/.

The proof of the following lemma uses a technical result (Corollary A.6) whose proof
is deferred to the appendix.

Lemma 3.12 Assume that P1.�/¤∅. Then S.�/ is the coarse convex hull of the
set of ending laminations carried by � .

Proof As C.†/ is hyperbolic any quasiconvex subset contains the coarse convex hull
of its Gromov boundary. By Klarreich’s theorem, the Gromov boundary of C.†/ is the
space of ending laminations. If i 2S.�/ converge to the boundary then there exist �i 2
P.�/ with �i!�2P.�/ such that i is a component of Œ�i � and the Hausdorff limit of
the i contains the ending lamination Œ��. In particular, the Gromov boundary of S.�/
is exactly the ending laminations in P1.�/, so S.�/ coarsely contains its convex hull.

By Corollary A.6, for any a 2 S.�/, either a is uniformly close to B.�/ or there exists
a sequence of ending laminations �i 2 P1.�/ such that the Hausdorff limit of Œ�i �
contains a . Then the projections of �i to the curve complex of the annulus around a
go to infinity and so, by the bounded geodesic image theorem [22], when j � i the
geodesic between Œ�i � and Œ�j � passes within distance 1 of a . Therefore, either a is
distance at most 1 from the convex hull of S.�/ or it is a bounded distance from B.�/.
However, as S.�/ is quasiconvex, it is coarsely connected. Therefore, S.�/ is the
coarse convex hull of the ending laminations carried by � .

Lemma 3.13 Let � and � be birecurrent train tracks with � ss
�! � . Then B.�/ is

coarsely the closest point within S.�/ to B.�/.

Proof Consider a splitting sequence from � to � . It determines a quasigeodesic
from B.�/ to B.�/. Now, if a 2 S.�/ is any curve, the splitting sequence and the
quasigeodesic can be continued until a crosses every branch at most once. This
extended quasigeodesic ends at a and this proves the claim.

Lemma 3.14 Let � and � be train tracks with � ss
�! � . There exists a constant

C D C.†/ such that if � ss
�! � has C or more moves then A.� ss

�! � I �/ contains a
vertex cycle.

Proof There is a bound, depending only on †, on the number of moves that are
central splits and passing to subtracks. Therefore there will be tracks � 0 and � 0 in the
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sequence � ss
�! � with � ss

�! � 0 s
�! � 0 ss

�! � and � 0 s
�! � 0 having as many moves as

we want, provided C is made large. For each right/left split there will be two branches
that are each mapped to the union of two branches. Similarly, for each central split
there will be two branches that are mapped to the union of three branches. Therefore,
by increasing the number of moves we can guarantee that there is a branch b in � 0 that
is mapped to a legal path in � 0, and hence � , of arbitrary length. Any legal path in �
that is sufficiently long will contain a subpath that closes up and that does not cross
any branch exactly once. Thus all branches it crosses are in the active set. There is
a further subpath that closes up and crosses each branch at most once. This gives a
vertex cycle contained in the active set.

As all constants will only depend on †, this implies the lemma.

Lemma 3.15 Let � , �1 and �2 be train tracks with �1
ss
�! � and �2

ss
�! � dis-

joint sequences. Then there exists a train track � ss
�! �i for i D 1; 2 with V.�/ D

V.�1/\V.�2/ and both

minfd.B.�/; B.�1//; d.B.�/; B.�2//g; minfd.B.�/; B.�1//; d.B.�/; B.�2//g

uniformly bounded.

Proof We apply Lemma 3.5 to �1
ss
�! � and �2

ss
�! � . In particular, we have a train

track � and a sequence � ss
�!�2 that has the same number of moves and splitting moves

as �1
ss
�! � and V.�/D V.�1/\V.�2/. Let C be the constant from Lemma 3.14. If

�1
ss
�! � has less than C moves then the distance bound follows from Lemma 3.9. If

�2
ss
�! � has less than C moves, we swap the roles of �1 and �2 and again the lemma

follows. Therefore we can assume that both �1
ss
�! � and �2

ss
�! � have at least C

moves.

Let � 0 and � 0 be the tracks in the sequences � ss
�! �2 and �1

ss
�! � that are C moves

from � and �1 . In particular, by Lemma 3.5, � 0 ss
�! � 0 with the same number of

moves and splitting moves as � s
�! � :

�

  

~~

� 0

!!

��

�1

  

�2

~~

� 0

  

�
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To bound d.B.�1/; B.�// we observe that as �2
ss
�! � has more than C moves so

by Lemma 3.14 there is a vertex cycle c in jA.�2 ss
�! � I �/j � � . As �1

ss
�! � and

�2
ss
�! � are disjoint it follows that c is in S.�1 ss

�! � I �/ and hence is a vertex cycle
in �1 . This gives our bound on d.B.�1/; B.�//.

More generally, exactly the same argument works on any diamond-shaped diagram
when the arrows represent � C disjoint moves to show that the distance in C.†/
between the vertex cycles of the bottom train track and the train tracks on the sides is
uniformly bounded. Using the upper diamond in the diagram plus symmetry between
�1 and �2 we conclude that B.�1/, B.� 0/, B.�/, B.�2/ and B.� 0/ are all within
uniform distance of each other. Finally we observe that as � ss

�! � 0 is exactly C
moves, we have a uniform bound on d.B.�/; B.� 0// by Lemma 3.9.

When A is a geodesic lamination on †, we denote by M.A/ the lamination obtained
from A by removing all isolated nonclosed leaves. Thus M.A/ consists of closed
leaves and of minimal components and it is the maximal sublamination of A that
supports a transverse measure. We call M.A/ the measurable part of A.

Lemma 3.16 Suppose sequences ai and bi of closed geodesics converge to geodesic
laminations A and B, respectively, in the Hausdorff topology. Assume

(i) both sequences go to infinity in the curve complex C.†/, and

(ii) d.ai ; bi / is uniformly bounded.

Then A and B have equal measurable parts, ie M.A/DM.B/.

Proof It suffices to prove the claim when d.ai ; bi /� 1 for all i . Then A and B have
no transverse intersections. If C is a minimal component of M.A/ that does not belong
to M.B/, then it does not belong to B either, and so for large i the curve bi is disjoint
from the subsurface supporting C (which may be an annulus), contradicting (i).

3.4 Train tracks for cells

Given train tracks � , �1 and �2 with �i
ss
�! � , we would like to find a fourth track �

with V.�/D V.�1/\V.�2/. If all three tracks are maximal and the relative interior
of V.�1/\V.�2/ is open in V.�/, then this is due to Hamenstädt [14]. We begin with
two preliminary results.
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Lemma 3.17 Suppose � ss
�! � and � 0 � � is a subtrack. Then there exists a subtrack

� 0 of � with V.� 0/D V.�/\V.� 0/, � 0 ss
�! � 0 and the number of splitting moves not

exceeding the number of splitting moves in � ss
�! � .

Proof We first assume that � ss
�! � is a single move. The general case will follow by

induction.

The intersection V.�/\V.� 0/ will be a face of V.�/ and hence there will be a subtrack
� 0 � � with V.� 0/D V.�/\V.� 0/. To show that � 0 ss

�! � 0 there are several cases for
each type of move in � ss

�! � :

(1) � ss
�! � is a subtrack move. Then � 0 D � \ � 0 so � 0 is a subtrack of � 0.

(2) � s
�! � is a split or central split along a large branch b and � 0 contains b and

all its adjacent branches. Then � 0 s
�! � 0 is a single move on the same branch b .

