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Equivariant concentration in topological groups

FRIEDRICH MARTIN SCHNEIDER

We prove that, if G is a second-countable topological group with a compatible
right-invariant metric d and .�n/n2N is a sequence of compactly supported Borel
probability measures on G converging to invariance with respect to the mass trans-
portation distance over d and such that .spt�n; d�spt�n

; �n�spt�n
/n2N concentrates

to a fully supported, compact mm–space .X; dX ; �X / , then X is homeomorphic
to a G –invariant subspace of the Samuel compactification of G . In particular, this
confirms a conjecture by Pestov and generalizes a well-known result by Gromov and
Milman on the extreme amenability of topological groups. Furthermore, we exhibit a
connection between the average orbit diameter of a metrizable flow of an arbitrary
amenable topological group and the limit of Gromov’s observable diameters along
any net of Borel probability measures UEB–converging to invariance over the group.

54H11, 54H20, 22A10, 53C23

1 Introduction

Over the past few decades, the study of the measure concentration phenomenon has
become a central theme in topological dynamics, in particular in the context of infinite-
dimensional transformation groups. In fact, measure concentration ranges among the
two most prominent pathways to extreme amenability, next to Ramsey-type phenomena;
see Kechris, Pestov and Todorcevic [14] and Pestov [19; 20]. The origin of this
development is marked by the groundbreaking work of Gromov and Milman [13],
who showed that every Lévy group, ie topological group containing a Lévy family
of compact subgroups with dense union, is extremely amenable, and who, moreover,
exhibited a number of striking examples of such groups, eg the unitary group of the
infinite-dimensional separable Hilbert space equipped with the strong operator topology.
Their ideas were followed by numerous other examples; see eg Carderi and Thom [5],
Giordano and Pestov [9] and Pestov [22].

In his seminal work on metric measure geometry [12, Chapter 31=2 ], Gromov offered
a far-reaching extension of the measure concentration phenomenon: he introduced
the observable distance, a metric on the set of isomorphism classes of mm–spaces,
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926 Friedrich Martin Schneider

ie separable complete metric spaces equipped with a Borel probability measure. The
topology generated by this metric, the concentration topology, captures the (classical)
measure concentration phenomenon in a very natural manner: a sequence of mm–
spaces constitutes a Lévy family if and only if it concentrates (converges in Gromov’s
observable distance) to a singleton space. But, of course, the concentration topology
allows for nontrivial limit objects, and recent years’ growing interest in Polish groups
with metrizable universal minimal flow (see for instance Ben Yaacov, Melleray and
Tsankov [3], Kechris, Pestov and Todorcevic [14] and Melleray, Nguyen Van Thé and
Tsankov [16]) suggests studying manifestations of concentration to nontrivial spaces for
topological groups. We attempt to advance this idea, which originated with Giordano
and Pestov [9; 21], with our main result.

Theorem 1.1 Let G be a second-countable topological group equipped with a right-
invariant compatible metric d . Suppose that there exists a sequence .�n/n2N of Borel
probability measures on G with compact supports Kn WD spt�n .n 2N/ such that

(A) .�n/n2N converges to invariance in the mass transportation distance over d ,

(B) .Kn; d�Kn
; �n�Kn

/n2N concentrates to a fully supported, compact mm–space
.X; dX ; �X /.

Then there exists a topological embedding  W X ! S.G/ such that the push-forward
measure  �.�X / is G–invariant. In particular,  .X / is a G–invariant subspace
of S.G/.

Due to recent work of the author and Thom [27, Theorem 3.2], every amenable
second-countable topological group in fact admits a sequence of finitely supported
probability measures converging to invariance with respect to the mass transportation
distance over any right-invariant compatible metric. Furthermore, any Borel probability
measure on a second-countable topological space assigns value 1 to its support, and
thus the restriction of the measure to the Borel � –algebra of its support will indeed
be a probability measure. In particular, this applies to the measures considered in
condition (B) of Theorem 1.1.

Since any minimal invariant closed subspace of the Samuel compactification S.G/ of a
topological group G is a — and, up to isomorphism, the — universal minimal flow of G

(see Auslander [2, Chapter 8], and also Ellis [6], Uspenskij [30] and de Vries [33]),
the theorem above may be used to compute universal minimal flows of topological
groups, or at least prove their metrizability. As universal minimal flows of noncompact
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locally compact groups are always nonmetrizable [14, Theorem A2.2], no such group
can possibly satisfy the hypothesis of Theorem 1.1.

In particular, Theorem 1.1 confirms a 2006 conjecture by Pestov [21, Conjecture 7.4.26]:
if G is a metrizable topological group, equipped with a compatible right-invariant
metric d , and .Kn/n2N is an increasing sequence of compact subgroups such that

� the union
S

n2N Kn is everywhere dense in G , and

� .Kn; d�Kn
; �n/n2N concentrates to a fully supported, compact mm–space

.X; dX ; �X /, where �n denotes the normalized Haar measure on Kn ,

then the topological space X supports the structure of a G –flow, with respect to which
it admits a morphism to every G –flow. Indeed, it is easily seen that, by density of the
increasing union of compact subgroups, the corresponding Haar measures converge to
invariance in the mass transportation distance over d , whence Theorem 1.1 asserts that
X is homeomorphic to a G –invariant subspace of S.G/, which in turn gives rise to a
G –flow on X with the desired property; cf [21, Corollary 3.1.12].

