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Cohomology classes of strata of differentials

ADRIEN SAUVAGET

We introduce a space of stable meromorphic differentials with poles of prescribed
orders and define its tautological cohomology ring. This space, just as the space
of holomorphic differentials, is stratified according to the set of multiplicities of
zeros of the differential. The main goal of this paper is to compute the Poincaré-dual
cohomology classes of all strata. We prove that all these classes are tautological and
give an algorithm to compute them.

In the second part of the paper we study the Picard group of the strata. We use the
tools introduced in the first part to deduce several relations in these Picard groups.
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1 Introduction

1.1 Stratification of the Hodge bundle

Let g � 1. Let Mg be the space of smooth curves of genus g . The Hodge bundle

Hg !Mg

is the vector bundle whose fiber over a point ŒC � of Mg is the space of holomorphic
differentials on C. A point of Hg is then a pair .ŒC �; ˛/, where C is a curve and ˛ a
differential on C. We will denote by PHg !Mg the projectivization of the Hodge
bundle.
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1086 Adrien Sauvaget

Notation 1.1 Let Z (for zeros) be a vector .k1; k2; : : : ; kn/ of positive integers
satisfying

nX
iD1

ki D 2g� 2:

We will denote by PHg.Z/ the subspace of PHg composed of pairs .ŒC �; ˛/ such
that ˛ is a differential (defined up to a multiplicative constant) with zeros of orders
k1; : : : ; kn .

The locus PHg.Z/ is a smooth orbifold (or a Deligne–Mumford stack); see for instance
Polishchuk [32]. However, neither PHg nor the strata PHg.Z/ are compact.

The Hodge bundle has a natural extension to the space of stable curves:

Hg !Mg :

We recall that abelian differentials over a nodal curve are allowed to have simple poles
at the nodes with opposite residues on the two branches.

The space PHg is compact and smooth, and we can consider the closures PHg.Z/
of the strata inside this space. Computing the Poincaré-dual cohomology classes of
these strata is our motivating problem. In this paper we solve this problem and present
a more general computation in the case of meromorphic differentials.

1.2 Stable differentials

On a fixed smooth curve C with one marked point x consider a family of meromorphic
differentials with one pole of order p at x such that the leading coefficient of the
differential at the pole tends to 0. In order to construct a compact moduli space of
meromorphic differentials we need to decide what the limit of a family like that should
be. One natural idea is to include differentials with poles of orders less than p in the
moduli space. It turns out, however, that a more convenient way to represent the limit
is to allow the underlying curve to bubble at x ; in other words, to allow differentials
defined on semistable curves.

The first uses of semistable objects to compactify moduli problems can be found in the
work of Gieseker for the moduli space of stable bundles (see [20]), or in Caporaso’s
construction of a universal Picard variety over the moduli space of curves (see [6]).

A semistable curve is a nodal curve with smooth marked points such that every genus 0
component of its normalization contains at least two marked points and preimages of
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nodes (instead of at least three for stable curves). In the example above, the limit of
the family would be a meromorphic differential defined on a semistable curve with one
unstable component and one marked point x on it. The curve maps to C under the
contraction of the unstable component. The meromorphic differential still has a pole of
order exactly p at x .

Definition 1.2 Let n;m 2N and let P (for poles) be a vector .p1; p2; : : : ; pm/ of
positive integers. A stable differential of type .g; n; P / is a tuple .C; x1; : : : ; xnCm; ˛/,
where .C; x1; : : : ; xnCm/ is a semistable curve with nCm marked points and ˛ is a
meromorphic differential on C, such that

� the differential ˛ has no poles outside the m last marked points and nodes;

� the poles at the nodes are at most simple and have opposite residues on the two
branches;

� if pi >1 then the pole at the marked point xnCi is of order exactly pi ; if pi D 1
then xi can be a simple pole, a regular point or a zero of any order;

� the group of isomorphisms of C preserving ˛ and the marked points is finite.

Definition 1.3 A family of stable differentials is a tuple .C!B; �1; : : : ; �n; ˛/ where
.C !B; �1; : : : ; �n/ is a family of marked semistable curves and ˛ is a meromorphic
section of the relative dualizing line bundle !C=B such that for each geometric point b
of B , the tuple .Cb; �1.b/; : : : ; �n.b/; ˛jCb

/ is a stable differential.

The stack Hg;n;P of stable differentials of type .g; n; P / is the category of families of
stable differentials of type .g; n; P /, fibered over the category of C–schemes.

Proposition 1.4 The moduli space Hg;n;P is a smooth Deligne–Mumford (DM) stack.
It is of dimension 4g� 4C

P
pi if P is nonempty and 4g� 3 otherwise.

The space Hg;n;P carries a natural C�–action given by the multiplication of the
differential by nonzero scalars. Further, there exists a forgetful map Hg;n;P!Mg;nCm

that maps a family stable differentials to the stabilization of its underlying family of
semistable curves. However, the space Hg;n;P does not have a natural vector bundle
structure in general because there is no natural definition of the sum of two differentials
with fixed orders of poles.

We will construct a partial coarsification of Hg;n;P that has the structure of an orbifold
cone over Mg;nCm .

Geometry & Topology, Volume 23 (2019)



1088 Adrien Sauvaget

Proposition 1.5 There exists a unique DM stack Hg;n;P fitting in the commutative
triangle

Hg;n;P //

%%

Hg;n;P

�

��

Mg;nCm

and satisfying:

� The morphism � is schematic, ie for any C–scheme U with a morphism
U ! Mg;nCm , the pullback Hg;n;P �Mg;nCm

U is representable by a C–
scheme.

� For any such U !Mg;nCm , the scheme Hg;n;P �Mg;nCm
U is the coarse space

of Hg;n;P �Mg;nCm
U.

Definition 1.6 The space Hg;n;P is the called the space of stable differentials.

Proposition 1.7 The space of stable differentials is an orbifold cone over Mg;nCm .
Further, the space Hg;n;P and its projectivization are normal.

We prove these propositions in Section 2, where we will also give a definition of an
orbifold cone. At present it suffices to note that the cone structure on Hg;n;P allows
one to define a projectivization PHg;n;P , a line bundle O.1/ over the projectivization,
and the Segre class. Further, the morphism Hg;n;P !Hg;n;P is C�–equivariant.

Remark 1.8 The stack Hg;n;P can be endowed with the structure of an orbifold cone
over a different moduli space Mg;n;P . The space Mg;n;P is a

�Qm
iD1Z=.pi�1/Z

�
–

gerbe over Mg;nCm . The fibers of Hg;n;P !Mg;n;P are vector spaces, but the
C�–action on these spaces has nontrivial weights.

One can define the projectivization of Hg;n;P and the tautological line bundle over
this projectivization. Then we have a map PHg;n;P ! PHg;n;P which is a bijec-
tion between the geometric points of these two stacks. Therefore, we have natu-
ral isomorphisms H�.PHg;n;P ;Q/ ' H�.PHg;n;P ;Q/ and A�.PHg;n;P ;Q/ '

A�.PHg;n;P ;Q/. Thus, all the results of this text are valid for both spaces.

While the space Hg;n;P is the more natural choice for the moduli space of differentials,
in this paper we prefer to work with Hg;n;P in order to have Mg;nCm as the base of
our cone.
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Notation 1.9 Let P D .p1; : : : ; pm/ be a vector of positive integers and Z D

.k1; : : : ; kn/ a vector of nonnegative integers. We denote by Ag;Z;P � Hg;n;P the
locus of stable differentials .C; x1; : : : ; xnCm; ˛/ such that C is smooth and ˛ has
zeros exactly of orders prescribed by Z at the first n marked points. The locus
Ag;Z;P is invariant under the C�–action. We denote by PAg;Z;P the projectivization
of Ag;Z;P . Moreover, we denote by xAg;Z;P (resp. P xAg;Z;P ) the closures of Ag;Z;P
(resp. PAg;Z;P ) in the space Hg;n;P (resp. in PHg;n;P ).

1.3 The tautological ring of Mg;n

Let g and n be nonnegative integers satisfying 2g�2Cn> 0. Let Mg;n be the space
of stable curves of genus g with n marked points. Define the following cohomology
classes:

�  i D c1.Li / 2H 2.Mg;n;Q/, where Li is the cotangent line bundle at the i th

marked point.

� �mD��. 
mC1
nC1 /2H

2m.Mg;n;Q/, where � WMg;nC1!Mg;n is the forgetful
map.

� �k D ck.Hg;n/ 2H 2k.Mg;n;Q/ for k D 1; : : : ; g .

Definition 1.10 A stable graph is the datum of

� D .V; H; gW V !N; aW H ! V; i W H !H; E; L/

satisfying the following properties:

� V is a vertex set with a genus function g .

� H is a half-edge set equipped with a vertex assignment a and an involution i .

� E, the edge set, is defined as the set of length 2 orbits of i in H (self-edges at
vertices are permitted).

� .V;E/ defines a connected graph.

� L is the set of fixed points of i called legs.

� For each vertex v , the stability condition holds: 2g.v/� 2Cn.v/ > 0, where
n.v/D #.a�1.v// (the cardinality of a�1.v/).

The genus of � is defined by
P
g.v/C #.E/� #.V /C 1.
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Let v.�/, e.�/ and n.�/ denote the cardinalities of V;E and L, respectively. A
boundary stratum of the moduli space of curves naturally determines a stable graph
of genus g with n legs by considering the dual graph of a generic pointed curve
parametrized by the stratum. Thus, the boundary strata of Mg;n are in one-to-one
correspondence with stable graphs.

Let � be a stable graph. Define the moduli space M� by the product

M� D

Y
v2V

Mg.v/;n.v/;

and let �� WM� !Mg;n be the natural morphism.

Definition 1.11 A tautological class is a linear combination of classes ˇ of the form

ˇ D ���

� Y
v2V

Pv

�
;

where � is a stable graph and Pv is a polynomial in � , � and  classes on Mg.v/;n.v/ .

Proposition/Definition 1.12 Let RH�.Mg;n/ � H
�.Mg;n;Q/ be the vector sub-

space spanned by tautological classes. This subspace is a subring, called the tautologi-
cal ring of Mg;n .

See Graber and Pandharipande [21] for the description of the product of tautological
classes.

Remark 1.13 Actually, the classes ˛ as above that do not involve �–classes span the
tautological ring. However, it will be more convenient for us to use this larger set of
generators.

1.4 The tautological ring of PHg;n;P

Let P be a vector of positive integers. From now on, unless specified otherwise, we
will denote by � WMg;nC1!Mg;n the forgetful map and by pW Hg;n;P !Mg;nCm

the projection from the space of stable differentials to Mg;n . Moreover, we use the
same notation pW PHg;n;P !Mg;nCm for the projectivized cone. Let

LDO.1/! PHg;n;P

be the tautological line bundle of PHg;n;P , and let � D c1.L/.

Geometry & Topology, Volume 23 (2019)



Cohomology classes of strata of differentials 1091

Definition 1.14 The tautological ring of PHg;n;P is the subring of the cohomology
ring H�.PHg;n;P ;Q/ generated by � and the pullback of RH�.Mg;nCm/ under p .
We denote it by RH�.PHg;n;P /.

Remark 1.15 We have �d D 0 for d > dim.PHg;n;P /. Therefore, the tautological
ring of PHg;n;P is a finite extension of the tautological ring of Mg;nCm .

Example 1.16 In the absence of poles, the Hodge bundle is a vector bundle and we
have

RH�.PHg;n/DRH�.Mg;n/Œ��=.�
g
C�1�

g�1
C � � �C�g/:

Proposition 1.17 The Segre class of the cone Hg;n;P !Mg;nCm equals
mY
iD1

.pi � 1/
pi�1

.pi � 1/Š
�
1��1C � � �C .�1/

g�gQm
iD1.1� .pi � 1/ i /

:

This proposition will be proved in Section 2. An important corollary of this propo-
sition is that the pushforward of a tautological class from PHg;n;P to Mg;nCm is
tautological.

1.5 Statement of the results

Now, we have all elements to state the main theorems of this article.

Theorem 1 For any vectors Z and P, the class ŒP xAg;Z;P � introduced in Notation 1.9
lies in the tautological ring of PHg;n;P and is explicitly computable.

The main ingredient to prove this theorem will be the induction formula of Theorem 5
(see page 1150).

Definition 1.18 Let V be a vector; in this article we will denote by jV j the sum of
elements of V and by `.V / the length of V .

Given g and P, we will say that Z is complete if it satisfies jZj� jP j D 2g�2. If Z
is complete, we denote by Z �P the vector .k1; : : : ; kn;�p1; : : : ;�pm/.

Restricting ourselves to the holomorphic case and applying the forgetful map of the
marked points we obtain the following corollary:

Theorem 2 For any complete vector Z , the class ŒPHg.Z/� introduced in Notation
1.1 lies in the tautological ring of PHg and is explicitly computable.
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Remark 1.19 As a guideline for the reader, it will be important to understand that the
holomorphic case in Theorem 1 cannot be proved without using strictly meromorphic
differentials. Thus, Theorem 2 is a consequence of a specific case of Theorem 1 but
one cannot avoid proving Theorem 1 in its full generality.

The second important corollary is obtained by forgetting the differential instead of the
marked points. Let P D .p1; : : : ; pm/ be a vector of poles and Z D .k1; : : : ; kn/ be a
complete vector of zeros. We define Mg.Z �P /�Mg;nCm as the locus of points
.C; x1; : : : ; xn/ that satisfy

!C

�
�

nX
iD1

kixi C

mX
jD1

pjxnCj

�
'OC :

We denote by Mg.Z �P / the closure of Mg.Z �P / in Mg;nCm .

Theorem 3 For any vectors Z and P, the class ŒMg.Z �P /� lies in the tautological
ring of Mg;nCm and is explicitly computable.

Remark 1.20 Theorems 1, 2 and 3 are stated for the Poincaré-dual rational coho-
mology classes. However, all identities of this paper are actually valid in the Chow
groups.

In the second part of the text (Section 7) we will consider the rational Picard group of
the space Mg.Z �P /. We will define several natural classes in this Picard group and
apply the tools developed in the first part of the paper to deduce a series of relations
between these classes (see Theorem 6).

1.6 An example

Here we illustrate the general method used in this article by computing the class of
differentials with a double zero ŒPHg.2; 1; : : : ; 1/�. This computation was carried out
by D Zvonkine in an unpublished note [35] and was the starting point of the present
work.

We begin by marking a point, ie we study the space PHg;1 of triples .C; x1; Œ˛�/
composed of a stable curve C with one marked point x1 and an abelian differential ˛
modulo a multiplicative constant. Recall that P xAg;.2/ � PHg;1 is the closure of the
locus of smooth curves with a double zero at the marked point. In order to compute
ŒP xAg;.2/�, we consider the line bundle

L˝L1 ' Hom.L_;L1/

Geometry & Topology, Volume 23 (2019)
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over PHg;1 . (Recall that L_ is the dual tautological line bundle of the projectivization
PHg;1 and L1 is the cotangent line bundle at the marked point x1 .) We construct a
natural section s1 of this line bundle,

s1W L_! L1; ˛ 7! ˛.x1/:

Namely, an element of L_ is an abelian differential on C, and we take its restriction to
the marked point.

The section s1 vanishes if and only if the marked point is a zero of the abelian differential.
Thus, we have the following identity in H 2.PHg;1/:

ŒP xAg;.1/�D Œfs1 D 0g�D c1.L˝L1/D �C 1:

Now we restrict ourselves to the locus fs1 D 0g and consider the line bundle

L˝L˝21 :

We build a section s2 of this new line bundle. An element of L_jfs1D0g is an abelian
differential with at least a simple zero at the marked point x1 . Its first derivative at x1
is then an element of L˝21 (we can verify this assertion using a local coordinate at x1 ).

As before, s2 is equal to zero if and only if the marked point is at least a double zero
of the abelian differential. However, fs2 D 0g is composed of three components:

� P xAg;.2/ .

� The locus ae where the marked point lies on an elliptic component attached
to the rest of the stable curve at exactly one point and the abelian differential
vanishes identically on the elliptic component.

� The locus ar where the marked point lies on a “rational bridge”, that is, a
rational component attached to two components of the stable curve that are not
connected except by this rational component (in this case the abelian differential
automatically vanishes on the rational bridge).

We deduce the following formula for ŒP xAg;.2/�:

ŒP xAg;.2/�D Œfs2 D 0g�� Œae�� Œar �

D .�C 1/.�C 2 1/� Œae�� Œar �

D �2C 3 1�C 2 
2
1 � Œae�� Œar �:

Geometry & Topology, Volume 23 (2019)
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Remark 1.21 We make a series of remarks on this result:

� To transform the above considerations into an actual proof we need to check that
the vanishing multiplicity of s2 along all three components equals 1. We will
prove this assertion and its generalization in Section 3.

� Denote by � W PHg;1! PHg the forgetful map, by ısep the boundary divisor
composed of curves with a separating node, and ınonsep the boundary divisor of
curves with a nonseparating node. Let us apply the pushforward by � to the
above expression of ŒP xAg;.2/�:

– The term ��.�
2/ vanishes by the projection formula, since it is a pushforward

of a pullback.

– The term ��.3� 1/ gives 3�0� D .6g� 6/� by the projection formula.

– The term ��.2 
2
1 / gives 2�1 .

– The term ��.Œae�/ vanishes, because the geometric image of ae is of co-
dimension 2 in PHg .

– The term ��.Œar �/ gives ısep since � induces a degree 1 map from ar

onto ısep .

Thus, we get

ŒPH.2; 1; : : : ; 1/�D ��ŒP xAg;.2/�D .6g� 6/�C 2�1� ısep:

Using the relation �1D 12�1�ısep�ınonsep on Mg (see for example Arbarello,
Cornalba and Griffiths [1, Chapter 17]), we have

ŒPH.2; 1; : : : ; 1/�D .6g� 6/�C 24�1� 3ısep� 2ınonsep:

This formula was first proved by Korotkin and Zograf in 2011 using an analysis
of the Bergman tau function [26]. Dawei Chen gave another proof of this result
in 2013 using test curves [9].

� In general, to prove Theorem 1 we will work by induction. Let P and Z D
.k1;k2; : : : ;kn/ be vectors of positive integers. Let Z0D .k1; : : : ;kiC1; : : : ;kn/.
Then we will show that

ŒP xAg;Z0;P �D .�C .ki C 1/ i /ŒP xAg;Z;P �� boundary terms:

The computation of these boundary terms is the crucial part of the proof.
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1.7 Applications and related work

Classes in the Picard group of Mg Scott Mullane and Dawei Chen gave a closed
formula for the class of ��ŒMg.Z/� in the rational Picard group of Mg for all Z
of length g� 2 (see [8; 27]). They used test curves and linear series to compute this
formula. This result has the advantage of giving explicit expressions; however, it has
the drawback of not keeping track of the positions of the zeros and of being restricted
to the vectors Z of length g� 2 (see Section 6.2 for an example of computation).

Incidence variety compactification The problem of the compactification of the strata
is extensively studied from different approaches in joint work of Bainbridge, Chen,
Gendron, Grushevsky and Möller (see [2; 18]). Their compactification (called incidence
variety compactification) is slightly different from the one that we use here. We will
recall their definitions in Section 4.2 since we will make use of some of their results.

Moduli space of twisted canonical divisors In [15], Farkas and Pandharipande pro-
posed another compactification of the strata. Let g , n and m be nonintegers such
that 2g � 2C nCm > 0. Let P be a vector of positive integers of length m and
let Z be vector of nonnegative integers of length n that is complete for g and P.
We recall that Mg.Z � P / � Mg;nCm is the locus of smooth curves such that
!C .�k1x1 � � � � � knxx C p1xnC1C � � � C pmxnCm/ ' OC and that we denote by
Mg.Z�P / its closure in Mg;nCm . Farkas and Pandharipande [15] defined the space
of twisted canonical divisors denoted by �M.Z �P /. The space of twisted canonical
divisors is a singular closed subspace of Mg;nCm such that M.Z �P / is one of the
irreducible components of �M.Z �P /.

We assume that m� 1. In the appendix of [15], Farkas and Pandharipande defined a
class Hg.Z�P / in Ag.Mg;nCm/ (or H 2g.Mg;nCm/): this class is a weighted sum
over the classes of irreducible components.

Conjectural expression of Hg.Z �P/ Let r be a positive integer and

.C; x1; : : : ; xnCm/

be a smooth curve with markings. An r –spin structure is a line bundle L such that
L˝r ' !C .�k1x1� � � � � knxnCp1xnC1C � � �CpmxnCm/. We denote the moduli
space of r –spin structures by M1=r

g;Z�P . This space admits a standard compactification
M1=r
g;Z�P by twisted r –spin structures. We denote by � W C1=rg;Z�P !M1=r

g;Z�P the

Geometry & Topology, Volume 23 (2019)
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universal curves and by L! C1=rg;Z�P the universal line bundle. The moduli space of
twisted r –spin structures has a natural forgetful map �WM1=r

g;Z�P !Mg;nCm ; the
map � is finite of degree r2g�1 . We consider R��.L/, the image of L in the derived
category of M1=r

g;Z�P .

If m � 1, then we consider the class crg.Z �P /
def
D cg.R��L/ 2 Ag.M

1=r
g;Z�P /. If

mD0, then we consider a different class, namely Witten’s class crW .Z/2Ag�1.M
1=r
g;Z/.

There are several equivalent definitions of Witten’s class, all of which require several
technical tools that we will not describe here (see Polishchuk and Vaintrob [33],
Chiodo [11] or Chang, Li and Li [7]).

