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Finite type invariants of knots in homology 3–spheres
with respect to null LP–surgeries

DELPHINE MOUSSARD

We study a theory of finite type invariants for nullhomologous knots in rational
homology 3–spheres with respect to null Lagrangian-preserving surgeries. It is an
analogue in the setting of the rational homology of the Garoufalidis–Rozansky theory
for knots in integral homology 3–spheres. We give a partial combinatorial description
of the graded space associated with our theory and determine some cases when this
description is complete. For nullhomologous knots in rational homology 3–spheres
with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich
integral and the Lescop equivariant invariant built from integrals in configuration
spaces are universal finite type invariants for this theory; in particular, this implies
that they are equivalent for such knots.
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1 Introduction

The notion of finite type invariants was first introduced independently by Goussarov
and Vassiliev for the study of invariants of knots in the 3–dimensional sphere S3 ; in
this case, finite type invariants are also called Vassiliev invariants. The discovery of the
Kontsevich integral, which is a universal invariant among all finite type invariants of
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knots in S3, revealed that this class of invariants is very prolific. It is known, for instance,
that it dominates all Witten–Reshetikhin–Turaev quantum invariants. The notion of finite
type invariants was adapted to the setting of 3–dimensional manifolds by Ohtsuki [19],
who introduced the first examples for integral homology 3–spheres, and it has been
widely developed and generalized since then. In particular, Goussarov and Habiro
independently developed a theory which involves any 3–dimensional manifolds — and
their knots — and which contains the Ohtsuki theory for Z–spheres; see Garoufalidis,
Goussarov and Polyak [6] and Habiro [10]. Another generalization of the Ohtsuki
theory to general 3–dimensional manifolds was developed by Cochran and Melvin [5].

In general, the finite type invariants of a set of objects are defined by their polynomial
behavior with respect to some elementary move. For Vassiliev invariants of knots
in S3, this move is the crossing change on a diagram of the knot. For 3–dimensional
manifolds, the elementary move is a certain kind of surgery, for instance the Borromean
surgery — a Lagrangian-preserving replacement of a genus 3 handlebody — in the
Goussarov–Habiro theory.

Garoufalidis and Rozansky [8] studied the theory of finite type invariants for ZSK–pairs,
ie knots in integral homology 3–spheres, with respect to the so-called nullmove, which is
a Borromean surgery defined on a handlebody that is nullhomologous in the complement
of the knot. In this paper, we study a theory of finite type invariants for QSK–pairs,
ie nullhomologous knots in rational homology 3–spheres (Q–spheres). Our elementary
move is the null Lagrangian-preserving surgery introduced by Lescop [13], which
is the Lagrangian-preserving replacement of a rational homology handlebody that is
nullhomologous in the complement of the knot. This latter theory can be understood
as an adaptation of the Garoufalidis–Rozansky theory to the setting of the rational
homology; a great part of the results in this paper are stated in both settings.

Kricker [11] constructed a rational lift of the Kontsevich integral of ZSK–pairs. He
proved with Garoufalidis [7] that his construction provides an invariant of ZSK–pairs.
This invariant takes values in a diagram space with a stronger structure than the target
diagram space of the Kontsevich integral, hence it is much more structured than the
Kontsevich integral, which it lifts. Garoufalidis and Kricker proved in [7] that the
Kricker invariant satisfies some splitting formulas with respect to the nullmove; see
also Garoufalidis and Rozansky [8]. These formulas imply in particular that the Kricker
invariant is a series of finite type invariants of all degrees with respect to the nullmove.

It appears that the nullmove preserves the Blanchfield module — the Alexander module
equipped with the Blanchfield form — of the ZSK–pair. Hence the study of the
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Garoufalidis–Rozansky theory of finite type invariants can be restricted to a class of
ZSK–pairs with a fixed Blanchfield module. In the case of a trivial Blanchfield module,
Garoufalidis and Rozansky gave a combinatorial description of the associated graded
space. Together with the splitting formulas of Garoufalidis and Kricker, this proves
that the Kricker invariant is a universal finite type invariant of ZSK–pairs with trivial
Blanchfield module with respect to the nullmove.

Another universal invariant in this context was constructed by Lescop in [12]. Lescop
proved in [13] that her invariant satisfies the same splitting formulas as the Kricker
invariant. Hence the Lescop invariant is also a universal finite type invariant of ZSK–
pairs with trivial Blanchfield module with respect to the nullmove. This implies in
particular that the Lescop invariant and the Kricker invariant are equivalent for ZSK–
pairs with trivial Blanchfield module. Lescop conjectured in [13] that this equivalence
holds for knots with any Blanchfield module.

The Lescop invariant is indeed defined for QSK–pairs and Lescop’s splitting formulas
are stated with respect to general null Lagrangian-preserving surgeries. In Moussard [18]
the Kricker invariant is extended to QSK–pairs and splitting formulas for this invariant
with respect to null Lagrangian-preserving surgeries are given. Hence a combinatorial
description of the graded space associated with finite type invariants of QSK–pairs with
respect to null Lagrangian-preserving surgeries would allow an explicit understanding
of the universality properties of these two invariants and provide a comparison between
them, answering the above conjecture of Lescop for general QSK–pairs.

In analogy with the integral homology setting, null Lagrangian-preserving surgeries
preserve the Blanchfield module defined over Q and we study finite type invariants of
QSK–pairs with a fixed Blanchfield module. In the case of a trivial Blanchfield module,
we give a complete description of the associated graded space. This description and
the above-mentioned splitting formulas imply that the Lescop invariant and the Kricker
invariant are both universal finite type invariants of QSK–pairs with trivial Blanchfield
module, up to degree 1 invariants given by the cardinality of the first homology group
of the Q–sphere. In particular, the Lescop invariant and the Kricker invariant are
equivalent for QSK–pairs with trivial Blanchfield module when the cardinality of the
first homology group of the Q–sphere is fixed.

Let .A; b/ be any Blanchfield module with annihilator ı 2QŒt˙1�. The main goal of
this paper is to give a combinatorial description of the graded space

G.A; b/D
M
n2Z

Gn.A; b/
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associated with finite type invariants of QSK–pairs with Blanchfield module .A; b/ —
precise definitions are given in the next section. The Lescop or Kricker invariant Z D

.Zn/n2N is a family of finite type invariants Zn of degree n for n even (Zn is trivial
for n odd). For QSK–pairs with Blanchfield module .A; b/, Zn takes values in a space
An.ı/ of trivalent graphs with edges labeled in .1=ı/QŒt˙1�. The finiteness properties
imply that Zn induces a map on Gn.A; b/. In order to take into account the degree 1 in-
variants, we construct from Z an invariant ZaugD .Z

aug
n /n2N of QSK–pairs with Z

aug
n

of degree n. The invariant Z
aug
n takes values in a space Aaug

n .ı/ of trivalent graphs as
before, which may in addition contain isolated vertices labeled by prime integers. Again
by finiteness, Z

aug
n induces a map on Gn.A; b/. This leads us to our main question.

Question 1 Is the map Z
aug
n W Gn.A; b/!Aaug

n .ı/ injective?

Injectivity of this map for any Blanchfield module .A; b/ is equivalent to universality of
the invariant Z as a finite type invariant of QSK–pairs, up to degree 0 and 1 invariants.
This would imply the equivalence of the Lescop invariant and the Kricker invariant
when the Blanchfield module and the cardinality of the first homology group of the
Q–sphere are fixed.

To deal with Question 1, we first construct another diagram space Aaug
n .A; b/ together

with a surjective map 'nW A
aug
n .A; b/� Gn.A; b/. Then we compose this map with

Z
aug
n to get a map  nW A

aug
n .A; b/!Aaug

n .ı/; see Figure 1.

Gn.A; b/

Aaug
n .ı/

Aaug
n .A; b/

'n

 n

Z
aug
n

Figure 1: Commutative diagram

It appears that this composed map has a simple diagrammatic description. Nevertheless,
it is not easy to decide whether it is injective or not in general.

Question 2 Is the map  nW A
aug
n .A; b/!Aaug

n .ı/ injective?

If Question 2 has a positive answer, then Question 1 also has, and Gn.A; b/ is completely
described combinatorially by 'nW A

aug
n .A; b/ �!

Š Gn.A; b/.
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Question 2 has a positive answer at least in the following cases, where the last two
cases are treated by Audoux and Moussard in [3]:

� For a trivial Blanchfield module and any value of n.

� For a Blanchfield module which is a direct sum of N isomorphic Blanchfield
modules and n� 2

3
N .

� For a Blanchfield module of Q–dimension 2 and nD 2.

� For a Blanchfield module which is a direct sum of two isomorphic Blanchfield
modules of Q–dimension 2 and of order different from tC1C t�1 , and nD 2.

In the third case, the map  n is not surjective, whereas in the other cases, it is
an isomorphism. In particular, Z

aug
n is not surjective in general. Moreover, for a

Blanchfield module which is a direct sum of two isomorphic Blanchfield modules of
Q–dimension 2 and of order tC1C t�1 , and nD 2, Question 2 has a negative answer
(see [3]), but Question 1 is open, as well as the injectivity status of ' .

The fact that Question 1 remains open while Question 2 does not have a positive answer
in general leads us to the following alternatives:

� either Question 1 has a positive answer in general, in which case Gn.A; b/ is
isomorphic to  n.A

aug
n .A; b//,

� or we miss some invariant to add to the augmented Lescop/Kricker invariant and
the Blanchfield module to get a universal finite type invariant of QSK–pairs.

We also treat the Garoufalidis–Rozansky theory of finite type invariants of ZSK–pairs
in the case of a nontrivial Blanchfield module.

Notation Let K be either Z or Q. A K–sphere (resp. K–ball, K–torus, genus g

K–handlebody) is a compact connected oriented 3–manifold with the same homology
with coefficients in K as the standard 3–sphere (resp. 3–ball, solid torus, genus g

standard handlebody). A KSK–pair .M;K/ is a pair made of a K–sphere M and a
knot K in M whose homology class in H1.M IZ/ is trivial.

Plan of the paper In Section 2, we introduce the necessary notions and state the
main results of the paper. Section 3 is devoted to clasper calculus in the equivariant
setting. We apply this calculus in Section 4 to our diagrams. This provides a surjective
map from a graded diagram space to the graded space associated with ZSK–pairs
with respect to integral null Lagrangian-preserving surgeries. To get a similar map

Geometry & Topology, Volume 23 (2019)



2010 Delphine Moussard

in the case of QSK–pairs, we need further arguments developed in Section 5. In
Section 6, we show the universality property of the invariant Zaug which combines the
Lescop/Kricker invariant and the cardinality of the first homology group. In Section 7,
we answer Question 2 for a Blanchfield module which is a direct sum of N isomorphic
Blanchfield modules in degree at most 2

3
N .
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2 Statement of the results

2.1 Filtration defined by null LP–surgeries

We first recall the definition of the Alexander module and the Blanchfield form. Let
.M;K/ be a QSK–pair. Let T .K/ be a tubular neighborhood of K . The exterior of K

is X DM n Int.T .K//. Consider the projection � W �1.X /!H1.X IZ/=torsionŠZ

and the covering map pW zX ! X associated with its kernel. The covering zX is the
infinite cyclic covering of X . The automorphism group of the covering, Aut. zX /, is
isomorphic to Z. It acts on H1. zX IQ/. Denoting the action of a generator � of Aut. zX /
as the multiplication by t , we get a structure of QŒt˙1�–module on A.M;K/ D

H1. zX IQ/. This QŒt˙1�–module is called the Alexander module of .M;K/. It is a
torsion QŒt˙1�–module.