For a discussion of examples of the above kind of nontrivial concentration phenomenon,
we refer to [9, Section 7; 21, Chapter 7.4]. In this connection, there is another intriguing
question by Pestov [21, Problem 7.4.27]: given a left-invariant metric d on the full
symmetric group Sym.N/ compatible with the topology of pointwise convergence,
do the subgroups .Sym.n//n2N , equipped with their normalized counting measures
and the restrictions of d , concentrate to the closed subspace LO.N/ � 2N�N of
linear orders on N , endowed with the unique Sym.N/–invariant Borel probability
measure (see Glasner and Weiss [11]) and a suitable compatible metric? This question
has been answered in the negative recently in Schneider [26]: in fact, the considered
sequence of finite mm–spaces does not even admit a subsequence that is Cauchy with
respect to Gromov’s observable distance.

In addition to Theorem 1.1, we will unveil another link between concentration phenom-
ena and topological dynamics: roughly speaking, the average orbit diameter of an arbi-
trary flow of an amenable topological group, equipped with a continuous pseudometric,
is bounded from above by the limit inferior of Gromov’s observable diameters [12]
(see Definition 5.1) computed for any net of Borel probability measures on the acting
group UEB–converging to invariance, with respect to the induced pseudometric. More
precisely, if G is a topological group and X is a G–flow, ie a nonempty compact
Hausdorff space together with a continuous action of G on it, then for any continuous
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928 Friedrich Martin Schneider

pseudometric d on X and any point x 2 X there is a right-uniformly continuous
pseudometric dG;x on G defined by

dG;x.g; h/ WD d.gx; hx/ for g; h 2G;

which is bounded from above by the bounded continuous right-invariant pseudometric

dG;X WD sup
y2X

dG;y W G �G!R:

Theorem 1.2 Let G be a topological group and let .�i/i2I be a net of Borel prob-
ability measures on G UEB–converging to invariance over G . If d is a continuous
pseudometric on a G –flow X and � is a G –invariant regular Borel probability measure
on X , thenZ

sup
g2E

d.x;gx/ d�.x/ � sup
˛>0

lim inf
i!I

sup
x2X

ObsDiam.G; dG;x; �i I �˛/

for every finite subset E �G .

Let us add some remarks about Theorem 1.2. If G is a topological group acting
continuously on a compact Hausdorff space X and d is a continuous pseudometric
on X , then

sup
x2X

ObsDiam.G; dG;x; �I �˛/� ObsDiam.G; dG;X ; �I �˛/

for every Borel probability measure � on G and any ˛ > 0 (see Remark 5.2), which
means that Theorem 1.2 immediately provides a corresponding estimate in terms
of dG;X . The same is true for Corollary 1.3 below. Of course, if G is separable, then
Theorem 1.2 asserts thatZ

sup
g2G

d.x;gx/ d�.x/ � sup
˛>0

lim inf
i!I

sup
x2X

ObsDiam.G; dG;x; �i I �˛/

for any net .�i/i2I of Borel probability measures on G UEB–converging to invariance
over G . Moreover, Theorem 1.2 readily implies [24, Theorem 3.9], which is our
Corollary 5.7, an extension of the result for Polish groups by Pestov [23, Theorem 5.7],
thus entailing earlier work of Glasner, Tsirelson and Weiss [10, Theorem 1.1], who
showed that every spatial action of a Lévy group must be trivial. We refer to the
end of Section 5 for a brief discussion on this. Furthermore, let us highlight another
consequence of Theorem 1.2.
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Corollary 1.3 Let G be a topological group and let .�i/i2I be a net of Borel prob-
ability measures on G UEB–converging to invariance over G . If d is a continuous
pseudometric on a G –flow X , then there exists an x0 2X such that

sup
g2G

d.x0;gx0/ � sup
˛>0

lim inf
i!I

sup
x2X

ObsDiam.G; dG;x; �i I �˛/:

The first estimates for orbit diameters, concerning Hölder actions on compact metric
spaces, in terms of the isoperimetric behavior of the acting group and covering properties
of the phase space, belong to Milman [17]. For generalizations of Milman’s results
as well as corresponding estimates for actions of Lévy groups on a certain class of
noncompact metric spaces, we refer to Funano’s work [7].

Let us briefly outline the structure of the present article. In Section 2 we recollect some
elementary facts and concepts concerning metrics and measures, leading up to the
definition of Gromov’s observable distance (Definition 2.1). In Section 3 we provide
the background on UEB–convergence to invariance in topological groups necessary for
the proof of Theorem 1.1, which is given in Section 4. Finally, Section 5 is devoted to
proving Theorem 1.2 and Corollary 1.3, as well as discussing some consequences.

2 Metrics, measures, and concentration

We start off by clarifying some notation. Given a set X , we denote by `1.X / the
unital Banach algebra of all bounded real-valued functions on X equipped with the
supremum norm

kf k1 WD supfjf .x/j j x 2X g for f 2 `1.X /:

Let X be a topological space. If the topology of X is generated by a metric d , then
we call d a compatible metric on X . We will denote by C.X / the set of all continuous
real-valued functions on X and we let CB.X / WD C.X /\ `1.X /. Moreover, let us
denote by B.X / the Borel � –algebra of X and by P.X / the set of all Borel probability
measures on X . The weak topology on P.X / is defined to be the initial topology on
P.X / generated by the maps of the form P.X /!R, � 7!