We consider the two functions

Pg;Z�P W N
�
! A�.Mg;nCm/; r 7! r��.c

r
g.Z �P //;

PWg;Z W N
�
! A�.Mg;nCm/; r 7! rg�1��.c

r
W .Z//:

Both Pg;Z�P and PWg;Z are polynomials for large values of r (this result is due to
Aaron Pixton; see Jana, Pandharipande, Pixton and Zvonkine [23; 31]). We denote by
zPg;Z�P and zPWg;Z the asymptotic polynomials. The two following conjectures have

been proposed:

Conjecture A (see [15]) If m� 1 then the equality Hg.Z�P /D zPg;Z�P .0/ holds
in Ag.Mg;nCm/.

Conjecture B (see [30]) If m D 0 then the equality ŒMg.Z/� D .�1/g zPWg;Z.0/

holds in Ag�1.Mg;n/.

As a consequence of Theorem 3, we know that the classes Hg.Z �P / and ŒMg.Z/�

are tautological and we have an algorithm to check the validity of the conjectures case
by case (see Section 6.2 for examples of computations).

These two conjectures are the analogues for differentials of the formula for the so-called
double-ramification cycles (DR cycles): the DR cycle is a natural extension to Mg;n

of the cycle in Mg;n defined as the locus of marked curves .C; x1; : : : ; xn/ such that

nX
iD1

ai .xi /'OC

for any fixed vector of integers .ai /1�i�n such that
P
ai D 0 (see [23]).

Geometry & Topology, Volume 23 (2019)
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Compactification via log geometry Jérémy Guéré constructed a moduli space of
“rubber” differentials using log geometry. He proved that this space is endowed with
a perfect obstruction theory. Moreover, if m� 1, this moduli space surjects onto the
moduli space of twisted canonical divisors and the class Hg.Z�P / is the pushforward
of the virtual fundamental cycle (see [22]).

If m D 0 has only positive values, Dawei Chen and Qile Chen have also used log
geometry to define a compactification of the strata Hg.Z/ (see [10]).

Induction formula for singularities in families The central result of the present
work is the induction formula of Section 5. A similar formula has been proved by
Kazarian, Lando and Zvonkine for classes of singularities in families of genus 0 stable
maps (see [24]). Their formula contains only the genus 0 part of our induction formula.

They gave an interpretation of the induction formula in genus 0 as a generalization of
the completed cycle formula of Okounkov and Pandharipande (see [29]). For now, it is
not clear if this generalized completed cycle formula has an extension to higher genera.

This type of induction formula had been previously introduced by Gathmann in the
context of genus 0 relative Gromov–Witten invariants (see [17]) and has been recently
adapted to the genus 0 quasimap invariants (see Battistella and Nabijou [3]).

Computation of the Lyapunov exponents of strata Strata of differentials are en-
dowed with the structure of a dynamical system. Several numerical invariants have
been introduced to characterize the dynamics of the strata: volumes, Siegel–Veech
constants, Lyapunov exponents. Some relations exist between these invariants. These
relations come in general from relations in the cohomology of the strata.

Our computation of cohomology classes of strata of differentials could be useful to
compute these numerical invariants. This idea is developed for example in [26; 8]
based on the work of Eskin, Kontsevich and Zorich [13] (see Section 7.3.3). This has
been explored in our subsequent paper [34].

Plan of the paper

In Section 2 we construct the space of stable differentials and compute its Segre class.
Then we generalize the definition of stable differentials for disconnected curves and
for unstable irreducible curves. In the last subsection we present the tautological rings
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of spaces of stable differentials in this most general setting (with possible disconnected
and semistable curves).

In Section 3 we introduce the stratification of the interior of spaces of stable differentials
according to the orders of zeros and we study the geometry of the strata: local parameters,
dimension, neighborhood in the space of differentials. Then, in Section 4 we describe
the boundary components of the Zariski closure of strata.

Theorems 1, 2 and 3 are proved in Section 5. The main tool involved in their proof
is the induction formula for the Poincaré-dual classes of strata of differentials with
prescribed orders of zeros (see Theorem 5).

In Section 6 we present two examples of explicit computations.

Finally, in Section 7 we introduce several classes in the Picard group of strata of
differentials and prove several relations between these classes by using the induction
formula.
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2 Stable differentials

In this section, we construct the space of stable differentials and compute its Segre class.
We also define stable differentials on disconnected and/or unstable curves. Finally, we
define and describe the tautological rings in this generalized setup.
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2.1 The cone of generalized principal parts

2.1.1 Orbifold cones We follow here the approach of [12]. Let X be a projective
DM stack.

Definition 2.1 An orbifold cone is a finitely generated sheaf of graded OX –algebras
S D S0˚S1˚S2˚ � � � such that S0 DOX .

Remark 2.2 This definition of cone is weaker than the classical definition of Fulton
(see [16]) because we do not ask that S be generated by S1 . In the classical definition,
a cone is a subvariety of a vector bundle (the dual of S1 ) given by homogeneous
equations. Its projectivization is a subvariety of a bundle of projective spaces. In the
orbifold case, the cone is, again, a suborbifold of a vector bundle, but is now given by
quasihomogeneous equations. Its projectivization is a suborbifold of the corresponding
bundle of weighted projective spaces, which carries a tautological line bundle O.1/ in
the orbifold sense (called canonical line bundle in [16]). Thus, the projectivization PC
of a cone is an orbifold and carries a natural orbifold line bundle O.1/, the tautological
line bundle. We write pW PC D Proj.S/! X and � D c1.O.1//. Let C ! X be a
pure-dimensional cone and r the rank of the cone, defined as dim.C/� dim.X/. The
i th Segre class of C is defined as

si D p�.�
rCi�1/ 2H 2i .X;Q/:

Example 2.3 Let us consider the graded algebra CŒx; y; z� such that x is an element
of weight 2, y is an element of weight 3 and z is an element of weight 1. This graded
algebra is not generated by its degree 1 elements. The associated projectivized cone
over a point is the weighted projective space P .2; 3/ which is the quotient of .C3/�

by C� with the action
� � .x; y; z/D .�2x; �3y; �z/:

Example 2.4 More generally, consider a sheaf of algebras of the form OX ˝C S,
where S is a graded algebra over C. The projective spectrum of this sheaf is a direct
product of X with Proj.S/. We call this a trivial orbifold cone.

2.1.2 Cone of generalized principal parts

Definition 2.5 Let p be an integer greater than 1. A principal part of order p at a
smooth point of a curve is an equivalence class of germs of meromorphic differentials
with a pole of order p ; two germs f1 and f2 are equivalent if f1�f2 is a meromorphic
differential with at most a simple pole.
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First, we parametrize the space of principal parts at a point. Let z be a local coordinate
at 0 2C. A principal part at 0 of order p is given byh�

u

z

�p�1
C a1

�
u

z

�p�2
C � � �C ap�2

�
u

z

�i
dz

z

with u ¤ 0. However, given a principal part, the choice of .u; a1; : : : ; ap�2/ is
not unique. Indeed, there are p � 1 choices for u given by the �l � u (with �l D
exp.2i� � l=.p � 1// for 0 � l < p � 1) and, once the value of u is chosen, the ai
are determined uniquely. Therefore, the coordinates .u; a1; : : : ; ap�2/ parametrize a
degree p � 1 covering of the space of principal parts. This motivates the following
definition:

Definition 2.6 Assign to u the weight 1=.p�1/ and to aj the weight j=.p�1/. The
graded algebra S �CŒu; a1; : : : ; ap�2� spanned by the monomials of integral weights
is called the algebra of generalized principal parts and P D Spec.S/ is the space of
generalized principal parts.

The space P is the quotient of Cp�1 by the group Z=.p� 1/Z, which, from now on,
we will denote by Zp�1 for brevity. An element � 2 Zp�1 acts by

� � .u; a1; : : : ; ap�2/D .�u; �a1; : : : ; �
p�2ap�2/:

Moreover, the natural action of C� on P is given by

� � .u; a1; : : : ; ap�2/D .�
1=.p�1/u; �1=.p�1/a1; : : : ; �

.p�2/=.p�1/ap�2/:

Note that this action is not well defined on the covering space Cp�1 , but is well defined
on its Zp�1 quotient P.

Notation 2.7 Denote by Iu � S the ideal of polynomials divisible by u. Denote by
A� P the suborbifold defined by Iu .

The suborbifold A� P is the Weil divisor obtained as the image of the Cartier divisor
fu D 0g � Cp�1 under the quotient of Cp�1 by the action of Zp�1 . The divisor
.p� 1/A is the Cartier divisor given by the equation up�1 D 0. (Note that up�1 lies
in S while u does not.) The space of principal parts embeds into P as the complement
of A.

Lemma 2.8 A change of local coordinate z induces an isomorphism of S that pre-
serves the grading and acts trivially on the quotient algebra S=Iu .
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Proof Let zDf .w/D˛1wC˛2w2C� � � be a local coordinates change. We denote by
.u0; a01; : : : ; a

0
p�2/ the parameters of the presentation of principal parts in coordinate w .

We have the transformation

u 7! ˛1u;

a1 7! a1C 1;1u;

a2 7! a2C 2;1ua1C 2;2u
2;

:::

where the i;j are polynomials in ˛1; ˛2; : : : depending only on the order of the
principal part. By taking u to be 0, we see that the coordinates .a1; : : : ; ap�2/ of A
are independent of the choice of local coordinate.

Remark 2.9 In Section 2.2 we will see that the locus A corresponds to the appearance
of a semistable bubble of the underlying curve C at the i th marked point. The coordinate
on the bubble is w D u=z .

Remark 2.10 The cone of principal parts of differentials differs from the cone of
principal parts of functions of [12] only by the coefficients i;j .

Now, let g and n be nonnegative integers such that 2g�2Cn > 0. Let i 2 ŒŒ1; n�� and
pi � 2. We denote by Pi the following sheaf of graded algebras over Mg;n :

Pick an open chart U �Mg;n together with a trivialization of a tubular neighborhood
of the i th section �i of the universal curve over U. In other words, denoting by � the
unit disc, we choose an embedding

U �� ,! Cg;n

commuting with U ,!Mg;n and such that U � f0g is the i th section of the universal
curve. The sheaf Pi over U is given by Pi .U /DOU ˝S.

Now, given two overlapping charts U and V we need to define the gluing map between
the sheaves on their intersection. To do that, denote by z the coordinate on � in
the product U �� and by w the coordinate on � in the product V ��. Over the
intersection U \V we get a change of local coordinates z.w/. We use this change of
local coordinate and the constants i;j from Lemma 2.8 to construct an identification
between the two algebras Pi .U /jU\V and Pi .V /jU\V .
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Note that the sheaf of ideals Iu is well defined and the quotients S=Iu are identified
with each other in a canonical way that does not depend on the local coordinates z
and w .

We denote by Pi D Spec.Pi / the spectrum of Pi and by Ai D Spec.Pi=Iu/ the
spectrum of the quotient. The latter is a trivial cone over Mg;n .

Proposition 2.11 The cone Pi and its projectivization are normal.

Proof Indeed, the space Mg;n is smooth and the sheaf of fractions of the algebra Pi
is the same as the sheaf of fractions of P1i .

Lemma 2.12 The cone Ai is the product of Mg;n with the weighted projective space
with weights .1=.pi � 1/; : : : ; .pi � 2/=.pi � 1// quotiented by the action of Zpi�1 .
Moreover, the Segre classes of Ai and Pi are given by

s.Ai /D
.pi � 1/

pi�2

.pi � 1/Š
; s.Pi /D

.pi � 1/
pi�1

.pi � 1/Š
�

1

1� .pi � 1/ i
:

Proof The proof is based on the same arguments as for the cone of principal parts
of functions. The section upi�1 is a section of the line bundle L�˝.pi�1/

i , which
vanishes with multiplicity pi � 1 along Ai .

2.1.3 Stack of generalized principal parts In the above paragraph we defined the
cone of generalized principal parts, which is a normal scheme over Mg;n . We introduce
here another approach to the quotient by the Zpi�1–action. Let zPi be the sheaf of
algebra defined locally by

zPi .U /DOU Œu; a1; : : : ; api�2�;

where U is a chart with a trivialization of a tubular neighborhood of the i th section of
the universal curve and the coordinates .u; a1; : : : ; api�2/ are defined as above.

Definition 2.13 The stack of generalized principal parts Pi is the stack quotient

Spec.zPi /=Zpi�1:

By construction we have the following proposition:

Proposition 2.14 For all schemes U with a map U !Mg;n , the scheme U �Mg;n
Pi

is the coarse space of U �Mg;n
Pi .
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Proposition 2.15 The stack of generalized principal parts is a smooth DM stack.

Proof The space Mg;n is a smooth DM stack and Pi is locally the quotient of an
affine smooth scheme over Mg;n by a finite group.

2.1.4 Cones of generalized principal parts and jet bundles From now on in the
text, unless otherwise mentioned, for any family of semistable curves C ! S we
denote by ! the relative cotangent line bundle !C=S .

Definition 2.16 Let � W Cg;n!Mg;n be the universal curve and .�i /1�i�nWMg;n!

Cg;n the global sections of marked points. Let 1 � i � n and pi � 1. The vector
bundle Ji !Mg;n of polar jets of order pi at the i th marked point is defined as the
quotient

Ji DR
0��.!.pi�i //=R

0��.!.�i //:

We fix 1� i � n and pi > 0. The bundle of polar jet of order pi is a vector bundle of
rank pi � 1. As before, we consider an open chart U of Mg;n with a trivialization zi
of a tubular neighborhood of the section �i . Over the chart U the jet bundle is trivial.
Indeed, an element of Ji over U is given by�

b0

z
pi�1
i

C � � �C
bpi�2

z
pi�2
i

�
dzi

zi
:

Thus, the jet bundle Ji restricted to U is given by Spec.OU Œbi0; : : : ; bpi�2�/. Recall
that, using the trivialization zi , we have defined coordinates u; a1; : : : ; api�2 such that
Pi .U / is the subalgebra of

OU Œu; a1; : : : ; api�2�

generated by monomials with integral weights. We define the following morphism of
graded algebras over OU :

�i .U /W Sym�.J i_/.U /! Pi .U /;
b0 7! upi�1;

bj 7! upi�1�jaj for 1� j � pi � 2:

The morphism �i .U / is defined for a chart U with a choice of trivialization zi . We
can easily check that the �i .U / can be glued into a morphism of sheaves of graded
algebras. Thus, we have constructed a morphism of cones

�i W Pi ! Ji :

It is important to note that for pi � 3 the morphism �i is neither surjective nor injective.
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Lemma 2.17 We define the two spaces

Pi � zPi D .Pi nAi /[ the zero section,

Ji � zJi D .Ji n fb0 D 0g/[ the zero section.

The image of the morphism �i is the space zJi . Moreover, the morphism �i restricted
to zPi induces an isomorphism from zPi to zJi .

The proof is a simple check.

Remark 2.18 In particular, the morphism �i does not define a morphism of projec-
tivized cones. Indeed, certain points outside of the zero section of Pi are mapped to
the zero section of Ji .

2.2 The space of stable differentials

Let g , n and m be nonnegative integers satisfying 2g � 2C nCm > 0. Let P D
.p1; p2; : : : ; pm/ be a vector of positive integers. For all 1 � i � m, we denote by
PnCi (respectively PnCi and JnCi ) the cone of principal parts (respectively the stack
of principal parts and the vector bundle of polar jets) of order pi at the .nCi/th marked
point. Let pW Hg;n;P !Mg;nCm be the space of stable differentials of Definition 1.2
together with the forgetful map.

We recall that � W Cg;nCm!Mg;nCm is the universal curve and the

.�i /1�i�nCmWMg;nCm! Cg;nCm

are the global sections corresponding to marked points.

Notation 2.19 Let KMg;n.P /!Mg;nCm be the vector bundle

R0��

�
!

� mX
iD1

pi�nCi

��
!Mg;nCm:

It is a vector bundle of rank g� 1C
P
pi if P is not empty.

We have the exact sequence of vector bundles over Mg;nCm

(1) 0!R0��

�
!

� mX
iD1

�nCi

��
!KMg;n.P /!

mM
iD1

J nCi ! 0:

This exact sequence is simply the long exact sequence obtained from the residue exact
sequence.
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Proposition 2.20 The stack Hg;n;P is isomorphic to the fiber product of KMg;n.P /

and
Lm
iD1PnCi over

Lm
iD1 JnCi , where the map PnCi ! JnCi is the composition

of maps PnCi ! PnCi
�i
�! JnCi .

Proof We denote by zHg;n;P the fiber product

(2)

zHg;n;P //

��

Lm
iD1PnCi

��

KMg;n.P / //
Lm
iD1 JnCi

We construct the two directions of the isomorphism zHg;n;P ' Hg;n;P separately.

From Hg;n;P to zHg;n;P To construct a morphism F1W Hg;n;P ! zHg;n;P we define
morphisms ˆi W Hg;n;P ! PnCi for all 1 � i � m and �W Hg;n;P ! KMg;n.P /

fitting in diagram (2).

Let .C ! S; �1; : : : ; �nCm; ˛/ be a family of stable differentials. Let s ! S be a
geometric point of S and .Cs; x1; : : : ; xnCm; ˛s/ be the stable differential determined
by s . The element ˆi .˛s/ is determined as follows:

� If xnCi does not belong to a rational component then ˆi .s/ is the principal part
at the marked point. It belongs to PnCi n fuD 0g.

� If xnCi belongs to a rational component, let wnCi be a global coordinate of the
rational component such that: xnCi is at infinity, the node is at 0 and the term
of ˛ in front of wpi�2

nCi dwnCi is �1. Then ˛s is of the form

�.w
pi�1
nCi C a1w

pi�2
nCi C � � �C api�2wnCi C res�nCi

.˛//
dwnCi

wnCi

and we set ˆi .s/ D .0; a1; : : : ; api�2/. Indeed, the substack fu D 0g is the
quotient of a trivial vector bundle by Zpi�1 and the ai are the global coordinates
of this vector bundle.

We will prove that the map ˆi depends holomorphically on s . If s is a point of the first
type, this is an obvious statement. If s is a point of the second type, let U be an open
neighborhood of s in S with a trivialization znCi of a tubular neighborhood of �nCi
in C (see the previous section). Let C 0 be the stabilization of C. The differential ˛
restricted to C 0 is a differential with poles of order at most pi at znCi D 0. The
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differential ˛ in this coordinate is given by

(3) ˛ D
��

u

znCi

�pi�1
C � � �C aipi�2

u

znCi
C res�nCi

.˛/C O
znCi 7!0

.znCi /
�dznCi
znCi

The value upi�1 depends holomorphically on s and up to a choice of smaller U we
can fix a choice of .piC1/st root u. The function u depends holomorphically on s .

Now we use the function u and the local trivialization znCi to construct the family
of semistable curves C 00 � C 0 � P1 defined by the equation znCiw D u (where,
as previously, w is the global coordinate of the rational component and the pole is
located at wD1). This family of curves is isomorphic to C (the stabilizations of C 00

and C 0 are isomorphic and each fiber of these two families has the same dual graph).
In particular, ˛ is a meromorphic differential on C 00 with constant order of pole at
w D1. Further, in the chart w the highest-order coefficient of ˛ is given by 1. In
particular, the coordinate w is equal to the coordinate wnCi on the unstable rational
component of the fiber of s . In the chart w , the meromorphic differential ˛ is given
by

(4) ˛ D�
�
wpi�1C a1w

pi�2C � � �C api�2wC res�nCi
.˛/C O

w 7!0
.w/

�dw
w
;

where the ai depend holomorphically on s . Therefore, ˆ depends holomorphically
on s .

Now we construct the map �W Hg;n;P !KMg;n.P /. Let .C ! S; �1; : : : ; �nCm; ˛/

be a family of stable differentials. We denote by zC!S the stabilization of C and write
z̨ D˛j zC . The family . zC!S; �1; : : : ; �nCm; z̨/ is a section of !C=S

�P
pi�nCi

�
, and

thus a map S!KMg;n.P /. By construction, the morphisms � and the .ˆi /iD1;:::;m
fit in diagram (2).

From zHg;n;P to Hg;n;P Let S be a C–scheme and let S! zHg;n;P be a morphism.
By composition with the morphism zHg;n;P !KMg;n.P /, we get a family of stable
curves C ! S with nCm sections �i and a section ˛ of !C=S

�P
pi�nCi

�
. The

family S ! zHg;n;P determines also families of generalized principal parts. From the
family of meromorphic differentials ˛ and the principal parts we will construct a family
of stable differentials.

Let znCi be local trivializations of the tubular neighborhoods of the sections �nCi of
the curve C=S for 1� i �m. Let wnCi be global coordinates of the complex plane.
We denote by .ui ; ai1; : : : ; a

i
pi�2

/ the standard coordinates of the principal parts PnCi
obtained from the trivializations znCi . We construct a family of semistable curves
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zC ! S defined by the equation znCiwnCi D ui . On the curve zC we construct a
differential z̨ . This differential is given by the expression (4) in coordinate wnCi and
by the expression (3) in coordinate znCi . The tuple . zC ; �1; : : : ; �nCm; z̨/ is a family
of stable differentials over S.

Therefore, we have determined a morphism F2W zHg;n;P ! Hg;n;P . By construction it
is the inverse of F1 previously defined.

The following proposition finishes the proof of Proposition 1.4 and thus completes
Definition 1.3.