On the Alexander module, the Blanchfield form, or equivariant linking pairing,

bW A�A!
Q.t/

QŒt˙1�
;

is defined as follows. First define the equivariant linking number of two knots. Let
J1 and J2 be two knots in zX such that p.J1/\ p.J2/ D ∅. Let ı 2 Q.t/ be the
annihilator of A. There is a rational 2–chain S such that @SD ı.�/J1 . The equivariant
linking number of J1 and J2 is

lke.J1;J2/D
1

ı.t/

X
k2Z

hS; �k.J2/it
k ;
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where h � ; � i stands for the algebraic intersection number. It is well-defined and

lke.J1;J2/ 2
1

ı.t/
QŒt˙1�; lke.J2;J1/.t/D lke.J1;J2/.t

�1/;

lke.P .�/J1;Q.�/J2/.t/D P .t/Q.t�1/ lke.J1;J2/.t/:

Now, if  (resp. �) is the homology class of J1 (resp. J2 ) in A, define b.; �/ by

b.; �/D lke.J1;J2/ mod QŒt˙1�:

The Blanchfield form is hermitian:

b.; �/.t/D b.�;  /.t�1/ and b.P .t/;Q.t/�/.t/D P .t/Q.t�1/ b.; �/.t/

for all ; � 2A and all P;Q 2QŒt˙1�. Moreover, it is nondegenerate (see Blanchfield
in [4]): b.; �/D 0 for all � 2 A implies  D 0.

The Alexander module of a QSK–pair .M;K/ endowed with its Blanchfield form
is its Blanchfield module denoted by .A; b/.M;K/. In the sequel, by a Blanchfield
module .A; b/, we mean a pair .A; b/ which can be realized as the Blanchfield module
of a QSK–pair. An isomorphism between Blanchfield modules is an isomorphism
between the underlying Alexander modules which preserves the Blanchfield form.

We now define LP–surgeries. Note that the boundary of a genus g Q–handlebody
is homeomorphic to the standard genus g surface. The Lagrangian LA of a Q–
handlebody A is the kernel of the map i�W H1.@AIQ/!H1.AIQ/ induced by the
inclusion. Two Q–handlebodies A and B have LP–identified boundaries if .A;B/
is equipped with a homeomorphism hW @A ! @B such that h�.LA/ D LB . The
Lagrangian of a Q–handlebody A is indeed a Lagrangian subspace of H1.@AIQ/

with respect to the intersection form.

Let M be a Q–sphere, let A�M be a Q–handlebody and let B be a Q–handlebody
whose boundary is LP–identified with @A. Set M.B=A/D .M n Int.A//[@ADh@B B .
We say that the Q–sphere M.B=A/ is obtained from M by Lagrangian-preserving
surgery, or LP–surgery.

Given a QSK–pair .M;K/, a Q–handlebody null in M nK is a Q–handlebody
A � M n K such that the map i�W H1.AIQ/ ! H1.M n KIQ/ induced by the
inclusion has a trivial image. A null LP–surgery on .M;K/ is an LP–surgery .B=A/
such that A is null in M nK . The QSK–pair obtained by surgery is denoted by
.M;K/.B=A/.

Geometry & Topology, Volume 23 (2019)
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Let F0 be the rational vector space generated by all QSK–pairs up to orientation-
preserving homeomorphism. Let Fn be the subspace of F0 generated by the�

.M;K/I

�
Bi

Ai

�
1�i�n

�
D

X
I�f1;:::;ng

.�1/jI j.M;K/

��
Bi

Ai

�
i2I

�
for all QSK–pairs .M;K/ and all families of Q–handlebodies .Ai ;Bi/1�i�n , where
the Ai are null in M nK and disjoint, and each @Bi is LP–identified with the cor-
responding @Ai . Here and in all the article, j � j stands for the cardinality. Since
FnC1 � Fn , this defines a filtration.

Definition 2.1 A Q–linear map �W F0 ! Q is a finite type invariant of degree at
most n of QSK–pairs with respect to null LP–surgeries if �.FnC1/D 0.

Theorem 2.2 [17, Theorem 1.14] A null LP–surgery induces a canonical isomor-
phism between the Blanchfield modules of the involved QSK–pairs. Conversely, for
any isomorphism � from the Blanchfield module of a QSK–pair .M;K/ to the Blanch-
field module of a QSK–pair .M 0;K0/, there is a finite sequence of null LP–surgeries
from .M;K/ to .M 0;K0/ which induces the composition of � by the multiplication
by a power of t .

This result provides a splitting of the filtration .Fn/n2N , as follows. For an isomorphism
class .A; b/ of Blanchfield modules, let P.A; b/ be the set of all QSK–pairs, up to
orientation-preserving homeomorphism, whose Blanchfield modules are isomorphic
to .A; b/. Let F0.A; b/ be the subspace of F0 generated by the QSK–pairs .M;K/2

P.A; b/. Let .Fn.A; b//n2N be the filtration defined on F0.A; b/ by null LP–surgeries.
Then, for n2N , Fn is the direct sum over all isomorphism classes .A; b/ of Blanchfield
modules of the Fn.A; b/. Set

Gn.A; b/D Fn.A; b/=FnC1.A; b/ and G.A; b/D
M
n2N

Gn.A; b/:

We wish to describe the graded space G.A; b/. By Theorem 2.2, G0.A; b/ Š Q. In
Section 5, as a consequence of Theorem 2.7, we prove:

Theorem 2.3 Let .A; b/ be a Blanchfield module. Let .M;K/ 2 P.A; b/. For any
prime integer p , let Bp be a Q–ball such that H1.BpIZ/Š Z=pZ. Then

G1.A; b/D
M

p prime

Q

�
.M;K/I

Bp

B3

�
;

where B3 is any standard 3–ball in M nK .
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2.2 Borromean surgeries

leaf

internal vertex

�0

†.�0/

Figure 2: The standard Y–graph

Let us define a specific type of LP–surgery.

The standard Y–graph is the graph �0 � R2 represented in Figure 2. The looped
edges of �0 are the leaves. The vertex incident to three different edges is the internal
vertex. To �0 is associated a regular neighborhood †.�0/ of �0 in the plane. The
surface †.�0/ is oriented with the usual convention. This induces an orientation of
the leaves and an orientation of the internal vertex, ie a cyclic order of the three edges.
Consider a 3–manifold M and an embedding hW †.�0/!M . The image � of �0 is
a Y–graph, endowed with its associated surface †.�/D h.†.�0//. The Y–graph � is
equipped with the framing induced by †.�/. A Y–link in a 3–manifold is a collection
of disjoint Y–graphs.

� L

Figure 3: Y–graph and associated surgery link

Let � be a Y–graph in a 3–manifold M . Let †.�/ be its associated surface. In
†� Œ�1; 1�, associate with � the six-component link L represented in Figure 3. The
Borromean surgery on � is the surgery along the framed link L. The surgered manifold
is denoted by M.�/. As proved by Matveev in [14], a Borromean surgery can be

Geometry & Topology, Volume 23 (2019)
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realized by cutting a genus 3 handlebody (a regular neighborhood of the Y–graph) and
regluing it in another way, which preserves the Lagrangian. If .M;K/ is a QSK–pair
and if � is an n–component Y–link, null in M nK , then Œ.M;K/I�� 2 F0 denotes
the bracket defined by the n disjoint null LP–surgeries on the components of � .

For n � 0, let Gb
n .A; b/ be the subspace of Gn.A; b/ generated by the classes of the

brackets defined by null Borromean surgeries. The following result is a consequence
of Proposition 2.6 and Lemma 2.5.

Proposition 2.4 For any Blanchfield module .A; b/ and any n� 0, Gb
2nC1

.A; b/D 0.

2.3 Spaces of diagrams

Fix a Blanchfield module .A; b/. Let ı 2Q.t/ be the annihilator of A. An .A; b/–
colored diagram D is a unitrivalent graph without strut

�
�

� �
, with the following data:

� Trivalent vertices are oriented, where an orientation of a trivalent vertex is a
cyclic order of the three half-edges that meet at this vertex.

� Edges are oriented and colored by QŒt˙1�.

� Univalent vertices are colored by A.

� For all v ¤ v0 in the set V of univalent vertices of D , a rational fraction
f D
vv0.t/ 2 .1=ı.t//QŒt

˙1� is fixed such that f D
vv0.t/ mod QŒt˙1� D b.;  0/,

where  (resp.  0 ) is the coloring of v (resp. v0 ), with f D
v0v.t/D f

D
vv0.t

�1/.

In the pictures, the orientation of trivalent vertices is given by . When it does not
seem to cause confusion, we write fvv0 for f D

vv0 . The degree of a colored diagram is
the number of trivalent vertices of its underlying graph. The unique degree 0 diagram
is the empty diagram. For n� 0, set

zAn.A; b/D
Qh.A; b/–colored diagrams of degree ni

QhAS, IHX, LE, OR, Hol, LV, EV, LDi
;

where the relations AS (antisymmetry), IHX, LE (linearity for edges), OR (orientation
reversal), Hol (holonomy), LV (linearity for vertices), EV (edge-vertex) and LD (linking
difference) are as described in Figure 4.

The automorphism group Aut.A; b/ of the Blanchfield module .A; b/ acts on zAn.A; b/

by acting on the colorings of all the univalent vertices of a diagram simultaneously.

Geometry & Topology, Volume 23 (2019)
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C D 0

AS

� C D 01
1 1

IHX

x
P
C y

Q
D

xP CyQ

LE

P .t/
D

P .t�1/

OR

P
Q

R

D

tP
tQ

tR

Hol

x
D1

� 1
v

C y
D2

� 2
v

D

D

� x1Cy2
v

xf
D1

vv0
.t/Cyf

D2

vv0
.t/D f D

vv0
.t/ 8 v0 ¤ v

LV

�
v


PQ

D

D

�
v

Q.t/

P

D0

f D0

vv0
.t/DQ.t/f D

vv0
.t/ 8 v0 ¤ v

EV

1

�
v1

1

1

�
v2

2

D

D 1

�
v1

1

1

�
v2

2

D0

C

P

D00

f D
v1v2
D f D0

v1v2
CP

LD

Figure 4: Relations, where x;y 2Q , P;Q;R 2QŒt˙1� and ; 1; 2 2 A .

Denote by Aut the relation which identifies two diagrams obtained from one another
by the action of an element of Aut.A; b/. Set

An.A; b/D zAn.A; b/=hAuti and A.A; b/D
M
n2N

An.A; b/:

Since the opposite of the identity is an automorphism of .A; b/, we have:

Lemma 2.5 For all n� 0, A2nC1.A; b/D 0.

In Section 4, we prove (see Proposition 4.5):

Proposition 2.6 Fix a Blanchfield module .A; b/. For all n� 0, there is a canonical
surjective Q–linear map

'nW An.A; b/� Gb
n .A; b/:

Geometry & Topology, Volume 23 (2019)
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To get a similar surjective map onto Gn.A; b/, we need more general diagrams. An
.A; b/–augmented diagram is the union of an .A; b/–colored diagram (its Jacobi part)
and of finitely many isolated vertices colored by prime integers. The degree of an
.A; b/–augmented diagram is the number of its vertices of valence 0 or 3. Set

Aaug
n .A; b/D

Qh.A; b/–augmented diagrams of degree ni

QhAS, IHX, LE, OR, Hol, LV, EV, LD, Auti
for n� 0;

Aaug.A; b/D
M
n2N

Aaug
n .A; b/:

In Section 5, we prove:

Theorem 2.7 Fix a Blanchfield module .A; b/. For all n � 0, there is a canonical
surjective Q–linear map

'nW A
aug
n .A; b/� Gn.A; b/:

We will see in the next subsection that this map is an isomorphism when the Blanchfield
module .A; b/ is trivial.

2.4 The Lescop invariant and the Kricker invariant

In order to introduce the Kricker invariant of [7] and the Lescop invariant of [12], we
first define the graded space A.ı/ where they take values and we relate it to the graded
space A.A; b/.

Let ı 2QŒt˙1�. A ı–colored diagram is a trivalent graph whose vertices are oriented
and whose edges are oriented and colored by .1=ı.t//QŒt˙1�. The degree of a ı–
colored diagram is the number of its vertices. Set

An.ı/D
Qhı–colored diagrams of degree ni

QhAS, IHX, LE, OR, Hol, Hol 0 i
;

where the relations AS, IHX, LE, OR, Hol are represented in Figure 4 and the relation
Hol 0 is represented in Figure 5. Here the relations LE, OR and Hol hold with edges
labeled in .1=ı.t//QŒt˙1�. Note that in the case of An.A; b/, the relation Hol 0 is
induced by the relations Hol, EV and LD. Since any trivalent graph has an even number
of vertices, we have A2nC1.ı/D 0 for all n� 0.