R
f d�, where f 2CB.X /.

If X is metrizable (or just perfectly normal), then the weak topology turns P.X / into
a Tychonoff space. The support of a measure � 2 P.X / is defined as

spt� WD fx 2X j for all U �X open; x 2 U D) �.U / > 0g;
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which is easily seen to form a closed subset of X . Given � 2 P.X / and a Borel subset
B�X with �.B/D 1, we let ��B WD�jB.B/ 2P.B/. The push-forward of a measure
� 2 P.X / along a Borel map f W X ! Y into another topological space Y is defined
to be

f�.�/W B.Y /! Œ0; 1�; B 7! �.f �1.B//:

Furthermore, let us note that each � 2 P.X / gives rise to a pseudometric me� on the
set of all Borel measurable real-valued functions on X , defined by

me�.f;g/ WD inf
˚
" > 0

ˇ̌
�
�
fx 2X j jf .x/�g.x/j> "g

�
� "

	
for any two Borel functions f;gW X !R.

Let .X; d/ be a pseudometric space. Given a subset A�X , abbreviate d�A WD d jA�A

and define diam.A; d/ WD supfd.x;y/ j x;y 2Ag. For x 2A�X and " > 0, we let

Bd .x; "/ WDfy2X jd.x;y/<"g; Bd .A; "/ WDfy2X jd.a;y/<" for some a2Ag:

Then the Hausdorff distance between any two subsets A;B �X is given by

dH.A;B/ WD inff" > 0 j B � Bd .A; "/; A� Bd .B; "/g:

For `; r � 0, we denote by Lip`.X; d/ the set of all `–Lipschitz real-valued functions
on .X; d/, and we define

Lip1` .X; d/ WDLip`.X; d/\`
1.X /; Lipr

`.X; d/ WD ff 2Lip`.X; d/ j kf k1� rg:

Moreover, we let

Lip.X; d/ WD
[
`�0

Lip`.X; d/ and Lip1.X; d/ WD Lip.X; d/\ `1.X /:

The mass transportation distance1dMT over d is the pseudometric on P.X / defined by

dMT.�; �/ WD sup
f 2Lip1

1
.X ;d/

ˇ̌̌̌Z
f d��

Z
f d�

ˇ̌̌̌
for �; � 2 P.X /:

Furthermore, the Prokhorov distance dP over d is the pseudometric on P.X / given by

dP.�; �/ WD inff" > 0 j �.B/� �.Bd .B; "//C " for all B 2 B.X /g

D inff" > 0 j �.B/� �.Bd .B; "//C " for all B 2 B.X /g

1Different names appearing in the literature include Monge–Kontorovich distance, bounded Lipschitz
distance, Wasserstein distance, and Fortet–Mourier distance; see [25; 8; 32].
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for �; � 2 P.X /. In the case that .X; d/ is a separable metric space, both dP and dMT

are metrics compatible with the weak topology on P.X /. For a more comprehensive
account on these and other probability metrics, the reader is referred to [25; 8; 32].

Finally in this section, we will recall the basics concerning Gromov’s concentration
topology [12, Chapter 31=2 .H], following the presentation of Shioya [28, Chapter 5].
This type of convergence refers to mm–spaces. An mm–space is a triple .X; d; �/
where .X; d/ is a separable complete metric space and � is a Borel probability measure
on X . Moreover, an mm–space .X; d; �/ is called compact if .X; d/ is compact, and
fully supported if spt�DX . Henceforth, we will denote by � the Lebesgue measure
on Œ0; 1/. A parametrization of an mm–space .X; d; �/ is a Borel measurable map
'W Œ0; 1/! X such that '�.�/ D �. It is well known that any mm–space admits a
parametrization; see eg [28, Lemma 4.2].

Definition 2.1 The observable distance between two mm–spaces X and Y is defined
to be

dconc.X;Y / WD inf
˚
.me�/H.Lip1.X / ı'; Lip1.Y / ı / j ' a parametrization of X;

 a parametrization of Y
	
:

A sequence of mm–spaces .Xn/n2N is said to concentrate to an mm–space X if

lim
n!1

dconc.Xn;X /D 0:

It is known that the observable distance induces a metric on the set of isomorphism
classes of mm–spaces; see [28, Theorem 5.16]. In particular, two mm–spaces X

and Y are isomorphic, ie there exists an mm–space isomorphism between X and Y ,
if and only if dconc.X;Y /D 0. By an isomorphism between mm–spaces .X; dX ; �X /

and .Y; dY ; �Y / we mean an isometry

f W .spt�X ; dX�spt�X
/! .spt�Y ; dY�spt�Y

/

such that f�.�X�spt�X
/D�Y�spt�Y

. For our purposes, ie the proof of our Theorem 1.1,
the following characterization of concentration will be useful:

Theorem 2.2 [28, Corollary 5.35] A sequence of mm–spaces .Xn; dn; �n/n2N con-
centrates to an mm–space .X; d; �/ if and only if there is a sequence of Borel maps
pnW Xn!X , n 2N , such that

(1) .pn/�.�n/! � in the weak topology as n!1,

(2) .me�n
/H
�
Lip1.X; d/ ıpn;Lip1.Xn; dn/

�
! 0 as n!1.
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3 Topological groups and convergence to invariance

In this section we briefly recollect some results from [27] about UEB–convergence
to invariance over topological groups. Throughout the present note, by a topological
group we will always mean a Hausdorff topological group.

