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Infinite loop spaces and positive scalar curvature
in the presence of a fundamental group

JOHANNES EBERT

OSCAR RANDAL-WILLIAMS

This is a continuation of our previous work with Botvinnik on the nontriviality of
the secondary index invariant on spaces of metrics of positive scalar curvature, in
which we take the fundamental group of the manifolds into account. We show that
the secondary index invariant associated to the vanishing of the Rosenberg index
can be highly nontrivial for positive scalar curvature Spin manifolds with torsionfree
fundamental groups which satisfy the Baum–Connes conjecture. This gives the
first example of the nontriviality of the group C �–algebra-valued secondary index
invariant on higher homotopy groups. As an application, we produce a compact
Spin 6–manifold whose space of positive scalar curvature metrics has each rational
homotopy group infinite-dimensional.

At a more technical level, we introduce the notion of “stable metrics” and prove a
basic existence theorem for them, which generalises the Gromov–Lawson surgery
technique, and we also give a method for rounding corners of manifolds with positive
scalar curvature metrics.
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1 Introduction and statement of results

It is a simple observation that if M is a closed manifold, then the product M �S2

admits a metric of positive scalar curvature, so the fundamental group by itself is not
an obstruction against the existence of a metric of positive scalar curvature (at least
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1550 Johannes Ebert and Oscar Randal-Williams

in the high-dimensional regime). Nevertheless, the fundamental group has played an
important role in the theory of positive scalar curvature since the work of Gromov
and Lawson [25; 24], the point being that there are obstructions to the existence
of psc metrics on M which lie in abelian groups depending on �1.M /. The most
important is the Rosenberg index [44] which is defined for a closed d –dimensional
spin manifold M. It is defined in terms of the real K–theory of the reduced group
C�–algebra C �r .�1.M //, as an element ˛r.M / 2KOd

�
C �r .�1.M //

�
.

If M has a psc metric then the Rosenberg index vanishes, but in an appropriate sense the
positivity of the scalar curvature also gives a reason for it to vanish: therefore, following
the recipe described in Botvinnik, Ebert and Randal-Williams [6, Section 3.3.2], if
RC.M / denotes the space of psc metrics on M then there is an associated secondary
index invariant

inddiff�1.M /
W RC.M /�RC.M /!�1CdC1KO

�
C �r .�1.M //

�
to an appropriate space of the real K–theory spectrum of C �r .�1.M //. More generally,
for a spin manifold W with collared boundary, one may fix a metric g 2 RC.@W /

and consider the space RC.W /g of psc metrics on W which are of the form gC dt2

on the collar. Then, given a discrete group G and a map f W W ! BG, there is a map

inddiffG
W RC.W /g �RC.W /g!�1CdC1KO.C �r .G//

(which depends on the reference map f ). Usually, we fix a basepoint h0 2RC.W /g

and consider the map inddiffG
h0
._/D inddiffG.h0; _/. On homotopy groups, inddiffG

h0

induces a map

inddiffG
h0
W �k.RC.W /; h0/! �k.�

1CdC1KO.C �r .G//DKOdCkC1.C
�
r .G//

to the KO –theory groups of C �r .G/.

In previous work with Botvinnik [6] we studied the nontriviality of this map when
G D 1, in which case the target is just the real topological K–theory of a point. Our
goal in this paper is to extend this to more general groups G, when the target can be
much richer.

To state our results, we must introduce some notation from stable homotopy theory.
The Madsen–Tillmann–Weiss spectrum associated with the map BSpin.d/! BO.d/

is denoted by MTSpin.d/. The Atiyah–Bott–Shapiro orientation of spin vector bundles
yields a spectrum map ��d W MTSpin.d/! †�dKO. For a discrete group G, there
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is the Novikov assembly map �W KO^BGC! KO.C �r .G//, which we will recall in
Definition 5.6.6 below.

Theorem A Let W 2n be a compact connected spin manifold with boundary @W , let
G be a discrete group and let f W W ! BG be a map. Furthermore, let g 2RC.@W /

and h0 2RC.W /g . Assume that

(i) n� 3, and

(ii) the homomorphism �1.f /W �1.W /! �1.BG/DG is split surjective.

Then there exists a map ‰W �1C1.MTSpin.2n/^BGC/!RC.W /g such that the
following diagram commutes up to homotopy:

�1C1.MTSpin.2n/^BGC/
‰

//

�1C1��2n^id
��

RC.W /g

inddiffG
h0

��

�1C2nC1.KO^BGC/
�1C2nC1�

// �1C2nC1KO.C �r .G//

This theorem will allow us to show that the index difference map inddiffG
h0

is highly
nontrivial on higher homotopy groups. Before this, only its nontriviality on �0 or when
G D 1 has been established.

Remarks 1.0.1 (i) The case G D 1 of Theorem A is precisely our previous result
with Botvinnik [6, Theorem B].

(ii) In [6, Theorem C], we also proved a similar result for odd-dimensional manifolds,
derived from [6, Theorem B]. The analogous result for nontrivial G can be
derived from Theorem A. See Remark 5.3.1 for more details.

(iii) There is also a maximal group C�–algebra C �m.G/, with a homomorphism
!W C �m.G/! C �r .G/. The secondary Rosenberg index can be made to have
target �1C2nC1KO.C �m.G//, and the Novikov assembly map naturally factors
through a maximal version �mW KO^BGC! KO.C �m.G//. Theorem A in fact
holds when the bottom right-hand corner is replaced with �1C2nC1KO.C �m.G//.
Although this is a stronger theorem, we prefer to state it in terms of the reduced
group C�–algebra as it is this to which the Baum–Connes conjecture applies, as
we will now discuss.
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1552 Johannes Ebert and Oscar Randal-Williams

1.1 Applications

To draw computational consequences out of Theorem A as in [6, Section 5], one
needs another assumption, namely that G is torsionfree and satisfies the Baum–Connes
conjecture, ie that the Baum–Connes assembly map

�W KOG
� .EG/!KO�.C

�
r .G//

is an isomorphism. For torsionfree G, we may identify KOG
� .EG/ with KO�.BG/

and the Baum–Connes assembly map with the map induced by the Novikov assembly
map � on homotopy groups. The Baum–Connes conjecture predicts that � is an
isomorphism, so for torsionfree G it predicts that the Novikov assembly map is a weak
homotopy equivalence. The Baum–Connes conjecture has been proven for vast classes
of groups; see Lück and Reich [39, Section 2.6] for a slightly outdated survey.

1.1.1 Bott-stabilised integral surjectivity Let B8 be a Bott manifold, that is, a
Spin 8–manifold having yA .B/ D ˇ 2 KO8.�/. By the work of Joyce [33, Section
6], we may choose such a B having a metric gB of holonomy Spin.7/, which is then
Ricci flat and hence scalar flat. For a closed manifold M there are then induced maps

RC.M /
_�.B;gB/
�����!RC.M �B/

_�.B;gB/
�����!RC.M �B �B/! � � �

and we write RC.M /ŒB�1� for the homotopy colimit. As yA .B/ acts invertibly on
KO.C �.G//, if M is Spin and f W M ! BG is a reference map then there is an
extension

(1:1:1) inddiffG
h0
ŒB�1�W RC.M /ŒB�1�!�1CdC1KO.C �r .G//

of the secondary Rosenberg index map for M.

Theorem B If G is a torsionfree discrete group satisfying the Baum–Connes con-
jecture, f�W �1.M /!G is split surjective and d D dim.M / is even,1 then the map
(1.1.1) is surjective on all homotopy groups.

1.1.2 Rational surjectivity The spectrum map ��2n factors through the desuspen-
sion of the connective KO –theory spectrum as

��2nW MTSpin.2n/
�0
�2n
���!†�2nko

†�2nper
����!†�2nKO;

1This hypothesis may be dropped once the work of Remark 1.0.1(ii) is complete.
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and hence the spectrum map � ı .��2n ^ id/ may be written as the composition

MTSpin.2n/^BGC
�0
�2n
^id

�����!†�2nko^BGC
†�2nper^id
������!†�2nKO^BGC

†�2n�
���!†�2nKO.C �r .G//:

It follows that

Im.�r .inddiffG
h0
//� Im.�rC1.†

�2n� ı†�2n.per^ id/ ı�0
�2n ^ id//:

By a standard characteristic class computation (see eg [6, Theorem 5.2.1]), the map
�rC1.�

0
�2n

/˝Q is surjective, and by the (collapsing) Atiyah–Hirzebruch spectral
sequence it follows that �rC1.�

0
�2n
^id/˝Q is too. If G is torsionfree and satisfies the

Baum–Connes conjecture then, as we explained above, the map � is a weak equivalence.
The map per^idW ko^BGC!KO^BGC is not rationally surjective, but if the rational
homological dimension of the group G is finite, say equal to q , then

.per^ id/�W �s.ko^BGC/˝Q! �s.KO^BGC/˝Q

is surjective for s � q . From these facts, we derive the following.

Theorem C Let W be a spin manifold of dimension 2n� 6, possibly with boundary.
Let G be a group and let f W W ! BG be a map such that �1.f /W �1.W /! G is
split surjective. Assume that h0 2RC.W /g , and that

(i) G satisfies the (rational) Baum–Connes conjecture,

(ii) G is torsionfree and has finite rational homological dimension q , and

(iii) r � q� 2n� 1.

Then the image of

.inddiffG
h0
/�W �r .RC.W /g/!KO2nC1Cr .C

�.G//˝Q

generates the target as a Q–vector space.

Remark 1.1.2 Some rational consequences can also be obtained without the torsion-
free hypothesis. When G is a finite group the map

KO�.BG/˝QDKOG
� .EG/˝Q!KOG

� .EG/˝Q

is split injective (as KO�.BG/˝Q D Q, so a splitting may be given by the aug-
mentation of the real representation ring of G ), and a spectral sequence argument in
equivariant KO –theory shows that the analogous map is split injective for any group G ;
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see Matthey [40, Corollary A.3]. Thus, if G satisfies the (rational injectivity part of the)
Baum–Connes conjecture then the Novikov assembly map is also rationally injective.
Thus, in the situation of Theorem C but omitting the torsionfree hypothesis, for r � 2

one finds that �r .RC.W /g/˝Q is at least as large as KO2nC1Cr .BG/˝Q (we
leave formulating the awkward conclusion of this argument for r < 2 to the reader).

On the other hand, consider the homotopy fibre F of the Novikov assembly map. On
homotopy groups, the fibre sequence F!KO^BGC

�
�!KO.C �r .G// induces a long

exact sequence, which may be identified with the analytical surgery sequence of Higson
and Roe [30],

� � � !KOd .BG/
��
�!KOd .C

�
r .G//

@
�! Sd�1.G/! � � � :

Recently, Xie, Yu and Zeidler [54, Corollary 1.3] have shown that the image of

�0.RC.M d //
inddiffG

h0
����!KOdC1.C

�
r .G//

@
�! Sd .G/! Sd .G/˝Q

generates the target group if G satisfies the Baum–Connes conjecture and has rational
homological dimension at most d � 3 (eg if G is finite). This supersedes previously
known results by Botvinnik and Gilkey [7], Piazza and Schick [43], Weinberger and
Yu [53] — which were all for odd d — and Bárcenas and Zeidler [2, Corollary 1.5]. By
virtue of our construction, we can only construct classes in the homotopy of RC.W /

which become trivial in Sd .G/.

1.1.3 A large example Let Fr denote the free group of rank r . The Stallings–Bieri
group SBn is defined as the kernel of the homomorphism

�W .F2/
n
! Z

sending each generator to 1. This group is of type .Fn�1/ (ie there exists a K.SBn; 1/–
complex with finite .n�1/–skeleton), but has Hn.SBnIQ/ countably infinite-dimen-
sional (see Bieri [4, page 37]). Furthermore, it has homological dimension n, being a
subgroup of the n–dimensional group .F2/

n . Thus, the group

G D SB3 �SB4 �SB5 �SB6

is torsionfree, has homological dimension 6 and has type .F2/ (so is finitely presented).
The class of groups satisfying the Baum–Connes conjecture with coefficients is closed
under (amalgamated) free products, finite direct products, passing to subgroups, and
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HNN extensions [39, Theorem 5.2], so the Baum–Connes conjecture holds for G.
Therefore, by the Atiyah–Hirzebruch spectral sequence we have that

KO7Cr .C
�
r .G//˝QŠKO7Cr .BG/˝QŠ

M
i�0

H7Cr�4i.BGIQ/

is a countably infinite-dimensional vector space for each r � 0.

Take a finite 2–skeleton of BG, embed it into R5 , take a regular neighbourhood N

and consider M D @N. This is a 4–dimensional spin manifold with �1.M / D G.
The 6–manifold W DM �S2 has a psc metric. This puts us in a position to apply
Theorem C, showing that �r .RC.W //˝Q is countably infinite-dimensional for r � 2,
the same holds for r D 1 after abelianising, and that �0.RC.W // maps onto an
infinite-rank abelian group. As a separable Fréchet manifold (such as RC.W /) has
the homotopy type of a countable CW–complex — see Henderson [28, Corollary 4] —
and hence countable homotopy groups, this is as large as homotopy groups of a space
of psc metrics on a compact manifold can possibly be.

1.2 Stable metrics: extension of the Gromov–Lawson surgery method

The main technical tool we shall develop, which was not available to us in [6], is an
extension of the Gromov–Lawson surgery method [26] and in particular of Chernysh’s
cobordism-invariance theorem [10] (see also Walsh [51]) to the case of manifolds with
boundaries. One such extension has been given by Walsh [52], but we need to go one
step further. Let us first recall some notation and describe this result, which may be of
interest in its own right.

If W W M0  M1 is a cobordism with collared boundaries and gi 2 RC.Mi/ for
i D 0; 1, we let RC.W /g0;g1

be the space of all metrics of positive scalar curvature
on W which are equal to gi C dt2 near Mi , with respect to the given collar. For any
h 2RC.W /g0;g1

, there are composition maps

�.h; _/W RC.V /g1;g2
!RC.W [V /g0;g2

and

�._; h/W RC.V 0/g�1;g0
!RC.V 0[W /g�1;g1

defined for all cobordisms V W M1 M2 and V 0W M�1 M0 and boundary conditions
g�1 2RC.M�1/ and g2 2RC.M2/.
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Definition 1.2.1 Let W W M0 M1 be a cobordism and let h 2RC.W /g0;g1
. Then

h is called left-stable if the map �._; h/W RC.V /g�1;g0
! RC.V [W /g�1;g1

is a
weak equivalence for all cobordisms V W M�1 M0 and all boundary conditions g�1 .
Dually, h is right-stable if the map �.h; _/W RC.V /g1;g2

! RC.W [ V /g0;g2
is a

weak equivalence for all cobordisms V W M1 M2 and all boundary conditions g2 .
Finally, h is stable if it is both left- and right-stable.

We prove two results about the existence of such metrics. The first shows that right-
stable metrics exist in abundance.

Theorem D Let d � 6 and let W W M0  M1 be a d –dimensional cobordism.
Assume that the inclusion map M1!W is 2–connected. Then, for each g02RC.M0/,
there is a g1 2RC.M1/ and a right-stable h 2RC.W /g0;g1

.