To an .A; b/–colored diagram D of degree n, we associate a ı–colored diagram z n.D/.
Let V be the set of univalent vertices of D . A pairing of V is an involution of V

Geometry & Topology, Volume 23 (2019)



Finite type invariants of knots in homology 3–spheres with respect to null LP–surgeries 2017

g

f

D

g

tf

Figure 5: Relation Hol 0 , with f;g 2 .1=ı.t//QŒt˙1� .

with no fixed point. Let p be the set of pairings of V . Fix p 2 p. Define a ı–colored
diagram p.D/ in the following way. If v 2V and v0Dp.v/, replace in D the vertices
v and v0 , and their adjacent edges, by a colored edge, as indicated in Figure 6. Now set

z n.D/D
X
p2p

p.D/:

Note that z n.D/D 0 when the number of univalent vertices is odd. We obtain a Q–
linear map z n from the rational vector space freely generated by the .A; b/–colored
diagrams of degree n to An.ı/. One easily checks that z n induces a map

 nW An.A; b/!An.ı/:

The disjoint union of diagrams defines on A.ı/ D
L

n2N An.ı/ a multiplicative
operation, which endows it with a graded algebra structure. Denote by expt the
exponential map with respect to this multiplication.

� �
v v0

P Q

P .t/Q.t�1/f D
vv0
.t/

Figure 6: Pairing of vertices

The following result asserts the existence and the properties of an invariant Z , which
may be either the Lescop invariant or the Kricker invariant. Although it is not known
whether they are equal or not, they both satisfy the properties of the theorem. In the
sequel, we will refer to “the invariant Z”.

Theorem 2.8 [12; 13; 11; 7; 18] There is an invariant Z D .Zn/n2N of QSK–pairs
with the following properties:

Geometry & Topology, Volume 23 (2019)



2018 Delphine Moussard

� If .M;K/ is a QSK–pair with Blanchfield module .A; b/, then Zn.M;K/ 2

An.ı/, where ı is the annihilator of A.

� Fix a Blanchfield module .A; b/. Let ı be the annihilator of A. The Q–
linear extension of ZnW P.A; b/!An.ı/ to F0.A; b/ vanishes on FnC1.A; b/

and Zn ı 'n D  n , where 'nW An.A; b/ � Gb
n .A; b/ is the surjection of

Proposition 2.6.

� Let pc
nW An.ı/!An.ı/ be the map which sends a connected diagram to itself

and nonconnected diagrams to 0. Set Zc
nDpc ıZn and Zc D

P
n>0 Zc

n . Then
Zc is additive under connected sum and Z D expt.Z

c/.

We will detail the second statement of this theorem in Section 4. Note that, in particular,
if the map  n is injective, then the map 'n is an isomorphism.

In order to take into account the whole quotient Gn.A; b/, we extend the invariant Z .
Define a ı–augmented diagram as the disjoint union of a ı–colored diagram with
finitely many isolated vertices colored by prime integers. The degree of such a diagram
is the number of its vertices. Set

Aaug
n .ı/D

Qhı–augmented diagrams of degree ni

QhAS, IHX, LE, OR, Hol, Hol 0 i
:

The map  n naturally extends to a map  nW A
aug
n .A; b/! Aaug

n .ı/ preserving the
isolated vertices. We now define an invariant Zaug D .Z

aug
n /n2N of QSK–pairs such

that the Q–linear extension of Z
aug
n to F0.A; b/ takes values in Aaug

n .ı/, from which
the invariant Z is recovered by forgetting the isolated vertices. For a prime integer p ,
define an invariant �p by �p.M;K/D�vp.jH1.M IZ/j/ :�p , where vp is the p–adic
valuation. Once again, the disjoint union makes Aaug.ı/D

L
n2N Aaug

n .ı/ a graded
algebra. Set

Zaug
DZ t expt

� X
p prime

�p

�
:

In Section 6, we prove:

Theorem 2.9 Fix a Blanchfield module .A; b/, and let ı be the annihilator of A.
Consider the surjection 'nW A

aug
n .A; b/ ! Gn.A; b/ of Theorem 2.7 and the map

 nW A
aug
n .A; b/!Aaug

n .ı/. Then the Q–linear extension of Z
aug
n W P.A; b/!Aaug

n .ı/

to F0.A; b/ vanishes on FnC1.A; b/ and Z
aug
n ı'n D  n .

Let A0 be the trivial Blanchfield module. The relations LV and LD allow us to express
the elements of Aaug

n .A0/ without diagrams with univalent vertices. It follows that this
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diagram space has a simpler presentation as

Aaug
n .A0/D

Qhaugmented diagrams of degree ni

QhAS, IHX, LE, OR, Hol, Hol 0 i
;

where an augmented diagram is the disjoint union of a trivalent part — a trivalent graph
whose vertices are oriented and whose edges are oriented and colored by QŒt˙1�—
and a finite number of isolated vertices colored by prime integers. The degree of an
augmented diagram is the number of its vertices. The space An.A0/ admits a similar
description without isolated vertices; the corresponding graded space A.A0/ coincides
with the space denoted by A.QŒt˙1�/ in [8]. Obviously,  nW A

aug
n .A0/!Aaug

n .1/ is
an isomorphism. Hence Theorems 2.7 and 2.9 imply the next results.

Theorem 2.10 We have a graded space isomorphism G.A0/ŠAaug.A0/.

Theorem 2.11 Let ZLes D .Zn;Les/n2N and ZKri D .Zn;Kri/n2N denote the Lescop
equivariant invariant and the Kricker invariant, respectively. Let .M;K/ and .N;J /
be QSK–pairs with trivial Blanchfield module, such that H1.M IZ/ and H1.N IZ/

have the same cardinality. Then, for any n 2N , Zk;Les.M;K/DZk;Les.N;J / for all
k � n if and only if Zk;Kri.M;K/DZk;Kri.N;J / for all k � n.

Proof Let Z D .Zn/n2N be the Lescop or Kricker invariant. Since H1.M IZ/

and H1.N IZ/ have the same cardinality, the assertion “Zk.M;K/ D Zk.N;J /

for all k � n” is equivalent to “Z
aug
k
.M;K/ D Z

aug
k
.N;J / for all k � n”. Since

the Z
aug
k
W Gk.A0/! Aaug

k
.A0/ are isomorphisms, this last assertion is equivalent to

“.M;K/� .N;J / 2 FnC1.A0/”.

In general, note that “the map  nW A
aug
n .A; b/!Aaug

n .ı/ is injective” is equivalent to
“the map  k W Ak.A; b/! Ak.ı/ is injective for all k � n”. Hence we focus on the
study of injectivity of the map  nW An.A; b/!An.ı/.

2.5 About the map  nW An.A;b/! An.ı/ and perspectives

We now state a result about the injectivity of the map  nW An.A; b/ ! An.ı/ for
n even.

In Section 7, we prove:
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Theorem 2.12 Let n be an even positive integer and N � 3
2
n. Fix a Blanchfield

module .A; b/. Let ı be the annihilator of A. Define the Blanchfield module .xA;xb/
as the direct sum of N copies of .A; b/. Then the map x nW An.xA;xb/!An.ı/ is an
isomorphism.

This result provides a rewriting of the map  n in the general case. We have a natural
map �nW An.A; b/! An.xA;xb/ defined on a diagram by interpreting the labels of its
univalent vertices as elements of the first copy of .A; b/ in .xA;xb/. The following
diagram commutes:

An.xA;xb/

An.ı/

An.A; b/

�n

 n

x nŠ

We mention here results from [3] about the map  2W A2.A; b/! A2.ı/ for small
Alexander modules.

Proposition 2.13 [3] If dimQ.A/D 2, then  2 is injective but not surjective.

Proposition 2.14 [3] If A is the direct sum of two isomorphic Blanchfield modules
of Q–dimension 2 with annihilator ı , then  2 is injective if and only if ı¤ tC1Ct�1 .
In this case, it is an isomorphism.

Perspectives As mentioned in the introduction, our main goal in this paper is to study
Question 1 in order to determine if the Lescop/Kricker invariant Z is a universal finite
type invariant of QSK–pairs up to degree 0 and 1 invariants. Theorem 2.12 provides
the following rewriting of this question.

We have a map An..A; b/
˚k/!An..A; b/

˚kC1/ defined by viewing the labels of the
univalent vertices in the direct sum of the first k copies of .A; b/ in .A; b/˚kC1 . We
also have a map CnW Gb

n ..A; b/
˚k/! Gb

n ..A; b/
˚kC1/ induced by the connected sum

with a fixed QSK–pair .M;K/ 2 P.A; b/. Using Theorem 2.2, one can check that the
map Cn is independent of the fixed pair .M;K/. These maps provide the following
commutative diagram for any integer N such that N � 3

2
n, where the vertical arrows

are the maps 'n and Zn :
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An.A; b/ : : : An..A; b/
˚k/ : : : An..A; b/

˚N /

Š

Gb
n .A; b/

: : : Gb
n ..A; b/

˚k/ : : : Gb
n ..A; b/

˚N /

An.ı/
Š

It follows that the map ZnW Gb
n ..A; b/

˚k/!An.ı/ is injective for all k if and only if
CnW Gb

n ..A; b/
˚k/! Gb

n ..A; b/
˚kC1/ is injective for all k . This assertion is true for

all .A; b/ and all n if the space of finite type invariants of QSK–pairs is generated as
an algebra by degree 0 invariants and invariants that are additive under connected sum.

2.6 The case of knots in Z–spheres

A great part of the results stated up to this point have an equivalent in the case of
ZSK–pairs. In this subsection, we adapt the definitions and state the results in this
case.

Given a ZSK–pair .M;K/ and the infinite cyclic covering zX of the exterior of
K in M , define the integral Alexander module of .M;K/ as the ZŒt˙1�–module
AZ.M;K/ D H1. zX IZ/ and the Blanchfield form bZ on this module. The integral
Alexander module of a ZSK–pair .M;K/ endowed with its Blanchfield form is its
integral Blanchfield module denoted by .AZ; bZ/.M;K/. In the sequel, by an integral
Blanchfield module, we mean a pair .AZ; bZ/ which can be realized as the integral
Blanchfield module of a ZSK–pair.

Replacing Q by Z in the definitions of Section 2.1, define integral Lagrangians,
integral LP–surgeries and integral null LP–surgeries. Note that a Borromean surgery
is an integral LP–surgery.

For diagram spaces, we have to adapt the relation Aut. Given .AZ; bZ/, set .A; b/D
Q˝ .AZ; bZ/. Define the relation Aut Z on .A; b/–colored diagrams as the relation
Aut restricted to the action of the automorphisms in Aut.A; b/ that are induced by
automorphisms of the ZŒt˙1�–module .AZ; bZ/. Set

AZ
n .AZ; bZ/D zAn.A; b/=hAut Zi and AZ.AZ; bZ/D

M
n2N

AZ
n .AZ; bZ/:

Since the opposite of the identity is an automorphism of .AZ; bZ/, we have:
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Lemma 2.15 For all n� 0, AZ
2nC1

.AZ; bZ/D 0.

The filtration .Fn/n2N of Section 2.1 generalizes the following filtration introduced
by Garoufalidis and Rozansky in [8]. Let FZ

0
be the rational vector space generated

by all ZSK–pairs, up to orientation-preserving homeomorphism. Define a filtration
.FZ

n /n2N of FZ
0

by means of null Borromean surgeries.

Remark Habegger [9, Theorem 2.5] and Auclair and Lescop [2, Lemma 4.11] proved
that two Z–handlebodies whose boundaries are LP–identified can be obtained from one
another by a finite sequence of Borromean surgeries. Therefore, the filtration defined
on FZ

0
by integral null LP–surgeries is equal to the filtration .FZ

n /n2N .