(3) � s
�! � is a split along b and one or more of the two large half-branches adjacent

to b in � is not in � 0. Then the restriction of the carrying map � s
�! � to � 0 will

be a switch-preserving homeomorphism, so � 0 is a subtrack of � . See Figure 4.

�

�

� 0

a

a

� 0

Figure 4: If the branch a is removed in � 0 then it also must be removed in � 0.
However, then both small branches adjacent to a must be removed and � 0

will be a subtrack of � .

(4) � s
�! � is a central split and one or more of the half-branches adjacent to b

in � is not in � 0. Then, as in (3), � 0 is a subtrack of � .

(5) � s
�! � is a split and � 0 contains both of the large half-branches adjacent to b

in � and does not contain one or more of the two adjacent small half-branches.
In this case � 0 is isotopic to a subtrack of � and � 0 D � 0. See Figure 5.
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�

�

� 0

Figure 5: Case where � 0 is a subtrack of � .

Lemma 3.18 Let � , �1 and �2 be train tracks such that �1
s
�! � and �2

s
�! � are

not disjoint. Then there exist train tracks �1 � �1 , �2 � �2 and � 0 such that � 0 s
�! �

and �i
ss
�! � 0 with each sequence �i

ss
�! � 0 having less splitting moves than �i

s
�! � :

�1

""

� _

��

�2

||

� _

��

� 0

��

�1

$$

�2

zz
�

Furthermore , V.�1/\V.�2/D V.�1/\V.�2/.

Proof If there is branch that is active in both sequences then by Lemma 3.8 there must
be a large branch b that is active in both sequences. By Lemma 3.6 we can assume
that the first move in both sequences is along b . If it is the same move then � 0 is the
track obtained from this first move and �i D �i . If not then we let � 0 be the central
split on b . First suppose that both �i ! � consist of a single move. For at least one
of them, say �1

s
�! � , this move will be a right (or left) split on b and � 0 will be

obtained from �1 by removing the diagonal, and we set �1D � 0. If �2! � is a left (or
right) split, we similarly put �2 D � 0. Finally, if �2! � is the central split on b , we
have �2 D � 0 D �2 .

In general, when �i ! � have more than one move, we use the above paragraph for
the first move and then apply Lemma 3.17.

Note that in all cases V.� 0/� V.�1/\V.�2/ and V.�i /D V.�i /\V.� 0/. It follows
that V.�1/\V.�2/D V.�1/\V.�2/.
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Proposition 3.19 Let � , �1 and �2 be train tracks such that �i
ss
�! � for i D 1; 2.

Assume that V.�1/ \ V.�2/ ¤ ∅. Then there exist train tracks �˙ and subtracks
� 0i � �i such that

(a) �� ss
�! � 0i

ss
�! �C ss

�! � for i D 1; 2;

(b) � 01
ss
�! �C and � 02

ss
�! �C are disjoint ;

(c) V.��/D V.�1/\V.�2/;

(d) minfd.B.�1/; B.��//; d.B.�2/; B.��//g is uniformly bounded ;

(e) minfd.B.�1/; B.�C//; d.B.�2/; B.�C//g is uniformly bounded.

See
��

  ~~

� 01
  

o O

��

� 02 � o

��
~~

�1

��

�C

��

�2

��

�

Proof If �1
ss
�! � and �2

ss
�! � are disjoint then the proposition follows from

Lemma 3.15 with �C D � and �� the track given by Lemma 3.15. If not, we describe
an algorithm that replaces �1 and �2 with subtracks �1 and �2 and � with a train
track � 0 such that �i

ss
�! � 0 and � 0 ss

�! � . Furthermore one of the following will hold:

(i) dimV.� 0/ < dimV.�/;

(ii) the number of splitting moves in �i
ss
�! � 0 is less than in �i

ss
�! � .

In addition, neither the dimension nor the number of moves ever increases. If �1
ss
�! � 0

and �2
ss
�! � 0 are disjoint then, as above, the proposition follows from Lemma 3.15. If

(i) or (ii) hold, we apply the algorithm to the three new tracks. Both (i) and (ii) can only
happen a finite number of times, so we must eventually have that the two sequences
are disjoint.

We now describe the algorithm. Let � 0 � � be the smallest birecurrent subtrack such
that V.�1/\V.�2/� V.� 0/.

(1) If � 0 is a proper subtrack of � , we let �i � �i be the subtracks given by
Lemma 3.17. In this case, (i) holds.
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(2) If � 0 D � then V.�i / intersects the relative interior of V.�/, so by Lemma 3.7
we can assume that �i

s
�! � . By assumption, �1

s
�! � and �2

s
�! � are not

disjoint and we replace �1 , �2 and � with the tracks �1 , �2 and � 0 given by
Lemma 3.18. In this case, (ii) holds.

Proposition 3.20 Assume that � ss
�! � and that � s

�! � is a central split such that
V.�/\V.�/ is the intersection of V.�/ with a hyperplane that intersects the relative
interior of V.�/. Then there is a central split � 0 s

�! � such that V.� 0/DV.�/\V.�/.

Proof Say � s
�! � is the central split on the large branch b . If b is not in the

stationary set for � ss
�! � , then by Lemma 3.6 we can assume that the first move in

� ss
�! � is on b . But then the hyperplane assumption cannot hold. Thus b is in the

stationary set and is a large branch in � . We define � to be the central split in b . The
conclusion now follows from Lemma 3.5.

Proposition 3.21 Let Cj be an excellent sequence of cell structures obtained by
splitting a train track � . To every cell E 2 Cj one can assign a birecurrent train
track �E satisfying the following:

(1) E D V.�E /.

(2) If E is a top-dimensional cell , then �E is the track associated to E in the
definition of the splitting sequence.

(3) If F �E are cells then �F
ss
�! �E .

(4) There is a constant C D C.†/ such that for each cell F 2 Ck there is a top-
dimensional cell E 2 Ck with F �E and d.B.�E /; B.�F //� C.

In particular, if all top-dimensional cells in Cj have vertex cycles distance at most B
from B.�/ then d.B.�/; B.�E // � B C C while if E � F for a cell F 2 Cj with
d.B.�/; B.�F //� A then d.B.�/; B.�E //� A�C.

Proof We define �E for E 2 Cj by induction on j . When j D 0 each cell E is
naturally associated to a subtrack of � and we define �E to be this subtrack. Now
suppose that �E has been defined for all cells in Cj of dimension > i for a certain
i < n. Let F 2 Cj with dimF D i . By property (C5) of an excellent sequence,
if E1; : : : ; E` are all i –dimensional cells in Cj with F � Es then F D \Es . Let
Fk D E1 \ � � � \Ek . Via induction we have tracks �Fk

with V.�Fk
/ D Fk and if

E 2 Cj with Es �E for some sD 1; : : : ; k then �Fk

ss
�! �E . The track �Fk

is defined
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by applying Proposition 3.19 to �Fk�1
and �Ek

. If �F is not recurrent, we can replace
it with its largest recurrent subtrack. We then set �F D �F`

and this track will satisfy
properties (1)–(3).

To get the distance bound in (4) we observe that Proposition 3.19(c) gives a bound
that is linear in `. While we cannot a priori control the size of `, once we know that
F DV.�F / for the train track �F we observe that the number of codimension one faces
of F is bounded by the number of small branches of �F and hence a constant only
depending on †. In particular there is a subcollection of the E1; : : : ; E` of uniformly
bounded size whose intersection gives F by Corollary 2.6. Applying the argument of
the previous paragraph to this subcollection, we get a track � 0F with V.� 0F /D F and
the distance bound in (4).