Note that the metric g1 2 RC.M1/ is part of the conclusion of the theorem, not of
the hypothesis. In other words, the theorem does not say that given g0 and g1 such
that RC.W /g0;g1

¤∅, there is a metric h 2RC.W /g0;g1
which is right-stable (let

alone that any such h has these properties). The theorem applies to the case M0 D∅
(because the unique Riemannian metric on ∅ has positive scalar curvature). The main
result of [10] may be viewed as the special case W D N �Dk W ∅ N � Sk�1

of Theorem D (for k � 3), but it took us some time to arrive at the formulation of
Theorem D as the correct generalisation of this result.

The second result shows that right-stable metrics are often automatically also left-stable.

Theorem E Let d � 6 and let W W M0  M1 be a d –dimensional cobordism.
Assume that both inclusion maps are 2–connected. Then every right-stable h 2

RC.W /g0;g1
is also left-stable.

This theorem has no analogue in [10], as it does not hold in the situation considered
there: a metric h 2RC.W /g on the cobordism W DN �Dk W ∅ N �Sk�1 being
left-stable would mean that

�._; h/W f�g DRC.∅/!RC.W /g

is a weak equivalence, which is not generally true. For later use we record the combi-
nation of Theorems D and E as follows:
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Corollary 1.2.2 Let d � 6 and let W W M0 M1 be a d –dimensional cobordism
such that both inclusions Mi!W are 2–connected. Then, given g0 2RC.M0/, there
is a g1 2RC.M1/ and a stable h 2RC.W /g0;g1

.

Remark 1.2.3 In the language used here, the main result of Walsh’s paper [52, Theo-
rem A] says that if W is as in Corollary 1.2.2 then for each g0 2RC.M0/, there is a
g1 2RC.M1/ and a left-stable h 2RC.W /g0;g1

. That work arose from discussions
we had with Walsh during the preparation of [6] (though the final version of [6] did not
use it). For the purpose of the present paper, even the results of [52] are not sufficient.

To prove Theorems D and E, we introduce several technical tools, such as spaces
of psc metrics on manifolds with corners and a procedure for rounding corners of
manifolds with psc metrics. This is done in the fairly elementary Section 2. The proof
of Theorems D and E is given in Section 3.

1.3 Outline of the proof of Theorem A

We follow the same general strategy as the argument for [6, Theorem B]. The proof
is given in Sections 4 and 5. In those sections, we shall assume familiarity with
[6, Sections 2, 3 and 4] and focus on those parts of the argument which exhibit essential
differences. The construction in [6] rested on three pillars: index theory, the Gromov–
Lawson surgery method and the high-dimensional Madsen–Weiss theorem of Galatius
and the second author.

Theorem A has two distinct parts: one concerns the construction of ‰ , and the other
the commutativity of the diagram. We have decided to separate these parts more cleanly
than in [6]. For the first part, the spin hypothesis does not play a role. Let W 2n

be a manifold and consider the Gauss map � W W ! BO.2n/. Let W `
�! X �

�!

BO.2n/ be the second stage of the Moore–Postnikov tower of � . Recall that � is a
2–coconnected fibration and ` is a 2–connected map. If W is a spin manifold, then
X 'BSpin.2n/�B�1.M / (a complete classification of the second Moore–Postnikov
stages of classifying maps of vector bundles can be found in Stolz [47]). To the
fibration � , we have the associated Madsen–Tillmann–Weiss spectrum MT� and, if
@W !W is 2–connected, there is a parametrised Pontrjagin–Thom map

˛W W BDiff@.W /!�10 MT�:

The construction of the map ‰ is a consequence of the following general theorem:
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Theorem F Let W 2n with n � 3 be a connected compact manifold viewed as a
cobordism W W ∅  @W . Assume that .W; @W / is .n�1/–connected. Let g 2

RC.@W / be such that there exists a right-stable h 2 RC.W /g . Then there exists a
fibration pW TC1!�1

0
MT� and a homotopy cartesian diagram

RC.W /g==Diff@.W / //

��

TC1

p

��

BDiff@.W /
˛W

// �1
0
MT�

Remark 1.3.1 We shall show in [17] that this theorem continues to hold under the
weaker assumption that .W; @W / is 2–connected. This also follows from work of
Perlmutter [41].

If W is spin with �1.W /D G then MT� DMTSpin.2n/^BGC . Taking the fibre
transport of the fibration p at a specific basepoint yields the map ‰ in Theorem A. As
in [6] the construction of the fibration TC1!�1

0
MT� is by obstruction theory, and it

is here that Theorems D and E are used.

The second part of Theorem A is index-theoretic. The main difference to [6] is that the
secondary index invariant takes place in the K–theory of C �r .G/ and not of R, and
uses elliptic operators with coefficients in C �r .G/. The necessary elliptic regularity
theory is developed in Ebert [14]. With these results, the index-theoretic part of the
argument is largely the same as in [6], with the exception of the analogue of the
Atiyah–Singer index theorem. In Section 5, we review the necessary changes.

At this point, we have established Theorem A for certain W (those which are .n�1/–
connected relative to their boundary) and certain boundary conditions (those which
extend to a stable metric on W ). To extend this to general manifolds and boundary
conditions, we need the additivity theorem for the index and an embedding trick; stable
metrics are used again here.
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2 Spaces of psc metrics on manifolds with boundaries and
corners

2.1 Spaces of psc metrics on manifolds with boundaries

For a closed manifold M, we let R.M / be the space of all Riemannian metrics,
equipped with the usual Fréchet topology and we let RC.M /�R.M / be the open
subspace of all Riemannian metrics with positive scalar curvature. Let W be a compact
manifold with boundary M. We assume that the boundary of W comes equipped with
a collar cW M � Œ0; 1�!W . The collar identifies M � Œ0; 1� with a subset of W and
we usually use this identification without further mention.

For 1� � > 0, we denote by RC.W /� the space of all Riemannian metrics h on W

with positive scalar curvature such that c�hD gCdt2 on M � Œ0; �� for some metric g

on M. It is topologised as a subspace of the space of smooth symmetric .2; 0/–tensor
fields, with the usual Fréchet topology.

If the scalar curvature of h is positive, then g 2 RC.M /, and assigning to h its
boundary value g defines a map

res�W RC.W /�!RC.M /;

which is continuous. We define RC.W /�g WD res�1
� .g/ � RC.W /� , the space of all

psc metrics on W which on M � Œ0; �� are of the form gC dt2 .

For 1� ı > � , the inclusion RC.W /ıg!RC.W /�g is a closed embedding, and it is a
homotopy equivalence by [6, Lemma 2.1]. As in [6], when the collar length does not
play a role we abbreviate

RC.W / WDRC.W /� and RC.W /g WDRC.W /�g

for implicitly fixed values of � .

2.2 Smooth manifolds with corners

The proof of Theorem D requires us to come to grips with spaces of psc metrics
on manifolds with corners (whereas Theorem E is a more formal consequence of
Theorem D). In the following section, we describe in detail what we mean by this and
prove a corner rounding result, which is a new key tool.
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1560 Johannes Ebert and Oscar Randal-Williams

Definition 2.2.1 A smooth d –manifold with acute corners W is a (second count-
able, Hausdorff) topological space locally modelled on Rd�2 � Œ0;1/2 and the local
diffeomorphisms which preserve the sets Rd�2 � f0g, Rd�2 � Œ0;1/ � f0g and
Rd�2 � f0g � Œ0;1/.

The (topological) boundary @W is decomposed into two codimension-0 pieces M d�1
0

,
corresponding to Rd�2� Œ0;1/�f0g in local coordinates, and M d�1

1
, corresponding

to Rd�2�f0g� Œ0;1/ in local coordinates, which intersect along a closed submanifold
M d�2

01
corresponding to Rd�2 � f0g in local coordinates, which is the common

boundary of M0 and M1 .

A smooth d –manifold with obtuse corners is analogous but locally modelled on
Rd�2 � .R2 n .0;1/2/.

We write the following constructions and results for manifolds with acute corners,
but the case of obtuse corners can be treated in the same way with only notational
differences.

Choose collars bW M01� Œ0; 1��f0g!M0 and cW M01�f0g� Œ0; 1�!M1 such that
b.x; 0; 0/D c.x; 0; 0/Dx for all x 2M01 . The manifolds M0[M01

.M01�.�1; 0�/

and M1 [M01
.M01 � .�1; 0�/, where we use the collars b and c to define their

smooth structures, are called the elongations of M0 and M1 . The collars extend to
embeddings

b0W M01 � .�1; 1�� f0g !M0[M01
.M01 � .�1; 0�/;

c0W M01 � f0g � .�1; 1�!M1[M01
.M01 � .�1; 0�/:

For each pair �1� u� 0� v � 1 we may form the pushout

M01 � Œu; v�
2

iM0
//

iM1

��

.M0[M01
M01 � Œu; 0�/� Œu; v�

jM0
��

.M1[M01
M01 � Œu; 0�/� Œu; v�

jM1
// KŒu;v�

where iM0
.x; s; t/ WD .b0.x; t/; s/ and iM1

.x; s; t/ WD .c0.x; s/; t/.

Definition 2.2.2 A bicollar of W is an embedding eW KŒ0;1�!W such that we have
e.jM0

.x; 0//D x for all x 2M0 and e.jM1
.y; 0//D y for all y 2M1 . The smooth

manifold �W WDW [K Œ0;1� K.�1;1� is called the elongation of W .

There is a completely analogous model for an obtuse corner, which we shall omit.
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M0

M1

M01

K.1;0�

W

t

s

e.KŒ0;1�/

Figure 1: The boundary structure of a manifold with (acute) corners

2.3 Rounding corners of smooth manifolds

We first need to introduce some notation.

Definition 2.3.1 A special curve in R2 is a pair .B; b/, with b 2 Œ0;1/ and B �R2

a topological submanifold homeomorphic to R, such that

(i) B \ .Œ0;1/�R/D Œ0;1/� f�bg, and

(ii) B \ .R� Œ0;1//D f�bg � Œ0;1/.

We say that .B0; b0/ < .B1; b1/ for two special curves if B0\B1 D∅ and b0 < b1 .
In that case, we denote by ŒB0;B1� the region that lies between these two curves.

C0

B0

B1

�b0

�b1

Figure 2: Some special curves
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If .B; b/ is a special curve then the number b is determined by the curve B , so we
abuse notation slightly by just writing B for a special curve. For b 2 Œ0;1/ we let

Cb WD f�bg � Œ�b;1/[ Œ�b;1/� f�bg �R2:

Then .Cb; b/ is a special curve, and the only special curve with b D 0 is C0 . The part
of ŒB0;B1� outside the third quadrant consists of two strips. If .B0; b0/ < .B1; b1/,
we write

VB0;B1
WD .M01 � ŒB0;B1�/[ .M0 � Œ�b1;�b0�/[ .M1 � Œ�b1;�b0�/�K.�1;1�;

and for each special curve B and bicollared manifold with acute corners W , we let

WB WDW [@W VC0;B �
�W ;

which is a smooth codimension-0 submanifold with boundary of the elongation �W if
B is smooth.

Definition 2.3.2 If B is a smooth special curve, then WB is the result of rounding the
corners of W .

The smooth manifold with boundary WB is independent of B up to diffeomorphism,
because the region ŒC0;B��R2 is independent of B up to diffeomorphism relative
to C0 . Later we shall have to make more specific choices of B . If a > 0 is chosen
large enough that Ca > B , then

WB [@WB
VB;Ca

� �W
is a manifold with corners and it is diffeomorphic as such to W . In this way, we recover
the manifold W from WB .

2.4 Collars

We shall consider psc metrics on the manifolds VB0;B1
, so must clarify how we shall

treat boundary conditions on such manifolds. If B0 D Ca , then the manifold VB0;B1

has an obtuse corner in the boundary B0 , and this has an evident bicollar; similarly, if
B1 D Ca then the manifold VB0;B1

has an acute corner in the boundary B1 , and this
again has an evident bicollar. If instead Bi is a smooth special curve then

.M01 �Bi/[ .M0 � f�big/[ .M1 � f�big/�K.�1;1�
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is a codimension-1 submanifold and a choice of two-sided collar of Bi (agreeing with
the evident collar of each f�big � Œ0;1/ and Œ0;1/� f�big) determines a two-sided
collar of this submanifold.

2.5 Spaces of psc metrics on manifolds with corners

We will now define spaces of metrics of positive scalar curvature on a manifold with
corners W equipped with a bicollar eW KŒ0;1� ! W . To ease notation, we will not
mention the embedding e of the bicollar into W and pretend that KŒ0;1� �W .

Definition 2.5.1 Let g01 2 RC.M01/, 0 < � < 1, g0 2 RC.M0/
�
g01

and g1 2

RC.M1/
�
g01

, and write g@W WD .g0;g1/ 2RC.M0/
� �RC.M01/

RC.M1/
� . Let gK

be the Riemannian metric on K.�1;�� defined by

gK D

8<:
g01C dt2C ds2 on M01 � .�1; ��

2;

g0C ds2 on M0 � .�1; ��;

g1C dt2 on M1 � .�1; ��:

The space of all psc metrics h on W such that hjK Œ0;��DgK is denoted by RC.W /�g@W
.

The following collar stretching lemma is the analogue of [6, Lemma 2.1]. In particular,
it implies that the homotopy type of RC.W /�g@W

is independent of � , which allows us
to neglect this from the notation when it is not important.

Lemma 2.5.2 If 0< �0 < � then the inclusion map RC.W /�g@W
!RC.W /�

0

g@W
is a

homotopy equivalence.

Proof By breaking up this inclusion as a sequence of inclusions

RC.W /�g@W
!RC.W /�1

g@W
!RC.W /�2

g@W
! � � � !RC.W /�

0

g@W
;

without loss of generality we may suppose that ���0 < 1�� and that 2�0 > � . Choose
0< ı < 2�0� � and a diffeomorphism �1W Œ0; 1�! Œ0; 1� such that

(i) �1.t/� t ,

(ii) �1.�/D �
0,

(iii) �1.0/D 0 and �1.1/D 1,

(iv) �0
1
� 1 near Œ0; ı�[f1g[ Œ�0; �C .�� �0/�.
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The only condition which not obvious how to satisfy is that �0
1
� 1 near Œ�0; �C.���0/�,

which is where the conditions above enter in order to guarantee that

�1.�C .�� �
0//D �1.�/C .�� �

0/D �0C .�� �0/D � < 1

and

�1.�
0/D �1.�� .�� �

0//D �0� .�� �0/D 2�0� � > ı:

Now let

�u.t/D u ��1.t/C .1�u/ � t

be the linear interpolation, an isotopy from the identity map to �1 . This induces an
isotopy of KŒ0;1� , by taking products, and hence an isotopy ˆu of W supported inside
e.KŒ0;1�/.

Let fuW Œ0; 1�! Œ0;1/ be the function

fu.t/ WD
1�

�0u.�
�1
u .t//

�2
(note that fu � 1 near Œ0; ı�[ Œ�0; ��[f1g for all u). Then ��u .fu.t/dt2/D dt2 .

�1.t/

0

ı

�0
�

ı �0 �
2���0

1

1

f1.t/

0 ı �0 �
2���0

1

1

Figure 3: The function �1.t/ and its associated function f1.t/

For a h 2RC.W /�
0

g@W
, define a Riemannian metric hu on W by

hu
WD

8̂̂̂<̂
ˆ̂:

g01Cfu.s/ds2Cfu.t/dt2 on M01 � Œ0; �
0�� Œ0; �0�;

g0Cfu.s/ds2 on .M0 n b.M01 � Œ0; �
0�� f0g//� Œ0; �0�;

g1Cfu.t/dt2 on .M1 n c.M01 � f0g � Œ0; �
0�//� Œ0; �0�;

h elsewhere:
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(This is not yet the homotopy we wish to construct.) This is a smooth Riemannian
metric, as the gi are �–collared, h is �0–bicollared and fu � 1 near �0. Furthermore,
it depends continuously on u 2 Œ0; 1�, is ı–bicollared and (as fu.t/dt2 is flat) it has
positive scalar curvature.