Proposition 2.21 We denote by Hg;n;P the following fiber product (in the category
of cones over Mg;nCm or in the category of DM stacks):

(5)

Hg;n;P //

��

Lm
iD1 PnCiL

�i

��

KMg;n.P / //
Lm
iD1 JnCi

Then space Hg;n;P is the unique space that satisfies the properties of Proposition 1.5.

Proof The fact that Hg;n;P satisfies the properties of Proposition 1.5 is a direct
consequence of Propositions 2.14 and 2.20. The uniqueness of this stack follows from
the uniqueness of coarse spaces.

From now on we will denote by stabW Hg;n;P !KMg;n.P / the vertical projection
in diagram (5).

2.3 Properties of spaces of stable differentials

We keep the notation g , n, m and P of the previous sections. We state here several
general properties of Hg;n;P and Hg;n;P that will be needed further in the text.

Proposition 2.22 Suppose that P is not empty. Then the spaces Hg;n;P and Hg;n;P
are irreducible DM stacks of pure dimension 4g� 4C

P
pi and PHg;n;P is a proper

DM stack (of dimension one less). The space Hg;n;P and its projectivization are
normal. The space Hg;n;P is a smooth DM stack.

If P is empty then both Hg;n;P and Hg;n;P are isomorphic to the Hodge bundle,
which is a smooth DM stack of dimension 4g� 3.
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Proof The first part of the proposition follows from Propositions 2.15, 2.20 and 2.11.
The second part is straightforward.

We consider the following two maps: on the one hand the inclusion of vector bun-
dles R0��

�
!
�Pm

iD1 �nCi
��
! KMg;n.P /, and on the other hand the zero map

KMg;n;P !
L

PnCi . Then we get an embedding R0��
�
!
�Pm

iD1 �nCi
��
!Hg;n;P

by the universal property of the cartesian diagram (5).

Proposition 2.23 For all g , n and P, we have the exact sequence of cones (in the
sense of [16, Proposition 4.1.6])

0!R0��

�
!

� mX
iD1

�nCi

��
!Hg;n;P !

mM
iD1

PnCi ! 0:

Proof By construction, the sheaf of algebras defining Hg;n;P is locally the tensor
product of the sheaves of algebras Sym_

�
R0��

�
!
�Pm

iD1 �nCi
���

and the PnCi .

The action of C� on the space Hg;n;P is determined by multiplication of the differential
by a scalar. Let us give a description of the C�–fixed locus, ie the locus of points that
are invariant under the action of C� .

Let .C; x1; : : : ; xnCm/ be a curve in Mg;nCm . We denote by m0 the number of entries
of P greater than 1. From C we construct a semistable curve zC as follows. The
curve zC has m0C1 irreducible components: one main component isomorphic to C and
m0 rational components attached to C at the marked points corresponding to poles of
order greater than 1. We mark points .x01; : : : ; x

0
nCm/ on zC. The first n marked points

and the points corresponding to poles of order at most 1 are on the main component
and satisfy xi D x0i. The poles of orders greater than 1 are carried by the rational
components.

Now we define a meromorphic differential ˛ on zC by:

� The differential ˛ vanishes identically on the main component.

� On an exterior rational component, if we assume that the marked point is at 0
and the node at 1, then ˛ is given by dz=zpi .

The tuple . zC ; x01; : : : ; x
0
nCm; ˛/ is a stable differential invariant under the action of C� .

Indeed, let � be a scalar in C� ; the differential �˛ vanishes on the main component
and �dz=zpi is equal to dw=wpi if we use the change of coordinate z D w=�1=pi

for any .pi /th root of �.
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Conversely, any C�–invariant point of Hg;n;P is of this type. Indeed, Hg;n;P is a
cone; thus, the locus of C�–invariant points is a section of this cone and we have
constructed this section here.

2.4 Residues

Let g , n, m and P be as in the previous sections.

Definition 2.24 Let R be the vector subspace of Cm defined by

RD f.r1; r2; : : : ; rm/ j r1C r2C � � �C rm D 0g:

The vector space R will be called the space of residues. The residue map is the map
of cones over Mg;nCm

resW Hg;n;P !R; ˛ 7! .resxnC1
.˛/; resxnC2

.˛/; : : : ; resxnCm
.˛//;

where R stands for the trivial cone. We use the same notation for the residue map
resW KMg;n.P /!R. In this case it is a morphism of vector bundles.

These two residue maps fit in the commutative triangle

(6)

Hg;n;P
stab
//

res
&&

KMg;n.P /

res
��

R

Let H0g;n;P � Hg;n;P (resp. KM0
g;n.P / � KMg;n.P /) be the subcone (resp. sub-

vector bundle) of differentials without residues.

We recall that the Hodge bundle is by definition equal to Hg;nCm D R0��! . The
following sequence of vector bundles over Mg;nCm is exact:

(7) 0!Hg;nCm!R0��

�
!

� mX
iD1

�nCi

��
res
�!R! 0

�
this is the exact sequence obtained from the residue exact sequence 0!!C

�P
xi
�
!

!C !Cm! 0
�
. The vector bundle KM0

g;n.P / fits into the following commutative
diagram of vector bundles over Mg;nCm :

(8)

0 // KM0
g;n.P /

// KMg;n.P /
res

// R // 0

Hg;nCm

OO

// R0��
�
!
�Pm

iD1 �nCi
��

OO
77
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where the central square is cartesian. The first line of diagram (8) is exact by exactness
of the sequence (7). Therefore, the cone structure of H0g;n;P can be defined equivalently
from the cone structure of Hg;n;P or by saying that H0g;n;P is the fiber product

H0g;n;P //

��

L
PnCi

��

KM0
g;n.P /

//
L
JnCi

We have the exact sequence of cones

0!Hg;nCm!H0g;n;P !
M

PnCi ! 0:

Remark 2.25 We cannot say that the sequence

0!H0g;n;P !Hg;n;P !R! 0

is exact because exactness for morphisms of cones is ill defined if the first term is not a
vector bundle.

More generally we define the following:

Definition 2.26 Let R be a vector subspace of R. Let HRg;n;P � Hg;n;P (resp.
KMR

g;n.P / � KMg;n.P /) be the subcone (resp. subvector bundle) of differentials
with a vector of residues lying in R . We will call R a space of residue conditions.

Lemma 2.27 Let R �R be a vector subspace.

� The space HRg;n;P is a closed subcone of Hg;n;P of codimension dim.R=R/
(where we set dim.R=R/D 0 if P is empty).

� The Segre classes of HRg;n;P and Hg;n;P are equal.

� The Poincaré-dual class of PHRg;n;P in H�.PHg;n;P ;Q/ is given by

ŒPHRg;n;P �D �
dim.R=R/:

Proof Let us denote by resR the composition of morphisms Hg;n;P !R!R=R

(we use the same notation for its alter ego for KMg;n.P /). We denote by HRg;nCm
the kernel of the morphism

R0��

�
!

� mX
iD1

�nCi

��
resR
��!R=R! 0:
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It is a vector bundle of rank gC dim.R/. By repeating the above argument, we have
the exact sequence of cones

0!HRg;nCm!HRg;n;P !R=R:

We deduce from this exact sequence that

� the codimension of HRg;n;P in Hg;n;P is dim.R=R/;

� the Segre class of HRg;n;P is given by

c�.HRg;nCm/ � s�
�M

PnCi
�

(see [16, Proposition 4.1.6]).

Further, the vector bundle R=R is trivial; thus,

c�.HRg;nCm/D c�
�
R0��

�
!

� mX
iD1

�nCi

���
and the Segre class of HRg;n;P does not depend on the choice of R .

To prove the last statement, we study the vector bundle O.1/˝p�.R=R/! PHg;n;P ,
where we recall that pW PHg;n;P !Mg;nCm is the forgetful map. We have

O.1/˝p�.R=R/' Hom.O.�1/; p�.R=R//:

A section of this vector bundle is given by

sW ˛ 7! resR.˛/:

The vanishing locus of s is PHRg;n;P , which is of codimension dim.R=R/ and irre-
ducible. Thus, the Poincaré-dual class of PHRg;n;P in H�.PHg;n;P ;Q/ is given by

d � ctop.O.1/˝p�.R=R//D d � �dim.R=R/;

where d is a rational number. Further, the cones HRg;n;P and Hg;n;P have the same
Segre class, and thus

s0 D p�.�
rk.Hg;n;P /�1/D p�.ŒPHRg;n;P ��

rk.HR
g;n;P /�1/D ds0;

and the coefficient d is equal to 1.

Proposition 2.28 The Segre class of Hg;n;P is given by
mY
iD1

.pi � 1/
pi�1

.pi � 1/Š
�
1��1C � � �C .�1/

g�gQm
iD1.1� .pi � 1/ i /

:
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Proof From the above lemma, we have

s�.Hg;n;P /D s�.H0g;n;P /

D c�.Hg;nCm/�1 � s�
� mM
iDnC1

PnCi
�

D c�.H_g;nCm/ � s�
� mM
iDnC1

PnCi
�

D

mY
iD1

.pi � 1/
pi�1

.pi � 1/Š
�
1��1C � � �C .�1/

g�gQm
iD1.1� .pi � 1/ i /

:

From the third line to the fourth we have used the fact that c.Hg/�1D c.H_g / (see [28]).

2.5 Unstable base

Here we extend the definition of the spaces of stable differentials to differentials
supported on an unstable base.

Definition 2.29 A triple .g; n; P / composed of a nonnegative integers g and n and
a vector P of positive integers is semistable if either

� 2g� 2CnC `.P / > 0 (in which case we also say that .g; n; P / is stable);

� g D 0, nD 1 and P D .p/ with p > 1; or

� g D 0, nD 0 and P D .1; p/ with p > 1.

We want to define the space Hg;n;P for all semistable

triples. However, the space M0;2 is empty; thus, we cannot define the spaces
H0;1C1;.p/ and H0;2;.1;p/ as cones over a moduli space of curves. Still, we can
define the cone structure of these two spaces over Spec.C/.

The space H0;1C1;.p/ is defined as the complement of fuD 0g in the space of general-
ized principal parts defined in Section 2.1. In other words H0;1C1;.p/ is the spectrum
of the graded subalgebra of CŒa1; : : : ; ap�2� generated by monomials with integral
weights (where the weight of aj is j=.p� 1/).

The space H0;2;.1;p/ is the spectrum of the graded subalgebra of CŒa1; : : : ; ap�2; r�

generated by monomials with integral weights, where r (for residue) has weight 1.
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2.6 Stable differentials on disconnected curves

In the paper, we will need stable differentials supported on disconnected curves. Let q
be a positive integer, and

g D .g1; g2; : : : ; gq/; nD .n1; n2; : : : ; nq/; mD .m1; m2; : : : ; mq/

be lists of nonnegative integers, and let

P D .Pj /1�j�q D .pj;i /1�j�q; 1�i�mj

be a list of vectors of positive integers of length mj .

Definition 2.30 The triple .g;n;P/ is stable (or semistable) if the triple .gj ; nj ; Pj /
is stable (or semistable) for all 1� j � q (see Definition 2.29).

Unless otherwise stated, we assume from now on that .g;n;P/ is semistable.

Definition 2.31 The space of stable differentials of type .g;n;P/ is the space

Hg;n;P D

qY
iD1

Hgi ;ni ;Pi
:

We define the interior of Hg;n;P as the open substack Hg;n;P �Hg;n;P of differentials
supported on smooth curves.

Definition 2.32 The reduced base of type .g;n;P/ (or of type .g;n;m/) is the space

Mred
g;n;m D

Y
j

2gj�2CnjCmj>0

Mgj ;njCmj

if the product is nonempty and Spec.C/ otherwise.

Proposition 2.33 The space of stable differentials of type P is a cone over Mg;n;m .
If the triple .g;n;P/ is stable then the Segre class is given by

s.Hg;n;P/D

qY
jD1

s.Hgj ;njCmj ;Pj
/;

where s.Hgj ;nj ;Pj
/ is the pullback of the Segre class of Hgj ;nj ;Pj

to the productQq
jD1Mgj ;njCmj

under the j th projection.

Proof The proof is straightforward because the space Hg;n;P is a product of cones.
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To handle the residues, we extend the definition of the space of residues R:

(9) RD

qM
jD1

Rj D

�
.rj;i /j;i

ˇ̌̌ mjX
iD1

rj;i D 0 for all j 2 Œ1; q�
�
�Cm1C���Cmq :

Definition 2.34 Let R be a vector subspace of R. The space HR
g;n;P

is the space of
stable differentials with residues lying in R .

Lemma 2.35 Let R be a linear subspace of R. The space HR
g;n;P

is a subcone of
HR

g;n;P
of codimension dim.R/� dim.R/ and we have:

� The cones Hg;n;P and HR
g;n;P

have the same Segre class.

� The Poincaré-dual class of ŒPHR
g;n;P

� in H�.PHg;n;P ;Q/ is given by

�dim.R/�dim.R/:

Proof The proof of Lemma 2.27 can be adapted immediately to the general case.

Definition 2.36 Let pW Hg;n;P !Mred
g;n;m be the projection to the base. The tauto-

logical ring of PHg;n;P is the subring of H�.PHg;n;P/ generated by � D c1.O.1//
and pullbacks by p of tautological classes from the base Mred

g;n;m . We denote this ring
by RH�.PHg;n;P/.

2.7 Semistable graphs

Let g , n, m and P be lists of genera, numbers of marked points without poles,
numbers of marked poles and vectors of positive integers indexed by j 2 ŒŒ1; q�� as in
the previous section. We assume that .g;n;P/ is semistable.

In this section we define a combinatorial object called semistable graphs. We show
here that the space Hg;n;P has a natural stratification according to semistable graphs
and that semigraphs allow to define some tautological classes.

Definition 2.37 A semistable graph of type .g;n;P/ is given by the data�
V;H; gW V !N; aWH!V; i WH!H;E; �0.V;E/' ŒŒ1;q��; L'

q[
jD1

ŒŒ1;njCmj ��

�
;

satisfying the following properties:

� V is a vertex set with a genus function g .
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� H is a half-edge set equipped with a vertex assignment a and an involution i .

� The edge set E is defined as the set of length 2 orbits of i in H (self-edges at
vertices are permitted).

� The graph .V;E/ has q labeled connected components.

� For all 1� j � q , the genus of the connected component labeled by j is defined
by
P
g.v/C #.Ej /� #.Vj /C 1 and is equal to gj .

� L is the set of fixed points of i , called legs.

� For all 1� j � q , there are nj Cmj legs on the j th connected component and
this set of legs is identified with the set ŒŒ1; nj Cmj ��.

� For each vertex v in V belonging to the j th component:

– Let n.v/ be the number of legs adjacent to v with label at most nj .

– Let m.v/ be the number of legs adjacent to v with label at least nj C 1.

– Let P 0.v/ D .Pj;m�nj
/m7!v;m>nj

: it is the vector obtained from Pj by
keeping only the entries associated to the legs of the second type adjacent
to v . We denote by P.v/ the concatenation of P 0.V / with the vector
.1; : : : ; 1/ of length equal to number of half-edges adjacent to v that are not
legs.

� For each vertex v , the triple .g.v/; n.v/; P.v// is semistable.

We define the following lists indexed by the vertices of � :

g� D .g.v//v2V ; n� D .n.v//v2V ; m� D .m.v//v2V ; P� D .P.v//v2V :

The triple .g� ;n� ;P�/ is semistable (it is implied by the last condition of the definition
of a semistable graph). We consider the space Hg� ;n� ;P�

. We denote by R� the
space of residues of Hg� ;n� ;P�

. We define the subspace R� �R by the equations

rhC rh0 D 0

for all edges e D .h; h0/.

Notation 2.38 Let � be a semistable graph; we denote by H� the moduli space
HR�

g� ;n� ;P�
and by

�#
� W H� !Hg;n;P

the natural closed morphism.
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Proposition 2.39 The set of semistable graphs is finite and the space Hg;n;P is
stratified according to the semistable graphs; ie for all x in Hg;n;P there exists a
unique graph � such that x 2 ��.H�/.

Proof If we fix the datum .g;n;P/, then there are finitely many semistable graphs �
for .g;n;P/ such that the graph � is stable. Indeed, there are finitely many stabilization
of � and then the graph � is determined by the choice of which set of marked points
is on an unstable rational component (we recall that unstable rational bridges between
components are not permitted because the triple .0; 0; .1; 1// is not semistable).

Now, for all semistable graphs the only possible unstable vertices are vertices of genus 0
with two marked points: a leg and a half-edge. Therefore, for all stable graphs � of
type .g;n;P/, there are finitely many semistable graphs � 0 such that the stabilization
of � 0 is equal to � . Therefore, there are finitely many semistable graphs.

Now, if x is a point in Hg;n;P then, if we denote by � the dual graph of the underlying
curve of x then x lies in ��.H�/. This graph is uniquely determined.

The space PH� is a cone; thus, it has a tautological line bundle O.1/. This line bundle
is the pullback by �#

� of the tautological line bundle of PHg;n;P . By abuse of notation
we will write � for the first Chern class of the tautological line bundle for both spaces.
We have the following important proposition:

Proposition 2.40 Let � be semistable graph. The morphism �#
��
W H�.PH� ;Q/!

H�.PHg;n;P ;Q/ maps tautological classes to tautological classes.

Proof Let � be a semistable graph. Let k � 0 and ˇ 2Mred
� . We need to prove that

the class �#
��
.�kp�.ˇ// is tautological. We will prove this statement in three steps.

Stable graphs We suppose first that � is a stable graph. We recall that in this case
we have defined a map �� WM� !Mg;n;m . Then H� is the fiber product

H�

p�

��

�#
�
// Hg;n;P

p

��

M�
��

//Mg;n;m

Let ˇ be a cohomology class in H�.M� ;Q/. We use the projection formula and the
fact that H� is a fiber product to get �#

��
.�k �p��.ˇ//D �

kp�.���.ˇ//. Therefore, if the
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class ˇ belongs to the tautological ring RH�.M� ;Q/, then the class �#
��
.�k �p��.ˇ//

belongs to the tautological ring of Hg;n;P .

Graph with one main vertex We no longer assume that � is stable. Let 1� j � q
and 1� i �mj . Let pi be the i th entry of Pj . Assume that � is the graph

xj;njCi

0

gj

(we take the trivial graph for all the other connected components). We will prove that
the class �#

��
.1/ lies in RH�.PHg;n;m;P/. We use the parametrization of the cone of

principal parts at xh�
u

z

�pi�1
C a1

�
u

z

�pi�2
C � � �C api�2

�
u

z

�i
dz

z
:

The stratum defined by � is the vanishing locus of u. We have seen that upi�1 is a
section of the line bundle Hom.O.�1/;Lpi�1

i /. Therefore, the vanishing locus of u
has Poincaré-dual class given by

ŒuD 0�D
1

pi�1
� � i :

By the same argument, if � is the graph

xj;njCi1 xj;njCi2 � � �

0 0 � � �

gj

where the set fikg is a set of indices in ŒŒ1;mj ��, then we have

�#
��.1/D

Y
k

�
1

pik�1
� � ik

�
:

And, more generally, for a class ˇ in RH�.Mred
g;n;m;P

/ and k 2N , we have

�#
��.�

kˇ/D �kˇ �
Y
k

�
1

pik�1
� � ik

�
2RH�.Hg;n;m;P/:
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General unstable graph We combine the two previous arguments. Let � be a general
semistable graph. Let z� be the graph obtained by contracting all edges between stable
vertices. We have Mred

g;n;m DMred
z�

. The space H� is the fiber product

H�

p�

��

// Hred
z�

pz�
��

�#
z�
// Hg;n;m

M�
��

//Mred
g;n;m

Thus, �#
��
.�kp��ˇ/D �

#
z��
.�kp�

z�
.���ˇ//. Now z� has one stable vertex, and ���ˇ 2

RH�.Mred
g;n;m/; thus, the class �#

��
.�kp��ˇ/ is tautological.

3 Stratification of spaces of stable differentials

The interior of space of stable differentials is stratified according to the orders of the
zeros of the differential. In this section we study the local parametrization of these
strata and compute their dimension.

3.1 Definitions and notation

In the paper we will often consider the following setup:

Assumption 3.1 The quadruple .g;Z ;P ; R/ is of the following type:

� g D .g1; : : : ; gq/, Z D .Z1; : : : ; Zq/ and P D .P1; : : : ; Pq/ are lists of the
same length q � 1.

� For all 1� j � q , gj is a positive integer, Zj is a vector of nonnegative integers
of length nj and Pj is a vector of positive integers of length mj .

� We write nD .n1; : : : ; nq/ and mD .m1; : : : ; mq/.

� The triple .g;n;P/ is semistable (in the sense of Definition 2.30).

� R is a linear subspace of RD
Lq
jD1Rj '

Lq
jD1Cmj�1 (defined as in (9)).

Let .g;Z ;P ; R/ be a quadruple satisfying Assumption 3.1.

Notation 3.2 We denote by

ARg;Z ;P �HRg;n;P

the locus of points .C; .xj;i /1�j�q; 1�i�njCmj
; ˛/ 2HR

g;n;P
such that C is smooth
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and ˛ is nonzero on each connected component and has a zero of order exactly kj;i at
the i th point of the j th connected component for all 1� j � q and 1� i � nj .

If there is no condition on the residues, we will simply denote it by Ag;Z ;P .

Definition 3.3 We say that Z is complete for .g;P/ if Zj is complete for .gj ; Pj /
for all 1� j � q .