Finally we note that while �F and � 0F may not be the same track (and � 0F may not
satisfy (3)), since V.�F / D V.� 0F / the two tracks have the same vertex cycles and
therefore (4) holds for �F also.

Given a lamination � 2 P1.�/ let �i be a sequence of tracks such that �0 D � ,
�iC1

ss
�! �i is a single move and � 2 P1.�i / for all i . We say that the sequence is a

full splitting sequence if for every i and every large branch b in �i there exists an in
such that b 2A.�in

ss
�! �i I �i /.

Proposition 3.22 Assume that � is fully carried by � . Then there exists a full splitting
sequence � D �1; �2; : : : such that � is fully carried by every �i . Moreover, any infinite
splitting sequence starting at � and carrying � is a full splitting sequence. Furthermore,
if �0 is carried by every �i then Œ��D Œ�0�.

Proof The first statement follows from [1, Lemma 2.1]. In fact, the proof of [1,
Lemma 2.1] proves the stronger second statement. The third statement is probably
well known but as we could not find a proof we provide one here. Assume that �0 is
carried by all �i but Œ��¤ Œ�0�. By [24, Corollary 1.7.13] we can find a birecurrent
train track � 0 that carries �, does not carry �0 and is carried by � . Hence it will fully
carry �, but it may not come from a sequence of splits and central splits of � . Instead
we use [24, Theorem 2.3.1] to find a track � with � ss

�! � 0, � ss
�! � and � carried

by � . As all three tracks fully carry �, we in fact have � s
�� � 0 and � s

�� � .

We will show that for sufficiently large i we have �i ! � . As �i carries �0 but � does
not this will be a contradiction. We repeatedly apply Proposition 3.19. Let �C1 D � and
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assume that we have constructed tracks �C1 ; : : : ; �
C
j�1 with �Ci

s
�� �Ci�1 , � s

�� �i ,
�i

s
�� �Ci and � s

�� �Ci and �i
s
�� �Ci are disjoint. As �j

ss
�! �j�1 we have

�j
s
�� �Cj�1 and we can apply Proposition 3.19 to �j

ss
�! �Cj�1 and � s

�� �Cj�1 and
let �Cj D �

C , where �C is as given in the proposition. Note that since � is fully
carried by all of the tracks, all the carrying maps given by Proposition 3.19 are fully
carrying. This also implies that � is in the relative interior of the associated cells so
we also never need to pass to subtracks. In particular, �Cj

s
�� �Cj�1 , � s

�� �j and
�i

s
�� �Cj , so the induction step is complete.

When we apply Proposition 3.19, if �j
s
�� �Cj�1 and � s

�� �Cj�1 are disjoint then
�Cj D �

C
j�1 and � s

�� �Cj�1 and � s
�� �Cj have the same number of moves. If not,

then as �j
s
�� �Cj�1 factors as �j

s
�� �j�1

s
�� �Cj�1 with �j

s
�� �j�1 a single

move and �j�1
s
�� �Cj�1 and � s

�� �Cj�1 disjoint, we have that �Cj
s
�� �Cj�1 is a

single move and � s
�� �Cj has one less move than � s

�� �Cj�1 . This implies that
the composition of sequences � s

�� �Cj
s
�� � has the same number of moves as

the original sequence � s
�� � . In particular, the number of times that �Cj ¤ �

C
j�1 is

bounded by the number of moves in � s
�� � and there must exist an N such that if

j > N then �Cj D �
C

N . The sequence �CN , �N , �NC1; : : : is a full splitting sequence
so, for i sufficiently large, A.�i s

�� �N I �N / is all of �N . The active branches for
� s
�� �N must be disjoint from A.�i s

�� �N I �N / so we must have � D �N and
�N

s
�� � , as desired.

3.5 A shortening argument

In this section we assume that � , � and � are partial train tracks, ie each is a subgraph
of a train track. We allow valence 2 vertices with the turn illegal, or even valence 1
vertices. Even though the main result is used only when � and � are train tracks, the
extra flexibility of passing to subgraphs will make the proof easier. More precisely, we
assume

� � and � are two partial train tracks on †,

� � is the graph that consists of edges that � and � have in common,

� branches of � � � and �� � intersect transversally and any vertex in common
to � and � is also a vertex of � ,

� any lamination carried by both � and � is carried by � , ie

(�) V.�/\V.�/D V.�/:
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Given a triple � D .� I �; �/ as above, define the complexity �.� / to be the pair
.e.�/C I.�; �/; e.�//, ordered lexicographically, where e.�/ is the number of edges
of � and I.�; �/ is the number of transverse intersections between the branches of �
and � . Note that for a given complexity there are only finitely many � up to the action
of the mapping class group.

The number of branches of � is uniformly bounded depending only on the surface †,
so the bound on �.� / really only amounts to the bound on the intersection between
the branches of � and � .

As an example of the extra flexibility, note that if we remove an edge of � from all
three graphs � , � and � , the listed conditions continue to hold, but the new triple has
smaller complexity. In the proof below, the intersection number I.�; �/ will increase
only if e.�/ decreases by at least as much.

Denote by Supp.�/ the support of � , ie the smallest subsurface that contains �
(possibly ∅, or disconnected, or all of †). Thus Supp.�/ D ∅ if and only if � is
contained in a disk.

Lemma 3.23 For every C and every � there is C 0 D C 0.†; C; �/ such that if
�.� /� �, and a 2 S.�/ and b 2 S.�/ with d.a; b/� C, then:

(i) If Supp.�/D∅ then

d.a; B.�//� C 0 and d.b; B.�//� C 0:

(ii) If Supp.�/¤∅; † then

d
�
a; C.Supp.�//

�
� C 0 and d

�
b; C.Supp.�//

�
� C 0:

(iii) If Supp.�/D† then

d.a; S.�//� C 0 and d.b; S.�//� C 0:

In (ii), by C.Supp.�// we mean the set of curves carried by Supp.�/, even when
Supp.�/ is disconnected.

Most of the time when we apply Lemma 3.23, we will have that � and � are subtracks
of some large track ! and � D �\� , and then the condition (�) is standard and quickly
follows from the fact that legal paths in the universal cover are quasigeodesics and that
they are uniquely determined by their endpoints on the circle at infinity. The proof of
Lemma 3.23 is by modifying the tracks and then � and � may develop intersecting
branches.
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If � is a train track or a partial train track and a is carried by � , then the combinatorial
length `� .a/ is the sum of the weights of a .

Proof of Lemma 3.23 We will suppose such C 0 does not exist and obtain a contra-
diction.

(i) If the lemma fails for a particular � , there are sequences of curves an 2 S.�/
and bn 2 S.�/ such that d.an; bn/� C, d.an; B.�// > n and d.bn; B.�// > n. After
passing to a subsequence nj , we may assume that anj

! A and bnj
! B in the

Hausdorff topology, where A and B are geodesic laminations. By Lemma 3.16,
A and B have the same (nonempty) measurable part ƒ, which must be carried by �
by assumption (�). This contradicts the assumption that � is contained in a disk.

(ii) We induct on the complexity.

For each � with �.� / � � where the lemma fails, there are curves a�
n 2 S.�/ and

b�
n 2 S.�/ with d.a�

n ; b
�
n /�C, d

�
a�
n ; C.Supp.�//

�
> n and d

�
b�
n ; C.Supp.�//

�
> n

for every n. We will assume that, subject to these conditions,

`� .a
�
n /C `�.b

�
n /

is minimal possible.