Now we define a homotopy F W RC.W /�
0

g@W
� Œ0; 1�! RC.W /�

0

g@W
by the formula

F.h;u/Dˆ�uhu , which satisfies

ˆ�uhu
D

8̂̂̂<̂
ˆ̂:

g01C ds2C dt2 on M01 � Œ0; �
�1
u .�0/�� Œ0; ��1

u .�0/�;

g0C ds2 on .M0 n b.M01 � Œ0; �
�1
u .�0/�� f0g//� Œ0; ��1

u .�0/�;

g1C dt2 on .M1 n c.M01 � f0g � Œ0; �
�1
u .�0/�//� Œ0; ��1

u .�0/�;

ˆ�uh elsewhere:

This is a smooth Riemannian metric, is ��1
u .�0/–bicollared, depends continuously

on u 2 Œ0; 1� and has positive scalar curvature. As F.h; 0/ D h and F.h; 1/ is �–
bicollared, this gives a homotopy ending in the subspace RC.W /�g@W

�RC.W /�
0

g@W
.

Furthermore, as fu � 1 near Œ�0; ��, if h is �–bicollared then so is ˆ�uhu for all u, so
this homotopy preserves the subspace RC.W /�g@W

. Thus, the homotopy F is a weak
deformation retraction of RC.W /�

0

g@W
into RC.W /�g@W

.

There are several consequences of this lemma which we shall use more often than
the result itself. Firstly, we can interpret adding an external collar as shrinking collar
length.

Corollary 2.5.3 The map

S WD _[ .VCa;C0
;gK jVCa;C0

/W RC.W /�g@W
!RC.WCa

/�g@WCa

is a homotopy equivalence.

Proof The source may be identified with RC.WCa
/aC�g@WCa

, whereupon this map
becomes the natural inclusion RC.WCa

/aC�g@WCa

�RC.WCa
/�g@WCa

, which is a homotopy
equivalence by Lemma 2.5.2.

Secondly, we can add an external collar only to one part of the boundary, say M0 . Pre-
cisely, we can form the manifold W [M0

.M0� Œ�a; 0�/ whose boundary decomposes
as M0 and M1[M01

.M01 � Œ�a; 0�/. We have a boundary condition

zg@W WD.g0;g1[.g01Cds2//2RC.M0/
�
g01
�RC.M01/

RC.M1[M01
.M01�Œ�a; 0�/aC�g01

for this bicollared manifold.
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Corollary 2.5.4 With the notations introduced above, the gluing map

RC.W /g@W
!RC.W [M0

M0 � Œ�a; 0�/zg@W

which glues in the psc metric g0C ds2 is a homotopy equivalence.

Proof By construction, the map S from Corollary 2.5.3 factors as

RC.W /g@W
!RC.W [M0

M0 � Œ�a; 0�/zg@W
!RC.WCa

/g@WCa
;

and both maps glue in a cylinder along one of the parts of the boundary. We have
to prove that the first of those maps is a weak homotopy equivalence, but the second
one is of the same type. The conclusion now is as follows: since the composition is a
homotopy equivalence, the first map is split monomorphic in the homotopy category,
and the second is split epimorphic. Since the second map is of the same type as the
first one, it is also split monomorphic, and hence is a homotopy equivalence. It follows
that the first map is a homotopy equivalence as well.

2.6 The corner rounding theorem

The main result of this section is as follows. We adopt our convention of omitting the
bicollar length.

Theorem 2.6.1 Let W be as above and

g@W D .g0;g1/ 2RC.M0/�RC.M01/
RC.M1/:

Then there exists

(i) a collared smooth special curve .B; b/, and a psc metric h0 on VC0;B which is
equal to g@W over C0 and is equal to some g@WB

over B ,

(ii) a b0 > 0 such that Cb0 > B , and a psc metric h00 on VB;Cb0
which is equal to

g@WB
over B and is equal to g@Wb0

over Cb0 ,

such that the maps

RC.W /g@W

_[.VB;C0
;h0/

���������!RC.WB/g@WB

_[.VCb0 ;B
;h00/

����������!RC.WCb0
/g@WCb0

are weak homotopy equivalences, and the composition is homotopic to gluing on
.VCb0 ;C0

;gK jVCb0 ;C0
/.

Furthermore, we may suppose that h0 and h00 are equal to g0Cds2 near M0� .�1; 1�

and to g1C dt2 near M1 � .�1; 1�.
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Proof Let 'W R� .0; 4/!R2 be a smooth embedding such that

(i) '.x; t/D .�t;�1�x/ for x � �1,

(ii) '.x; t/D .x� 1;�t/ for x � 1,

(iii) '.R� .0; 4//D ..�4;1/� .�4; 0//[ ..�4; 0/� .�4;1//,

(iv) C2 � '.R� .1; 3//.

Define special curves

B1 WD '.R� f1g/ and B3 WD '.R� f3g/�R2:

Note that C0 <B1 <C2 <B3 , and that ' restricts to a diffeomorphism from R� Œ1; 3�

to ŒB1;B3�.

0

�1

�2

�3

�4

B3 C2 B1 C0

Figure 4: Special curves used in the proof of Theorem 2.6.1

Next, choose two isotopies of Riemannian metrics on R2 , mu and nu for u 2 Œ0; 1�,
such that:

(i) m0 D ds2C dt2 is the flat metric.

(ii) For each u 2 Œ0; 1�, mu coincides with ds2C dt2 outside Œ�2; 0�2 .

(iii) '�m1 is the flat metric on a neighbourhood of R� f1g.

(iv) n0 agrees with m1 on a neighbourhood of ŒB1;C2�.

(v) For each u 2 Œ0; 1�, nu coincides with ds2Cdt2 outside Œ�4; 0�2 , and '�nu is
the flat metric on a neighbourhood of R� f1; 3g.

(vi) '�n1 is the flat metric in a neighbourhood of R� Œ1; 3�.
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Of course, we cannot require that mu or nu have positive or even nonnegative scalar
curvature. But because both families of metrics are assumed to be constant (and flat)
outside a compact subset of the plane, there exists a � > 0 such that

scal.nu/; scal.mu/� ��

for all u 2 Œ0; 1�. The following rescaling argument proves that we can make the
constant � as small as we want, at the expense of stretching the region where the
metrics nu and mu are not standard. More precisely, let a> 0. Let HaW R2!R2 be
the homothety Ha.x/ WD

1
a
x . Then a2H�a .ds2C dt2/D ds2C dt2 . Let

ma
u WD a2H�a mu and na

u WD a2H�a nu:

By the well-known scaling identity for the curvature [23, page 136], we have

scal.na
u/; scal.ma

u/� �
1

a2
�:

These rescaled metrics ma
u and na

u have the same properties as those listed above,
but with B1 replaced by Ba , C2 by C2a and so on (one also has to rescale the
embedding ' ). Let

� WD inffscalg01
; scalg0

; scalg1
g> 0

and choose a�
p

2�=� . Define hu 2RC.VC0;C2a
/g@W ;g@W

for u 2 Œ0; 1� by

hu D

8<:
g0C ds2 on M0 � Œ�2a; 0�;

g1C dt2 on M1 � Œ�2a; 0�;

g01Cma
u on M01 � Œ�2a; 0�2:

Over M01� Œ�2a; 0�2 , this is a product metric, and (using [23, Section 3.15]) we have

scal.g01Cma
u/D scal.g01/C scal.ma

u/� � �
1

a2
��

1

2
�:

Over M0 � Œ�2a; 0� and M1 � Œ�2a; 0�, scal.hu/� � , so that hu is a psc metric.

Gluing on VC0;C2a
with the metric hu defines a homotopy of maps

�hu
W RC.W /g@W

!RC.WC2a
/g@WC2a

:

The map �h0
is a weak homotopy equivalence by Corollary 2.5.3, since it is given

by gluing on VC0;C2a
equipped with the metric m0 D ds2 C dt2 . Hence, �hu

is
a weak homotopy equivalence for all u 2 Œ0; 1�. By construction, the metric h1

is collared near Ba , so can be split along it, and so is the union of two psc metrics
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h0 2RC.VC0;Ba
/g@W ;g@WBa

(this defines g@WBa
) and h00 2RC.VBa;C2a

/g@WBa
;g@WC2a

.
Therefore, the weak equivalence �h1

factors as

RC.W /g@W

�h0
�!RC.WBa

/g@WBa

�h00
��!RC.WC2a

/g@WC2a

:

So far, this proves only that �h0 has a left inverse and �h00 has a right inverse (in the
weak homotopy category). To show that �h0 is a weak equivalence, it suffices to show
that �h00 has a left inverse as well, and for this, we employ the family nu constructed
above. We define a metric hu , for u 2 Œ1; 2�, on VBa;B3a

by the formula

hu D

8<:
g0C ds2 on M0 � Œ�3a;�a�;

g1C dt2 on M1 � Œ�3a;�a�;

g01C na
u�1

on M01 � ŒBa;B3a�:

By construction hu has positive scalar curvature, and furthermore the metric h1 is
collared near B3a , so can be written as the union of the metric h00 and a metric
h000 2RC.VC2a;B3a

/g@WC2a
;g@WB3a

. So gluing in hu defines a homotopy

�hu
W RC.WBa

/g@WBa
!RC.WB3a

/g@WB3a

for u 2 Œ1; 2�:

We can write �h1
D �h000 ı�h00 . Also by construction, �h2

glues in a cylinder metric
and hence is a weak equivalence by [6, Lemma 2.1]. Thus, �h1

is a weak equivalence,
which completes the proof.

3 Stable metrics

3.1 Summary of the section

If W W M0 M1 is a cobordism with collared boundaries and gi 2RC.Mi/ for iD0; 1,
we let RC.W /g0;g1

WD RC.W /g0qg1
be the space of all metrics of positive scalar

curvature on W which are equal to giCdt2 near Mi , with respect to the given collars.
For any h 2RC.W /g0;g1

, there are composition maps

�.h; _/W RC.V /g1;g2
!RC.W [V /g0;g2

and

�._; h/W RC.V 0/g�1;g0
!RC.V 0[W /g�1;g1

defined for all cobordisms V W M1 M2 and V 0W M�1 M0 and boundary conditions
g�1 2RC.M�1/ and g2 2RC.M2/.
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Definition 3.1.1 Let W W M0 M1 be a cobordism and let h 2RC.W /g0;g1
. Then

h is called left-stable if the map �._; h/W RC.V /g�1;g0
! RC.V [W /g�1;g1

is a
weak equivalence for all cobordisms V W M�1 M0 and all boundary conditions g�1 .
Dually, h is right-stable if the map �.h; _/W RC.V /g1;g2

! RC.W [ V /g0;g2
is a

weak equivalence for all cobordisms V W M1 M2 and all boundary conditions g2 .
Finally, h is stable if it is both left- and right-stable.

With this definition in mind, we can state the main result of this section:

Theorem 3.1.2 Let W W M0 M1 be a cobordism of dimension � 6.

(i) If .W;M / is 2-connected, then for each g02RC.M0/ there is a g12RC.M1/

and a right-stable h 2RC.W /g0;g1
.

(ii) If both .W;M1/ and .W;M0/ are 2–connected, then every right-stable h 2

RC.W /g0;g1
is also left-stable.

The proof is an elaboration of the Gromov–Lawson surgery technique, which we shall
first review.

3.2 The theorem of Gromov–Lawson and Chernysh

Definition 3.2.1 By gk�1
ı 2R.Sk�1/, we denote the round metric on Sk�1 , ie the

metric induced from the euclidean metric by the standard inclusion Sk�1 �Rk . It has
constant scalar curvature scal.gk�1

ı /D .k � 1/.k � 2/ which is positive if k � 3.

Let ı > 0. A ı–torpedo metric gk
tor on Rk , with k � 3, is an O.k/–invariant metric

such that scal.gk
tor/� 1=ı2 and such that

'�gk
tor D dr2

C ıgk�1
ı

near Œ1;1/�Sk�1 , where 'W .0;1/�Sk�1!Rk n0 is the diffeomorphism defined
by .r;x/ 7! rx .

In this work, we are mostly interested in the case ı D 1. We fix such a torpedo metric
once and for all and refer to [50, Section 2.3] for more details.

Definition 3.2.2 Let d � k � 3, let W d be a compact manifold with boundary M

and collar Œ0;1/�M � W , let V k be a compact manifold with boundary N and
collar Œ0;1/ � N � V , and let �W V � Rd�k ! W be an embedding. Assume
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that ��1.M � Œ0;1// D N � Œ0;1/, and that inside the collar � is of the form
.x; t/ 7! .'.x/; t/ for some embedding 'W N �Rd�k !M.

Let hV 2R.V /gV
be a metric and pick ı > 0 such that scal.hV /C 1=ı2 > 0, and fix

a ı–torpedo metric gd�k
tor on Rd�k . We denote by

RC.W; �/� �RC.W /�

the space of all �–collared psc metrics h on W such that ��h D hV C gd�k
tor near

V �Dd�k � V �Rd�k .

For sufficiently small � , one can view RC.W; �/� as a space of psc metrics on the
manifold with corners W n �.V � VDd�k/. Corollary 2.5.4 allows us to neglect the
notation � from RC.W; �/� . In the cases of interest to us, hV has nonnegative
scalar curvature, in which case we pick ı D 1. The following result due to Chernysh
[11, Theorem 1.3] is a sharpening of a classical result by Gromov and Lawson [26],
and is of crucial importance for this paper:

Theorem 3.2.3 (Chernysh) Assume that d � k � 3. Then, for each g 2RC.M; '/,
the inclusion

RC.W; �/g!RC.W /g

is a weak equivalence.

Definition 3.2.4 Let W be a compact d –dimensional manifold, possibly with bound-
ary M. A surgery datum (ie embedding) �W Sk �Rd�k ! int.W / is admissible if
2� k � d � 3.

We let
W� WD .W n�.S

k
�Dd�k//[Sk�Sd�k�1 DkC1

�Sd�k�1

be the result of performing a surgery along � .

The following cobordism invariance result, which is Theorem 2.5 of [6], can be deduced
easily from Theorem 3.2.3:

Corollary 3.2.5 An admissible surgery datum � determines a preferred homotopy
class of weak homotopy equivalences

SE� W RC.W /g 'RC.W�/g;

called the surgery equivalence determined by � .
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We remark that there is no actual map between these spaces, but rather a zigzag of weak
equivalences. This is not relevant in the present paper: we only use SE� to identify
the sets of path components of both spaces.

3.3 The stability condition

In this subsection, we collect some fairly straightforward but important facts about
stable metrics. The following simple observation is immediate from the definitions and
will be used repeatedly:

Lemma 3.3.1 Let .W;h/W .M0;g0/ .M1;g1/ and .W 0;h0/W .M1;g1/ .M2;g2/

be psc cobordisms. Then:

(i) If .W; h/ and .W 0; h0/ are left-stable, then so is .W [W 0; h[ h0/.