3.2 Standard coordinates

In this section we describe how to parametrize differentials with prescribed singularities.
We use the notation �� D fz 2 C W jzj < �g for the disks of radius � 2 RC and
A�1;�2

D fz 2C W �1 < jzj< �2g for the annulus of parameters 0 < �1 < �2 .

3.2.1 Standard coordinates Let ˛ be a meromorphic differential on a small disk
�� �C. We denote by r the residue of ˛ at 0. Then, there exists a conformal map
'W ��0 !�� for �0 small enough such that '.0/D 0 and

'�.˛/D

8<:
d.zk/ if 0 is a zero of order k� 1,
r dz=z if 0 is a pole of order 1,
d.1=zk/C r dz=z if 0 is a pole of order kC 1.

The map ' is unique up to multiplication of the coordinate z by a kth root of unity
when 0 is a zero of order k � 1 or a pole of order kC 1. The coordinate z will be
called the standard coordinate.

More generally, if U is an open neighborhood of 0 in Cn and ˛u is a holomorphic
family of differentials on �� such that the order of ˛u at 0 is constant, then there exists
a holomorphic map 'W zU ���0 !�� such that '.u; � /�.˛u/ is in the standard form
for some neighborhood zU of 0. Once again the map ' is unique up to multiplication
of the standard coordinate by a root of unity.

Now the following classical lemma describes the deformations of d.zk/ (see [25] for
a proof):

Lemma 3.4 Let � > 0 and U �Cn be a domain containing 0. Let ˛u be a family
of holomorphic differentials on �� such that ˛0 has a zero of order k� 1 at the origin.
Then, there exists �0 > 0, a neighborhood Z of 0 in Ck�2 and a conformal map

'W U ���0 !�� �Z

such that '.u; � /�.˛u/D d.zkC ak�2zk�2C � � �C a1z/. The map ' is unique up to
multiplication of z by a kth root of unity.
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The locus z D 0 determines a section of the projection U ��� that does not depend
on the choice of kth root of unity. This section is called the local center of mass of
zeros.

Now we would like to generalize the above lemma to deformations of poles of order 1.

Definition 3.5 Let �>0 and U �Cn be a domain containing 0. Let ˛ be a differential
on �� in the standard form d.zk/. A standard deformation of ˛ is defined by a
holomorphic function ˇW U ���!C satisfying ˇ.0; z/D 0. A standard deformation
associated to ˇ is the family of differentials on �� parametrized by U

˛u D d.z
k/C

ˇ.u; z/

z
dz:

In general, there exists no standard coordinate for a standard deformation. However,
the following proposition has been proved in [2] (see Theorem 4.3):

Proposition 3.6 We consider the annulus A�1;�2
for any choice of 0 < �1 < �2 < � .

Choose a point p 2 A�1;�2
and �l D exp.2i�l=k/ a kth root of unity. Choose a map

� W U ! �� such that �.0/ D �lp . Then there exists a neighborhood zU of 0 in U
and a holomorphic map 'W zU �A�1;�2

!�R such that

'�u.˛u/D d.z
k/C

ˇ.u; 0/

z
dz;

and '.0; z/ D �lz and '.u; p/ D �.u/ for all u 2 zU and z 2 A�1;�2
. For zU small

enough, the map ' is unique.

3.2.2 Neighborhood of strata Let .g;Z ;P;R/ be a quadruple satisfying Assumption
3.1.

Lemma 3.7 There exists a neighborhood V of Ag;Z ;P in Hg;n;P and a holomorphic
retraction �W V ! Ag;Z ;P such that � preserves the residues at the poles.

Proof The general statement follows immediately from the connected case. Indeed,
Ag;Z ;P is locally isomorphic to

Qq
jD1Agj ;Zj ;Pj

; therefore, we can define the neigh-
borhood V and the retraction � as the products of the Vj and �j for all 1 � j � q .
Therefore, we will assume that q D 1.

Let y0 D .C0; x1; : : : ; xnCm; ˛0/ be a point in Ag;Z;P . Let n0 be the number of
zeros of ˛ distinct from the marked points. We choose an ordering of these zeros
.zx1; : : : ; zxn0/ and we denote by zki the order of ˛ at zxi for all 1� i � n0.
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We denote by d D dim.Ag;Z;P / and by d 0 D dim.Hg;n;P /. A neighborhood of y0
in Ag;Z;P is of the form U=Aut.y0/ where U is a contractible domain of Cd . A
neighborhood of U=Aut.y0/ in Hg;n;P is of the form W=Aut.y0/ where W is a
contractible domain of Cd 0.

For all y D .C; ˛; .xj;i // in U we denote by P.y/� C the set of poles of ˛ and by
Z.y/ the set of zeros (marked or not). For all y , the form ˛ determines a class in
the relative cohomology group H 1.C nP.y/;Z.y/;C/. Further, we have a canonical
identification of H 1.C nP.y/;Z.y/;C/ with H 1.C0 nP.y0/; Z.y0/;C/ (this is the
Gauss–Manin connection); therefore, we have a holomorphic map

ˆU W U !H 1.C0 nP.y0/; Z.y0/;C/:

This map can be described as follows. Let .1; : : : ; d / be simple closed curves of
C0 n .P.y0/[Z.y0// that form a basis of the relative homology group

H1.C0 nP.y0/; Z.y0/;Z/:

Then the map ˆU is defined by

ˆU W U !H 1.C0 nP.y0/; Z.y0/;C/; .C; ˛; .xi // 7!

�
 7!

Z
i

˛

�
;

where the cycles on C0n.P.y0/[Z.y0// are identified with cycles on Cn.P.y/[Z.y//
by the Gauss–Manin connection. The map ˆU is a local biholomorphism (see [4] for
example). We call the map ˆU a period coordinates chart.

Now we will construct the holomorphic maps

ˆ1W W !H 1.C0 nP.y0/; Z.y0/;C/;

ˆ2;i W W ! Zki for all 1� i � n;

ˆ3;i W W ! zZ zki for all 1� i � n0;

where Zi is a domain of Cki containing of 0 for all 1� i � n and zZi is a domain of
C
zki�1 containing of 0 for all 1� i � n0 :

� For all 1� i �n, the map ˆ2;i is determined by a slight modification of Lemma 3.4
for marked differentials. We consider a tubular neighborhood W ���! CW around
the i th section of the universal curve. There exists a �0 > 0 and a neighborhood Zi
of 0 2Cki with coordinates .ai;1; : : : ; ai;ki

/ and a map 'W W ���!��0 �Zi such
that the marked point is at zi D 0 and

˛s D d.z
kiC1
i C ai;ki

z
ki

i C � � �C ai;1zi /
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for each point s of W . The map ' is unique up to a multiplication of zi by a
.kiC1/

st root of unity. Thus, we have defined a map from W to Zi given by ˛s 7!
.ai;1; : : : ; ai;ki

/.

� For all 1� i �n0, the map ˆ2;i is determined by Lemma 3.4. We consider a tubular
neighborhood W ���!CW around the i th section of the universal curve. There exists
a �0 > 0 and a neighborhood zZi of 0 2 C

zki�1 with coordinates .ai;1; : : : ; ai;zki�1
/

and a map 'W W ���!��0 �Zi such that

˛y D d.z
zkiC1
i C � � �C ai;1zi /

for each point y of W . The map ' is once again unique up to a multiplication of zi
by a .zkiC1/st root of unity. Thus, we have defined a map from W to Zi given by
˛y 7! .ai;1; : : : ; ai;zki�1

/.

Further, the point zi D 0 is called the center of mass of the differential. It does not
depend on the choice of a root of unity; therefore, we have a uniquely determined point
zxi 2 C for all s .

� The map ˆ1 is defined as ˆU by the Gauss–Manin connection. For a point
yD .C; ˛; x1; : : : ; xnCm/ in W we let Z.y/Dfx1; : : : ; xng[fzx1; : : : ; zxn0g (the union
of the marked points with the center of masses defined above). Then the differential ˛
defines a point in H 1.C nP.y/;Z.y//, which is once again canonically identified
with H 1.C0 nP.y0/; Z.y0//.

We will prove that the map

ˆDˆ1 �

� nY
iD1

ˆ2;i
�
�

� n0Y
iD1

ˆ3;i
�

is a local biholomorphism (see [25, Section 5.2] in the holomorphic case). The source
and the target have the same dimension; therefore, we only need to check that the
differential of each component of ˆ is surjective. For ˆ1 this is obvious because
ˆ1jU DˆU is a local biholomorphism.

Let 1� i � n and let �� be a disk in C0 around xi such that ˛D d.wkiC1/. Up to a
choice of a smaller Zi , for all .ai;1; : : : ; ai;ki�1/2Zi we have .zkiC1C� � �Cai;1z/¤0

for all 1
2
� < jzj< � . Then we construct a family of curves Ci ! Zi by gluing the two

families of curves .C0 n��=2/�Zi with �� �Zi along the identification

w D .zkiC1C � � �C ai;1z/
1=.kiC1/
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(this family depends on the choice of a .kiC1/st root). Now, the differential ˛ on Ci
is determined by ˛0 on .C0 n��=2/�Zi and by d.zkiC1C � � �C ai;1z/ on �� �Zi .
The two differentials agree by construction of the complex structure. Therefore, the
differential of ˆ2;i is surjective. The same argument holds for ˆ3;i for 1� i � n0.

Now we set �W Dˆ�1U ıˆ
1 . This retraction does not depend on the choice of the root

of unity nor on the choice of ordering of the nonmarked zeros. Indeed, it is defined
by the inverse procedure of patching d.wkiC1/ instead of d.zkiC1 C � � � C ai;1z/

for all 1 � i � n (and for nonmarked zeros). Therefore, it does not depend on the
local identification of the relative homology group. Thus, if we consider two maps �W
and �W 0 (for neighborhoods of points y0 and y00 ) then these two maps agree on W \W 0.

Finally, the residues are preserved by �. Indeed, for any choice of y0 , we can choose
a basis .1; : : : ; d / of H1.C0 nP.y0/; Z.y0/;Z/ such that i is a small loop around
the .nCi/th marked point for all 1� i �m� 1. The period of ˛ around this loop is
the residue of ˛ at the i th pole and is preserved by �.

Corollary 3.8 The residue map restricted to AR
g;Z ;P

!R is a submersion.

Proof Let .C; x1; : : : ; xnCm; ˛/ be a point of AR
g;Z ;P

. Let r D .r1; : : : ; rm/ be a
vector in R . There exists a meromorphic differential ' on C with at most simple
poles at the m last marked points with residues prescribed by r . Let � be a disk of C

centered at 0 and parametrized by � . Let � be the retraction map of Lemma 3.7. The
residues of �.˛C �'/ at the poles are given by

resxnCi
.˛/C �ri :

Thus, the vector r belongs to the image of the tangent space of AR
g;Z ;P

under the
differential of the map res.

Remark 3.9 Recently, Gendron and Tahar studied the surjectivity of the residue maps
for open strata in the space of meromorphic differentials (and also of higher-order
differentials — see [19]). Our statement that the residue map is a submersion does not
imply surjectivity. However, the image of an algebraic submersion is always a Zariski
open set. Thus, we can claim that the residue map is surjective on the closure of every
nonempty stratum.

3.2.3 Neighborhood of strata with appearance of residues We consider a slightly
more general setup. Let q � 2 and g , n, n0 and m be lists of nonnegative integers
of length q . Let P D .P1; : : : ; Pq/ be a list of vectors of positive integers such that
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length.Pj / D mj for all 1 � j � q and let Z D .Z1; : : : ; Zq/ be a list of vectors
of nonnegative integers such that length.Zj / D nj C n0j. We assume that the triple
.g;nCn0;P/ is semistable (in the sense of Definition 2.30).

For all 1 � j � q , we denote by P 0j D .p1; : : : ; pmj
; 1; : : : ; 1/ the vector obtained

from p by appending n0j 1s and by Z0j D .k1; : : : ; kn/ the vector obtained by erasing
the last n0 entries of Z .

The space Hg;nCn0;P is embedded in Hg;n;P 0 . We denote by R and R0 the vector
spaces of residues of Hg;nCn0;P and Hg;n;P 0 . Let R0 be a vector subspace of R0. The
vector space R is a vector subspace of R0, and we let RDR\R0. We have the series
of embeddings

ARg;Z ;P ,! ARg;Z 0;P ,! AR
0

g;Z 0;P 0 :

Proposition 3.10 Let y0 be a point in AR
g;Z ;P

. Let U be a neighborhood of y0 in
AR

g;Z ;P
. There exists a neighborhood V of y0 in AR

0

g;Z 0;P 0
and a map

�W V ��! U �

� Y
1�j�q
1�i�n0

j

Zj;i
�
�Z;

where:

� Zj;i is a neighborhood of 0 in Ckj;njCi for all 1� j � q and 1� i � n0j , and
Z is a neighborhood of 0 in R0=R .

� If �� is a disk and sW U ���!
�Q

Zj;i
�
�Z is a holomorphic map such that

s.u; 0/D 0, then the family of differentials

zsW U ���! V; .u; �/ 7! ��1.u; s.u; �//;

is a standard deformation of d.zkj;njCiC1/ for all 1� j � q and 1� i � n0j .

Proof We have seen that a neighborhood of U in AR
g;Z 0;P

is isomorphic to the space
U �

Qq
jD1

QnjCn
0
j

iD1 Zj;i . For all 1 � j � q and 1 � i � n0j, the differential at the
marked point xj;njCi is given by d.zknjCi

C a1z
kj;njCi

C � � � / (Lemma 3.4).

Now, for all 1� j � q and 1� i � nj , we choose a meromorphic differential 'j;i with
simple poles at the marked points in such a way that the vectors of residues rj;i of 'j;i
form a basis of R0=R . The residue map AR

0

g;Z 0;P 0
!R0 is a submersion (Corollary 3.8).

Thus, a neighborhood of U �
Q

Zj;i in AR0
g;Z 0;P 0

is naturally identified with some
U �

�Q
Zj;i

�
�Z with Z a neighborhood of 0 in R0=R . The identification is given

by adding a linear combination of the 'j;i .
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Both the deformations of U into U �
Q

Zj;i and the deformations of U �
Q

Zj;i
into U �

�Q
Zj;i

�
�Z are standard deformations at the marked point xj;njCi for all

1� j � q and 1� i � nj .

The isomorphism � is not unique. Our construction depends on the choice of standard
coordinates at the xj;njCi for all 1� j � q and 1� i � nj and on the choice of the
differentials 'j;i with simple poles. However, Proposition 3.10 implies the following
corollary:

Corollary 3.11 If a morphism � satisfies the conditions of Proposition 3.10, then it
defines a local retraction �W V !U such that �ızs D IdU for any holomorphic section
sW U ���!

�Q
Zj;i

�
�Z .

3.3 Dimension of the strata

Let .g;Z ;P ; R/ be quadruple satisfying Assumption 3.1.

Definition 3.12 A completion of Z is a list of q vectors of nonnegative integers
Z01 D .k

0
1;1; : : : ; k

0

1;n01
/; : : : ; Z0q D .k

0
q;1; : : : ; k

0

q;n0q
/ such that

� n0j � nj for all 1� j � q ;
� k0j;i � kj;i for all 1� j � q and 1� i � nj ;
� Z 0 is complete for .g;P/.

We will say that the completion Z 0 is exterior if k0i D ki for all j and all 1� i � nj .
Finally, we will denote by Zm the maximal completion, ie the exterior completion
of Z that satisfies k0j;i D 1 for all j and nj C 1� i � n0j.

If Z 0 is a completion of Z , we denote by � W AR
g;Z 0;P

! AR
g;Z ;P

the forgetful map
of marked point that are not accounted for by Z , ie the restriction of the forgetful
map of marked points � W Hg;n0;P ! Hg;n;P to AR

g;Z 0;P
. We have the following

straightforward lemma:

Lemma 3.13 We have
ARg;Z ;P D

[
Z 0

�.ARg;Z 0;P/;

where the union is over all exterior completions of Z .

Lemma 3.14 If q D 1 and the vector Z is complete for g and P, then the forgetful
map of the differential pW ARg;Z;P ! p.ARg;Z;P / �Mg;nCm is a line bundle minus
the zero section. In particular, PARg;Z;P is isomorphic to its image.
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Proof Let .C; x1; : : : ; xnCm/ be a point of Im.p/. The curve C is smooth and
the divisor !C �

Pn
iD1 ki .xi /C

Pm
jD1 pj .xnCj / is a principal divisor of degree 0.

Therefore, the fiber of p over .C; x1; : : : ; xnCm/ is given by the nonzero multiples of
one differential with fixed orders of zeros and poles.

Proposition 3.15 The space AR
g;Z ;P

is either empty or of codimension

qX
jD1

jZj jC dim.R=R/

in Hg;n;P .

Proof First we assume that q D 1 (connected case), Z is complete and RDR (no
residue condition). The dimension of PAg;Z;P is equal to the dimension of its image
in the moduli space of curves. Then the image of PAg;Z;P is of dimension 2g�2Cn
if P is empty (see [32]) and 2g� 3CnCm otherwise (see [15]). By a simple count
of dimension we can check that the proposition is valid in this specific case.

We no longer assume that q D 1 (but we still assume that Z is complete and
R DR). Then the space Ag;Z ;P is birationally equivalent to

Q
j Agj ;Zj ;Pj

. Thus,
dim.Ag;Z ;P/D

P
dim.Agj ;Zj ;Pj

/ and once again, the proposition holds by a simple
count of dimensions

Now, we still assume that Z is complete; however, we no longer assume that RDR.
We have seen that the residue map AR

g;Z ;P
! R is a submersion; therefore, the

dimension of AR
g;Z ;P

is equal to the dimension of R plus the dimension of the fiber
of the residue map at any point. If we consider the case RDR, then we see that the
dimension of the fiber at any point is dimAg;Z ;P � dimR. Therefore, the dimension
of AR

g;Z ;P
is equal to dimAg;Z ;P � .m�1/Cdim.R/. Thus, the proposition is valid

for all choices of R .

Now let Z be any vector. Let Z 0 be an exterior completion of Z . The map

� W ARg;Z 0;P ! ARg;Z ;P

is quasifinite. Indeed, the preimage of a point .C; x1; : : : ; xnCm; ˛/ is finite: the points
in the preimage correspond to the different orderings of the zeros that are not accounted
for by Z .

The proof of Lemma 3.7 implies that if Ag;Z 0;P is not empty for some exterior
completion then Ag;Zm;P is not empty: indeed, we can always perturb a differential
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to “break up” a zero of order greater than 1. By counting the dimensions, we have
dim.AR

g;Zm;P
/ > dim.AR

g;Z 0;P
/ for all exterior completions Z 0 ¤ Zm . Therefore,

dim.AR
g;Zm;P

/D dim.AR
g;Z ;P

/ and the proposition is proved.

3.4 Fibers of the map pW AR
g;Z;P

!Mg;n;m

Let .g;Z ;P ; R � R/ be a quadruple satisfying Assumption 3.1. Throughout this
section we assume that the triple .g;n;P/ is stable.

If the context is clear, we denote by the same letter the map pW Hg;n;P !Mg;n;m

and its restriction pW AR
g;Z ;P

! p.AR
g;Z ;P

/. We denote by Im.p/D p.AR
g;Z ;P

/ �

Mg;Z ;P its image.

We recall that, by definition, RD
Lq
jD1Rj '

Lq
jD1Cmj�1 (see Section 2.6).

Notation 3.16 Let 1 � j � q ; we denote by prj W R! Rj the projection onto Rj
along

L
j 0¤j Rj 0 . We denote by Rj the space prj .R/.

Remark 3.17 The linear relations that define the space R may involve residues at
poles of different connected components. Thus, in general we have R\Rj ¨Rj .

Let 1 � j � q . We denote by pj the map from A
Rj

gj ;Zj ;Pj
to Mgj ;njCmj

. Finally,
we denote by Im.pj / the image of pj . We have a natural embedding of AR

g;Z ;P
intoQq

jD1A
Rj

gj ;Zj ;Pj
and of Im.p/ into

Qn
iD1 Im.pj /.

The purpose of this section is to state the condition .??/ (see Notation 3.23) that
ensures that the projectivized morphism pW PAR

g;Z ;P
! Im.p/ is birational. This will

be needed in Section 4.4 to describe the boundary divisors of the stratum AR
g;Z ;P

. We
will proceed in two steps: first we consider the case that Z is complete and then a
general Z .

Complete case For now we assume that Z is complete for g and P.

We have seen that the fact that Zj is complete for all 1 � j � q implies that
A
Rj

gj ;Zj ;Pj
! Im.pj / is a line bundle minus the zero section. We denote by Lj

the pullback of this line bundle to Im.p/.

We define the j th evaluation map of residues evj W Lj ! Rj as the morphism of
vector bundles over Im.p/ given by the evaluation of the residues at the j th connected
component. We define the evaluation of residues as the morphism of vector bundles
evD

�Lq
jD1 evj

�
W
Lq
jD1Lj !R.
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Remark 3.18 The evaluation map (ev) and the residue map (res) are not defined on
the same spaces. The first one is a morphism of vector bundles on the space Im.p/
while the second one is defined as a morphism of vector bundles over PAR

g;Z ;P
. If

q D 1, then PAR
g;Z ;P

is isomorphic to its image and the two morphisms are equal.

Proposition 3.19 Suppose that Z is complete. Then the families

pW ARg;Z ;P ! Im.p/
and

zpW ev�1.R/\
� qY
jD1

L�j

�
! Im.p/

are isomorphic. If q � 2, the fiber of p over a point is of dimension 1 if and only if ev
is injective and R\ ev.