Theorem 2.16 [17, Theorem 1.15] An integral null LP–surgery induces a canonical
isomorphism between the integral Blanchfield modules of the involved ZSK–pairs.
Conversely, for any isomorphism � from the integral Blanchfield module of a ZSK–pair
.M;K/ to the integral Blanchfield module of a ZSK–pair .M 0;K0/, there is a finite
sequence of integral null LP–surgeries from .M;K/ to .M 0;K0/ which induces the
composition of � with multiplication by a power of t .

This result provides a splitting of the filtration .FZ
n /n2N as the direct sum of fil-

trations .FZ
n .AZ; bZ//n2N of subspaces FZ

0
.AZ; bZ/ of FZ

0
, where .AZ; bZ/ runs

along all isomorphism classes of integral Blanchfield modules. Set GZ
n .AZ; bZ/ D

FZ
n .AZ; bZ/=FZ

nC1
.AZ; bZ/ and GZ.AZ; bZ/D

L
n2N GZ

n .AZ; bZ/. Theorem 2.16
implies GZ

0
.AZ; bZ/ D Q. In [8], Garoufalidis and Rozansky identified the graded

space GZ.A0/, where A0 is the trivial Blanchfield module, with the graded space
AZ.A0/. Theorem 2.10 generalizes this result.

Proposition 4.6 implies:

Theorem 2.17 Fix an integral Blanchfield module .AZ; bZ/. For all n� 0, there is a
canonical surjective Q–linear map

'Z
n W A

Z
n .AZ; bZ/� GZ

n .AZ; bZ/:

Corollary 2.18 Fix an integral Blanchfield module .AZ; bZ/ and an integer n � 0.
Then GZ

2nC1
.AZ; bZ/D 0.

As in Section 2.4, we have a map  Z
n W AZ

n .AZ; bZ/!An.ı/, where ı is the annihilator
of ADQ˝AZ . Theorem 2.8 implies that the degree n part of the invariant Z provides
a Q–linear map ZnW FZ

0
.AZ; bZ/!An.ı/ such that Zn ı'

Z
n D  

Z
n .
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Set bD idQ˝ bZ . We have a natural projection AZ
n .AZ; bZ/!An.A; b/. The map

 Z
n is the composition of the map  n with this projection. Hence we could adapt

Theorem 2.12 and get a surjective map  Z
n , but we would not get injectivity, which is

what we are mostly interested in.

3 Equivariant clasper calculus

For a QSK–pair .M;K/, let Fb
0
.M;K/ be the rational vector space generated by

all the QSK–pairs that can be obtained from .M;K/ by a finite sequence of null
Borromean surgeries, up to orientation-preserving homeomorphism. For n > 0, let
Fb

n .M;K/ be the subspace of Fb
0
.M;K/ generated by the Œ.M;K/I�� for all m–

component null Y–links with m� n.

Lemma 3.1 [6, Lemma 2.2] Let � be a Y–graph in a 3–manifold V which has
a 0–framed leaf that bounds a disk in V whose interior does not meet � . Then
V .�/Š V .

Lemma 3.2 [6, Theorem 3.1; 1, Lemma 5.1.1] Let �0 , �1 and �2 be the Y–graphs
drawn in a genus 4 handlebody in Figure 7. Assume this handlebody is embedded in a
3–manifold V . Then V .�0/Š V .�1[�2/.

�0

�1

�2

Figure 7: Topological equivalence for edge sliding

Lemma 3.3 Let � be an n–component Y–link which is null in M nK . Let J be
a framed knot which is rationally nullhomologous in M nK and disjoint from � .
Let � 0 be obtained from � by sliding an edge of � along J (see Figure 8). Then
Œ.M;K/I��D Œ.M;K/I� 0� mod Fb

nC1
.M;K/.

Proof Let � 0
0

be the component of � 0 that contains the slid edge and let �0 be
the corresponding component of � . By Lemma 3.2, the surgery on � 0

0
is equivalent

to the simultaneous surgeries on �0 and on a null Y–graph y�0 which has a leaf
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J

� � 0

Figure 8: Sliding an edge

which is a meridian of a leaf of �0 . It follows that Œ.M;K/I�� � Œ.M;K/I� 0� D

Œ.M;K/I� [ y�0� 2 Fb
nC1

.M;K/.

In particular, the above lemma shows that the class of Œ.M;K/I�� mod Fb
nC1

.M;K/

is invariant under full twists of the edges.

Lemma 3.4 [6, Theorem 3.1] Let �0 , �1 , �2 be the Y–graphs drawn in a genus 4

handlebody in Figure 9. Assume this handlebody is embedded in a 3–manifold V .
Then V .�0/Š V .�1[�2/.

�0 �1

�2

Figure 9: Topological equivalence for leaf cutting

Lemma 3.5 Let � be an n–component Y–link null in M nK . Let ` be a leaf of � .
Let  be a framed arc starting at the vertex incident to ` and ending in another point
of `, embedded in M nK as the core of a band glued to the associated surface of �
as shown in Figure 10. The arc  splits the leaf ` into two leaves `0 and `00 . Denote
by � 0 (resp. � 00 ) the Y–link obtained from � by replacing the leaf ` by `0 (resp. `00 ).
If `0 and `00 are rationally nullhomologous in M nK , then � 0 and � 00 are null Y–links
and Œ.M;K/I��D Œ.M;K/I� 0�C Œ.M;K/I� 00� mod Fb

nC1
.M;K/.

Proof Let �0 (resp. � 0
0

, � 00
0

) be the component of � (resp. � 0 , � 00 ) that contains the
leaf ` (resp. `0 , `00 ). By Lemma 3.4, the surgery on �0 is equivalent to simultaneous
surgeries on � 00

0
and on a null Y–graph y� 0

0
obtained from � 0

0
by sliding an edge
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` `00

`0

Figure 10: Cutting a leaf

along `00 . Set y� 0D .�n�0/[y�
0
0

. We have Œ.M;K/I y� 0�CŒ.M;K/I� 00��Œ.M;K/I��D

Œ.M;K/I .� n�0/[ y�
0
0
[� 00

0
� 2 Fb

nC1
.M;K/. Conclude with Lemma 3.3.

The next lemma is a consequence of [6, Lemma 4.8].

Lemma 3.6 Let � be an n–component Y–link null in M nK . If a leaf ` of �
bounds a disk in .M nK/ n .�n`/ and has framing 1 (ie the linking number of ` with
its parallel induced by the framing of � is 1) then Œ.M;K/I��D 0 mod Fb

nC1
.M;K/.

The above two lemmas imply that the class of Œ.M;K/I�� mod Fb
nC1

.M;K/ does not
depend on the framing of the leaves of � .

Lemma 3.7 Let � be an n–component Y–link null in M nK . Let ` be a leaf of � .
Assume � n ` is fixed. Then Œ.M;K/I�� mod Fb

nC1
.M;K/ only depends on the

homotopy class of ` in .M nK/ n .� n `/.

Proof If the leaf ` is modified by an isotopy in .M nK/ n .�n`/, then the homeo-
morphism class of .M;K/.�/ is preserved. If the leaf ` crosses itself during a
homotopy, apply Lemma 3.5, as shown in Figure 11, and conclude that Œ.M;K/I��

mod Fb
nC1

.M;K/ is unchanged by applying Lemma 3.1.

Lemma 3.8 Let � be an n–component Y–link null in M nK . Let ` be a leaf of � .
Let � 0 be an n–component null Y–link such that � 0 n `0 coincides with � n `, where
`0 is a leaf of � 0 . Let e� n ` be the preimage of � n ` in the infinite cyclic covering zX
associated with .M;K/. Let z̀ and z̀0 be lifts of ` and `0 , respectively, with the
same basepoint. If ` and `0 are homotopic in M nK and z̀ and z̀0 are rationally
homologous in zX n . e� n `/, then Œ.M;K/I��D Œ.M;K/I� 0� mod Fb

nC1
.M;K/.

Proof Consider a homotopy from ` to `0 in M nK . Thanks to Lemma 3.7, it suffices
to treat the case when the leaf crosses some edges or leaves of �n` during the homotopy.
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Figure 11: Selfcrossing of a leaf

As shown in Figure 12, Lemma 3.5 implies that the bracket Œ.M;K/I�� has the bracket
Œ.M;K/I y�� added to it, where y� is the null Y–link obtained from � by adding the
cutting arc to the edge adjacent to `, and by replacing ` by a meridian of the crossed
edge or leaf. In the case of a meridian of an edge, Lemmas 3.1 and 3.3 show that the
added bracket vanishes.

Fix a leaf `0 of � n `. Let Œ.M;K/I y�i �, for i 2 I , be the brackets added during
the homotopy when the leaf ` crosses the leaf `0 . In each y�i , pull the basepoint of
the leaf replacing the leaf ` onto the initial basepoint of `. Let `i be the obtained
leaf. Let z̀i be the lift of `i which has the same basepoint as z̀. Let Y be the
complement in zX of the preimage of `0 . In H1.Y IQ/, we have z̀D

P
i2I
z̀
i C
z̀0 .

Since z̀ and z̀0 are homologous in zX n . e� n `/, this implies that
P

i2I lke. z̀i ; z̀0/D 0,
where z̀0 is a lift of `0 . By construction of the z̀i , each lke. z̀i ; z̀0/ is equal to ˙tk

for some k 2 Z. Thanks to Lemmas 3.1, 3.3 and 3.5, it follows that the y�i can
be grouped by pairs with opposite corresponding brackets. Hence Œ.M;K/I�� D

Œ.M;K/I� 0� mod Fb
nC1

.M;K/.

Lemma 3.9 Let � be an n–component Y–link null in M nK . Let ` be a leaf of � .
Let e� n ` be the preimage of � n ` in the infinite cyclic covering zX associated with

Figure 12: Crossing of an edge or a leaf
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.M;K/. Let z̀ be a lift of `. If z̀ is trivial in H1. zX n . e� n `/IQ/, then Œ.M;K/I��D

0 mod Fb
nC1

.M;K/.

Proof Since z̀ has a multiple which is trivial in H1. zX IZ/, Lemma 3.5 allows us
to assume z̀ itself is trivial in H1. zX IZ/. Hence z̀ is a product of commutators of
loops in zX . It follows that ` is homotopic to

Q
i2I Œ˛i ; ˇi � in M nK , where I is

a finite set and the ˛i and ˇi satisfy lk.˛i ;K/D 0 and lk.ˇi ;K/D 0. Construct a
surface † in .M nK/ n� whose handles are bands around the ˛i and ˇi , so that @†
is homotopic to ` in M nK . Let � 0 be the Y–link obtained from � by replacing
` by @†. Note that the lifts of @† are nullhomologous in zX n . e� n `/. Hence, by
Lemma 3.8, Œ.M;K/I��D Œ.M;K/I� 0� mod Fb

nC1
.M;K/.

Let us prove that Œ.M;K/I� 0�D 0 mod Fb
nC1

.M;K/. Apply Lemma 3.5 to cut the
leaf @† into leaves ˛i , ˇi , ˛�1

i , ˇ�1
i . Apply it again to reglue each leaf ˛i with

the corresponding leaf ˛�1
i and each leaf ˇi with the corresponding leaf ˇ�1

i . The
obtained Y–links all have a leaf which is homotopically trivial in the complement
of K and of the complement of the leaf in the Y–link. Then the result follows from
Lemma 3.7.

Lemma 3.10 Let � be an n–component Y–link null in M nK . Let ` be a leaf
of � . Let e� n ` be the preimage of � n ` in the infinite cyclic covering zX associ-
ated with .M;K/. Let z̀ be a lift of `. Fix � n `. Then the class of Œ.M;K/I��

mod Fb
nC1

.M;K/ only depends on the class of z̀ in H1. zX n . e� n `/IQ/, and this
dependence is Q–linear.