(ii) If .W; h/ and .W 0; h0/ are right-stable, then so is .W [W 0; h[ h0/.

(iii) If .W 0; h0/ and .W [W 0; h[ h0/ are left-stable, then so is .W; h/.

(iv) If .W; h/ and .W [W 0; h[ h0/ are right-stable, then so is .W 0; h0/.

Note that the statements “.W 0; h0/ and .W [W 0; h[ h0/ right-stable imply .W; h/

right-stable” and “.W 0; h0/ and .W [W 0; h[h0/ left-stable imply .W 0; h0/ left-stable”
do not follow formally.

Lemma 3.3.2 Let g0;g1 2RC.M / lie in the same path component. Then there is a
stable metric h 2RC.M � Œ0; 1�/g0;g1

.

Proof Let gt , t 2 Œ0; 1� be a smooth isotopy from g0 to g1 . A result of Gajer
[20, page 184] shows that there is ƒ> 0 such that whenever f W R! Œ0; 1� is a smooth
function with jf 0j; jf 00j � ƒ, the metric dt2C gf .t/ on R�M has positive scalar
curvature. There exists a c > 0 and a smooth function f W Œ0; 2c�! Œ0; 1� such that
f � 0 near 0 and 2c , f � 1 near c , and such that jf 0j; jf 00j �ƒ. The formula

hs D dt2
Cgsf .t/

thus defines a curve in the space RC.Œ0; 2c��M /g0;g0
. But h0 D dt2Cg0 is stable

by [6, Corollary 2.2], and so h1 is a stable metric as well. We can write h1 D h0[h00,
with h0 2RC.Œ0; c��M /g0;g1

and h00 2RC.Œc; 2c��M /g1;g0
. Then the map �._; h0/

has a left inverse in the homotopy category, and �._; h00/ has a right inverse. Let
h000 D dt2C gf .t�2c/ , a psc metric in RC.Œ2c; 3c��M /g1;g0

. A similar homotopy
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proves that h00[h000 is stable. Therefore, the above map �._; h00/ also has a left inverse
in the homotopy category. Hence, �._; h00/ is a weak equivalence, and so is �._; h0/; in
other words, h0 is left-stable. An analogous argument shows that h0 is also right-stable.
Reparametrising the interval Œ0; c� gives the desired stable h2RC.Œ0; 1��M /g0;g1

.

The next result shows the invariance of stable metrics under surgery equivalences.

Lemma 3.3.3 Let W W M0  M1 be a cobordism and �W Sk �Dd�k ! int.W /

be an admissible surgery datum (ie 2 � k � d � 3). Let Œh� 2 �0RC.W /g0;g1
and

Œh0� 2 �0RC.W�/g0;g1
correspond under the weak equivalence SE� . Then h0 is

left-stable (right-stable) if and only if h is left-stable (right-stable).

Proof Exactly as the argument in the third paragraph of the proof of [6, Theorem 2.6].

3.4 Construction of stable metrics

We now prove Theorem 3.1.2. The key step is the case of an elementary cobordism W .
Let us introduce some notation. Throughout this section, Mi will be a closed .d�1/–
manifold and cobordisms between those are typically denoted by W W M0  M1 .
When W is such a cobordism, we denote by W opW M1 M0 the same manifold, but
viewed as a cobordism in the other direction.

Let
'W Sk�1

�Rd�k
!M0

be a smooth embedding. We can view 'jSk�1�Dd�k as a surgery datum on M0 , as
well as the attaching map for a k –handle. Let M1 be the result of performing surgery
on ' , and let T' be the trace of the surgery. Then T' W M0 M1 is a cobordism (an
elementary cobordism of index k ). There is an embedding

��W .Dk
�Dd�k ;Sk�1

�Dd�k/! .T' ;M0/

such that ��jSk�1�Dd�k D ' . The image of �� is denoted by H�' and called the
incoming handle. Moreover, there is a dual embedding

�CW .Dd�k
�Dk ;Sd�k�1

�Dk/! .T' ;M1/

with image HC' , called the outgoing handle.
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It is important for us to consider the following decomposition of T' . For r > 1, we let
Dn

r be the closed n–disc of radius r and let Sn�1
r be its boundary. Let

'0W S
k�1
�Dd�k

! Sk�1
�Dd�k

2

be the inclusion and let U be the trace of a surgery on '0 . This is a manifold with
corners. The boundary of U is decomposed into three pieces: @0U WD Sk�1 �Dd�k

2
,

@1U is the result of a surgery along '0 and @2U D Sk�1 � Sd�k�1
2

� Œ0; 1�. Let
L WDM0 n'.S

k�1�Dd�k
2

/�M0 . Then T' D .L� Œ0; 1�/[Sk�1�Sd�k
2
�Œ0;1�U ; see

Figure 5. The incoming and the outgoing handle are disjoint from L� Œ0; 1�.

L

L

@0U

@2U

@2U

@1U

M0 M1

HC' DDd�k �Dk

H�' DDk �Dd�k

Figure 5: Decomposition of an elementary cobordism

Let 'op WD �CjSd�k�1�Dk . By surgery on 'op , one recovers M0 from M1 . Note
furthermore that there is an identification T'op Š .T'/

op , relative to the boundaries.
Inside the composed cobordism T' [T'op , we find an embedding � D �C [ �� of
Sd�k �Dk . Doing surgery on � results in a manifold diffeomorphic to the cylinder
M0 � Œ0; 2� relative to the canonical diffeomorphism @.T' [T'op/Š @.M0 � Œ0; 2�/.

Lemma 3.4.1 Let k � d � 3. Then there is a psc metric h on the manifold with
corners U such that

hD

�
gk�1
ı Cgd�k�1

ı C dt2C ds2 near @2U;

gk�1
ı Cgd�k

tor C dt2 near @0U;
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and such that the following property holds. If M d�1 is a closed manifold, g02RC.M /

and 'W Sk�1 � Rd�k ! M an embedding such that '�g0 D gk�1
ı C gd�k

tor near
'.Sk�1 �Dd�k

2
/, then the psc metric h[ .g0jLC dt2/ on U [ .L� Œ0; 1�/D T' is

right-stable.

Proof We construct a right-stable metric on T' and justify during the course of the
proof why it has the particular form stated in the lemma. The proof depends on the
decomposition of T' described above and shown in Figure 5.

Here we let H�' � U �W D T' be the image of the embedding

��W .Dk
�Dd�k ;Sk�1

�Dd�k/! .T' ;M0/;

and let S D T' n int.H�' /. Note that S is a manifold with (acute) corners in the
sense of Definition 2.2.1, and that it is diffeomorphic to a manifold of the form VB1;C2

considered in the proof of Theorem 2.6.1. More precisely, the left boundary of S is
decomposed as

.M0 n int.Sk�1
�Dd�k//[Sk�1�Sd�k�1 .Sk�1

�Dk/

and the right boundary of S is the result of corner smoothing. Let

g@ D .g0jM0nint.Sk�1�Dd�k/;g
k�1
ı Cgk

tor/

2RC.M0 n int.Sk�1
�Dd�k//�RC.Sk�1�Sd�k�1/R

C.Sk�1
�Dk/:

We now define g1 2RC.M1/ as g@WB
, as explained in the proof of Theorem 2.6.1. By

that theorem, there is a metric h0 2RC.S/g@;g1
which is right-stable in a slightly gener-

alised sense: if V W M1 M2 is a cobordism and g2 2RC.M2/, then RC.V /g1;g2
!

RC.S [V /g@;g2
is a weak equivalence. Moreover, by the last statement of Theorem

2.6.1, we can assume that h0 is of the form g0jLCdt2 over L�Œ0; 1�, and h0jSn.L�Œ0;1�/

does not depend on the ambient manifold M.

Now let RC.W;H�' /g0;g1
� RC.W /g0;g1

be the subspace of those psc metrics h

such that .��/�hD gk
torCgd�k

tor . By Theorem 3.2.3(iii), the inclusion

RC.W;H�' /g0;g1
!RC.W /g0;g1

is a weak homotopy equivalence because d � k � 3. The same is true when W

is replaced by W [ V for any other cobordism V W M1  M2 and any boundary
condition g2 2RC.M2/. Now we consider the psc metric hD .gk

torCgd�k
tor /[ h0 on
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W DH�' [S. Let V W M1 M2 be any other cobordism and g2 2RC.M2/. Then
the map .W; h/[�W RC.V /g1;g2

!RC.W [V /g0;g2
is equal to the composition

RC.V /g1;g2

.S;h0/[�
�����!RC.S[V /g@;g2

ŠRC.W [V;H�' /g0;g2
!RC.W [V /g0;g2

of two weak homotopy equivalences, so .W; h/ is right-stable.

Proof of Theorem 3.1.2(i) By handle cancellation theory (see eg [36; 49]), the
cobordism W admits a decomposition into elementary cobordisms of index k � d � 3

(relative to M0 ). Therefore, we may assume that W D T' for some embedding
'W Sk�1 �Rd�k !M0 with d � k � 3.

The next step is to turn the metric g0 into some standard form. Because d � k � 3,
there is a smooth family gt 2RC.M0/ such that 'j�

Sk�1�Dd�k g1 D gk�1
ı C gd�k

tor ,
by Chernysh’s theorem [10, Theorem 1.1] (the weaker result by Gajer [20] also suffices
for this purpose). By Lemma 3.3.2, there is a stable metric

h1 2RC.Œ0; 1��M0/g0;g1

(this h1 and g1 are not yet the metrics we are looking for). Lemma 3.4.1 gives
a right-stable metric h2 2 RC.T'/g1;g2

which is cylindrical over Œ0; 1� � L. The
composition

h1[ h2 2RC.Œ0; 1��M0[M0
T'/g0;g2

ŠRC.T'/g0;g2

is then right-stable by Lemma 3.3.1(ii), as required.

Proof of Theorem 3.1.2(ii) Let W W M0 M1 be a cobordism of dimension d � 6,
assume that Mi!W are 2–connected and let h 2RC.W /g0;g1

be a right-stable psc
metric on W . Using handle cancellation theory [36; 49], W has a handle decomposition
(relative to M0 ) using handles of index 3� k � d�2 (in fact, if d � 7, one can assume
that 3� k � d � 3, but if d D 6, this can fail, for example if W is an h–cobordism
with nontrivial Whitehead torsion).

We have noted above that if T' W M  M 0 is an elementary cobordism of index k ,
then the composite T' [T

op
' contains a surgery datum �W Sd�k �Dk ! T' [T

op
'

in its interior such that performing surgery on � results in the cylinder M � Œ0; 2�.
It follows that W [W op can be surgered to M0 � Œ0; 2�, and this can be done using
admissible surgeries, provided that all handles of W have index 3� k � d � 2, which
is what we arranged in the first step of the proof. Hence, there is a surgery equivalence

SEW RC.M0 � Œ0; 2�/g0;g0
'RC.W [W op/g0;g0

:
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Let h00 2 RC.W [W op/g0;g0
be in the component of the cylinder metric g0C dt2

under SE. By Lemma 3.3.3 and [6, Corollary 2.2], h00 is stable.

Now h2RC.W /g0;g1
is right-stable by assumption, so there is an h0 2RC.W op/g1;g0

such that h [ h0 and h00 lie in the same path component of RC.W [W op/g0;g0

(just because �.h; _/W RC.W op/g1;g0
! RC.W [W op/g0;g0

is a weak homotopy
equivalence). Since h and h[ h0 ' h00 are right-stable, so is h0, by Lemma 3.3.1.

Let us summarise what we proved so far. Given a cobordism W such that both
inclusions Mi!W are 2–connected, and given a right-stable h 2RC.W /g0;g1

, we
find another right-stable h0 2RC.W op/g1;g0

such that h[ h0 is stable.

The conclusion of the argument is formal. Namely, �._; h[h0/D �._; h0/ ı�._; h/
is a weak equivalence, and so �._; h/ is “split monomorphic in the weak homotopy
category”. The argument leading to that conclusion only used that h is a right-stable
psc metric on a cobordism whose inclusion maps Mi ! W are both 2–connected.
Because W op and h0 also satisfy these conditions, we can apply the same argument
to h0 and get that �._; h0/ is split monomorphic in the weak homotopy category as
well. Since �._; h0/ ı�._; h/ is a weak equivalence, �._; h0/ is also split epimorphic.
So �._; h0/ is a weak equivalence, and so is �._; h/, which is what we had to prove.

4 Proof of the main factorisation result

In this section we will prove Theorem F.

4.1 A commutativity result

Let W d be a compact manifold with boundary. The group Diff@.W / of diffeomor-
phisms which are equal to the identity near @W acts by pullback on the space RC.W /g

of psc metrics. This action defines a homomorphism Diff@.W /! hAut.RC.W /g/

to the monoid of homotopy automorphisms of RC.W /g .2 A key step of [6], namely
Theorem 4.1 of that paper, is that under some circumstances the induced homomorphism
�0.Diff@.W //! �0 hAut.RC.W /g/ has an abelian group as its image. This is to say:
if f0; f1 2 Diff@.W /, then f �

0
f �

1
and f �

1
f �

0
W RC.W /g!RC.W /g are homotopic.

We introduce the following language:

2As in [6, Section 4.1], one should replace RC.W /g by a space having the homotopy type of a
CW–complex; we do so implicitly here.
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Definition 4.1.1 Let X be a space and let G be a topological group which acts on X.
This gives rise to an H –space map G! hAut.X /. The action of G on X is called
homotopy abelian if the image of the induced map �0.G/!�0.hAut.X // is an abelian
group.

Theorem 4.1.2 Let W d W ∅ @W be a cobordism. Assume that d � 6 and that the
inclusion map @W ! W is 2–connected. Assume that g 2 RC.@W / is such that
there exists a right-stable h 2RC.W /g . Then the action of Diff@.W / on RC.W /g is
homotopy abelian.

Remark 4.1.3 Theorem 4.1 of [6] applies under the following hypotheses:

(i) d � 5,

(ii) W is simply connected and spin,

(iii) @W D Sd�1 and g is the round metric on Sd�1 ,

(iv) W is spin cobordant to Dd , relative to its boundary.

Thus, except in the case d D 5, Theorem 4.1 of [6] follows from Theorem 4.1.2.

The proof of Theorem 4.1.2 is quite similar to the proof of [6, Theorem 4.1]. The first
step is actually almost the same.

Lemma 4.1.4 Let V W M0 M1 be a cobordism such that both boundary inclusions
Mi ! V are 2–connected. Let gi 2 RC.Mi/ be such that there is a right-stable
h 2RC.V /g0;g1

. Then the action of Diff@.V / on RC.V /g0;g1
is homotopy abelian.

Proof By Theorem E, h is also left-stable. One then uses the formal result [6,
Lemma 4.2] in the same way as it was used in the proof of [6, Theorem 4.1].

The next step is to reduce Theorem 4.1.2 to Lemma 4.1.4. This is significantly more
complicated than the corresponding step in [6, pages 801–802].

Lemma 4.1.5 Let W be a manifold of dimension d � 6 and assume that @W !W

is 2–connected. Pick a handle decomposition of W without handles of index � d � 2

and let K be the union of all handles of index � 2. Then there is a collar C of @W
in W which contains K in its interior.
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Proof We prove the following equivalent statement: if B is an arbitrary collar, then
there is an isotopy ft of W , relative to the boundary, such that f0D id and f1.K/�B .
If that is proven, then C WD f �1

1
.B/ does the job.

