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Floer cohomology, multiplicity and
the log canonical threshold

MARK MCLEAN

Let f be a polynomial over the complex numbers with an isolated singularity at 0 .
We show that the multiplicity and the log canonical threshold of f at 0 are invariants
of the link of f viewed as a contact submanifold of the sphere.

This is done by first constructing a spectral sequence converging to the fixed-point
Floer cohomology of any iterate of the Milnor monodromy map whose E1 page is
explicitly described in terms of a log resolution of f . This spectral sequence is a
generalization of a formula by A’Campo. By looking at this spectral sequence, we get
a purely Floer-theoretic description of the multiplicity and log canonical threshold
of f .
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1 Introduction

Let f W CnC1!C be a polynomial with an isolated singular point at 0 where n� 1.
Let S� � CnC1 be the sphere of radius � centered at 0. The link of f at 0 is the
submanifold Lf � f �1.0/\S� � S� , where � > 0 is sufficiently small. One can ask
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the following question: What is the relationship between the link of f and various
algebraic properties of f ? For instance, Zariski in [23] asked whether the multiplicity
of f at 0 depends only on the embedding Lf � S� . Another important invariant
is the log canonical threshold (see Atiyah [3], Musta [30] or Definition 2.1). Again
one can ask if this is an invariant of Lf � S� (see Budur [8, Section 1.6]). We will
answer weaker versions of these questions. If � > 0 is small enough, it turns out that
Lf is naturally a contact submanifold of S� (see Varchenko [42]). If gW CnC1!C

is another polynomial with isolated singularity at 0 then we say that f and g have
embedded contactomorphic links if there is a contactomorphism ˆW S�! S� sending
Lf to Lg . Varchenko [42] showed that if there is a holomorphic change of coordinates
sending f to g then they have embedded contactomorphic links. One of the goals of
this paper is to prove the following theorem:

Theorem 1.1 Suppose that f; gW CnC1!C are two polynomials with isolated sin-
gular points at 0 with embedded contactomorphic links. Then the multiplicity and the
log canonical threshold of f and g are equal.

We will prove this theorem by finding formulas for the multiplicity and log canonical
threshold in terms of a sequence Floer cohomology groups. The key technical result of
this paper proving the above theorem will be a natural generalization of a formula by
A’Campo [2].

For all � > 0 small enough, there is a smooth fibration

arg.f /W S� �f �1.0/!R=2�Z; arg.f /.z/� arg.f .z//;

called the Milnor fibration associated to f (see Milnor [29, Chapter 4]). A fiber
Mf � arg.f /�1.0/ is called the Milnor fiber of f . By choosing an appropriate
connection on this fibration, there is a natural compactly supported diffeomorphism
�W Mf ! Mf given by parallel transporting around the circle R=2�Z, called the
Milnor monodromy map. The Lefschetz number ƒ.�m/ of �m is defined to be

ƒ.�m/�

1X
jD0

.�1/j Tr.�m� W Hj .Mf IZ/!Hj .Mf IZ//;

and this is an invariant of the embedding Lf � S� for each m > 0. A’Campo [2]
computed these numbers in the following way. Let � W Y !CnC1 be a log resolution
of the pair .CnC1; f �1.0// at 0. Let .Ej /j2 LS be the prime exceptional divisors of this
resolution and define E?S to be the proper transform ��1.f �1.0/� 0/ of f �1.0/.
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Floer cohomology, multiplicity and the log canonical threshold 959

Let S � LS t f?Sg. Define E0j � Ej �
S
i2S�fj gEi for all j 2 S and define Sm �

fi 2 LS W ordf .Ei / divides mg for all m> 0. A’Campo showed that

(1-1) ƒ.�m/D
X
i2Sm

ordf .Ei /�.E
o
i / for all m> 0:

The key technical result of this paper (Theorem 1.2) is a spectral sequence converging
to a group whose Euler characteristic is naturally equal to the left-hand side of (1-1)
multiplied by .�1/n and such that the Euler characteristic of the E1 page is naturally
equal to the right-hand side multiplied by .�1/n . We will now explain this result.

For � > 0 small enough, the Milnor fiber Mf is naturally a symplectic manifold and �
can be made to be a compactly supported symplectomorphism (see Section 3). For any
compactly supported symplectomorphism  satisfying some additional properties, one
can assign a group HF�. ;C/, called the Floer cohomology group of  (see Seidel
[37, Section 4] or Section 4 of this paper). The Euler characteristic of this group is
.�1/n multiplied by the Lefschetz number of  (see property (HF1) in Section 4).
As a result, we have a sequence of groups HF�.�m;C/ whose Euler characteristic is
.�1/nƒ.�m/ for all m> 0. All of these groups are invariants of the link of f up to
embedded contactomorphism (see Lemma B.17). The log resolution � W Y !CnC1

is called a multiplicity m separating resolution if ordf .Ei /C ordf .Ej / > m for all
i; j 2 S satisfying i ¤ j and Ei \Ej ¤∅.

Theorem 1.2 Suppose that � W Y !CnC1 is a multiplicity m separating resolution
for some m 2N>0 . Let .wi /i2 LS be positive integers such that �

P
i2 LS

wiEi is ample.
Let ai be the discrepancy of Ei (see Definition 2.1) and define ki �m=ordf .Ei / for
all i 2Sm . Then there is a cohomological spectral sequence converging to HF�.�m;C/
with E1 page

E
p;q
1 D

M
fi2SmWkiwiD�pg

Hn�.pCq/�2ki .aiC1/.
zEoi IZ/;

where zEoi is an mi –fold cover of Eoi for all i 2 Sm . The cover zEoi is constructed as
follows: Let Ui be a neighborhood of Eoi inside Y �

S
j2S�i Ei which deformation

retracts onto Ei , let �i W Ui �Eoi ! Ui be the natural inclusion map and define

fi W Ui �E
o
i !C�; fi .x/� f .�.x//:

Then zEoi is a disjoint union of connected covers corresponding to a normal subgroup

Gi WD .�i /�
�
ker..fi /�/

�
� �1.Ui /D �1.E

o
i /

and the number of such covers is mi divided by the index of Gi in �1.Eoi /.
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The covers zEoi are described in an explicit algebraic way by Denef and Loeser
[12, Section 2.3]. Intuitively, we should think of zEoi in the following way: if Ui were a
“nice” tubular neighborhood of Eoi and we had a “nice” projection map Qi W Ui !Eoi
then Qi W .f ı�/�1.�/\Ui!Eoi would be a covering map onto its image homotopic
to zEoi for � > 0 small enough (see the proof of Lemma 5.40). See Figure 1.

By Lemma 2.4 combined with Hironaka [20; 21], a resolution satisfying the properties
stated in the above Theorem exists for each m>0. By looking at this spectral sequence
above, one gets the following corollary:

Corollary 1.3 For each m > 0, define �m � supf˛ W HF˛.�m;C/ ¤ 0g and define
�m � inffki .ai C 1/ W i 2 Smg, where ki and ai are defined as in Theorem 1.2 above.
Then

�m D n� 2�m for all m> 0:

In particular, HF�.�m;C/ vanishes if and only if �mD1. Also, the numbers �m are
invariants of the link up to embedded contactomorphism since the groups HF�.�m;C/
are.

We will prove this corollary in Section 6. Note that the numbers �m have also appeared
in Ein, Lazarsfeld and Musta [15, Corollary 2.4]. We have an immediate corollary
of Corollary 1.3, proving a conjecture of Seidel [38] regarding the multiplicity of a
singularity.

Corollary 1.4 The multiplicity of f is the smallest m>0 such that HF�.�m;C/¤0.
The log canonical threshold of f at 0 is

lct0.f /D lim inf
m!1

�
inf
n
�
˛

2m
W HF˛.�m;C/¤ 0 or � ˛

2m
D 1

o�
:
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Floer cohomology, multiplicity and the log canonical threshold 961

Since HF�.�m;C/ is an invariant of the link of f up to embedded contactomorphism
by Lemma B.17, we get that Theorem 1.1 follows immediately from Corollary 1.4.

For each m> 0, Denef and Loeser [12] constructed natural spaces �m;1 whose Euler
characteristic is ƒ.�m/. Therefore, it is natural to ask: What is the relationship between
these spaces and the groups HF�.�m;C/, if any? Such a question was considered by
Seidel (see [12, Remark 2.7]). It might be interesting to see if there is a similar spectral
sequence converging to H�.�m;1IZ/ since these spaces admit a natural stratification
induced by the strata of the log resolution � . A possible proof would exploit the
spectral sequence — see Petersen [33, Formula (3)] — combined with [12, Lemma 2.2]
(see also the calculations in the proof of [12, Lemma 2.5]).

1.1 Sketch of the proof of Theorem 1.2

We will now state one of the key properties of the group HF�. ;C/ that will be used
in this proof. This property is stated precisely in (HF3) in Section 4 and proven in
Appendix C.

Spectral sequence property Suppose that the set of fixed points of  is a disjoint
union of connected codimension 0 submanifolds B1; : : : ; Bl with boundary and corners
and suppose that  behaves in a particular way near the boundary of Bi for each i .
Then there is a grading CZ.Bi / 2 Z for each Bi and there is a specific function
�W f1; : : : ; lg!N such that there is a spectral sequence converging to HF�. ;C/ with
E1 page equal to

E
p;q
1 D

M
fi2f1;:::;lgW�.i/Dpg

Hn�.pCq/�CZ.�;Bi /.Bi IZ/:

The spectral sequence above is an example of a Morse–Bott spectral sequence (see Bott
[5, Corollary 2] and Hutchings [22, Section 6.4] for other similar examples). Therefore,
in order to prove Theorem 1.2 it would be sufficient for us to deform the monodromy
symplectomorphism �m so that the set of fixed points is a union of codimension 0
submanifolds homotopic to zEoip for each i 2 f1; : : : ; lg. The problem is that we
cannot quite do this, but we can construct a new symplectomorphism with the required
fixed-point sets without changing HF�.�m;C/. Also, Theorem 1.2 really requires a
specific ordering of the submanifolds zEoip corresponding to the sequence of positive
integers .wj /j2S , but we will ignore this detail here, as the main applications of this
paper do not need such an ordering. We will now explain how to modify �m without
changing HF�.�m;C/ so that it has this fixed-point property. This is done in Section 5.
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We have a natural symplectic form !Y on Y that comes from the ample divisor
�
P
i2S wiEi . This symplectic form gives us a natural Ehresmann connection on

��f away from .��f /�1.0/ and hence gives us a monodromy map. First of all, we
deform !Y so that it behaves well with respect to ��f (see Sections 5.1 and 5.2). The
key idea is that since ��f locally looks like

Qm
iD1 z

m
i , we can deform !Y so that

it basically looks like the standard symplectic form in these local charts (with a few
modifications). The next step is to show that the corresponding monodromy map  
satisfies HF�. m;C/ D HF�.�m;C/ (see Sections 5.3 and 5.4 and Appendix A).
Here we are using the fact that these Floer cohomology groups are invariants of the
mapping tori of �m and  m , respectively, along with an additional contact structure on
these tori and some additional data. Finally we need to compute the fixed points of the
monodromy map, so that we can apply our spectral sequence property (see Section 5.5).

Plan of the paper

In Section 2 we construct algebraic invariants of .CnC1; f �1.0// which will be used
to tell us the smallest nonvanishing degree of HF�.�m;C/ for each m. These invari-
ants are constructed by looking at the multiplicities and discrepancies of the prime
exceptional divisors .Ei /i2S of a resolution.

In Section 3 we give some basic definitions of the main objects in symplectic and
contact geometry that will be used in this paper. These include Liouville domains,
(abstract) open books, contact mapping cylinders and gradings. In Section 4 we give
a definition via Floer cohomology of a symplectomorphism. We also state the three
main properties (HF1)–(HF3) of the Floer cohomology group HF�. ;C/ that will be
needed for this paper. These properties will be proven in Appendices B and C.

Section 5 is the largest section of the paper. This section is used to construct a
monodromy symplectomorphism nice enough that we can use the properties from
Section 4 to prove Theorem 1.2. This section heavily relies on results and notation
from Tehrani, Mclean and Zinger [40]. Section 6 contains a proof of Theorem 1.2 and
Corollary 1.3.

Appendix A deals with gradings. It enables us to compute the quantities CZ.Bi / stated
in the spectral sequence property in the sketch of the proof of Theorem 1.2 earlier.
Appendix B proves that the groups HF�.�m;C/ only depend on the link Lf � S� as
a contact submanifold. This relies heavily on results of McLean [27]. In Appendix C
we prove the spectral sequence property of HF�. ;C/ described above.
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Conventions

If .M;!/ is a symplectic manifold and � is a 1–form then its !–dual X!
�

is the
unique vector field satisfying !.X!

�
; Y /D �.Y / for all vectors Y . Sometimes we just

write X� instead of X!
�

if it is clear from the context that the symplectic form we are
using is ! . For a smooth function H W M !R, we define XH �X�dH . The time t
flow of X�dH will be denoted by �Ht W M !M (this is called the time t Hamiltonian
flow of H ).

Also if f W B 0! B is a smooth map and � W V ! B is a vector bundle then we will
write elements of the pullback bundle f �.V / as pairs .b0; v/ 2 B 0 � V satisfying
f .b0/D �.v/. For any fiber bundle � W E! B and any subsets N �E and C � B ,
we define N jC �N \��1.C /. To avoid cluttered notation, we will not distinguish
between an element of a set and a subset of size 1 when the context is clear (eg i
will quite often mean fig). We also write Dom.f / and Im.f / for the domain and
image of a map f . For any set I, we define NI

>0 to be the set of tuples .ki /i2I where
ki 2N>0 .

Acknowledgements Many thanks to Mircea Mustat,ă for suggesting the connection
with log canonical threshold. Also many thanks to Paul Seidel for answering some of
my questions. This paper is supported by the NSF grant DMS-1508207.

2 Multiplicities and discrepancies of exceptional divisors

In this section we will introduce some of the basic tools that are needed from algebraic
geometry. We will define the multiplicity and log canonical threshold of an isolated
hypersurface singularity as well as some more general invariants. We will also explain
how to compute these invariants in terms of certain resolutions, called multiplicity m
separating resolutions, and show how such computational techniques do not depend on
the choice of resolution.

Let f W CnC1!C be a polynomial with an isolated singular point at 0.

Definition 2.1 A log resolution at 0 of the pair .CnC1; f �1.0// is a proper holomor-
phic map � W Y !CnC1 from a complex manifold Y such that there is some open set
U �CnC1 containing 0 satisfying:

(1) ��1.f �1.0/\U/ is a finite union of smooth transversally intersecting hyper-
surfaces .Ei /i2S . We will call such divisors resolution divisors. Each Ej
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964 Mark McLean

satisfying �.Ej /Df0g is called a prime exceptional divisor. We require that the
prime exceptional divisors be connected. We also require that there be a unique
element ?S 2 S where E?S D ��1.f �1.0/� 0/ (E?S need not be connected).
We call E?S the proper transform of f �1.0/.

(2) �j��1.Unf0g/W �
�1.U n f0g/! U n f0g is a biholomorphism.

Since the only singularities in this paper will be at 0 2CnC1 , we will just call a log
resolution at 0 of f a log resolution of .CnC1; f �1.0//.

The multiplicity of f along Ej , denoted by ordf .Ej /, is the order of ��f along Ej .
In other words, choose some local coordinate chart z1; : : : ; zn centered at a generic
point of Ej so that Ej D fz1 D 0g and define ordf .E/ � k , where k 2 Z satisfies
��f D gzk1 in this coordinate system for some holomorphic function g satisfying
g.0/¤ 0.

The discrepancy of Ej , denoted by a.Ej /, is calculated as follows: Choose local
holomorphic coordinates y1; : : : ; yn on Y centered at a point on Ej and holomorphic
coordinates x1; : : : ; xn on CnC1 centered at 0. Then a.Ej / is the order of the
Jacobian determinant of f along Ej expressed in these coordinates. This quantity
does not depend on the choices of such holomorphic coordinates. The multiplic-
ity of f at 0 is minfordf .Ej / W j 2 S � ?Sg and the log canonical threshold is
minf.a.Ej /C 1/= ordf .Ej / W j 2 Sg.

Throughout this paper, we will define EI to be
T
j2I Ej for each I � S. If I is the

empty set then EI is the entire manifold Y .

Definition 2.2 Let � W Y ! CnC1 be a log resolution of .CnC1; f �1.0// as above.
For each m 2N>0 , we define the minimal multiplicity m discrepancy to be

mdm.�; f /�

inf
�X
j2I

kja.Ej / W I � S; I ¤ ?S ; .kj /j2I 2NI
>0; EI ¤∅;

X
j2I

kj ordf .Ej /Dm
�
:

Our convention here is that infimum of the empty set is 1. Later on, in Lemma 2.6, we
will show that mdm.�; f / does not depend on � and hence we can define mdm.f /�
mdm.�; f / for some choice of log resolution � .

A morphism � W Y ! CnC1 is a multiplicity m separating resolution if it is a log
resolution of .CnC1; f �1.0// such that for any two resolution divisors E and F of �
satisfying E \F ¤∅, the sum of the multiplicities of f along E and F is greater
than m.
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Multiplicity m separating resolutions make it much easier for us to compute the minimal
multiplicity m discrepancy.

Lemma 2.3 If � W Y ! CnC1 is a multiplicity m separating resolution of the pair
.CnC1; f �1.0// and .Ej /j2S are its resolution divisors, then

mdm.�; f /D inffka.Ej / W k 2N>0; j 2 S �?S ; k ordf .Ej /Dmg:

Proof This follows from the fact that if
P
j2I kj ordf .Ej / D m and EI ¤ ∅ for

some I � S �?S and .kj /j2I 2NI
>0 , then jI j D 1.

Lemma 2.4 If we have any log resolution then we can blow such a resolution up
along strata of

S
i2S Ei inside ��1.0/ so that it becomes a multiplicity m separating

resolution.

Proof Let � W Y !CnC1 be a resolution with resolution divisors .Ej /j2S . Define

aY �min
�X
j2I

kj ordf .Ej / W I � S; jI j D 2; EI ¤∅; .kj /j2I 2NI
>0

�
:

Let bY be the number of elements in the set

BY �

�
I � S W jI j D 2; EI ¤∅;

X
j2I

kj ordf .Ej /D aY

�
:

Since bY � 1, choose I 2BY . Let Y 0 be the blowup of Y along EI . Then aY �bY is
strictly smaller than aY 0�bY 0 . Hence, by induction we can blow up Y along subsets of
the form EI until we get a log resolution � 00W Y 00!C of .CnC1; f �1.0// such that
aY 00 � bY 00 �m. Since bY 00 � 1, we get that aY 00 >m. Hence, � 00 is a multiplicity m
separating resolution.

Lemma 2.5 Let � W Y !CnC1 be a log resolution of .CnC1; f �1.0// and I � S a
subset satisfying jI j � 2. Let L� W LY !CnC1 be the log resolution of .CnC1; f �1.0//

obtained by blowing up Y along EI . Then

mdm. L�; f /Dmdm.�; f /:

Proof Let .Ej /j2S be the resolution divisors of � . Let LEj be the proper transform
of Ej in LY for all j 2 S. Then

(2-1) a. LEj /D a.Ej / and ordf . LEj /D ordf .Ej /:
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Let E be the exceptional divisor of the blowdown map LY ! Y . Then, by looking at a
local model of the blowdown map and using the chain rule we get

(2-2) a.E/D jI j � 1C
X
j2I

a.Ej /; ordf .E/D
X
j2I

ordf .Ej /:

Suppose, for some LI � S satisfying E LI ¤∅, some k 2N�0 and .kj /j2 LI 2N
LI
>0 , we

have

k ordf .E/C
X
j2 LI

kj ordf . LEj /Dm:

Then, by equations (2-1) and (2-2), we have

(2-3) ka.E/C
X
j2 LI

kja. LEj /

D k.jI j � 1/C
X

j2I� LI

ka.Ej /C
X

j2I\I 0

.kC kj /a.Ej /C
X

j2 LI�I

kja.Ej /:

Also, equations (2-1) and (2-2) tell us that

(2-4) k ordf .E/C
X
j2 LI

kj ordf . LEj /

D

X
j2I� LI

k ordf .Ej /C
X

j2I\ LI

.kC kj / ordf .Ej /C
X

j2 LI�I

kj ordf .Ej /:

Equations (2-3) and (2-4) tell us that mdm. L�; f /Dmdm.�; f /.

Lemma 2.6 The minimal multiplicity m discrepancy does not depend on the choice
of log resolution � W Y !CnC1 of .CnC1; f �1.0//.

Proof Let � W Y ! CnC1 and L� W LY ! CnC1 be two such resolutions. Lemma 2.5
tells us that blowing up along strata does not change the minimal multiplicity m

discrepancy. Hence, by Lemma 2.4, we can assume that � and L� are multiplicity m
separating resolutions.

Since � and L� are birational morphisms, we have that there is a birational morphism
ˆW YÜ LY such that � D L� ıˆ. Let .Ej /j2S be the resolution divisors of � and
. LEj /j2 LS the resolution divisors of L� . Suppose that ordf .Ej / divides m for some
j 2 S �?S . Let LI � LS be the largest subset satisfying ˆ.Ej /� LE LI .
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Since ˆ is well defined outside a subvariety of codimension �2, we have a point p2Ej
and holomorphic charts y1; : : : ; yn in Y and x1; : : : ; xn in LY centered at p and ˆ.p/,
respectively, where ˆ is well defined. We will also assume that Ej D fy1 D 0g

and LEk D fx˛.k/ D 0g for all k 2 LI and some ˛W LI ! f1; : : : ; ng. Let J be the
Jacobian of �.y1; : : : ; yn/, LJ the Jacobian of L�.x1; : : : ; xn/ and Jˆ the Jacobian of
ˆ.y1; : : : ; yn/. Then

(2-5) ordf .Ej /D
X
k2 LI

ordx˛.k/ıˆ.Ek/ ordf . LEk/

and
ordJ .Ej /D ordJˆ.Ej /C

X
k2 LI

ordx˛.k/ıˆ.Ek/ ord LJ .
LEk/:

By (2-5) combined with the fact that L� is a multiplicity m separating resolution,
LI D fkg for some k 2 LS �? LS . Hence, ordf .Ej /D � ordf . LEk/ and a.Ej /� �a. LEk/,

where � D ordx˛.k/ıˆ.Ej /. Therefore, by Lemma 2.3, mdm.�; f / � mdm. L�; f /.
Similarly, mdm. L�; f /�mdm.�; f / and hence mdm.�; f /Dmdm. L�; f /.

3 Liouville domains, symplectomorphisms and open books

In this section we give basic definitions of Liouville domains and graded symplecto-
morphisms and open books. We will also explain the correspondence between open
book decompositions and graded symplectomorphisms of Liouville domains. All of the
material here is contained in [17], with the exception of gradings, which is contained
in [36]. For more details on open book decompositions see [13].

Definition 3.1 An exact symplectic manifold is a pair .M; �M / where M is a manifold
and �M is a 1–form such that !M �d�M is symplectic. A Liouville domain is an exact
symplectic manifold .M; �M / where M is a compact manifold with boundary and
the !M –dual X�M of �M points outwards along @M. The 1–form �M is called the
Liouville form. The contact boundary of M is the pair .@M; ˛M / where ˛M � �M j@M .
Here ˛M is a contact form. Since X�M points outwards along @M, we get that the
backwards flow

.�t W M ,!M/t2.�1;0�

of X�M exists for all time t . By considering the smooth embeddings �ln.rM /j@M for
rM 2 .0; 1�, we can construct a standard collar neighborhood .0; 1��@M �M of @M
where

�M j.0;1��@M D rM˛M :
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Here rM is the coordinate given by the natural projection rM W .0; 1�� @M� .0; 1�

and is called the cylindrical coordinate on M.

An exact symplectomorphism �W M !M is a diffeomorphism such that ���M D
�M C dF� for some smooth function F� W M !R. Technically we want to think of
this as a pair .�; F�/, but we will suppress F� from the notation and just write � . The
support of such an exact symplectomorphism is the region

fx 2M W �.x/¤ x or dF�.x/¤ 0g:

We now need to define graded symplectomorphisms as in [36]. This is needed so that
we can define their Floer cohomology groups in the next section.

Definition 3.2 We define .R2n; �std/ to be the standard symplectic vector space.
Let Sp.2n/ be the space of linear symplectomorphisms of .R2n; �std/ and �Sp.2n/
its universal cover. Let � W E ! V be a symplectic vector bundle with symplectic
form �E whose fibers have dimension 2n. Sometimes we will write .E;�E / or
just E for such a symplectic vector bundle when the context is clear. Define the
symplectic frame bundle Fr.E/ to be an Sp.2n/ bundle whose fiber at x 2 V is the
space of linear symplectomorphisms from .R2n; �std/ to .��1.x/;�E jx/. A grading
on a symplectic vector bundle � W E! V is an �Sp.2n/ bundle �Fr.E/! V together
with a choice of isomorphism of �Sp.2n/ bundles

(3-1) �W �Fr.E/��Sp.2n/ Sp.2n/Š Fr.E/:

This is just a choice of reduction of the structure group of E from Sp.2n/ to �Sp.2n/.
A symplectic vector bundle with a choice of grading is called a graded symplectic
vector bundle. Suppose that L� W LE! LV is a symplectic vector bundle and žW LE!E

is a bundle morphism covering a smooth map ˇW LV ! V such that ž restricted to each
fiber is a linear symplectomorphism. Let

y̌W LE! ˇ�.E/; y̌. Le/D . L�. Le/; ž. Le//;

be the natural isomorphism between this bundle and the pullback bundle. Then LE has
a natural grading

ˇ�.�Fr.E//! LV ;

L�W ˇ�.�Fr.E//��Sp.2n/ Sp.2n/D ˇ�.�Fr.E/��Sp.2n/ Sp.2n//! Fr. LE/;

L�. Lv;w/� y̌�1
�
. Lv; �.w//

�
for all Lv 2 LV ; w 2 �Fr.E/��Sp.2n/ Sp.2n/;

called the grading on E pulled back by ž.
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The simplest example of a grading is the natural grading on the trivial bundle LV�Ck! LV

given by �Fr. LV �Ck/� LV � �Sp.2n/;

�W �Fr. LV �Ck/��Sp.2n/ Sp.2n/D LV � .�Sp.2n/��Sp.2n/ Sp.2n//D LV �Sp.2n/

! Fr. LV �Ck/:

We will call such a grading the trivial grading.

Remark 3.3 In this paper we are only interested in gradings up to isotopy and so we
will sometimes regard isotopic gradings as the same grading. If we have a smooth
connected family of symplectic vector bundles then, if one of them has a grading, then
all of them have a natural choice of grading up to isotopy. For more information about
this see Appendix A.

Definition 3.4 Suppose that

�1W E1! V1; �2W E2! V2

are graded symplectic vector bundles and F W E1!E2 is a symplectic vector bundle
isomorphism covering a diffeomorphism V1! V2 . Then a grading on F is an �Sp.2n/
bundle isomorphism

zF W �Fr.E1/! �Fr.E2/

covering the Sp.2n/ bundle morphism Fr.E1/! Fr.E2/ induced by F .

Let .X; !X / be a 2n–dimensional symplectic manifold. A grading on .X; !/ is a
choice of grading on the symplectic vector bundle TX. A symplectic manifold with a
choice of grading is called a graded symplectic manifold

A grading of a symplectomorphism � between two graded symplectic manifolds
.X1; !X1/ and .X2; !X2/ is a choice of grading for the symplectic bundle isomorphism
d�W TX1 ! TX2 . A graded symplectomorphism is a symplectomorphism with a
choice of grading.