To obtain a contradiction we will find a sequence of triples �i D .�i I �i ; �i / where the
lemma fails with � D �1 and for each �i an infinite sequence fni;j g such that

(1) n1;j D j and fni;j g is a subsequence of fni�1;j g for i > 1;

(2) a
�i
ni;j
2 S.�i /, b

�i
ni;j
2 S.�i /;

(3) d.a
�i
ni;j

; b
�i
ni;j

/� C ;

(4) d
�
a

�i
ni;j

; C.Supp.�i //
�
> ni;j and d

�
b

�i
ni;j

; C.Supp.�i //
�
> ni;j ;

(5) `�i
.a

�i
ni;j

/C `�i
.b

�i
ni;j

/ < `�i
.a

�i�1
ni;j

/C `�i
.b

�i�1
ni;j

/;

(6) for every i and j , `�i
.a

�i
ni;j

/C`�i
.b

�i
ni;j

/ is minimal possible subject to (2)–(4);

(7) �.�i /� �.�i�1/;

(8) �i satisfies (�), ie V.�i /\V.�i /D V.�i /.

By (7) our sequence �i must eventually repeat (up to Mod.†/), so there are k < l
with �k D �.�l/ for some mapping class � . By repeated applications of (5), we have

`�l
.a�l
nl;j

/C `�l
.b�l
nl;j

/ < `�k
.a�k
nk;j

/C `�k
.b�k
nk;j

/;
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obtaining our contradiction to (6), since for large j the curves �.a�l
nl;j

/ and �.b�l
nl;j

/

satisfy (2)–(4) (for i D k ) and have smaller total combinatorial length than a�k
nk;j

and b�k
nk;j

.

We will construct the sequence �i inductively. Assume that �i and the sequence
fni;j g have been defined satisfying the above conditions. We then define a subsequence
fniC1;j g of fni;j g and show that there exists a �iC1 such that (1)–(8) hold with suitable
choices of curves. We first choose the subsequence fniC1;j g so that a�i

niC1;j
! A and

b
�i
niC1;j

! B, where A and B are two geodesic laminations and convergence is with
respect to Hausdorff topology. The construction of �iC1 is more involved.

Lemma 3.16 implies that A and B have the same measurable part ƒ and differ only
in isolated nonclosed leaves. By assumption (8), ƒ is carried by �i . Let x� � �i be
the union of the branches crossed by ƒ. Thus x� is a train track.

Case 1 (x� has at least one illegal turn) Note that ƒ supports a transverse measure
of full support and in particular x� has a large branch (one with maximal transverse
measure). Split along this branch so that ƒ is still carried to obtain a new track �iC1 .

Case 1a The nondegenerate case that such a split is unique (ie the pairs of weights at
the two ends are distinct) is pictured in Figure 6. The vertical segment represents a
large branch of x� and the two branches at the top and at the bottom are also in x� . The
branches pictured on the sides are branches of �i �x� , �i ��i or �i ��i . The splitting
operation consists of cutting along the large branch thus producing two vertical branches
of the split x� , adding the suitable diagonal branch so that ƒ is carried, and attaching
the side branches at exactly the same point, to either the left or the right vertical branch.

Figure 6
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We define �iC1 to be the split version of �i . Thus �iC1 includes the two vertical
branches, the two branches at the top, the two branches at the bottom, the diagonal
branch and any side branches that came from �i � x� . The track �iC1 contains �iC1
and includes side branches that came from �i � x�i , and similarly for �iC1 . Observe
that �.�iC1/D �.�i /, so (7) holds.

Claim For large j , aniC1;j
2 S.�iC1/ and bniC1;j

2 S.�iC1/.

Indeed, there are leaves of ƒ that cross from the upper left (right) to the lower left
(right) branch on the left diagram in Figure 6, and likewise from upper left to lower
right. The same is therefore true for segments of aniC1;j

for large j . This prevents
aniC1;j

from entering the vertical segment say from a side branch on the left and
exiting through a side branch on the right, or the top or bottom right branch. Since
such configurations do not occur, the claim holds.

Thus, after discarding an initial portion of each sequence, properties (2)–(5) hold
(for (4) note that Supp.�iC1/D Supp.�i / and for (5) note that since aniC1;j

contains
segments that cross from upper left to lower left, from upper right to lower right and
from upper left to lower right, the combinatorial length strictly decreases after the split).
Now define a�iC1

niC1;j
and b�iC1

niC1;j
to be a pair of curves that minimize the sum of the

combinatorial lengths, subject to (2)–(5).

It remains to prove (8). Let � be a lamination carried by �iC1 and by �iC1 . It is
therefore carried by �i and �i , so by (8) for �i it is carried by �i . Now we again have
to argue that certain configurations do not occur, eg that leaves of � do not enter on a
left side branch and exit on a right side branch. If this occurs then � would not be
carried by �iC1 or �iC1 .

Case 1b In the degenerate case when both splits carry ƒ (ie when ƒ does not cross
the diagonally drawn branches in Figure 7), we define �iC1 to be the track obtained
from �i by cutting open along the vertical segment. Thus �iC1 does not include either
of the diagonal branches. See Figure 7.

Next, we observe that for large j the curves a�iC1
niC1;j

cannot cross both from top left to
bottom right and from top right to bottom left, and the same is true for b�iC1

niC1;j
. Thus

after passing to a further subsequence we can add one of the two diagonal branches
to �iC1 and ensure that a�iC1

niC1;j
2 S.�iC1/, and likewise b�iC1

niC1;j
2 S.�iC1/ after

including one of the two diagonals. It is possible that one diagonal is added to �iC1
and the other to �iC1 and then the intersection number increases by 1. But the number
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Figure 7

of branches of �iC1 decreased, so we still have �.�iC1/ < �.�i / and we are done by
induction. If the same diagonal is added to both �iC1 and to �iC1 , we will also add it
to �iC1 . The rest of the argument is similar to the nondegenerate case.

Case 2 (x� does not have any illegal turns) Thus x� is a collection of legal simple
closed curves and so is ƒ. In A and B there must be isolated leaves spiraling towards
each component of ƒ, in opposite directions on the two sides. The spiraling directions
are the same for both A and B, since otherwise the projection distance on the curve
complex of the annulus would be large. In other words, both a�i

ni;j
and b�i

ni;j
wind

around the same annulus and in the same direction a large number of times. Applying
the Dehn twist (left, or right, as appropriate) shortens both curves as they wind around
the annulus one less time. At the same time this operation does not change the distance
to C.Supp.�//. This contradicts the minimality and we are done.

(iii) Again the proof is by induction on the complexity. We will inductively assume
(1)–(8) except that (4) is replaced with

(40) d.a
�i
ni;j

; S.�i // > ni;j and d.b�i
ni;j

; S.�i // > ni;j .

The proof follows closely our proof of (ii). As in that proof, we pass to a further sub-
sequence and construct limiting laminations A and B that have a common measurable
part ƒ which is carried by �i , and x� is the union of the edges of � crossed by ƒ.

There are two cases, as in (ii).

Case 1 (x� contains an illegal turn) We split along a large branch of x� as before
and define �iC1 in the same way (in both subcases, whether the split is degenerate or
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nondegenerate). The only change is that now we have to argue that (40) holds, instead
of (4). The reason now is that S.�iC1/� S.�i /.

Case 2 (x� is a collection of legal loops) Now we cannot simply apply a Dehn twist
since this does not necessarily preserve S.�i /. Note that there must be branches of �i
attached to both sides of x� for otherwise we would be in situation (ii).

Case 2a (all branches of �i attached to a component of x� are attached in the same
direction) See Figure 8.