We make use of the Phillips submersion theorem [42]. Let Sub.KIW / be the space of
all submersions K!W and let Epi.TKIT W / be the space of bundle epimorphisms
TK!T W . The submersion theorem states that the differential map DW Sub.KIW /!

Epi.TKIT W / is a weak homotopy equivalence. The space Epi.TKIT W / is the
space of cross-sections in the fibre bundle Fr.TK/ �GLd .R/ Fr.T W /! K , where
Fr.V / denotes the frame bundle of the vector bundle V .

We wish to show that the inclusion h0W K ! W , a submersion, is regularly homo-
topic via a regular homotopy ht to a submersion h1W K! B �W . By the submer-
sion theorem this is equivalent to finding a fibrewise homotopy from D.h0/W K !

Fr.TK/�GLd .R/ Fr.T W / to a cross-section with image in Fr.TK/�GLd .R/ Fr.TB/.
Using the (fibrewise) homotopy extension property, this may be done by induction over
cells of K . Over a single k –cell we may trivialise the fibre bundle, and the problem
becomes to show that a certain obstruction in �k.Fr.T W /;Fr.TB// vanishes. Since
the inclusion B!W is 2–connected, so is the induced map Fr.TB/! Fr.T W / on
frame bundles and so such relative homotopy groups vanish for k � 2. On the other
hand, because the handle dimension of K is � 2 it is equivalent to a CW–complex
only having cells of dimension � 2; therefore, there is no obstruction to finding the
required fibrewise homotopy, and so the desired regular homotopy ht exists.

Since d D dim.W / � 6, we can assume, by general position, that each ht embeds
a neighbourhood U � K of the cores of the handles of K . There is an embedding
eW K ,! U �K which is isotopic (as a map K!K ) to the identity. By the isotopy
extension theorem [31, Theorem 8.1.4], we find an isotopy ft of W starting with
the identity and such that ft ı e D ht ı e . Finally, the embeddings K � W and
K e
�!K �W are ambiently isotopic, so that, altogether, the inclusion K!W is

ambiently isotopic to an embedding into the collar B .

Proof of Theorem 4.1.2 Pick a handlebody decomposition of W using only handles
of index � d � 3. Let K be the union of all handles of index � 2, and let V WD

W n int.K/. Let M0 WD @K and M1 WD @W , so that V W M0 M1 . Observe that
both inclusions Mi ! V are 2–connected. According to Lemma 4.1.5, there is a
collar C of @W in W containing K . Let Diff.W;C / � Diff@.W / be the subgroup
of diffeomorphisms fixing C. The inclusion Diff.W;C / ! Diff@.W / is a weak
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equivalence, and it factors through the group Diff.W;K/ Š Diff@.V /. Therefore,
the map Diff@.V /! Diff@.W / extending diffeomorphisms as the identity over K ,
induces a surjection on path components. Therefore, it is enough to show that the
image of �0.Diff@.V //! �0

�
hAut.RC.W /g/

�
is an abelian group. Write g1 WD g .

By Theorem D, there is a g0 2 RC.M0/, and a right-stable h0 2 RC.K/g0
. Pick

h00 2RC.V /g0;g1
so that h0[h00 and h lie in the same path component of RC.W /g1

,
using that h0 is right-stable. Since h and h0 are right-stable, so is h00 2RC.V /g0;g1

,
by Lemma 3.3.1.

Because h0 is right-stable, the map �.h0; _/W RC.V /g0;g1
! RC.W /g1

is a weak
equivalence, and since �.h0; _/ is Diff@.V /–equivariant, we have reduced the problem
to showing that Diff@.V / acts on RC.V /g0;g1

through an abelian group. But h00 2

RC.V /g0;g1
is stable, so that by Lemma 4.1.4, the action of Diff@.V / on RC.V /g0;g1

is homotopy abelian.

Corollary 4.1.6 Let W W Sd�1 M be a cobordism with d � 6 and assume that
M ! W is 2–connected. Let g 2 RC.M / be such that there exists a right-stable
h 2RC.W /gı;g . Then the action of Diff@.W / on RC.W /gı;g is homotopy abelian.

Proof The cobordism V DDd [W W ∅ M, with the metric h0D gd
tor[h, satisfies

the hypotheses of Theorem 4.1.2. Let f0; f1 2 Diff@.W / and let xfi be the extension
to V by the identity. The diagram

RC.W /gı;g
f �

i //

�.gd
tor;_/

��

RC.W /gı;g

�.gd
tor;_/

��

RC.V /g
xf �
i // RC.V /g

commutes and the vertical maps are homotopy equivalences. By Theorem 4.1.2, xf �
0

and xf �
1

commute up to homotopy, and hence so do f �
0

and f �
1

.

4.2 Starting the proof of Theorem F

Let us first recall the setup of Theorem F. We are given a 2n–manifold W such that
.W; @W / is .n�1/–connected, and we form the second stage

� W W
`W
�!X

�
�! BO.2n/

of the Moore–Postnikov tower for the map � classifying the tangent bundle of W . The
map � classifies a vector bundle ��2n!X, and a � –structure on a 2n–dimensional
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manifold U is a bundle map ỳU W T U! ��2n . Similarly, a � –structure on a .2n�1/–
manifold P is a bundle map ỳP W �1˚TP! ��2n ; if P is the boundary of a collared
manifold U, then the collar gives an identification T U jP D �

1 ˚ TP and hence a
� –structure on U induces one of P. We call the underlying map `U W U ! X the
structure map of the � –manifold .U; ỳU /.

In this section, we construct a certain sequence of manifolds Wk such that W0DW and
such that BDiff@.Wk/ homologically approximates the infinite loop space �1

0
MT� .

Let us recall the following:

Definition 4.2.1 (Wall [48]) A space X is of type .Fk/ if there exists a finite
complex K and a k –connected map K!X.

Each connected space is of type .F0/, and being of type .F1/ means that �1.X / is
finitely generated. As we have a 2–connected map `W W W ! X from a compact
manifold, the space X is of type .F2/. If X happens to be of type .Fn/ then the proof
of Theorem F we shall give can be somewhat simplified: many of the constructions in
this section are designed to deal with the more complicated case when X is only of
type .F2/.

As we have said, we need to construct a suitable sequence of manifolds. Before we
state the result, we introduce some notation. Let Mp for p 2 Z be closed .2n�1/–
dimensional manifolds and Vp;pC1W Mp  MpC1 be cobordisms. We then let, for
p < q ,

Vp;q WD Vp;pC1[VpC1;pC2[ � � � [Vq�1;q

and let V�1;q D
Sq

pD�1 Vp;q be the infinite composition.

Theorem 4.2.2 There exist .2n�1/–dimensional � –manifolds Mp for p 2 Z and
� –cobordisms Vp;pC1W Mp MpC1 such that:

(i) M0 D @W , and V0;1 is the manifold W [@W .@W � Œ0; 1� nD2n/, viewed as a
� –cobordism @W  S2n�1 .

(ii) For p � 1, Mp D S2n�1 and Vp;pC1 D .S
2n�1 � Œp;pC 1�/ # .Sn �Sn/.

(iii) The inclusion Mp! Vp;pC1 is .n�1/–connected for all p .

(iv) The inclusion MpC1! Vp;pC1 is 2–connected for all p < 0.

(v) The structure map `V�1;p W V�1;p!X is n–connected if p � 0.
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(vi) Each of the manifolds Mp contains an embedded disc D2n�1 , and each Vp;pC1

contains an embedded strip Sp;pC1 D D2n�1 � Œp;p C 1� restricting to the
embedded discs on both ends. For p � 0, the disc in Mp D S2n�1 is the lower
half disc D2n�1

� , and the strip in Vp;pC1 D .S
2n�1� Œp;pC 1�/ # .Sn�Sn/ is

D2n�1
� � Œp;pC 1� (and we assume that the connected sum with Sn � Sn is

taken on the upper half part of S2n�1 � Œp;pC 1�).

We prepare for the proof of Theorem 4.2.2 with some basic homotopy theory.

Lemma 4.2.3 There is a relative CW–complex .C;W / and an extension `C W C !X

of `W W W !X such that

(i) `C is n–connected, and

(ii) there exists a filtration W D C0 � C1 � C2 � � � � of C such that CmC1 is
obtained from Cm by attaching a single cell of dimension 3� km � n.

Proof First note that the homotopy groups of X are countable, as those of BO.2n/

and W are.

For part (i), start by letting C .2/ WDW ; the structure map `C .2/ WD `W W C
.2/!X is

2–connected. Look at the portion

�3.X /! �3.X;C
.2//! �2.C

.2//

of the long exact sequence for the pair .X;C .2//. The two outer homotopy groups are
countable, so �3.X;C

.2// is too, and hence we can attach countably many 3–cells
to C .2/ to arrive at a countable complex C .3/ with a 3–connected map to X. Repeating
this process up to dimension n, we obtain a countable complex C D C .n/ with an
n–connected map `C W C !X.

For part (ii), note that C has countably many k –cells for 3 � k � n. Now we use
the well-known property that the attaching map of each k –cell goes into a finite
subcomplex of C .k�1/ . Using this property, we find a bijection from N to the set of
cells of C nC .2/ such that the attaching map of the mth cell goes into the subcomplex
of C given by the union of the first m�1 cells with C .2/ . Now let Cm be the union
of C .2/ with the first m cells.

Lemma 4.2.4 Let � W Y ! BO.2n/ be a fibration, assume that Y is of type .Fn/

and let k � n. Let W be a 2n–manifold with a � –structure `W W W ! Y which is
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.k�1/–connected. Furthermore, assume that the inclusion M WD @W !W is .n�1/–
connected. Then there is a � –cobordism V W M 0 M such that .V;M / is .k�1/–
connected, .V;M 0/ is .n�1/–connected, and the structure map `V[`W W V[M W!Y

is n–connected.

Proof By induction it enough to find a V as in the statement of the lemma such that
`V [`W W V [M W ! Y is k –connected. This is because composing two cobordisms
which are .l�1/–connected relative to their (say) left-hand ends gives a cobordism
which is again .l�1/–connected relative to its left-hand end, and similarly relative to
their right-hand ends.

By [48, Theorem A], there are finitely many elements x1; : : : ;xr 2 �k.Y;W / such
that attaching k –cells to W along all of those xi and extending the map to Y yields
an n–connected map W [

Sr
iD1 Dk ! Y . The long exact sequence of the triple

M !W ! Y yields the piece

�k.Y;M /! �k.Y;W /! �k�1.W;M /D 0:

Hence, each of the elements xi can be represented by a square of the form

Sk�1 g
//

��

M

`W jM

��

Dk f
// Y

Since k � n, we can perturb g so that it becomes an embedding, by general position.
The normal bundle of g is stably trivial because �g˚TSk�1˚RŠg�`W j

�
M
��2nŠ

f ���2n . Again because k � n, the normal bundle of g is actually trivial, so that g

extends to an embedding yxi W S
k�1 �D2n�k !M, which may be taken to be disjoint

for different i . Now attach k –handles along these embeddings. The � –structure on W

can be extended over these handles — see eg [21, Section 4.1] — and the cobordism V

may be taken to be the composition of the elementary cobordisms of these r handle
attachments. The connectivity conditions are clearly satisfied, as the cobordism only
has k –handles relative to M.

Proof of Theorem 4.2.2 For p � 0, the manifolds Mp and Vp;pC1 are already
prescribed in the theorem. Note that V0;1 ŠW nD2n .
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Let �mW Ym ! X be the fibrant replacement of the map `C jCm
W Cm ! X from

Lemma 4.2.3 and let fmW Ym!YmC1 be the map induced by the inclusion Cm�CmC1 .
Note that fm is a map over X and hence over BO.2n/. Furthermore, each Ym is of
type .Fn/ and each fm is 2–connected.

The manifold W has a �0 –structure with n–connected structure map W ! Y0 , by
construction, and @W !W is .n�1/–connected. Using the map f0 , we can view
W as a �1 –manifold, and the structure map W ! Y1 is 2–connected. Applying
Lemma 4.2.4, we find a �1 –cobordism V�1;0W M�1  M0 D @W such that the
structure map V�1;0 [M0

W ! Y1 is n–connected, such that M0 ! V�1;0 is 2–
connected and such that M�1! V�1;0 is .n�1/–connected. Continuing in this way,
we construct a sequence of cobordisms

� � �
V�3;�2 M�2

V�2;�1 M�1

V�1;0 M0

such that V�p�1;�p has a YpC1 –structure and the structure map Vp;0[M0
W ! Yp

is n–connected. This property persists if a disc is removed from the interior of W , so
we have constructed the required manifolds.

It remains to embed strips D2n�1� Œp;pC1� into Vp;pC1 for all p��1. This can be
done inductively, using the connectivity of the cobordisms with respect to both ends.

4.3 Application of high-dimensional Madsen–Weiss theory

We continue to let � W X ! BO.2n/ be the second Moore–Postnikov stage of the
structure map W !BO.2n/. In Theorem 4.2.2, we constructed certain manifolds Mp

and cobordisms Vp;pC1W Mp MpC1 .

Next let

`V�p;1
W V�p;1

`
p

V�p;1
����!Xp

up
�!X

be the nth stage of the Moore–Postnikov factorisation of the � –structure on V�p;1 ,
and define �p D � ıupW Xp! BO.2n/. The maps

V�p;q � V�p;1

`
p

V�p;1
����!Xp

up
�!X

form the nth stage of the Moore–Postnikov factorisation of the � –structure on V�p;q

for any q � 1. By the naturality of the Moore–Postnikov factorisation, we obtain a
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commutative diagram

V0;1
//

`0

��

V�1;1
//

`1

��

V�2;2

`2

��

// � � � // V�1;1

`
��

X0

�0

��

f1
// X1

f2
//

�1

��

X2
//

�2

��

� � � // X

�
��

BO.2n/ BO.2n/ BO.2n/ � � � BO.2n/

Note that each space Xp is of type .Fn/, as p̀ WD `
p
V�p;1

jV�p;p
W V�p;p!Xp is an

n–connected map from a compact manifold, and that �p is n–coconnected. Moreover,
the natural map hocolimp Xp ! X is a weak equivalence and each of the maps
fpW Xp!XpC1 is 2–connected.

Now let Diff@.Vp;q;Sp;q/ be the group of diffeomorphisms of Vp;q which are the
identity near the boundary and on the embedded strip Sp;q � Vp;q . Let I D .N0;�/

and J D .N;�/ as directed sets. The classifying spaces of these groups induce a
directed system of spaces, indexed by I �J , namely

.p; q/ 7! BDiff@.V�p;q;S�p;q/

with the maps induced by extending diffeomorphism as the identity. For a space A

and points a0; a1 2 A we write �a0;a1
A for the space of paths in A starting at a0

and ending at a1 . The parametrised Pontrjagin–Thom construction provides us with
points M�p;Mq 2�

1�1MT�p given by the Pontrjagin–Thom collapse maps of the
.2n�1/–manifolds M�p and Mq , and a map

p̨;qW BDiff@.V�p;q;S�p;q/!�M�p;Mq
�1�1MT�p;

which under gluing of the cobordism Vq;qC1 fits in the commutative diagram

BDiff@.V�p;q;S�p;q/
˛p;q //

��

�M�p;Mq
�1�1MT�p

��

BDiff@.V�p;qC1;S�p;qC1/
˛p;qC1 // �M�p;MqC1

�1�1MT�p

where the right vertical is the concatenation with the path induced by the Pontrjagin–
Thom collapse map of Vq;qC1 .
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Remark 4.3.1 Strictly speaking, this does not make sense, as the parametrised
Pontrjagin–Thom, or “scanning”, construction depends on choices eg of tubular neigh-
bourhoods, so in principle just gives a homotopy class of maps. There are several
standard solutions to this problem. One is that in fact the Pontrjagin–Thom construction
depends on a contractible space of choices and one can simply build such choices into
a model for the classifying space BDiff@.V�p;q;S�p;q/ used. Another solution is to
replace the spectrum MT�p with a homotopy equivalent spectrum GRW�p constructed
from all manifolds in R1 , not just affine ones; this receives a canonical scanning map
when BDiff@.V�p;q;S�p;q/ is modelled as a space of �p –manifolds in R1 . Either
solution works for our purposes, though we slightly prefer the second option. An
extensive discussion of this option is given in Section 2.5 of [16].

