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Sharp entropy bounds for self-shrinkers
in mean curvature flow

OR HERSHKOVITS

BRIAN WHITE

Let M � RmC1 be a smooth, closed, codimension-one self-shrinker (for mean
curvature flow) with nontrivial k th homology. We show that the entropy of M is
greater than or equal to the entropy of a round k -sphere, and that if equality holds,
then M is a round k -sphere in RkC1 .

53C44; 49Q20

1 Introduction

A properly embedded hypersurface M � RmC1 is called a self-shrinker if Mt WD
p
�tM for t 2 .�1; 0/ is an evolution by mean curvature, ie if

.@tx/
?
D EH .x/

holds for every t 2 .�1; 0/ and x 2 Mt . Equivalently, M is a self-shrinker if it
satisfies

(1) EH C 1
2
x? D 0:

The study of self-shrinkers is central in the analysis of singularity formation of the mean
curvature flow. Indeed, every limit of rescalings of a mean curvature flow around a fixed
point in spacetime is modeled on a possibly singular self-shrinker; see Huisken [10],
White [19] and Ilmanen [13]. It is straightforward to check that a hyperplane through the
origin is a self-shrinker, as is Sk.

p
2k/, the k -sphere of radius

p
2k in RkC1 . Crossing

with a plane through the origin leaves (1) unchanged, so the cylinder Sk.
p

2k/�Rm�k

in RmC1 is also a self-shrinker. We regard spheres as a special cases of cylinders:
Sk D Sk � R0 . Although many other self-shrinkers have been constructed — see
Angenent [1], Kapouleas, Kleene and Møller [15] and Ketover [16] — Huisken [14]
conjectured that for mean curvature flows from generic initial hypersurfaces, all singu-
larities are cylindrical. When the initial hypersurface is mean-convex, all singularities
are indeed cylindrical; see Huisken and Sinestrari [10; 11] and White [21].
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In a recent fundamental paper [5], Colding and Minicozzi made an important step
towards establishing Huisken’s genericity conjecture. In that paper, they defined the
Gaussian area of a hypersurface M in RmC1 to be

(2) F ŒM �D
1

.4�/m=2

Z
M

e�jxj
2=4 dHm;

and they defined its entropy to be the supremum of the Gaussian area of all translates
and rescalings of M,

(3) E ŒM �D sup
x02RmC1; �>0

F Œ�.x�x0/�:

Clearly, Gaussian area is invariant under rotations, and entropy is invariant under all
rigid motions and rescalings. The normalization constant 1=.4�/m=2 in the definition
of F is chosen so that linear hyperplanes have Gaussian area 1. It follows that
F ŒM �D F ŒM �R� for every M, and thus that E ŒM �D E ŒM �R�.

Entropy is related to mean curvature flow through Huisken’s monotonicity formula [10],
which implies that entropy is nonincreasing under the flow. Moreover, given a mean
curvature flow with initial surface N , if M is a self-shrinker that arises (as discussed
above) by blowing up around a singular point of the flow, then

(4) F ŒM �D E ŒM �� E ŒN �:

(The first equality holds for every self-shrinker, as was shown in [5]). The main result
of [5] states that every self-shrinker M other than the spheres and cylinders can be
perturbed to a hypersurface with lower entropy. Thus, by (4), if we flow from the
perturbed hypersurface, then M cannot appear as a singularity model.

Stone [17] calculated the F -areas of shrinking spheres (and thus also of shrinking
cylinders). By (4), those F -areas are the entropies of round spheres. According to
those calculations,

(5) 2> E ŒS1� > E ŒS2� > � � � and lim
n!1

E ŒSn�D
p

2:

In this paper, we prove:

Theorem 1 Suppose that M � RmC1 is a codimension-one, smooth, closed self-
shrinker with nontrivial k th homology. Then the entropy of M is greater than or equal
to the entropy of a round k -sphere. If equality holds, then M is a round k -sphere
in RkC1 .

Geometry & Topology, Volume 23 (2019)



Sharp entropy bounds for self-shrinkers in mean curvature flow 1613

The special case kDm is the main result of Colding, Ilmanen, Minicozzi and White [4].
The special cases .k;m/D .1; 2/ and .k;m/D .2; 3/ of Theorem 1 follow from recent
work of Jacob Bernstein and Lu Wang. Indeed, they prove in [2] that any smooth closed
hypersurface in R3 with entropy less than E.S1/ is isotopic to S2 , and in [3] that
any smooth closed hypersurface in R4 with entropy less than E.S2/ is diffeomorphic
to S3 .
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2 Proof of the sharp entropy bounds

Theorem 2 Suppose that M � RmC1 is a codimension-one, smooth, closed self-
shrinker, and that one of the components of RmC1 nM has nontrivial k th homotopy.
Then the entropy of M is greater than or equal to the entropy of a round k -sphere. If
equality holds, then M is a round k -sphere in RkC1 .

Before proving Theorem 2, we show that it implies our main theorem.