Let X be a uniform space. Consider the commutative unital real Banach algebra
UCB.X / of all bounded uniformly continuous real-valued functions on X endowed
with the supremum norm. The set M.X / of all means on UCB.X /, ie (necessarily
continuous) positive unital linear maps from UCB.X / to R, equipped with the weak-�
topology, ie the initial topology generated by the maps of the form M.X / ! R,
� 7!�.f /, where f 2UCB.X /, constitutes a compact Hausdorff space. The set S.X /
of all (necessarily positive and linear) unital ring homomorphisms from UCB.X / into R

forms a closed subspace of M.X /, which is called the Samuel compactification of X .
The map �X W X ! S.X / given by

�X .x/.f / WD f .x/ for x 2X; f 2 UCB.X /

is uniformly continuous and has dense range in S.X /, and the mapping

C.S.X //! UCB.X /; f 7! f ı �X ;

is an isometric isomorphism of unital Banach algebras. Furthermore, a subset H �

UCB.X / is called UEB (short for uniformly equicontinuous bounded) if H is norm-
bounded and uniformly equicontinuous, ie for every " > 0 there exists an entourage U

of X such that

jf .x/�f .y/j � " for all f 2H; .x;y/ 2 U:

The collection UEB.X / of all UEB subsets of UCB.X / constitutes a convex vector
bornology on the vector space UCB.X /. It is easily seen that a subset H � UCB.X /
belongs to UEB.X / if and only if H is norm-bounded and there is a uniformly
continuous pseudometric d on X such that H � Lip1.X; d/. The UEB topology on
the continuous dual UCB.X /� is defined as the topology of uniform convergence on
UEB subsets of UCB.X /. This is a locally convex linear topology on the vector space
UCB.X /� containing the weak-� topology, ie the initial topology generated by the
maps UCB.X /�!R, � 7!�.f /, where f 2UCB.X /. For more details on the UEB
topology, the reader is referred to [18].

Geometry & Topology, Volume 23 (2019)



Equivariant concentration in topological groups 933

Now let G be a topological group. Denote by U.G/ the neighborhood filter of the
neutral element in G and endow G with its right uniformity defined by the basic
entourages

f.x;y/ 2G �G j yx�1
2 U g for U 2 U.G/:

Referring to the right uniformity, we denote by RUCB.G/ the set of all bounded
uniformly continuous real-valued functions on G and by RUEB.G/ the set of all
UEB subsets of RUCB.G/. It is easily seen that a subset H � RUCB.G/ belongs
to RUEB.G/ if and only if H is norm-bounded and there is a continuous right-
invariant pseudometric d on G with H � Lip1.G; d/. Furthermore, for g 2 G , we
define �gW G ! G by x 7! gx and �gW G ! G by x 7! xg . We note that G acts
continuously on M.G/ by

.g�/.f / WD �.f ı�g/ for g 2G; � 2M.G/; f 2 RUCB.G/;

and that S.G/ constitutes a G–invariant subspace of M.G/. Let us recall that G is
amenable (resp. extremely amenable) if M.G/ (resp. S.G/) admits a G–fixed point.
It is well known that G is amenable (resp. extremely amenable) if and only if every
G –flow admits a G –invariant regular Borel probability measure (resp. a G –fixed point).
For a more comprehensive account on (extreme) amenability of general topological
groups, we refer to [21].

We will need a characterization of amenability in terms of almost invariant finitely
supported probability measures from [27].

Definition 3.1 Let G be a topological group. A net .�i/i2I of Borel probability
measures on G is said to UEB–converge to invariance .over G/ if for all g 2G and
all H 2 RUEB.G/,

sup
f 2H

ˇ̌̌̌Z
f ı�g d�i �

Z
f d�i

ˇ̌̌̌
! 0 as i ! I:

Theorem 3.2 [27, Theorem 3.2] A topological group is amenable if and only if it
admits a net of (finitely supported regular) Borel probability measures UEB–converging
to invariance.

We note some elementary properties of UEB–convergence to invariance.
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Lemma 3.3 Let G be a topological group. Let .�i/i2I be a net of Borel probability
measures UEB–converging to invariance over G . The following hold:

(1) For any .gi/i2I 2 GI, the net ..�gi
/�.�i//i2I UEB–converges to invariance

over G .

(2) If 'W G!H is a continuous homomorphism with dense range in a topological
group H , then .'�.�i//i2I UEB–converges to invariance over H .

(3) For each i 2 I , let Ci be a Borel subset of G such that �i.Ci/ D 1. ThenS
i2I CiC

�1
i is dense in G .