Proof Let � 0 be a null Y–link which has a leaf `0 such that � 0n`0 coincides with �n`,
and z̀0 is homologous to z̀ in zX n . e� n `/, where z̀0 is the lift of `0 which has the
same basepoint as z̀. Construct another null Y–link �ı by replacing the leaf ` by
`�`0 in � ; see Figure 13. By Lemma 3.9, Œ.M;K/I�ı �D 0 mod Fb

nC1
.M;K/. Thus

Lemma 3.5 implies Œ.M;K/I��D Œ.M;K/I� 0� mod Fb
nC1

.M;K/. Linearity follows
from Lemma 3.5.

4 Colored diagrams and Y–links

In this section, we apply clasper calculus to obtain the maps from diagram spaces to
graded quotients of Proposition 2.6 and Theorem 2.17.

Fix a Blanchfield module .A; b/. An .A; b/–colored diagram is an elementary ..A; b/–
colored/ diagram if its edges that connect two trivalent vertices are colored by powers
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`0

` `� `0

Figure 13: The leaf `� `0

of t and its edges adjacent to univalent vertices are colored by 1. Below, we associate
a null Y–link with some elementary diagrams that generate zAn.A; b/. Let .M;K/ 2

P.A; b/. Let �W .A; b/! .A; b/.M;K/ be an isomorphism. Let m.K/ be a meridian
of K .

Let D be an elementary diagram. An embedding of D in M nK is admissible if the
following conditions are satisfied:

� The vertices of D are embedded in some ball B �M nK .

� Consider an edge colored by tk . The homology class in H1.M nKIZ/ of the
closed curve obtained by connecting the extremities of this edge by a path in B

is k m.K/.

Such an embedding always exists. It suffices to embed the diagram in B , and to let
each edge colored by tk turn k times around K . To an admissible embedding of an
elementary diagram, we wish to associate a null Y–link.

Let � be a Y–graph, null in M nK . Let p be the internal vertex of � . Let ` be a
leaf of � . The curve ỳ drawn in Figure 14 is the extension of ` in � .

p�

`

p�

ỳ

Figure 14: Extension of a leaf in a Y–graph

Let D be an elementary diagram, equipped with an admissible embedding in M nK .
Equip D with the framing induced by an immersion in the plane which induces the
fixed orientation of the trivalent vertices. If an edge connects two trivalent vertices,
insert a little Hopf link in this edge, as shown in Figure 15. At each univalent vertex v ,
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� � � �

Figure 15: Replacement of an edge

glue a leaf `v , trivial in H1.M nKIQ/, in order to obtain a null Y–link � . Let V

be the set of all univalent vertices of D . Let B be the ball in the definition of the
admissible embedding of D . Let zB be a lift of B in the infinite cyclic covering zX of
the exterior of K in M . For v 2V , let v be the coloring of v , let ỳv be the extension
of `v in � and let z̀v be the lift of ỳv in zX defined by lifting the basepoint in zB .
The null Y–link � is a realization of D in .M;K/ with respect to � if the following
conditions are satisfied:

� z̀v is homologous to �.v/ for all v 2 V ,

� lke. z̀v; z̀v0/D fvv0 for all .v; v0/ 2 V 2 .

If such a realization exists, the elementary diagram D is �–realizable.

Lemma 4.1 Let .M;K/ 2 P.A; b/. Let �W .A; b/ ! .A; b/.M;K/ be an isomor-
phism. Let D 2 zAn.A; b/ be an elementary diagram of degree n > 0, �–realizable.
Let � be a realization of D in .M;K/ with respect to � . Then the class of Œ.M;K/I��

mod Fb
nC1

.M;K/ does not depend on the realization of D .

Proof If the ball B and its lift zB are fixed, then the result follows from Lemmas 3.3
and 3.10. Fix the ball B and consider another lift zB0 D �k. zB/ of B , where � is the
automorphism of zX which induces the action of t and k 2Z. A realization of D with
respect to zB0 can be obtained from � by letting the internal vertex of each Y–graph
in � turn k times around K , and come back into B , by an isotopy of .M;K; �/.
This does not change the result of the surgeries on these Y–graphs, hence this does
not modify the bracket Œ.M;K/I��. Now consider two balls B1 and B2 in M nK .
If B1 � B2 , a realization of D with respect to B1 is a realization of D with respect
to B2 . If B1 \B2 ¤ ∅, there is a ball B3 � B1 \B2 . If B1 \B2 D ∅, there is a
ball B3 � B1 [B2 . Hence the class of the bracket Œ.M;K/I�� does not depend on
the chosen ball B .

In the sequel, if D is a �–realizable elementary diagram, Œ.M;K/ID�� denotes the
class of Œ.M;K/I�� mod Fb

nC1
.M;K/.

Let D be any elementary diagram. Let V be the set of all univalent vertices of D . For
any family of rational numbers .qv/v2V , define an elementary diagram D0D .qv/v2V

�D
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from D in the following way. Keep the same graph and the same colorings of the edges.
For v 2 V , multiply the coloring of v by qv . For v ¤ v0 2 V , set f D0

vv0 D qvqv0f
D
vv0 .

Lemma 4.2 Let .M;K/ 2 P.A; b/. Let �W .A; b/ ! .A; b/.M;K/ be an isomor-
phism. Let D be any elementary diagram. Let V be the set of all univalent vertices
of D . Then there exists a family of positive integers .sv/v2V such that .sv/v2V

�D is
�–realizable.

Proof Let zX be the infinite cyclic covering associated with .M;K/. Since any
homology class in A has a multiple which can be represented by a knot in zX , we can
assume that the color v of each vertex v in V can be represented by a knot in zX .
From D , define as above a Y–link � , null in M nK , with leaves `v which satisfy
the condition that z̀v is homologous to �.v/ for all v 2 V . For v ¤ v0 2 V , set
Pvv0 D lke. z̀v; z̀v0/�fvv0 . We can assume that Pvv0 2ZŒt˙1� for all v¤ v0 2 V . Add
well-chosen meridians of `v to `v0 to get Pvv0 D 0.

Lemma 4.3 Let .M;K/ 2 P.A; b/. Let �W .A; b/ ! .A; b/.M;K/ be an isomor-
phism. Let D be an elementary .A; b/–colored diagram. Let V be the set of all
univalent vertices of D . Let .sv/v2V and .s0v/v2V

be families of integers such that
.sv/v2V

�D and .s0v/v2V
�D are �–realizable. ThenY

v2V

s0v Œ.M;K/I .sv/v2V �D�� D
Y
v2V

sv Œ.M;K/I .s0v/v2V �D�� :

Proof Let � be a realization of .sv/v2V
� .s0v/v2V

�D in .M;K/ with respect to � .
By Lemma 3.10, Œ.M;K/I�� is equal to both sides of the equality.

Let D be an elementary .A; b/–colored diagram. Let V be the set of all univalent
vertices of D . The above result allows us to define

Œ.M;K/ID�� D
Y
v2V

1

sv
Œ.M;K/I .sv/v2V �D�� 2 Gb

n .M;K/;

where .sv/v2V is any family of integers such that .sv/v2V
�D is �–realizable.

Lemma 4.4 Let D be an elementary .A; b/–colored diagram. Let .M;K/ and
.M 0;K0/ be QSK–pairs in P.A; b/. Fix isomorphisms �W .A; b/! .A; b/.M;K/ and
� 0W .A; b/! .A; b/.M 0;K0/. Then Œ.M 0;K0/ID��0 D Œ.M;K/ID�� mod FnC1.A; b/.
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Proof Set � D � 0 ı ��1 . By Theorem 2.2, .M 0;K0/ can be obtained from .M;K/

by a finite sequence of null LP–surgeries, which induces � ımk for k 2 Z, where mk

is the multiplication by tk . Assume the sequence contains a single surgery .A0=A/.
Let V be the set of all univalent vertices of D . Let .sv/v2V be a family of integers
such that .sv/v2V

�D is �–realizable by a null Y–link � in .M nK/ nA. Then�
.M;K/I�;

A0

A

�
D Œ.M;K/I��� Œ.M 0;K0/I��:

In .M 0;K0/, � is a realization of .sv/v2V
�D with respect to � 0 ımk . Hence it is also

a realization of .sv/v2V
�D with respect to � 0 (it suffices to change the lift zB of the

ball B ; see Lemma 4.1).

The case of several surgeries easily follows.

In the sequel, the class of Œ.M;K/ID�� modulo FnC1.A; b/ is denoted by ŒD�.

Proposition 4.5 Fix a Blanchfield module .A; b/. Let n > 0. There is a canonical,
Q–linear and surjective map 'nW An.A; b/� Gb

n .A; b/, given by D 7! ŒD� for any
elementary diagram D .

Proof Let Dn be the rational vector space freely generated by the .A; b/–colored
diagrams of degree n. If D is an elementary .A; b/–colored diagram, set z'n.D/D ŒD�.
Define z'n.D/ for any .A; b/–colored diagram D so that the obtained Q–linear map
z'nW Dn! Gb

n .A; b/ satisfies the relations LE and EV. Let us check that z'n satisfies
the relations AS, IHX, OR, Hol, LV, LD and Aut. OR is trivial. LV follows from
Lemma 3.10. Hol is obtained by letting the corresponding vertex of a realization of D

turn around the knot K . AS and IHX respectively follow from [6, Corollary 4.6] and
[6, Lemma 4.10]. Aut follows from Lemma 4.4. For the relation LD, it suffices to
prove that z'n.D/D z'n.D

0/C z'n.D0/, where D , D0 and D0 are elementary diagrams
which are identical except for the part drawn in Figure 16. Note that the edges adjacent
to v1 and v2 are colored by 1. Since the diagram D0 and the diagram D0

0
drawn in

Figure 17 can be realized by the same null Y–link, we have z'n.D0/ D z'n.D
0
0
/. To

�
v1

1 �
v2

2

D

�
v1

1 �
v2

2

D0

tk

D0

f D
v1v2
D f D0

v1v2
C tk

Figure 16: The diagrams D , D0 and D0 , where 1; 2 2 A and k 2 Z
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�
v1

0 �
v2

0

D0
0

fv1v2
.t/D tk

fv1v.t/D 0

fv2v.t/D 0

�
v1

0 �
v2

2

D00
0

fv1v2
.t/D tk

fv1v.t/D 0

fv2v.t/D f
D
v2v
.t/

�
v1

0 �
v2

2

D00

fv1v2
.t/D 0

fv1v.t/D 0

fv2v.t/D f
D
v2v
.t/

Figure 17: The diagrams D0
0

, D00
0

and D00 with v ¤ v1; v2

see that z'n.D
0
0
/D z'n.D

00
0
/, apply the relation LV at the vertex v2 to obtain z'n.D

00
0
/D

z'n.D
0
0
/C z'n.D00/, then apply the relation LV at the vertex v1 to obtain z'n.D00/D 0 .

Apply the relation LV again at the vertex v1 to get z'n.D/D z'n.D
0/C z'n.D

00
0
/.

Finally, the map z'n induces a canonical Q–linear map 'nW An.A; b/ ! Gb
n .A; b/.

For .M;K/ 2 P.A; b/, any n–component Y–link null in M nK is a realization of
an elementary .A; b/–colored diagram, which is the disjoint union of n diagrams of
degree 1. Hence 'n is surjective.

Now that the map 'n is well-defined, we can prove the second point of Theorem 2.8.

Proof of the second statement of Theorem 2.8 Take an .A; b/–colored diagram of
degree n. Let � D �1 t � � � t�n be a realization of D in some QSK–pair .M;K/ 2

P.A; b/. For each i 2 f1; : : : ; ng, fix a lift z�i of �i in the infinite cyclic covering zX
of M nK , and represent it schematically as

�

��

Gi

`1

`2`3

where `1 , `2 , `3 are the leaves of z�i . By [13, Theorem 1.1] for the Lescop invariant and
[18, Theorem 1.1] for the Kricker invariant, the image by Z of the bracket Œ.M;K/I��

is, modulo FnC1.ı/, the sum of all diagrams obtained from G D
F

1�i�n Gi by
pairwise gluing all univalent vertices as follows:

� �
` `0

 

lke.`; `
0/
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Note that the choice of the lifts of the �i has no importance thanks to the relation Hol.