Proof of Theorem 1 By Mayer–Vietoris, one of the components of the complement
has nontrivial k th homology. By the Hurewicz theorem, that component has nontrivial
j th homotopy for some j � k . By Theorem 2,

E.M /� E.Sj /;

with equality if and only if M is a round j -sphere in RjC1 . The result follows
immediately since E.Sj / > E.Sk/ for j < k by (5).

Proof of Theorem 2 Consider the vectorfield

X W RmC1
!RmC1; X.x/D 1

2
x:

We say that a region K of RmC1 with smooth boundary is strictly X -mean-convex
if H CX? is nonzero and points into K at each point of @K , where H is the mean
curvature vector of @K . Let � be a component of RmC1 nM such that RmC1 n� has
nontrivial k th homotopy. We may suppose that M is not a round sphere (otherwise the
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result is trivially true). By [4, Lemma 1.2], we can deform M by pushing it slightly
into � to get a surface M 0 �� such that

(6) E.M 0/ < E.M /

and such that K0 is strictly X -mean-convex, where K0 is the closure of the component
of RmC1 nM 0 that is contained in �. Now, as M 0 is a smooth hypersurface, we can
let it evolve for short time by X -mean curvature flow, ie with normal velocity HCX? .
Since H CX? points into K0, the surface immediately moves into the interior of K0.
In fact, as explained in Section 3 (see Definition 3 and Theorem 4), we can extend the
flow to all t � 0 (in particular, past singularities) by letting

t 2 Œ0;1/ 7!M 0.t/

be the weak X -mean curvature flow with M 0.0/DM 0. For the particular vectorfield
X.x/D 1

2
x we are using, X -mean curvature flow is also called renormalized mean

curvature flow: it differs from the ordinary mean curvature flow by a spacetime change-
of-coordinates. To be precise, given our weak X -mean curvature flow M 0. � /, the
flow

(7) �M W t 2 Œ�1; 0/ 7! �M .t/D
p
�tM 0.�logjt j/:

is a weak mean curvature flow in RmC1 with initial surface �M .�1/ DM 0. This is
because (7) transforms smooth X -mean curvature flows to smooth mean curvature
flows, and hence weak X -mean curvature flows to weak mean curvature flows, since
the weak flows are defined by avoidance with smooth flows. Note also that Huisken’s
monotonicity formula implies a modified monotonicity for �M . � /, and that existence
of tangent flows to M 0. � / implies existence of tangent flows to M 0. � /. Indeed, the
tangent flows to M 0. � / at a specified spacetime point are the same as the tangent flows
to �M . � / at the corresponding spacetime point.

Just as in the mean-convex setting, we can think of t 7!M 0.t/ as a flow of measures
(see Theorem 4). Since entropy decreases under the flow t 7! �M .t/, we see that it also
decreases under the renormalized flow t 7!M 0.t/. Consequently, if ‚ is the Gauss
density at a spacetime point of the flow t 7!M 0.t/, then

(8) ‚� E.M 0.0//D E.M 0/:

Now let

t 7!K0.t/ for t 2 Œ0;1/

Geometry & Topology, Volume 23 (2019)



Sharp entropy bounds for self-shrinkers in mean curvature flow 1615

be the weak X -mean curvature flow with K0.0/DK0 (see Definition 3). By Theorem 4,

@K0.t/DM 0.t/:

Since RmC1nK0 has nontrivial k th homotopy, there is a continuous map F W @BkC1!

RmC1 nK0 such that F is homotopically nontrivial in RmC1 nK0. Extend F to a
continuous map

F W BkC1!RmC1:

By Theorem 7, F.BkC1/\K0.T / D ∅ for T sufficiently large. Since F j@BkC1 is
homotopically nontrivial in RmC1nK0.0/ and homotopically trivial in RmC1nK0.T /,
the flow must be singular at one or more intermediate times. In fact, the X -mean-
convexity implies more (see Theorem 6): there is a t 2 .0;T / and an x 2M.t/ such
that the tangent flow at .x; t/ is a shrinking Sj �Rm�j for some j � k . Consequently,
the Gauss density ‚ at that point is

‚D E.Sj
�Rm�j /D E.Sj /:

Hence, by (5), (6) and (8),

E.Sk/� E.Sj /D‚� E.M 0/ < E.M /:

3 Motion by mean curvature plus an ambient vectorfield

In this section we define weak X -mean curvature flow of closed sets, and we state
precisely the properties of the flow that were used in the proof of Theorem 1.

The following definition is an adaptation of the ones in [18; 12]:

Definition 3 Suppose that K is a closed subset of RmC1 and that X is a smooth
vectorfield on RmC1 . Let K be the largest closed subset of RmC1 � Œ0;1/ such that

(a) K.0/DK , and

(b) if t 2 Œa; b�� Œ0;1/ 7!�.t/ is a X -mean curvature flow of smooth, compact
hypersurfaces with �.a/ disjoint from K.a/, then �.t/ is disjoint from K.t/

for all t 2 Œa; b�,

where
K.t/ WD fx 2RmC1

W .x; t/ 2 Kg:
We say that

t 2 Œ0;1/ 7!K.t/

is the weak X -mean curvature flow (or simply the weak X -flow) starting from K .