We also wish to have a notion of grading for contact manifolds.

Definition 3.5 Recall that a cooriented contact manifold .C; �C / is a manifold C
of dimension 2n� 1 with a cooriented hyperplane distribution �C with the property
that there is a 1–form ˛C whose kernel is �C respecting this coorientation and such
that ˛C ^ .d˛C /n�1 is a volume form on C. The 1–form ˛C is called a contact
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form compatible with �C . A coorientation-preserving contactomorphism between two
cooriented contact manifolds is a diffeomorphism preserving their respective hyperplane
distributions and coorientations. A contact submanifold B � C is a submanifold such
that .B; �B � �C \TB/ is a cooriented contact manifold with the induced coorientation
from �C .

A grading on a contact manifold .C; �C / consists of a choice of contact form ˛C com-
patible with �C and a choice of grading on the symplectic vector bundle .�C ; d˛C j�C /.
A cooriented contact manifold with a choice of grading is called a graded contact
manifold. Since the space of contact forms compatible with �C is contractible, we get
an induced grading on .�C ; d˛j�C / for any other contact form ˛ compatible with �C ,
which is unique up to isotopy. Hence, from now on we will regard this as the same
grading.

A grading of a coorientation-preserving contactomorphism � between two graded
contact manifolds .C1; �1/ and .C2; �2/ consists of a grading on the symplectic vector
bundle isomorphism d�j�C1

W �C1 ! �C2 where the symplectic forms on �C1 and �C2
come from contact forms ˛C1 and ˛C2 compatible with �C1 and �C2 , respectively,
satisfying ˛C1 D ��˛C2 with induced gradings. A graded contactomorphism is a
coorientation-preserving contactomorphism with a choice of grading.

In this paper, we will only deal with cooriented contact manifolds and coorientation-
preserving contactomorphisms. So, from now on, a contact manifold is a cooriented
contact manifold and a contactomorphism is a coorientation-preserving contactomor-
phism.

Definition 3.6 Suppose that .C; �C / is a contact manifold and B is a contact sub-
manifold. The normal bundle of B is a symplectic vector bundle

�NCB W NCB � .TC jB/=TB� B

with symplectic form defined as follows: Choose a compatible contact form ˛C on
.C; �C / and define

T?B � fv 2 �C jx W x 2 B; d˛C .v; w/D 0 for all w 2 �C jx \TBjxg:

Then T?B is a symplectic vector bundle with symplectic form d˛C jT?B . The
symplectic structure on NCB is the pushforward of the above symplectic form under
the natural bundle isomorphism T?B!NCB .
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Since the space of compatible contact forms is contractible, the choice of symplectic
form on the NCB is unique up to symplectic bundle isomorphism and any two choices
of such isomorphism are homotopic. As a result, we will refer to this bundle as the
normal bundle as we are only concerned with isomorphisms of such bundles up to
homotopy.

Definition 3.7 A contact pair with normal bundle data .B � C; �C ; ˆB/ consists of
a contact manifold .C; �C / where B is a codimension 2 contact submanifold along
with a symplectic trivialization

ˆB W NCB! B �C

of its normal bundle. A contactomorphism between two such triples

(3-2) .B1 � C1; �C1 ; ˆB1/; .B2 � C2; �C2 ; ˆB2/

is a contactomorphism ‰W C1! C2 sending B1 to B2 such that the composition

NC1B1
d‰jB1
����!NC2B2

ˆB2
���! B2 �C

.‰jB1 /
�1�idC

����������! B1 �C

is homotopic through symplectic bundle trivializations to ˆB1 . If there exists such a
contactomorphism between the pairs as in (3-2) then we say that they are contacto-
morphic.

A contact pair with normal bundle data .B�C; �C ; ˆB/ is graded if there is a choice of
grading on C �B . A graded contactomorphism between two graded contact pairs with
normal bundle data as in (3-2) consists of a contactomorphism ‰ between these contact
pairs and a choice of grading of the contactomorphism ‰jC1�B1 W C1�B1!C2�B2 .
If a graded contactomorphism exists between two graded contact pairs with normal
bundle data then we say that they are graded contactomorphic.

The main example of a contact pair with normal bundle data comes from singularity
theory.

Example 3.8 Fix n > 0. Let f W CnC1 ! C be a holomorphic function with an
isolated singularity at 0 and let J0W TCnC1 ! TCnC1 be the standard complex
structure on CnC1 . Let S� � CnC1 be the sphere of radius � > 0 and let �S� D
TS� \ J0TS� be the standard contact structure on S� . Define Lf � f �1.0/\ S� .
Then a result by Varchenko [42] tells us that for all sufficiently small � > 0, Lf � S�
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is a contact submanifold, called the link of f at 0. Also, df gives us an induced map
df W NS�Lf !C and hence a trivialization

f̂ � .idLf ; df /W NS�Lf ! Lf �C:

The contact pair with normal bundle data .Lf � S�; �S� ; f̂ / is called the contact pair
associated to f .

We also need a grading on this contact pair. It turns out, by the discussion in
Definition A.7, that every contact manifold with trivial first and second homology
groups has a unique grading up to homotopy. This means that �S� has a grading,
giving us an induced grading on the contact pair associated to f . We will call this the
standard grading.

We will now define open book decompositions and also graded open book decomposi-
tions. Let D �C be the unit disk with polar coordinates .r; #/.

Definition 3.9 An open book is a pair .C; �/ where

� C is a smooth manifold,

� � W C�B!R=Z is a smooth fibration where B is a codimension 2 submanifold,
and

� there is a tubular neighborhood B �D � C of B D B � f0g in C such that �
satisfies

�jB�.D�0/W B � .D� 0/!R=Z; �.x; .r; �//D 2��:

The submanifold B is called the binding of the open book and a page of the open book
is the closure of a fiber of � which is a submanifold with boundary equal to B .

We now want open books to be compatible with contact pairs.

Definition 3.10 A contact pair with normal bundle data .B �C; �C ; ˆB/ is supported
by an open book .C; �/ if

(1) there is a contact form ˛C compatible with �C such that d˛C j��1.t/ is a
symplectic form for all t 2R=Z,

(2) the trivialization of NCB induced by the choice of tubular neighborhood from
Definition 3.9 is homotopic through orientation-preserving bundle trivializations
to ˆB (this does not depend on the choice of such a tubular neighborhood).
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We will write .C; �C ; �/ for a contact pair supported by an open book and we will
call it a contact open book. Note that B and ˆB are not included in the notation as
BDC �Dom.�/ and ˆB is determined by the open book due to the fact that the space
of orientation-preserving trivializations of NCB is weakly homotopic to the space of
symplectic trivializations of NCB . The contact pair .B � C; �C ; ˆB/ is called the
contact pair associated to .C; �C ; �/. If the contact pair associated to .C; �C ; �/ is
graded then we call this a graded contact open book.

An isotopy between two contact open books .C1; �C1 ; �1/ and .C2; �C2 ; �2/ is a
contactomorphism ˆW C1 ! C2 between the respective contact pairs with normal
bundle data together with a smooth family of maps . L�t W Dom.�1/ ! R=Z/t2Œ1;2�
joining �1 and �2 ıˆ such that .C1; �C1 ; L�t / is a contact open book for all t 2 Œ1; 2�.
Such an isotopy is graded if we have a smooth family of graded contact open books
and ˆ is a graded contactomorphism.

The main example of a contact open book will come from singularity theory.

Example 3.11 Let f W CnC1!C , n > 1 be a holomorphic function with an isolated
singularity at 0 and let .Lf � S�; �S� ; f̂ / be the contact pair associated to f as in
Example 3.8. Let arg.f /W CnC1� f �1.0/!R=2�Z be the argument of f . Then,
by [9, Proposition 3.4], we have that

�
S�; �S� ;

1
2�

arg.f /jS�
�

is a contact open book
for all � > 0 small enough. This open book is supported by the contact pair associated
to f from Example 3.8 and it has a grading coming from the standard grading. This is
a graded contact open book, called the Milnor open book of f .

Definition 3.12 An abstract contact open book consists of a triple .M; �M ; �/ where
.M; �M / is a Liouville domain and � is an exact symplectomorphism with support in
the interior of M. A graded abstract contact open book is an abstract contact open book
.M; �M ; �/ with a choice of grading on .M; d�M / and a graded symplectomorphism � .

An isotopy between abstract contact open books .M1; �M1 ; �1/ and .M2; �M2 ; �2/

consists of a diffeomorphism ˆW M1!M2 , a smooth family of 1–forms .�t /t2Œ0;1�
joining �M1 and ˆ��M2 and a smooth family of diffeomorphisms . L�t /t2Œ1;2� joining
�1 and ˆ�1 ı �2 ıˆ such that .M1; �t ; L�t / are all abstract contact open books and
the support of L�t is contained inside a fixed compact subset of the interior of M. If
both of our abstract contact open books are graded then such an isotopy is a graded
isotopy if all the abstract contact open books .M1; �t ; L�t / are graded so that these
gradings smoothly depend on t 2 Œ0; 1� and the grading on .M0; �0; L�0/ coincides
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with the grading on .M1; �M1 ; �1/ and the grading on .M1; �1; L�1/ coincides with the
grading on .M2; �M2 ; �2/ pulled back by ˆ.

From an abstract contact open book .M; �M ; �/, we wish to construct a contact open
book. This construction is referred to as a generalized Thurston–Winkelnkemper
construction in [13, Section 2.2.1]. To do this we need the following definition:

Definition 3.13 Let .M; �M ; �/ be an abstract contact open book. Let F� W M !R

be the smooth function with support in the interior of M satisfying ���M D �MCdF� .
Let �W Œ0; 1�! Œ0; 1� be a smooth function equal to 0 near 0 and 1 near 1.

The mapping torus of .M; �M ; �/ is a smooth map

�T� W T�!R=Z; T� �M � Œ0; 1�=�;

together with a contact form ˛T� on T� , where

� � identifies .x; 1/ with .�.x/; 0/,

� ˛T� � �M C d.�.t/F�/CC dt , where C > 0 is large enough to ensure that
˛T� is a contact form, and

� �T� .x; t/� t for all .x; t/ 2 T� DM � Œ0; 1�=�.

For ı > 0 small enough, we have that the subset

.1� ı; 1�� @M � .0; 1�� @M

of the collar neighborhood of @M is disjoint from the support of � . This means that
there is a natural embedding

.1� ı; 1�� @M �R=Z� T� ;

which we will call the standard collar neighborhood of @T� . Note that ˛T� is equal to
rM˛M CC dt in the standard collar neighborhood where rM (resp. t ) is the natural
projection map to .1� ı; 1� (resp. R=Z) and ˛M D �M j@M .

If .M; �M ; �/ is a graded abstract contact open book then we get a natural grading on
.T� ; ker.˛T� // as follows: Since the kernel of d˛T� is transverse to the fibers of T� ,
�T� � ker.˛T� / is isotopic through hyperplane distributions Ht for t 2 Œ0; 1� to the
vertical tangent space T verT� � ker.D��/ of �T� with the property that d˛T� jHt is
nondegenerate for all t 2 Œ0; 1�. Therefore, it is sufficient to construct a grading for
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the symplectic vector bundle .T verT� ; d˛T� /. Consider the symplectic vector bundle
.pr�TM; pr�.d�M // where

prW M � Œ0; 1�!M

is the natural projection map. We have that the symplectic vector bundle .T verT� ; d˛T� /

is isomorphic to the symplectic vector bundle on .pr�TM=�; pr�.d�M // where �
identifies pr�TM jM�f1g with pr�TM jM�f0g using the map

D�W TM D pr�TM jM�f1g! TM D pr�TM jM�f0g:

Since .TM; d�M / has a natural grading, we get that .pr�TM; pr�.d�M // has an
induced grading �Fr.pr�TM/��Sp.2n/ Sp.2n/Š Fr.pr�TM/

pulled back via pr. The map D� gives us an induced map

Fr.pr�TM/jM�f1g! Fr.pr�TM/jM�f0g

and, since � is a graded symplectomorphism, the map above lifts to a map�Fr.pr�TM/jM�f1g! �Fr.pr�TM/jM�f0g:

Hence, by using the above gluing map, we get a grading on the quotient

.pr�TM=�; pr�.d�M //

and therefore a grading on .T verT� ; d˛T� /. In turn this gives us a grading on the
contact manifold .T� ; ker.˛T� //. We will call this the induced grading on T� .

We will now construct a contact open book from an abstract contact open book. Let
D.�/�C be the closed disk of radius � > 0 with polar coordinates .r; #/.

Definition 3.14 Let .M; �M ; �/ be an abstract contact open book decomposition and
let

�T� W T�!R=Z

be the associated mapping torus with contact form ˛� and standard collar neighborhood

.1� ı; 1�� @M �R=Z� T�

as in Definition 3.13. Define C� � .@M � D.ı// t T�=�, where � identifies
.x; .r; #// 2 @M �D.ı/ with�

1� r; x;
#

2�

�
2 .1� ı; 1�� @M �R=Z� T� :
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We define B� � @M � f0g � @M �D.ı/� C� and

�C� W C� �B� D T� � @T�!R=Z; �C� D �T� jT��@T� :

Let

(3-3) h1; h2W Œ0; ı/!R

be a pair of smooth functions such that

� h01.r/ < 0, h02.r/� 0 for all r > 0,

� h1.r/D 1� r
2 and h2.r/D 1

2
r2 for small r , and

� h1.r/D 1� r and h2.r/D 1
2�
C for r 2

�
1
2
ı; ı

�
:

h2

h1
11� ı

1
2�
C

The above conditions ensure that

˛C� �

�
h1.r/˛M C h2.r/d# inside @M �D

�
1
2
ı
�
;

˛T� inside T� � @M �D
�
1
2
ı
�
;

is a contact form whose restriction to B� is also a contact form and that the restriction
of d˛C� to ��1.t/ is symplectic for all t 2R=Z. Define �C� � ker.˛C� /. The tubular
neighborhood @M �D

�
1
2
ı
�

of B� gives us a trivialization ˆB� of its normal bundle
and hence we get a contact pair with normal bundle data .B� � C� ; �C� ; ˆB� /, which
we will call the contact pair associated to .M; �M ; �/. This contact pair with normal
bundle data is supported by the open book .C� ; �C� /. Hence,

OBD.M; �M ; �/� .C� ; �C� ; �C� /

is a contact open book, which we call the open book associated to the abstract contact
open book .M; �M ; �/.
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Now suppose that .M; �M ; �/ is a graded abstract contact open book. Then, since the
contact manifold .C� �B� ; �C� jC��B� / is isotopic through contact manifolds to T� ,
we get that the induced grading on T� gives us a grading on .C� �B� ; �C� jC��B� /.
Hence, we have a relative grading on .B� � C� ; �C� ; ˆ�/, which we will call the
induced grading.

It is fairly straightforward to show that if two abstract contact open books are (graded)
isotopic then their respective contact open book decompositions are (graded) isotopic.
Hence, we get a map

OBDW f(graded) abstract contact open booksg=isotopy
! f(graded) open booksg=isotopy:

The theorem below is a result of Giroux [17].

Theorem 3.15 The above map OBD is a bijection.

A detailed construction of the inverse of OBD is contained in the proof of [13, Theorem
3.1.22]. As a result of this theorem, we have the following definition:

Definition 3.16 The monodromy map of a (graded) contact open book .C; �C ; �/ is
defined to be the (graded) contactomorphism �W M !M, where .M; �M ; �/ is the
abstract contact open book OBD�1..C; �C ; �//.

Technically, this monodromy map is only defined up to isotopy, and so the monodromy
map is really just a choice of representative in this isotopy class.

4 Fixed-point Floer cohomology definition

Definition 4.1 Let .M; �M / be a Liouville domain. An almost complex structure J
on M is cylindrical near @M if it is compatible with the symplectic form d�M (ie
d�M . � ; J. � // is a Riemannian metric) and if drM ı J D �˛M near @M inside the
standard collar neighborhood .0; 1�� @M.

An exact symplectomorphism �W M !M is nondegenerate if for every fixed point p
of � the linearization of � at p has no eigenvalue equal to 1. It has small positive slope
if it is equal to the time 1 Hamiltonian flow of ırM near @M, where ı > 0 is smaller
than the period of the smallest periodic Reeb orbit of ˛M (this means that it corresponds
to the time ı Reeb flow near @M ). If � is an exact symplectomorphism, then a small
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positive slope perturbation L� of � is an exact symplectomorphism L� equal to the
composition of � with a C1 small Hamiltonian symplectomorphism of small positive
slope. The action of a fixed point p is �F�.p/, where F� is a function satisfying
���M D �MCdF� . The action depends on a choice of F� , which has to be fixed when
� is defined, although usually F� is chosen so that it is zero near @M (if possible).
All of the symplectomorphisms coming from isolated hypersurface singularities will
have such a unique F� . An isolated family of fixed points is a path-connected compact
subset B �M consisting of fixed points of � of the same action and for which there
is a neighborhood N � B where N nB has no fixed points. Such an isolated family
of fixed points is called a codimension 0 family of fixed points if in addition there is
an autonomous Hamiltonian H W N ! .�1; 0� such that H�1.0/D B is a connected
codimension 0 submanifold with boundary and corners, the time t flow of XH is well
defined for all t 2R and �jN W N !N is equal to the time 1 flow of H. The action
of an isolated family of fixed points B �M is the action of any point p 2 B .

Before we define Floer cohomology, we need some definitions, so that we can give
it a grading. To any path of symplectic matrices .At /t2Œa;b� we can assign an index
CZ.At /, called its Conley–Zehnder index. The Conley–Zehnder index of certain paths
of symplectic matrices At was originally defined in [11]. It was defined for a general
path of symplectic matrices in [34] and also in [19]. We will not define it here as we
will only use the following properties (see [19, Proposition 8]):

(CZ1) CZ..eit /t2Œ0;2��/D 2.

(CZ2) .�1/n�CZ..At /t2Œ0;1�/D sign detR.id�A1/ for any path of symplectic matrices
.At /t2Œ0;1� .

(CZ3) CZ.At ˚Bt /D CZ.At /CCZ.Bt /.

(CZ4) The Conley–Zehnder index of the catenation of two paths is the sum of their
Conley–Zehnder indices.

(CZ5) If At and Bt are two paths of symplectic matrices which are homotopic relative
to their endpoints then they have the same Conley–Zehnder index. Also, such an
index only depends on the path up to orientation-preserving reparametrization.

Definition 4.2 Let .M; �M ; �/ be a graded abstract contact open book. The Conley–
Zehnder index CZ.p/ of a fixed point p of the graded symplectomorphism � is
defined as follows: Since .TM; d�M / is a graded symplectic vector bundle, we have
an associated �Sp.2n/ bundle �Fr.TM/!M
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together with a choice of isomorphism of �Sp.2n/ bundles

�W �Fr.TM/��Sp.2n/ Sp.2n/Š Fr.TM/:

Now choose an identification of �Sp.2n/ torsors

(4-1) �Sp.2n/D �Fr.TM/jp:

The symplectomorphism � has a choice of grading, giving us a natural map

z�W �Fr.TM/jp! �Fr.TM/jp

and hence, by (4-1), a map

z�W �Sp.2n/! �Sp.2n/:

Since �Sp.2n/ is the universal cover of Sp.2n/, its elements correspond to paths of
symplectic matrices starting from the identity up to homotopy fixing their endpoints and
so let ˇ be the path corresponding to z�.id/ 2 �Sp.2n/. We define CZ.�; p/� CZ.ˇ/.

If we have an isolated family of fixed points B �X, then we define its Conley–Zehnder
index CZ.�; B/ to be the Conley–Zehnder index of some b 2 B . Since B is path-
connected, this does not depend on the choice of b 2 B by property (CZ5) above.

In Appendix A, we also have a different way of computing the Conley–Zehnder index by
looking at the mapping torus T� of � . This will be useful in the proof of Theorem 5.41.

Definition 4.3 Let .M; �M ; �/ be an abstract contact open book. Let .Jt /t2Œ0;1� be a
smooth family of almost complex structures with the property that ��J0D J1 . A Floer
trajectory of .�; Jt /t2Œ0;1�/ joining p�; pC 2M is a smooth map uW R� Œ0; 1�!M

such that @suCJt@tuD 0, where .s; t/ parametrizes R�R=Z, u.s; 0/D �.u.s; 1//
and such that lims!˙1 u.s; t/Dp˙ for all t 2 Œ0; 1�. We write M.�; Jt ; p�; pC/ for
the set of such Floer trajectories and define M.�; Jt ; p�; pC/�M.�; Jt ; p�; pC/=R,
where R acts by translation in the s coordinate.

Let .M; �M ; �/ be a graded abstract contact open book. We will now give a sketch
of the definition of the Floer cohomology group HF�.�;C/ (see [37]). Let L� be a
small positive slope perturbation of � . This can be done so that L� is C1 close to �
and so that the fixed points of L� are nondegenerate (see [35, Theorem 9.1] in the case
where L� is Hamiltonian; the general case is similar [14, page 586]). We can also ensure
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that L� is a graded symplectomorphism due to the fact that it is isotopic to � through
symplectomorphisms.

We now choose a C1 generic family .Jt /t2Œ0;1� of cylindrical almost complex struc-
tures satisfying ��J0DJ1 . The genericity property then tells us that M. L�; Jt ; p�; pC/
is a compact oriented manifold of dimension 0 for all fixed points p� and pC of �
satisfying CZ.p�/�CZ.pC/D 1 [14, Theorem 3.2]. We define #˙M. L�; Jt ; p�; pC/
to be the signed count of elements of M. L�; Jt ; p�; pC/. Let CF�. L�/ be the free
abelian group generated by fixed points of � and graded by the Conley–Zehnder index
taken with negative sign. The differential @ L�;.Jt /t2Œ0;1� on CF�. L�/ is a Z–linear map
satisfying @ L�;.Jt /t2Œ0;1�.pC/D

P
p�

#˙M.Jt ; p�; pC/p� for all fixed points pC of L� ,
where the sum is over all fixed points p� satisfying .�CZ.p�//� .�CZ.pC//D 1.
Because .Jt /t2Œ0;1� is C1 generic, one can show [14, Theorem 3.3(1)] that

@2
L�;.Jt /t2Œ0;1�

D 0

and we define the resulting homology group to be HF�. L�; .Jt /t2Œ0;1�/. We define
HF�.�;C/�HF�. L�; .Jt /t2Œ0;1�/. This does not depend on the choice of perturbation L�
or on the choice of almost complex structure .Jt /t2Œ0;1� [14, Theorem 3.3(2)]. Our
conventions then tell us that, if �W M !M is the identity map with the trivial grading
and dim.M/D n, then HFk.�;C/DHnCk.M IZ/.

We will only use the following properties of these Floer cohomology groups:

(HF1) For a graded abstract contact open book .M; �M ; �/, the Lefschetz number
ƒ.�/ of � is equal to the Euler characteristic of HF�.�;C/ multiplied by
.�1/n (which follows from (CZ2)).

(HF2) Suppose that .M1; �M1 ; �1/, .M2; �M2 ; �2/ are graded abstract contact open
books such that the graded contact pairs associated to them are graded contac-
tomorphic. Then HF�.�0;C/D HF�.�1;C/ (see Appendix A).

(HF3) Let .M; �M ; �/ be a graded abstract contact open book where dim.M/D 2n.
Suppose that the set of fixed points of a small positive slope perturbation L�
of � is a disjoint union of codimension 0 families of fixed points B1; : : : ; Bl
and let �W f1; : : : ; lg !N be a function where

� �.i/D �.j / if and only if the action of Bi equals the action of Bj , and

� �.i/ < �.j / if the action of Bi is less than the action of Bj .
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Then there is a cohomological spectral sequence converging to HF�.�;C/
whose E1 page is equal to

E
p;q
1 D

M
fi2f1;:::;lgW�.i/Dpg

Hn�.pCq/�CZ.�;Bj /.BpIZ/

(see Appendix C).

5 Constructing a well-behaved contact open book

The aim of this section is to modify the Milnor monodromy map so that the set of
fixed points is a union of codimension 0 families of fixed points, so that we can apply
(HF3) above. We will do this by constructing such a nice symplectomorphism whose
mapping torus is isotopic to the mapping torus of the Milnor monodromy map.

5.1 Some preliminary definitions

The aim of this section is to construct a symplectic form on the resolution which behaves
well with respect to the resolution divisors. To do this we need a purely symplectic
notion of smooth normal crossing divisor. We will introduce some notation from [40].

If V �X is a submanifold of a manifold X then we will use the notation

(5-1) �NXV W NXV �
TX jV

T V
� V

for the normal bundle of V . If .Vi /i2S is a finite collection of submanifolds of X and
I � S, let

VI �
\
i2I

Vi :

Also, by convention we define V∅�X. The collection .Vi /i2S intersects transversally
if for every subset I � S and every x 2 VI ,

codimTxX

�\
i2I

TxVi

�
D

X
i2I

codimTxX .TxVi /:

If V � X is a submanifold and X is oriented then an orientation on V induces an
orientation on NXV and conversely an orientation on NXV induces an orientation on V
using (5-1) (if V is odd-dimensional, this depends on a sign convention, but we will not
need this since the manifolds that we will be dealing with are even-dimensional). If X is
oriented and .Vi /i2S is a collection of oriented transversally intersecting submanifolds,
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then the submanifold VI has a natural orientation called the intersection orientation
since NXVI D

L
i2I NXVi is oriented.

Definition 5.1 Suppose that .X; !/ is a symplectic manifold. Then .Vi /i2S is called
a symplectic crossings divisor or SC divisor if .Vi /i2S are transversally intersecting
codimension 2 symplectic submanifolds such that VI is also symplectic and such that
the symplectic orientation on VI agrees with its corresponding intersecting orientation
for all I � S. We will also assume that S is a finite set.

We now want to define SC divisors with particularly nice neighborhoods. We call

� W .L; �;r/! V

a Hermitian line bundle if � W L! V is a complex line bundle, � is a Hermitian metric
and r is a �–compatible Hermitian connection on L. We define �R and �iR to be
the real and complex parts of the Hermitian metric � . We will also use the notation �
to denote square of the norm function on L. If we view L as an oriented real vector
bundle then we can recover the complex structure i� from the metric �R using the fact
that for all x 2 V and W 2 Ljx � 0, i�.W / is the unique vector making W; i�.W /
into an oriented orthonormal basis of Ljx . Hence, we can define a Hermitian structure
.�;r/ on any oriented 2–dimensional real vector bundle L� V to be a pair .�;r/
making .L; i�/ into a Hermitian line bundle.

For any such triple .L; �;r/ we have an associated Hermitian connection 1–form
˛�;r 2�

1.L�V /. This is the pullback of the associated principal U.1/–connection
on the unit circle bundle of .L; �/ (see [4] or [40, Appendix A]). If .Li ; �i ;r.i//i2I
is a finite collection of Hermitian line bundles over a symplectic manifold .V; !/ and
prI Ii W

L
i2I Li ! Li is the natural projection map then we define

(5-2) !.�i ;r.i//i2I � �
�!C

1

2

X
i2I

pr�I Ii d.�˛�i ;r.i//:

This is a symplectic form in some small neighborhood of the zero section. Given a
2–dimensional symplectic vector bundle L� V with symplectic form �, an �–
compatible Hermitian structure on L is a Hermitian structure .�;r/ where the complex
structure i� is compatible with �.