Taking the above into account, we obtain an induced map

hocolim
q

BDiff@.V�p;q;S�p;q/

hocolimq ˛p;q

��������! hocolim
q

�M�p;Mq
�1�1MT�p '�

1MT�p:

Theorem 4.3.2 This map is acyclic on to the path component which it hits.

Proof This is simply an application of [22, Theorem 1.5]; let us explain how to
connect that with the formulation given here. We assume familiarity with the notation
of [22].

The manifold V ı�p;q WD V�p;q n int.S�p;q/, with rounded corners, has boundary P WD

@V ı�p;q . The inclusion M�p � V�p;q is .n�1/–connected by Theorem 4.2.2(iii) and
induction (if q � 1). It follows that the inclusions M�p n int.D2n�1/ � V ı�p;q and
hence P � V ı�p;q are also .n�1/–connected.

The map

V ı�p;q � V�p;q � V�p;1

`
p

V�p;1
����!Xp

is n–connected, and restricts to a �p –structure ỳ.q/
P
W �1 ˚ TP ! ��p 2n on P D

@V ı�p;q . The space Bun�p
n;@
.T V ı�p;qI

ỳ.q/
P
/ of �p –structures which extend ỳ.q/

P
and

whose underlying map is n–connected is therefore nonempty, and by obstruction
theory (using that .V�p;q;P / is .n�1/–connected and �p is n–coconnected) is hence
contractible. Thus,

BDiff@.V�p;q;S�p;q/D BDiff@.V
ı
�p;q/' Bun�p

n;@
.T V ı�p;qI

ỳ.q/
P
/==Diff@.V�p;q/

is a path component of the space N �p
n .P I ỳ

.q/
P
/.
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The manifold V ı
�p;qC1

is obtained from V ı�p;q by gluing on V ı
q;qC1

, or in other words
by boundary connect-sum with a manifold diffeomorphic to Sn �Sn n int.D2n/, so
its boundary can also be identified with P, with a potentially different �p –structure
ỳ.qC1/
P

. (In fact, as �p is once-stable — see [21, Section 5.1] — it can be arranged
that ỳ.qC1/

P
D ỳ

.q/
P

, but that does not matter for this argument.) This identifies
hocolimq BDiff.V�p;q;S�p;q/ with a path component of the space

hocolim
q!1

N �p
n .P I ỳ

.q/
P
/

and [22, Theorem 1.5] provides an acyclic map from this space to �1MT�p . The
proof of [22, Theorem 1.5] shows that it is indeed the map hocolimq p̨;q which is
acyclic.

Next, we use naturality of the above discussion with respect to p . Namely, the maps
fpW Xp!XpC1 induce maps of spectra MT�p!MT�pC1 and the diagram

BDiff@.V�p;q;S�p;q/ //

��

�M�p;Mq
�1�1MT�p

��

BDiff@.V�p�1;q;S�p;q/ // �M�p�1;Mq
�1�1MT�pC1

commutes.3 Here the right-hand vertical map is the map induced by fp , followed by
path concatenation with the path corresponding to the cobordism V�p�1;�p . Altogether,
we have two directed systems of spaces indexed by I �J , namely

.p; q/ 7! BDiff@.V�p;q;S�p;q/ and .p; q/ 7!�M�p;Mq
�1�1MT�p;

and the maps p̨;q together define a map of directed systems.

Corollary 4.3.3 (i) The map

hocolim
p;q

BDiff@.V�p;q;S�p;q/
hocolimp;q ˛p;q

����������! hocolim
p;q

�M�p;Mq
�1�1MT�p

is acyclic.

(ii) There is a weak equivalence

hocolim
p;q

�M�p;Mq
�1�1MT�p!�10 MT�:

3The discussion of Remark 4.3.1 applies here too.
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(iii) The diagonal map

hocolim
p

BDiff@.V�p;p;S�p;p/! hocolim
p;q

BDiff@.V�p;q;S�p;q/

is a weak equivalence.

(iv) There is an acyclic map

hocolim
p

BDiff@.V�p;p;S�p;p/!�10 MT�:

Proof Part (i) follows from the fact the maps hocolimq p̨;q are acyclic (by Theorem
4.3.2) and that directed (homotopy) colimits of acyclic maps are acyclic (which follows
from the homological characterisation of acyclic maps [27, Section 1]).

Part (ii) follows from the fact that hocolimp Xp ! X is a weak equivalence, which
carries over to the Madsen–Tillmann–Weiss spectra and their infinite loop spaces, and
the fact that path spaces (when nonempty) are homotopy equivalent to loop spaces.

Part (iii) follows from the fact that N! I �J , p 7! .p;p/, is cofinal, and part (iv)
follows by combining all the previous parts.

4.4 Finishing the proof of Theorem F

After all these preliminaries, we can now prove Theorem F by the same sort of arguments
as those in [6, Section 4]. Because the argument is so similar, we shall be quite brief.
We use the notation introduced in the previous section.

Lemma 4.4.1 Under the hypotheses of Theorem F there are psc metrics gp 2RC.Mp/

and hp;pC1 2RC.Vp;pC1/gp;gpC1
such that

(i) hp;pC1 is stable for all p ¤ 0,

(ii) h0;1 is left-stable.

Proof Let p� 1. Then MpDS2n�1 and Vp;pC1D .S
2n�1� Œp;pC1�/#.Sn�Sn/.

For those p , put gp WD gı 2 RC.Mp/ D RC.S2n�1/. For p � 1, we let hp;pC1 2

RC.Vp;pC1/gp;gpC1
be a metric which corresponds to gp C dt2 under the surgery

equivalence RC.Vp;pC1/gp;gpC1
' RC.S2n�1 � Œp;p C 1�/gı;gı (exactly as in [6,

Proposition 4.8]). By Lemma 3.3.3, hp;pC1 is stable.

Let p D 0. Recall that W D V0;1 [D2n . By the hypotheses of Theorem F there
is a psc metric g0 2RC.M0/, and a left-stable h 2RC.W / (here we view W as a
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cobordism M0 ∅, and changing the direction of a cobordism turns right-stable into
left-stable psc metrics). The torpedo metric on D2nW S2n�1 ∅ is left-stable. Hence,
there is a metric h0;1 2 RC.V0;1/g0;g1

such that h0;1 [ gtor 2 RC.W /g0
lies in the

same component as h. By Lemma 3.3.1, h0;1 is left-stable.

Let p < 0. Since the cobordism Vp;pC1 is 2–connected with respect to either end,
the existence of the metrics gp and hp;pC1 with the desired properties follows by a
repeated application of Corollary 1.2.2.

Lemma 4.4.2 The action of Diff@.V�p;q/ on RC.V�p;q/g�p;gq
is homotopy abelian

for p � 0 and q > 0.

Proof This is clear from Corollary 4.1.6 and Lemma 4.4.1.

The rest of the argument is as in [6, Section 4] and will only be sketched. Let us write

B0 WDBDiff@.V0;1;S0;1/; T0 WDEDiff@.V0;1;S0;1/�Diff@.V0;1;S0;1/R
C.V0;1/g0;g1

and, for p � 1,

Bp WD BDiff@.V�p;p;S�p;p/;

Tp WDEDiff@.V�p;p;S�p;p/�Diff@.V�p;p;S�p;p/R
C.V�p;p/g�p;gp

:

Gluing on the psc manifolds .Vp;pC1; hp;pC1/ and .V�p�1;�p; h�p�1;p/ gives com-
mutative and homotopy cartesian diagrams

Tp
//

�p

��

TpC1

�pC1

��

Bp
// BpC1

and passing to the homotopy colimit we obtain a fibration

�1W T1! B1 WD hocolim
p

Bp;

from which the fibration �0W T0! B0 is pulled back (up to homotopy). The same
obstruction theoretic argument as in [6, Proposition 4.12], using Lemma 4.4.2, applied
to the acyclic map hocolimp Bp!�1

0
MT� of Corollary 4.3.3(iv), produces a fibration

TC1 ! �1
0
MT� which pulls back to T1 ! B1 and hence to T0 ! B0 . In other
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words, we have constructed a homotopy cartesian diagram

(4:4:3)

T0

�0

��

// T1

�1

��

 0
// TC1

�
C
1

��

B0
// B1

 
// �1

0
MT�

This finishes the proof of Theorem F. For later use, we record:

Remark 4.4.4 The maps  and  0 in (4.4.3) are acyclic.

5 The secondary Rosenberg index

In this section, we explain how to extend the results of [6, Section 3] to the case of a
nontrivial fundamental group. In order to avoid repetitions of large portions of loc. cit.,
we only explain the differences. We will then explain how, together with Theorem F,
these results imply Theorem A. The reader is warned that the following pages are not
meant to be understandable without reference to [6].

5.1 The Rosenberg–Dirac operator

Let G be a discrete group and let M be a Riemannian spin manifold equipped
with a map M ! BG (or equivalently with a G–Galois cover). With these data,
Rosenberg [44] associated a certain Dirac operator on an infinite-dimensional bundle
over M.

Before we recapitulate the construction, we recall the notion of a Real C�–algebra [35].
This is a C�–algebra A over the complex numbers, together with a complex-antilinear
automorphism a 7! xa of order 2. Important examples are: R , which denotes C with
complex conjugation; C0.X /, the algebra of all continuous functions f W X !C from
a locally compact Hausdorff space which vanish at1, with conjugation xf .x/ WDf .x/.
The complexification Clp;q of the real Clifford algebra4 Clp;q is also important for us.

Let CŒG� be the complex group ring, with the involution
�P

g agg
��
WD
P

g xagg�1 .
The regular representation of G on L2.G/ induces an injective ring homomorphism
�W CŒG� ! Lin.L2.G// which preserves �, and we define kxkr WD k�.x/k. The
reduced group C�–algebra C �r .G/ is the completion of CŒG� with respect to the
norm k_kr . The maximal (or full) group C�–algebra C �m.G/ is obtained by completing

4The first p generators have square �1 ; the last q generators have square C1 .
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CŒG� with respect to the norm kxkm WD sup� k�.x/k, where � runs over all unitary
representations of G on Hilbert spaces [29, 3.7.4]. If G is countable, then both group
C�–algebras are separable. The conjugation

P
g agg WD

P
g xagg on CŒG� extends to

Real structures on C �r .G/ and C �m.G/. We will write C �.G/ in all statements which
apply to both C �r .G/ and C �m.C /.

We consider C �.G/ as a right module over itself; the formula hx;yi WD x�y turns
C �.G/ into a Hilbert C �.G/–module. The unitary group U.C �.G// contains G as a
subgroup; hence, G acts by left multiplication on C �.G/ by C �.G/–linear operators
preserving the inner product. The Mishchenko–Fomenko line bundle is the bundle

LG WDEG �G C �.G/! BG

of (rank 1, free) Hilbert modules. Let .M;g/ be a Riemannian spin manifold of dimen-
sion d , with spinor bundle =SM . This is a Cl.TM˚R0;d /–module (in the terminology
of [6, Section 3.1.3]). If in addition M is equipped with a map f W M ! BG, then

=SM ˝f
�LG!M

is a bundle of C �.G/–Hilbert modules (projective, of finite rank) with C �.G/–valued
inner product h�;�i, and has a compatible action of Cl.TM /˝Cl0;d . The spinor
bundle =SM inherits a connection from the Levi-Civita connection on M, and f �LG

has a natural flat connection, so =SM ˝ f
�LG has the tensor product connection. The

Rosenberg–Dirac operator, or G –Dirac operator,

=Df D =Df;gW �.M I =SM ˝f
�LG/! �.M I =SM ˝f

�LG/;

is defined by the classical formula [38, Section II.5]. The Schrödinger–Lichnerowicz
formula

=D
2
f;g Dr

�
r C

1
4

scal.g/

still holds, and relates =Df;g to positive scalar curvature on M. The G –Dirac operator
is formally self-adjoint, odd with respect to the grading on =SM ˝f

�LG and C �.G/–
linear. It anticommutes with the action of Cl0;d .

Remark 5.1.1 In [6], we used a slightly different setup in which the Dirac operator
was Cld;0 –linear. The translation between these is explained in [6, page 773].

We can extend this construction to the family case, as discussed in [6, Section 3.2.2].
Assume that � W E!X is a bundle of d –dimensional compact spin manifolds with
fibre W equipped with Riemannian metrics and that f W E ! BG is a fixed map.
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Assume that the boundary bundle is trivial, @E D X � @W . As in [6, Section 3.2],
we form the elongation yE by adding @E � Œ0;1/, and extend the spin structure,
Riemannian metric and map to BG in the obvious fashion. We obtain a bundle of
noncompact manifolds with cylindrical ends, again denoted by E. We denote the fibres
of � by Ex , the Riemannian metrics on Ex by gx , etc.

Let us now turn to the analytical properties of the G–Dirac operator, parallel to
[6, Section 3.2.3]. We deviate from the setting used in [6] and rely on the analytical
results proven in [14]. Instead of the Hilbert bundles in [6], we use continuous fields
of Hilbert C �.G/–modules. This notion is defined in [14, Section 2.1] and is a
straightforward adaptation of the notion of a continuous field of Hilbert spaces from [13].
For each x 2X, the space �c.ExI =Sx˝Lf;x/ of smooth, compactly supported sections
has a C �.G/–valued inner product

hs; ti WD

Z
Ex

hs.y/; t.y/i dvolEx
.y/

with completion L2.ExI =Sx ˝ Lf;x/, a countably generated Real graded Hilbert
C �.G/–module with an action of Cl0;d . The family .L2

x.ExI =Sx ˝Lf;x//x2X as-
sembles to a continuous field of Hilbert C �.G/–modules L2

X
.EI =SE˝f

�LG/; see
[14, Example 2.12] for further details. The individual G –Dirac operators =Df;x on Ex

are unbounded symmetric operators, and together they form an unbounded operator
family =Df , in the sense of [14, Section 2.2]. By [14, Theorem 1.14 and Example 2.28],
the closure of this operator family is self-adjoint in the sense of [14, Definition 2.26].
The point here is that the projection pW @E� Œ0;1/! Œ0;1/ can be extended to what
is called a “coercive function” such that Œ =Df ;p� is bounded. This is a generalisation of
the classical result [29, Proposition 10.2.10]. Therefore, we can use functional calculus
[14, Section 2.3] and form the bounded transform =Df =.1C =D

2
f /

1=2 . This is a bounded
self-adjoint operator family on L2

X
.EI =SE ˝f

�LG/.