Proof (1) Let .gi/i2I 2GI . Consider any F 2RUEB.G/. Then it is straightforward
to check that ff ı �gj

j f 2 F; j 2 Ig 2 RUEB.G/. Hence, for every g 2G ,

sup
.f;j/2F�I

ˇ̌̌̌Z
f ı �gj

d�i �

Z
f ı �gj

ı�g d�i

ˇ̌̌̌
! 0 as i ! I;

and, in particular,

sup
f 2F

ˇ̌̌̌Z
f d.�gi

/�.�i/�

Z
f ı�g d.�gi

/�.�i/

ˇ̌̌̌
D sup
f 2F

ˇ̌̌̌Z
f ı �gi

d�i �

Z
f ı�g ı �gi

d�i

ˇ̌̌̌
D sup
f 2F

ˇ̌̌̌Z
f ı �gi

d�i �

Z
f ı �gi

ı�g d�i

ˇ̌̌̌
! 0 as i ! I:

(2) Let h 2H and F 2 RUEB.H /. We wish to show that

sup
f 2F

ˇ̌̌̌Z
f d'�.�i/�

Z
f ı�h d'�.�i/

ˇ̌̌̌
! 0 as i ! I:

Let " > 0. Since F belongs to RUEB.H /, there exists U 2 U.H / such that

kf � .f ı�u/k1 �
"
2

for all f 2 F and u 2 U . Due to '.G/ being dense in H , there exists g 2 G with
'.g/ 2 U h. As 'W G!H is uniformly continuous with regard to the respective right
uniformities, it follows that F ı' 2 RUEB.G/. Hence, we find i0 2 I such that

sup
f 2F

ˇ̌̌̌Z
f ı' d�i �

Z
f ı' ı�g d�i

ˇ̌̌̌
�
"
2

for all i 2 I; i � i0:
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For every i 2 I with i � i0 , we conclude thatˇ̌̌̌Z
f d'�.�i/�

Z
f ı�h d'�.�i/

ˇ̌̌̌
D

ˇ̌̌̌Z
f ı' d�i �

Z
f ı�h d'�.�i/

ˇ̌̌̌
�

ˇ̌̌̌Z
f ı' d�i �

Z
f ı' ı�g d�i

ˇ̌̌̌
C

ˇ̌̌̌Z
f ı�'.g/ d'�.�i/�

Z
f ı�h d'�.�i/

ˇ̌̌̌
�
"
2
Ck.f ı�'.g//� .f ı�h/k1

D
"
2
Ckf � .f ı�'.g/h�1/k1

� "

for all f 2 F ; ie supf 2H

ˇ̌R
f d'�.�i/�

R
f ı�h d'�.�i/

ˇ̌
� ", as desired.

(3) Let C WD
S

i2I CiC
�1
i . Consider any g 2 G and U 2 U.G/. We are going

to show that gU \C ¤ ∅. By Urysohn’s lemma for uniform spaces, there exists a
right-uniformly continuous function f W G! Œ0; 1� such that f .e/D 1 and f .x/D 0

whenever x 2G nU . For every subset S �G , define fS W G! Œ0; 1� by

fS .x/ WD sup
s2S

f.xs�1/ for x 2G:

It is straightforward to check that the set ffS j S �Gg belongs to RUEB.G/. Since
.�i/i2I UEB–converges to invariance over G , there exists i0 2 I such that

sup
S�G

ˇ̌̌̌Z
fS d�i �

Z
fS ı�g�1 d�i

ˇ̌̌̌
�

1
2

for all i 2 I with i � i0:

Let i 2 I . We observe that
R
fCi

d�i D 1, as �i.Ci/D 1 and Ci � f
�1

Ci
.1/. Hence,

if i � i0 , then
R
fCi
ı�g�1 d�i �

1
2

and so .fCi
ı�g�1/jCi

¤ 0, thus gUCi\Ci ¤∅.
This entails that gU \C ¤∅. Consequently, C is dense in G .

Let us note the following consequence of Lemma 3.3(3):

Corollary 3.4 If a metrizable topological group G admits a sequence .�n/n2N of
Borel probability measures UEB–converging to invariance such that, for each n 2N ,
there is a compact subset Cn �G with �n.Cn/D 1, then G is separable.

For metrizable topological groups, one may reformulate UEB–convergence to invariance
in terms of mass transportation distances over compatible right-invariant metrics; see
Corollary 3.6. This will be a consequence of the following fact about metrizable
uniformities:
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Lemma 3.5 Let .X; d/ be a metric space and H 2 UEB.X; d/. For every " > 0,
there exists an `� 1 such that for all f 2H , there exists an f 0 2 Lip``.X; d/ such that

kf �f 0k1 � ":

Proof Upon translating H by a suitable constant function, we may and will assume
that f � 0 for all f 2 H . Put s WD supf 2H kf k1 . Let " 2 .0; 1�. Since H is
uniformly equicontinuous, we find ı > 0 such that for all f 2H and all x;y 2X ,

d.x;y/ < ı D) jf .x/�f .y/j � ":

Let k WD .sC "/=ı and ` WDmaxfk; sC 1g. For each f 2H , define fk W X !R by

fk.x/ WD inf
y2X

f .y/C kd.x;y/ for x 2X:

Note that fk W .X; d/! R is k –Lipschitz for every f 2 H . Let us now prove that
kf �fkk1� " for all f 2H . For this purpose, let f 2H . Since fk �f , it suffices to
show that fk � f �". To this end, let x 2X . For each y 2X , either f .y/� f .x/�"
and therefore

f .y/C kd.x;y/� f .y/� f .x/� ";

or f .y/ < f .x/� " and thus d.x;y/� ı , which entails that

f .y/C kd.x;y/� kı D sC "� f .x/C ":

In any case, f .y/Ckd.x;y/�f .x/�" for all y2X . Consequently, fk.x/�f .x/�",
as desired. In turn, kfkk1 � kf k1C "� sC 1 and hence, fk 2 Lip``.X; d/.