When an edge of D joins two trivalent vertices, then the corresponding two univalent
vertices in G are labeled by curves ` and `0 such that the equivariant linking of `
is 0 with any curve labeling a vertex of G other than `0 , and vice versa. Moreover,
relevant choices of the lifts of the �i ensure that lke.`; `

0/ D 1. Finally, modulo
FnC1.ı/, we have Z.Œ.M;K/I��/D  n.D/. Hence Zk.Œ.M;K/I��/D 0 if k < n

and Zn ı'n.D/D  n.D/.

In the setting of ZSK–pairs, all the results of Section 3 apply since we work modulo
Fb

nC1
.M;K/. All the results of the current section apply as well. In Lemma 4.4, note

that we use Theorem 2.16 instead of Theorem 2.2. We finally get a similar result to the
above proposition.

Proposition 4.6 Fix an integral Blanchfield module .AZ; bZ/. Let n > 0. There is
a canonical, Q–linear and surjective map 'Z

n W AZ
n .AZ; bZ/� GZ

n .AZ; bZ/, given
by D 7! Œ.M;K/ID�� for any elementary diagram D , where .M;K/ is any ZSK–
pair with Blanchfield module .AZ; bZ/ and �W .AZ; bZ/! .AZ; bZ/.M;K/ is any
isomorphism.

Fix .AZ; bZ/ and set .A; b/ D .Q˝Z AZ; IdQ˝ bZ/. The corresponding map 'n

satisfies 'n ıpnD!n ı'
Z
n , where pnW AZ

n .A; b/�An.A; b/ is the natural projection
and !nW GZ

n .AZ; bZ/! Gb
n .A; b/ is the map induced by the inclusion FZ

n .AZ; bZ/ ,!

Fn.A; b/.

5 The surjective map 'nW Aaug
n .A;b/! Gn.A;b/

In this section, we prove Theorems 2.7 and 2.3.

Fix a Blanchfield module .A; b/. Let .M;K/ be a QSK–pair in P.A; b/. Let
�W .A; b/ ! .A; b/.M;K/ be an isomorphism. Let n > 0. Let D be an .A; b/–
augmented diagram of degree n whose Jacobi part DJ is elementary. With an isolated
vertex colored by a prime integer p , we associate a surgery Bp=B

3 , where Bp is
a fixed Q–ball such that jH1.BpIZ/j D p . Hence, if DJ is �–realizable with a
realization of DJ , we associate a family of n disjoint null LP–surgeries.

Lemma 5.1 Let .M;K/ 2 P.A; b/. Let �W .A; b/! .A; b/.M;K/ be an isomor-
phism. Let n > 0. Let D be an .A; b/–augmented diagram whose Jacobi part DJ

is elementary. Let .pi/1�i�n�k be the labels of the isolated vertices of D . If DJ is
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�–realizable, let � be a realization of DJ in .M;K/ with respect to � . Then

� Œ.M;K/ID�� WD Œ.M;K/I .Bpi
=B3/1�i�n�k ; �� 2 Gn.A; b/ does not depend

on .M;K/, on � or on the realization � of DJ .

If DJ is any elementary diagram, set ŒD�D
Q
v2V .1=sv/Œ.M;K/I .sv/v2V �D�� , where

.sv/v2V is a family of integers such that .sv/v2V
�DJ is � –realizable and .sv/v2V

�D

is the disjoint union of .sv/v2V
�DJ with the 0–valent part of D . Then

� ŒD� 2 Gn.A; b/ does not depend on .sv/v2V , .M;K/ or � .

Proof Take .M 0;K0/ 2 P.A; b/ and an isomorphism � 0W .A; b/! .A; b/.M 0;K0/

such that DJ is � 0–realizable. Let � 0 be a realization of DJ with respect to � 0 . By
Proposition 4.5,

Œ.M 0;K0/I� 0�D Œ.M;K/I�� mod FkC1.A; b/:

Let p be a prime integer. Let Mp D B3 [@B3 Bp . In the equality in F0.A; b/

corresponding to the above relation, make a connected sum of each QSK–pair with Mp .
Then subtract the new equality from the original one, to obtain�

.M 0;K0/I
Bp

B3
; � 0

�
D

�
.M;K/I

Bp

B3
; �

�
mod FkC2.A; b/:

Applying this process n� k times, we get�
.M 0;K0/I

�
Bpi

B3

�
1�i�n�k

; � 0
�
D

�
.M;K/I

�
Bpi

B3

�
1�i�n�k

; �

�
mod FnC1.A; b/:

If DJ is any elementary diagram, use Lemma 3.10, as in Lemma 4.3, to prove that
Œ.M;K/ID�� D

Q
v2V .1=sv/Œ.M;K/I .sv/v2V

�D�� does not depend on the family
of integers .sv/v2V such that .sv/v2V �DJ is �–realizable. Conclude with the first
assertion of the lemma.

The above result implies that the map 'nW An.A; b/� Gb
n .A; b/ extends to a canonical

Q–linear map 'nW A
aug
n .A; b/! Gn.A; b/ defined by 'n.D/D ŒD� for any diagram

D 2 Aaug
n .A; b/ whose Jacobi part is elementary. To prove Theorem 2.7, it remains

to show that the map 'nW A
aug
n .A; b/! Gn.A; b/ is surjective. We first recall results

from [15] and give consequences of them.

Definition 5.2 Let d be a positive integer. A d –torus is a Q–torus Td such that

� H1.@Td IZ/D Z˛˚Zˇ , with algebraic intersection number h˛; ˇi D 1;
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� d˛ D 0 in H1.Td IZ/;

� ˇ D d in H1.Td IZ/, where  is a curve in Td ;

� H1.Td IZ/D .Z=dZ/˛˚Z .

Definition 5.3 An elementary surgery is an LP–surgery among the following ones:

(1) Connected sum (genus 0).

(2) LP–replacement of a standard torus by a d –torus (genus 1).

(3) Borromean surgery (genus 3).

The next result generalizes the similar result of Habegger [9] and Auclair and Lescop [2]
for Z–handlebodies and Borromean surgeries.

Theorem 5.4 [15, Theorem 1.15] If A and B are two Q–handlebodies with LP–
identified boundaries, then B can be obtained from A by a finite sequence of elementary
surgeries and their inverses in the interior of the Q–handlebodies.

Corollary 5.5 The space Fn.A; b/ is generated by the Œ.M;K/I .E0i=Ei/1�i�n� def-
ined by a QSK–pair .M;K/ 2 P.A; b/ and elementary null LP–surgeries .E0i=Ei/.

Proof Consider Œ.M;K/I .A0i=Ai/1�i�n� 2 Fn.A; b/. By Theorem 5.4, for each i ,
Ai and A0i can be obtained from one another by a finite sequence of elementary
surgeries or their inverses. Write A0

1
DA1.E

0
1
=E1/ � � � .E

0
k
=Ek/. For 0� j � k , set

Bj DA1.E
0
1
=E1/ � � � .E

0
j=Ej /. Then�

.M;K/I

�
A0i
Ai

�
1�i�n

�
D

kX
jD1

�
.M;K/

�
Bj�1

B0

�
I
E0j

Ej
;

�
A0i
Ai

�
2�i�n

�
:

Decompose each surgery .A0i=Ai/ in this way and conclude with�
.M;K/I

E0

E
;

�
A0i
Ai

�
2�i�n

�
D�

�
.M;K/

�
E0

E

�
I

E

E0
;

�
A0i
Ai

�
2�i�n

�
:

Let F Qs
0

be the rational vector space generated by all Q–spheres up to orientation-
preserving homeomorphism. Let .F Qs

n /n2N be the filtration of F Qs
0

defined by LP–
surgeries, as before Definition 2.1. Let GQs

n D F Qs
n =F Qs

nC1
be the associated quotients.
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Lemma 5.6 [15, Proposition 1.8] For each prime integer p , let Bp be a Q–ball such
that H1.BpIZ/Š Z=pZ. Then

GQs
1
D

M
p prime

Q

�
S3
I

Bp

B3

�
:

Lemma 5.7 For each prime p , let Bp be a Q–ball such that H1.BpIZ/ Š Z=pZ.
Let .M;K/ be a QSK–pair in P.A; b/. Let B be a Q–ball. Let .A0i=Ai/1�i<n be
disjoint null LP–surgeries in .M;K/. Then�

.M;K/I
B

B3
;

�
A0i
Ai

�
1�i<n

�
is a rational linear combination of the�

.M;K/I
Bp

B3
;

�
A0i
Ai

�
1�i<n

�
and elements of FnC1.A; b/.

Proof By Lemma 5.6, there is a relation�
S3
I

B

B3

�
D

X
p prime

ap

�
S3
I

Bp

B3

�
C

X
j2J

bj

�
Nj I

C 0j

Cj
;
D0j

Dj

�
;

where J is a finite set, the ap and bj are rational numbers, the ap are all trivial except
for a finite number and ŒNj IC

0
j=Cj ;D

0
j=Dj � 2 F Qs

2
for j 2 J . For I � f1; ::; n� 1g,

make the connected sum of each Q–sphere in the relation with M..A0i=Ai/i2I / to
obtain�
.M;K/

��
A0i
Ai

�
i2I

�
I

B

B3

�
D

X
p prime

ap

�
.M;K/

��
A0i
Ai

�
i2I

�
I

Bp

B3

�
C

X
j2J

bj

�
.M # Nj ;K/

�
A0i
Ai

�
i2I

I
C 0j

Cj
;
D0j

Dj

�
:

Summing these equalities for all I � f1; ::; n� 1g, with appropriate signs, we get�
.M;K/I

B

B3
;

�
A0i
Ai

�
1�i<n

�
D

X
p prime

ap

�
.M;K/I

Bp

B3
;

�
A0i
Ai

�
1�i<n

�
C

X
j2J

bj

�
.M #Nj ;K/I

C 0j

Cj
;
D0j

Dj
;

�
A0i
Ai

�
1�i<n

�
:

This concludes the proof.
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Corollary 5.8 Let .M;K/ 2 P.A; b/. Let .E0i=Ei/1�i�n be null elementary surg-
eries of genus 0 or 3. Then�

.M;K/I

�
E0i
Ei

�
1�i�n

�
2 'n.A

aug
n .A; b//:

Proof Thanks to Lemma 5.7, it suffices to treat the case when the genus 0 surgeries
are surgeries of type .B=B3/ for a Q–ball B such that jH1.BIZ/j is a prime integer.
In this case, the considered bracket is the image of a diagram given as the disjoint
union of 0–valent vertices and of .A; b/–colored diagrams of degree 1.

To conclude the proof of Theorem 2.7, we need the next result about degree 1 invariants
of framed Q–tori, ie Q–tori equipped with an oriented longitude. Note that any two
framed Q–tori have a canonical LP–identification of their boundaries, which identifies
the fixed longitudes. LP–surgeries are well-defined on framed Q–tori and we have an
associated notion of finite type invariants.

Lemma 5.9 [15, Corollary 5.10] For any prime integer p , let Mp be a Q–sphere
such that H1.MpIZ/Š Z=pZ. Let T0 be a framed standard torus. If � is a degree 1

invariant of framed Q–tori such that �.T0/D 0 and �.T0 # Mp/D 0 for any prime
integer p , then �D 0.

Proof of Theorem 2.7 Take � 2 .Fn.A; b//
� such that �.FnC1.A; b//D 0. Assume

that �.'n.A
aug
n .A; b/// D 0. In order to prove that 'n is onto, it is enough to prove

that �D 0. Thanks to Corollary 5.5, it suffices to prove that � vanishes on the brackets
defined by elementary surgeries. For elementary surgeries of genus 0 and 3, this
follows from Corollary 5.8.