Proposition 5.1.2 [14, Theorem 2.41 and Lemma 2.42] If the scalar curvature of
E! X is positive on the ends, then F D . =Df;x=.1C =D

2
f;x/

1=2/x2X is a Fredholm
family on L2

X
.EI =SE ˝ f

�LG/ (in the sense of [14, Definition 2.17]). If the scalar
curvature is everywhere positive over a closed subspace Y �X, then F jY is invertible.

5.2 K –theory with coefficients in a C�–algebra

The framework for topological K–theory that we use is different from that in Section 3.1
of [6] and is that developed in [14, Section 3]. Let us quickly recall the definition.
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Definition 5.2.1 Let A be a Real graded C�–algebra (the only relevant example for
us is ADC �.G/) and let .X;Y / be a space pair. The group KO�d .X;Y IA/ is the
group of equivalence classes of tuples .H; �; c;F /, where

(i) H is a continuous field of Real Hilbert A–modules on X with grading �,

(ii) c is a Cl0;d –structure on H (see [14, Definition 3.1]),

(iii) F is a self-adjoint graded Fredholm family on H and c.v/F CFc.v/D 0 for
all v 2Rd � Cl0;d , and

(iv) F jY is invertible.

Two such tuples are equivalent if they are concordant. The group structure is given by
direct sum.

When .X;Y / is a compact Hausdorff pair, the group KO�d .X;Y IA/ is naturally
isomorphic to Kasparov’s Real KK –groups

KK.Cl0;d ;C0.X �Y /˝A/Š KK.C ;C0.X �Y /˝A˝Cld;0/

Š KK.C ;C0..X �Y /�Rd /˝A/

by [14, Proposition 3.12]. The functor .X;Y / 7!KO�d .X;Y IA/ is the degree �d

part of the cohomology theory represented by the real K–theory spectrum of the graded
C�–algebra A (the values for positive degrees can be defined using the Clifford algebra
Cld;0 instead of Cl0;d ). As in [6], we shall represent elements in KO�d .X;Y IA/ by
maps of pairs

.X;Y /! .�1CdKO.A/;�/:

Hence, if � W E! X is a bundle of spin manifolds with cylindrical ends, equipped
with a map f W E! BG and a fibrewise Riemannian metric which is cylindrical over
the ends and has positive scalar curvature, then the G –Dirac operators =Df;g define an
element

ind. =Df;g/D
�
L2

X .EI =SE ˝f
�LG/; �; c;

=Df;g

.1C =D
2
f;g/

1=2

�
2KO�d .X IC �.G//

and if the scalar curvature is positive over a subspace Y � X, then this refines to an
element in the relative group KO�d .X;Y IC �.G//.

5.3 The index difference

If W is a d –dimensional compact spin manifold with boundary, equipped with a map
f W W ! BG, and g 2RC.@W /, then we can define the Hitchin version of the index
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difference

inddiffG
W RC.W /g �RC.W /g!�1CdC1KO.C �.G//;

analogously to [6, Section 3.3.1]. It should be emphasised that it of course depends on
the homotopy class of the map f and not merely on the abstract group G.

Remark 5.3.1 For closed W , we also can define the Gromov–Lawson version of
the index difference, as in [6, Section 3.3.2]. The main result of [15], restated as
Theorem 3.10 in [6], shows that both definitions agree if G D 1. This was used in [6]
to derive a detection theorem for odd-dimensional manifolds [6, Theorem B] from the
even-dimensional case [6, Theorem A].

While the proof given in [15] does not generalise to the case G ¤ 1, Buggisch [8]
gave a more conceptual KK –theoretical argument which also deals with the case of
general G. With the aid of that result, one can prove a version of [6, Theorem C] from
Theorem A, following exactly the argument in [6, Section 3.6].

5.4 The additivity theorem

An important ingredient in [6] was the additivity theorem for the index [6, Theorem 3.12]
(a strengthening of a result by Bunke [9]). For the G–index, the additivity theorem
continues to hold. When the base space is a point, this was already proven in [9]. For the
general case, one follows the proof given in [6], replacing the quotations to [15; 29] by
quoting [14], in particular Propositions 2.34 and 2.36. The proof of [6, Theorem 3.16]
(which states an additivity property for the index difference) carries over without change
to the case G ¤ 1.

5.5 The relative index construction

The results of [6, Section 3.5] are of a formal nature and hold verbatim in the present
more general framework, replacing KO by KO –theory with coefficients in C �.G/.

5.6 Some words about KK–theory

One of the key ingredients in [6] was the Atiyah–Singer family index theorem for the
Dirac operators. Here, we need the family index theorem for the C �.G/–valued index,
in the real case. While this can certainly be extracted from eg [12], we are not aware
of a detailed account. Presenting the details would lead us too far away from the main
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focus of this paper, and we content ourselves with precise statements and an overview
of the main steps in the proof, using KK –theory. We begin by introducing notation for
the Kasparov product:

(i) A homomorphism �W A!B of C�–algebras defines a class Œ�� 2 KK.A;B/
[5, Example 17.1.2(a)].

(ii) The product KK.A;B/�KK.B ;D/!KK.A;D/ is denoted by .x;y/ 7!x#y .

(iii) The exterior product KK.A;B/ � KK.A0;B 0/ ! KK.A ˝ A0;B ˝ B 0/ is
denoted by .x;y/ 7! x�y .

We will give a homotopy-theoretic formulation of the index theorem, and the formulation
uses results by Joachim and Stolz [32]. They constructed spectra KK.A;B/ for each
pair of Real graded C�–algebras and spectrum maps

(5:6:1)
KK.A;B/^KK.B ;D/! KK.A;D/;

KK.A;B/^KK.A0;B 0/! KK.A˝A0;B ˝B 0/;

as well as an equivalence

(5:6:2) F.†1XC;KK.A;B//' KK.A;C .X /˝B/

(the left-hand side denotes the function spectrum) for each compact space X. The
equivalence (5.6.2) implies that

(5:6:3) Œ†1XC;KK.A;B/�Š KK.A;C .X /˝B/:

In particular, �0.KK.A;B//Š KK.A;B/, and the maps (5.6.1) realise the Kasparov
products. Bott periodicity in KK –theory implies that there are natural equivalences

KK.Clp;q˝A;B/' KK.A;Clq;p˝B/'†p�qKK.A;B/

and hence isomorphisms

KK.Clp;q˝A;B/Š �q�p.KK.A;B//:

Moreover, there is a natural equivalence

KK.R;A/' KO.A/

for each graded Real C�–algebra A . We further write KO.R/D KO. The analytic
K–homology groups of a compact Hausdorff space X are

KOan
p�q.X / WD KK.Clp;q˝C .X /;R/Š �p�q

�
KK.C .X /;R/

�
:
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For an arbitrary space Y , one defines

RKOp�q.Y / WD colim
X�Y

KOan
p�q.X /;

where the colimit runs over all compact subspaces of Y . The following result is folklore:

Proposition 5.6.4 For CW–complexes Y , there is a natural isomorphism

KOk.Y / WD �k.†
1YC ^KO/ Š�!RKOk.Y /

from the topologically defined KO –homology groups KOk.Y /.

Sketch of proof This can be deduced quickly from [32], so we include the proof here.
Let X be a finite CW–complex. Under the isomorphism

KK.C .X /;C .X //Š �0

�
KK.C .X /;C .X //

� (5.6.2)
Š Œ†1XC;KK.C .X /;R/�;

the identity element ŒidC .X /� 2 KK.C .X /;C .X // corresponds to a map of spectra

uX W †
1XC! KK.C .X /;R/;

which depends naturally on X. Using the KO–module structure on the KK–spectra,
we obtain a map vX W †1XC^KO

uX^Id
���!KK.C .X /;R/^KO!KK.C .X /;R/. On

homotopy groups, vX yields a natural transformation

tX W KOk.X /!KOan
k .X /:

The source is excisive by general homotopy theory, and the target by excision in analytic
K–homology. If X D �, then uX D 1 2 �0.KO/ D Z, and this shows that t� is an
isomorphism. Hence, tX is an isomorphism for all finite CW–complexes, and this
establishes the claimed result upon taking colimits.

The universal Mishchenko–Fomenko line bundle LG! BG yields a map

LG W †
1BGC! KK.R;C �.G//

of spectra. If f W E ! BG is a map from a compact space, then LG ı .†
1fC/ 2

Œ†1EC;KK.R;C
�.G//� corresponds to an element ŒLf � 2 KK.R;C .E/˝C �.G//

under the isomorphism (5.6.3). There is the following concrete description for ŒLf �:

(5:6:5) ŒLf �D Œ�.EIf �LG/; _; 0� 2 KK.R;C .E/˝C �.G//

(the symbol _ denotes the usual representation of R on the sections of f �LG ).
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Definition 5.6.6 The Novikov assembly map is the composition

�W KK.R;R/^BGC
id^LG
���! KK.R;R/^KK.R;C �.G//! KK.R;C �.G//:

As explained in the introduction to [32], the map � induces the classical assembly map
on homotopy groups. More precisely, for each compact subset Y � BG, we have the
class ŒLjY � 2 KK.R;C .Y /˝C �.G//, and we get maps

KK.Clp;q˝C .Y /;R/! KK.Clp;q;C �.G//;

x 7! .ŒidClp;q �� ŒLjY �/ # .x� ŒidC�.G/�/:

These maps are natural in Y and hence induce a map on the colimit

(5:6:7) RKOp�q.BG/ WD colim
Y�BG

KK.Clp;q˝C .Y /;R/!KOp�q.C
�.G//;

which is the classical Novikov assembly map.

5.7 The Atiyah–Singer index theorem

Let � W E! X be a bundle of closed spin d –dimensional manifolds on a compact
manifold X (X is allowed to have boundary) and let f W E!BG be a map. To these
data there are associated elements in certain KK –groups, besides the class (5.6.5) given
by the Mishchenko–Fomenko line bundle. The ordinary spin Dirac operator defines a
class

Œ =D�D

�
L2

X .E; =SE/; �;
=D

.1C =D
2
/1=2

�
2 KK.C .E/˝Cl0;d ;C .X //;

where � is the representation of C .E/ by multiplication operators, and the G –Dirac
operator defines a class

Œ =Df �D

�
L2

X .E; =SE ˝f
�LG/; �;

=Df

.1C =D
2
f /

1=2

�
2 KK.C .E/˝Cl0;d ;C .X /˝C �.G//:

The index of =Df is recovered from this by the unit homomorphism uW R! C .E/:
we have

ind. =Df /D .u� ŒidCl0;d �/# Œ =Df �2KK.Cl0;d ;C .X /˝C �.G//DKO�d .X IC �.G//;

Geometry & Topology, Volume 23 (2019)



1598 Johannes Ebert and Oscar Randal-Williams

essentially by the definition of all these terms (note that the composition product with
the class of a homomorphism is easy to compute, and so is the exterior product with
the class of the identity). The index theorem describes ind. =Df / in topological terms.

The K–theoretic Thom class of a rank n spin vector bundle V ! X gives a map
�V W Th.V /!�1�nKO of spaces, which is adjoint to a map �V W Th.V /! †nKO

of spectra. More generally, if V !X is a stable spin vector bundle of rank r , we get
a spectrum map

�V W Th.V /!†rKO:

For example, if V is the additive inverse of the universal vector bundle on BSpin.d/,
the corresponding spectrum map is

��d W MTSpin.d/!†�dKO:

Let � W E!X be a bundle of d –dimensional closed spin manifolds, equipped with a
map f W E! BG. The normal bundle �.�/ of � W E!X is a stable vector bundle
of rank �d , and the Pontrjagin–Thom collapse defines a map

cW †1XC! Th.�.�//

from the suspension spectrum of X to the Thom spectrum of the normal bundle. Write

�W Th.�.�//! Th.�.�//^EC

for the diagonal map. Using the classifying map E ! BSpin.d/ of the vertical
tangent bundle of � we obtain a map vW Th.�.�//!MTSpin.d/, and so can form
the composition

˛ad
� W †

1XC
c
�! Th.�.�// �

�! Th.�.�//^EC
v^fC
���!MTSpin.d/^BGC

and its adjoint

˛� W X !�1.MTSpin.d/^BGC/:

Theorem 5.7.1 If the base space X is compact, then the composition

�1.†�d� ı .��d ^ idBG// ı˛� W X !�1CdKO.C �.G//

is equal to ind. =Df / under the identification of the set ŒX; �1CdKO.C �.G//� of
homotopy classes with KO�d .X IC �.G//.
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We now give a sketch of the proof. The main part is analytical in nature and is carried
out on the level of KK –groups. The first step is to relate the index of the G–Dirac
operator to the K–homology class of the ordinary Dirac operator.

Proposition 5.7.2 The relation

ind. =Df /D .ŒLf �� ŒidCl0;d �/ # .Œ =D�� ŒidC�.G/�/ 2 KK.Cl0;d ;C .X /˝C �.G//

holds.

The case of X D � (and with complex K–theory) is done in [46, Theorem 5.22]. The
linear-algebraic modifications to carry out the Real case are clear (everything in loc.
cit. is Real). To deal with the family case, one replaces the references in [46] to the
analytical parts of [9] with references to [14, Section 2.4].

To describe the proof of the index theorem, we have to give explicit descriptions of the
Bott maps and the Thom isomorphism. The Bott class bn 2 KK.R;C0.R

n/˝Cl0;n/
is

bn D

�
C0.R

n
ICl0;n/; 1;

�.x/

.1Ckxk2/1=2

�
2 KK.R;C0.R

n/˝Cl0;n/;

where � is the action by left multiplication, and x is the identity function on Rn . The
inverse Bott class an 2 KK.C0.R

n/˝Cl0;n;R/ is

(5:7:3) an D

�
L2.Rn

ISn;n/; �;
D

.1CD2/1=2

�
2 KK.C0.R

n/˝Cl0;n;R/:

Here Sn;n is the complexified exterior algebra ƒ�Rn˝C with its canonical Cln;n –
structure (see eg [14, Definition 3.2]), � is the action of C0.R

n/˝Cl0;n on the space
L2.RnISn;n/ which combines pointwise multiplication by real-valued functions on Rn

and the restriction of the Clifford structure to Cl0;n , and D is the Dirac operator (which
is equal to d C d� in this case). Kasparov proved that

(5:7:4)
bn # an D 1D ŒidR � 2 KK.R;R/Š Z;

an # bn D ŒidC0.Rn/˝Cl0;n � 2 KK.C0.R
n/˝Cl0;n;C0.R

n/˝Cl0;n/I

see [35, Theorem 7] or [18, page 101ff] for more details.

There are parametrised version of these classes: let pW V ! Y be a real vector bundle
of rank n on a locally compact space Y , and let Cl.V �/ ! Y be the bundle of
Clifford algebras of V � (the Clifford generators have positive square). We denote
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by �0.V ICl.V �// the C�–algebra of sections of p�Cl.V �/! V which vanish at
infinity. The above elements generalise to

bV 2 KK
�
C0.Y /;�0.V ICl.V �//

�
;

aV 2 KK
�
�0.V ICl.V �//;C0.Y /

�
:

A spin structure on V yields a KK –equivalence

sV 2 KK.�0.Y ICl.V �//;C0.Y /˝Cl0;n/:

Namely, let P ! Y be the underlying Spin.n/–principal bundle and consider the
bundle P �Spin.n/ Cln;n ! Y . It has an action of Cl.V / and one of Cl0;n , which
anticommute. Using the grading, one can turn the Cl.V /–action into a Cl.V �/–action,
as in [6, page 773]. We apply this construction to the pullback p�V ! V and obtain
the Thom class of the spin bundle V ,

tV WD bV # sp�V 2 KK.C .Y /;C0.V /˝Cl0;n/;

and the inverse Thom class

uV WD s�1
p�V # aV 2 KK.C0.V /˝Cl0;n;C .Y //:

These are mutually inverse KK –equivalences.