Suppose that ‰W LV ! V is a diffeomorphism and suppose � W .Li ; �i ;r.i//i2I ! V

and L� W . LLi ; L�i ; Lr.i//i2I ! LV are two collections of Hermitian line bundles; then a
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product Hermitian isomorphism is a vector bundle isomorphism

z‰W
M
i2I

LLi !
M
i2I

Li

covering ‰ and respecting the direct sum decomposition such that the induced map
z‰W . LLi ; L�i ; Lr

.i//! .Li ; �i ;r
.i// is an isomorphism of Hermitian line bundles for

all i 2 LI.

Definition 5.2 Let V �X be a submanifold of a manifold X. A regularization is a
diffeomorphism ‰W LN!X from a neighborhood LN �NXV of the zero section onto
its image such that ‰.x/D x for all x 2 V and such that the map

dx‰W NXV jx!NXV jx; dx‰.v/�Q
�
D‰

�
d

dt
.tv/

ˇ̌̌
tD0

��
;

is the identity map, where QW TX jV !NXV is the natural quotient map.

We also need a notion of regularization compatible with the symplectic form. Because
of this we first need to talk about connections induced by closed 2–forms. Recall
that an Ehresmann connection on a smooth submersion � W E! B is a distribution
H � TE such that D�jHx W Hx! T�.x/B is an isomorphism for all x 2E.

Definition 5.3 Let � W E! B be a smooth submersion and let � be a 2–form on E
whose restriction to each fiber is nondegenerate. Then the symplectic connection
associated to � is an Ehresmann connection H � TE, where H is the set of vectors
which are �–orthogonal to the fibers of � . In other words,

H D fV 2 TxE W x 2E; �.V;W /D 0 for all W 2 T ver
x Eg;

where T ver
x E � ker.D�/ is the vertical tangent bundle.

If .X; !/ is a symplectic manifold and V �X is a symplectic submanifold then NXV

is a symplectic vector bundle on V . We write !jNXV for the symplectic form on this
vector bundle and !jL for the restriction of !jNXV to L, where L is any subbundle
L�NXV . The following definition differs in notation from [39, Definition 2.8] but it
defines the same object.

Definition 5.4 Let .X; !/ be a symplectic manifold, V a symplectic submanifold
and let

(5-3) NXV �
M
i2I

Li
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be a splitting into 2–dimensional subbundles such that !jLi is nondegenerate for
all i 2 I. A tuple ..�i /i2I ; ‰/ is called an !–regularization for V in X if ‰ is a
regularization for V in X and �i is a map �i W Im.‰/! Œ0;1/ such that there is an
!jLi –compatible Hermitian structure .z�i ;r.i// on Li satisfying

� z�i jDom.‰/D �i ı‰ for all i 2 I where z�i is (by abuse of notation) the pullback
of z�i by the natural projection map

L
j2I Lj ! Li ,

� r.i/ restricted to Dom.‰/\Li coincides with the symplectic connection asso-
ciated to !jLi for all i 2 I, and

(5-4) ‰�! D !.z�i ;r.i//i2I jDom.‰/

for each i 2 I.

The splitting (5-3) is called the associated splitting and the !jLi –compatible Hermitian
structure .z�i ;r.i// is called the associated Hermitian structure on Li . This Hermitian
structure is uniquely determined by �i and ‰ . Also, since z�i gives us a complex
structure on Li for each i 2 I, we get a natural complex structure on NXV which we
will call the complex structure associated to the !–regularization ..�i /i2I ; ‰/.

We wish to extend Definitions 5.2 and 5.4 to transverse collections of submanifolds
and SC divisors, respectively. To do this we need some preliminary notation. Let X be
a manifold and .Vi /i2S transversely intersecting submanifolds. We have a canonical
identification

(5-5) NXVI D �
�
I II 0.NVI 0VI /

for each I 0 � I, where
�I II 0 W NVI�I 0VI ! VI

is the natural projection map. Note that (5-5) is not an identification of bundles since
the base of the left-hand bundle is VI whereas the base of the right-hand bundle is
NVI�I 0VI .

Definition 5.5 Let X be a manifold and .Vi /i2S a transverse collection of submani-
folds. A system of regularizations is a tuple .‰I /I�S , where ‰I is a regularization
for VI such that

(5-6) ‰I .NVI 0VI \Dom.‰I //D VI 0 \ Im.‰I /

for all I 0 � I � S.
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Define

�W ��I II 0.NVI 0VI / ,! T��I II 0.NVI 0VI /
(5-5)
D TNXVI ; �.x; v/�

d

dt
.x; tv/

ˇ̌̌
tD0

:

Using the inclusion map � above, define

(5-7)
D‰I II 0 W �

�
I II 0.NVI 0VI /j‰�1I .VI 0 /

!NX .VI 0 \ Im.‰I //;

D‰I II 0.w/�Q
�
D‰I .�.w//

�
;

where QW TX jVI 0\Im.‰I /!NX .VI 0 \ Im.‰I // is the natural projection map.

Using the equality (5-5), D‰I II 0 identifies the normal bundle of NVI�I 0VI inside
NXVI near 0 with the normal bundle of VI 0 near VI using the derivative of the
regularization ‰I . The map D‰I II 0 is also a bundle isomorphism covering the
diffeomorphism

‰I j‰�1I .VI 0 /
W ‰�1I .VI 0/! VI 0 \ Im.‰I /:

The definition below tells us that ‰I 0 and ‰I should be equal under the identification
(5-7).

Definition 5.6 Let X be a manifold and .Vi /i2S a transverse collection of submani-
folds of X. Then a regularization for .Vi /i2S is a system of regularizations .‰I /I�S
for .Vi /i2S such that

(5-8) D‰I II 0.Dom.‰I //D Dom.‰I 0/jVI 0\Im.‰I /; ‰I D‰I 0 ıD‰I II 0 jDom.‰I /:

The following definition differs from [39, Definition 2.11] for the same reasons that
Definition 5.4 differs from [39, Definition 2.8]. Apart from that, this definition is exactly
the same. This structure also appears in [26, Lemma 5.14] although the regularization
maps have particular domains and it is defined in a slightly different way.

Definition 5.7 Let .X; !/ be a symplectic manifold and .Vi /i2S an SC divisor. An
!–regularization is a pair of tuples

..�i /i2S ; .‰I /I�S /;

where

(1) .‰I /I�S is a regularization for .Vi /i2S as in Definition 5.6 and

�i W
[

i2I�S

Im.‰I /! Œ0;1/

is a smooth map,
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(2) ..�i jIm.‰I //i2I ; ‰I / is an !–regularization for VI in X for each I � S as in
Definition 5.4, and

(3) the maps D‰I II 0 from (5-7) are product Hermitian isomorphisms for all I 0 �
I � S with respect to the natural splittings

��I II 0.NVI 0VI /j‰�1I .VI 0 /
D

M
i2I 0

��I II 0.NXVi jVI /j‰�1I .VI 0 /
;

NX .VI 0 \ Im.‰I //D
M
i2I 0

NXVi jVI 0\Im.‰I /:

We are only interested in regularizations near .Vi /i2S and so we want a notion of
equivalence to reflect this.

Definition 5.8 Two !–regularizations

..�i /i2S ; .‰I /I�S /; .. L�i /i2S ; . L‰I /I�S /

for .Vi /i2S are germ equivalent if there is an open set

UI � Dom.‰I /\Dom. L‰I /

containing VI such that ‰I jUI D L‰I jUI and �i j‰I .UI /D L�i j‰I .UI / for each i 2 I �S.

A real codimension 2 submanifold with an oriented normal bundle should be thought
of as the differential geometric analogue of a smooth divisor in algebraic geometry. We
wish to construct complex line bundles from such submanifolds in the same way that
line bundles are constructed from Cartier divisors in algebraic geometry. The following
line bundle associated to a codimension 2 submanifold V of a manifold X will depend
on a choice of regularization ‰W LN! X of V and a complex structure i on NXV

and it will come with a canonical section sV W V ! OX .V / whose zero set is V . We
define

(5-9) OX .V /D
�
.��NXVNX .V //jDom.‰/ t .X �V /�C

�
=�;

where

.��NXVNX .V //jDom.‰I / 3 .v; cv/� .‰.v/; c/ 2 .X �V /�C

for all v 2NXV �V; c 2C:
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The corresponding fibration is defined in the following natural way:

�OX .V /W OX .V /!X;

�OX .V /.v; w/�‰.v/ for all .v; w/ 2 ��NXV .NXV /;

�OX .V /.x; c/� x for all .x; c/ 2 .X �V /�C:

This is a line bundle satisfying the following important canonical identities:

(5-10) OX .V /jV DNX .V /; OX .V /jX�V D .X �V /�C:

We will call ‰ the associated regularization. The canonical section sV W X ! OX .V /

of this line bundle is defined as follows:

(5-11) sV .x/�

�
.‰�1.x/;‰�1.x// 2 .��

NXV
NX .V //jDom.‰I / if x 2 Im.‰I /;

.x; 1/ 2 .X �V /�C if x 2 .X �V /:

We also define OX .0/� OX � X �C to be the trivial bundle. This is also OX .∅/,
where ∅ is the empty submanifold.

5.2 Trivializing line bundles

In the previous section, we constructed a line bundle from any codimension 2 sub-
manifold with oriented boundary. As a result, we can construct line bundles from any
SC divisor. In this subsection we show that if such a line bundle is trivial and if our
SC divisor admits a regularization, then our line bundle admits a trivialization which
behaves well with respect to this regularization. This trivialization will be used later
to construct a map from a neighborhood of our SC divisor to C with nice parallel
transport maps away from the singularities.

Let .X; !/ be a symplectic manifold and .Vi /i2S an SC divisor on X admitting an
!–regularization

R� ..�i /i2S ; .‰I /I�S /

as in Definition 5.7. Let .mi /i2S be natural numbers indexed by S. For all i 2 S, let
OX .Vi / be the line bundle with associated regularization ‰i and complex structure
associated to the !–regularization .�i ; ‰i /. Recall that these have natural sections
sVi W X ! OX .Vi / as in (5-11). Define OX

�P
i miVi

�
�
N
i2S OX .Vi /

˝mi and let

(5-12) s.mi /i2S �
O
i2S

s
˝mi
Vi
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be the canonical section of this bundle. Using the identity (5-10) we have

OX .Vi /jVI DNXVi jVI for all i 2 I � S;

and hence we get the following maps:

…Vi II W NXVI D
M
j2I

NXVj jVI ! OX .Vi /jVI ;

.vj /j2I !

�
vi if i 2 I;
sVi .x/ if i … I;

for all .vj /j2I 2NXVI jx; x 2 VI :

Therefore, we get a (not necessarily fiberwise linear) map

(5-13)

….mi /i2S ;I W NXVI ! OX

�X
i

miVi

�ˇ̌̌̌
VI

;

….mi /i2S ;I .v/�
O
i2S

…Vi II .v/
˝mi for all v 2NXVI :

One can think of the above map as a section of OX
�P

i miVi
�ˇ̌
VI

along with nontrivial
infinitesimal information in the normal direction of VI .

Below is a definition of a trivialization of O
�P

i miVi
�

with the property that locally
around each point of VI , the canonical section s.mi /i2S of OX

�P
i miVi

�
looks ap-

proximately like the map .z1; : : : ; zn/!
Q
i2I .zia.jzi j/=jzi j/

mi in some local chart
z1; : : : ; zn , where I � f1; : : : ; ng and aW R!R has the following graph:

1

We need to use the above function a to ensure that we have good dynamical properties
(see Section 5.5). See [40, Definition 3.8] for a related definition.

Definition 5.9 For each r > 0, we define the radius r tube of VI to be the set

(5-14) Tr;I �
\
i2I

fx 2 Im.‰I / W �i .x/� rg

over VI . Let B �X be any set. The tube radius of R along B is the largest radius r
tube of VI along B that can “fit” inside the image of ‰I for each I � S. More
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precisely, it is the supremum of all r � 0 with the property that Tr;I \ .Im.‰I /jx/ is a
compact subset of X for all x 2 B \VI and I � S.

Let U �X be an open set. Now suppose that the tube radius of R along U is positive
and let R> 0 be any constant smaller than the tube radius and also smaller than 1. We
let aRW Œ0;1/! Œ0;1/ be a smooth function satisfying

(1) a0R.x/ > 0 for x 2
�
0; 3
4
R
�
,

(2) aR.x/D x for x � 1
4
R ,

(3) aR.x/D 1 for x � 3
4
R .

A bundle trivialization

ˆ� .�;ˆ2/W OX

�X
i

miVi

�
!X �C

is radius R compatible with R along U \VI if

(5-15) ˆ2.s.mi /i2S .x//Dˆ2
�
….mi /i2S ;I .‰

�1
I .x//

�Y
i2I

�p
aR.�i .x//p
�i .x/

�mi
for all x 2 TR;I \ .Im.‰I /jVI\U�

S
i2S�I T3R=4;i

/:

and where the norm of the linear map

(5-16) ˆ2jN
i2I .NXVi jx/

˝mi W

�O
i2I

NXVi jx

�̋ mi

!C

is equal to 1 for all x 2 VI \U �
S
i2S�I T3R=4;i using the identification (5-10).

We say that ˆ is radius R compatible with R along U if it is radius R compatible
with R along U \VI for each I � S. It is compatible with R along U if it is radius R
compatible with R along U for some R smaller than the tube radius of R.

One should think of (5-15) as saying that the trivialization ˆ identifies the canonical
section of OX

�P
i miVi

�
with the “infinitesimal” section ….mi /i2S ;I multiplied by a

particular factor near VI . This particular factor that we are multiplying by is actually
equal to 1 if we are very near VI . Note also that (5-15) tells us that the norm of
ˆ2.s.mi /i2S .x// only depends on .�i .x//i2I and if �i .x/� 3

4
R for some i 2 I then

this norm does not depend on �i .x/ for all x 2 Im.‰I /�
S
i2S�I T3R=4;i . As a result,

the above definition is consistent with the stated norm property of the linear map (5-16).
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Lemma 5.10 Suppose OX
�P

i miVi
�

admits a trivialization ˆ and let U � X be a
relatively compact open set. Then there is a trivialization of OX

�P
i miVi

�
compatible

with R along U which is homotopic to ˆ through trivializations of OX
�P

i miVi
�
.

Proof Just as in the proof of [40, Definition 3.9] we will proceed by induction on the
strata of

S
j Vj . Before we do this though we will need to construct certain natural

maps that identify ….mi /i2S II with s.mi /i2S near VI . Define

Ni;I � Dom.‰i /jVi\Im.‰I[i /
(5-8)
D D‰I[i Ii .Dom.‰I[i //;

Wi II �‰I .Dom.‰I /jVI�Vi /;

Di II �Wi II [‰i .Ni II /

for all i 2 S and I � S. By (5-9), we have the natural identification

(5-17) OX .Vi /j‰i .NiII / D �
�
NXVi

NX .Vi /jNiII

and by (5-6) and (5-10) we have the identity

(5-18) OX .Vi /jWiII DWi II �C

for all i 2 S and I � S. By using the natural projections

prI II 0 W NXVI !NXVI 0 jVI for all I 0 � I � S;

we have a map
y…Vi II W OX .Vi /jDI Ii ! OX .Vi /jVI

for all i 2 S and I � S, whose restriction to ‰i .Ni II / is defined by the equation

y…Vi II .v; w/�
�
prI[i Ii .D‰

�1
I[i Ii .v//; prI[i Ii .D‰

�1
I[i Ii .w//

�
for all .v; w/ 2 .��NXViNX .Vi //jNiII

by using the identity (5-17) and whose restriction to Wi II is defined by

y…Vi II .x; c/�
�
�NXVI .‰

�1
I .x//; c

�
2 .VI �Vi /�C for all .x; c/ 2Wi II �C

by using the identity (5-18). One should think of this map as a way of canonically
identifying the bundle OX .Vi / near VI with its pullback along the natural projection
map from Di II to VI induced by �NXVI ı‰

�1
I . By (5-9) and (5-11),

(5-19) …Vi II j‰�1I .DiII /
D y…Vi II ı sVi ı‰I for all i 2 S; I � S:

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 991

Also, by (5-8) and the fact that D‰I II 0 is a product Hermitian isomorphism for all
I 0 � I � S,

(5-20) y…Vi II ı
y…Vi II 0 jDI Ii D

y…Vi II for all i 2 S; I 0 � I � S:

We can define similar maps for the line bundle OX
�P

i miVi
�

in the following way:

y….mi /i2S II W OX

�X
i

miVi

�ˇ̌̌̌
T
i2S DiII

! OX

�X
i

miVi

�ˇ̌̌̌
VI

;

y….mi /i2S II

� O
i2S; j2f1;:::;mi g

vi;j

�
D

O
i2S; j2f1;:::;mi g

y…Vi II .vi;j / for all I � S:

Equations (5-19) and (5-20) give us the equations

(5-21) ….mi /i2S II j‰�1I .
T
i2S DiII /

D y….mi /i2S II ı s.mi /i2S ı‰I j
T
i2S DiII

for all I � S
and

(5-22) y….mi /i2S II ı
y….mi /i2S II 0 j

T
i2S DiII

D y….mi /i2S II for all I 0 � I � S:

Using these equations, we will now prove our lemma by induction on the set of subsets
of S. Let � be a total order on the set of subsets of S with the property that if jI 0j< jI j
then I � I 0. We write I � I 0 when I � I 0 and I ¤ I 0. Since U is relatively compact,
the tube radius of R along U is positive and hence we can choose any constant R > 0
smaller than this tube radius.

Suppose that there is some I� � S and a trivialization

ˆ� � .�;ˆ�2 /W OX

�X
i

miVi

�
!X �C

which is radius R compatible with R along U \ VI for all I � I� and which is
isotopic to ˆ through trivializations of OX

�P
i miVi

�
. We now wish to modify the

trivialization ˆ� so that these properties hold for all I � I� . Let Tr;I be the radius r
tube of VI as in (5-14) and define L�r �

S
I�I� Tr;I .

First of all, let
gW VI� �L

�
3R=4! .0;1/

be a smooth function whose value at x 2 VI��L�3R=4 is equal to the norm of the linear
map

ˆ�2 j
N
i2I� .NXVi jx/

˝mi W

�O
i2I�

NXVi jx

�̋ mi

!C:

Geometry & Topology, Volume 23 (2019)



992 Mark McLean

Since the map …Vi II restricted to each fiber of prI II�i is an isometry for all i 2
I � S, we get that g.x/ D 1 for all x 2 VI� \ .L�R � L

�
3R=4

/ by our induction
hypothesis. Combining this with the fact that aR.s/D 1 for all s � 3

4
R , we can choose

a smooth function f W X ! .0;1/ which is equal to 1 in the region L�R and equal to
.�NXVI� ı‰

�1
I� /
�
�
1
g

�
inside TR;I� \‰I�.Dom.‰I�/jVI��L�3R=4/. This implies that

the norm of the linear map

(5-23) f .x/ˆ�2 j
N
i2I .NXVi jx/

˝mi W

�O
i2I

NXVi jx

�̋ mi

!C

is 1 for all I � I� . Hence, (5-16) holds for f ˆ�2 for all I � I� .

We now wish to modify f ˆ� so that (5-15) for this new trivialization holds as well.
We let

ˆD � .�;ˆD2 /W OX

�X
i

miVi

�ˇ̌̌̌
Im.‰I� /

!X �C;

given by

(5-24) ˆD.v/� f .x/ˆ�. y….mi /i2S II�.v//
Y
i2I�

�p
aR.�i .x//p
�i .x/

�mi
for all v 2 OX

�X
i

miVi

�ˇ̌̌̌
x

; x 2 Im.‰I�/

be a smooth trivialization. Equation (5-22) combined with the fact that ˆ�2 is radius R
compatible with R along U\VI for all I � I� implies that ˆ�2 is radius R compatible
with R along U \ .L�R �L

�
3R=4

/\VI� . Hence, by (5-24), we have

ˆ�2 .v/Dˆ
D
2 .v/ for all v 2 TR;I� \ .L�R �L

�
3R=4/:

Combining this with the fact that TR;I� deformation retracts onto VI�[.TR;I�\L�R/,
we can construct a smooth trivialization

ˆ� � .�;ˆ�2 /W OX

�X
i

miVi

�
!X �C

homotopic to ˆ� so that

(5-25) ˆ�jL�R
Dˆ�jL�R

and ˆ�jTR;I� Dˆ
D
jTR;I� :

Equations (5-21), (5-24) and (5-25) tell us that ˆ� is radius R compatible with R along
U \VI� . Also, since ˆ� D ˆ� along L�R , we get that ˆ� is radius R compatible
with R along U \VI for all I � I� . Hence, ˆ� is radius R compatible with R along
U \VI for all I � I� .
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Because the norm of the linear map (5-23) is 1 for all I � I� , we have by (5-24) and
(5-25) that the norm of the linear map

f ˆ
�

2 j
N
i2I .NXVi jx/

˝mi W

�O
i2I

NXVi jx

�̋ mi

!C

is equal to 1 for all I � I� . Hence, we are done by induction.

5.3 Links of divisors and open books

In this subsection, we first give a purely symplectic definition of a divisor which looks
like the resolution divisors of a log resolution of an isolated hypersurface singularity. We
then construct the “link” of this resolution divisor, which corresponds to the embedded
link of our isolated singularity. Finally we construct an open book decomposition of
this resolution divisor corresponding to the Milnor open book of our hypersurface
singularity.

We have the following definition from [26]:

Definition 5.11 Let .X; !/ be a symplectic manifold of dimension 2n and let � 2
�1.X �K/ satisfy d� D !jX�K for some compact K �X. Suppose that K admits
an open neighborhood U which deformation retracts onto K . Let �W X ! Œ0; 1� be a
smooth function equal to 0 along K and equal to 1 outside a compact subset of U.
Then the dual

c.!; �/ 2H2n�2.KIR/DH2n�2.U IR/

of .!; �/ is defined to be the Lefschetz dual of .! � d.��//jU 2H 2
c .U /.

Now suppose that K D
S
i2S Vi , where .Vi /i2S is an SC divisor and each Vi is con-

nected and compact. Then a Mayer–Vietoris argument tells us that H2n�2
�S

i2S Vi IR
�

is freely generated by the fundamental classes ŒVi � and hence there are unique real
numbers .wi /i2S such that c.!; �/ D �

P
i wi ŒVi �. The wrapping number of �

around Vj is defined to be w.�; Vj /� wj .

The wrapping number does not depend on the choice of neighborhood U or bump
function � . We can calculate the wrapping number w.�; Vj / in the following way
(see the discussion after Definition 5.4 in [28]): Let D �X be a small symplectically
embedded disk with polar coordinates .r; #/ which intersects Vi positively once at
0 2D and does not intersect Vj for all j 2 S � i . Then the wrapping number wi is
the unique number such that .wi=2�/d# is cohomologous to

� jD�0�
1
2
r2d#
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inside H 1.D�0IR/. The computation of the wrapping number using the disk D above
enables us to define wrapping numbers in the case when each Vi is properly embedded
but not necessarily compact. We will need this broader definition of wrapping number
in the proof of Lemma 5.23 below.

The next definition is supposed to be a way of describing a log resolution of a pair
.CnC1; f �1.0// (as in Definition 2.1) in a symplectic way. The key motivating example
for such a definition is given in Example 5.14 below.

Definition 5.12 A resolution divisor is a pair .X; .Vi /i2S / where .Vi /i2S are transver-
sally intersecting properly embedded codimension 2 submanifolds of a manifold X
such that there is a unique element ?S 2 S with the property that V?S is noncompact
and Vi is compact for all i 2 S �?S . We also require that

S
i Vi is connected and that

Vi is connected for each i 2 S �?S (although V?S is allowed to be disconnected).

A model resolution is a triple
�
OX
�P

i2S miVi
�
; ˆ; �

�
where X is a manifold, .Vi /i2S

are codimension 2 submanifolds, � 2�1
�
X �

S
i2S�?S

Vi
�

and ˆ is a trivialization
of

OX

�X
i2S

miVi

�
�

O
i2S

OX .Vi /
˝mi ;

where .mi /i2S are positive integers satisfying:

(1) .X; .Vi /i2S / is a resolution divisor as above.

(2) d� D !jX�
S
i2S�?S

Vi for some symplectic form ! on X.

(3) .Vi /i2S is an SC divisor with respect to ! .

(4) m?S D 1 and the wrapping number w.�; Vi / is positive for all i 2 S �?S .

The form ! is called the symplectic form associated to
�
OX
�P

i2S miVi
�
; ˆ; �

�
. A

grading on this model resolution is a grading on
�
X �

S
i2S�?S

Vi ; !
�
.

Definition 5.13 Two model resolutions

Y �

�
OX

�X
i2S

miVi

�
; ˆ; �

�
; yY �

�
O yX

�X
i2 yS

ymi yVi

�
; ŷ ; y�

�
are isotopic if there is

� a bundle isomorphism z‰W OX
�P

i2S miVi
�
! O yX

�P
i2 yS
ymi yVi

�
covering a

diffeomorphism ‰W X ! yX,
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� a bijection �W S ! yS sending ?S to ? yS , and

� a smooth family of 1–forms
�
�t 2 �

1
�
X �

S
i2S�?S

Vi
��
t2Œ0;1�

joining �

and ‰�y� and trivializations .ˆt /t2Œ0;1� of OX
�P

i2S miVi
�

joining ˆ and
ŷ ı z‰ ı .‰�1 � idC/

such that miD ym�.i/ and ‰.Vi /D yV�.i/ for all i2S and Yt�.OX
�P

i2SmiVi
�
;ˆt ;�t /

is a model resolution for all t 2 Œ0; 1�.

These model resolutions are graded isotopic if they are isotopic as above with the
additional property that the model resolutions Yt all admit gradings that smoothly
depend on t 2 Œ0; 1� and where the grading on Y0 coincides with the grading on Y and
the grading on Y1 coincides with the grading on yY under the identification ‰ .

We will now give an example of a model resolution.

Example 5.14 Let f W CnC1 ! C be a polynomial with an isolated singularity
at 0 and let U � CnC1 be an open set containing 0 such that f jU�0 is regular.
Let � W Y ! CnC1 be a log resolution of .CnC1; f �1.0// obtained by a sequence
of blowups along smooth loci and define X � ��1.U / (such a resolution exists
by [20; 21]). Let .Ej /j2S be the resolution divisors of this resolution and let E?S �X
be the proper transform of f �1.0/\U. Because such a resolution is obtained by a
sequence of blowups along smooth loci, there are positive integers .wj /j2S�?S such
that A��

P
i2S�?S

wiEi is ample on X. By the divisor line bundle correspondence,
let L ! X be the corresponding ample line bundle with a meromorphic section
satisfying .s/ D A. Choose a Hermitian metric k � k on L whose curvature form
is a positive one-to-one form. Define � D �d c ln.ksk/. The 2–form d� extends
uniquely to a Kähler form ! on X. The wrapping number of � around Ej is wj for
all j 2 S �?S .

We also let mi 2 N>0 be the multiplicity of f along Ei for all i 2 S. SinceP
i2S miEi is the divisor defined by f ı �jX we get, by the divisor line bundle

correspondence, that the holomorphic line bundle OX
�P

i2S miEi
�

has an induced
trivialization ˆW OX

�P
i2S miEi

�
ŠX �C such that the section s corresponding to

the holomorphic function f ı�jX satisfies pr2ıˆısDf ı�jX , where pr2W X�C!C

is the natural projection map. Then
�
OX
�P

i2S miEi
�
; ˆ; �

�
is a model resolution,

called a model resolution associated to f .