L
j Lj / is of dimension 1.

Proof The proposition is straightforward for q D 1. We suppose from now on that
q � 2.

For a point x 2 Im.p/, the fiber of p can be described as follows: it is the choice of a
nonzero differential for each connected component such that the residues at the poles
define a vector in R . Therefore, the fiber over x is the subset of points of

Q
L�j with

residues in R . This fiber is given by ev�1.R/\
Qq
jD1L

�
i .

The fiber of ev�1.R/\
Qq
jD1L

�
j over x 2 Im.p/ is not empty. Indeed, suppose that for

some 1� j � q the space ev�1.R/ is contained in f0g�
L
j 0¤j Lj 0 ; then the residue

condition R imposes that the differential on one of the components is zero, in which
case x is not a point of Im.p/. Therefore, the dimension of ev�1.R/\

Qq
jD1L

�
j is

the same as the dimension of ev�1.R/\
Lq
jD1Lj .

The only point that remains to prove is: if the map ev is not injective then the fiber
of p is of dimension greater than 1. We assume that the map ev is not injective. Then
one of the Lj is mapped to zero for some 1� j � q : indeed, for all 1� j � q , the j th

component of ev is the composition of evj W Lj !Rj with the inclusion of Rj !R;
thus, if a vector in

L
Lj with a nonzero j th entry is mapped to zero in R then the

generator of Lj is mapped to zero in Rj and Lj is mapped to zero in R.

Therefore,

ev�1.R/\
qM

jD1

Lj D Lj ˚

�
ev�1.R/\

M
j 0¤j

Lj 0

�
:

We have seen that ev�1.R/ cannot be contained in Lj�f0g; thus, the second summands
is of positive dimension and ev�1.R/\

Lq
jD1Lj is of dimension greater than 1.

Geometry & Topology, Volume 23 (2019)



Cohomology classes of strata of differentials 1129

Let † be the union of the vector subspaces R\ker.prj / for 1� i�q . If R is of positive
dimension, we denote by P† the image of † in PR . This is the locus of vectors of
residues that vanish on at least one connected component. Suppose that all Rj are of
positive dimension; then †¨R and there is a natural map �W PRnP†!

Qq
jD1 PRj

defined as the projection on each factor.

Notation 3.20 We will say that the tuple of residue vector spaces .R; R; .Rj /1�i�q/
satisfies the condition .?/ if either q D 1 or the two following conditions hold:

� The spaces R and the Rj are of positive dimension.

� There exists an open and dense set U in PR such that the restriction of the
natural map �W PR nP†!

Qq
iD1 PRj to U is finite.

Proposition 3.21 Suppose that Z is complete and that q is at least 2. Then the fiber
of p over a generic point of Im.p/ is of dimension 1 if and only if .R; R; .Rj /1�j�q/
satisfy the condition .?/.

Proof We have already seen that if Rj is reduced to the trivial space, then the map
evW

Sq
jD1Lj ! R is not injective and the fibers of p are all of dimension greater

than 1 (see the proof of Proposition 3.19). We assume that all Rj are nontrivial. For
all j , we denote by A0j � A

R
g;Z ;P

to be the locus of differentials with zero residues
on the j th component. The image of A0j by the residue map lies in R \ ker.prj /
which is of positive codimension in R . Further, the residue map is a submersion; thus,
dim.A0j / < dim.AR

g;Z ;P
/. We will write

A0 D ARg;Z ;P n

q[
jD1

A0j :

The locus A0 is dense in AR
g;Z ;P

. If we assume that the fibers of p are generically
of dimension 1, then p.A0/ is also dense in Im.p/. Therefore, we only need to prove
that a generic point of p.A0/ has fibers of dimension 1 if and only if condition .?/ is
satisfied.

It is easy to check that the residue map sends A0 to R n†. Therefore, the locus p.A0/
is the locus of points such that the map ev defined in the proof of Proposition 3.19
is injective. Thus, a point of p.A0/ has fibers of dimension 1 by p if and only if
R\ ev

�L
j Lj

�
is of dimension 1. Now, R\ ev

�L
j Lj

�
is of dimension 1 if and

only if the preimage under � of the point .L1; : : : ; Lq/ 2
Qq
jD1 PRj is composed of

a unique point.
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Now, the residue map is a submersion from AR
g;Z ;P

to R . Therefore, the map � is
finite on a dense open subset of PRnP† if and only if the fiber of p is of dimension 1
on a dense open set of Im.p/.

3.4.1 General case We no longer assume that Z is complete. We denote by Zm D
.Z1;m; : : : ; Zq;m/ the maximal completion of Z . Further, we denote by

pmW A
R
g;Zm;P

! Im.pm/

the forgetful map of the differential.

Proposition 3.22 We suppose that .R; R; .Rj /1�i�q/ satisfies the condition .?/.
Then we have dim.Im.pm//D dim.Im.p// if and only if for all 1 � j � q we have
dim.ARj

gj ;Zj ;Pj
/� 1� dim.Mgj ;njCmj

/.

Proof We proceed in two steps: first we assume that the base is connected and then
we consider the general case.

Connected case We assume that q D 1. In this case, the “only if” is trivial. Indeed,
PARg;Z;P D dim.Im/.pm/ and dim.Im/.p/�Mg;nCm .

We assume that the dimension of PARg;Z;P is less than or equal to the dimension of
Mg;nCm . We have the commutative diagram

ARg;Zm;P
//

pm

��

ARg;Z;P

p

��

Im.pm/ // Im.p/

where the horizontal arrows are the forgetful map of the zeros that are not accounted
for by Z . We have seen that the image of ARg;Zm;P

is dense in Ag;Z;P . Therefore,
the image of Im.pm/ under the forgetful map of the points that are not accounted for
by Z is dense in Im.p/. Then we have dim.Im.pm// � dim.Im.p//. Now we will
prove that dim.PARg;Z;P /� dim.Im.p//.

We consider the two vector bundles over the moduli space of curves Mg;nCm

KMg;n.P /DR
0��

�
!C

� mX
iD1

pi�nCi

��
; E DR=R˚

� nM
iD1

J hol
i;ki

�
;
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where J hol
i;ki

is the vector space of holomorphic jets of order ki at the marked point xi ,
ie

J hol
i;ki
DR0��.!.�kixi /=!/

(beware the vector space of jets here is not the vector space of polar jets used in
Section 2.2). We have a morphism eW KMg;n.P /! E. The rank of KMg;n.P /

is r1 D g � 1C
P
pi if P is not empty and r1 D g otherwise. The rank of E is

r2 D dim.R=R/C
P
ki . By assumption, we have

dim.PARg;Z;P /D dim.Mg;nCm/C r1� r2� 1� dim.Mg;nCm/:

Let E �Mg;nCm be the locus where e is not injective. We have r1 � r2C 1; thus,
the locus E is of codimension at most r2� r1C 1 because it is the vanishing locus of
r2� r1C 1 minors of the map e . Therefore, the locus E is of dimension greater than
or equal to dim.PARg;Z;P /D dim.Im.pm//.

To complete the proof, we show that Im.p/ is open and dense in E . Let P 0 be a vector
of m positive integers such that P 0 � P. Let Z0 be a vector of n nonnegative integers
such that Z0 �Z . The image of PARg;Z0;P 0 lies in E . Conversely, the locus E is the
union of all the Im.p0/ where p0 is the map from PARg;Z0;P 0 to Mg;nCm for P 0 �P
and Z0 � Z . We have dim.PARg;Z0;P 0/ < dim.PARg;Z;P / � dim.E/ if P 0 < P or
Z0 > Z . Therefore, all irreducible components of Im.p/ have the same dimension
as E and dim.Im.p//D dim.Im.pm//.

Disconnected case Suppose that there exists 1� j � q such that dim.PARj

gj ;Zj ;Pj
/>

dim.Mgj ;njCmj
/. Then the fibers of the map Im.pj;m/! Im.pj / are of positive

dimension. Thus, for all points in Im.p/ the fibers of the map Ag;Z ;P ! Im.p/ are
of positive dimension.

Conversely, suppose that dim.PARj

gj ;Zj ;Pj
/ � dim.Mgj ;njCmj

/ for all 1 � j � q .
Thus, for all 1� j � q , we have dim.Im.pj //D dim.Im.pj;m//D dim.PARj

gj ;Zj ;Pj
/.

Therefore, there exists a dense open subset Uj � PA
Rj

gj ;Zj ;Pj
such that the morphism

Im.pj;m/! Im.pj / is finite over its image. Further, the map PAR
g;Z ;P

!PR and the
maps PA

Rj

gj ;Zj ;Pj
! PRj are submersions. Thus, for all 1� j � q , the image of Uj

under the residue map is an open subset of PRj , which we denote by zUj � PRj .

Now we consider the morphism �W PR nP†!
Q
j Uj . We claim that the preimage

of
Q
j Uj under � is a nonempty open subset in PR . Indeed, if we suppose that

��1
�Q

j Uj
�

is empty, then the image of PR n P† under � is contained in a finite
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union of closed subsets of the form .PRj n zUj /�
Q
j 0¤j PRj 0 for some 1 � j � q .

However, the space PR nP† is irreducible; thus, its image under � is contained in
one such subspace. This would imply that the image of PR nP†! PRj is contained
in a closed subspace and this is not possible (because Rj is the image of the projection
of R onto Rj ).

Putting everything together, the preimage of
Q
j
zUj under the composition of mor-

phisms PAR
g;Z ;P

! PR nP†!
Q
j Rj is an open and dense subspace U :

U � PAR
g;Z ;P

//

��

Im.p/

��Qq
jD1 Uj �

Qq
jD1 PA

Rj

gj ;Zj ;Pj

//
Qq
jD1 Im.pj /

The lower arrow is finite from
Q
j Uj to its image. By construction, the subspace U

is embedded in
Q
Uj . Therefore, the map U ! Im.p/ is finite over its image and

dim.Im.p//D dim.PAR
g;Z ;P

/D dim.Im.pm//.

Notation 3.23 We will say that .g;Z ;P ; R/ satisfies condition .??/ if and only if
the two following conditions are satisfied:

� The vector spaces .R; R; .Rj /1�j�q/ satisfy the condition .?/.

� For all 1� j � q , we have dim.ARj

gj ;Zj ;Pj
/� 1� dim.Mgj ;njCmj

/.

Proposition 3.24 The morphism pW PAR
g;Z ;P

! Im.p/ is birational if and only if
.g;Z ;P ; R/ satisfies the condition .??/.

Proof Proposition 3.21 implies that dim.Im.p// D dim.PAR
g;Z ;P

/ if and only if
.g;Z ;P ; R/ satisfies the condition .??/. Therefore, if pW PAR

g;Z ;P
! Im.p/ is

birational then the condition .??/ is satisfied.

Conversely, if .??/ is satisfied, then there exists a dense open subspace U in Im.p/
such that for any point in U, the fiber of p over this point is finite. Suppose that there
are at least two points in the preimage of a marked curve .C; .xj;i /j;i / 2 Im.p/. Then
there exist two nonproportional meromorphic differentials ˛ and ˛0 supported on C
with orders of zeros and poles prescribed by Z and P and with the same residues at
the poles. Any nonzero linear combination of these two differentials is in AR

g;Z ;P
and

in the preimage of .C; xj;i /. This is a contradiction with the finiteness of the fibers
of p over U.
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4 Boundary components of strata of stable differentials

Let .g;Z ;P ; R �R/ be a quadruple satisfying Assumption 3.1.

Notation 4.1 We denote by xAR
g;Z ;P

and P xAR
g;Z ;P

the Zariski closures of AR
g;Z ;P

and PAR
g;Z ;P

in Hg;Z ;P and PHg;Z ;P , respectively.

In this section we describe the boundary components of xAR
g;Z ;P

. We will see that
these can described with combinatorial objects called P –admissible graphs. We also
describe the subset of boundary divisors among these boundary components.

4.1 Twisted graphs with level structures

We introduce P –admissible graphs here and in the subsequent section, we explain how
they correspond to strata of xAR

g;Z ;P
.

Let � be a semistable graph of type .g;n;P ). We denote by He the set of half-edges
of � which are not legs.

Definition 4.2 A twist on � is a function

I W He! Z

satisfying the following conditions:

� If h and h0 form an edge, then I.h/C I.h0/D 0.

� Let v and v0 be two vertices, and f.h1; h01/; : : : ; .hn; h0n/g be the set of edges
from v to v0. Then either I.hj / D 0 for all 1 � j � n, or I.hj / > 0 for all
1 � j � n, or I.hj / < 0 for all 1 � j � n. We say that v D v0, or v > v0, or
v < v0, depending on the above inequalities.

� The relation � thus defined on vertices is transitive.

For brevity, a semistable graph endowed with a twist function will be called a twisted
graph. If .�; I / is a twisted graph, the above conditions define a partial order on the
set of vertices of � .

Definition 4.3 A level structure on a twisted graph is a function

l W Vertices! Z�;
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compatible with the partial order induced by the twist; ie for all vertices v and v0,

v D v0 D) l.v/D l.v0/; v < v0 D) l.v/ < l.v0/:

We impose that the image of l is an interval containing all integers from 0 to �d and
we call d the depth of the twisted graph. We will denote by V i the set of vertices of
level i .

Definition 4.4 An edge between vertices of the same level will be called a horizontal
edge.

Definition 4.5 A twisted graph with level structure is called P –admissible if all
marked poles of order at least 2 belong to vertices of level 0. For brevity we will call
such graphs admissible graphs.

This definition of P –admissibility implies in particular that unstable vertices can only
be present at the level 0. In the sequel, we will see that P –admissible graphs represents
loci in Hg;n;P , where the differential vanishes identically on the components of negative
levels. As explained in the introduction, the appearance of unstable components on the
level 0 ensures that the poles remains of fixed order.

Remark 4.6 The reader should keep in mind that a stable differential cannot vanish
identically on an unstable component. Indeed, otherwise there would be infinitely
many automorphisms of the curve preserving the differential; this would contradict the
stability condition (see Definition 1.2).

Example 4.7 We represent in Figure 1 an example of admissible graph. Each vertex v
is represented by a circle containing the integer gv . The marked poles and zeros are
represented by legs. A leg corresponding to a pole (respectively a zero) of order k is
marked by �k (respectively Ck ). The twists are indicated on each edge.

Definition 4.8 Let .�; I; l/ be a semistable graph with a twist and a level structure.
We say that .�; I; l/ is a twisted stable graph if � is a stable graph (in the sense of
Definition 1.10).

Definition 4.9 Let .�; I; l/ be a semistable graph with a twist and a level structure.
We say that .�; I; l/ is realizable if for all vertices v of � we have

(10)
X

.j;i/7!v

kj;i �
X

.j;njCi/ 7!v

pj;i C
X
h7!v

I.h/� 1� 2g.v/� 2;
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�3 �2

level 0 1

C1

�1 �2

C1

�1

0

C1

�1

C2

2

C1

�1

C4

level �1 0
C1

�1

0

C2

�2

C3

�3

C2

level �2 1 0

C7 C4

Figure 1: An example of admissible graph of genus 7 for the vectors Z D
.2; 4; 4; 7/ and P D .�3;�2/

where the sums are respectively over marked points corresponding to zeros, marked
points corresponding to poles and half-edges adjacent to v .

The following lemma will be needed later to compare the space of stable differentials
and the incidence variety:

Lemma 4.10 If Z is complete, then there exists a bijection between the set of realiz-
able and admissible graphs and the set of realizable and twisted stable graphs.

Proof To an admissible graph we assign its stabilization. The twists and levels on this
graph are obtained by restriction of the former twists and level functions.

From a twisted stable graph, we construct an admissible graph by adding an unstable
vertex for each marked point corresponding to a pole of order p greater than 1 and
adjacent to a vertex of level < 0. This new vertex is of level 0 and the new edge
between this vertex an the rest of the curve has twists given by Cp�1 and �pC1.
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Example 4.11 Here is the stabilization of the admissible graph of Figure 1:

�2

1

C1

�1

C1

�1

C1

�1

2

C1

�1

�3 C4

0
C1

�1

0

C2

�2

C3

�3

C2

1 0

C7 C4

4.2 Boundary strata associated to admissible graphs

Let .g;Z ;P ; R �R/ be a quadruple satisfying Assumption 3.1. Let .�; I; l/ be an
admissible graph. In this subsection, we assign to this admissible graph a stratum of
abelian differentials A�;I;l �Hg;n;P that lies in the closure of AR

g;Z ;P
. We build this

stratum level by level.

To every level 0 vertex we assign a substack of the corresponding space of differentials.
To every vertex of negative levels we assign a substack of the corresponding moduli
space of curves. The product of these cycles will give us a substack of the space H� by
putting an identically vanishing differential on every component of the curve of negative
level. Thus, our input is .Z ; R/ and an admissible graph .�; I; l/ of type .g;n;P/;
our output is a collection of subspaces of the spaces of differentials (for level 0 vertices)
and of the spaces of curves (for vertices of negative levels).

Levels 0 and �1 We respectively denote by q0 and q1 the numbers of vertices of
levels 0 and �1. Further, we denote by g0 and g1 the lists of genera of vertices of
levels 0 and �1. We determine orders of zeros and poles as follows:
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� For all 1� j � q0 , we construct the vector P 0j by taking the entries of P for all
marked poles on the j th component and a �1 for each horizontal half-edge; we
construct the vector Z0j by taking the entries of Z for all marked zeros carried
by the j th component and I.h/� 1 for each half-edge h to a deeper level.

� For all 1� j � q1 , we construct the vector P 1j by taking I.h/C 1 for all half-
edges to levels 0 and 1 for all horizontal half-edges adjacent to the j th compo-
nent; we construct the vector Z1j by taking the entries of Z for all marked zeros
carried by the j th component and I.h/� 1 for each half-edge to a deeper level.

� We write Zi D .Zi1; : : : ; Z
i
qi
/ and Pi D .P i1 ; : : : ; P

i
qi
/ for i D 0; 1.

Now we define the residue conditions as follows:

� We let hor0 be the number of horizontal half-edges of level and let RH DChor0 .
We denote by R1 the space of residues of the space of stable differentials
Hg1;n1;P1

(where n1 is the determined by the length of entries of Z1/.
� We define

projW R˚RH ˚R1!R1

as the projection along R˚RH.
� We consider the vector subspace R0 DR˚RH ˚R1 , and we define the vector

subspace zR of R0 by the following linear relations:
– rhC r

0
h
D 0 for all horizontal edges .h; h0/.

– For all vertex of level 0, we haveX
p 7!v

rpC
X

h horizontal
h7!v

rhC
X

h to level �1
h7!v

�rh D 0;

where the first sum is over marked poles adjacent to v , the second is over
horizontal edges and the last one is over the edges to level �1 (in this
last sum rh is the value of the residue at the corresponding half-edge of
level �1).

� Finally, we let R0 D ker.proj/\ zR and R1 D proj. zR/.

With these data, we define the level 0 and �1 strata as

A0�;I;l D A
R0

g0;Z0;P0
�Hg0;n0;P0

;

A1�;I;l D p.A
R1

g1;Z1;P1
/�Mg1;n1;m1

D

Y
v2V 1

Mgv;nvCmv
;

where pW Hg1;n1;P1
!Mg1;n1;m1

is the forgetful map.
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Example 4.12 To illustrate the definition of R0 and R1 , we compute all vector spaces
for the following two graphs:

c �c

�a ��b Ca �Cb �a ��b Ca �Cb

Ca ��a Cb ��b Ca ��a Cb ��b

On these two examples we have not represented the genera of the vertices and we have
only represented the legs with poles (thus at level 0). In the first case, RDRD f0g

(there are no poles). In the second case, we assume that RDR'C (we impose no
condition on the residues).

All letters stand for the value of the residue, ie for a coordinate in zR
L

R1 corre-
sponding either to a half-edge or to a marked pole. In the following table we give
the dimensions and equations of all subvector spaces of zR and a presentation of zR1

and R1 :

Vector space Left example Right example

R˚RH ˚R1 f0g˚ f0g˚C2 C˚f0g˚C2

R0 R˚RH ˚R1 R˚RH ˚R1

relations from edges none none

relations from vertices faC b D 0g fc � a� b D 0g

zR faD �; b D�� W � 2Cg
faD �1; b D �2;

c D��1� �2 W .�1; �2/ 2C2g

R1 faD �; b D�� W � 2Cg faD �1; b D �2 W .�1; �2/ 2C2g

R0 f0g f0g

Level �` Let .� 0; I 0; l 0/ be the graph obtained from � by contracting edges between
vertices of levels 0 through �`C 1. The twist on � restricts to � 0 and the level
structure is shifted. Vertices of levels 0 to �`C 1 merge to level 0, level �` vertices
become level �1 vertices, and so on. Therefore, we have the natural identificationY

v2V.�/
l.v/D�`

Mg.v/;n.v/ D

Y
v2V.� 0/
l.v/D�1

Mg.v/;n.v/

and we define A`
�;I;l

as A1
� 0;I 0;l 0

.
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Example 4.13 The contraction of levels 0 and �1 of the admissible graph of Figure 1
gives the following admissible graph with two levels:

�3 �2

2

�1

C1 C3

�3

2

C2

�2

C1

�1

C2

1 0

C7 C4

If we assume here that RDR'C , then we have R0 D f0g while R00 DR .