Figure 8

Thus there is a unique curve in S.�i / that crosses an edge of this component of x� (and
it equals the component). Therefore the Dehn twist preserves S.�i / and we proceed as
before.

Case 2b (there are branches of �i attached to a component of x� in opposite directions)
We will assume here that every branch of �i is crossed by either a�i

ni;j
or by b�i

ni;j
(or

both) for every j , for otherwise we can remove this edge from all three �i , �i and �i
and use induction.

Then we can find two branches of �i attached in opposite directions and on opposite
sides of this component of x� (the curves a�i

ni;j
or b�i

ni;j
spiral and cannot escape on the

same side). In other words, we have a picture as in Figure 6, where the vertical segment
as well as top left and lower right branches (or top right and lower left branches) belong
to x� , and the top right and the lower left branches (or top left and lower right branches)
belong to �i � x� . Perform the split as in Figure 6 so that ƒ is carried. If there are
any side branches attached to the vertical segment, then after the split the number
of side branches attached to x� is strictly smaller and we may induct on this number.
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If there are no such side branches, then the combinatorial lengths of a�i
ni;j

and b�i
ni;j

strictly decrease after the split (eg consider a piece of a�i
ni;j

that enters x� through the
top branch which is not part of x� ). Then proceed as before, by defining a�iC1

niC1;j
and

b
�iC1
niC1;j

to be curves that minimize combinatorial length subject to (2)–(40).

We will only use two special cases of Lemma 3.23, and we state them below.

Corollary 3.24 For every C >0 there is C 0>0 depending only on the surface † such
that the following holds. Let � be a large track on †. Assume one of the following:

(I) �1 and �2 are large subtracks of � . Let � D �1\ �2 . After pruning dead ends ,
� becomes a track (possibly empty) and V.�/D V.�1/\V.�2/.

(II) �1 and �2 are the two tracks obtained from � by splitting along a large branch e ,
and � the track obtained by a central split at e . Thus P.�/D P.�1/[P.�2/
and P.�/D P.�1/\P.�2/.

Then one of the following holds:

(1) � is not large (possibly it is empty), and for any two curves ai 2 P.�i / with
d.a1; a2/� C it follows that d.ai ; B.�i //� C 0, or

(2) � is large and for any two curves ai 2 S.�i / with d.a1; a2/�C there is a curve
c 2 S.�/ such that d.ai ; c/� C 0.

4 Cell structures via splittings

Now we take U D V.�/ for a recurrent, transversely recurrent, maximal train track � .

Let Cj be the excellent sequence obtained by repeating the subdivision process, at every
step choosing one of the codimension 0 cells V.�/, with � a recurrent, transversely
recurrent, maximal train track, and splitting in a selected large branch. Thus, inductively,
codimension 0 cells in Cj are in one-to-one correspondence with a set of train tracks,
each obtained from � by a splitting sequence, and all tracks in the splitting sequence
correspond to codimension 0 cells in Ck for k � j .

4.1 Interpolating curves process

In this section we set the groundwork for proving that the distance between disjoint
cells is not too small. This follows easily from Lemma 3.23 when the associated train
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tracks have bounded intersection number. To handle the general case we define a certain
iterative procedure that constructs sequences of curves relating different cells in Cj .

We start by defining a sequence C0; C1; : : : inductively. Here C0 > 0 is a fixed
constant, and CiC1 is defined as C 0 in Corollary 3.24 for the constant C D 2nCi ,
where nD dimML.

When a is a simple closed curve we denote by Carrj .a/ the carrier of a in Cj , ie the
smallest cell of Cj that contains a .

Definition 4.1 A sequence of curves aD a0; a2; : : : ; am in † is good with respect
to the cell structure Cj (or Cj –good) if for any two adjacent curves ai and aiC1 in
the sequence the carriers Carrj .ai / and Carrj .aiC1/ are nested (or possibly equal), ie
Carrj .ai /� Carrj .aiC1/ or Carrj .aiC1/� Carrj .ai /.

A sequence which is Cj –good may not be CjC1–good. We now describe an inductive
procedure that consists of inserting curves to produce Ck –good sequences with k large.

We start with a C0–good sequence of bounded length. For example, we might start with
a sequence a0 , a1 of length 2 consisting of two curves in the interior of the same cell
in C0 . Inductively assume that we inserted some curves in the sequence and obtained a
Cj –good sequence a .

a b

w

a

bw

a

b

v v

Figure 9: Interpolating points to achieve goodness at the next stage.

Suppose a and b are two consecutive curves in a that fail to satisfy the definition of
CjC1–good, that is, the carriers AD CarrjC1.a/ and B D CarrjC1.b/ are not nested.
There are several cases:

(i) Carrj .a/D Carrj .b/; we call this cell C. Thus the subdivision operation splits
C into A and B (if the cut contained either point, A and B would be nested)
and A\B DW is the codimension 1 cut. See the left diagram in Figure 9. We
now apply Corollary 3.24(II) to the train tracks �1 , �2 and � such that V.�1/ and
V.�2/ are the two splits of V.�/D C (so �1 and �2 have branches e1 and e2
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that intersect) and � is a common subtrack of �1 and �2 obtained by deleting
e1 from �1 or e2 from �2 (these tracks exist by Proposition 3.20). Therefore
we obtain a curve w 2 P.�/DW , and if d.a; b/� Ci , we have in addition that
d.a;w/ � CiC1 and d.b;w/ � CiC1 . We insert w in the sequence between
a and b . The consecutive curves in a , w and b satisfy the CjC1–goodness
condition.

(ii) Carrj .a/ ¨ Carrj .b/. This is depicted in the other two diagrams in Figure 9.
Notice that the cut W cannot contain a , or else the goodness condition would
hold in CjC1 . There are two further subcases. If b does not belong to W either,
we are in the situation of the middle diagram. First apply Corollary 3.24(II) as in
(i) above to find w 2W . Then apply Corollary 3.24(I) to curves a and w to find
a curve v carried by the intersection of the CjC1–carriers of a and w . Finally,
interpolate to get the sequence a , v , b . The other subcase is that b 2W , depicted
in the right diagram in Figure 9. We again interpolate v in the intersection of
CjC1–carriers of a and b .

Whenever we apply Corollary 3.24 it may happen that conclusion (1) occurs. In that
case we stop the process and do not attempt to define a CjC1–good sequence.

To the Cj –good sequence aj Da0; a1; : : : ; am constructed in this way we will associate
a dimension sequence D.aj / inductively. This is a sequence of nonnegative integers
d0; d1; : : : ; dm with the requirement that the dimension of Carrj .ai / is � di . It is
also constructed inductively. For the initial sequence we take the dimensions of the
C0–carriers. Inductively, we extend the dimension sequence. For each curve x that
is inserted when extending the sequence from aj to ajC1 define the corresponding
integer as the dimension of CarrjC1.x/. For curves that were part of the sequence aj
leave the value unchanged. Thus the number associated to a curve in the sequence is
the dimension of its carrier when the curve first appeared. The dimension of the carrier
of a curve may decrease, but the value in the dimension sequence is unchanged.

The following proposition summarizes the essential features of the construction.

Proposition 4.2 Suppose that a curve x got inserted between the curves a and b in a
Cj –good sequence aj .

(i) The value of the dimension sequence at x is strictly less than at both a and b .

(ii) If d.a; b/� Ci for some i then d.a; x/� CiC2 and d.b; x/� CiC2 .

In (ii) we may be applying Corollary 3.24 twice, and this is why the conclusion
involves CiC2 .
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The following lemma can be proved by a straightforward induction on n. We will
apply it to dimension sequences.