Consider a bracket �
.M;K/I

�
Tdi

Ti

�
1�i�k

;

�
E0i
Ei

�
1�i�n�k

�
;

where .M;K/ 2 P.A; b/, the Ti are standard tori null in M nK , the Tdi
are di –tori

for some positive integers di , and the .E0i=Ei/ are null elementary surgeries of genus 0

or 3. By induction on k , we will prove that � vanishes on this bracket. We have treated
the case k D 0. Assume k > 0. Fix a parallel of T1 . If T is a framed Q–torus, set

x�.T /D �

��
.M;K/I

T

T1

;

�
Tdi

Ti

�
2�i�k

;

�
E0i
Ei

�
1�i�n�k

��
;
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where the LP–identification @T Š @T1 identifies the preferred parallels. Then x� is a
degree 1 invariant of framed Q–tori:

x�

��
T I

B1

A1

;
B2

A2

��
D��

��
.M;K/

�
T

T1

�
I

B1

A1

;
B2

A2

;

�
Tdi

Ti

�
2�i�k

;

�
E0i
Ei

�
1�i�n�k

��
D 0:

Moreover, we have x�.T1/ D 0 and, by induction, x�.T1.Bp=B
3// D 0. Thus, by

Lemma 5.9, x�D 0.

Proof of Theorem 2.3 Theorem 2.7 provides a surjective map '1W A
aug
1
.A; b/�

G1.A; b/. Thanks to Lemma 2.5, we have Aaug
1
.A; b/D

L
p prime Q �p . Hence G1.A; b/

is generated by the images of the diagrams �p , which are the brackets Œ.M;K/IBp=B
3�

for all prime integers p , with any .M;K/ 2 P.A; b/.

For any prime integer p , define a Q–linear map �pW F0!Q by setting �p.M;K/D

vp.jH1.M IZ/j/ for all QSK–pairs .M;K/, where vp denotes the p–adic valuation.
By [15, Proposition 1.9], the �p are degree 1 invariants of Q–spheres, hence they are
also degree 1 invariants of QSK–pairs. This implies that the family��

.M;K/I
Bp

B3

��
p prime

is free in G1.A; b/.

6 Extension of the Lescop/Kricker invariant

In this section, we prove Theorem 2.9.

Given two invariants �1 and �2 of QSK–pairs, define their product on any QSK–pair
.M;K/ by .�1�2/.M;K/D �1.M;K/�2.M;K/ and extend to F0 by linearity. The
following lemma is classical and holds for any objects and any invariants with values
in some ring; see for instance [15, Lemma 6.2].

Lemma 6.1 The following relation holds:� nY
jD1

�j

���
.M;K/I

�
Bi

Ai

�
i2I

��

D

X
∅DJ0�����JnDI

nY
jD1

�j

��
.M;K/

��
Bi

Ai

�
i2Jj�1

�
I

�
Bi

Ai

�
i2Jj nJj�1

��
:
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This lemma implies in particular that a product of finite type invariants is a finite type
invariant whose degree is at most the sum of the degrees of the factors.

Proof of Theorem 2.9 We begin with a preliminary remark about the invariant Z .
It follows from the last point in Theorem 2.8 that Zn ı'n vanishes on diagrams that
contain isolated vertices. Now, the degree n part of Zaug is given by

Z
aug
n D

nX
kD0

X
p1<���<ps

prime integers

X
t1C���CtsDn�k

ti>0

Zk t

� sG
iD1

1

ti !
.�pi

/ti

�
:

That Z
aug
n vanishes on FnC1 follows from Lemma 6.1.

Let us compute Z
aug
n ı 'n . Let D be an .A; b/–augmented diagram of degree n.

Write D as the disjoint union of its Jacobi part DJ and its 0–valent part D� . Apply
Lemma 6.1, noting that for a term in the right-hand side of the obtained equality to be
nontrivial,

� each bracket must have exactly the order of the corresponding invariant,

� each invariant �p must be evaluated on a bracket associated with the diagram �p ,
and

� the invariant Zk must be evaluated on a bracket associated with a diagram
without isolated vertices.

It follows that Z
aug
n ı'n.D/D .Zk ı'k.DJ //tD� D  k.DJ /tD� D  n.D/.

7 Inverse of the map x n

In this section, we prove Theorem 2.12. To this end, we construct the inverse of the
map x n . The rough idea is to open the edges of a given ı–colored diagram, inserting
univalent vertices whose fixed equivariant linking is the label of the initial edge. We
need some preliminaries.

Proposition 7.1 Fix a Blanchfield module .A; b/. Assume A is a direct sum A D

A0˚A00 , orthogonal with respect to the Blanchfield form. Let D and D0 be .A; b/–
colored diagrams which differ only by the labels of their univalent vertices; ie D and D0

have the same underlying graph, with a common set V of univalent vertices, the same
orientations and edges labels, and the same linkings between the univalent vertices.
Further assume that
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� there are two vertices v and w in V whose labels in D and D0 are elements
of A0 ;

� for all other vertices in V , the labels in D and D0 are equal and are elements
of A00 ;

� for any u 2 V different from v and w , we have fuv D 0 and fuw D 0 for D

and D0 .

Then D and D0 are equal in An.A; b/, where n is the degree of D and D0 .

We first prove a few lemmas in the setting of the proposition. In the following, we
denote by

Ð� � �
f

the diagram identical to D except for the labelings of v and w , which are  and �
respectively, and the linking fv;w , which is equal to f .

We will use the structure of the Blanchfield module recalled in the next theorem. The
dual of a polynomial P .t/2QŒt˙1� is the polynomial xP .t/DP .t�1/. The polynomial
P is symmetric if xP .t/D atkP .t/ for some a 2Q and k 2 Z.

Theorem 7.2 [16, Proposition 1.2 and Theorem 1.3] The Blanchfield module .A; b/
of a QSK–pair is an orthogonal direct sum of

� cyclic submodules
QŒt˙1�

.�n/
;

where n is a positive integer, � is either a symmetric prime polynomial with
�.˙1/ ¤ 0, or .t C 2C t�1/, or a product of two dual nonsymmetric prime
polynomials, and b.;  /D P=�n for some polynomial P which is symmetric
and prime to � ; and

� submodules
QŒt˙1�

..t C 1/m/
�˚

QŒt˙1�

..t C 1/m/
�0;

where m is an odd positive integer, b.�; �/D 0, b.�0; �0/D 0 and b.�; �0/D

1=.t C 1/m .

Lemma 7.3 Assume A0 D A1˚
?A2 . If  2 A1 and � 2 A2 , then

Ð� � �
0

D 0:
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Proof Apply the Aut relation with the automorphism of .A; b/ given by the opposite
of the identity on A1 and the identity on A2˚A00 .

Corollary 7.4 Assume A0 is the orthogonal direct sum of submodules Ai for i D

1; : : : ; k . Let ; �2A0 . Write  D
Pk

iD1 i and �D
Pk

iD1 �i , with i ; �i 2Ai . Then

Ð� � �
f

D

kX
iD1

Ð� �i �i
fi

for all families of rational fractions fi such that b.i ; �i/ D fi mod QŒt˙1� andPk
iD1 fi D f .

Lemma 7.5 If ; � 2 A0 and P 2QŒt˙1�, then

Ð� �P �
f

D Ð� � xP�:
f

Proof In the case where P is a power of t , apply the Aut relation with the automor-
phism of .A; b/ given by multiplication by some power of t on A0 and identity on A00 .
Conclude with the LV relation.

Corollary 7.6 Assume

A0 D
QŒt˙1�

.�/
:

Then
D D Ð� � P

f

for some P 2QŒt˙1�, with f D f D
vw .

Lemma 7.7 Assume

A0 D
QŒt˙1�

..t C 1/m/
�˚

QŒt˙1�

..t C 1/m/
�0

with m odd, b.�; �/D 0, b.�0; �0/D 0 and b.�; �0/D 1=.t C 1/m . Then

D D Ð� �� Q�0

f

for some Q 2QŒt˙1�, with f D f D
vw .

Proof Write
D D Ð� �� �0

f
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with � D A� C B�0 and �0 D A0� C B0�0 . Applying the Aut relation with the
automorphism given by � 7! 2� , �0 7! 1

2
�0 and identity on A00 , we see that the

diagrams

Ð� �A� A0�
0

and Ð� �B�0 B0�0

0

are trivial. Hence we can decompose D as

D D Ð� �A� B0�0

f1

C Ð� �B�0 A0�:
f2

Now the automorphism given by � 7! �0 , �0 7! tm� and identity on A00 gives

Ð� �B�0 A0�
f2

D Ð� �Btm� A0�0:
f2

Thanks to Lemma 7.5, we get

D D Ð� �� P�0

f

with P D xAB0C xBt�mA0 .

Proof of Proposition 7.1 For � 2QŒt˙1�, the � –component of a QŒt˙1�–module is
the submodule of its elements of order some power of � . Any Blanchfield module
is the direct sum of its � –components, where � runs through all prime symmetric
polynomials (including t C 1) and all products of two dual prime nonsymmetric
polynomials. Thanks to Corollary 7.4, we can assume that A0 is reduced to one
� –component.

First case (�.�1/¤ 0) The module A0 can be written as an orthogonal direct sum

A0 D

pM
iD1

QŒt˙1�

.�ni /
i

with b.i ; i/D Pi=�
ni for some symmetric polynomial Pi prime to � , and

n WD n1 D � � � D nq > nqC1 � � � � � np:

Replacing 1 by some rational multiple if necessary, we can assume that
Pq

iD1
Pi is

prime to � . Set  D
Pp

iD1
i . Then b.;  /D P=�n with P symmetric and prime

to � . It follows that the submodule h i of A0 generated by  has a trivial intersection
with its orthogonal h i? , thus

A0 D h i˚? h i?:
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By Corollaries 7.4 and 7.6, we can decompose D as

D D

pX
iD1

Ð� �i Qii
fi

for some polynomials Qi . Corollary 7.4 gives

D D Ð� � �
f

with �D
Pp

iD1
Qii and f D

Pp
iD1

fi . Write �DA C� with � 2 h i? . Since

Ð� � �
0

D 0

by Lemma 7.3, we get
D D Ð� � A:

f

Similarly,
D0 D Ð� � B:

f

The condition on f implies AP=�n D .BP=�n/ mod QŒt˙1�, thus AD B mod �n

and A D B .

Second case (�D tC1) In this case, the decomposition of A0 may involve noncyclic
submodules. We have A0 D A1˚

?A2 , where

A1D

� pM?

iD1

QŒt˙1�

.t C 2C t�1/ni
i

�
and A2D

� kM?

jD1

�
QŒt˙1�

.t C 1/mj
�j˚

QŒt˙1�

.t C 1/mj
�0j

��
;

with b.i ; i/ D Pi=.t C 2C t�1/ni , Pi.�1/ ¤ 0, b.�j ; �j / D 0, b.�0j ; �
0
j / D 0,

b.�j ; �
0
j / D 1=.t C 1/mj , n1 D � � � D nq > nqC1 � � � � � np and m1 � � � � � mk

with mj odd. We can assume
Pq

iD1
Pi is prime to .t C 1/. Set  D

Pp
iD1

i and
�D

Pk
jD1 �j .

Proceeding as in the first case, applications of Corollaries 7.4 and 7.6 and Lemma 7.7
give

D D Ð� � ˛
f1

C Ð� �� ˇ
f2

with ˛ 2 A1 and ˇ 2 A2 . Finally,

D D Ð� �. C �/ �
f
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with � 2 A0 and f D f D
vw . Similarly,

D0 D Ð� �. C �/ �0

f

with �0 2 A0 .

First assume 2n1 >m1 . We have

b. C �;  C �/D

pX
iD1

Pi

.t C 2C t�1/ni
D

P

.t C 2C t�1/n1

with P .�1/¤ 0. We get A0 D h C �i˚? h C �i? and we conclude as in the first
case.

Now assume m1 > 2n1 . It is easily checked that h C �; �0
1
i \ h C �; �0

1
i? D 0.

Hence A0 D h C�; �0
1
i˚? h C�; �0

1
i? , and we can assume �; �0 2 h C�; �0

1
i. By

Theorem 7.2, there is a basis .�; �0/ of hC�; �0
1
i such that b.�; �/D0, b.�0; �0/D0

and b.�; �0/D 1=.t C 1/m1 . By Lemma 7.7, we have

D D Ð� �� A�0

f
and D0 D Ð� �� B�0:

f

Since the linking f is the same, we get AD B mod .t C 1/m1 and A�0 D B�0 .