Notation 4.14 Now that we have defined the A`
�;I;l

for all levels, we let

A�;I;l D
Y
`2Z�

A`�;I;l :

We have a natural morphism of A�;I;l ,!Hg;n;P : the differential is nonzero only on
the level 0 vertices and vanishes identically everywhere else. We will call A�;I;l the
boundary stratum of type .g;Z ;P ; R/ associated to .�; I; l/.

Remark 4.15 The stratum A�;I;l is constructed from an admissible graph .�; I; l/
of type .g;n;P/, a space of residues R �R and q vectors of zeros Z . However, for
simplicity, R and Z do not explicitly appear in the notation.

Remark 4.16 If RDR, then the construction of the space of residues is the translation
of the global residue condition of [2]. For every level �` and every vertex v of level
greater than �` that does not contain a pole, the following condition holds: Let
h1; : : : ; hk denote the half-edges adjacent to v and part of an edge to a vertex of
level �`. Then the sum of residues assigned to this set of half-edges is zero.

Our definition of the Ri is more complicated to state because we need to take into
account any vector subspace R of R.
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4.3 Stratification of xAR
g;Z;P

Let .g;Z ;P ; R �R/ be a quadruple satisfying Assumption 3.1.

Lemma 4.17 Let .�; I; l/ be an admissible graph of type .g;Z ;P ; R/. The locus
A�;I;l lies in the closure of AR

g;Z ;P
. Conversely, if y is a point of xAR

g;Z ;P
then

there exists an exterior completion Z 0 of Z and an admissible graph .�; I; l/ of
type .g;Z 0;P ; R/ such that y lies in �.A�;I;l/, where � W AR

g;Z 0;P
!AR

g;Z ;P
is the

forgetful map of the marked zeros that are not accounted for by Z .

Remark 4.18 The set of admissible and realizable graphs (see Definition 4.9) is finite.
Further, if .�; I; l/ is an admissible graph, then the locus A�;I;l is empty if .�; I; l/
is not realizable. Thus, Lemma 4.17 asserts that xAR

gZ ;P
is stratified by finitely many

strata corresponding to admissible graphs.

Before proving it we will introduce the incidence variety compactification of [2].

Notation 4.19 We suppose that 2gj � 2Cnj Cmj > 0 for all 1� j � q . Then we
denote by KMg;n.P/ the vector bundle

R0��

�
!

� qX
jD1

mjX
iD1

pj;i�j;njCi

��
;

where � W Cg;n;m!Mg;n;m is the forgetful map, ! is the relative cotangent bundle
and the �j;i are the sections of the universal curve (this generalizes Notation 2.19 to
the disconnected case).

As in Section 2, there exists a natural morphism of cones

stabW Hg;n;P !KMg;n.P/:

4.3.1 The image of xAR
g;n;P

under the morphism stab

Definition 4.20 We denote by �Minc
g .Z ;P/R �KMg;n.P/ the image of AR

g;n;P

under the morphism stab. The incidence variety for the tuple .g;Z ;P ; R/ is the
closure of �Minc

g .Z ;P/R in KMg;n.P/.
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The morphism stab induces a map from AR
g;n;P

to �Minc
g .Z ;P/R . We will use the

same notation for the morphism stab and its restriction

stabW xARg;n;P !�Minc
g .Z ;P/R:

Proposition 4.21 If Z is complete, then the map stabW xAR
g;n;P

!�Minc
g .Z ;P/R is

an isomorphism.

Remark 4.22 Beware that this statement is valid only under the hypothesis that Z is
complete. Otherwise, the map stab may have fibers of positive dimension and/or may
not be surjective.

Proof In Section 2 we proved that the following square is cartesian:

Hg;n;P

ˆj;i
//

��

M
1�j�q
1�i�mj

Pj;njCi

��

KMg;n.P/
projj;i

//
M
1�j�q
1�i�mj

Jj;njCi

where Pj;njCi is the cone of principal parts of order pj;i at the i th marked point
of the j th connected component and Jj;njCi is the vector bundle of polar jets of
order pj;i . We recall that we have defined the spaces

zPj;njCi D .Pj;njCi nAj;njCi /[ the zero section;

zJj;njCi D .Jj;njCi n fleading termD 0g/[ the zero section:

We have seen that the map ĵ;i maps PnjCi to zJnjCi and that the restriction of �i;j
to zPj;njCi !

zJj;njCi is an isomorphism (see Lemma 2.17). Thus, the morphism
Hg;n;P ! KMg;n.P/ is an isomorphism from the preimage of

L
zPj;njCi to the

preimage of
L
zJj;njCi .

The spaces xAR
g;n;P

and �Minc
g .Z ;P/R are defined as the Zariski closures of open

subspaces of Hg;n;P and KMg;n.P/. Therefore, we will prove that for all 1� j � i
and 1� i �mj , the image of xARg;n;P (resp. �Minc

g .Z ;P/R ) under ĵ;i (resp. projj;i )
is included in zPj;njCi (resp. zJj;njCi ) to deduce the proposition.

Let us consider a differential .C; ˛/ in xAR
g;n;P

and one of the marked points xj;njCi

corresponding to a pole. There are two possibilities:
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� The point xj;njCi belongs to a stable irreducible component of level 0, in which
case the principal part belongs to PnjCi nAnjCi .

� The point xj;njCi belongs to an unstable rational component. In this case the
differential restricted to this rational component is necessarily given by dw=wpj;i

(the marked point is at 0 and the node at 1). Indeed, this follows from the
assumption that Z is complete: suppose that ˛ has a zero outside the node;
then let B ! xAR

g;n;P
be a irreducible family of differentials with a special

point b0 2 B whose image is the class Œ.C; ˛/� and the image of B n fb0g lies
in AR

g;n;P
. Then there exists a neighborhood U of b0 such that the differential

parametrized by U has an unmarked zero (this follows from Lemma 3.4). This
is contradictory with the assumption that Z is complete (all zeros of differentials
in AR

g;n;P
are at marked points). Therefore, the principal part is equal to 0.

Therefore, the image of xAR
g;n;P

under ĵ;i is included in zPj;njCi . Now, let us consider
a differential in �Minc

g .Z ;P/R , and one of the marked points xj;njCi corresponding
to a pole. Once again, there are two possibilities:

� The point xj;njCi belongs to an irreducible component of level 0. In this case
the differential has a pole of order exactly pj;i at this marked point and the jet
at xj;njCi is in zJj;niCj .

� The point xj;njCi belongs to an irreducible component of level �` < 0. Then
the differential vanishes identically on this component and the jet at xj;njCi

is 0.

Therefore, the image of �Minc
g .Z ;P/R under projj;i is included in zJj;njCi . This

completes the proof.

4.3.2 The image of the A�;I;l under the morphism stab To complete the descrip-
tion of the map stab we describe the image of the strata defined by admissible graphs.

Notation 4.23 Suppose that Z is complete and .�; I; l/ is a realizable stable twisted
graph. Let .� 0; I 0; l 0/ be the corresponding admissible graph. We denote by �Minc

� 0;I 0;l 0

the locus stab.A�;I;l/�KMg;n.P/.

4.3.3 Stratification of �Minc
g .Z;P/

R Recall the main result of [2]:

Lemma 4.24 [2, Theorem 1.3] Suppose that Z is complete and that the triple
.gj ; nj ; Pj / is stable for all 1 � j � q . Let .�; I; l/ be a stable graph. The locus
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�Minc
�;I;l

lies in the closure of �Minc
g .Z ;P/R . Conversely, the space �Minc

g .Z ;P/R

is the union of the �Minc
�;I;l

for all stable graphs .�; I; l/.

Remark 4.25 The statement here is slightly more general than [2, Theorem 1.3].
Indeed, it takes into account possibly disconnected bases and general choices of vector
subspace R �R. However, all arguments in the proof of [2] can be adapted mutatis
mutandis to get the general statement above.

Proof of Lemma 4.17 Suppose that Z is complete and that the triple .gj ; nj ; Pj / is
stable for all 1�j �q . Then, using Lemma 4.24 and Proposition 4.21 we automatically
get

xARg;Z ;P D
[
A�;I;l ;

where the union is taken over all admissible graphs. Therefore, we only need to prove
that the statement of Lemma 4.17 is still valid if we allow unstable base curves and
noncomplete lists of vectors Z .

Unstable basis We assume that Z is complete but we no longer impose that the base
curves are stable. Then, on a rational component with two points, the only possible
configuration is P D .p/ and Z D .p� 2/. This is a closed point in H0;1;.p/ Thus,
the statement of Lemma 4.17 is still valid if we consider an unstable basis.

Noncomplete Z We no longer impose that Z is complete. The space AR
g;Z ;P

is the
union of the �.AR

g;Z 0;P
/ for all exterior completions Z 0 of Z (� being the forgetful

map of the zeros which are accounted for by Z ). Therefore, we have

xARg;Z ;P D
[
�. xARg;Z 0;P/D

[
�.A�;I;l/;

where the last union is over all possible completions and admissible graphs.

4.4 Description of boundary divisors

Let .g;Z ;P ; R � R/ be a quadruple satisfying Assumption 3.1. In the proof of
the main theorem, we will be interested in the vanishing loci of sections of certain
line bundles over xAR

g;Z ;P
. That is why we need to understand the boundary divisors

of xAR
g;Z ;P

. The purpose of this section is to determine the set of admissible graphs
which are associated to strata of codimension 1, ie to divisors.

4.4.1 Bicolored graphs

Lemma 4.26 Let .�; I; l/ be an admissible graph. The codimension of xA�;I;l in
xAR

g;Z ;P
is greater than or equal to the depth of the level structure l .
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Proof Let .�; I; l/ be an admissible graph of depth d . Let .� 0; I 0; l 0/ be the admissi-
ble graph obtained by merging the levels 0 and �1. The locus A�;I;l lies in the closure
of A� 0;I 0;l 0 . Indeed, this follows from Lemma 4.17 applied to the stratum A0

� 0;I 0;l 0
: the

subgraph of .�; I; l/ obtained by keeping only vertices of levels 0 and �1 determines
a boundary stratum of A0

� 0;I 0;l 0
. Thus, A�;I;l is of dimension at most dim.A�;I;l/�1.

Therefore, every time we merge two levels we decrease the codimension at least by 1.

Lemma 4.27 Let .�; I; l/ be an admissible graph of depth 1. The codimension of
xA�;I;l in xAR

g;Z ;P
is greater than the number of horizontal edges.

Proof We can independently merge vertices along horizontal edges (see “classical
plumbing” in [2]). At every merging, we decrease the codimension by at least 1.

It follows from Lemmas 4.26 and 4.27 that a nontrivial admissible graph corresponding
to a divisor of AR

g;Z ;P
is necessarily of depth at most 1. Moreover, if it is of depth 1

then it has no horizontal edges.

We recall from Section 4.2 that the boundary stratum associated to a graph of depth 1
is equal to p.AR

1

g1;Z1;P1
/ �AR

0

g0;Z0;P0
, where p is the map from AR

1

g1;Z1;P1
to the

moduli space of curves Mg1;n1;m1
.

Notation 4.28 We denote by Bic.g;Z ;P ; R/ the set of realizable and admissible
graphs with two levels and no horizontal edges. We will call such graphs bicolored
graphs.

We say that a bicolored graph .�; I; l/ satisfies condition .??/ if .g1;Z1;P1; R1/
satisfies the condition .??/ (see Notation 3.23). We denote by Div.g;Z ;P ; R/ the
set of bicolored graphs satisfying condition .??/.

Remark 4.29 Elements of Bic.g;Z ;P ; R/ are twisted graphs with level structures.
However, the level structure of a bicolored graph is completely determined by the
twists. This is why we will denote by .�; I / the elements of Bic.g;Z ;P ; R/.

Proposition 4.30 Let .�; I / be a bicolored graph in Bic.g;Z ;P ; R/. The locus A�;I
is of codimension 1 in xAR

g;Z ;P
if and only if .�; I / belongs to Div.g;Z ;P ; R/.

Proof Let .�; I /2Bic.g;Z ;P ; R/. The proposition follows easily from the equation

(11) dim.AR
0

g0;Z0;P0
/C dim.AR

1

g1;Z1;P1
/D dim.ARg;Z ;P/:
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Indeed, A�;I is of codimension 1 in AR
g;Z ;P

if and only if dim.p.AR
1

g1;Z1;P1
// D

dim.PAR
1

g1;Z1;P1
/, ie if and only if .g1;Z1;P1; R1/ satisfy condition .??/ (see

Proposition 3.22).

Let us prove (11). We assume first that Z is complete for .g;P/ and the dimension
of AR

g;Z ;P
is given by

�Pq
jD1.2gj � 1Cnj /

�
C dim.R/. Therefore, we have

dim.ARg;Z ;P/� dim.AR
0

g0;Z0;P0
/� dim.AR

1

g1;Z1;P1
/

D

� qX
jD1

.2gj � 1Cnj /

�
C dim.R/� dim.R1˚R0/

�

� X
v2V 0

.2gv � 1Cnv/C
X
v2V 1

.2gv � 1Cnv/

�
D 2h1.�/� qCCard.V .�//�Card.E.�//C dim.R/� dim.R1˚R0/

D h1.�/C dim.R/� dim.R1˚R0/:

Thus, we will prove that dim.R1˚R0/D dim.R/C h1.�/.

Let us recall the construction of R0 and R1 . In the absence of horizontal edges, we
consider the vector space R˚R1 and the projection projW R˚R1!R1 along R.
We also consider the vector subspace zR � R˚R1 �R˚R1 defined by the linear
relations X

h2H.�/;h7!v

rh D 0

for all vertices v of level 0 (the sum is over all residues at half-edges adjacent to v ). We
defined R0D ker.proj/\ zR and R1D proj. zR/. Thus, dim.R0/Cdim.R1/D dim. zR/.
Therefore, we need to prove that dim. zR/D dim.R/C h1.�/.

To prove this equality we use the graph � 0 obtained from � by adding one vertex per
marked pole and one edge between this vertex and the vertex that carries the marked
pole. We consider the spaces C0 D CV.� 0/ and C1 D CE.� 0/ . We have the chain
complex d W C1! C0 .

The space R is a subspace of C0 : indeed, the space R is a subspace of the subspace
of R spanned by the vertices in V.� 0/ n V.�/. The space zR is naturally identified
with d�1.R/. Therefore, dim. zR/D dim.R/C dim.ker.d//D dim.R/C h1.�/.
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If Z is not complete, then we consider Zm the maximal completion of Z . Then (11)
still holds by

dim.ARg;Z ;P/D dim.ARg;Zm;P
/D dim.AR

0

g0;Z0;m;P0
/C dim.AR

1

g1;Z1;m;P1
/

D dim.AR
0

g0;Z0;;P0
/C dim.AR

1

g1;Z1;P1
/:

4.4.2 Classification of boundary divisors

Notation 4.31 Let 1� j � q and 1� i � `.Zj /. We denote by Zj;i the list of vectors
obtained from Z by increasing the i th coordinate of Zj by one.

Proposition 4.32 Let Z 0 be a completion of Z and let .�; I; l/ be an admissible
graph such that D D �. xA�;I / is a divisor of xAR

g;Z ;P
(where � is the forgetful map of

the points), then D is necessarily of one of four kinds:

(1) the stratum xA�;I for .�; I / 2 Div.g;Z ;P ; R/;

(2) the locus xAR
g;Zj;i ;P

for some label .j; i/ corresponding to a marked point which
is not a pole;

(3) the locus xA�;I;l for a P –admissible graph of depth 0 with a unique horizontal
edge;

(4) the locus xAR
0

g;Z ;P
for the vector subspace R0 � R defined by the condition

resxj;njCi
D 0 for a choice of j and i such that the point xj;njCi corresponds

to a pole of order at most �1.

Proof Let Z 0 be a completion of Z . If Z 0 is not the maximal completion then
dim.AR

g;Z 0;P
/ < dim.AR

g;Z ;P
/. The only possible admissible graph is the trivial and

we obtain a divisor of type 2.

We suppose now that Z 0 D Zm ; then .�; I; l/ is of depth less than or equal to 1 by
Lemma 4.26. If .�; I; l/ is of depth 0 then .�; I; l/ has at most one horizontal edge
(type 3). If .�; I; l/ is of depth 1 then either all or none of the edges of .�; I; l/ are
contracted under the forgetful map of the marked points which are not accounted for
by Z (otherwise this graph does not satisfy condition .??/). If none of the edges are
contracted, then D is a divisor of type 1. If all edges are contracted then we get a
divisor of type 2 or 4 (depending on whether there is a leg corresponding to a pole of
order 1 on a level �1 vertex or not).
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Proposition 4.33 Let D1 and D2 be two divisors obtained from an admissible graph
as in Proposition 4.32. Then D1 and D2 have no common irreducible components.

Proof The divisors D1 and D2 can be of one of the four types described in Proposition
4.32. We will prove this proposition by considering every possible case:

Type 1 Let .�; I / and .� 0; I 0/ in Div.g;Z ;P ; R/ be such that A�;I and A� 0;I 0 have
a common irreducible component D. The component D determines a semistable graph
by taking the dual graph of a any point of D\A�;I ; therefore, � D � 0. Moreover, the
vertices of � with identically zero differentials are the vertices of level �1. Therefore,
the level structure (or more precisely the signs of the twists) are the same for .�; I /
and .� 0; I 0/. Now the twist at an edge is determined by the vanishing order of the
differential at the corresponding node on the component of level 0 for any point in
D \A�;I . Therefore, .�; I / D .� 0; I 0/. Thus, divisors of type 1 have no common
irreducible components.

Types 2 and 4 The underlying generic curve of the divisors of type 2 or 4 is a curve
without singularities; therefore, divisors of type 2 or 4 do not intersect divisors of
type 1 or type 3. Now the differentials of the generic differentials of two divisors of
type 2 have different vanishing order at two of the marked points (either a marked zero
or a marked pole of order �1).

Type 3 Two divisors of type 3 are distinguished by the topological types of a generic
curve. Further, a divisor of type 3 is distinguished from a divisor of type 1 because
none of the components carries a vanishing differential in a divisor of type 3.

5 Computation of classes of strata

Let .g;Z ;P ; R �R/ be a quadruple satisfying Assumption 3.1. The purpose of this
section is to prove the following generalization of Theorem 1 stated in the introduction.

Theorem 4 Let .g;Z ;P ; R/ be a quadruple satisfying Assumption 3.1. The Poincaré-
dual class of P xAR

g;Z ;P
2H�.PHg;n;P ;Q/ is tautological (in the sense of Definition

2.36) and is explicitly computable.

Theorems 1, 2 and 3 will be deduced from Theorem 4 at the end of the section. The
most technical result involved in the proof of Theorem 4 is the induction formula for
the classes ŒP xAR

g;Z ;P
� (see Section 5.2).
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5.1 A meromorphic function on xAR
g;Z;P

Let 1� j � q and 1� i � nj . Let ki;j be the i th entry of Zj . We consider the line
bundle

O.�1/˝Lkj;iC1

j;i

ˇ̌
AR

g;P;Z
' Hom.O.�1/;Lkj;iC1

j;i /
ˇ̌
AR

g;P;Z
;

where Lj;i is the cotangent line bundle to the i th marked point of the j th connected
component. Let sj;i be the holomorphic section of the line bundle

Hom.O.�1/;Lkj;iC1

j;i /
ˇ̌
AR

g;P;Z

that maps a differential to its .kj;iC1/st –order term at the i th marked point of the
j th connected component.

Lemma 5.1 The section sj;i vanishes with multiplicity 1 along P xAR
g;Zj;i ;P

.

Proof Let y0 D .C; ˛;Z.y0/[P.y0// be a point of AR
g;Zj;i ;P

, where we denote by
P.y0/� C be the set of poles of ˛ and Z.y0/� C be the set of marked zeros of C.
Further, we denote by Z0.y0/� C be the set of nonmarked zeros.

Let W=Aut.y0/ be a contractible neighborhood of y0 . Up to a choice of a smaller W ,
in the proof of Lemma 3.7, we constructed the three maps

ˆ1W W !H 1.C nP.y0/; Z.y0/[Z
0.y0/;C/;

ˆ2;x W W ! Zkx for all x 2Z.y0/;

ˆ3;x W W ! zZkx�1 for all x 2Z0.y0/;

where kx is the order of ˛ at x (be it a marked or nonmarked zero) and where Zk is
a domain in Ck containing 0. These maps are not uniquely determined; however, we
saw in the proof of Lemma 3.7 that the map ˆ1 �

Q
x2Z.y0/

ˆ2;x �
Q
x2Z0.y0/

ˆ3;x

is a local biholomorphism.

Now we consider the marked point xj;i . We let

ˆ.j;i/ Dˆ2;xj;i and ẑ .j;i/ D

Y
x2Zy0

nfxj;i g

ˆ2;x :

We recall that the map ˆ.j;i/ is defined as follows: for all points s in a neighborhood
of y0 , the differential representing y is given in neighborhood of the marked point
xj;i .y/ by

˛ D .zkj;iC1C aki;j
zkj;i C � � �C a0/ dz
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(the marked point being at z D 0); then we define ˆ2.y/D .a0; : : : ; aki;j
/ 2 Zkj;iC1

(this definition is unique up to choice of a .kj;iC2/nd root of unity).

Then, with this parametrization we have

W \ARg;Zj;i ;P
D .ˆj;i � ẑ j;i /�1

� Y
x2Z.y0/

f0g

�
;

W \ARg;Z ;P D .ˆ
j;i
� ẑ

j;i /�1
�
.0; : : : ; 0; �/�

Y
x2Z.y0/nfxj;i g

f0g

�
:

In other words, the coordinate akj;i
is a transverse parameter to the divisor AR

g;Zj;i ;P

in AR
g;Z ;P

. We obviously have sj;i .y/D akj;i
. Therefore, the vanishing order of sj;i

along PAR
g;Zj;i ;P

is equal to 1.