Such a resolution also has a grading as follows: Let LX �X �
S
i2S�?S

Ei . Since

�j LX W
LX ! U � 0�CnC1
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is a biholomorphism, we get a canonical holomorphic trivialization

ˆW T LX ! LX �CnC1

as a unitary vector bundle coming from the trivialization on TCnC1 . The grading on
T LX is equal to the trivial grading on LX �CnC1 pulled back by ˆ. We will call this
the standard grading.

We now wish to associate a pair of contact manifolds with normal bundle data to a
model resolution. In the case of Example 5.14, this is the link of our singularity (as
defined in the introduction) with some additional data.

Definition 5.15 Let .X; .Vi /i2S / be a resolution divisor. A tuple of regularizations

.‰i /i2S�?S

is compatible with V?S if ‰i is a regularization of Vi for each i 2 S �?S and

‰i .Dom.‰i /jV?S\Vi /� V?S for all i 2 S �?S :

In other words, ‰i restricted to Dom.‰i /jV?S\Vi is a regularization of Vi \ V?S
inside V?S for all i 2 S �?S .

Definition 5.16 Let ‰ and L‰ be regularizations of a submanifold V of a manifold X.
Then a smooth family of regularizations ‰t of V connects ‰ and L‰ if ‰ is germ
equivalent to ‰0 and L‰ is germ equivalent to ‰1 .

Lemma 5.17 Let .X; .Vi /i2S / be a resolution divisor. For any two tuples of regular-
izations .‰i /i2S�?S and . L‰i /i2S�?S compatible with V?S , there is a smooth family
of such regularizations

.‰ti /i2S�?S ; t 2 Œ0; 1�;

compatible with V?S which connects .‰i /i2S�?S and . L‰i /i2S�?S .

Proof Choose a metric making V?S into a totally geodesic submanifold. Define
T rX � TX to be the set of tangent vectors of length at most r . Fix i 2 S. Choose a
relatively compact neighborhood Wi of Vi in X and let ı > 0 be small enough that
the exponential map restricted to T ıwX is a diffeomorphism onto its image for all w
in Wi . Let �Wi �‰�1i .Wi /\ . L‰i /

�1.Wi / be a small enough neighborhood of Vi that
the distance d.v/ between ‰i .v/ and L‰i .v/ is less than ı for all v 2 �Wi . Now let
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vW Œ0; d.v/�!X be the unique geodesic of length < ı joining ‰i .v/ and L‰i .v/ for
all v 2 �Wi . Define

z‰ti W
�Wi !X; z‰ti .v/� v.td.v// for all t 2 Œ0; 1�:

Since dv‰ and dv L‰ from Definition 5.2 are both the identity map, we get that dv z‰ti
is also the identity map for all v 2 Vi . Hence, there is a neighborhood �W 0i � �Wi
of Vi such that ‰ti � z‰

t
i j �W 0 is a diffeomorphism onto its image for all t 2 Œ0; 1�.

Hence, .‰ti /t2Œ0;1� is a smooth family of regularizations compatible with V?S which
connects ‰i and L‰i . Therefore, .‰ti /i2S�?S for t 2 Œ0; 1� connects .‰i /i2S�?S and
. L‰i /i2S�?S .

Definition 5.18 Let X be a smooth manifold and let .Vi /i2 LS be transversely inter-
secting compact codimension 2 submanifolds of X. A smooth function

f W X �
[
i2 LS

Vi !R

is compatible with .Vi /i2 LS if there is

� a regularization ‰i of Vi ,

� a real number bi > 0, and

� a smooth function qi W Dom.‰i /! Œ0; 1� equal to the square of some norm on
NXVi near Vi , equal to 1 outside a compact subset of Dom.‰i / and nonzero
on Dom.‰i /�Vi

for each i 2 S and a smooth function � W X !R such that

f D
X
i2 LS

bi log.qi ı‰�1i /C �;

where log.qi ı‰�1i / is defined to be 0 outside Im.‰i / for each i 2 S. We will call
the regularizations .‰i /i2S�?S associated regularizations of f .

Now suppose that we have an additional smooth submanifold V?S of X such that
.Vi /i2S becomes a resolution divisor, where SD LStf?Sg. We say that f is compatible
with .Vi /i2S if it is compatible with .Vi /i2S�?S as above with the additional property
that the associated regularizations of f are compatible with V?S . As a consequence
of this we have that f jV?S is compatible with .Vi \V?S /i2S�?S .

We say that f is strongly compatible with .Vi /i2S if in addition � D 0.

Geometry & Topology, Volume 23 (2019)



998 Mark McLean

Lemma 5.19 Let .X; .Vi /i2S / be a resolution divisor and let

f; gW X �
[

i2S�?S

Vi !R

be a pair of smooth functions compatible with .Vi /i2S . Then there is a smooth family
of functions

ft W X �
[

i2S�?S

Vi !R; t 2 Œ0; 1�;

compatible with .Vi /i2S such that f0 D f and f1 D g .

Proof For all i 2S�?S , there are regularizations ‰i and L‰i of Vi , smooth functions

qi W Dom.‰i /! Œ0; 1�; Lqi W Dom. L‰i /! Œ0; 1�

equal to the square of a norm near Vi , equal to 1 outside a compact set and nonzero
outside Vi , real numbers bi ; Lbi > 0 and smooth functions �; L� W X !R such that

f D
X

i2S�?S

bi log.qi ı‰�1i /C � and g D
X

i2S�?S

Lbi log. Lqi ı L‰�1i /C L�:

First of all, we can smoothly deform f and g through smooth functions compatible
with .Vi /i2S by changing qi , Lqi , bi , Lbi and � and L� such that qi D Lqi , bi D Lbi and
� D L� D 0. Hence, we can assume that

f D
X

i2S�?S

bi log.qi ı‰�1i / and g D
X

i2S�?S

bi log.qi ı L‰�1i /:

Lemma 5.17 tells us that there is a smooth family of regulations .‰ti /i2S�?S for
t 2 Œ0; 1� compatible with V?S connecting .‰i /i2S�?S and . L‰i /i2S�?S and hence
we get a smooth family of functions

ft D
X

i2S�?S

bi log.qi ı .‰ti /
�1/

compatible with .Vi /i2S
�
after possibly shrinking the region on which qi is not equal

to 1 so that it fits inside
T
t2Œ0;1� Dom.‰t /

�
. This is a smooth family of functions

compatible with .Vi /i2S joining f and g .

Lemma 5.20 Let .X; !/ be a symplectic manifold with a choice of grading and
C �X a contact hypersurface with a contact form ˛ compatible with the contact struc-
ture satisfying d˛ D !jC . Then .C; ker.˛// has a natural induced choice of grading.

We will call such a grading the induced grading on C.
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Proof Let X˛ be a smooth section of the bundle TX jC ! C equal to the !–dual
of ˛ . Since d˛ D !jC and ˛ is a contact form, we get that X˛ is transverse to C.
Let R be the Reeb vector field of ˛ and define �C � ker.˛/. Let H � TX jC be the
2–dimensional symplectic vector subbundle spanned by X˛ and R . Then we have the
direct sum decomposition of symplectic vector bundles

.TM;!/jC Š .�C ; d˛/˚ .H; !jH /:

Since X˛; R is a symplectic basis for H at each point of C, we have a natural
symplectic trivialization of .H; !jH / sending X˛ and R to the standard symplectic
basis vectors on C . Hence, we have a natural isomorphism

(5-26) .TM;!/jC Š .�C ; d˛/˚ .C; !std/:

Now choose an almost complex structure J on M compatible with ! such that its
restriction to TM jC is equal to JC ˚ i with respect to the splitting (5-26), where JC
is an almost complex structure on �C compatible with d˛j�C and i is the standard
complex structure on C .

Now we will use the natural correspondence between gradings and trivializations of
the canonical bundle as stated in Appendix A. Let ˆW �J !X �C be the choice of
trivialization of the canonical bundle of .TM; J / associated to the grading on .X; !/
(see Definition A.7). Since J jC DJC˚i under the splitting (5-26), we get a natural triv-
ialization ˆC W �JC !C�C induced from the trivialization ˆjC . The induced grading
on .C; �C / is then the grading associated to the trivialization ˆC as in Definition A.7.

We wish to use functions compatible with a resolution divisor to construct its “link”.
The following proposition tells us how to at least start doing this.

Proposition 5.21 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution. Define K �S

i2S�?S
Vi . Let f W X�K!R be a smooth function compatible with .Vi /i2S . Then

there is a smooth function gW X�K!R and an open neighborhood U of K such that
df .X!

�Cdg
/jU > 0 and df?.X

!?
�?Cdg?

/jU\V?S > 0, where ! is the symplectic form
associated to our model resolution, !? � !jV?S , f? � f jV?S�K and g? � gjV?S�K .

The proof of this proposition is almost exactly the same as the proof of Proposition 5.8
of [28]. The only difference is that we have to take into account the additional sub-
manifold V?S . For the sake of completeness we have produced the proof below. We
also have a parametrized version of the proposition above.
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Proposition 5.22 Let Mt �
�
OX
�P

i2S miVi
�
; ˆ; �t

�
for t 2 Œ0; 1� be a smooth

family of model resolutions. Define K �
S
i2S�?S

Vi . Let ft W X �K ! R for
t 2 Œ0; 1� be a smooth family of functions compatible with .Vi /i2S . Then there is a
smooth family of functions gt W X�K!R for t 2 Œ0; 1� and an open neighborhood U
of K such that dft .X

!t
�Cdgt

/jU > 0 and df?;t .X
!?;t
�?Cdg?;t

/jU\V?S > 0, where !t
is the symplectic form associated to Mt , !?;t � !t jV?S , f?;t � ft jV?S�K and
g?;t � gt jV?S�K for all t 2 Œ0; 1�.

The proof of this proposition is almost exactly the same as the proof of Proposition 5.21
except that all variables are now parametrized by t . Therefore, for notational simplicity
we will just prove Proposition 5.21. Before we prove this we need a few preliminary
technical lemmas. The following lemma is very similar to [28, Lemma 5.12]. This
lemma should be thought of as a local version of Proposition 5.21.

Lemma 5.23 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution and fix a metric

k � k on X. Define K �
S
i2S�?S

Vi . Fix I � S and let ! be the symplectic form
associated to our model resolution. Let U �K be an open set with the property that
U \VI 0 is contained inside a contractible Darboux chart of VI 0 for all I 0 � S and such
that U \Vi D∅ for all i 2 S � I.

Then there is a smooth function gW X�K!R such that for any function f W X�K!R

compatible with .Vi /i2S , we have

(1) df .X!
�Cdg

/jWf > cf k� C dgkkdf k
ˇ̌
Wf

for some constant cf > 0 and some
small neighborhood Wf of U \VI ,

(2) df?.X
!?
�?Cdg?

/jWf;? > cf k�? C dgp;?kkdf?k
ˇ̌
Wf;?

, where f? � f jV?S�K ,
Wf;? �Wf;?\V?S , �? � � jV?S�K and g? � gjV?S�K , and

(3) a1kdf k< k� C dgk< a2kdf k inside Wf for some constants a1; a2 > 0.

Proof Define yI � I � ?S and let n be the dimension of X divided by 2. Since
U \Vi is contained inside a contractible Darboux chart we have, by a Moser argument,
symplectic coordinates xi1; y

i
1; : : : ; x

i
n; y

i
n defined on some neighborhood Wi of U\Vi

in X such that Vi \Wi D fxi1 D y
i
1 D 0g for each i 2 yI. We can also choose Wi

so that Wi \ Vj D ∅ for all j 2 S � I and so that W i is a compact contractible
codimension 0 submanifold of X with boundary such that @W i and .Vj /j2S are
transversely intersecting. Define W 0i �Wi � Vi and let Pi W �W 0i !W 0i be the cover
corresponding to the subgroup of �1.W 0i / generated by loops wrapping around Vi

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 1001

near Vi for each i 2 yI. In other words, the cover corresponding to the image of
�1.Ti �Vi / in �1.W 0i /, where Ti is a small tubular neighborhood of Vi \Wi in Wi .
Let ri W W 0i !R and #i W W 0i !R=2�Z be functions satisfying xi1 D ri cos.#i / and
yi1 D ri sin.#i /. Define �i � 1

2
.ri /

2 , z�i � P �i �i , zy
i
j � P

�
i y

i
j and zxij � P

�
i x

i
j for

all i 2 yI and j 2 f1; : : : ; ng. Let z#i W �W 0i ! R be a smooth function whose value
mod 2� is equal to P �i #i . Also let z! � P �i .!jW 0i / and z� � P �i .� jW 0i /.

Then z! D d.z�i /^ d.z# i /C
Pn
jD2 d.zx

i
j /^ d.zy

i
j /. Therefore, there is a natural sym-

plectic embedding of �i W �W 0i ,!CnC1 such that the standard symplectic coordinates
x1; y1; : : : ; xn; yn in Cn restricted to �W 0i are z�i ; z#i ; zxi2; zy

i
2; : : : ; zx

i
n; zy

i
n , respectively.

Let �W 0i �CnC1 be the closure of P�1i .W 0i / inside CnC1 and let yV 0I�i be the closure
of P�1i .VI�i / inside CnC1 . Then �W 0i is a codimension 0 submanifold of CnC1 with
boundary and corners and yV 0I�i is a codimension 2.jI j�1/ submanifold of �W 0i with
boundary and corners where one part of the boundary is LVI�i � fx1 D 0g \ yV 0I�i .
Let W i be the closure of Wi in X. The map Pi extends to a map Pi W �W 0i ! W i

whose fibers over W i \Vi are 1–dimensional. Also LVI�i is equal to P�1i .VI / and
yV 0I�i D P

�1
i .VI�i /. See Figure 2.

Let wi > 0 be the wrapping number of � around Vi . Let H � TCnC1j LVI�i
be a

2–dimensional symplectic subbundle over LVI�i containing

kerDPi j LVI�i D Span
�
@

@y1

�ˇ̌̌
LVI�i

such that H is contained in T yV 0I�i . Let T? yV 0I�i be the set of vectors which are
symplectically orthogonal to T yV 0I�i and define yH �H ˚T? yV 0I�i j LVI�i .

Choose a smooth function zgi W CnC1!R so that

(a) zgi .x1; y1; : : : ; xn; yn/D zgi .x1; y1C 2�; x2; y2; : : : ; xn; yn/Cwi ,

(b) dx1.Xd zgi / > 0 at each point of LVI�i , and

(c) the !CnC1 j yH –dual of d zgi j yH is tangent to yV 0I�i at each point of LVI�i , where
!CnC1 is the standard symplectic structure on CnC1 .

Condition (c) implies that Xd zgi is tangent to yV 0I�i at each point of LVI�i . By (a) there
is a closed 1–form ˇi 2�

1.W 0i / whose pullback to �W 0i is equal to d zgi j �W 0
i

.

Define W 0 �
T
i2yI

Wi . Let �1 2�1.W 0/ be any 1–form of bounded norm satisfying
d�1 D !jW 0 . Define

‚ 2�1.W 0�K/; ‚� �1C
X
i2yI

ˇi :

Geometry & Topology, Volume 23 (2019)



1002 Mark McLean

Pi

fx1 D 0g

W i

�W 0i

VI�i \W i

Vi

yV 0I�i

z�i D x1

z�i D y1

ri

#i

LVI�i

Figure 2

By (a), we get that the wrapping number of ‚ around Vi \W 0 is wi for all i 2 yI.
Hence (after shrinking .Wi /i2yI so that W 0 deformation retracts onto W 0\K ), there
is a function gW X �K!R such that .� C dg/jW 0 D‚jW 0 .

Let f W X �K!R be compatible with .Vi /i2S and let .‰i /i2S�?S be its associated
regularizations. Then, by definition, f jW 0 D

P
i2yI

bi log.qi ı‰�1i /C � , where

� � W W 0!R is a smooth function and bi > 0 are constants for all i 2 yI,

� qi W Dom.‰i / ! R is equal to a square norm near Vi , equal to 1 outside a
compact subset of Dom.‰i / and nonzero on Dom.‰i /�Vi , and

� log.qi ı‰�1i / is defined to be zero outside Im.‰i /.
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Define si � log.qi ı‰�1i / and si;?� si jV?S�K . Define ˇi;?�ˇi jV?S\.W 0�K/ . Since

(5-27)
c1

ri
< kˇik<

c2

ri
;

c1

ri
< kdsik<

c2

ri

for some c1; c2 > 0 and k�1k is bounded, part (3) of our lemma holds.

Since k�k and k�1k are bounded and since (5-27) holds, it is sufficient for us to prove
the following statements:

(1) dsi
�P

j2yI
Xˇi

�
> cf =.ri /

2 inside some small neighborhood Wf of W 0 \ VI
and some constant cf > 0 for all i 2 yI.

(2) dsi;?
�P

j2yI
X

ǰ;?

�
> cf =.ri /

2 inside Wf \V?S for all i 2 yI.

Let yV?S be closure of P�1i .V?S / inside CnC1 . Let j � j be the standard norm on CnC1 .
Since there is a diffeomorphism ˆi W Wi ! Wi which is the identity on Vi \Wi ,
fixing Vj \Wi , for all j 2 I � i , which is also isotopic to the identity through such
diffeomorphisms and, pulling back si to log.�i /, we have that inequalities (1) and (2)
above can be deduced from

(1) d z�i .D ẑ i .Xd zgi // > c
0
f

inside �Wf � P�1i .Vi / for some small neighborhood�Wf of LVI�i and some constant c0
f
> 0, where ẑ i W �W 0i ! �W 0i is a lift of

ˆjW 0
i
W W 0i !W 0i ,

(2) d z�i .D ẑ i .XP�
i ǰ

//! 0 as we approach LVI�i for all j 2 yI � i , and

(3) Xd zgi is tangent to yV?S along LVI�i for all i 2 yI.

These properties follow from (a)–(c) above.

Lemma 5.24 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution and fix a metric

k � k on X. Define K �
S
i2S�?S

Vi and let f W X �K ! R be a smooth function
compatible with .Vi /i2S . Then there is a smooth function hW X�K!R and constants
a1; a2 > 0 such that a1kdf k< k� C dhk< a2kdf k near K .

Proof We will use Lemma 5.23(3) and an induction argument to do this. Choose open
sets U1; : : : ; Um in X along with subsets I1; : : : Im � S such that

�
Sm
jD1.Uj \VIj /DK ,

� Uj \VI 0 is contained inside a contractible Darboux chart of VI 0 for all I 0 � S
and j 2 f1; : : : ; mg, and

� Uj \Vk D∅ for all k 2 S � Ij and all j 2 f1; : : : ; mg.
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Let LU1; : : : ; LUm be open sets of X such that the closure of LUi is contained inside Ui
for all i 2 f1; : : : ; mg and

Sm
jD1.

LUj \ VIj / D K . Define U<k �
S
j<k Uj and

LU<k �
S
j<k
LUj .

Suppose, by induction, there is a smooth function h�W X �K ! R and constants
a�1 ; a

�
2 > 0 such that

(5-28) a�1 kdf k< k� C dh�k< a
�
2 kdf k

on a neighborhood N �U<k of the closure of LU<k \K for some k 2 f1; : : : ; mg. By
Lemma 5.23, there is a function hDW X �K!R and constants aD1 ; a

D
2 > 0 such that

(5-29) aD1 kdf k< k� C dh�C dhDk< a
D
2 kdf k

on a neighborhood Wk of Uk \K in X. Now let �W X ! Œ0; 1� be a smooth function
equal to 0 on a neighborhood of LU<k \K and which is 1 outside a compact subset
of N. Define h� � h� C �hD . Equations (5-28) and (5-29) tell us that kdhDk �
.a�2 Ca

D
2 /kdf k near Uk\.N � LU<k/\K , which implies that jhDj<C jf jC LC near

.N � LU<k/\K for some C; LC > 0. Hence,

a
�

1 kdf k< k� C dh�k< a
�

2 kdf k

near LU<kC1\K for some a�1 ; a
�

2 > 0 and so we are finished by induction.

Proof of Proposition 5.21 By Lemma 5.24 we can add an exact 1–form to � so that

(5-30) b1kdf k< k�k< b2kdf k

inside a neighborhood N of K for some constants b1; b2 > 0. By Lemma 5.23 we
can find open sets W1; : : : ; Wm of X covering K , smooth functions gi W X �K!R

for i D 1; : : : ; m, and a constant c > 0 such that

(1) df .X!
�Cdgi

/jWi > ck� C dgikkdf k
ˇ̌
Wi

,

(2) df?.X
!?
�?Cdgi

/jW? > ck� C dgi;?kkdf?k
ˇ̌
Wi;?

, where f? � f jV?S�K , Wi;? D
Wi \V?S , �? D � jV?S�K and gi;? D gi jV?S�K , and

(3) ckdf k< k� C dgik< Lckdf k inside Wi for some constants c; Lc > 0.

Now choose smooth functions �i for i D 1; : : : ; m so that
Pm
iD1 �i jK D 1 and �i D 0

outside a compact subset of Wi for each i D 1; : : : ; m. We define

gW X �K!R; g �

mX
iD1

�igi :
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We define g? � gjV?S�K . The inequality (5-30) combined with property (3) above
tells us that jgi j < C jf j C LC for some C; LC > 0 near Wi \K . This means that
df .X!

�Cdg
/ > ck� C dgkkdf k near K , df .X!

�?Cdg?
/ > ck�? C dg?kkdf k near

V?S \K and a1kdf k< k� C dgk< a2kdf k near K for some constants a1; a2 > 0.

Definition 5.25 The link of a model resolution
�
OX
�P

i2S miVi
�
; ˆ; �

�
is a contact

pair with normal bundle data .B �C; �C ; ˆB/ defined as follows: By [39, Lemma 4.1],
there is a tuple of regularizations .‰i /i2S�?S compatible with V?S as in Definition 5.15.
Define K �

S
i2S�?S

Vi . Let f W X �K!R be a smooth function compatible with
.Vi /i2S such that .‰i /i2S�?S are associated regularizations of f . Then f? � f jV?S
is a smooth function compatible with .Vi \V?S /i2S�?S . Hence, by Proposition 5.21
we have that df .X�Cdg/>0 and df?.X�?Cdg?/>0 in an open neighborhood U of K
for some smooth function gW X �K!R, where g? � gjV?S�K and �? � � jV?S�K .
Let c��1 be a constant satisfying f �1.c/� U. Define

C � f �1.c/; B � C \V?S ; �C � ker .� C dg/jC :

Finally, the trivialization ˆB of the normal bundle of B in C is induced from the
trivialization ˆ since the normal bundle of B is naturally isomorphic as an oriented
vector bundle to NXV?S jB , which in turn is naturally isomorphic to OX

�P
i2S miVi

�ˇ̌
B

since m?S D 1.

If
�
OX
�P

i2S miVi
�
; ˆ; �

�
has a grading then this gives us an induced grading on

the link as in the proof of Lemma 5.20 since C � B is a contact hypersurface of�
X �

S
i2S�?S

Vi ; !
�
, where ! is the symplectic form associated to our model

resolution. We will call this the induced grading on .B � C; �C ; ˆB/.

The link does not depend on the choice of neighborhood U, constant C or function f
by the following lemma:

Lemma 5.26 Suppose that
�
OX
�P

i2S miVi
�
; ˆ; �

�
and

�
O yX

�P
i2 yS
ymi yVi

�
; ŷ ; y�

�
are (graded) isotopic. Then their links are also (graded) isotopic for any choice of
neighborhood U, constant C or function f chosen for each of these two model
resolutions.

Proof This follows from Lemma 5.19 and Proposition 5.22.
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5.4 Constructing a contact open book from a model resolution

The aim of this section is to construct a contact open book for each model resolution
such that the contact pair associated to this open book is the link of our model resolution.

Definition 5.27 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution with associated

symplectic structure ! . Suppose .Vi /i2S admits an !–regularization

(5-31) R� ..�i /i2S ; .‰I /I�S /

with associated Hermitian structures .�I Ii ;r.I Ii// on NXVi jVI for each i 2 I � S.
Let ˛I Ii � ˛�I Ii ;r.I Ii/ 2�

1.NXVi jVI �VI / be the associated Hermitian connection
1–form on NXVi jVI . Define K �

S
i2S�?S

Vi . Let wi be the wrapping number of �
around Vi for each i 2 S �?S and define a?S � 0. Let

(5-32) prI Ii W NXVI !NXVi jVI

be the natural projection map for all I � S. We say that � is compatible with R if the
restriction of

(5-33) .‰I /
�� �

X
i2I

pr�I Ii

��
�I Ii C

wi

2�

�
˛I Ii

�
to each fiber of �NXVI j‰�1I .X�K/ is 0 for every I � S.

Lemma 5.28 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution such that .Vi /i2S

admits an !–regularization R. Define K �
S
i2S�?S

Vi . Then there is a smooth
function gW X�K!R such that �Cdg is compatible with LR for some regularization
LR which is germ equivalent to R.

Proof This is done by induction on the strata of
S
i Vi . We will use the notation from

Definition 5.27 above. Let � be a total order on the set of subsets of S with the property
that if jI 0j< jI j then I � I 0. We write I � I 0 when I � I 0 and I ¤ I 0. Suppose, for
some I� � S, we have constructed open sets U�I inside Dom.‰I / containing VI for
all I � I� and a smooth function g�W X �K!R with the property that

.‰I /
�.� C dg�/�

X
i2I

pr�I Ii

��
�I Ii C

wi

2�

�
˛I Ii

�
vanishes along each fiber of �NXVI jU�I \Dom.‰I / for all I � I� .

We now want these properties to hold for all I � I�. For each I � I�, let U�I �
Dom.‰I / be an open set containing VI whose closure is compact such that the closure
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of U�I is contained in U�I when I � I� and such that �NXVI jU�I has contractible
fibers for all I � I� . Since the wrapping number of � around Vi is wi for all i 2 I
and since .‰I /�.d�/D !.�I Ii ;r.I Ii//i2I jDom.‰I / , we get that the restriction of

A� .‰I�/
�.� C dg�/�

X
i2I�

pr�I�Ii

��
�I�Ii C

wi

2�

�
˛I�Ii

�
to each fiber of �NXVI jDom.‰I� / is exact. Also, by our induction hypothesis, the
restriction of A to the fibers of �NXVI� j.‰I� /�1.‰I .U�I // is 0 for all I ¨ I� . This
means that there is a smooth function gDW X � K ! R such that gD restricted
to a small neighborhood of the closure of ‰I .U

�

I / is 0 for all I ¨ I� and such
that AC .‰I�/�dgD restricted to each fiber of �NXVI� jU�

I�
\Dom.‰I� /

is 0. Define
g� � g�CgD . Then

.‰I /
�.� C dg�/�

X
i2I

pr�I Ii

��
�I Ii C

wi

2�

�
˛I Ii

�
vanishes along each fiber of �NXVI jU�I \Dom.‰I /

for all I � I� . Hence, by induction
we have shown that there is a smooth function gW X � K ! R and open subsets
UI � Im.‰I / containing VI such that

.‰I /
�.� C dg/�

X
i2I

pr�I Ii

��
�I Ii C

wi

2�

�
˛I Ii

�
vanishes along each fiber of �NXVI jUI\Dom.‰I / for all I � S. By [39, Lemma 5.5],
we can shrink these open subsets UI so that LR� ..�i j‰I .UI //i2S ; .‰I jUI /I�S / is a
regularization.

Definition 5.29 Let
M�

�
OX

�X
i2S

miVi

�
; ˆ; �

�
be a model resolution with associated symplectic form ! and let U �X be an open set.
A regularization of M of radius R along U for some R < 1 is an !–regularization R

of .Vi /i2S as in (5-31) such that

(1) the line bundle OX
�P

i2S miVi
�

is also defined using the regularization maps
.‰i /i2S from R,

(2) ˆ is radius R compatible with R along U as in Definition 5.9, and

(3) � is compatible with R.