Corollary 3.6 Let G be a topological group and let d be a compatible right-invariant
metric on G . A net .�i/i2I of Borel probability measures UEB–converges to invari-
ance over G if and only if .�i/i2I converges to invariance in the mass transportation
distance over d , ie for all g 2G ,

dMT..�g/�.�i/; �i/! 0 as i ! I:

Proof Since d is continuous and right-invariant, Lip1
1.G; d/ belongs to RUEB.G/,

whence the former implies the latter. To prove the converse, let .�i/i2I be a net of
Borel probability measures converging to invariance in the mass transportation distance
over d . Given that d is right-invariant and generates the topology of G , it is easily
seen that the right uniformity of G coincides with the uniformity induced by d . Let
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H 2 RUEB.G/DUEB.X; d/ and g 2G . Consider any " > 0. Thanks to Lemma 3.5,
there exists `� 1 with

H � Bk � k1
�
Lip``.G; d/;

"
3

�
:

By assumption, we find i0 2 I such that for all i 2 I with i � i0 ,

sup
f 2Lip1

1
.G;d/

ˇ̌̌̌Z
f ı�g d�i �

Z
f d�i

ˇ̌̌̌
�

"

3`
:

Let i 2 I with i � i0 . For each f 2H , there exists f 0 2 Lip``.G; d/D ` �Lip1
1.G; d/

with kf �f 0k1 � "
3

, and thusˇ̌̌̌Z
f ı�g d�i �

Z
f d�i

ˇ̌̌̌
� k.f ı�g/� .f

0
ı�g/k1C

ˇ̌̌̌Z
f 0 ı�g d�i �

Z
f 0 d�i

ˇ̌̌̌
Ckf 0�f k1

�
"

3
C `

"

3`
C
"

3
D ";

ie supf 2H

ˇ̌R
f ı �g d�i �

R
f d�i

ˇ̌
� ". So .�i/i2I UEB–converges to invariance

over G .

4 Equivariant concentration

Our proof of Theorem 1.1 will make a distinction between the precompact and the
nonprecompact case. Whereas the former may be settled by a very simple and straight-
forward argument, the treatment of the latter is somewhat more complicated. Recall
that a topological group G is said to be precompact if, for every U 2U.G/, there exists
a finite subset F �G such that G D UF . It is well known that a topological group is
precompact if and only if it embeds into a compact group; see [1, Corollary 3.7.17].
The following characterization of precompact groups was obtained independently by
Uspenskij (unpublished, cf a footnote in [31]) and Solecki [29]. A short proof may be
found in [4, Proposition 4.3].

Lemma 4.1 Let G be a topological group. If for every U 2 U.G/ there exists a finite
subset F �G with G D F UF , then G is precompact.

We will need the above in the form of Corollary 4.3.
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Corollary 4.2 Let G be a topological group. If for every U 2 U.G/ there exists a
compact subset K �G with G DKUK , then G is precompact.

Proof We apply Lemma 4.1. Let U 2 U.G/. Pick V 2 U.G/ with V 3 � U . By
assumption, we find a compact subset K � G such that G D KVK . Since K is
compact, there is a finite set F � G with K � VF and K � FV . It follows that
G DKVK � FV 3F � F UF .

Corollary 4.3 Let G be a topological group. If G is not precompact, then there is a
U 2 U.G/ such that, for every sequence .Kn/n2N of compact subsets of G , there is a
sequence .gn/n2N 2GN with

UKmgm\UKngn D∅ for all m; n 2N with m¤ n:

Proof Since G is not precompact, Corollary 4.2 above asserts the existence of some
V 2 U.G/ such that G ¤ KVK for any compact set K � G . Let U 2 U.G/ with
U�1U � V . We claim that U has the desired property. To see this, let .Kn/n2N be a
sequence of compact subsets of G . We select .gn/n2N 2GN recursively as follows:
we let g0 WD e , and if g0; : : : ;gn�1 2G are chosen appropriately, then we pick

gn 2G n .K�1
n V .K0g0[ � � � [Kn�1gn�1//

and note that Kngn\V .K0g0[ � � � [Kn�1gn�1/D∅, whence

UKngn\U.K0g0[ � � � [Kn�1gn�1/D∅:

Evidently, the sequence .gn/n2N is as desired.

Before moving on to the proof of Theorem 1.1, let us note two basic preliminary
observations (Lemmas 4.5 and 4.6). The first one, concerning the metrizability of
topological groups, will be deduced from the following more general fact.

Lemma 4.4 Let X be a dense subset of a Hausdorff uniform space Y . Suppose that
X admits a metric d generating the subspace uniformity inherited from Y . Then there
exists a unique continuous map DW Y �Y !R with DjX�X D d , and furthermore D

is a metric generating the uniformity of Y .