Notation 5.2 We denote by Bic.g;P ;Z ; R/j;i � Bic.g;P ;Z ; R/ the subset of
bicolored graphs such that the i th marked point of the j th connected component
belongs to a level �1 vertex and we denote by Div.g;P ;Z ; R/j;i the intersection of
Bic.g;P ;Z ; R/j;i and Div.g;P ;Z ; R/.

Lemma 5.3 The divisors contained in the vanishing locus of sj;i are exactly the
divisors corresponding to admissible graphs in Div.g;P ;Z ; R/j;i and the divisor
P xAR

g;Zj;i ;P
. No two of these divisors have a common irreducible component.

Proof This is a consequence of Propositions 4.32 and 4.33.

5.2 Induction formula

Let .g;Z ;P ; R �R/ be a quadruple satisfying Assumption 3.1. Let 1� j � q and
1 � i � nj . We recall that we denote by Zj;i the list of vectors obtained from Z

by increasing kj;i by 1. Further, as in the previous section, we denote by Lj;i the
cotangent line to the i th marked point on the j th connected component of the curve
and let  j;i D c1.Lj;i / 2H 2.PHg;n;P ;Q/.

5.2.1 Multiplicity of .�; I/

Definition 5.4 Let .�; I / 2 Bic.g;P ;Z ; R/. The multiplicity of .�; I / is defined as

m.I/D
Y
h!V 0

I.h/;
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where the product runs over the half-edges which are not legs, pointing to vertices of
level 0. The least common multiple and the group of roots of the twist are

L.I /D LCM.fI.h/gh!V 0/; GI D

� Y
h!V 0

ZI.h/

�.
ZL.I/:

5.2.2 Locus of generic points Let .�; I / 2 Div.g;Z ;P ; R/. We recall that

A�;I D p.A
R1

g1;Z1;P1
/�AR

0

g0;Z0;P0
;

where pW AR
1

g1;Z1;P1
!Mg1;n1;m1

is the forgetful map. The condition .??/ ensures
that there exists an open dense locus Agen

1 � A
R1

g1;Z1;P1
such that the map pW Agen

1 !

p.A
gen
1 / has fibers of dimension 1 (see Proposition 3.24). Then we set

A
gen
�;I D A

gen
1 �A

R0

g0;Z0;P0
:

This open locus of generic points will be important for us because the map

pW A
gen
1 �A

R0

g0;Z0;P0
! A

gen
�;I D p.A

gen
1 /�AR

0

g0;Z0;P0

is a line bundle minus the zero section.

Notation 5.5 We denote by pW N�;I ! A
gen
�;I this line bundle.

5.2.3 Induction formula We finally have all elements to state the main result of the
paper.

Theorem 5 In H�.PHg;n;P ;Q/ we have

(12) ŒP xARg;Zj;i ;P
�D

.�C .kj;i C 1/ j;i / � ŒP xA
R
g;Z ;P ��

X
.�;I /2Div.g;P;Z ;R/j;i

m.I/ŒP xA�;I �

if 2gj � 2Cnj Cmj > 0, or

(13) ŒP xARg;Zj;1;P
�D

p�k�2

p�1
� � ŒP xARg;Z ;P �

if gj D 0, Zj D .k/ and Pj D .p/.

Proof of (12) As in Section 5.1, we consider the line bundle Hom.O.�1/;Lkj;iC1

j;i /!

P xAR
g;Z ;P

. Its first Chern class is equal to �C.kj;iC1/ j;i . Moreover, this line bundle
has a global section sj;i which maps a differential to its .kj;iC1/st –order term at the
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marked point .j; i/. In Lemma 5.1 we showed that sj;i vanishes along P xAR
g;Zj;i ;P

with multiplicity 1. In Lemma 5.3 we showed that the remaining vanishing loci of sj;i
are supported on the P xA�;I for .�; I / of Div.g;Z ;P ; R/j;i . Therefore, we deduce
that

.�C .kj;i C 1/ j;i / � ŒP xA
R
g;Z ;P �D ŒP xA

R
g;Zj;i ;P

�CZ;

where Z is a cycle supported on the union of P xA�;I for .�; I / 2 Div.g;P ;Z ; R/j;i .

Now we claim that the vanishing order of sj;i along the locus PA�;I is equal to m.I/
(see Definition 5.4). Lemma 5.6 below implies this statement and thus equation (12).

Lemma 5.6 Let .�; I / be a divisor graph in Div.g;Z ;P ; R/j;i . Let y0 2 PAgen
�;I .

Let � be an open disk in C containing 0 and parametrized by � . There exists an open
neighborhood U of y0 in PAgen

�;I together with a map �W U ���GI ! PHg;n;m;P

satisfying:

� The restriction �jU�0�g is the identity on U for all g 2GI .

� The image of the restriction �j�¤0 lies in the open stratum PAR
g;Z ;P

.

� For all g 2 GI , the section sj;i restricted to �.U � � � g/ vanishes along
�.U � 0�g/ with multiplicity L.I /.

� The map �W U ���GI ! P xAR
g;Z ;P

is a degree 1 parametrization of a neigh-
borhood of U in P xAR

g;Z ;P
.

The proof of Theorem 5 immediately follows from Lemma 5.6 because the vanishing
order of sj;i along P xA�;I is equal to

L.I / �Card.GI /Dm.I/:

Proof of Lemma 5.6 We prove the lemma in two steps: first we will prove the first
three points of the lemma and then we will prove that � is a parametrization of degree 1
of a neighborhood of U in AR

g;Z ;P
.

Proof of the first three points For the sake of clarity we will successively prove the
first three points at three levels of generality: first for a divisor graph with one edge,
then for divisor graph with R1 D f0g and finally in full generality.

Bicolored graph with one edge For the moment we place ourselves in the simplest
case: .�; I / is an admissible graph with two vertices, one at level 0 and one at level �1.
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We suppose that there is only one edge with a twist given by k > 0. Let y0 be a point
of PAgen

�;I . Let U be an open neighborhood of y0 in PAgen
�;I . A point y of U is given

by
.ŒC 0�; ŒC 1�; xx0; xx1; Œ˛0�/;

where C 0 and C 1 are the curves corresponding to the two vertices of the graph, xx0

and xx1 are their marked point sets, ˛0 is a differential on the curve C 0 and Œ˛0�
its equivalence class under the C�–action. More precisely, we denote by ˛0.y/ a
nonvanishing section of the line bundle O.�1/ over U. (Also recall that on C 1 the
differential vanishes identically.)

The condition that y 2 Agen
�;I implies that the curve C 1 carries a unique meromorphic

differential ˛1 with zeros and poles of prescribed multiplicities at the marked points,
up to a scalar factor. Let ˛1.y/ be a nonvanishing section of the line bundle N�;I , ie
a choice of the scalar factor for each point y .

At the neighborhood of the node, the curves C 1 and C 0 have standard coordinates
z and w such that ˛0 D d.zk/ and ˛1 D d.1=wk/. The local coordinates z and w
are unique up to multiplication by a kth root of unity. We fix one such choice in a
uniform way over U. We define a family of curves C.y; �/ over U �� by smoothing
the node between C 0 and C 1 via the equation zw D � , where � is the coordinate on
the disc �, and z and w are as above. The differentials ˛0 and �k˛1 automatically
glue together into a differential on C.y; �/.

The deformation that we have constructed does not depend on the choice of standard
coordinates z and w . For instance, if we multiply z by a kth root of unity � , the
equation of the deformation becomes zw D �� , which is isomorphic to the original
deformation under a rotation of the disc �.

The section sj;i vanishes with multiplicity k along the locus defined by �D 0: indeed,
we have explicitly

sj;i .y; �/D �
k
�˛1.y/:

Bicolored graph .�; I/ with R1 D f0g We suppose now that the space R1 is trivial
(residues at the nodes between vertices of levels 0 and �1 are equal to 0). A point y
in U still determines

.ŒC 0�; ŒC 1�; xx0; xx1; Œ˛0�; Œ˛1�/;

where ˛0 and ˛1 are sections of O.�1/ and N�;I as in the previous paragraph.
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Let e be an edge of � . We denote by ke the positive integer equal to jI.h/j for any
of the two half-edges of e . Let ze and we be choices of standard coordinates in a
neighborhood of the node corresponding to e , ie ˛0 D d.zke

e / and ˛1 D d.1=wke
e /.

This choice of standard coordinates being fixed for all edges, we choose, on top of that,
a .ke/th root of unity �e for each edge e .

We define a family of curves C.y; �/ over U �� by smoothing the node corresponding
to an edge e of � via the equation zewe D .�e�/L.I/=ke , where � is the coordinate
on the disc �. The differentials defined by ˛0 and by �L.I/˛1 automatically glue
together into a differential on C.y; �/.

A multiplication of � by a L.I /th root of unity � gives an isomorphic deformation.
Thus, two choices of roots .�e/e2Edges and .�0e/e2Edges give isomorphic deformations
if �0e D �

L.I/=ke�e for all edges. The vanishing multiplicity of sj;i along the locus
defined by � D 0 is equal to L.I /.

General bicolored graph .�; I/ We no longer impose restrictions on R1 . We still
define

.ŒC 0�; ŒC 1�; xx0; xx1; ˛0; ˛1/;

as above. Moreover, we define the section r by

r.y/D .re.y//e2Edges;

where re.y/ is the residue of ˛1 at the node of C 1 corresponding to the edge e . For
every edge e , we fix a choice of standard coordinates of ze and we in a neighborhood
of the node corresponding to e , ie coordinates satisfying ˛0 D d.z

ke
e / and ˛1 D

d.1=w
ke
e /C re.y/dwe=we .

Using Proposition 3.10, we get a family of differentials . zC 0; xx0; z̨0/ parametrized by
U �� such that

� when � D 0, we have .C 0; xx0; ˛0/D . zC 0; xx0; z̨0/;

� the zeros of the differential which are not at the marked points corresponding to
nodes are of fixed orders;

� the differential z̨0 has at most simple poles at the nodes of zC 0 and the residue
at the node corresponding to the edge e is equal to ��L.I/re.y/;

� the vector of residues at the poles of z̨0 lies in R ;

� for each node corresponding to an edge e with a twist ke , the family of differen-
tials defined by U �� is a standard deformation of d.zke

e / (see Definition 3.5).
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We use the fact that the family parametrized by U �� is a standard deformation
of d.zke

e / to apply Proposition 3.6. At each node e the differential z̨0 can be written
in the form d.z

ke
e /� �

L.I/r.u/dze=ze in any annulus contained in a neighborhood of
the node. Therefore, we can still glue the two components together along this annulus
with the identification zewe D �e�L.I/=ke for any choice of the .ke/th root of unity �e .
The end of the proof is the same as for divisor graphs with trivial residue conditions.

Proof of the fourth point Now we will prove that the map �W U ���GI!P xAR
g;Z ;P

is a degree 1 parametrization of a neighborhood of U in P xAR
g;Z ;P

.

First we prove that the image �.U ���GI / covers entirely a neighborhood of U
in AR

g;Z ;P
. Let y0D .C DC0[C1; xx0; xx1; ˛0/ be a point in Agen

�;I . Let Q�W �! xAg;Z;P
be a family of differentials such that Q�.0/ D y0 and Q�.�/ 2 AR

g;Z ;P
for � ¤ 0. We

denote by � W C ! � the induced family of curves and by ˛ the induced family of
differentials on the fibers of C!�.

Let e be a node of C with a twist of order ke . Let e be a simple loop in the curve
C0 around the node e . Let We be a neighborhood of e in C such that We \��1.�/
is an annulus for any � small enough. Now, the differential ˛0 is given by d.zke

e / in a
standard coordinate. Thus, the differential ˛j��1.�/ is given by d.zke

e /C�.�; ze/dze

and we denote by re.�/ the integral of �.�; ze/dze along e . We consider the dif-
ferential ˛e.�/D dzeC�.�; ze/dze � re.�/dze=ze . We fix a point p in the annulus
We \ �

�1.�/, the function f W z 7!
�R z
p ˛e

�1=ke is uniquely determined for small
values of � . This determines a coordinate (that we will still denote ze ) such that
˛0 D ze

ke dze �'.�; ze/dze=ze with ' holomorphic and thus a standard deformation
of ˛0 . Proposition 3.6 implies that there exists a coordinate ze on this annulus such
that ˛j��1.�/ D d.z

ke
e /C re.�/dze=ze .

We fix � small enough that the coordinates ze are defined for all edges e . We cut
the curve ��1.�/ along simple loops contained in We . This gives two (possibly
disconnected) curves with boundary C open

0 and C open
1 . We “plug” the holes of C open

0

with disks parametrized by the coordinate ze and the holes of C open
1 with disks with

coordinate 1=ze . This determines two curves C0.�/ and C1.�/. On both C0 and C1 ,
the local chart used to “plug” the holes allow us to define differentials ˛0.�/ and ˛1.�/.

The differential ˛1.�/ has a pole of order ke C 1 at we D 0; thus, .C1; xx1; ˛1/.�/
is an element of AR

1

g1;Z1;P1
. Now, at the level 0, we use Corollary 3.11: in a neigh-

borhood of y0 we can apply the retraction �. The point �..C0; xx0; ˛0/.�// is a point
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of AR
0

g0;Z0;P0
. Therefore, we define

y.�/D .�.C0; xx0; ˛0/; .C1; xx1; ˛1//.�/ 2 A
gen
�;I :

For all � in a neighborhood of 0, the point Q�.�/ lies in the deformation of y.�/ by the
family � restricted to y.�/��� g for some g 2 GI (in fact here g D 1 because of
the choices of the parameters around y0 that we have fixed).

To finish the proof of the fourth point, we need to prove that the parametrization is of
degree 1. For this, we once again use the retraction � defined in Corollary 3.11. We
have �ı �D IdU ; thus, we only need to prove that for all y 2U, the family � restricted
to y ���GI is of degree 1. We consider this family in the moduli space of curves,
ie let

�0W ��GI !Mg;n;m; ��g 7! p.�.y; �; GI //:

This family is of degree 1. Indeed, the stack M� is regularly embedded in Mg;n;m

and its normal bundle is the direct sum of the Th˝Th0 for all edges e D .h; h0/ of � .
Thus, the family �0 is given by the family

�0W ��GI !
M

.h;h0/2Edges

Th˝Th0 ; .�; .�e/e2Edges/ 7! .�e�
L.I/=ke /e2Edges;

which is of degree 1.

Proof of formula (13) We have seen that the space of differentials on an unstable
component is a weighted projective space parametrized by

Œwp�1C a1w
p�2
C � � �C ap�2w�

dw

w
;

where the weight of aj is j=.p� 1/. The fact that the order of the point x is kj;i is
equivalent to the vanishing of the terms ap�2; : : : ; ap�kj;i�3 . Therefore, the class of
ŒP xAR

g;Zj;i ;P
� is the closure of the vanishing locus ap�kj;i�2 . Moreover, we can easily

check that ap�1
p�kj;iC1

is a global section of O.�1/p�kj;iC1 .

5.3 Class of a boundary divisor

Let .g;Z ;P ; R�R/ be a quadruple satisfying Assumption 3.1. We want to compute
the Poincaré-dual class of the locus associated to an element of Div.g;P ;Z ; R/.
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5.3.1 Decomposition of the morphism A�;I !Hg;Z;P Let .�; I / be an admis-
sible graph in Bic.g;P ;Z ; R/ (this graph may be a divisor or not). We recall that the
semistable graph � determines a stratum

�#
� W H� DHR�

g� ;n� ;P�
!Hg;n;P

(see Section 2.7).

Remark 5.7 Beware that H� is purely determined by � (and not I ). However,
the twist I determines the components that are of level �1 and the P –admissibility
condition implies that these components do not carry marked poles. Therefore, the
poles on these components are of order at most �1 and only at the marked points that
will be mapped to the branches of nodes.

We define the linear subspace R�� � R� , as the space of vectors in R� defined by
the condition: all residues of poles on components of level �1 (or equivalently at the
nodes) vanish.

Now, we have seen that .�; I / defines the space

A�;I ' A
R0

g0;Z0;P0
�p.AR

1

g1;Z1;P1
/ ,!Hg0;n0;P0

�Mg1;n1;m1

(see Notation 4.14 for the definitions of gi , Zi , Pi and Ri ). We denote by zA�;I the
space on the right-hand side.

With this notation, we have the isomorphism

HR
�
�

g� ;n� ;m� ;P�
'Hg0;n0;P0

�

� Y
v2V 1

Hgv;nvCmv

�
;

where, in the second product, nv and mv are the lengths of Zv and Pv , respectively,
and we recall that pvW Hgv;nvCmv

!Mgv;nvCmv
is the Hodge bundle. Indeed, a

differential in HR
�
�

g� ;n� ;m� ;P�
is a differential on the normalization of a curve in �#

�.H�/
such that the differential has no residues (thus no poles) at the branches of a node.
Therefore, the restriction of this differential to components of level 0 is a point in
Hg0;n0;P0

(without residue condition at the marked poles), and its restriction to the
component of level �1 is an holomorphic differential (thus a point in the product of
the Hodge bundles).

All in all we have the sequence of embeddings

A�;I ,! zA�;I ,!HR
�
�

g� ;n� ;m� ;P�
,!H� ;

where the second one is given by the zero section embedding of Mg1;n1;m1
in the
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Hodge bundle. All these embeddings are compatible with the C�–action; therefore,
we get the sequence of embeddings

PA�;I ,! P zA�;I ,! PHR
�
�

g� ;n� ;m� ;P�
,! PH� :

From here, we will compute the Poincaré-dual cohomology class of the element P xA�;I
in H�.PH� ;Q/ by computing successively the class of each of these substacks in
H�.PH� ;Q/.

5.3.2 The Poincaré-dual class of P zA�;I We let

d� D dim.R�/� dim.R��/:

The Poincaré-dual class of PHR
�
�

g� ;n� ;P�
in H�.PH� ;Q/ is equal to �d� (see Lemma

2.27).

Now we consider the morphism  W PHR
�
�

g� ;n� ;P�
!Mg1;n1;m1

(it is the composition
of a projection the forgetful map of the differential). The restriction of a differential in
PHR

�
�

g� ;n� ;P�
gives rise to a morphism of vector bundles

‰W O.�1/ //

��

 �
�L

v2V1
Hgv;nvCmv

�
uu

PHR
�
�

g� ;n� ;m� ;P�

The morphism ‰ can equivalently be seen as a section of

O.1/˝ �
� M
v2V1

Hgv;nvCmv

�
:

The vanishing locus of ‰ is the locus of differentials whose restriction to level �1
components is identically zero, ie P zA�;I (with the reduced closed substack structure).
The Poincaré-dual class of this locus in H�.PH� ;Q/ is then given by

�d� �

Y
v2V1

.�gv C�1�
gv�1C � � �C�gv

/:

5.3.3 The Poincaré-dual class of P xA�;I We have the natural isomorphism

P zA�;I ' PHg0;n0;P0
�Mg1;n1;m1

:

We denote by ˆ0 and ˆ1 the projections on both factors.
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Definition 5.8 The class a�;I 2H�.PHg;n;P ;Q/ is defined by

1

jAut.�; I /j
�#
��

�
�d� �ˆ�1.p�ŒP xA

R1

g1;Z1;P1
�/ �ˆ�0ŒP xA

R0

g0;Z0;P0
�

�

Y
v2V 1

.�gv C�1�
gv�1C � � �C�gv

/

�
;

where Aut.�; I / is the group of automorphisms of � preserving the twists at the edges.

Proposition 5.9 Let .�; I / 2 Bic.g;P ;Z ; R/. We have:

(1) If .�; I / is divisor graph then a�;I D ŒP xA�;I �.

(2) If .�; I / is not a divisor graph then a�;I D 0.

(3) If ŒP xAR
0

g0;Z0;P0
� and ŒP xAR

1

g1;Z1;P1
� are tautological and can be explicitly com-

puted, then the same is true of a�;I .

Proof of the first and second points If .�; I / is a divisor graph then

pW PAR
1

g1;Z1;P1
! Im.p/

is of degree 1; thus, p�ŒPAR
1

g1;Z1;P1
�D Œp.PAR

1

g1;Z1;P1
/�. Therefore, by construction,

a�;I is the Poincaré-dual class of P xA�;I .

If .�; I / belongs to Bic.g;P ;Z ; R/ nDiv.g;P ;Z ; R/ then the fibers of

pW PAR
1

g1;Z1;P1
! Im.p/

are of positive dimension and p�ŒP xAR
1

g1;Z1;P1
�D 0.

Proof of the third point We assume that ŒP xAR
0

g0;Z0;P0
� and ŒP xAR

1

g1;Z1;P1
� are tauto-

logical and can be explicitly computed.

The projections ˆ1 is equal to the composition of the forgetful map from H� to Mred
�

with the projection to the vertices of level �1. Thus, by definition, if ˇ is a tautological
class of Mg1;Z1;m1

then ˆ�1ˇ is a tautological class of H�.PHg;Z ;P ;Q/. Further, if
ŒP xAR

1

g1;Z1;P1
� is tautological and be explicitly computed, then so is p�ŒP xAR

1

g1;Z1;P1
�:

indeed, the Segre class of Hg1;n1;P1
is a tautological class of Mg1;m1;P1

.