A regularization of M along U is a regularization of M of radius R along U for
some R < 1 smaller than the tube radius of R along U.
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We wish to show that every model resolution is isotopic to one admitting a regularization
as above. Before we do this we need a preliminary lemma.

Lemma 5.30 Let X be a smooth manifold with a smooth family of cohomologous
symplectic forms .!t /t2Œ0;1� and .Vi /i2S a compact SC divisor on X with respect
to !t for all t 2 Œ0; 1�. Define K �

S
i2S Vi and let � be a 1–form on X � K

satisfying d� D !0jX�K . Then there exists a smooth family of 1–forms .�t /t2Œ0;1� on
X �K such that d�t D !t jX�K for all t 2 Œ0; 1� and such that the wrapping number
of �t around Vj does not depend on t 2 Œ0; 1� for all j 2 S.

Proof Since !t � !0 is exact for all t 2 Œ0; 1�, there is (by exploiting the Hodge
decomposition theorem for differential forms) a smooth family of 1–forms .ˇt /t2Œ0;1�
on X such that dˇt D!t�!0 . Let U �X be a neighborhood of K whose closure is a
compact manifold with boundary which deformation retracts onto K and �W X! Œ0; 1�

a smooth function equal to 0 near K and equal to 1 outside a compact subset of U.
Define Ľt � � C ˇt 2 �

1.X �K/ for all t 2 Œ0; 1�. Since � Ľt D 0 near K , we
can think of this as a smooth 1–form on X by defining it to be 0 along K . Let
ct � Œ!t�d.� Ľt /�2H

2.X;X�U IR/ for all t 2 Œ0; 1� and define c� Œ!0�d.��/�2
H 2.X;X �U IR/. Since H 2.X;X �U IR/DH 2.X;X �KIR/, we have the long
exact sequence

H 1.X �KIR/
˛
�!H 2.X;X �U IR/

L̨
�!H 2.X IR/!H 2.X �KIR/:

Since L̨ .ct /D L̨ .c/D Œ!0� for all t 2 Œ0; 1�, we have a smooth family closed 1–forms
bt 2�

1.X �K/ such that ˛.bt /D c � ct for all t 2 Œ0; 1�. Let �t D Ľt C bt . Then
Œ!t jU � d.��t /� 2H

2
c .U IR/ is independent of t , which proves our lemma.

Lemma 5.31 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution and let U �X be

a relatively compact open set. Then
�
OX
�P

i2S miVi
�
; ˆ; �

�
is isotopic to a model

resolution
�
OX
�P

i2S miVi
�
; ŷ ; y�

�
admitting a regularization along U.

Proof By [39, Theorem 2.17], there a smooth family of cohomologous symplectic
forms .!t /t2Œ0;1� such that !0 D ! and .Vi /i2S admits an !1–regularization

R� ..�i /i2S ; .‰I /I�S /:

Lemma 5.30 then tells us that there is a smooth family of 1–forms .�t /t2Œ0;1� on
X �

S
i2S�?S

Vi such that �0 D � and d�t D !jX�
S
i2S�?S

Vi for all t 2 Œ0; 1�
and such that the wrapping number of �t around Vi is independent of t for each
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i 2 S �?S . We can assume that OX
�P

i2S miVi
�

is defined using the regularizations
.‰i /i2S as changing the regularization needed to define a line bundle as in (5-9) creates
an isomorphic line bundle. Now we isotope ˆ through trivializations to a trivialization
ŷ such that ŷ is compatible with R along U by Lemma 5.10. By Lemma 5.28 we
have, after replacing R with a germ equivalent regularization, that y� � �1C dg is
compatible with R for some g 2 C1

�
X �

S
i2S�?S

Vi
�
.

Hence,
�
OX
�P

i2S miVi
�
; ˆ; �

�
is isotopic to

�
OX
�P

i2S miVi
�
; ŷ ; �1

�
, which in

turn is isotopic to
�
OX
�P

i2S miVi
�
; ŷ ; y�

�
, which admits a regularization along U.

Lemma 5.32 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution admitting a regular-

ization along U for some relatively compact open set U �X as in Definition 5.29. Let
ˆ2 be the composition of ˆ with the natural projection X �C�C . Define

�ˆW U !C; �ˆ �ˆ2 ı s.mi /i2S jU ;

where s.mi /i2S is the canonical section of OX
�P

i miVi
�

as defined in (5-12). Then
there is some � > 0 such that ��1ˆ .z/ is a symplectic submanifold of U for all
z 2D.�/�f0g. Also, the restriction of � to ��1ˆ .fjzj D �0g/ is a contact form for all
0 < �0 � � .

Proof Since U is relatively compact, it is sufficient for us to show that for ev-
ery x 2 U \

�S
i2S Vi

�
, there is a small open set Ux � X containing x such

that �ˆjUx\��1ˆ .C�0/ has symplectic fibers and such that the restriction of � to
��1ˆ .fjzjD �0g/\Ux is a contact form. We will first show that the fibers are symplectic.
Suppose that I �S is the largest set satisfying x2VI . Let aR be the function defined in
Definition 5.9 and let ….mi /i2S ;I .v/ be as in (5-13). Near x , we have that aR.�i /D�i .
Therefore,

�ˆ.y/Dˆ2
�
….mi /i2S ;I .‰

�1
I .y//

�
for all y 2X near to x . Since ‰I is a regularization, it is sufficient for us to show that
the fibers of ˆ2 ı….mi /i2S ;I restricted to a small neighborhood of x inside NXVI are
symplectic with respect to

(5-34) !.�I Ii ;r.I Ii//i2I
(5-4)
D ��NXVI .!jVI /C

1

2

M
i2I

pr�I Ii .d.�I Ii˛I Ii //;

where prI Ii is the natural projection map from (5-32). Let Wx � VI be a small open
neighborhood of x that is contractible and choose unitary trivializations

Ti W NXVi jWx !Wx �C
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for all i 2 I. Let zi W NXVI jWx!C be the composition of Ti ıprI Ii with the projection
map to C . Hence, along Wx , (5-34) becomes

(5-35) !.�I Ii ;r.I Ii//i2I jWx D �
�
NXVI

.!jVI /CˇC
i

2

M
i2I

dzi ^ dxzi ;

where ˇ 2 �2.NXVI jWx / is a closed 2–form whose restriction to the fibers of
�NXVI jWx is zero and whose restriction to the zero section is also zero. This means
that near x we have that !.�I Ii ;r.I Ii//i2I jWx is C 0 close to

L! � ��NXVI .!jVI /C
i

2

M
i2I

dzi ^ dxzi :

We can choose our trivializations Ti so that ˆ2 ı….mi /i2S ;I is equal to
Q
i2I z

mi
i

inside �NXVI jWx . Since the fibers of
Q
i2I z

mi
i are symplectic with respect to L! near

Wx \ VI and since ! is equal to L! at the point x , there is a small neighborhood
zUx � NXVI containing x such that the fibers of

Q
i2I zi j zUx

are symplectic with
respect to !.�I Ii ;r.I Ii//i2I jWx . Hence, the fibers of �ˆjUx are symplectic, where
Ux �‰I . zUx/.

We now wish to show that � restricted to Yr � ��1ˆ .fjzj D rg/\Ux is a contact form
for all r > 0. Since the restriction of ! to the fibers of �ˆjUx are symplectic, it is
sufficient for us to show that � restricted to the kernel of !jYr is nonzero at every point
for all r > 0. By (5-34) and the fact that ˆ2 ı….mi /i2S;I is equal to

Q
i2I z

mi
i inside

NXVI jWx , we get that the kernel of ‰�I!j‰�1I .Yr /
is tangent to the fibers of �NXVI

inside Dom.‰I /. Therefore, since the restriction of the 1–form (5-33) to the fibers of
�NXVI inside Dom.‰I / is zero, ‰�I � restricted to the kernel of ‰�I!j zUx is nonzero
so long as zUx � Dom.‰I /. Hence, � restricted to Yr is a contact form for all r > 0
so long as Ux � Im.‰I /.

Definition 5.33 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution admitting a radius

R regularization

(5-36) R� ..�i /i2I ; .‰I /I�S /

along a relatively compact open set U �X as in Definition 5.29, where U contains
K �

S
i2S�?S

Vi . Let Tr;I be the radius r tube of VI as in (5-14). Let ˆ2W X !C

be the composition of ˆ with the natural projection map X �C!C . Choose � > 0
small enough that

(5-37) .ˆ2 ı s.mi /i2S /
�1.D�/\U �

[
i2S

TR;i
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and the fibers .ˆ2 ı s.mi /i2S /
�1.z/\U are symplectic for z 2D��0 by Lemma 5.32.

Let LT be a smoothing of the compact manifold with corners
S
i2S�?S

TR;i such that

(5-38) @ LT \TR;?S D‰I�.�
�1
NXV?S

.VI� \ @ LT //\TR;?S ;

X� points outwards along @ LT \ TR;?S and such that LT �
S
i2S�?S

TR;i . We also
assume that the smoothing is small enough that

S
i2S�?S

T3R=4;i is contained in the
interior of LT .

Define
�ˆW LT !C; �ˆ �ˆ2 ı s.mi /i2S j LT :

The Milnor fiber of
�
OX
�P

i2S miVi
�
; ˆ; �

�
is the pair

.M; �M /� .�
�1
ˆ .�/; � j��1ˆ .�//:

This is a Liouville domain for � > 0 small enough since X� is tangent to V?S �K
and X� is transverse to @ LT and pointing outwards:

V?S

Vi

TR;i

TR;?S

.ˆ2 ı s.mi /i2S /
�1.�/

��1ˆ .�/ LT

R

R

�

�

Because

� the 1–form (5-33) restricted to each fiber of �NXVI j‰�1I .X�K/ is 0 for every
I � S,

� (5-38) holds,

� ˆ is radius R compatible with R along U, and

�
S
i2S�?S

T3R=4;i is contained in the interior of LT ,

we get that the monodromy map �W M !M of �ˆ around the loop

Œ0; 1�! @D.�/; t ! �e2�it ;
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with respect to the symplectic connection associated to ! exists and has compact support.
In addition, since !j��1ˆ .@D.�// D d� j��1ˆ .@D.�// , � is an exact symplectomorphism
with compact support. We call .M; �M ; �/ the abstract contact open book associated
to
�
OX
�P

i2S miVi
�
; ˆ; �

�
.

Now suppose that our model resolution has a choice of grading. Since ��1ˆ .@D.�//

is a contact submanifold of .X � K;!/ with contact form given by restricting �

by Lemma 5.32 after possibly shrinking � , we get an induced grading on this con-
tact submanifold by Lemma 5.20. Since the contact distribution is isotopic to Q �
ker.D�ˆj��1ˆ .@.�/// through hyperplane distributions Qt for t 2 Œ0; 1�, where !jQt
is nondegenerate for all t , we get a grading

�W �Fr.Q/��Sp.2n/ Sp.2n/Š Fr.Q/

on Q and hence on .M; d�M /. Since the parallel transport maps of �ˆ along @D.�/
have lifts to �Fr.Q/, � has an induced grading and hence .M; �M ; �/ is a graded
abstract contact open book. We will call this the induced grading on .M; �M ; �/.

Lemma 5.34 Let .Bt � C; �t ; ˆt / for t 2 Œ0; 1� be a smooth family of contact
pairs. Then there is a smooth family of contactomorphisms ‰t W C ! C between
.Bt �C; �0; ˆ0/ and .Bt �C; �t ; ˆt / (as in Definition 3.7) for all t 2 Œ0; 1� such that
‰0 D id.

Proof By Gray’s stability theorem, there is a smooth family of contactomorphisms
L̂
t W C!C starting from the identity map such that L̂ t is a contactomorphism between

.C; �0/ and .C; �t /. Therefore, by pulling everything back by L̂ t , we can assume that
�t D �0 for all t 2 Œ0; 1�. Also by Gray’s stability theorem, there is a smooth family of
embeddings �t W B0! C mapping B0 to Bt such that

� �0jB0 W B0! B0 is the identity map, and

� �t jBt W B0! Bt is a contactomorphism.

Again by Gray’s stability theorem, there is a neighborhood N of B and a smooth
family of contact embeddings Q�t W .N; �0jN /! .C; �C / whose restriction to B0 is �t
and where Q�0jN W N !N is the identity map. Let Ht W Q�t .N /!R be a smooth family
of functions generating the contact isotopy Q�t . By definition this means that there is a
contact form ˛ compatible with �0 such that

idQ�t .x/=dt˛D�Ht ; idQ�t .x/=dtd˛D dHt � .iRdHt /˛ for all x 2 �t .N /; t 2 Œ0; 1�;
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where R is the Reeb vector field of ˛ (see [24, Lemma 3.49]). Choose a smooth family
of functions Kt for t 2 Œ0; 1� equal to Ht near �t .Bt /. Then Kt generates a smooth
family of contactomorphisms ‰t satisfying the properties we want.

Lemma 5.35 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution admitting a regular-

ization
R� ..�i /i2S ; .‰I /I�S /

of radius R < 1 along an open set U � X containing K �
S
i2S�?S

Vi as in
Definition 5.29. Since m?S D 1, we let

ˆ? �ˆjV?S�K W NX .V?S �K/! .V?S �K/�C

be the induced trivialization of the normal bundle

NX .V?S �K/D OX

�X
i2S

miVi

�ˇ̌̌̌
V?S�K

induced by ˆ. Let C �
S
i2S�?S

TR;i �K be a closed hypersurface transverse to X�
and V?S and define B � C \V?S . Let ˆB be a trivialization of the normal bundle of
the contact submanifold B � C induced by ˆ?jB .

Then the contact pair .B � C; ker.� jC /; ˆB/ is contactomorphic to the link of the
model resolution

�
OX
�P

i2S miVi
�
; ˆ; �

�
. If our model resolution is graded, then

both of these contact pairs have induced gradings by Lemma 5.20 and the above
contactomorphism becomes a graded contactomorphism with respect to these gradings.

Proof Choose LR >R smaller than the tube radius of our model resolution along U
so that LR< 1. Let ˛W Œ0; LR�! Œ0; 1� be a smooth function such that ˛0 � 0, ˛.x/D x
for all x � R and ˛.x/D 1 near LR . Define ˛�i W X �K ! R to be equal to ˛.�i /
inside T LR;i �K and 1 otherwise. Define

f W X �K!R; f �
X

i2S�?S

log.˛�i /:

Then f is compatible with .Vi /i2S�?S as in Definition 5.18. Let c��1 and define

LC � f �1.c/; LB � LC \V?S ; � LC � ker .�/j LC :

The normal bundle of LB inside LC has a natural trivialization ˆ LB induced by the
trivialization ˆ? . Since df .X� />0 near K and c��1, we get that . LB� LC ; � LC ; ˆ LB/
is the link of our model resolution

�
OX
�P

i2S miVi
�
; ˆ; �

�
by Definition 5.25.
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Since df .X� / > 0 inside
S
i2S�?S

TR;i �K and
S
i Vi is connected, we can choose

a smooth family of hypersurfaces .Ct /t2Œ0;1� joining C and LC so that Ct is transverse
to X� and V?S for all t 2 Œ0; 1�. Define Bt � Ct \ V?S and �t � ker.� jCt /. Also,
let ˆBt be the trivialization of the normal bundle of Bt inside Ct induced by ˆ?
such that ˆB0 DˆB and ˆB1 Dˆ LB . Then .Bt � Ct ; �t ; ˆBt / is a smooth family of
contact pairs joining .B � C; ker.� jC /; ˆB/ and . LB � LC ; � LC ; ˆ LB/. Therefore, they
are isomorphic by Lemma 5.34. Also, if

�
OX
�P

i2S miVi
�
; ˆ; �

�
is graded then they

are graded isomorphic since all of our contact pairs have induced gradings from our
model resolution by Lemma 5.20.

Lemma 5.36 The link of a (graded) model resolution
�
OX
�P

i2S miVi
�
; ˆ; �

�
sup-

ports a (graded) contact open book which is contactomorphic to OBD.M; �M ; �/,
where .M; �M ; �/ is the (graded) abstract contact open book associated to this model
resolution as in Definition 5.33.

Proof In this proof we will use the same notation as in Definition 5.33. We will
introduce it again here for the sake of clarity. By Lemma 5.31 we can isotope our
model resolution so that it admits a regularization

R� ..�i /i2I ; .‰I /I�S /

of radius R along U for some relatively compact open U containing K�
S
i2S�?S

Vi .
By Lemma 5.26, the link does not change after this isotopy. Let Tr;I be the radius r tube
of VI as in (5-14). Let LT be a smoothing of the manifold with corners

S
i2S�?S

TR;i

as in Definition 5.33. In other words, LT satisfies (5-38), X� points outwards along @ LT
and LT �

S
i2S�?S

TR;i . Also, we require that LT contains
S
i2S�?S

T3R=4;i . Define

�ˆW LT !C; �ˆ �ˆ2 ı s.mi /i2S j LT ;

where ˆ2W OX
�P

i2S miVi
�
!C is the composition of ˆ with the natural projection

map X �C!C . Then we can assume that

.M; �M /� .�
�1
ˆ .�/; � j��1ˆ .�//

for � > 0 small enough that (5-37) is satisfied. Let ! be the symplectic form associated
to our model resolution. Here �W M !M is the monodromy map around the loop

(5-39) Œ0; 1�! @D.�/; s! �e2�is;

with respect to the symplectic connection associated to ! . Then .M; �; �/ is the abstract
open book associated to our model resolution so long as � > 0 is sufficiently small.
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Define
Lr �

[
i2S�?S

Tr;i :

Let
ˆ? �ˆjV?S�K W NX .V?S �K/! .V?S �K/�C

be the trivialization of the normal bundle NX .V?S �K/DOX
�P

i2S miVi
�ˇ̌
V?S�K

in-
duced by ˆ as defined in the statement of Lemma 5.35 and let ˆ?;2 be the composition
of ˆ? with the natural projection map V?S�K �C!C . Let

P?S W Im.‰?S /! V?S ; P?S � �NXV?S ı‰
�1
?S
;

be the natural projection map and .r; #/ polar coordinates on C . Let W W LR\V?S !
Œ0; 1� be a smooth function equal to 0 inside L4R=5 \ V?S and equal to 1 inside
.LR �L5R=6/\V?S and define�W W TR;?S \LR!R; �W �W ıP?S :
We now define �t 2�1

�
..TR;?S \LR/[L4R=5/�K

�
for t 2 Œ0; 1� to be � inside

L4R=5�K and equal to

(5-40) .1� t /� C t
�
.1� �W /� C �W �

P �?S .� jV?S�K/C
1
2
�?S .‰

�1
?S
/�ˆ�?;2.d#/

��
inside TR;?S \LR �K . For R1 > 0 small enough with respect to R , we get that
d�t is a symplectic form inside L � L4R=5 [ .LR \ TR1;?s / and d�t restricted to
��1ˆ .x/\L is a symplectic form for all x 2C� 0 and t 2 Œ0; 1�.

Let �W V?S !R be a smooth function which is negative in the interior of LT \V?S and
positive outside LT \V?S and such that ��1.0/D @ LT \V?S is a regular level set. We
can assume that our perturbation LT from Definition 5.33 is small enough that @ LT �
LR �L5R=6 . Choose a constant Lı > 0 small enough that ��1.�Lı; 0�� LR �L5R=6
and Xd�t

�t
is transverse to z��1.s/\L for all s 2 .�Lı; Lı/. Define

z�W Im.‰?S /!R; z� � � ıP?S :

Define ı � 1� e�Lı . Let
h1; h2W Œ0; ı/!R

be smooth functions satisfying

(1) h01.r/ < 0 and h02.r/� 0 for all r > 0,

(2) h1.r/D 1� r
2 and h2.r/D 1

2
r2 for r near 0, and
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(3) h1.r/D 1� r and h2.r/D �2 for r in
�
1
2
ı; ı

�
:

h2

h1
11� ı

�2

Now define

(5-41) C �
�
��1ˆ .@D�/� z�

�1..�Lı; 0�/
�
[

[
s2Œ0;ı�

�
��1?S .h2.s//\ z�

�1
�
log.h1.s//

��
:

This is a smooth hypersurface in X since ˆ is radius R compatible with R along U
and since � > 0 can be made small enough that � < 3

4
R . We can also ensure that � > 0

is small enough that ��1ˆ .D�/� L. This ensures that d�t is a symplectic form near
��1ˆ .D�/ and that d�t restricted to the fibers of �ˆj��1ˆ .@D�/

is a symplectic form for
all t .

Define B � C \V?S . This is also equal to LT \V?S D �
�1.0/. For R small enough,

we have that .C; ker.�t /jC / is a smooth family of contact submanifolds of X. The
trivialization ˆ? gives us a trivialization ˆB;t of the normal bundle of the contact
submanifold B inside .C; ker.�t /jC / since C is transverse to V?S . Hence, we get a
smooth family of contact pairs

Pt � .B � C; ker.�t /jC ; ˆB;t /

which are all contactomorphic by Lemma 5.34. Also, by Lemma 5.35, the contact pair
P0 is contactomorphic to the link of

�
OX
�P

i2S miVi
�
; ˆ; �

�
for R small enough and

hence P1 is contactomorphic to the link of
�
OX
�P

i2S miVi
�
; ˆ; �

�
. Therefore, to

complete this lemma, it is sufficient to show that the contact pair P1 is contactomorphic
to the contact pair associated to OBD.M; �M ; �/. In fact, since .M; �t jM / is a smooth
family of Liouville domains and since the monodromy map of �ˆ around the path (5-39)
with respect to the fiberwise symplectic 2–form d�t j��1ˆ .@D.�/ is equal to � for all t ,
it is sufficient for us to show that the contact pair P1 is contactomorphic to the contact
pair associated to OBD.M; �1jM ; �/. Note that there is a resemblance between the
construction of C and the construction of OBD.M; �1jM ; �/ from Definition 3.14.
We will now make this precise.
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The contact pair P1 can be constructed as follows: Define

V � ��1ˆ .@D�/� z�
�1
��

log
�
1� 1

2
ı
�
; 0
��
:

Let T� D M � Œ0; 1�=� be the mapping torus of � . We have a diffeomorphism
ˆW T�! ��1ˆ .@D�/ sending .x; s/ to the parallel transport of x 2M along @D.�/ in
the anticlockwise direction from � 2 @D.�/ to �eis 2 @D.�/ with respect to the 2–form
d�1j��1ˆ .@D.�// . Hence, we will assume that T�D��1ˆ .@D�/ under the identification ˆ
and that V is naturally a subset of T� . Since � has compact support inside M, we
have the standard collar neighborhood

(5-42) .1� ı; 1�� @M � .R=Z/� T�

as in Definition 3.13 (here ı > 0 is the same small constant defined above, which might
have to be made smaller). We can choose � so that ez� jT� is the natural projection to
.1�ı; 1� in the neighborhood (5-42). This means that �1 restricted to the region (5-42) is
equal to ez�˛MC��2dt , where t parametrizes R=Z and where ˛M D �1j@M by (5-40).

Using the diffeomorphism ˆ and definition (5-41) of C, we have that C is naturally
diffeomorphic to

LC � .@M �D.ı//tV=�;

where � identifies .x; z/ 2 @M �
�
D.ı/�D

�
1
2
ı
��

with�
1� jzj; x; 1

2�
arg.z/

�
2
�
1� ı; 1� 1

2
ı
�
� @M � .R=Z/� V:

Because �1 restricted to TR;?S \ .LR �L5R=6/ is equal to

P �?S .� jV?S�K/C
1
2
�?S .‰

�1
?S
/�ˆ�?.d#/

by (5-40) and because

P �?S .� jV?S�K/jM\z��1.�Lı;0� D e
z�˛M

inside the cylinder .1� ı; 1�� @M �M, we have that the contact form �1jC inside LC
under the above identification is equal to

(5-43) ˛1 �

�
h1.r/˛M C

1
2
h2.r/ d# inside @M �D

�
1
2
ı
�
;

�1jT� inside V:

Notice that this description of P1 resembles the construction of the open book associated
to the abstract contact open book .M; �1jM ; �/ as in Definition 3.14. All we need to
do is deform the above construction until it is actually equal to OBD.M; �1jM ; �/.
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We will now do this explicitly. From now on we let t W V ! R=Z be the coordinate
1
2�
��ˆ.#/. Since the monodromy map � has compact support, there is a smooth

function F� W M ! R such that ��.�1jM / D �1jM C dF� . Let �W Œ0; 1�! Œ0; 1� be
a smooth function equal to 0 near 0 and 1 near 1. Since T� DM � Œ0; 1�=�, where
� identifies .x; 1/ with .�.x/; 0/, we have a well-defined 1–form �1jM Cd.�.t/F�/

on T� . For s 2 Œ0; 1�, define

˛s 2�
1.T�/; ˛s � .1� s/�1jT� C s.�1jM C d.�.t/F�//C csdt;

where .cs/s2Œ0;1� is a smooth family of constants where c0 D 1 and ct is sufficiently
large that ˛s is a contact form for all s 2 Œ0; 1�. Then .T� ; ˛1/ is the mapping torus
of .M; �1jM ; �/ as in Definition 3.13.

Choose a smooth family of functions

hs1; h
s
2W Œ0; ı/! Œ0;1/; s 2 Œ0; 1�;

satisfying

(1) .hs1/
0.r/ < 0 and .hs2/

0.r/� 0 for all r > 0,

(2) hs1.r/D 1� r
2 and hs2.r/D

1
2
r2 for r near 0,

(3) hs1.r/D 1� r and hs2.r/D .1� s/�
2C cs for r in

�
1
2
ı; ı

�
,

(4) h01.r/D h1.r/ and h02.r/D h2.r/ for all r 2 Œ0; ı/.

Define

(5-44) ˛s1 �

�
hs1.r/˛M C

1
2
hs2.r/ d# inside @M �D

�
1
2
ı
�
;

˛s inside V � T� ;

for all s 2 Œ0; 1�. Then .C; ker.˛s1//s2Œ0;1� is a smooth family of contact manifolds such
that B � C is a contact submanifold. Also, we have a smooth family of trivializations
ˆs1 of the normal bundle of B inside .C; ker.˛s1// such that ˆ01 DˆB;1 . Therefore,

LPt � .B � C; ker.˛s1/; ˆ
s
1/

is a smooth family of contact pairs and so, by Lemma 5.34, they are all contactomorphic.
By construction, LP1 is equal to OBD.M; �M ; �/. Since LP1 is contactomorphic to
LP0 D P1 and P1 is contactomorphic to P0 , which in turn is contactomorphic to the

link of our model resolution, we get that OBD.M; �M ; �/ is contactomorphic to the
link of our model resolution.
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5.5 Dynamics of abstract contact open books associated to model
resolutions

In this subsection we show that the fixed points of a positive slope perturbation of the
symplectomorphism associated to the graded abstract contact open book associated
to a model resolution form a union of specific codimension 0 families of fixed points.
We also compute the indices of these fixed points.