Let us fix some notation. Let n be an even positive integer and N � 3
2
n. For i D

1; : : : ;N , let .Ai ; bi/ be a copy of .A; b/ and fix an isomorphism �i W .A; b/�!
Š
.Ai ; bi/.

Let .xA;xb/ be the orthogonal direct sum of the .Ai ; bi/. Define permutation au-
tomorphisms �ij of .xA;xb/ by �j ı �

�1
i on Ai , �i ı ��1

j on Aj and identity on
the other A` . Given a diagram D with set of univalent vertices V , denote by
D..v/v2V ; .fvw/v¤w2V / the diagram obtained from D by replacing the label of
the vertex v by v and the linking between v and w by fvw . If all the linkings are
the same as in D , we drop this part of the notation.

Definition 7.8 An .xA;xb/–colored diagram D is distributed if there are a decomposi-
tion of the set of univalent vertices of D as V D

FjV j=2
iD1
fvi ; wig and indices `i with

`i ¤ j̀ if i ¤ j such that the labels of vi and wi are elements of A`i
for all i and

the linkings between vertices in different pairs are trivial.

Proposition 7.9 The space An.xA;xb/ is generated by distributed .xA;xb/–colored dia-
grams.
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Proof Let D be an .xA;xb/–colored diagram of degree n. First note that D has
n trivalent vertices and each univalent vertex is related to a trivalent vertex by an edge
since we avoid struts, hence D has at most 3n univalent vertices. We shall prove that
D is a linear combination of distributed diagrams. Thanks to the LV relation, we can
assume that all labels of univalent vertices of D are elements of the Ai . Thanks to the
LD and LV relations, we can assume that all univalent vertices have nontrivial labels
and the linking fvw is trivial if v and w are labeled in different Ai . If D has an odd
number of univalent vertices labeled in some Ai , application of the automorphism given
by opposite identity on Ai and identity on the other Aj shows it is trivial. Assume
D has an even number of univalent vertices labeled in each Ai . Let i be an index
such that the number of univalent vertices of D labeled in Ai is maximal; denote this
number by 2s . If s > 1, there is an Aj that contains no labels of univalent vertices
of D . Consider the following automorphism �ij of .xA;xb/:

�ij . / WD

8<:
x Cy�j ı �

�1
i . / if  2 Ai ;

y�i ı �
�1
j . /�x if  2 Aj ;

 if  2 A` with `¤ i; j ;

where x and y are positive rational numbers such that x2Cy2 D 1. Apply the Aut
relation with �ij to D and use the LV relation to express D D D..v/v2V / as the
sum of x2sD , y2sD..�ij .v//v2V / and a linear combination C of diagrams with
strictly fewer than 2s vertices in Ai and in Aj . Now D and D..�ij .v//v2V / are
equal thanks to the Aut relation with �ij . It follows that D is a rational multiple of C .
Conclude by iterating.

Remark In the case of ZSK–pairs, Proposition 7.9 is the point in this section that
does not work. Indeed, this proposition uses automorphisms �ij whose definition is
based on rational numbers x and y that are not integers. Thus it is not clear whether
such isomorphisms are induced by isomorphisms of the underlying integral Blanchfield
module. For instance, consider the integral Blanchfield module .AZ; bZ/ defined by

AZ D
ZŒt˙1�

.ı/
 ˚?

ZŒt˙1�

.ı/
� with ı.t/D t � 1C t�1 and bZ.;  /D bZ.�; �/:

Then any isomorphism of .AZ; bZ/ preserves the given direct sum decomposition.
Indeed, an isomorphism of .AZ; bZ/ has the formn

 7! P CQ�;

� 7!R CS�;
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with P xP CQ xQD 1, R xRCS xS D 1 and P xRCQ xS D 0, where the polynomials are
considered in ZŒt˙1�=.ı/. Since ı has degree 2, one can write P .t/ D at C b and
Q.t/D ct C d with a; b; c; d 2 Z. This gives

P xPCQ xQDa2
Cb2
CabCc2

Cd2
CcdD 1

2

�
.aCb/2Ca2

Cb2
C.cCd/2Cc2

Cd2
�
:

If PQ¤ 0, then a¤ 0 or b ¤ 0, and c ¤ 0 or d ¤ 0. It follows that P xP CQ xQ� 2,
contradicting the first condition on P and Q. Hence PQD 0 and the conditions on
the polynomials P , Q, R and S give P D S D 0 or QDRD 0.

Recall that the map �nW An.A; b/!An.xA;xb/ is defined on diagrams by

�n.D..v/v2V //DD..�1.v//v2V /:

Proposition 7.10 If D is an .A; b/–colored diagram of degree n with an even number
of univalent vertices, then

�n.D..v/v2V ; .fvw/v¤w2V //D
1

s!

X
�2‡

D..��.v/.v//v2V ; .ı�.v/�.w/fvw/v¤w2V /;

where s D 1
2
jV j and ‡ D

˚
� W V ! f1; : : : ; sg

ˇ̌
j��1.i/j D 2 for all i D 1; : : : ; s

	
.

Proof We apply the method of the previous proposition with precise computations.
We indeed prove a slightly more general result. Consider an .xA;xb/–colored diagram
D D D..v/v2VtW ; .fvw/v¤w2VtW / with jV j D 2s , v 2 A1 if v 2 V , w 2 Ai

with i > s if w 2W , and fvw D 0 if v 2 V and w 2W . We prove by induction on s

that in An.xA;xb/,

DD
1

s!

X
�2‡

D
�
.�1�.v/.v//v2V [.w/w2W ; .ı�.v/�.w/fvw/v¤w2V [.fvw/v¤w2W

�
;

where the unindicated linkings are trivial. We will use that our formulas remain valid
when permuting the indices of the Ai , without mentioning it.

The result is trivial if s D 1. Take s > 1. Applying the Aut relation with �12 to D ,
we get

D D

sX
kD0

X
VDV1tV2

jV1jD2k

x2ky2.s�k/D..�11.v//v2V1
[ .�12.v//v2V2

[ .w/w2W /

with, for the diagram in the right-hand side, the linking ı�.v/�.w/fvw if v ¤ w are
both in V1 or both in V2 , fvw if v ¤ w are both in W and 0 otherwise. Now apply
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f
 � �

v w

Figure 18: Opening an edge

the induction hypothesis twice with V1 and V2 instead of V to obtain

.1�x2s
�y2s/D D

s�1X
kD1

X
VDV1tV2

jV1jD2k

x2ky2.s�k/

k!.s� k/!

X
�2‡1

�2‡2

D..�1�.v/.v//v2V1
[ .�1�.v/.v//v2V2

[ .w/w2W /

with the required linkings, where ‡1 (resp. ‡2 ) is defined as ‡ with V1 and f1; : : : ; kg
(resp. V2 and fkC1; : : : ; sg) instead of V and f1; : : : ; sg. To conclude, note that each
diagram in the right-hand side occurs once for each value of k .

Proof of Theorem 2.12 Define the inverse ˚n of the map x nW An.xA;xb/! An.ı/

in the following way. Given a ı–colored diagram D of degree n, denote by ei ,
i D 1; : : : ; k , its edges whose labels are nonpolynomial. “Open” each such edge ei as
represented in Figure 18, label the created vertices v and w with some v and w in Ai

such that b.v; w/D f mod QŒt˙1�, and fix the linking fvw D f . Such v and w
always exist: note that v can be chosen to have order ı , the annihilator of Ai , then use
the nondegeneracy of the Blanchfield form and the fact that the denominator of f has
to divide ı . Fix the other linkings to 0 so that we obtain a distributed diagram ˚n.D/.
It does not depend on the numbering of the edges of D thanks to the Aut relation in
An.xA;xb/ with the permutation automorphisms �ij . It is also independent of the choice
of labels v; w 2 Ai by Proposition 7.1. Note that these independence arguments
imply that any distributed diagram in An.xA;xb/ is a ˚n.D/.

We have to check that the relations defining An.ı/ are respected. It is immediate for
AS and IHX. OR follows from the rule fwv.t/D fvw.t�1/ on linkings. Hol and Hol 0

are recovered via Hol and EV. LE follows from LE when the involved edges have
polynomial labels, from LD when one of the involved edges has a polynomial label,
and from LV when the involved edges have nonpolynomial labels. In this latter case,
note that one can open this edge with the same label on one univalent vertex for the
three diagrams. Finally, we have a well-defined map ˚nW An.ı/!An.xA;xb/ satisfying,
by construction, x n ı˚n D idAn.ı/ . Now ˚n is surjective by Proposition 7.9. Thus
x n and ˚n are inverse isomorphisms.
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We end with a few results that derive from the above argument and prove useful in the
study of the structure of the diagram space An.xA;xb/, as it appears in [3]. The first one
gives a simplified presentation of An.xA;xb/.

Proposition 7.11 Keeping notation as fixed before Definition 7.8, we have

An.xA;xb/Š
Qhdegree n distributed .xA;xb/–colored diagrams i
QhAS, IHX, Hol, OR, LE, LV, EV, LD, Autresi

;

where the relation Autres is the Aut relation restricted to the following automorphisms
of .xA;xb/: permutation automorphisms �ij , and automorphisms fixing one Ai setwise
and the others pointwise. Moreover, if .A; b/ is cyclic, we can further restrict the Aut
relation to permutation automorphisms �ij , and multiplication by t or �1 on one Ai

and identity on the others.

Proof We can see that the space defined by the given presentation is isomorphic
to An.ı/ as we did for An.xA;xb/ in the proof of Theorem 2.12. At the level of
generators, the proof of Theorem 2.12 only uses distributed diagrams and at the level of
relations, one has to check that the proof of Proposition 7.1 only uses the Aut relation
with the allowed automorphisms.

In order to study An.xA;xb/, it is natural and helpful to consider the filtration induced by
the number of univalent vertices. For k D 0; : : : ; 3n, let A.k/n .A; b/ be the subspace of
An.A; b/ generated by diagrams with at most k univalent vertices, and set

yA .k/
n .A; b/D

Qh.A; b/–colored diagrams of degree n with at most k univalent verticesi
QhAS, IHX, LE, OR, Hol, LV, EV, LD, Auti

:

Similarly, let A.k/n .ı/ be the subspace of An.ı/ generated by diagrams with at most
1
2
k edges with a nonpolynomial label, and set

yA .k/
n .ı/D

Q
˝
ı–colored diagrams of degree n with at most 1

2
k edges with a
nonpolynomial label

˛
QhAS, IHX, LE, OR, Hol, Hol0i

:

Recall that all these diagram spaces are trivial when n is odd. Moreover, the number of
trivalent vertices and the number of univalent vertices in a unitrivalent graph have the
same parity. So we are only interested in cases where n and k are even. Define a map
y 
.k/
n W yA

.k/
n .A; b/! yA .k/

n .ı/ via pairings of vertices, as  n was defined in Section 2.4.
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Proposition 7.12 Let n, k and K be integers such that 0 � k � 3n and k � 2K .
Then:

� The isomorphism x nW An.xA;xb/!An.ı/ induces an isomorphism A.k/n .xA;xb/Š

A.k/n .ı/.

� The map y .k/n W yA
.k/
n ..A; b/˚K /! yA .k/

n .ı/ is an isomorphism.

� The space yA .k/
n ..A; b/˚K / admits the presentation

yA .k/
n ..A; b/˚K /Š

Q
˝
degree n distributed ..A; b/˚K /–colored diagrams

with at most k univalent vertices
˛

QhAS, IHX, Hol, OR, LE, LV, EV, LD, Autresi
:

Proof The first point is due to the fact that x n identifies the .A; b/–colored diagrams
that have at most k univalent vertices with the ı–colored diagrams that have at most 1

2
k

edges with a nonpolynomial label. The last two points follow from the same argument
as Theorem 2.12 and Proposition 7.11.

A Blanchfield module .A; b/ for which yA .4/
2
.xA;xb/ © A.4/

2
.xA;xb/ is given explicitly

in [3], and this provides the example with a negative answer to Question 2 mentioned
in the introduction.
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