Proof Uniqueness of the desired map is an immediate consequence of X being dense
in Y . Let us prove the existence. Since X �X is a dense subspace of Y �Y and
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the metric d W X �X ! R is uniformly continuous, there exists a unique uniformly
continuous map DW Y � Y ! R with DjX�X D d . Due to D being continuous,
S WD f.x;y/ 2 Y 2 j D.x;y/ � 0; D.x;y/ D D.y;x/g is closed in Y 2 and T WD

f.x;y; z/ 2 Y 3 jD.x; z/ �D.x;y/CD.y; z/g is closed in Y 3 . Since DjX�X D d

is a metric, X 2 � S and X 3 � T , and therefore Y 2 D S and Y 3 D T by density
of X in Y . Hence, D is a uniformly continuous pseudometric on Y . It remains to
prove that the uniformity of Y is contained in the one generated by D , which will
then imply that D is a metric. To this end, let U be an arbitrary entourage of Y .
Choose a symmetric entourage V of Y such that V ıV ıV � U . As d generates the
uniformity of X , there exists "> 0 such that f.x;y/2X 2 j d.x;y/ < "g �V . We will
show that U contains W WD

˚
.x;y/ 2 Y 2 jD.x;y/ < "

3

	
. Let .x;y/ 2W . As D is

continuous and X is dense in Y , we find x0 2X \BD

�
x; "

3

�
and y0 2X \BD

�
y; "

3

�
with .x;x0/ 2 V and .y;y0/ 2 V . Then

d.x0;y0/DD.x0;y0/�D.x0;x/CD.x;y/CD.y;y0/ < ";

thus .x0;y0/2V and hence .x;y/2V ıV ıV �U . Therefore, W �U , as desired.

Lemma 4.5 Let G be a dense subgroup of a topological group H . Suppose that d is
a right-invariant compatible metric on G . Then there exists a unique continuous map
DW H �H !R with DjG�G D d , and furthermore D is a right-invariant compatible
metric on H .

Proof As d is a right-invariant compatible metric on G , it generates the right uni-
formity of G , which coincides with the restriction of the right uniformity of H to G .
Thus, by Lemma 4.4, there exists a unique continuous map DW H �H !R with
DjG�G D d , and moreover D is a compatible metric on H . It remains to show that
D is right-invariant. Indeed, the continuity of D implies that

T WD f.x;y; z/ 2H 3
jD.xz;yz/DD.x;y/g

is closed in H 3 . Since G3 � T by right invariance of d DDjG�G and G is dense
in H , it follows that H 3 D T , as desired.

Our second preliminary note is the following variation on the well-known fact that
quotients of Banach spaces by closed linear subspaces are again Banach spaces. We
include a proof for the sake of convenience.
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Lemma 4.6 Let X and Y be Banach spaces, and let Y0 be any dense linear subspace
of Y . If T W X ! Y is a bounded linear operator such that

kykY D inffkxkX j x 2 T �1.y/g for all y 2 Y0;

then T .X /D Y .

Proof Let y 2 Y . As Y0 is dense in Y , there is a sequence .zn/n2N in Y0 with
ky�znkY � 2�n for each n 2N . By assumption, there exists x0 2 T �1.z0/ such that
kx0kX � kz0kY C 1. Likewise, our hypothesis asserts that, for each n 2N , we find

xnC1 2 T �1.znC1� zn/

with kxnC1kX � kznC1 � znkY C 2�.nC1/ . For each n 2 N , consider the element
x�n WD

P
i�n xi 2 X and note that T .x�n /D

P
i�n T .xi/D zn . Furthermore, for all

m; n 2N where m> n,

kx�m�x�nkX �

mX
iDnC1

kxikX �

mX
iDnC1

kzi � zi�1kY C 2�i
� 3

m�1X
iDn

2�i :

Hence, .x�n /n2N is a Cauchy sequence in X , thus convergent to some point x� 2X .
Since T is continuous, it follows that T .x�/D y , as desired.

Now everything is in place for the proof of Theorem 1.1.

Proof of Theorem 1.1 Let us start off with a remark about the last assertion of
Theorem 1.1: since X D spt�X is compact,  .X / D  .spt�X / D spt. ��X / for
any continuous mapping  W X ! S.G/, whence the G –invariance of  �.�X / would
imply the G–invariance of  .X /. We will establish the existence of the desired
embedding by case analysis.

We first treat the precompact case. Assuming that G is precompact, we find an embed-
ding hW G!K into a compact group K such that KDh.G/ (cf [1, Corollary 3.7.17]).
By Lemma 4.5, there is a unique continuous metric dK W K � K ! R such that
hW .G; d/! .K; dK / is isometric, and furthermore dK is a compatible right-invariant
metric on K . Let us denote by �K the normalized Haar measure on K . We prove
that the sequence .Kn; d�Kn

; �n�Kn
/n2N concentrates to .K; dK ; �K /. For each

n 2 N , the map pn WD hjKn
W .Kn; d�Kn

/ ! .K; dK / is an isometric embedding,
whence Lip1.Kn; d�Kn

/ D Lip1.K; dK / ı pn . According to Theorem 2.2, it now
remains to show that .pn/�.�n�Kn