Definition 5.37 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a graded model resolution with asso-

ciated symplectic form ! on X, where nC1D 1
2

dim.X/. Let J be an !–compatible
almost complex structure on X. By Definition A.6, the grading on LX�X�

S
i2S�?S

Vi

corresponds to a trivialization ˆW �J j LX !
LX �C of the canonical bundle. Let U be

a small neighborhood of
S
i2S�?S

Vi which deformation retracts onto Vi . Choose a
smooth section s of �J which is transverse to 0 and such that ˆı sj LX�U is a nonzero
constant section of . LX � U/ � C . By a Mayer–Vietoris argument, the homology
group H2n

�S
i2S�?S

Vi IZ
�
D H2n.U IZ/ is freely generated by the fundamental

classes ŒVi � of Vi . Let Œs�1.0/� 2H2n.U / be the homology class represented by the
zero set. Then Œs�1.0/�D

P
i2S�?S

ai ŒVi � for unique numbers ai 2Z for i 2 S �?S .
The discrepancy of Vi is defined to be ai for all i 2 S �?S .

In the case of Example 5.14, the discrepancy and multiplicity of Ei as defined in
Definition 5.37 is identical to the discrepancy and multiplicity of f along Ei as in
Definition 2.1. Similarly, we have a notion of multiplicity m separating resolution as
in Definition 2.2 for model resolutions which coincide in the case of Example 5.14:

Definition 5.38 A model resolution
�
OX
�P

i2S miVi
�
; ˆ; �

�
is called a multiplicity

m separating resolution if mi Cmj >m for all i; j 2 S satisfying Vi \Vj ¤∅.

Definition 5.39 Let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a model resolution. Let i 2 S �?S .

Define V oi � Vi �
S
j2S�i Vj and Xi �X�

S
j2S�i Vj . Let Ui be an open neighbor-

hood of V oi inside Xi which deformation retracts onto V oi and let �i W Ui�V oi !Ui be
the natural inclusion map. Let s.mi /i2S be the canonical section of OX

�P
i2S miVi

�
as in (5-12). Let ˆ2W OX

�P
i2S miVi

�
!C is the composition of ˆ with the natural

projection map to C . Define

Qi W Ui �V
o
i !C�; Qi .x/ WDˆ2 ı s.mi /i2S .x/:
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Then the natural mi –fold covering of V oi is the mi –fold covering of V oi given by
a disjoint union of covers diffeomorphic to the cover corresponding to the normal
subgroup

Gi WD .�i /�
�
ker..Qi /�/

�
� �1.Ui /D �1.V

o
i /

and the number of such covers is mi divided by the index of Gi in �1.V
o
i / (see

Lemma 5.40 below). Such a cover does not depend on the choice of neighborhood Ui .
In fact, it is an invariant of the model resolution up to isotopy.

Lemma 5.40 The index of Gi divides mi .

The proof of this lemma also gives us a geometric interpretation of zV oi .

Proof After an isotopy, we can assume that our model resolution admits a regulariza-
tion

R� ..�j /j2I ; .‰I /I�S /

of radius R along U for some relatively compact open U containing
S
j2S�?S

Vi .
Let Tr;i be the radius r tube of Vi as in (5-14) for some r < 3

4
R . We can assume

that the open neighborhood Ui from Definition 5.39 is equal to Tr;i �
S
j2S�i Vj . We

have that our map Qi is equal to

Qi W Ui �V
o
i !C�; Qi .x/�ˆ2 ı s.mi /i2S .x/:

Define D.�/� � D.�/ � 0, where D.�/ � C is the �–disk. Then Qi restricted to
Q�1i .D.�/�/ for � > 0 small enough is a fibration whose fibers are smooth manifolds
with corners. Combining this with the fact that �2.D.�/�/D 0, we get that the map

�1.Q
�1
i .�//! ker..Qi jQ�1

i
.D.�/�//�/D ker..Qi /�/

is an isomorphism by a fibration long exact sequence argument. Therefore, the natural
map

�1.Q
�1
i .�//! �1.Ui /

has image Gi . Also, for 0 < �� r � 1, the map

P W Q�1i .�/! V oi ; P.x/� �NX ı‰
�1
i jQ�1

i
.�/.x/;

is a covering map of order mi over Im.P / and V oi is homotopic to the image Im.P /.
Hence, the index of Gi divides mi .
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Theorem 5.41 Let m2N>0 and let
�
OX
�P

i2S miVi
�
; ˆ; �

�
be a graded model reso-

lution that is also a multiplicity m separating resolution and define V oi �Vi�
S
j2S�i Vj

for all i 2 S and define

Sm � fi 2 S �?S Wmi divides mg:

Let ai be the discrepancy of Vi for each i 2 S �?S . Then there is a graded abstract
contact open book .M; �M ; �/ such that the contact pair associated to it is graded
contactomorphic to the link of our model resolution. Also, there is small positive
slope perturbation L� of �m such that the fixed-point set of L� is a disjoint union of
codimension 0 families of fixed points .Bi /i2Sm satisfying

(1) H�.Bi IZ/DH�. zV oi IZ/, where zV oi is the natural mi –fold covering of V oi as
in Definition 5.39,

(2) the action of Bi is equal to �miwi ��.mi �m/�2 , where wi is the wrapping
number of � around Vi , and

(3) CZ. L�;Bi /D 2ki .ai C 1/, where ki �m=mi ,

for all i 2 S �?S .

Proof of Theorem 5.41 We will use the same notation as in Definition 5.33. We will
introduce it again here for the sake of clarity. After an isotopy, we can assume that our
model resolution admits a regularization

R� ..�i /i2I ; .‰I /I�S /

of radius R along U for some relatively compact open U containing K�
S
i2S�?S

Vi

since, by Lemma 5.26, the link does not change after this isotopy. Our abstract contact
open book .M; �M ; �/ will be the graded abstract contact open book associated to this
model resolution as in Definition 5.33. By Lemma 5.36, the link of OBD.M; �M ; �/
is contactomorphic to the link of our model resolution.

We now wish to show that � satisfies properties (1)–(3) listed in the statement of this
theorem. To do this, we need to recall the construction of .M; �M ; �/. Let Tr;I be
the radius r tube of VI as in (5-14) and let T or;I be the interior of Tr;I . Let LT be
a smoothing of the manifold with corners

S
i2S�?S

TR;i as in Definition 5.33. In
other words, LT satisfies (5-38), X� points outwards along @ LT , LT �

S
i2S�?S

TR;i

and
S
i2S�?S

T3R=4;i is contained in the interior of LT . Define

�ˆW LT !C; �ˆ �ˆ2 ı s.mi /i2S j LT ;
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where ˆ2W OX
�P

i2S miVi
�
!C is the composition of ˆ with the natural projection

map X �C!C . Then we can assume that

.M; �M /� .�
�1
ˆ .�/; � j��1ˆ .�//

for some small �>0. We will assume that �>0 is small enough that M �
S
i2S TR=4;i

and the fibers of �ˆj��1ˆ .D.�// are symplectic by Lemma 5.32. Let ! be the associated
symplectic form of our model resolution. Define �W M !M to be the monodromy
map around the loop

Œ0; 1�! @D.�/; t ! e2�it ;

with respect to the symplectic connection associated to ! .

First of all, we will compute the fixed points of the map �m . To do this, we will show
that they correspond to certain periodic orbits of the flow of a Hamiltonian on LT . Define

H W Dom.�ˆ/D LT !R; H.x/D jF.x/j for all x 2 LT :

It is sufficient for us to find the periodic orbits of XH starting inside M which map
under �ˆ to loops in C� which wrap around 0 exactly m times in the anticlockwise
direction. This is because there is a one-to-one correspondence between fixed points
of �m and such orbits. This correspondence sends a fixed point p of �m to the unique
flowline of XH starting and ending at p whose image under �ˆ wraps around 0
exactly m times in the anticlockwise direction.

Define LTR;I � T o3R=4;I �
S
i2S�I T

o
3R=4;i

for each I � S. Since M �
S
I�S

LTR;I ,
it is sufficient for us to calculate the fixed points of �m inside M \ LTR;I for each
I � S. Therefore, we will now compute the periodic orbits of XH starting inside
M \ LTR;I for all I � S which project to loops in C� wrapping m times around 0 in
an anticlockwise direction. Let aRW Œ0;1/! Œ0;1/ be the smooth function defined
in Definition 5.9. In other words, aR satisfies

(1) a0R.x/ > 0 for x 2
�
0; 3
4
R
�
,

(2) aR.x/D x for x � 1
4
R ,

(3) aR.x/D 1 for x � 3
4
R :

1
4
R 3

4
R

aR
1
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Define
bRW Œ0;1/! Œ0;1/; bR.x/�

p
aR.x/:

Let
pI W TR;I ! VI ; pI .x/� �NXVI .‰

�1
I .x//;

be the natural projection map. Inside LTR;I we have that

H.x/D
Y
i2I

�
bR.�i .x//

�mi for all x 2 LTR;I

since the bundle trivialization ˆ is radius R compatible with our regularization R

along TR;I . Hence,

(5-45) XH jx D
X
i2I

�
mib

0
R.�i .x//bR.�i .x//

mi
Y

j2I�i

bR.�j .x//
mj

�
X�i jx

for all x 2 LTR;I :

This means that all the periodic orbits of XH starting inside LTR;I are contained inside
the fibers of pI since the vector fields X�i are tangent to these fibers. Also, since
bR.�i .x// > 0 and b0R.�i .x// > 0 for all x 2 LTR;I and all i 2 I, we have that any disk
contained inside a fiber of pI bounding any such orbit must intersect Vi positively for
all i 2 I. This implies that the projection of this orbit to C� wraps around 0 more
than m times if jI j > 1 since our model resolution is a multiplicity m separating
resolution. This means that if the set of periodic orbits of XH starting inside M \ LTR;I
whose image in C� wraps m times around 0 is nonempty then jI j D 1. Hence, all
fixed points of �m are contained inside

S
i2S M \

LTR;i . Similar reasoning ensures
that i 2Sm[f?Sg and that the set of fixed points of �m inside TR;i is Bi �M \ LTR;i
for all such i .

By Lemma 5.42 below with W D TR;i , h D ��i jTR;i , B1 D h�1.�
p
�/, B2 D

TR;i \ fj�ˆj D �g, and fj �
1
2�

arg.�ˆ/jBj for j D 1; 2, we have that Bi is a
codimension 0 family of fixed points of �m for all i 2 Sm . Since Bi is homotopic
to ��1ˆ .�/\TR;i , which in turn is homotopic to the fiber Q�1i .�/ constructed in the
proof of Lemma 5.40, we have H�.Bi IZ/DH�. zV oi IZ/ for all i 2 S �?S .

We now need to construct a small positive slope perturbation L� of �m without creating
any extra fixed points such that B?S disappears and such that � D L� near

S
i2Sm

Bi .
Since B?S is a codimension 0 family of fixed points of � , there is a neighborhood
N?S of B?S and a Hamiltonian H?S W N?S ! .�1; 0� such that �m is the time 1
flow of H?S inside N?S and such that B?S DH

�1
?S
.0/. Choose ı? > 0 small enough
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that H?S has no q–periodic orbits inside H�1?S .�ı?; 0/ for all q 2 Œ0; 2�. Since the
vector field (5-45) is tangent to the fibers of pI inside TR;I \T3R=4;?S for all I � S
and since ‰I is a regularization, we have that H?S must be a function of the variables
.�i /i2I inside TR;I \ T3R=4;?S only. This implies that we can construct a smooth
function LbW N?S !R for ı? > 0 small enough that

� LbDF ıH?S for some smooth function F W R!R inside H�1?S
��
�ı?S ;�

1
3
ı?S

��
,

where F ıH?S DH?S near H�1?S .�ı?S /,

� Lb is C 2 small inside H�1?S
��
�
1
3
ı?S ; 0

��
� Lb D ırM near @M, where rM is the radial coordinate on M, and

� Lb has no critical points.

This implies that the time 1 flow of Lb has no fixed points inside N?S and is equal
to H?S outside a compact subset of N?S . Define L� to be equal to �m outside N?S
and the time 1 flow of Lb inside N?S . This is a positive slope perturbation of �m such
that the set of fixed points of L� is

S
i2S�?S

Bi and L� D �m in a neighborhood of
these fixed points.

Next we need to compute the action of Bi for each i 2 S �?S . Let p 2 Bi and let
 W R=Z! LT be the unique loop starting at p 2M which is symplectically orthogonal
to the fibers of �ˆ and satisfying �ˆ ı .t/D e2i�mt for all t 2R. Then the action
of p is equal to �

R 1
0 
�� C�m�2 D�miwi ��.mi �m/�

2 .

We now need to compute the Conley–Zehnder index of Bi for each i 2Sm . Fix i 2Sm
and let p 2Bi �M. Let  W R=Z! LT be the unique loop starting at p 2M which is
symplectically orthogonal to the fibers of �ˆ and satisfying �ˆ ı .t/D e2i�mt for
all t 2 R. Let J be an !–compatible almost complex structure on X such that �ˆ
becomes J –holomorphic. Let

T ver LT � ker.D�ˆ/j LT�K � T .
LT �K/

be the vertical tangent bundle. Let .T ver LT /? � T . LT �K/ be the set of vectors which
are !–orthogonal to the vertical tangent bundle. This is a J –holomorphic subbundle
of T . LT �K/. Let �C� W TC�!C��C be the holomorphic trivialization which sends
@=@# to the constant section 1 and let �C�;2W TC�!C be the composition of �C�

with the natural projection map C� �C!C . We then have a trivialization

�?W .T ver LT /?! . LT �K/�C;

�T?.Y /�
�
x; �C�;2.D�ˆ.Y //

�
for all Y 2 .T ver LT /?jx; x 2 LT �K:
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Let

.�?/�W ..T ver LT /?/�! . LT \ LX/�C

be the corresponding trivialization of the dual bundle.

Let �J;� be the canonical bundle of T ver LT . Then we have a canonical isomorphism

(5-46) �J j LT�K Š �J;� ˝ ..T
ver LT /?/�:

Since .X�K;!/ is a graded symplectic manifold, we get a natural choice of trivializa-
tion � W �J jX�K ! .X �K/�C by Definition A.7. The trivializations � and .�?/�

give us a trivialization �verW �J;�! . LT �K/�C of �J;� by the identity (5-46).

Let s� be a section of �J;� that is equal to the constant section 1 with respect to
our trivialization �ver . Let s be a section of �J such that s�1.0/ is transverse to 0
and contained inside a small neighborhood N of

S
i2S�?S

Vi which deformation
retracts onto

S
i2S�?S

Vi and such that � ı sjX�N is the constant section 1. Then
by definition Œs�1.0/� is a homology class homologous to

P
i2S ai ŒVi �. Now define

LT� � �
�1
ˆ .@D.�//. By construction, �verj LT�

is homotopic to the induced trivialization
from Lemma 5.20 (after identifying the contact hyperplane distribution in LT� with
T ver LT using an isotopy between these symplectic subbundles).

We can choose J so that, near the image  , the Hamiltonian flow �
�i=2
t W TR;i ! TR;i

of 1
2
�i jTR;i is J –holomorphic. Hence, on some neighborhood N of  invariant

under the flow of X�i=2 , we have that ��i=2t lifts to a map

z�t W �J jx! �J j
�
�i =2

t .x/

for all x 2 LT� \N given by the highest wedge power of the J –holomorphic bundle
map ..D��i=2t /�1/� . Also, since D��i=2t .v/ 2 T ver LT� for all v 2 T ver LT�jN\ LT�

, we
get an induced map

z�ver
t W �J;� j LT�\N

! �J;� j LT�\N
:

Let �2W �J jX�K !C and �ver
2 W �J;�!C be the compositions of � and �ver , respec-

tively, with the natural projection map to C . The winding number of the map

w� W R=2�mZ!C� Š Aut.C;C/; w�.t/D �
ver
2 ı .

z�ver
t jp/ ı .�

ver
2 j�J;� jp /

�1;

is equal to the winding number of the map

w� W R=2�mZ!C� Š Aut.C;C/; w� .t/D �2 ı .z�t jp/ ı .�2j�J jp /
�1:
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Since Œs�1.0/� is homologous to
P
i2S�?S

ai ŒVi � and .t/D ��i=2t .p/ for all t , we
have that the winding number of w� is equal to

ki .�1� ai /:

Hence, by Lemma A.8 and the fact that the winding number of w� is the winding
number of w� , we have that the Conley–Zehnder index of the fixed point p of �m is
�2 times the winding number of w� and so CZ.�m; Bi /D 2ki .ai C 1/.

Here is a technical lemma that was used in the proof of Theorem 5.41 above:

Lemma 5.42 Let .W; !/ be a symplectic manifold admitting a free Hamiltonian
S1–action generated by a Hamiltonian hW W !R (ie �h1 D idW and �ht .x/¤ x for
all x 2W and t 2 .0; 1/). Let B1; B2 �W be two real hypersurfaces inside W with
maps

f1W B1!R=Z; f2W B2!R=Z

such that

(1) the fibers of fi are symplectic submanifolds of W and the corresponding mon-
odromy map �i W f �1i .0/! f �1i .0/ of fi around R=Z is well defined (ie no
points parallel transport off to infinity in finite time) for i D 1; 2,

(2) �1 D idB1 , B1 D h�1.C / and B2 � h�1.ŒC;1// for some C > 0,

(3) Bi is invariant under our Hamiltonian S1–action for i D 1; 2 and, for all
t 2 S1 DR=Z and x 2 B1 , we have f1.t � x/D f1.x/C t , and

(4) f �11 .0/\f �12 .0/ is equal to a compact codimension 0 submanifold of f �12 .0/

with boundary and corners and f1jB1\B2 D f2jB1\B2 .

Then f �11 .0/\f �12 .0/ is a codimension 0 family of fixed points of �m2 for all m> 0.

Proof Let Q�B1 be an S1–invariant relatively compact open set containing B1\B2 ,
let V �Q\ f �11 .0/ and !V � !jV . For all r1; r2 > 0 let Ar1;r2 � C be the open
annulus whose inner radius is r1 and whose outer radius is r2 with the standard
symplectic form. Let r W C! Œ0;1/ be the radial function z! jzj and � W C� 0!
R=2�Z the angle coordinate. Define LC �

p
C=� . Let S LC � C be the circle of

radius LC. After shrinking Q slightly we can, by an equivariant Moser theorem (see [18]),
find an S1–equivariant open set U �W symplectomorphic to�

V �A LC�ı; LCCı ; !V C
1
2
d.r2/^ d#

�
such that QD V �S LC and hjU D �r2 .
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If we smoothly deform f2 inside B2 through fibrations whose fibers are always
transverse to the line field given by ker.!jB2/ then the symplectic form on the fibers
and the monodromy map do not change. This is because such a deformation can be
realized by a flow along a vector field tangent to the line field ker.!jB2/. In particular,
we can assume in some small S1–invariant neighborhood LU � U of B1\B2 that

(5-47) f2j LU\B2
D

�
�

2�

�ˇ̌̌
LU\B2

:

Let pr1W V �A LC�ı; LCCı! V be the natural projection map. Define V2� f �12 .0/\ LU

and !V2 � !jV2 . We can assume that LU is small enough that pr1jV2 W V2! V is a
diffeomorphism onto its image. This map is also a symplectic embedding by (5-47).
Define

H W V2!R; H.x/� �r.x/2� 2� LC D hjV2 � 2�
LC :

Since !V C 1
2
d.r2/^d# D !V Cdh^d

�
1
2�
#
�

inside LU and pr1jV2 is a symplectic
embedding, we get that the vector field

�X
!V2
H C 2�

@

@#

is tangent to LU \B2 and lies in the kernel of !j
B2\ LU

. Then for all m > 0, �m2 is
equal to the time 1 flow of �mH near B1\f �12 .0/ inside the symplectic manifold
.V2; !V2/. Hence, B1\f �12 .0/ is a codimension 0 family of fixed points of �2 .

6 Proof of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2 Let L � .Lf � S�; �S� ; f̂ / be the contact pair associated
to f with the standard grading as in Example 3.8. Let

�
OX
�P

i2S miEi
�
; ˆ; �

�
be a graded model resolution coming from the log resolution � W Y ! CnC1 as in
Example 5.14. The wrapping number of � around Ej is wj for all j 2 S �?S . By
using the function jzj2 on CnC1 combined with Lemma 5.34, one can show that the
link of this model resolution is contactomorphic to L. Hence, Theorem 1.2 follows
from Theorem 5.41, (HF2) and (HF3).

Lemma 6.1 Suppose we have a cohomological spectral sequence converging to a
Z–graded abelian group G� with E1 page .E1p;q/p2Z;q2Z . Define

m� supfpC q WEp;q1 ¤ 0g;

kp � supfpC q W q 2 Z; Ep;q1 ¤ 0g for all p 2 Z:
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Suppose that m is finite and kp ¤m� 1 for all p 2 Z. Then Gm ¤ 0 and Gk D 0

for all k > m.

Proof Let

pm � inffp 2 Z W pC q Dm and Ep;q1 ¤ 0 for some q 2 Zg:

We will show that each element of Epm;m�pmj can never kill or be killed by the spectral
sequence differential for each j � 1. Since kpm�j ¤ m� 1 for all j , we get that
kpm�j <m�1 for all j � 1. Therefore, Epm�j;m�pmCj�1j D 0 for all j � 1. Hence,
the differential

d
pm�j;m�pmCj�1
j W E

pm�j;m�pmCj�1
j !E

pm;m�pm
j

is zero for all j . Also, since .pmC j /C .m�pm� j C1/DmC1 >m, we get that
E
pmCj;m�pm�jC1
j D 0 for all j . Therefore, the differential

d
pm;m�pm
j W E

pm;m�pm
j !E

pmCj;m�pm�jC1
j

is zero for all j . Hence, Gm ¤ 0. Also, Gk D 0 for all k >m since Ep;q1 D 0 for all
p; q 2 Z satisfying pC q D k .

Proof of Corollary 1.3 The numbers �m do not depend on the choice of log resolution
for all m> 0 by Lemmas 2.3 and 2.6. Hence, Corollary 1.3 follows immediately from
Theorem 1.2 combined with Lemmas 2.4 and 6.1.

Appendix A Gradings and canonical bundles

In this section we will develop tools so that we can construct gradings (see Definition 3.2)
and relate them to other kinds of topological information. In this paper we will only
need to study gradings up to isotopy, which will be defined now. We will first give
a definition of a grading for any principal G bundle and then relate it to gradings
of .E;�/. Throughout this section, G will be a Lie group, zG its universal cover and
pW W !B will be a principal G bundle. Also, � W E! V will be a symplectic vector
bundle with symplectic form � whose fibers have dimension 2n.

Definition A.1 A grading of p consists of a principal zG bundle zpW �W ! B along
with a G bundle isomorphism

�W �W � zG G ŠW:
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Note that a grading of .E;�/ is equivalent to a grading of the principal Sp.2n/ bundle
Fr.E/. Let

�j W �Wj � zG G ŠW; j D 0; 1;

be gradings of p . An isotopy between these two gradings consists of a zG–bundle
isomorphism

‰W �W0! �W1
together with a smooth family of G bundle isomorphisms

L�t W �W0 � zG G ŠW
joining �0 and �1 ı L‰ , where L‰W �W0 � zG G ! �W1 � zG G is the natural isomorphism
induced by ‰ . An isotopy between two gradings of .E;�/ is an isotopy between the
corresponding gradings on the principal Sp.2n/ bundle Fr.E/. We can define isotopies
of gradings of symplectic manifolds and contact manifolds in a similar way.

Definition A.2 Let
�W �W � zG G ŠW

be a grading of p . The associated covering map of this grading is the natural map�W ! �W � zG G �
�!W:

The following lemma gives a topological characterization of gradings. For simplicity
we will assume that the base B is connected. Let ? 2W be a choice of basepoint.

Lemma A.3 Let NW be the set of normal subgroups AG�1.W; ?/ such that

p�W �1.W; ?/! �1.B; p.?//

restricted to A is an isomorphism. Let GrW be the set of isotopy classes of gradings
of W . Then the map QW W GrW !NW sending a grading to

(A-1) Im.P�/� �1.W; ?/

is an isomorphism, where P is the associated covering map of this grading.

Proof We will first show that the map QW is well defined by showing that the image
(A-1) is a normal subgroup. Let

�W �W � zG G ŠW
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be a grading of p . The covering map P of such a grading is isomorphic (using the
map �) to the natural map �W ! �W � zG G:
The deck transformations of this map are equal to ker. zG!G/ and these act transitively.
Hence, the image (A-1) is a normal subgroup. Combining this with the fact that the
fibers of the natural fibration �W ! B are simply connected, the image (A-1) is
contained in NW and hence the map QW is well defined.

We will now construct an inverse to QW . Let N G�1.W; ?/ be an element of NW .
Let

P W �W !W

be a covering map with a choice of basepoint z? 2 �W mapping to ? such that the map

P�W �1.�W ; z?/! �1.W; ?/

has image equal to N. Let F be a fiber of p . Let �F W F ,!W be the natural inclusion
map. Since P�jP�1� .N/ is injective, we get that .�F /�1� .P

�1
� .N //D fidg and hence

P jP�1.F /W P
�1.F /! F is the universal covering map. This implies that each fiber

has a natural zG action and hence

p ıP W �W ! B

is a zG bundle with a natural isomorphism�W � zG W ŠW:
We define Q�1W .N / to be the above grading. This is an inverse to QW .

We have the following immediate corollary of Lemma A.3:

Corollary A.4 Suppose that pj W Wj!B is a principal Gj bundle for some Lie group
Gj for j D 1; 2. Let ˆW W1!W2 be a map of fiber bundles such that the induced map
on the fibers is a fundamental group isomorphism. Then the map ˆ�W NW1 ! NW2
induces a natural bijection between isotopy classes of gradings on W1 and isotopy
classes of gradings on W2 .

Here the sets NW1 and NW2 in this corollary are defined as in Lemma A.3.

Lemma A.5 Let �K W K ! B be a principal U.1/ bundle. Then there is a natural
one-to-one correspondence between homotopy classes of trivializations of �K and
isotopy classes of gradings of �K .
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Proof There is a one-to-one correspondence between trivializations ˆW K!B�U.1/

of K up to homotopy and sections of �K up to homotopy given by the map sending ˆ
to the section whose image is ˆ�1.1/. Hence, all we need to do is construct a natural
one-to-one correspondence between sections up to homotopy and isotopy classes of
gradings. Let S be the set of sections up to homotopy and GrK the set of isotopy
classes of gradings. By Lemma A.3, it is sufficient for us to construct a bijection
between S and NK . We define

‰W S !NK ; ‰.s/D Im
�
s�W �1.B; ?/! �1.K; s.?//

�
:

The inverse of this map is constructed as follows: We start with a normal subgroup
N 2NK . This gives us a grading

�W zK �R U.1/ŠK

by Lemma A.3 since eU.1/DR. Since the fibers of zK are contractible, there is a smooth
section zsW B ! zK by [32, Theorem 9] combined with the Steenrod approximation
theorem [31, Section 6.7, Main Theorem]. The composition s � PK ı zs , where
PK W zK!K is the associated covering map, is then a smooth section of K . We then
define ‰�1.N /� s . This is the inverse of ‰ .

We will now focus on the principal Sp.2n/ bundle Fr.E/.

Definition A.6 Let J be a complex structure on E compatible with �. The frame
bundle Fr.E;�; J / of the unitary bundle .E;�; J / is the principal U.n/–bundle
whose fiber over v 2 V is the space of unitary bases e1; : : : ; en of .E;�; J /jv . The
anticanonical bundle ��J of .E; J / is the highest exterior power of the complex vector
bundle .E; J /. The associated U.1/–bundle ���;J � �

�
J of ��J has a fiber at v 2 V

equal to the subset of elements e1 ^ � � � ^ en , where e1; : : : ; en is a unitary basis for
.E;�; J /jv . Therefore, we have a natural map det�;J W Fr.E;�; J /! ��;J .