Lemma 4.3 Let Di D .xi0; xi1; : : : xiji
/ for i D 0; 1; 2; : : : ; N be a sequence of

finite sequences of nonnegative integers. Assume

(a) D0 D .x00; x01/ has length 2 and x00; x01 � n,

(b) for i � 0 the sequence DiC1 is obtained from Di by inserting between some
consecutive terms a nonnegative integer strictly smaller than each of the two
terms.

Then jN � 2n .

For example, 33, 323, 31213, 301020103 is such a sequence with nD 3, N D 3 and
j3 D 8.

Proposition 4.4 For every C > 0 there is C 0 D C 0.C;†/ such that the following
holds. Let Cj be an excellent sequence of cell structures with all cells (ie their vertex
cycles) at distance �K from �. Suppose A and B are two cells in Cj . If a 2 int.A/
and b 2 int.B/ and d.a; b/� C then either

� d.�; a/; d.�; b/�KCC 0, or

� there is a curve c contained in a cell of Cj which is contained in a face of each
of A and B such that d.a; c/; d.b; c/� C 0.

Proof First assume that a , b is a C0–good sequence. We set C0 D C and define
Ci inductively as above. Run the process starting with a , b . There are now two
possibilities.

Case 1 (the process produces a Cj –good sequence a D a0; a1; : : : ; aN ) From
Lemma 4.3 we see that N � 2n , where nD dimML. Thus there were at most 2n� 1
insertions and this implies that d.ai ; aiC1/�C2.2n�1/ for any two consecutive curves
ai and aiC1 .

The sequence of Cj –carriers Carrj .ai / for i D 0; 1; : : : either increases or decreases
(or stays the same) at every step. We now modify the sequence, by “pushing the peaks
down” so that an initial part of the sequence of carriers is nonincreasing, and the rest is
nondecreasing. Let ai ; aiC1; : : : ; ak be a subsequence of consecutive curves such that

Carrj .ai /¨ Carrj .aiC1/D Carrj .aiC2/D � � � D Carrj .ak�1/© Carrj .ak/:
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First we pass to the length 3 subsequence ai , aiC1 , ak . We have d.aiC1; ak/ �
2nC2.2n�1/ (we are happy with very crude estimates), so applying Corollary 3.24(I) we
find a curve x with Suppj .x/� Carrj .ai /\Carrj .ak/ and with d.ai ; x/; d.ak; x/�
C2.2n�1/C2 . (If conclusion (1) occurs, see Case 2.) Continuing in this way produces
the desired sequence. The number of steps that consist of pushing the peaks is bounded,
eg by n2n , so at the end the distance between any two consecutive curves is bounded by
C2.2n�1/C2n2n . Finally, pass to a length 3 sequence a , c , b where c has the minimal
carrier, and set C 0 D 2nC2.2n�1/C2n2n .

Case 2 (at some stage in the process, when applying Corollary 3.24, conclusion
(1) occurs) This applies also to the part of the procedure when we push the peaks
down. Thus we have a sequence aD a0; a1; : : : ; aN D b with N � 2n , d.ai ; aiC1/�
C2.2n�1/C2n2n , and for some i we have d.�; ai /� C2.2n�1/C2n2nC1 . This implies
by the triangle inequality that

d.�; a/; d.�; b/� C2.2n�1/C2n2nC1C 2
nC2.2n�1/C2n2n

and we may take C 0 to be this bound.

Finally, consider the general case when a , b is not a C0–good sequence. Let A D
Carr0.a/ and B D Carr0.b/. Thus A D V.˛/ and B D V.ˇ/ for certain tracks ˛
and ˇ . Lemma 3.23 gives that either d.�; a/ and d.�; b/ are uniformly bounded, as
functions of † and C, or there is a curve c 2 A\B within uniform distance — call
it C0 — from a and b . (Note here that since C0 is a fixed cell structure, the intersection
number between any two tracks defining it is uniformly bounded, so Lemma 3.23
applies uniformly.) Thus a , c , b is a C0–good sequence and the procedure above
proves the statement.

5 Capacity dimension of EL

5.1 Capacity dimension

Let .Z; �/ be a metric space. The notion of capacity dimension of Z was introduced
by Buyalo in [8]. One of several possible equivalent definitions is the following;
see [8, Proposition 3.2]. We also note that for bounded metric spaces, such as the
boundary of a hyperbolic space with visual metric, capacity dimension agrees with the
Assouad–Nagata dimension. See [19].
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Definition 5.1 The capacity dimension of a metric space Z is the infimum of all
integers m with the following property: there exists a constant c > 0 such that for
all sufficiently small s > 0, Z has a cs–bounded covering with s–multiplicity at
most mC 1.

The covering L is cs–bounded if all elements have diameter <cs and the s–multiplicity
of L is �mC 1 if every z 2Z is at distance < s from at most mC 1 elements of L.

We will produce covers that resemble cell structures and whose thickenings resemble
handle decompositions. It is more convenient here to index the handles starting with 1,
rather than with 0. We will use following form of the definition of capacity dimension.

Proposition 5.2 Suppose that there is a constant c > 10 such that for all sufficiently
small s > 0 there is a cover K of Z with the following properties:

� The collection K is the disjoint union of subcollections K1;K2; : : : ;KmC1 .

� The diameter of any set in K is � s .

� If A;B 2Ki are distinct elements in the same subcollection and if a 2A, b 2B
and �.a; b/ < s=c3i�1 , then there is some e 2E 2Kk for some k < i such that
�.a; e/ < s=c3i�2 and �.b; e/ < s=c3i�2 .

Then the capacity dimension of Z is at most m.

Proof Inductively on i , for each K 2 Ki define the associated “handle”

H.K/DNs=c3i .K/�
[

K02Kk

k<i

H.K 0/:

It is clear that the collection of all handles forms a cover of Z and that the diameter of
each element is bounded by sC 2s=c3 . We will argue that the s=c3mC4–multiplicity
of the cover is � mC 1. Suppose z 2 Z is at distance < s=c3mC4 from mC 2

handles. Then two of the handles have the same index, say H.A/ and H.B/ with
A;B 2 Ki . Thus we have a0 2 H.A/ and b0 2 H.B/ with �.a0; b0/ < 2s=c3mC4 .
Choose a 2A and b 2B with �.a; a0/ < s=c3i and �.b; b0/ < s=c3i . Then �.a; b/ <
2s=c3mC4C 2s=c3i < s=c3i�1 . By assumption there is e 2K 2 Kk with k < i and
with �.a; e/ < s=c3i�2 and �.b; e/ < s=c3i�2 . Thus �.a0; e/ < s=c3i�2C s=c3i <
s=c3i�3 � s=c3k , so a0 2H.K/ or it belongs to a lower-index handle, and similarly
for b0 . This is a contradiction since H.A/ and H.B/ are disjoint from lower-index
handles.
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Figure 10: The handle decomposition associated to a triangulation. Cells
shaped like the one pictured on the right will result in handle decompositions
with bad Lebesgue number.

Remark 5.3 In Section 5.3 we will show that the cover of EL induced by P1.�/ as
V.�/ ranges over cells in Cj with � large satisfy the assumptions of Proposition 5.2.
For example, shapes like in Figure 10 are ruled out by Proposition 4.4.

We also have the following general fact. We thank Vera Tonić for pointing it out to us.

Proposition 5.4 [19] Suppose Z is written as a finite union of (closed ) subsets Zi .
If capdimZi � n for all i , then capdimZ � n.