Now choose an embedding E!X �Rn over X. Let V !E be the normal bundle
of this embedding, and pick an open embedding j W V !X �Rn over X as a tubular
neighbourhood. Extension by zero gives a homomorphism j!W C0.V /!C0.X �Rn/.

Proposition 5.7.5 The relation

.uV � ŒidCl0;d �/# Œ =D�D .Œj!�� ŒidCl0;n �/#.an� ŒidC .X /�/2KK.C0.V /˝Cl0;n;C .X //

holds.

Sketch of proof By homotopy-invariance of KK –theory, it is enough to prove this
equation in KK.C0.V0/˝Cl0;n;C .X //, where V0 � V is the open unit disc bundle.
The given Riemannian metric on E, a bundle metric on V and a connection on V

together define a complete Riemannian metric on the total space V . Using the formula
for uV , one may check that .uV � ŒidCl0;d �/ # Œ =D� is represented by the continuous
field of Hilbert spaces L2

X
.V I =SV /, with the Clifford action by the (trivial!) vertical

tangent bundle of V , and the Dirac operator on V . The spin Dirac operator with
respect to the euclidean metric on the manifold bundle X �Rn! X represents the
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element an� ŒidC .X /�, by (5.7.3). The same is true if we deform the metric, as long
as the deformation is constant near infinity. Pick a Riemannian metric on the bundle
X �Rn ! X which coincides with the euclidean metric near infinity and with the
metric of V on V0 . So the two classes we claim are equal are represented by operators
which are equal on V0 (but are defined on widely different domains). Using the
techniques of [29, Proposition 10.8.2 and Lemma 10.8.4] (and the analytical results of
[14, Section 2.4] to deal with the family case) finishes the proof.

Let us introduce more notation. For a rank n spin vector bundle V ! Y on a compact
Hausdorff space and C�–algebras A , B , the Thom isomorphism is

�V W KK.A;C .Y /˝B/! KK.A;C0.V /˝Cl0;n˝B/; x 7! x # .tV � ŒidB �/:

The Thom isomorphism of the trivial bundle Y �Rn!Y is the Bott map ˇn WD �Y �Rn .
The inclusion j W U ! Y of an open subspace induces a homomorphism j!W C0.U /!

C0.Y / and we write

j!W KK.A;C0.U /˝B/! KK.A;C0.Y /˝B/; x 7! x # .Œj!�� ŒidB �/:

With these short notations, Propositions 5.7.2 and 5.7.5 together with the relations (5.7.4)
and the formal properties of the Kasparov product [5, Sections 18.6 and 18.7] imply
the formula

(5:7:6) ˇn.ind. =Df //D j!.�V .ŒLf �// 2 KK.Cl0;d ;C .X �Rn/˝Cl0;n˝C �.G//:

Let cW Sn ^XC! Th.V / be the Pontrjagin–Thom collapse and

�W Th.V /! Th.V /^EC

be the diagonal map. The K–theory classes �V 2 KOn�d .Th.V /;1/ and Lf 2
KO.EC;CIC

�.G// together give a K–theory class

�V ^Lf 2KOn�d .Th.V /^EC;CIC
�.G//;

which is represented by a based map

�V ^Lf W Th.V /^EC!�1Cd�nKO.C �.G//:

In homotopy-theoretic terms, the identification (5.7.6) can be reformulated by saying
that the adjoint

..�V ^Lf / ı� ı c/ad
W X !�1CdKO.C �.G//
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of the composition .�V ^Lf /ı�ıc represents the index class ind. =Df /. Finally, we let
n tend to 1 and use the map f W E!BG and the classifying map E!BSpin.d/ of
the vertical tangent bundle of E and arrive at the formulation given in Theorem 5.7.1.
This finishes our sketch of the proof of the index theorem.

5.8 Proof of Theorem A

We now explain how to deduce Theorem A from what we have shown so far. Let
f W W ! BG and h 2RC.W /g be as in the statement of Theorem A.

By [48, Lemma 1.3], as �1.f /W �1.W / ! G is a split surjection from a finitely
presented group, G is finitely presented. By embedding a finite presentation 2–complex
for G into R2n and taking a regular neighbourhood, we obtain a Spin manifold P with
fundamental group G, whose structure map P ! BSpin.2n/�BG is 2–connected,
and such that .P; @P / is .2n�3/–connected. (Alternatively, P could be constructed
by appealing to Lemma 4.2.4.) We consider P as a cobordism P W ∅ @P.

By Theorem D, there exists a g0 2RC.@P / and a right-stable h0 2RC.P /g0
. The

pair .P;g0/ satisfies the hypotheses of Theorem F, and so we obtain the left half
(which is homotopy cartesian) of a homotopy commutative diagram

(5:8:1)

RC.P /g==Diff@.P / //

��

TC1

��

// �

��

BDiff@.P /
˛P // �1

0
MTSpin.2n/^BGC

�
// �1C2nKO.C �r .G//

The right half is constructed using index theory, parallel to [6]. In a little more
detail, one first uses the Lichnerowicz–Schrödinger formula to construct a class p̌ 2

KO�2n.�pIC
�
r .G// for each p � 0, precisely as in [6, Section 3.8.4]. The classes p̌

for various p are compatible by the additivity theorem (as in [6, Proposition 3.33]).
Hence, the same argument with Milnor’s lim1 –sequence as in [6, Proposition 4.9]
applies and yields ˇ1 2 KO�2n.�1IC

�
r .G// restricting to p̌ for each p . The

maps  and  0 in (4.4.3) are acyclic by Remark 4.4.4, hence induce isomorphisms in
KO�._IC �r .G//. Therefore, there exists ˇC1 2KO�2n.�C1IC

�
r .G// which restricts

to ˇ1 . The formalities of [6, Section 3.5], in particular [6, Remark 3.21], produce
the right half of the diagram (5.8.1) out of the class ˇC1 . By [6, Remark 3.21 and
Proposition 3.33], the induced map on vertical homotopy fibres of (5.8.1) is homotopic
to inddiffh0

. The bottom map � in (5.8.1) is homotopic to �1.†�2n�ı.��2n^idBG//.
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This follows from the family index theorem that was discussed in Section 5.7, in the
same way as in [6, Proposition 4.13].

Once the commutative diagram (5.8.1) is established, fibre transport for the middle
column acting on h0 2RC.P /g0

gives a map

‰ D‰.P;h0/W �
1C1MTSpin.2n/^BGC!RC.P /g0

such that
inddiffG

ı‰ '�1C1.†�2n� ı .��2n ^ idBG//:

This proves Theorem A for the manifold P. To prove it for arbitrary W and boundary
conditions g we shall embed P into W , for which we use the following result:

Theorem 5.8.2 Let W d , with d � 5, be a connected compact spin manifold equipped
with a map f W W ! BG which is split surjective on �1 . Let Pd be a spin manifold
with a map hW P ! BG which is 2–connected, and assume that P is built from ∅
by attaching handles of dimension � 2. Then there exists an embedding gW P !W

preserving the spin structure and such that f ıg ' h.

Proof First note that it is really necessary that �1.f / is split surjective. The first
part of the proof is pure homotopy theory. Write B D BSpin.d/�BG, with universal
vector bundle V ! B . The product of the map f with the map classifying the (spin
structure on the) tangent bundle of W gives a map f 0W W ! B ; similarly, there is
an h0W P ! B . Observe that P is homotopy equivalent to a 2–dimensional complex
K � P. We claim that the lifting problem

W

f 0

��

K

gjK

==

h0jK // B

can be solved (up to homotopy). To do this, let � W G! �1.W / be a splitting of the
map �1.f /. We identify G and �1.K/ using the isomorphism �1.h/. We can assume
that K.0/ D � and that the attaching maps S1 ! K.1/ for all 2–cells are pointed.
The complex K is the presentation complex for some finite presentation hS jRi of the
group G, with S indexing the 1–cells and R indexing the 2–cells. First, we construct
the lift gjK on the 1–skeleton K.1/ . Each 1–cell ˛s for s 2 S is mapped to a loop
in W representing �.s/ 2 �1.W /. This defines gjK .1/ . Let ˇr for each r 2R be a
2–cell with attaching map �r W S

1!K.1/ . Now gjK .1/ ı�r W S
1!W represents the

element �.r/ 2 �1.W /. Since � is a homomorphism, �.r/D 1, and so gjK .1/ ı�r is
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nullhomotopic. Thus, we can extend gjK .1/ over each 2–cell of K , and this shows the
existence of the lift gjK .

Since P is homotopy equivalent to K , the map gjK extends to a map gW P ! W

such that f 0 ıg ' h0. But then

TP Š .h0/�V Š g�.f 0/�V Š g�T W:

Therefore, g is covered by a bundle map TP ! T W . Since P has no closed com-
ponent, we can apply the Phillips submersion theorem [42] and find a submersion
P !W homotopic to g . Thus, we may assume that g is a submersion.

By general position, we can assume that g , restricted to the core of each handle of P,
is self-transverse. As the cores of the handles are at most 2–dimensional, g will embed
all handles, since dim.W /� 5. Then g embeds a small neighbourhood U �P into W .
But there is a diffeomorphic copy of P contained in U, and hence we have found the
desired embedding.

Now take an embedding gW P !W , and view the cobordism W W ∅ @W as the
composition ∅ P @P

K @W of two cobordisms. By hypothesis, h 2RC.W /g ¤∅.
Since h0 2RC.P /g0

is right-stable, we find a psc metric h0 2RC.K/g0;g such that
h0[ h lies in the same component of RC.W /g as h. The composition

�1C1MTSpin.2n/^BGC
‰.P;h0/
����!RC.P /g0

�._;h0/
���!RC.W /g

gives the map ‰ whose existence is asserted by Theorem A. To compute the composition
with the index difference, one uses the additivity theorem for the index, along the same
lines as in [6, Theorem 3.16].

5.9 The Baum–Connes conjecture

Here we recall the statement of the Baum–Connes conjecture and the relation to
the Novikov assembly map, mostly referring to the literature. Here we only use the
reduced group C�–algebra C �r .G/. For a proper and locally compact G –space X and
p; q 2N0 , one defines an analytical assembly map in complex K–theory,

Kan;G
p�q .X / WDKKG.C .X /˝Clp;q;C / �X

�!Kp�q.C
�
r .G// WDKK.C˝Clp;q;C �r .G//;

from the G–equivariant analytic K–homology of X to the K–theory of C �r .G/. If
EG is the universal G –space with finite isotropy, we obtain a map

�W RKG
i .EG/ WD colim

X�EG
KG

i .X /!Ki.C
�
r .G//
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for all i 2 Z. The Baum–Connes conjecture for G predicts that � is an isomorphism
for all i 2 Z. The classical Novikov assembly map

�r
D �W KOi.BG/DRKOi.BG/!KOi.C

�
r .G//

from (5.6.7) has a complex analogue

�c
W Ki.BG/DRKi.BG/!Ki.C

�
r .G//:

Proposition 5.9.1 If G is torsionfree and the Baum–Connes conjecture holds for G,
then the real Novikov assembly map �r W KOi.BG/! KOi.C

�
r .G// is an isomor-

phism.

Proof This is by juxtaposing several results from the literature. If G is torsionfree,
then EG DEG and so the source of � is just RKG

i .EG/. There is a commutative
diagram

RKG
i .EG/

Š

��

�
// Ki.C

�
r .G//

RKi.BG/

�c

77

which was established rigorously in recent work by Land [37]. Therefore, if � is
an isomorphism, then so is �c . But there is a Galois descent property: if �c is an
isomorphism (in all degrees), then so is �r ; see [3; 34] and [45, Theorem 2.14] for a
particularly simple proof.

Similarly, rational injectivity results for the complex Baum–Connes assembly map
imply rational injectivity results for the real Novikov assembly map [45, Corollary 2.13
and Theorem 2.14].

5.10 Proof of Theorem B

Recall that we assume that G is a torsionfree group satisfying the Baum–Connes
conjecture, and f W M !BG is a reference map from an even-dimensional manifold
such that f�W �1.M /!G is split surjective, and we wish to show that

(5:10:1) .inddiffG
h0
/�W �i.RC.M /ŒB�1�/!KOiC2nC1.C

�
r .G//

is surjective for each i � 0. By the Baum–Connes conjecture, the map

��W �iC2nC1.KO^BGC/!KOiC2nC1.C
�
r .G//
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is surjective. As ��.KO^�/ is a homology theory, any class is carried on a finite
complex, so given a class x 2KOiC2nC1.C

�.G// there is a map f W X ! BG from
a finite CW–complex such that x is in the image of

�iC2nC1.KO^XC/
f�
�! �iC2nC1.KO^BGC/

��
�!KOiC2nC1.C

�.G//:

In [6, Proof of Theorem 5.5] there is constructed a class b 2 �4.MTSpin.4// such
that yA .b/D ˇ 2 ko8.�/ is the Bott class. Multiplication by this class gives a map of
spectra

S4
^MTSpin.d � 4/

b^id
��!MTSpin.4/^MTSpin.d � 4/

�
�!MTSpin.d/;

which can be iterated and smashed with XC , whence it gives a map

br
� �W †4rMTSpin.d � 4r/^XC!MTSpin.d/^XC:

For parameters k � `, to be tuned later, consider the diagram

�iC2nC8.k�2`/C1.MSpin^XC/ // �iC2nC8.k�2`/C1.ko^XC/

per
��

�iC1�8`.MTSpin.2nC 8.k � `//^XC/

st

OO

//

b2` ��

��

�iC2nC8.k�2`/C1.KO^XC/

ˇ2` ��o

��

�iC1.MTSpin.2nC 8k/^XC/ //

f�
��

�iC2nC8kC1.KO^XC/

f�
��

�iC1.MTSpin.2nC 8k/^BGC/ //

‰�
��

�iC2nC8kC1.KO^BGC/

��

��

�i.RC.M �Bk// //

��

KOiC2nC8kC1.C
�
r .G//

�i.RC.M /ŒB�1�/
(5.10.1)

// KOiC2nC1.C
�
r .G//

ˇk ��o

OO

in which all horizontal maps are the evident ones, and all squares commute for trivial
reasons apart from the fourth, which commutes by Theorem A.

The top map is surjective, by the Anderson–Brown–Peterson splitting [1] of MSpin.2/
and the Baas–Sullivan description of ko�.�/

�
1
2

�
in terms of

�
Spin
� .�/

�
1
2

�
D�SO

� .�/
�

1
2

�
I
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see eg [19]. The map per is an isomorphism as long as

2nC 8.k � 2`/C 1> dim.X /;

by considering the Atiyah–Hirzebruch spectral sequence. The map st is an isomorphism
as long as i C 1� 8` < 0.

Thus, for the given class
x 2KOiC2nC1.C

�
r .G//

carried on the finite complex X, we may first choose ` so that 8` > i C 1, and then
choose k so that 8k > dim.X /� 2n� 1C 16` and k � `. Then the commutativity of
the above diagram shows that x is in the image of the map (5.10.1), as required.
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