The canonical bundle �J of .E; J / is the dual of ��J (or equivalently the anticanonical
bundle of the dual bundle of .E; J /). In a similar way, we can define the (anti)canonical
bundle of a symplectic manifold with a choice of compatible almost complex structure,
or of a contact manifold .C; �C / with a choice of compatible contact form ˛ and a
d˛j�C –compatible almost complex structure J on �C .

Definition A.7 Let J be an �–compatible complex structure on E. Let

�J W Fr.E;�; J /! Fr.E;�/
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be the natural inclusion map. By [25, Propositions 2.22 and 2.23], the natural maps
det�;J and �J above are bundle maps whose restriction to each fiber is a fundamental
group isomorphism. Hence, by Corollary A.4 and Lemma A.5 there is a natural one-
to-one correspondence between isotopy classes of gradings of .E;�/ and homotopy
classes of trivializations of ���;J . Combining this with the fact that there is a natural
one-to-one correspondence between homotopy classes of trivializations of ���;J and
homotopy classes of trivializations of ��J and hence of trivializations of the canonical
bundle �J , we get a natural one-to-one correspondence

(A-2) GrW ftrivializations of �J g=homotopy 1–1
�! fgradings of .E;�/g=isotopy:

Given a trivialization ˆ of �J we will call the grading Gr.ˆ/ the grading associated
to ˆ. Given a grading g of .E;�/, we will call Gr�1.g/ the trivialization associated
to this grading.

The above discussion enables us to compute the Conley–Zehnder index of a fixed point
of a graded symplectomorphism in some nice cases. Let �W M !M be a graded exact
symplectomorphism of a Liouville domain .M; �M /. Let V be the unique vector field
on the mapping torus T� from Definition 3.13 given by the lift of the vector field d=dt
on R=Z satisfying �V d˛T� D 0. Let �Vt be the time t flow of V . Let x be a fixed
point of � . Suppose that there is a compatible complex structure J on the vertical
tangent bundle .T verT� � ker.D�T� /; d˛T� / such that D�Vt restricted to T verT� jx

is J –holomorphic for all t 2 Œ0; 1�. Then �Vt lifts to a map

z�t W �J jx! �J j�Vt .x/
; z�t .^

n
iD1e

�
i /D^

n
iD1.�

�
t /
�1e�i for all e�1 ; : : : ; e

�
n 2 T

�
xM:

Since � is graded, we see by Definition 3.13 that there is a natural grading on the
vertical tangent bundle. Therefore, by Definition A.7, there is a natural trivialization
ˆW �J !T��C of �J associated to this grading. Let ˆ2W �J !C be the composition
of ˆ with the natural projection map to C .

Lemma A.8 Let x 2M D ��1T� .0/ be a fixed point of � and suppose that

D�jx W TxM ! TxM

is the identity map. Then CZ.�; x/ is equal to �2 times the winding number of the
map

wW R=Z!C� D Aut.C;C/; t !ˆ2 ı z�t ı .ˆ2j�J jx /
�1:
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Proof Let  W R=mZ! T� be the m–periodic orbit of V whose initial point is x .
Then there is a unique (up to homotopy) unitary trivialization T of �T verT� such
that ˆ is equal to the highest wedge power of T . Because of the correspondence (A-2),
we can also ensure that T maps the grading on �T verT� (given by pulling back the
grading on T verT� via  ) to the trivial grading on .R=mZ/ �CnC1 (maybe after
changing the grading to an isotopic one).

Under this trivialization, the flow of V corresponds to a smooth family of Hermit-
ian matrices .At /t2Œ0;1� and the degree of w is �1 times the winding number of
t ! detC.At /. Using the correspondence (A-2) and the trivialization T , such a family
of matrices corresponds to a point in the universal cover �Fr.TM/jx of Fr.TM/jx .
Hence, the Conley–Zehnder index of .At /t2Œ0;1� is equal to CZ.�; x/. Since At are
unitary matrices, we get that CZ..At /t2Œ0;1�/ is equal to twice the winding number of
t ! detC.At /. Hence, CZ.�; x/ is �2 times the winding number of w .

Appendix B Contactomorphisms of mapping tori and Floer
cohomology

The aim of this section is to show that property (HF2) holds. Here is a statement of
this property:

Suppose that .M1; �M1 ; �1/ and .M2; �M2 ; �2/ are graded abstract contact open books
such that the graded contact pairs associated to them are graded contactomorphic. Then
HF�.�0;C/D HF�.�1;C/.

We will prove this by using an intermediate Floer cohomology group called S1–
equivariant Hamiltonian Floer cohomology on a certain mapping cylinder of our
symplectomorphism.

Definition B.1 Let .M; �M ; �/ be an abstract contact open book. Let L� be a small
positive slope perturbation of � . The mapping cylinder of L� is a triple .W L� ; � L� ; � L�/
where

(1) W L� � .R�R�M/=Z, where the Z action on .R�R�M/ has the property
that 1 2 Z sends .s; t; x/ to .s; t � 1; L�.x//,

(2) � L� W W L�!R� .R=Z/ sends .s; t; x/ to .s; t/ 2R�R=Z, and
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(3) � L� D s dt C ��M C � d.�.t/F L�/, where

� F L� W M ! R is a smooth function with support in the interior of M that
satisfies . L�/��M D �M C dF L� ,

� �W Œ0; 1�! Œ0; 1� is a smooth function equal to 0 near 0 and 1 near 1, and
� � > 0 is a constant small enough to ensure that d� L� is symplectic.

Let rM W .0; 1� � @M ! .0; 1� be the cylindrical coordinate on M. Let ı L� > 0 be
small enough that the symplectomorphism L� is equal to the time 1 flow of ırM inside
.1� ı L� ; 1�� @M for some ı > 0. Let �ırMt W .1� ı L� ; 1�� @M ! .1� ı L� ; 1�� @M be
the time t flow of ırM . Then we have a natural embedding

� L� W C L��.R�.R=Z/�.1�ı L� ; 1��@M/,!W L� ; � L�.s; t; rM ; y/�.s; t; �
ırM
�t .rM ; y//;

called the vertical cylindrical end of W L� . The coordinate

(B-1) r L� W C L�! .1� ı L� ; 1�; r L�.s; t; x/� rM .x/;

is called the vertical cylindrical coordinate. A grading on a mapping cylinder

.W L� ; � L� ; � L�/

is a grading on the symplectic manifold .W L� ; d� L�/.

Two mapping cylinders .W L�1 ; � L�1 ; � L�1/, .W L�2 ; � L�2 ; � L�2/ are isomorphic if there is a
diffeomorphism ˆW W L�1

!W L�2
and a constant ı > 0 such that

� ˆ�� L�2
D � L�1

C dq for some qW W L�1 ! R, where q has support in the set
W L�1
�fr L�1

� 1� ıg, and

� � L�1
jfr L�1

�1�ıg D .� L�2
ıˆ/jfr L�1�1�ıg

.

They are graded isomorphic if, in addition, ˆ is a graded symplectomorphism from
.W L�1

; d� L�1
/ to .W L�2 ; d� L�2/.

Note that the definition above has many similarities with the definition of the mapping
torus from Definition 3.13. Also, if we define the mapping torus

�T L� W T L�!R=Z and ˛T L�

of our positive slope perturbation L� in exactly the same way as in Definition 3.13, then
W L� DR�T L� , � L� D .s��/ dtC .�=C /˛ L� for some C > 0 and � L� D idR��T L� . The
following calculation will be useful later on. If we have a Hamiltonian H equal to
��
L�
K for some KW R� .R=Z/!R then XH is equal to the horizontal lift of Xds^dtK

with respect to the symplectic connection associated to d� L� .
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Lemma B.2 Let
.B1 � C1; �1; �1/; .B2 � C2; �2; �2/

be the (graded) contact pairs associated to the (graded) abstract contact open books
.M1; �M1 ; �1/ and .M2; �M2 ; �2/, respectively. Let L�1 be a small positive slope
perturbation of �1 . If the above contact pairs are (graded) contactomorphic then
.M2; �M2 ; �2/ is (graded) isotopic to an abstract contact open book .M3; �M3 ; �M3/

such that the mapping cylinders

.W L�1
; � L�1

; � L�1
/; .W L�3

; � L�3
; � L�3

/

are (graded) isomorphic, where L�3 is a small positive slope perturbation of �3 .

Proof Since the corresponding open books are contactomorphic, and the boundary
@Mj is contactomorphic to the binding of OBD.Mj ; �Mj ; �j / for j D 1; 2, we get that
@M1 is contactomorphic to @M2 . Hence, there is a diffeomorphism ‰W @M2! @M1

such that ‰�˛1 D f ˛2 , where j̨ D �Mj j@Mj for j D 1; 2 and f W @M2! .0;1/.
After multiplying �2 by a positive constant, we can assume that f > 1. Choose ı > 0
small enough that the subset of the cylindrical end .1� ı; 1�� @M2 �M2 is disjoint
from the support of �2 and let rM2 W .1� ı; 1�� @M2! .1� ı; 1� be the associated
cylindrical coordinate. Let �W .1�ı; 1�! Œ0; 1� be a smooth function with nonnegative
derivative that is equal to 0 near 1� ı and 1 near 1. Let Ft W M2!R, t 2 Œ0; 1� be a
smooth family of functions equal to 1C t�.rM2/.f � 1/ inside .1� ı�� @M2 and 1
otherwise. Then .M2; Ft�M2 ; �2/ is an isotopy of abstract contact open books. Define
.M3; �M3 ; �3/� .M2; F1�M2 ; �2/. Hence, there is a diffeomorphism L‰W @M3! @M1

such that . L‰/�˛M1 D ˛M3 , where ˛M3 � �M3 j@M3 .

Choose a small positive slope perturbation L�3 of �3 so that L�3j.1�Lı;1��@M3 is equal to
.id
.1�Lı;1�

� L‰/� L�1j.1�Lı;1��@M1
for some Lı > 0 smaller than ı . Let .T�j ; �T�j ; ˛�j /

be the mapping torus of �j and let .T L�j ; �T L�j
; ˛ L�j

/ be the mapping torus of L�j for
j D 1; 3. Let .B3 � C3; �3; �3/ be the contact pair associated to .M3; �M3 ; �3/. By
Lemma 5.34, we get that the contact pair associated to .M3; �M3 ; �3/ is contacto-
morphic to the contact pair associated to .M2; �M3 ; �2/ which in turn is contactomor-
phic to the contact pair associated to .M1; �M1 ; �1/. There is a contactomorphism
QW T�3 ! T�1 such that QjB3 W B3 ! B1 is equal to L‰ under the identification
Bi DMi for i D 1; 3 and such that �T�3 D �T�1 ıQ near @T�3 . Hence, we can find
a contactomorphism LQW T L�3

! T L�1
satisfying . LQ/�˛ L�1 D ˛ L�3 near @T L�3 and such

that �T L�3 D �T L�1 ı
LQ near @T L�3 .
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Since W L�j is naturally diffeomorphic to R�T L�j for j D 1; 3, we can define

W W W L�3
!W L�1

; W � .idR; LQ/:

Now W �� L�3
D � L�1

outside a subset K � W L�3 whose intersection with each fiber
of � L�3 is compact. Since � L�3 and W �� L�1

scale at most linearly in C 1 norm as
we translate in the s coordinate direction, we can use a Moser argument applied to
�� L�3

C .1� �/W �� L�1
for � 2 Œ0; 1�, giving us our isomorphism.

Lemma B.3 Suppose that .M1; �M1 ; �1/ and .M2; �M2 ; �2/ are isotopic abstract
contact open books. Then HF�.�1;C/D HF�.�2;C/.

Proof Since the above abstract contact open books are isotopic, we can assume that
M1 DM2 and that there is a smooth family of Liouville forms .�s/s2Œ0;1� such that
�0D �M1 and �1D �M2 . Also, there is a smooth family of exact symplectomorphisms
 sW M1!M1 for s 2 Œ0; 1� with respect to �s with support in a fixed compact set
joining �1 and �2 . Let rs be the cylindrical coordinate for .M1; �s/ and choose ı > 0
small enough that frs � 1� ıg is disjoint from the support of  s for all s 2 Œ0; 1�. By
pulling back rs and �s and  s by a smooth family of diffeomorphisms starting at the
identity and parametrized by s 2 Œ0; 1�, we can assume that rs D r0 inside the region
fr0 � 1� ıg D .1� ı; 1�� @M1 . By Gray’s stability theorem, we can also assume that
�s D r0fs˛ inside fr0 � 1� ıg D .1� ı; 1�� @M1 for some contact form ˛ on @M1

and some smooth family of functions fsW @M1! .0;1/ for s 2 Œ0; 1�.

Now choose a smooth family of functions gsW .1� ı; 1��@M1! .0;1/ for s 2 Œ0; 1�
so that @gs=@r0 > 0, gs is equal to fs inside

�
1� ı; 1� 1

2
ı
�
� @M1 , and gs D Cf0

inside
�
1� 1

4
ı; 1

�
� @M1 for some large constant C > 0 and for all t 2 Œ0; 1�. Define

L�s to be equal to �s outside .1� ı; 1�� @M1 and equal to r0gs˛ inside this region.
Then .M1; L�s/ for s 2 Œ0; 1� is a smooth family of Liouville domains such that L�s D �s
inside

�
1� ı; 1� 1

2
ı
�
� @M1 and L�s is independent of s near @M1 .

Let .Ks;t /.s;t/2Œ0;1�2 be a smooth family of almost complex structures compatible
with d�s such that Ks;t is cylindrical inside .1� ı��M1 with respect to �s for all
.s; t/ 2 Œ0; 1�2 . Choose a smooth family of almost complex structures .Js;t /.s;t/2Œ0;1�2
compatible with d L�s equal to Ks;t outside

�
1� 1

2
ı; 1

�
�@M1 and equal to K0;t inside�

1� 1
4
ı; 1

�
� @M1 . Let L s be a smooth family of exact symplectomorphisms with

respect to L�s which are small positive slope perturbations of  s such that L s is the
time 1 flow of �rs inside .1� ı; 1��@M1 for some very small � > 0 (so that there are
no fixed points of this symplectomorphism in this region). Let y s be a smooth family
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of positive slope perturbations of  s with respect to �s which are equal to the time 1
flow of �rs inside .1� ı; 1�� @M1 with respect to the symplectic structure d�s . We
assume that � is small enough that y s has no fixed points inside .1� ı; 1�� @M1 for
all s 2 Œ0; 1�.

Since

� L s and y s are the time 1 flows of a linear Hamiltonian inside
�
1�ı;1�1

2
ı
�
�@M1,

� Js;t and Ks;t are cylindrical inside this region,

� . L s; .Js;t /t2Œ0;1�/ and . y s; .Ks;t /t2Œ0;1�/ are equal outside .1 � ı; 1� � @M1 ,
and

� L s and y s has no fixed points inside .1� ı; 1�� @M1 ,

a maximum principle [1, Lemma 7.2] tells us that

(B-2) HF�. L s; .Js;t /t2Œ0;1�/D HF�. y s; .Kt /t2Œ0;1�/

for all s 2 Œ0; 1�.

Since L�s is independent of s near @M1 , we can assume, by a Moser argument, that
L�s D �0 C ˇs for some smooth family of compactly supported closed 1–forms ˇs
for s 2 Œ0; 1�. Then, by [41, Theorem 2.34], we get that HF�. L s; .Js;t /t2Œ0;1�/ is
independent of s 2 Œ0; 1�. Hence, HF�. y s; .Ks/t2Œ0;1�/ is independent of s by (B-2),
which implies that HF�.�1;C/D HF�.�2;C/.

Definition B.4 Let .W L� ; � L� ; � L�/ be a mapping cylinder. An almost complex structure
J on W L� is strictly compatible with .W L� ; � L� ; � L�/ if

(1) J is compatible with d� L� ,

(2) � L� W W L� !R�R=Z is .J; j /–holomorphic (ie D� L� ı J D j ıD� L� ), where
j is the complex structure sending @=@s to @=@t , where .s; t/ parametrizes
R�R=Z,

(3) the restriction of J to the cylindrical end C L� is a product j ˚ JM , where
JM is a fixed cylindrical almost complex structure inside the cylindrical end
.1� ı L� ; 1�� @M, and

(4) J is invariant under translations in the s coordinate.

We will call JM the associated cylindrical almost complex structure on M . An almost
complex structure J on W L� is compatible with .W L� ; � L� ; � L�/ if there is an almost
complex structure LJ compatible with .W L� ; � L� ; � L�/ and a compact subset K in the
interior of W L� such that J jW L��K D

LJ jW L��K .
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Definition B.5 Recall that a 1–periodic orbit of a time-dependent Hamiltonian

Ht W W L�!R

is a smooth map  W R=Z!M satisfying d=dt DX
d� L�
Ht

. Since there is a natural one-
to-one correspondence between 1–periodic orbits and fixed points of the corresponding
Hamiltonian symplectomorphism �

Ht
1 , we will call  the 1–periodic orbit associated

to the fixed point .0/. A Hamiltonian is autonomous if it does not depend on time.
An S1–family of 1–periodic orbits of H is a family .t /t2R=Z of 1–periodic orbits
where t .Lt /D 0.Lt C t / for all t; Lt 2R=Z.

Let .H; J / and . LH; LJ / be pairs consisting of autonomous Hamiltonians H and LH and
almost complex structures J and LJ. A smooth family of pair .Hs; Js/s2R joins .H; J /
and . LH; LJ / if .Hs; Js/D .H; J / for all sufficiently negative s and .Hs; Js/D . LH; LJ /
for all sufficiently positive s .

Let hW R ! R be a smooth function which is bounded from below with positive
derivative satisfying h00.s/D 0 whenever s is sufficiently positive and h0.s/ < 1 for
s sufficiently negative. The value of h0.s/ for large enough s is called the slope
of h. A Hamiltonian is strictly compatible with .W L� ; � L� ; � L�/ if it is equal to ��

L�
h.s/

everywhere. A Hamiltonian is compatible with .W L� ; � L� ; � L�/ if it equals ��
L�
h.s/ outside

a compact subset of the interior of W L� . The slope of such a Hamiltonian is defined to
be the slope of h.

All the 1–periodic orbits of h.s/ on the symplectic manifold .R �R=Z; ds ^ dt/

wrapping around R�R=Z once come in S1 families in the region h0.s/D 1 and for
the unique s satisfying h0.s/D 1 we have 1–periodic orbits

s;qW R=Z!R�R=Z; q.t/D .s; t C q/;

for all q 2 Œ0; 1/. Also, the 1–periodic orbits of ��
L�
h.s/ project to 1–periodic orbits

of h.s/.

A pair .H; J / is (strictly) compatible with .W L� ; � L� ; � L�/ if H is a Hamiltonian (strictly)
compatible with .W L� ; � L� ; � L�/ and J is an almost complex structure (strictly) com-
patible with .W L� ; � L� ; � L�/. A smooth family .Hs; Js/s2R of pairs compatible with
.W L� ; � L� ; � L�/ has nonincreasing slope if the slope of Hs is greater than or equal to the
slope of HLs for all s � Ls .

Definition B.6 Let .H� ; J� /�2R be a smooth family of pairs of Hamiltonians and
almost complex structures compatible with a mapping cylinder .W L� ; � L� ; � L�/. An open
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subset V � W L� satisfies the maximum principal with respect to .H� ; J� /�2R if for
every compact codimension 0 submanifold † � R �R=Z and every smooth map
uW †!W L� satisfying

(1) u.@†/� V ,

(2) @�u.�; �/CJ�@�u.�; �/D J�XH�

also satisfies Im.u/� V .

We say that .H� ; J� /�2R satisfies the maximum principle if there is a sequence of
relatively compact open sets .Vi /i2N whose union is W L� such that .H� ; J� /�2R

satisfies the maximum principle with respect to Vi for all i 2N .

Lemma B.7 Let .M; �M ; �/ be an abstract contact open book and let

W � .W L� ; � L� ; � L�/

be a mapping cylinder of some positive slope perturbation of � . Let�
K� � �

�

L�
.k� .s//

�
�2R

be a smooth family of Hamiltonians strictly compatible with W such that dk�=d� � 0,
dk0�=d� � 0 and dk00�=d� � 0. Let Y be an almost complex structure strictly
compatible with W .

Let ı; S > 0 and let r L� be the vertical cylindrical coordinate of W . Let .H� ; J� /�2R

be a smooth family of pairs compatible with W which are equal to .K� ; Y / near the
boundary of the set

Vı;S � �
�1
L�
..�S; S/� .R=Z//�W L�

and also in the region fr L� � 1� ıg. Then Vı;S satisfies the maximum principal with
respect to .H� ; J� /�2R .

Proof Let uW †!W L� be as in Definition B.6 with V replaced by Vı;S . Let

� L� W C L��.R�.R=Z/�.1�ı L� ;1��@M/,!W L� ; � L�.s; t; rM ;y/�
�
s; t; .�

ırM
�t .rM ;y//

�
;

be the vertical cylindrical end of W L� . Then r L� W C L�! .1�ı L� ; 1� is the natural projection
map. Let PM W C L� ! .1� ı L� ; 1�� @M be the natural projection map. Consider the
map

yuW u�1.C L�/! .1� ı L� ; 1�� @M; yu.�; �/.x/� PM ıu.x/:
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Let JM;�;t be the natural almost complex structure on .1 � ı L�/ � @M induced by
J� j��1

L�
.s;t/ for some s . Such an almost complex structure does not depend on s and

is cylindrical by definition. Since J�XH� is a multiple of @=@s , we get that yu satisfies

@yu

@�
CJM

@yu

@�
�JMXırM D 0;

where rM is the cylindrical coordinate on M and ı > 0 is some constant. Therefore,
by applying [1, Lemma 7.2] to yu we see that such a map cannot intersect the region
.1� ı; 1�� @M/ and hence the image of u cannot intersect the region fr L� � 1� ıg.

Therefore, we only need to show that the image of u is contained inside the set
��1
L�
..�S; S/�R=Z/. First of all we can make S very slightly smaller, so that u is

transverse to ��1
L�
.fS;�Sg/ and u.@†/� Vı;S . This implies that L†�R�R=Z is a

smooth submanifold with boundary. Suppose for a contradiction that L† is nonempty.
Choose ı1 > 0 small enough that

.H� ; J� /D .K� ; Y� /

inside ��1
L�
..Œ�S � ı1;�S� [ ŒS; S C ı1�/ � R=Z/ for all � 2 R and u intersects

��1
L�
.fsg�R=Z/ transversely for all s2 Œ�S�ı1;�S�[ŒS; SCı1�. Now let ˇW R!R

be a smooth function satisfying ˇ0 � 0,

ˇj.�S�ı1=2;SCı1=2/ D 0; ˇ0j.�S�3ı1=4;�S�ı1=2/[.SCı1=2;SC3ı1=4/ > 0

and ˇ is constant outside
�
�S� 3

4
ı1; SC

3
4
ı1
�
. Choose a smooth function q� W R!R

such that q� j.�S�ı1=2;SCı1=2/ D 0 and q0� D ˇ
0k0� . Then dq0�=d� � 0. Hence,

0 <

Z
L†

ˇ0.s.u//
ˇ̌̌
.� L�/�

�
@u

@�

�ˇ̌̌2
d� ^ d�

D

Z
L†

u�d.ˇ.s/dt/
�
@u

@�
;
@u

@�
�XH�

�
d� ^ d�

D

Z
L†

u�d.ˇ.s/dt/�u�.ˇ0.s/dH� /^ d�

D

Z
L†

u�d.ˇ.s/dt/� d
�
u�.q� .s//

�
^ d� Cu�

�
dq�.s/

d�

�
d� ^ d�

�

Z
L†

u�d.ˇ.s/dt/� d
�
q� .s.u//d�

�
D

Z
@ L†

u�.ˇ.s/dt/� q� .s.u// d� D 0;

giving us a contradiction.
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Corollary B.8 Any smooth family .H� ; J� /�2R compatible with .W L� ; � L� ; � L�/ with
nonincreasing slope satisfies the maximum principle.

Definition B.9 For any mapping cylinder W � .W L� ; � L� ; � L�/, define ˇ L� �H1.W L�/
to be the set of homology classes represented by loops which project under � L� to loops
homotopic to

R=Z!R�R=Z; t ! .0; t/:

For each a; b 2 Œ�1;1� where a < b , any nondegenerate Hamiltonian .Ht /t2Œ0;1�
and smooth family of almost complex structures .Jt /t2Œ0;1� compatible with W , we
can define HF�

Œa;b�;ˇ L�
.�
Ht
1 / in the same way as Floer cohomology of �Ht1 except that

we only consider fixed points of action in Œa; b� and whose associated 1–periodic orbits
represent an element of ˇ L� . We also define HF�

Œ�1;1�;ˇ L�
.�
Ht
1 /� HF�

ˇ L�
.�
Ht
1 /.

A nondegenerate autonomous Hamiltonian is an autonomous Hamiltonian H W W L�!R

such that for every fixed point p of the time 1 flow �H1 , the eigenspace of D�H1 .p/
associated with the eigenvalue 1 is 1–dimensional (this eigenspace is the tangent line
to the 1–periodic orbit associated to p ). Now suppose that the mapping cylinder
.W L� ; � L� ; � L�/ is graded with grading

�W �Fr.T W L�/��Sp.2n/ Sp.2n/Š Fr.T W L�/:

Since any Hamiltonian Ht is isotopic to the identity map idW L� , we get that �Ht1
is naturally graded since the identity map on �Fr.T W L�/ makes idW L� into a graded
symplectomorphism. We will call this the standard grading and from now on we will
assume that every graded Hamiltonian symplectomorphism has the standard grading.
A standard perturbation of a nondegenerate autonomous Hamiltonian H where �H1
is graded is a time-dependent Hamiltonian .Ht /t2Œ0;1� which is C1 close to H and
equal to H outside a compact set, where

� .Ht /t2Œ0;1� is nondegenerate,

� every 1–periodic orbit  of .Ht /t2Œ0;1� is a 1–periodic orbit of H, and

� for every S1 family of 1–periodic orbits  of H there are exactly two 1–
periodic orbits � and C in this family which are also 1–periodic orbits of Ht .
These orbits satisfy CZ.�Ht1 ; ˙/D CZ.�H1 ; /˙

1
2

.

Such a perturbation exists by [10, Proposition 2.2].
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In order to prove our theorem we need another group, called S1–equivariant Hamil-
tonian Floer cohomology. See [43; 7] for a definition. We will not define this here
but we will just state some of the properties that we need. We write these groups as
HF�

S1;Œa;b�;ˇ L�
.H; J / for any nondegenerate autonomous Hamiltonian H and almost

complex structures J compatible with .W L� ; � L� ; � L�/ and any a; b2 Œ�1;1� satisfying
a < b . We also define HF�

S1;ˇ L�
.H; J /� HF�

S1;Œ�1;1�;ˇ L�
.H; J /.

These groups satisfy the following properties:

(S1HF1) Let SH be the set of S1 families of 1–periodic orbits of H with action in
Œa; b� representing a class in ˇ L� . Let .Ht /t2Œ0;1� be a C1 small standard perturbation
of H. This means that for each  2 SH , there are two 1–periodic orbits � and C
of .Ht /t2Œ0;1� which are also orbits in  satisfying CZ.�Ht1 ; ˙/D CZ.�H1 ; /˙

1
2

.
Let SHt be the set of such orbits ˙ .