5.2 Visual size and distance

Recall that a metric � on the boundary Z of a ı–hyperbolic space X is said to be
visual if there is a basepoint � 2X and constants a > 1 and c1; c2 > 0 such that

c1a
�.zjz0/

� �.z; z0/� c2a
�.zjz0/

for all z; z0 2Z , where . � j � / denotes the Gromov product

.x j x0/D 1
2
.d.�; x/C d.�; x0/� d.x; x0//

on X, extended naturally to Z . See [12, Chapitre 7] for more details and for the
construction of visual metrics.

Also recall that, in a ı–hyperbolic space, the Gromov product .a j b/ is, to within
a uniform bound that depends on ı , the distance between the basepoint � and any
geodesic Œa; b�. The same is true when a and b are distinct points at infinity. We may
also replace geodesics Œa; b� with quasigeodesics, but then the uniform bound depends
also on quasigeodesic constants.

A ı–hyperbolic space X is visual [6] if for some (every) basepoint x0 there exists
C > 0 such that for every x 2X there is a .C; C /–quasigeodesic ray in X based at x0
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and passing through x . Equivalently, X is the coarse convex hull of the boundary @X.
Any ı–hyperbolic space whose isometry group acts coboundedly and that contains a
biinfinite quasigeodesic line is visual. Thus a curve complex is visual.

Theorem 5.5 [8] Let X be a visual ı–hyperbolic metric space and Z its Gromov
boundary endowed with a visual metric. Then

asdim.X/� capdim.Z/C 1:

Lemma 5.6 Assume that � is a large track obtained from � by a sequence of splittings.
Using B.�/ as a basepoint, the visual diameter of P1.�/ is a�d.�;B.�// , to within a
bounded factor.

Proof This follows from Lemmas 3.12 and 3.13.

Proposition 5.7 Let Cj be an excellent sequence of cell structures obtained by splitting
tracks. For all sufficiently large constants c (depending only on †), the following
holds for all sufficiently small s > 0. Suppose for a certain j the visual diameter of
each P1.�/ is > s , where � ranges over all maximal train tracks such that V.�/ 2 Cj .
Then:

� The visual diameter of each P1.�/ is >s=c for every large track � determining
a cell V.�/ in Cj .

� Suppose cells V.�/ and V.� 0/ in Cj are distinct with both � and � 0 large.
Suppose a 2 P1.�/, b 2 P1.� 0/ and �.a; b/ < s=c2 . Then there is a cell
V.�/ � V.�/\ V.� 0/ and there is a e 2 P1.�/ such that �.a; e/ < s=c and
�.b; e/ < s=c .

Proof The first bullet follows from Lemma 5.6 and Proposition 3.21.

To prove the second bullet we use Proposition 4.4. Consider a quasigeodesic ray from �
to a that passes through B.�/ and between B.�/ and a stays in S.�/. By Lemmas 3.11
and 3.12 we may assume that these rays are uniformly quasigeodesic. Likewise,
construct such a ray from � to b . Also choose a uniform quasigeodesic from a to b .
We now have a uniformly thin triangle with two vertices at infinity. Choose a0 on the first
ray and b0 on the second ray, just past the thick part viewed from �. Thus d.a0; b0/ is
uniformly bounded, say by C. Also note that d.�; a0/ and d.�; b0/ are definite amounts
larger than d.�; B.�// and d.�; B.� 0// by the assumption that �.a; b/ < s=c with c
sufficiently large. In particular, a0 2 S.�/ and b0 2 S.� 0/. For this C, Proposition 4.4
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provides a constant C 0. Now the first bullet in the conclusion of Proposition 4.4
cannot hold if c is sufficiently large. Therefore, there is some e0 2 P.�/ 2 Cj with
d.a0; e0/; d.b0; e0/ � C 0 and with dimV.�/ < dimV.�/ D dimV.� 0/. Again using
Lemmas 3.11 and 3.12, construct a uniform quasigeodesic ray from � through e0 to
some e 2 P1.�/. This e satisfies the conclusions.

5.3 The cover

It is well known that PML can be covered by finitely many sets of the form P.�/ for
� a large train track (for a concrete cover see [24]). Thus EL is finitely covered by
sets of the form P1.�/. In view of Proposition 5.4 we need to find an upper bound to
capdimP1.�/.

Here we fix a large birecurrent train track � and describe a cover of Z D P1.�/ that
satisfies Proposition 5.2 for a certain m depending on † and for small s > 0.

The dimensions of cones V.�/ for large train tracks � �† belong to a certain interval
ŒA;ACK� that depends on †. We put mDK . We also fix a large constant c .

Now fix a small s > 0 and start with the standard cell structure on V.�/. This is C0 .
Now suppose Cj has been constructed and the visual size of each P1.�/ for a top-
dimensional cell V.�/ 2 Cj is > s=c . Enumerate all top-dimensional cells V.�/ 2 Cj
such that the visual size of P1.�/ is � s and also enumerate all large branches in the
corresponding tracks � . Then construct CjC1; : : : ; Ck by splitting along these branches,
in any order. We call this collection of splits a multisplit.

This gives an infinite excellent sequence. Note that once some P1.�/ (with V.�/
maximal) reaches visual size < s at the end of a multisplit, it never gets subdivided
again (see Lemma 3.9). Coarsely, reaching a certain visual size is equivalent to B.�/
reaching a certain distance from the basepoint � (see Lemma 5.6).

Lemma 5.8 Let � be a filling lamination, and for every j let Ej D V.�j / be the cell
in Cj that contains � in its interior. Then the sequence Ej eventually stabilizes.

Proof We argue by contradiction. From Proposition 3.21 we have that �jC1
ss
�! �j .

Let aj be a vertex cycle of �j . Then we may assume, perhaps for a subsequence, that
aj!�0 in PML and the lamination �0 is necessarily carried by all �j . By Lemma A.4,
for large j , �j will fully carry �, so by Proposition 3.22 we have Œ�0� D Œ��. By
an argument of Kobyashi (see [21, page 124]) the sequence aj goes to infinity in

Geometry & Topology, Volume 23 (2019)



2270 Mladen Bestvina and Ken Bromberg

the curve complex, so the visual size of Ej goes to 0 by Lemma 5.6. But in the
construction of Cj the visual diameter of all top-dimensional cells is bounded below
and by Proposition 3.21 this bounds below the visual diameter of all cells, giving a
contradiction.

We let the cover K consist of the sets of the form P1.�/ such that V.�/ is a stable
cell. We partition the sets in K according to the dimension of the cell.

Theorem 5.9 We have

capdim.EL/�K.†/;

where KDK.†/ is the smallest integer such that every recurrent, transversely recurrent,
large track � on † has dimP.�/ 2 ŒA;ACK� for some AD A.†/.

Proof We only need to argue that the cover K satisfies the conditions of Proposition 5.2.
This is clear from the construction and Propositions 3.21 and 4.4 applied to Cj for
large j .

Corollary 5.10 asdim.C.†//�K.†/C 1:

Example 5.11 One can see easily what happens in the case of the punctured torus.
Then FPMLD EL is homeomorphic to the set of irrational numbers, or equivalently
to Z1 . The visual metric is complete, and the cover K constructed above will be
infinite and will consist of pairwise disjoint sets, all of the same index, and all of
comparable sizes. For example, consider a standard track that supports laminations
whose slope is in the interval Œ1;1�. Splitting produces two tracks, one carrying
laminations in the interval Œ1; 2� and the other in the interval Œ2;1�. We can take the
curve with slope 1 as the basepoint and agree to stop subdividing when the distance
from 1 to B.�/ is > 0, ie when 1 is no longer carried by � . Thus we stop splitting
the track carrying Œ1; 2� and we split the other track. We get tracks carrying Œ2; 3�
and Œ3;1�. Continuing in this way we get an infinite cover P1.�n/ of EL where �n
carries ending laminations with slope in Œn; nC 1�.