Geometry & Topology, Volume 23 (2019)



1616 Or Hershkovits and Brian White

The largest set K exists because the closure of the union of all sets K having properties
(a) and (b) also has those properties.

For a self-contained treatment of weak X -flows, see [8]. (In that paper any closed
subset of K satisfying (a) and (b) is called a weak X -flow starting from K , and the
largest one is called the biggest X -flow starting from K . In this paper, the only weak
X -flow starting from K that we need is the biggest one, and we write “the weak
X -flow” rather than “the biggest X -flow”.)

The following theorem lists the main properties of weak X -flow of X -mean-convex
regions:

Theorem 4 Suppose that K is a closed region in RmC1 with smooth, compact
boundary. Suppose that X is a smooth vector field on RmC1 such that

.�/ sup
x

jX.x/j

jxjC 1
<1:

and such that at each point of @K , the vector EH CX? is nonzero and points into K .
Let t 7! K.t/ and t 7!M.t/ be the weak-X -flows starting from K and from @K .
Then:

(a) K.t2/� Int.K.t1// whenever 0� t1 < t2 <1.

(b) M.t/D @K.t/ for each t <1.

(c) M.t/ is compact for each t <1.

(d) t 2 Œ0;1/ 7!Hm x M.t/ defines a unit-regular integral X -Brakke flow.

(e) The flow t 7!M.t/ is smooth away from a closed set of parabolic Hausdorff
dimension m� 1 in spacetime.

(f) The singular points of the flow t 7!M.t/ are of convex type.

A spacetime singular point .x; t/ is said to be of convex type provided the following
holds: if xi 2M.ti/ are regular points with .xi ; ti/! .x; t/, then the mean curvature hi

of M.ti/ at xi tends to infinity, and hi.M.ti/�xi/ converges smoothly (after passing
to a subsequence) to a convex hypersurface M 0 of Tan.N;xi/. (Here we regard N as
isometrically embedded in some Euclidean space.)

For the definition of “X -Brakke flow”, see [8, Section 12] or [7].

The hypothesis .�/ guarantees that compactness is preserved, ie that
S

t2Œ0;T �M.t/ is
compact for finite T . See [8, Theorem 23]. More generally, in smooth Riemannian
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manifolds and without the hypothesis .�/, the conclusions of the theorem hold as long
as

S
t2Œ0;T �M.t/ is compact.

In the case of Euclidean space with no vectorfield (ie X D 0), Theorem 4 was proved
in [20; 21; 23]. That work was extended to compact K in Riemannian manifolds
(still with X � 0) by Haslhofer and Hershkovits [6]. The proof of Theorem 4 is a
modification of the proofs in those papers. See [8] for proofs of assertions (a), (b)
and (c), and [7] for proofs of assertions (d), (e) and (f).

Remark 5 Although the proof of Theorem 1 only used the vector field X D 1
2
x , in

order to prove Theorem 4 for this particular vector field when K is unbounded (which
is key to identifying interior topology in Theorem 1), one is forced to consider more
general vector fields. Thus, from the point of view of this current paper, it is (indirectly)
essential that the analysis in [8; 7] holds for arbitrary vector fields X satisfying .�/,
and not just for X D 1

2
x .

Theorem 6 Suppose in Theorem 4 that

F W @BkC1
!RmC1

nK

is homotopically nontrivial in RmC1 nK and homotopically trivial in RmC1 nK.T /.
Then there is a t 2 .0;T / and a singular point x 2M.t/ such that the tangent flow at
.x; t/ is a shrinking Sj �Rm�j for some j with 1� j � k .

Theorem 6 is a special case of [22, Theorem 4.4]. See [9] for a simpler, Morse-theoretic
proof of Theorem 6.

Theorem 7 (clearing-out theorem) Suppose in Theorem 4 that X.x/D 1
2
x . Then

dist.0;K.t//!1 as t !1.

It is possible that K.t/ vanishes in finite time. Theorem 7 includes that case: if
K.t/D∅, then dist.0;K.t//D1.

Proof If M1. � / and M2. � / are weak mean curvature flows in Euclidean space with
M2.0/ compact, then

dist.M1.t/;M2.t// WD min
x2M1.t/;y2M2.t/

jx�yj

is a nondecreasing function of t . For mean curvature flows of smooth hypersurfaces,
this is the standard avoidance principle. The proof of [12, Lemma 4E] gives the general
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result. It follows immediately from the transformation formula (7) that if M1. � / and
M2. � / are renormalized weak mean curvature flows with M2.0/ compact, then

t 7! e�t=2 dist.M1.t/;M2.t//

is nondecreasing.

Fix a � > 0. Then t 7! K.� C t/ and t 7!M.t/ are renormalized mean curvature
flows, so

e�t=2 dist.K.� C t/;M.t// is nondecreasing in t:

Since K.� C t/�K.t/�K.0/ and since M. � /D @K. � /, we have

dist.K.� C t/;M.0//� dist.K.� C t/;M.t//� et=2 dist.K.�/;M.0//;

which tends to 1 as t !1. (Note that dist.K.�/;M.0// > 0 since K.�/ lies in the
interior of K.0/ and since M.0/D @K.0/.)
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