Then the chain complex CF�
S1;Œa;b�;ˇ L�

.H/ defining HF�
S1;Œa;b�;ˇ L�

.H; J / is a free ZŒu�–

module generated by SHt and graded by the Conley–Zehnder index taken with negative
sign and where the degree of u is �2. Let

C �Œa;b�;ˇ L�
.H/� C �

S1;Œa;b�;ˇ L�
.H/

be the Z–submodule generated by elements of SHt . Then the differential @ on
CF�

S1;Œa;b�;ˇ L�
.H/ is equal to @0C @1 , where @0.uiC �Œa;b�;ˇ L�

.H// � uiC �
Œa;b�;ˇ L�

.H/

and

@1.u
iC �Œa;b�;ˇ L�

.H//�

i�1M
jD0

ujC �Œa;b�;ˇ L�
.H/

for all i . Here @0 is equal to the differential defining HF�
Œa;b�;ˇ L�

.H; J /. Also,
@.ui�/Du

i�1C plus 1–periodic orbits of higher action for all i �1. The differential
is Z–linear but not necessarily ZŒu�–linear.

(S1HF2) If .H� ; J� /�2R is a smooth family of pairs compatible with .W L� ; � L� ; � L�/
with nonincreasing slope joining .H; J / and . LH; LJ / then there is a group homomor-
phism

HF�
S1;ˇ L�

. LH; LJ /! HF�
S1;ˇ L�

.H; J /:

If in addition dH�=d� � 0, then we have a group homomorphism

HF�
S1;Œa;b�;ˇ L�

. LH; LJ /! HF�
S1;Œa;b�;ˇ L�

.H; J /

for all a < b . These are called continuation maps. They do not depend on the choice
of path .H� ; J� /�2R and the composition of two continuation maps is a continuation
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map. Also, if .H� ; J� / does not depend on � 2 R then the associated continuation
map is the identity map. If a D �1 and b D1 and if H� DH C f .�/ for some
function f W R!R then the corresponding continuation map is also an isomorphism.

(S1HF3) If .H; J / and . LH; LJ / are compatible with W � .W L� ; � L� ; � L�/ and

� satisfy the maximum principle with respect to some V �W L� ,

� all the 1–periodic orbits of action of H and LH in Œa; b� representing elements
of ˇ L� are contained in V , and

� .H; J /jV D . LH; LJ /jV ,

then
HF�

S1;Œa;b�;ˇ L�
. LH; LJ /Š HF�

S1;Œa;b�;ˇ L�
.H; J /:

This is due to the fact that their chain complexes are identical. Also, if we have two
additional pairs .H 0; J 0/ and . LH 0; LJ 0/ satisfying the same properties and a smooth
nondecreasing family of pairs .H 0� ; J

0
� /�2R and . LH 0� ; LJ

0
� /�2R compatible with W

joining .H; J / and .H 0; J 0/ and joining . LH; LJ / and . LH 0; LJ /0, respectively, satisfying
the maximum principle with respect to V and which are equal inside V for all � , then
the induced continuation maps commute with the above isomorphisms.

Definition B.10 We define

SH�
S1;ˇ L�

.W L� ; � L� ; � L�/� lim
��!
.H;J /

HF�
S1;ˇ L�

.H; J /;

where the direct limit is taken over all pairs .H; J / compatible with .W L� ; � L� ; � L�/
using the partial ordering � on H.

Let � be a partial order on a set S. A cofinal family is a subset S 0 � S such that, for
all s 2 S, there exists an s0 2 S 0 such that s � s0. In the definition above, it is sufficient
to compute SH�S1;ˇ L� .W L� ; � L� ; � L�/ by taking the direct limit over some cofinal family
of pairs .H; J / as above.

Lemma B.11 If the slope of a pair .H; J / compatible with .W L� ; � L� ; � L�/ is greater
than 1 then the natural map

HF�
S1;ˇ L�

.H; J /! SH�
S1;ˇ L�

.W L� ; � L� ; � L�/

is an isomorphism.
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Proof Let . LH; LJ / be a pair which is strictly compatible with our mapping cylinder
and such that the slope of LH is equal to the slope of H. Then there is a constant c > 0
such that LH C c > H and H C c > LH. Consider the continuation maps

HF�
S1;ˇ L�

.H; J / ˛
�! HF�

S1;ˇ L�
. LH C c; LJ /! HF�

S1;ˇ L�
.H C 2c; J /

! HF�
S1;ˇ L�

. LH C 3c; LJ /:

By (S1HF2), the composition of any two such maps is an isomorphism and hence the
continuation map ˛ is an isomorphism. Therefore, it is sufficient for us to assume
that .H; J / is strictly compatible with our mapping cylinder. We can also assume that
H D ��

L�
h.s/ where h00.s/� 0.

Choose S > 0 large enough that ��1L� ..�S; S/�R=Z/ contains all the 1–periodic
orbits of H representing a class in ˇ L� . Let h� W R!R for � 2 Œ0;1/ be a smooth
family of functions such that

� h� .s/D h.s/ for all s 2 .�S; S/ and h0.s/D h.s/ for all s 2R,

� h0� .s/; h
00
� .s/; dh� .s/=d� � 0,

� h00� .s/D 0 for all large enough s , and

� the slope of h� tends to infinity as � tends to infinity.

By (S1HF3) combined with Lemma B.7, the natural continuation map

HF�
S1;ˇ L�

.H; J /! HF�
S1;ˇ L�

.��
L�
h� .s/; J /

is an isomorphism for all � � 0. Also, by (S1HF2), the natural continuation map

HF�
S1;ˇ L�

.H; J /! HF�
S1;ˇ L�

.��
L�
h� .s/C �; J /

is an isomorphism for all � � 0. Since .��
L�
h� .s/C �; J / is a cofinal family of pairs

with respect to the ordering �, we get our result by (S1HF2).

Lemma B.12 Fix q 2R. We have

SH�
S1;ˇ L�

.W L� ; � L� ; � L�/D lim
��!
.H;J /

HF�
S1;.�1;0�;ˇ L�

.H; J /;

where the direct limit is taken over pairs .H; J / compatible with our mapping cylinder
satisfying H j��1

L�
..�1;q��R=Z/ < 0.

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 1045

Proof Since the continuation map

HF�
S1;ˇ L�

.H; J /! HF�
S1;ˇ L�

.H C c; J /

is an isomorphism by (S1HF2) for every pair .H; J / compatible with our mapping
cylinder, we have

SH�
S1;ˇ L�

.W L� ; � L� ; � L�/D lim
��!
.H;J /

HF�
S1;ˇ L�

.H; J /;

where the direct limit is taken over pairs .H; J / compatible with our mapping cylinder
satisfying

H j��1
L�
..�1;q��R=Z/ < 0:

Let A be a constant smaller than the action of all the 1–periodic orbits of L� . We say
that hW R!R for i 2N is a compatible function with respect to q if

� h0; h00 � 0, h is bounded below,

� if h0.x/D 1 then h.x/ < xC �A, and

� hi j.�1;q� < 0.

Then
SH�

S1;ˇ L�
.W L� ; � L� ; � L�/D lim

��!
h

HF�
S1;ˇ L�

.��
L�
h.s/; J /;

where the direct limit is taken over compatible functions with respect to q ordered by �
and where J is an almost complex structure compatible with our mapping cylinder.
Since ��

L�
h.s/ has no 1–periodic orbits representing ˇ L� of positive action where h is

any compatible function with respect to q we have by, (S1HF3),

lim
��!
h

HF�
S1;ˇ L�

.��
L�
h.s/; J /D lim

��!
h

HF�
S1;.�1;0�;ˇ L�

.��
L�
h.s/; J /;

proving our result.

Lemma B.13 Let q 2R. Let . LH; LJ / be compatible with .W L� ; � L� ; � L�/; then

SH�
S1;ˇ L�

.W L� ; � L� ; � L�/D lim
��!
.H;J /

HF�
S1;.�1;0�;ˇ L�

.H; J /;

where the direct limit is taken over pairs .H; J / compatible with our mapping cylinder
satisfying H j��1

L�
..�1;q��R=Z/ < 0 and

.H; J /j��1
L�
.ŒqC1;1/�R=Z/ D .

LH CCH ; J /j��1
L�
.ŒqC1;1/�R=Z/

for some constant CH 2R.
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Proof Let .Hi ; Ji /i2N be a cofinal family of pairs with respect to the directed system
mentioned in the statement of this lemma. Such a countable family exists since

supH j��1
L�
..�1;q��.R=Z// < 0

for any .H; J / in the directed system above. We have that .Hi ; Ji / is compatible with
our mapping cylinder and Hi j.��1

L�
..�1;q��R=Z// < 0 and

.Hi ; Ji /j��1
L�
.ŒqC1;1/�R=Z/ D .

LH CCHi ; Ji /j��1
L�
.ŒqC1;1/�R=Z//

for some constant CHi 2R. We can assume that Hi <HiC1 and hence CHi <CHiC1
for all i 2N . After passing to a subsequence, we can assume that CHi >i for all i 2N .

Let .s; t/ be standard coordinates for the base R � R=Z. Let KW W L� ! R be a
Hamiltonian equal to ��

L�
k.s/, where k.s/D 0 for s � qC 1, k0.s/ > 0 for s > qC 1,

and k0.s/ is constant for s > qC 2. Since CHi > i for all i , there is a ı > 0 small
enough that the set of 1–periodic orbits of Hi of nonpositive action are equal to the
set of 1–periodic orbits of Hi C ıiK of nonpositive action. Hence, by (S1HF3),

HF�
S1;.�1;0�;ˇ L�

.Hi ; Ji /D HF�
S1;.�1;0�;ˇ L�

.Hi C ıiK; Ji /:

Combining this with Lemma B.12 gives us our result.

Lemma B.14 Suppose the mapping cylinders .W L�1 ; � L�1 ; � L�1/ and .W L�2
; � L�2

; � L�2
/

are isomorphic. Then

SH�
S1;ˇ L�1

.W L�1
; � L�1

; � L�1
/D SH�

S1;ˇ L�2
.W L�2

; � L�2
; � L�2

/:

Proof Since these mapping cylinders are isomorphic, we can assume that W L�1 DW L�2
and � L�2 D � L�2

inside fr L�1 � 1 � ıg for some ı > 0, and � L�1 D � L�2
C k , where

kW W L�1
!R has support disjoint from fr L�1 � 1� ıg.

Let .H1; J1/ and .H2; J2/ be pairs strictly compatible with

W1 � .W L�1
; � L�1

; � L�1
/ and W2 � .W L�2

; � L�2
; � L�2

/;

respectively, of slope less than some small Lı > 0. If Lı > 0 is small enough then we can
construct a pair .H3; J3/, compatible with W1 , which is equal to .H2; J2/ in the region
��1
L�2
..�1; 3/�R=Z/ and equal to .H1; J1/ inside ��1

L�2

�
..�1;�2/[.4;1//�R=Z

�
,

so that H3 has no 1–periodic orbits.
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Let . LHi ; LJi /i2N be a family of pairs strictly compatible with W2 such that

� . LHi ; LJi / is equal to .H2CC LHi ; J2/ inside ��1
L�2
.Œ1;1/�R=Z/ for some con-

stants C LHi 2R,

� the restriction LHi j��1
L�2
..�1;0/�R=Z/ is negative and uniformly tends to 0 in

the C 1 norm as i tends to infinity and LHi .x/!1 as i !1 for all x in
��1
L�2
..0;1/�R=Z/.

Let . yHi ; yJi /i2N be a family of pairs compatible with W1 such that

� . yHi ; yJi / is equal to .H3CC LHi ;
LJ2/ inside ��1

L�1
.Œ1;1/�R=Z/,

� . yHi ; yJi / equals . LHi ; LJi / inside ��1
L�2
..�1; 3/�R=Z/,

� the restriction yHi j��1
L�1
..�1;0/�R=Z/ is negative and uniformly tends to 0 in

the C 1 norm as i tends to infinity and yHi .x/!1 as i !1 for all x in
��1
L�1
..0;1/�R=Z/.

Then, by Lemma B.13,

(B-3) SH�
S1;ˇ L�1

.W L�2
; � L�2

; � L�2
/� lim

��!
i2N

HF�
S1;.�1;0�

. LHi ; LJi /:

and

(B-4) SH�
S1;ˇ L�1

.W L�1
; � L�1

; � L�1
/� lim

��!
i2N

HF�
S1;.�1;0�

. yHi ; yJi /:

Also, by property (S1HF3),

HF�
S1;.�1;0�;ˇ L�1

. yHi ; yJi /Š HF�
S1;.�1;0�;ˇ L�1

. LHi ; LJi /

for all i and the continuation maps between these groups commute with these isomor-
phisms. Hence,

SH�
S1;ˇ L�1

.W L�1
; � L�1

; � L�1
/Š SH�

S1;ˇ L�1
.W L�2

; � L�2
; � L�2

/

by equations (B-4) and (B-3).

Lemma B.15 Let A� and AC be free abelian groups. Define B� � A�˝ZŒu� and
BC � AC˝ZŒu�. Let

@� @0C @1W B�˚BC! B�˚BC
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be a Z–linear differential, where @0.A�/�A� and @1.A�/D 0. Now suppose that we
have a filtration B�˚BCD F0 � F1 � F2 � � � � for the chain complex .B�˚BC; @/
such that if V i

˙
� .B˙\Fi /=.B˙\FiC1/ then @1.uV i�/� V

i
C

and

(B-5) @1juV i� W uV
i
�! V iC

is an isomorphism for all i � 0. Then

H.B�˚BC; @/DH.A�; @0/:

If these groups are graded then the above isomorphism respects this grading.

Proof Define LB�@.uB�/ and define @ LB W uB�!
LB; @ LB.x/D@.x/. Since the map

(B-5) is an isomorphism for all i �0, we get that @1juB� W uB�! .B�˚BC/=.B�˚0/

is an isomorphism. Hence, B� ˚ BC Š A� ˚ uB� ˚ LB and the differential with
respect to this splitting is the matrix0@@0 0 0

0 0 0

0 @ LB 0

1A :
Computing the homology of this chain complex using the above matrix gives us our
result since @B 0 is an isomorphism.

Lemma B.16 Let .W L� ; � L� ; � L�/ be a mapping cylinder. Then

SH�ˇ L� .W L� ; � L� ; � L�/D HF�.�;C/:

Proof Let .H D ��L�h.s/; J / be a pair strictly compatible with .W L� ; � L� ; � L�/, where
H has slope 1:5, h00 � 0 and where h0j.�1;0/ < 1. Let ht W R � R=Z ! R for
t 2 Œ0; 1� be a standard perturbation of h.s/ viewed as a Hamiltonian on the symplectic
manifold .R�R=Z; ds^dt/. Then ht has exactly two 1–periodic orbits � and C .
Also, Ht � ��L�ht is a standard perturbation of H and the 1–periodic orbits of Ht
project to � or C . A compactness argument [6] tells us that .Ht ; J / satisfies the
maximum principle so long as Ht is sufficiently C1 close to H and hence we can
define HF�

ˇ L�
.�
Ht
1 / in the usual way. We can also define HF�

S1;ˇ L�
.H; J / using the

standard perturbation Ht by the same compactness argument.

By [27, Theorem 1.3], we have that HF�
ˇ L�
.�
Ht
1 ; J / is isomorphic to

HF�ˇ L� .�
Ht
1 ;C/˚HF�C1

ˇ L�
.�
Ht
1 ;C/:

Geometry & Topology, Volume 23 (2019)



Floer cohomology, multiplicity and the log canonical threshold 1049

In fact, in the proof of the above theorem it was shown that if A� (resp. AC ) is the free
abelian group generated by 1–periodic orbits of Ht which project to � (resp. C ),
then the differential

@Ht ;J W A�˚AC! A�˚AC

satisfies @Ht ;J .A˙/� A˙ and the homology of

@Ht ;J jA� W A�! A�

is equal to HF�.�Ht1 ; J /.

If L� is a sufficiently generic positive slope perturbation of � , then we can find a sequence
.˛i /i2N�0 such that there are exactly two 1–periodic orbits L� and LC of Ht of action
in the interval Œ˛i ; ˛iC1/ and all 1–periodic orbits are contained in one such interval.
Let B˙ � A˙ ˝ ZŒu�, where u has degree �2. Let B� ˚ BC D F0 � F1 � � � �

be a filtration, where Fi is the ZŒu�–submodule generated by orbits of action � ˛i .
Define V i

˙
� .B˙\Fi /=.B˙\FiC1/ for all i 2N�0 . By (S1HF1), the differential

@W B� ˚ BC ! B� ˚ BC computing HF�S1;ˇ L� .H; J / is equal to @0 C @1 , where
@0.A�/�A� , @1.A�/D 0, @0jA� D @Ht ;J , @1.uV i�/� V

i
C

and @1juV i� W uV
i
�! V i

C

is an isomorphism for all i 2N�0 .

Therefore, by Lemma B.15 we have that HF�S1;ˇ L� .H; J /DH.A�; @0/D HF�.�;C/.
Also, HF�

S1;ˇ L�
.H; J /D SH�

S1;ˇ L�
.W L� ; � L� ; � L�/ by Lemma B.11 and hence

SH�
S1;ˇ L�

.W L� ; � L� ; � L�/D HF�.�;C/:

Proof of (HF2) This follows from Lemmas B.2, B.3, B.14 and B.16.

Now the only issue is if we have two polynomials with embedded contactomorphic
links. Then we need to show that the associated contact pairs are isomorphic. In other
words, we need to show that the normal bundles coincide up to homotopy. This is
contained in the proof of the following lemma:

Lemma B.17 Let f; gW CnC1! C be polynomials with isolated singularities at 0
with embedded contactomorphic links, with n� 1. Then HF�.�m;C/DHF�. m;C/,
where � (resp.  ) is the monodromy map of the Milnor open book associated to f
(resp. g ) as in Example 3.11.

Proof Let .Lf �S�; �S� ; f̂ / and .Lg �S�; �S� ; ˆg/ be the contact pairs associated
to f and g , respectively, as in Example 3.8. Let ‰W S� ! S� be the contactomor-
phism sending Lf to Lg . We need to show that ‰ is in fact a contactomorphism
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of graded contact pairs by (HF2). Since H1.S�IQ/ D 0, we get that ‰ is a graded
contactomorphism by (A-2) in Definition A.7. Therefore, we just need to show that the
composition

NS�Lf
d‰jLf
����!NS�Lg

ˆg
�! Lg �C

‰�1�idC
�����! Lf �C

is homotopic to f̂ .

This is true since the trivialization f̂ (and similarly ˆg ) is uniquely determined by
the following topological property: Let ‰f W LNS�Lf ! S� be a regularization of Lf
as in Definition 5.2. Then the trivialization f̂ gives us a section s of LNS�Lf whose
image under the trivialization f̂ is a constant section. Then s is the unique section
up to homotopy with the property that the image of H1.Lf IQ/

‰f ıs
��!H1.S��Lf IQ/

is zero. This trivialization could be thought of as a generalization of the Seifert framing
of links.

Appendix C A Morse–Bott spectral sequence

In this section, we will show that property (HF3) holds. Here is a statement of this
property:

Let .M; �M ; �/ be a graded abstract contact open book, where dim.M/D 2n. Suppose
that the set of fixed points of a small positive slope perturbation L� of � is a disjoint
union of codimension 0 families of fixed points B1; : : : ; Bl and let �W f1; : : : ; lg !N

be a function where

� �.i/D �.j / if and only if the action of Bi equals the action of Bj , and

� �.i/ < �.j / if the action of Bi is less than the action of Bj .

Then there is a cohomological spectral sequence converging to HF�.�;C/ whose E1
page is equal to

(C-1) E
p;q
1 D

M
fi2f1;:::;lgW�.i/Dpg

Hn�.pCq/�CZ.�;Bj /.BpIZ/:

The spectral sequence above is an example of a Morse–Bott spectral sequence. Before
we prove this statement we need some preliminary definitions and lemmas.

Definition C.1 Let .M; �M ; �/ be a graded abstract contact open book. Let L�W M !
M be a small positive slope perturbation of � and .Jt /t2Œ0;1� a C1 generic family
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of d�M –compatible almost complex structures. Let a; b 2R be real numbers with the
property that no fixed point of L� has action equal to a or b .

We define HF�
Œa;b�

. L�; .Jt /t2Œ0;1�/ in the following way: Let L�0 be a C1 small
generic perturbation of L� inside a compact set such that all of the fixed points
of L�0 are nondegenerate. Then HF�

Œa;b�
. L�; .Jt /t2Œ0;1�/ is defined in the same way as

HF�. L�0; .Jt /t2Œ0;1�/ except that we only consider orbits inside the action window Œa; b�.
This group does not depend on the choice of perturbation L�0 so long as no fixed point
of L� has action equal to a or b .

We can define this group in the following equivalent way: Let CF�. L�0/ be the chain
complex for L�0. Then the subspace CF�Œa;1�. L�

0/ consisting of fixed points of action
� a is a subcomplex. We define

HF�Œa;b�. L�
0; .Jt /t2Œ0;1�/

to be the homology of the quotient complex CF�Œa;1�. L�
0/=CF�Œb;1�. L�

0/.

Suppose that B is the set of fixed points of L� of action c and suppose that there is
some a < c < b such that there are no fixed points of action in Œa; b�� c . We define

HF�. L�;B/� HF�Œa;b�. L�; .Jt /t2Œ0;1�/:

This does not depend on the choice of a; b or .Jt /t2Œ0;1� .

Lemma C.2 Let .M; �M ; �/ be a graded abstract contact open book. Let L�W M!M

be the composition of � with a C1 small Hamiltonian such that L� has small positive
slope. Let B �M be an isolated family of fixed points of L� .

Let .Jt /t2Œ0;1� be a smooth family of almost complex structures cylindrical near @M.
Then there is an neighborhood NB � M of B such that for any sufficiently small
C1 perturbation L�0, any Floer trajectory of . L�0; .Jt /t2Œ0;1�/ connecting nondegenerate
fixed points p; Lp 2NB of L�0 is contained inside NB .

Proof We choose a relatively compact open neighborhood NB of B such that any
fixed point of L� inside NB is actually contained inside B . Let LNB �M be an open
neighborhood of B whose closure is contained in NB .

Let .�k/k2N be a sequence of symplectomorphisms of M which C1 converges to L� .
Suppose (for a contradiction) that �k has a fixed point pk 2NB � LNB for all k . Then,
after passing to a subsequence, we have that pi converges to some p 2 NB � LNB .
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Since p is a fixed point of � , we get that p 2 B, which is impossible. Therefore, �k
has no fixed points inside NB � LNB for all sufficiently large k .

Now suppose that pk and Lpk are fixed points of �k and suppose that we have a
sequence of Floer trajectories

uk W R� Œ0; 1�!M

of . L�0; .Jt /t2Œ0;1�/ joining pk and Lpk . Define W �R� Œ0; 1��M with a symplectic
form !W � ds^dtCd�M , where s and t are the standard coordinates on R� Œ0; 1�.
Let i be the standard complex structure on R� Œ0; 1��C , where .s; t/ is identified
with sC i t . Define JW j.s;t;x/ � i j.s;t/˚Jt j.s;t/ . Define

uWk W R� Œ0; 1�!W; uWk .s; t/� .s; t; uk.s; t//;

for all k 2N . This is a sequence of JW –holomorphic maps.

Now suppose (for a contradiction) that the image of uk is not contained inside NB for
all k . Then, after passing to a subsequence, there is a sequence of points .sk; tk/ 2
R� Œ0; 1� such that uk.sk; tk/ 2 NB � LNB and uk.sk; tk/ converges to some point
q 2NB � LNB . After reparametrizing the domain by translations in the s direction, we
can assume that sk D 0 for all k . Also, after passing to a subsequence we can assume
that tk! Lt 2 Œ0; 1� for some Lt . Define wk � uWk jŒ�1;1��Œ0;1� . Then, by the main result
in [16], we get that wk C 0 converges to a continuous map vW Œ�1; 1�� Œ0; 1�! W

which is smooth and JW –holomorphic on a dense open subset of its domain.

Let �M W W !M be the natural projection map. Since pk and Lpk converge to points
in B , their difference in action converges to zero, which implies thatZ

Œ�1;1��R=Z
v�d�M D 0:

Hence, �M ı v is constant. Since L�
�
�M .v.0; 1//

�
D �M

�
v..0; 0//

�
and �M ı v is

constant, we get that the image of �M ı v is a fixed point of L� inside NB � LNB . But
this is impossible since v.0; t/ 2NB � LNB .

As a result of the above lemma, we have the following definition:

Definition C.3 Let B �M be an isolated family of fixed points of some positive
slope perturbation L� of � and let NB be a neighborhood of B as in Lemma C.2.
Let L�0 be a C1 small perturbation such that all the fixed points of L�0 inside NB are
nondegenerate. Since all Floer trajectories of . L�0; .Jt /t2Œ0;1�/ are contained inside NB ,
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we can define the Floer cohomology group HF�. L�;B/ in the usual way, where we only
consider fixed points inside NB . Such a group is called the local Floer cohomology
of B. Again it does not depend on the choice of perturbation L�0 or .Jt /t2Œ0;1� although
we will not need this fact here.

Note that if B is the only set of fixed points of L� of action in the interval Œa; b�, then
the above definition coincides with the definition of HF�. L�;B/ from Definition C.1.
More generally, if B is a union of isolated families of fixed points B1; : : : ; Bl all of
the same action then HF�. L�;B/D

Ll
iD1 HF�. L�;Bi /.

Lemma C.4 Let .M; �M ; �/ be a graded abstract contact open book. Let L�W M!M

be a small positive slope perturbation of � . Suppose that the set of all the fixed points
of L� of action in Œa; b� is equal to BD

Fl
iD1Bi , where B1; : : : ; Bl are codimension 0

families of fixed points, all of the same action. Then

(C-2) HF�. L�;B/�
lM
iD1

Hn���CZ.�;Bi /.Bi IZ/:

Proof Let NBi � M be a small neighborhood of Bi with the property that L� is
the time 1 flow of a Hamiltonian HBi W NBi ! .�1; 0� satisfying Bi DH�1Bi .0/ for
each i . Let �HBi1 W NBi !NBi be the time 1 flow of HB for each i . After possibly
shrinking each neighborhood NBi , we can assume that NB1 ; : : : ; NBl are all disjoint.
Let .Jt /t2Œ0;1� be a generic smooth family of almost complex structures cylindrical
near @M. By Lemma C.2, any sufficiently small C1 perturbation L�0 of L� has the
property that any Floer trajectory connecting fixed points inside

Sl
iD1NBi is actually

contained inside NBj for some j . Therefore,

HF�.B/D
lM
iD1

HF�.�
HBi
1 ; Bi /:

Hence, by [35, Theorem 7.1] combined with (CZ4), we have that (C-2) holds.

Proof of (HF3) Let L�0 be a C1 small perturbation of L� and let .Jt /t2Œ0;1� be a C1

generic smooth family of almost complex structures cylindrical near @M. Let ˛i be the
action of Bi for each i 2 f1; : : : ; lg. For each p 2N , choose p̌ 2R so that ˛i ¤ p̌

for all i 2 f1; : : : ; lg and ˛i > p̌ if and only if �.i/� p . Let Fp be the subgroup of
the chain complex CF�. L�0/ generated by fixed points of action greater than p̌ . Then
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.Fp/i2p is a filtration on this chain complex. By Lemma C.4,

H�.Fp=Fp�1/D HF�Œˇp�1;ˇp�.
L�;Bp/D

M
fi2f1;:::;lgW�.i/Dpg

Hn���CZ.�;Bj /.BpIZ/

for all p D 1; : : : ; l and H�.Fp=Fp�1/ D 0 if p 2 N � f1; : : : ; lg. Therefore, the
spectral sequence associated to the filtration .Fp/p2N is (C-1).
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