Remark 5.12 There are two other closely related notions to asymptotic dimension.
In the linearly controlled asymptotic dimension, or the asymptotic Assouad–Nagata
dimension `– asdim, one insists on the linear control on the size of the cover. Also,
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say that ecodim.X/D n if X quasiisometrically embeds in a product of n trees and n
is smallest possible. Then there is a chain of inequalities

asdim� `– asdim� ecodim

for any metric space, and Buyalo shows in [9] that, when X is ı–hyperbolic,

ecodim.X/� capdim @X C 1:

See also the discussion in [20]. Therefore our arguments also give the same bound on
`– asdim and ecodim for C.†/. Previously, Hume has shown ecodim.C.†//<1 [17].

Appendix Train tracks and full dimension paths

A splitting path is a legal embedded path in a thickened train track that begins and ends
at a cusp. See Figure 11.

If � is a recurrent train track and � is the central split along the splitting path then �
will have one or two connected components and a total of three less branches and two
less switches than � . By Lemma 3.1 we then have:

Lemma A.1 Either dimV.�/ < dimV.�/ or dimV.�/D dimV.�/. If dimV.�/D

dimV.�/ then one of the following holds:

(1) � is nonorientable and � is connected and orientable ,

(2) � is orientable and � has two components (both necessarily orientable), or

(3) � is nonorientable and � has one orientable component and one nonorientable
component.

Figure 11: The dashed line is the splitting path. It must start and end at a
cusp in the thickened track.
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If dimV.�/D dimV.�/, we say that the splitting path is a full-dimension splitting path
or fd–path. While a splitting path will be embedded in the thickened train track, in the
actual train track it may cross a single branch multiple times. However, an fd–path
can cross any branch at most twice and this strong restriction implies that there is a
uniform bound on the number of fd–paths in a given track.

Lemma A.2 An fd–path of types (1) or (2) crosses each branch of � at most once and
an fd–path of type (3) crosses each branch at most twice.

Proof Orient the splitting path. If the path crosses a branch more than once, we
examine two consecutive strands of the path in the branch, as seen crossing the branch
transversally.

� If the two strands have the same orientation then � will be connected and we
must be in case (1). Then � will be nonorientable and � will be orientable, so
we can choose an orientation for � . On opposite sides of the splitting path the
orientation of � cannot agree or � would be orientable. Using the orientation of
the splitting path (and the surface) we can assume that to the right of the splitting
path the orientation of � and the splitting path agree while to the left they are
opposite of each other. However, this is not possible if there are two consecutive
strands in the same branch with the same orientation. Therefore we can never
have consecutive branches with the same orientation.

� If consecutive branches (seen transversally) in the same branch have opposite ori-
entation then the component of � between the two strands will be nonorientable
and we must be in case (3). If the splitting path crosses the same branch three or
more times then orientation of consecutive branches will always be opposite so
both components of � will be nonorientable, a contradiction.

Lemma A.3 Let �1 and �2 be recurrent train tracks with �2
ss
�! �1 and dimV.�1/D

dimV.�2/. Let �2 be the central split of �2 along a splitting path. Then there is a
splitting path in �1 with central split �1 such that V.�2/D V.�1/\V.�2/.

Proof As usual, via induction we can reduce this to the case when �2
ss
�! �1 is a

single move. In �2 the splitting path starts and ends at large half-branches. If these
large half-branches and their adjacent half-branches are not active in the move then the
composition of the splitting path with the carrying map is a splitting path. If not, the
carrying map is a “fold” along the switch and, in �1 , we extend the path along the fold.
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If the move is a right or left split along a large branch b in �1 then �1 D �2 if the path
crosses b in �2 . If not, that �2 is a split of �1 along b . If the move is a central split
then �2 is a central split of �1 .

One consequence of the existence of fd–paths is that there are large train tracks that do
not fully carry any lamination. We will show that this is the only obstruction.

Lemma A.4 Let � be a recurrent train track and let � be a lamination in the interior
of V.�/. Then there exists a recurrent train track � with � s

�! � and � is fully carried
by � .

Proof By [26, Proposition 8.9.2] there exists a recurrent (in fact birecurrent) train track
� 0 that fully carries �. Note that while fully carrying is not discussed in this proposition,
one sees that if the � in the construction is chosen to be sufficiently small then the
track will be fully carrying. Then, as in Proposition 3.22, we use [24, Theorem 2.3.1]
to find a train track � that carries � with � s

�! � 0 and � s
�! � . As � 0 fully carries �,

so must � .

Observe that if � ss
�! � and dimV.�/ < dimV.�/ then there will be a hyperplane P

defined by equations that have rational coefficients and such that P has positive
codimension and V.�/� P \V.�/.

Proposition A.5 Let � be a recurrent large train track and assume that � 2 V.�/ is
not contained in a rational hyperplane of positive codimension. Then either � contains
an fd–path with central split � and � 2 V.�/ or � is an ending lamination.

Proof By Lemma A.4 we can find a recurrent train � such that � s
�! � and � fully

carries �. If � fully carries � then it also fully carries � and � must be an ending
lamination. If not, a central split must occur in the sequence � s

�! � . Let �1 be the
track in the sequence that occurs just before the first central split and let b be the
large branch where the central split occurs. Then dimV.�/ D dimV.�/ for, if not,
� would be contained in a rational hyperplane of positive codimension. Therefore the
large branch b is an fd–path of length one. Let �1 the central split of �1 along the
fd–path b . By Lemma A.3 there exists an fd–path in � with central split � such that
V.�1/D V.�/\V.�/, so � 2 V.�/.

To summarize, in the presence of fd–paths it is generally not true that for a large track �
generic points of V.�/ (those in the complement of rational hyperplanes) represent
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ending laminations, but this will be true in the complement of a finite collection of
subcells of V.�/. The subcells could cover V.�/, but for example if V.�/ contains
one ending lamination, it contains infinitely many.

Corollary A.6 Let � be a birecurrent train track and a 2 S.�/ a simple closed curve.
There exists a C D C.†/ such that either d.B.�/; a/� C or there exists a sequence
�i 2 P1.�/ such that a is contained in the Hausdorff limit of the Œ�i �.

Proof By Lemma A.2, � contains finitely many fd–paths. Assume there are k � 0
such paths. We begin by splitting on each of these paths to obtain k new tracks, which
we label �1; : : : ; �k . If a is in the complement of

S
V.�i / then the corollary follows

from Proposition A.5 applied to a sequence of laminations in V.�/ converging to a
and not contained in proper rational planes. If not, a 2 S.�i / for some i . If �i is small
then d.B.�i /; a/� 2 and d.B.�i /; B.�// is uniformly bounded since an fd–path is at
worst two-to-one by Lemma A.2. Therefore d.B.�/; a/ is uniformly bounded.

If �i is large then it is connected and, by Lemma A.1, orientable. As in the previous
paragraph we split along all fd–paths to get a collection of tracks � i1; : : : ; �

i
ki

. Since
�i is orientable, Lemma A.1 implies that the � ij are disconnected and hence small. If
a 2 � ij for some j then a is uniformly close to B.� ij /, and therefore to B.�/, as above.
If not, we again apply Proposition A.5.
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