The map ˆ1 is equivariant with respect to the C�–action; thus, ˆ�11 .c1.O.1// D
c1.O.1//. Further, the following diagram commutes:
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P zA�;I
ˆ0
//

��

P xAg0;n0;P0

p

��

Mred
�

//Mred
g0;n0;m0

Thus, if ˇ is a tautological class of Mred
g0;n0;m0

, then the class ˆ�0.p
�.ˇ// is a tauto-

logical class of PH� and thus a tautological class of H�.PHg;n;P ;Q/.

We can already remark that Proposition 5.9 implies the following:

Corollary 5.10 The following equality holds:X
.�;I /2Bic.g;P;Z ;R/j;i

m.I/a�;I D
X

.�;I /2Div.g;P;Z ;R/j;i

m.I/a�;I :

Proof This follows from the fact that if .�;I /2Bic.g;P ;Z ;R/j;inDiv.g;P ;Z ;R/j;i
then a�;I D 0.

5.4 Proof of Theorems 1, 2 and 3

We have all the ingredients to prove Theorem 4 (see the beginning of the section).

Proof of Theorem 4 For a list Z D .Z1; : : : ; Zq/ of vectors of nonnegative integers,
we write jZ j D

Pq
jD1 jZj j. We prove Theorem 4 by induction on jZ j.

Base of the induction: jZ j D 0 Let .g;Z ;P ; R/ be a quadruple that satisfies
Assumption 3.1 and is such that jZ j D 0 is trivial; then AR

g;Z ;P
is dense in Hg;n;P .

Therefore,
ŒPARg;Z ;P �D ŒPHRg;n;P �D �

dim.R/�dim.R/;

by Lemma 2.27.

Induction Now, let .g;Z ;P ; R/ be a quadruple satisfying Assumption 3.1 and such
that jZ j > 0. The induction formulas (12) and (13) of Theorem 5 express the class
ŒP xAR

g;Z ;P
� in terms of a class with a smaller sum of the order of zeros and a sum over

all bicolored graph (by Corollary 5.10). We only need to prove that the class a�;I is
tautological for any .�; I / 2 Div.g;Z ;P ; R/.

The vectors of zeros Z0 and Z1 of the levels 0 and �1 satisfy jZi j< jZ j. Therefore,
the classes ŒP xAR

1

g1;Z1;P1
� and ŒP xAR

0

g0;Z0;P0
� can be computed and are tautological.

Using Proposition 5.9, this implies that the class a�;I is tautological and can be
computed.
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Theorems 1, 2 and 3, stated in Section 1.5, are straightforward corollaries of Theorem 4:

Proof of Theorems 1, 2 and 3 Theorem 1 is the special case of Theorem 4 for con-
nected and stable curves. Theorem 3 is a consequence of Theorem 1 and Proposition 1.4
(the Segre class of the spaces of stable differential is tautological).

To prove Theorem 2, we recall that we denote by z�nW PHg;n!PHg the forgetful map
of points. The bundle Hg;n is the pullback of Hg by �n ; then � 2H�.PHg;n;Q/ is
the pullback of � 2H�.PHg ;Q/. Therefore, the pushforward of a tautological class
of RH�.PHg;n;Q/ by �n is in RH�.PHg ;Q/ and can be explicitly computed.

If Z D .k1; : : : ; kn/ is complete, the map z�n restricted to PAg;Z is finite of degree
Aut.Z/ onto PHŒZ�. We have

ŒPHŒZ��D 1

Aut.Z/
� z�n�ŒP xAg;Z �;

and the class ŒPHŒZ�� is tautological and can be explicitly computed.

6 Examples of computation

We give two examples of computation: the first one is a computation in the projectivized
Hodge bundle (we forget the marked points); the second is a computation in the moduli
space of curves (we forget the differential).

6.1 The class ŒPHg.3/�

We consider here g > 2 and Z D .3; 1 : : : ; 1/. We have seen in the introduction the
computation of ŒPAg;.2/�. Therefore, in order to compute ŒPAg;.3/� we need to list
the divisor graphs contributing to ŒP xAg;.3/�� .�C 3 1/ŒP xAg;.2/�. See Figure 2.

g D 0 ID
�

2

�

0

IID
� � �

0

IIID
�

0

g D 1 IVD
�

2

1

VD
�

1

VID
� �

1

g D 2 VIID
�

2

Figure 2: List of boundary terms in ŒP xAg;.3/�� .�C 3 1/ŒP xAg;.2/�
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We have represented vertices of level �1 with their genera and the vertices of level 0
by bullets (the sum will run over all possible distributions of the genera of vertices of
level 0). The marked point always belong to the unique vertex of level �1. The twists
are represented by one number because the level structure already implies the sign of
the twist on each half-edge. Finally, we only represented the twists of absolute value
greater than 1.

After pushforward by the forgetful map of the marked point, we get the following
formula for the class ŒPH.3; 1; : : : ; 1/� 2H�.PHg ;Q/:

ŒPH.3; 1; : : : ; 1/�D .12g� 12/�2C
�
11�1� ı� ısep� 5 1 �

�
�

C
�
6�2� �

 e � �
1
12 0 �

�
:

We explain the notation of the above expression. If the graph is not decorated, then
the notation stands for the pushforward of the fundamental class of M� under � . If
a graph is decorated with classes Pv in Mg.v/;n.v/ for each vertex then the notation
stands for ��

�Q
Pv
�
. These classes are either  i for a marked point,  e for an half-

edge or �i and �i for a vertex. In the above expression there is only one decoration  e
on a half-edge.

Remark 6.1 For g D 3, we can compute p�ŒP xA3;.3/� 2 H 0.M3;Q/ ' Q, where
p is the forgetful map of the differential. We get p�ŒP xAg;.3/�D 24, the number of
ordinary double points of a general quartic plane curve. In genus 3, we can also
compute p�.��ŒP xA3;.2;2/�/D 2� 28, ie twice the number of bitangents to a general
quartic plane curve.

6.2 The class ŒM3.4/�

Here g D 3 and Z D .4/. We will compute the class M3.4/ D ��ŒP xA3;.4/� 2

H 4.M3;1/. We will not give the details of the computation; however, we have

ŒM3.4/�D �2� 10 1�1C 35 
2
1 � 5 0 2 � 1 1 C 6 1 1 1

C 1 1 1 C 6 1 2

�1

� 34 1 2

 1

� 11 1
 e

2

C 1 2

�1

� 10 1 2

 1

� 1
 e

2
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We explain the notation of the above expression. The legs on the graphs stands for the
only marked point. We have decorated graph with classes Pv in Mg.v/;n.v/ for each
vertex. These classes are either  1 (for the marked point),  e for an half-edge or �1
for a vertex.

We recall that H3.4/ has two connected components (hyperelliptic and odd). In this
case one can compute ŒM3.4/

hyp� by using the work of Faber and Pandharipande
(see [14]). This way one can also compute ŒM3.4/

odd�D ŒM3.4/�� ŒM3.4/
hyp�. In

general, it is possible to compute the class of the hyperelliptic component but we do not
know how to compute separately the classes of odd and even components for g � 4.

Felix Janda has compared this expression with the expression of Conjecture B. The
two expressions agree modulo tautological relations (see Section 1.7 for presentation
of the conjecture).

If we forget the marked point, then we get a class in Pic.Mg/˝Q. Using the string
and dilaton equations and Mumford’s formula, for �1 we get

��ŒM3.4/�D 0� 10� 4�1C 35�1� 5ınonsep� 0C 6 � 0C 0C 6 � 0� 34ısep� 11ısep

C 0� 10� 3ısep� ısep

D 380�1� 40ınonsep� 100ısep:

The expression agrees with the formula of Scott Mullane (see [27]).

7 Relations in the Picard group of the strata

We fix the notation for this section. Let g; n;m � 0 such that 2g � 2C nCm > 0.
Let Z D .k1; : : : ; kn/ and P D .p1; : : : ; pn/ be vectors of positive integers such that
jZj � jP j D 2g � 2. In this section we consider the space Mg.Z �P / �Mg;nCm

(see Section 1.5 for definitions). The purpose is to define several natural classes in
Pic.Mg.Z � P //˝Q and to compute relations between these elements. Namely,
there are two types of classes which arise naturally:

� divisors associated to admissible graphs (see Sections 4.2 and 4.4);

� intersections of Mg.Z �P / with the tautological classes of A1.Mg;n/.

7.1 Classes defined by admissible graphs

We consider the moduli space of stable differentials Hg;n;P and the locus xAg;Z;P �
Hg;n;P . We recall that pW Hg;n;P !Mg;nCm is the forgetful map. We have seen
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that xAg;Z;P admits a stratification indexed by admissible graphs (see Lemma 4.17).
Here, we will describe the set of admissible graphs .�; I; l/ such that p. xA�;I;l/ is a
divisor in Mg.Z �P /D p. xAg;Z;P /.

The map pW PAg;Z;P !Mg.Z �P / is an isomorphism (see Lemma 3.14). Thus,
if p.P xA�;I;l/ is a divisor in Mg.Z �P / then P xA�;I;l is a divisor in P xAg;Z;P . We
saw that an admissible graph .�; I; l/ defines to a divisor of xAg;Z;P if and only it is
of one of the three following types (see Section 4.4):

(1) the admissible graph of depth 0 with one vertex and one edge;

(2) an admissible graph of depth 0 with two vertices and one edge;

(3) a bicolored graph that satisfies the condition .??/.

Proposition 7.1 Let .�; I; l/ be an admissible graph. The locus p.P xA�;I;l/ is a
divisor of Mg.Z �P / if and only if

� .�; I; l/ is of the type 1 above; or

� .�; I; l/ is a bicolored graph with one vertex of level �1, one stable vertex of
level 0 and possibly other semistable vertices of level 0.

We call an irreducible divisor the divisor of Mg.Z �P / of the first type. We denote
this divisor by D0 (with the reduced structure).

In the second case, the stabilization of the graph � determines a unique stable twisted
graph of depth 1, .� 0; I 0/ (we no longer write the level structure, which is uniquely
determined by I ). Conversely, a twisted stable graph of depth 1 with two vertices, we
can uniquely determine an admissible graph satisfying the condition of Proposition 7.1
by putting all the poles on the component of level �1 on unstable rational components
of level 0 (see Lemma 4.10 and Example 7.3 below).

Definition 7.2 A simple bicolored graph is a twisted stable graph of depth 1 with two
vertices. We denote by SB.Z; P / the set of simple bicolored graphs. If .�; I / is a
simple bicolored graph, we denote by D�;I the corresponding divisor in Mg.Z �P /

(with the reduced structure) and by a�;I its class in Pic.Mg.Z �P //˝Q.

The class i�a�I
(where i is the closed immersion of p. xA� ; I / in Mg;nCm ) in the

moduli space of curves is simply given by

���
�
ŒMg0

.Z0�P0/�; ŒMg1
.Z1�P1/�

�
;
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�2 �2 C2 �2 C2

0 1 C6 //oo �2 1 C6

1 1

Figure 3: Example of the correspondence between admissible and stable graphs

where g0 and g1 are the genera of the vertices of levels 0 and �1 and the vectors Z0 ,
P0 , Z1 and P1 are the vectors encoding the orders of zeros and poles at the marked
points and half-edges induced by Z;P and the twist I.

Example 7.3 We illustrate this correspondence between simple bicolored graphs
and boundary divisors. We consider g D 3, Z D .2; 6/ and P D .�2;�2/ and the
admissible graph in Figure 3 (in this example we take the twists equal to 1 on all edges).
In this example, the class i�a�;I in the moduli space of curves will be given by

���
�
ŒM1.C2;C0;C0;�2/�; ŒM1.C6;�2;�2;�2/�

�
:

Proof of Proposition 7.1 Let .�; I / be an admissible graph of depth at most 1 with
several stable components of level 0. Then the fiber of p over a generic point of
p.Ag;Z;P / is of dimension greater than 1. That is why divisors of type 2 are not
mapped to divisors while the map p restricted to D0 is indeed of degree 1 onto its
image.

Now we consider an admissible graph of depth 1 with one stable vertex of level 0.
Then the graph satisfies condition .??/ if and only if it has one vertex of level �1.

Finally, we consider an admissible graph .�; I; l/ of depth 1 and with no stable vertex
of level 0. The projectivized stratum PA�;I;l � PHg;n;P is empty. Indeed, Z is
complete for g and P ; thus, the differential on each unstable component with a marked
pole of order p is given by dz=zp . Therefore, A�;I;l is a substack of the zero section
of the cone Hg;n;P!Mg;nCm (see Section 2.3 for the description of the zero section).

7.2 Classes defined by residue conditions

We recall that R is the vector space of residues, ie the subspace of Cm defined by
f.r1; : : : ; rm/=r1C � � �C rm D 0g. Let R �R be vector subspace of codimension 1.
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We define the following class in the rational Picard group of Mg.Z �P /:

ıres
R D p�.P xA

R
g;Z;P /:

Notation 7.4 Let 1 � i < j � nCm. We denote by SB.Z; P /i (resp. SB.Z; P /i )
the set of simple bicolored graphs such that the leg corresponding to i is adjacent
to the vertex of level �1 (resp. to the vertex of level 0). We let SB.Z; P /ji D
SB.Z; P /i \SB.Z; P /j .

Let R �R is a vector subspace. For a simple bicolored graph, we denote by R0 �R

the vector space defined by the linear conditions fri D 0g for all 1� i �m such that
the leg of index nC i is at level �1. We denote by SB.Z; P /R the set of simple
bicolored graphs such that the space R contains R0 .

7.3 Classes defined by intersection

Let ˇ be a tautological class in Pic.Mg;nCm/˝Q. The class ˇ determines a class in
Pic.Mg.Z�P //˝Q by taking i�ˇ , where i is the closed immersion of Mg.Z�P /

into Mg;nCm . If ˇ is either �1; �1 or a  –class then we will denote by the same
letter its pullback to Pic.Mg.Z �P //˝Q if the context is clear.

The last class that we will consider is the pushforward of the � –class, which we denote
by

x� D p�.� � ŒP xAg;Z;P �/:

Theorem 6 The following relations hold in Pic.Mg.Z �P //˝Q:

(1) For all 1� i � n,

x�C .ki C 1/ 1 D
X

.�;I /2SB.Z;P /i

m.I/a�;I :

(2) For all 1� i; j � n,

.kiC1/ i�.kjC1/ j D
X

.�;I /2SB.Z;P /j
i

m.I/a�;I �
X

.�;I /2SB.Z;P /i
j

m.I/a�;I :

(3) For all R �R vector subspace of codimension 1,

x� D ıres
R C

X
.�;I /2SB.Z;P /R

m.I/a�;I :
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(4) If mD 0 then

�1C �Zx� D
1

12
ıC

X
.�;I /2SB.Z/

2Sm.I; �/a�;I ;

where ı is the boundary divisor of Mg;n ,

�Z D
1

12

nX
iD1

ki .ki C 2/

ki C 1

and
Sm.I; �/D

m.I/

12

�
�m.I/C

X
i 7!v1

ki .ki C 2/

ki C 1

�
I

the second sum goes over all legs adjacent to the vertex of level �1.

7.3.1 Relations (1) and (2) and double ramification cycles The second relation of
Theorem 6 is a direct consequence of the first one: we write .kiC1/ i �.kj C1/ j D
.x�C .ki C 1/ i /� .x�C .kj C 1/ j /. However, we choose to write relation (2) in this
form for two reasons:

(1) First, because it involves only classes defined directly in the moduli space of
curves.

(2) The second motivation is related to Conjectures A and B. Indeed, the classes Hg.Z/
and ŒMg.Z �P /� (see Section 1.7 for definitions) are supposed to be generalizations
of double ramification cycles. In [5], the authors proved several identities between
intersection of  –classes with double ramification cycles. One consequence of the
relations proven in [5] is the existence a universal  –class over the double ramification
cycles (independent of the choice of a marked point). For strata of differentials the
following corollary gives a candidate for this universal  –class:

Corollary 7.5 The class in Pic.Mg.Z �P //˝Q

.ki C 1/ i �
X

.�;I /2SB.Z;P /i

m.I/a�;I

is independent of the choice of 1� i � n.

Proof of relation (1) This is a direct consequence of the induction formula (see
Theorem 5). We consider Zi , the vector obtained from Z by increasing the i th entry
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by 1, and RDR (no residue condition); then we get

.�C .ki C 1/ i / � ŒP xAg;Z;P �D ŒP xAg;Zj ;P �C
X

.�;I /2Bic.g;Z;P /i

m.I/a�;I :

We remark that jZj j � jP j > 2g � 2; thus, ŒP xAg;Zj ;P � D 0. Now we apply the
pushforward by p to this expression. In the sum of the right-hand side, only the simple
bicolored graphs will contribute and we indeed get

x�C .ki C 1/ 1 D
X

.�;I /2SB.Z;P /i

m.I/a�;I :

7.3.2 Relation (3) To prove the third relation, we need a generalization of the in-
duction formula. Let R �R be a vector subspace of codimension 1. We recall that
an admissible bicolored graph defines a space of residue conditions R0 � R (see
Section 4.2 for the construction of R0/. We define Bic.g;Z; P /R � Bic.g;Z; P;R/
as the subset of bicolored graphs such that R0 �R .

Proposition 7.6 The following equality holds in H�.PHg;n;P IQ/:

ŒP xARg;Z;P �D �ŒP xAg;Z;P ��
X

.�;I /2Bic.g;Z;P /R

m.I/a�;I :

Remark 7.7 We could have stated this proposition in larger generality (unstable
disconnected base) but it will not be useful here.

Proof The proof is the same as the proof of Theorem 5. We consider the line bundle
O.1/'O.�1/_ restricted to P xAg;Z;P with its section

sW O.�1/!C; ˛ 7!R=R;

defined as the composition of the residue map O.�1/!R and the projection R!

R=R . The vanishing locus of the section s is the union of P xARg;Z;P and of the divisors
P xA�;I for all .�; I / 2 Bic.g;Z; P /R .

Now the vanishing order of s along P xARg;Z;P is 1 because the residue map is a sub-
mersion. The vanishing order of s along P xA�;I is 1 because Lemma 5.6 remains valid
if we replace the section si;j by the section s and the set of graphs Div.g;Z ;P ; R/ij
by the set of graphs Div.g;Z; P /R .

Proof of relation (3) Relation (3) is a direct consequence of Proposition 7.6. It
suffices to apply the pushforward by the forgetful map p .
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7.3.3 Relation (4) and the work of Eskin, Kontsevich and Zorich Let g � 2 and
let Z D .k1; : : : ; kn/ be a partition of 2g � 2. Before proving relation (4), let us
mention that Konstevich proved that

�1 D��Zx�C ;

where  is a class supported on the boundary of M.Z/. From this relation, he deduced
an equation relating two numerical invariants of strata of differentials: the sum of
the Lyapunov exponents and the Siegel–Veech constants (the complete proof of this
equation was achieved in [13]). Relation (4) gives an explicit expression for the class  .

Proof of relation (4) Let Z0 be the vector equal to .k1; : : : ; kn; 0/. If � WMg;nC1!

Mg;n is the forgetful map of the last marked point, then we have xAg;Z0 D ��1. xAg;Z/.
We use the induction formula to obtain the relation

.�C nC1/ŒPAg;Z0 �D 0C
X

Bic.g;Z/nC1

m.I/a;I :

We multiply this formula by  nC1 to get

(14) � nC1ŒPAg;Z0 �C 
2
nC1ŒPAg;Z0 �D

X
Bic.g;Z0/nC1

m.I/ nC1a�;I :

Now we apply .p�/ ı .��/ to this formula (we forget the last point and then the
differential). We study each term separately.

Contribution of � nC1ŒPAg;Z 0� The classes � and ŒPAg;Z0 � are pullbacks by � ;
thus,

p�
�
��. nC1�ŒPAg;Z0 �/

�
D p�

�
��. nC1/�ŒPAg;Z �

�
D �0p�.�ŒPAg;Z �/

D .2g� 2Cn/x�

by the projection formula.

Contribution of  2
nC1

ŒPAg;Z 0� Still by the projection formula, we have

p�
�
��. 

2
nC1ŒPAg;Z0 �/

�
D p�

�
��. 

2
nC1/ŒPAg;Z �

�
D �1 D 12�1� ıC

nX
iD1

 i :

Now we use the first relation to write
nX
iD1

 i D�

� nX
iD1

1

ki C 1

�
x�C

nX
iD1

� X
.�;I /2BS.g;Z/i

m.I/

ki C 1
a�;I

�
:
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Contribution of
P

Bic.g;Z 0/nC1
m.I/ nC1a�;I Let .�; I / be a bicolored graph in

Bic.g;Z0/nC1 . There are two possible configurations:

� The point nC 1 belongs to a rational components with three special points, in
which case  nC1a�;I D 0.

� The point nC1 is carried by a general vertex of level �1 which is not contracted
after the forgetful map.

In the second case, we denote by .� 0; I 0/ the twisted graph obtained after forgetting
the marked point. We get

��. nC1a�;I /D .2g� 0;I 0;1� 2Cn� 0;I 0;1/a� 0;I 0 ;

where g�;1 and n�;1 denote the genus and valency of the vertex of level �1. Thus,

.p� ı��/
X

Bic.g;Z0/nC1

m.I/ nC1a�;I

D

X
.�;I /2BS.g;Z/

m.I/.2g� 0;I 0;1� 2Cn� 0;I 0;1/a�;I :

We obtain relation (4) by replacing all the terms in (14) by their expressions in terms
of simple bicolored graphs.
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