/ D h�.�n/ ! �K weakly as n ! 1. To this
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end, let f 2 C.K/D RUCB.K/. By Corollary 3.6 and Lemma 3.3(2), the sequence
.h�.�n//n2N UEB–converges to invariance over K ; in particular, for all x 2K ,ˇ̌̌̌Z

f .xy/ dh�.�n/.y/�

Z
f .y/ dh�.�n/.y/

ˇ̌̌̌
! 0 as n!1:

Due to Lebesgue’s dominated convergence theorem, it follows thatZ ˇ̌̌̌Z
f .xy/ dh�.�n/.y/�

Z
f .y/ dh�.�n/.y/

ˇ̌̌̌
d�K .x/ ! 0 as n!1:

Thanks to the right invariance of �K along with Fubini’s theorem, we also haveˇ̌̌̌Z
f d�K�

Z
f dh�.�n/

ˇ̌̌̌
D

ˇ̌̌̌“
f .xy/ d�K .x/ dh�.�n/.y/�

Z
f .y/ dh�.�n/.y/

ˇ̌̌̌
D

ˇ̌̌̌“
f .xy/ dh�.�n/.y/ d�K .x/�

Z
f .y/ dh�.�n/.y/

ˇ̌̌̌
�

Z ˇ̌̌̌Z
f .xy/ dh�.�n/.y/�

Z
f .y/ dh�.�n/.y/

ˇ̌̌̌
d�K .x/

for all n2N , which by the above implies that
R
f dh�.�n/!

R
f d�K as n!1. This

shows that .pn/�.�n�Kn
/D h�.�n/! �K weakly as n!1, from which it follows

that .Kn; d�Kn
; �n�Kn

/n2N indeed concentrates to .K; dK ; �K /. In view of (B), this
necessitates that dconc..K; dK /; .X; dX //D 0, wherefore the mm–spaces .K; dK ; �K /

and .X; dX ; �X / are isomorphic [28, Theorem 5.16]. Since both �K and �X have full
support, this entails the existence of an isometric bijection �W .X; dX /! .K; dK / with
��.�X /D �K . Also, given that h embeds the topological group G densely into K ,
we obtain a G –equivariant homeomorphism �W S.G/! S.K/ by setting

�.�/.f / WD �.f ı h/ for � 2 S.G/; f 2 C.K/;

where C.K/DRUCB.K/ by compactness of K . As the K–equivariant map �K W K!

S.K/ is a homeomorphism due to Gelfand duality, ' WD ��1 ı �K W K! S.G/ is a
G –equivariant homeomorphism. Therefore, we conclude that  WD ' ı �W X ! S.G/
is a homeomorphism and that  �.�X / D '�.�K / is G–invariant. This settles the
precompact case.

For the rest of the proof, let us assume that G is not precompact. Let U 2 U.G/ be
as in Corollary 4.3. Since Kn WD spt�n is compact for every n 2 N , there exists
.gn/n2N 2GN with UKmgm\UKngn D∅ for any two distinct m; n 2N . For each
n 2N , consider the push-forward Borel probability measure �n WD .�gn

/�.�n/ on G ,
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and note that Sn WD spt �n DKngn . We conclude that

(i) USm\USn D∅ for all m; n 2N with m¤ n:

Due to Corollary 3.6 and Lemma 3.3(1), the sequence .�n/n2N UEB–converges to
invariance over G . As the metric d is right-invariant, the map

.Kn; d�Kn
; �n�Kn

/! .Sn; d�Sn
; �n�Sn

/; x 7! xgn;

is an mm–space isomorphism for every n 2N . Thus, since .Kn; d�Kn
; �n�Kn

/n2N

concentrates to .X; dX ; �X /, so does .Sn; d�Sn
; �n�Sn

/n2N . Consider the Prokhorov
distance .dX /P on P.X / associated with the metric dX (see Section 2). Due to
Theorem 2.2, there exists a sequence of Borel maps pnW Sn!X (n 2N ) such that

(1) .dX /P..pn/�.x�n/; �X /! 0 as n! 0,

(2) .mex�n
/H.Lip1.X; dX / ıpn;Lip1.Sn; dn//! 0 as n!1,

where x�n WD�n�Sn
and dn WDd�Sn

for n2N . We show that for every f 2Lip1.G; d/,

T .f / WD
˚
.fn/n2N 2 Lip``.X; dX /

N
ˇ̌
`� 0; lim

n!1
mex�n

.fn ıpn; f jSn
/D 0

	
is a nonempty set. For this purpose, let f 2 Lip``.G; d/ for some `� 1. By (2), there
exists a sequence .fn/n2N 2 Lip1.X; dX /

N such that mex�n
.fn ıpn; `

�1f jSn
/! 0

as n!1. For each n 2N , it follows that

f 0n WD .. f̀n/^ `/_ .�`/ 2 Lip``.X; dX /;

and moreover,

mex�n
.f 0n ıpn; f jSn

/�mex�n
.. f̀n/ ıpn; f jSn

/� `mex�n
.fn ıpn; `

�1f jSn
/;

which shows that .f 0n/n2N 2 T .f /, as desired.

Next let us prove that for all f 2 Lip1.G; d/ and all .fn/n2N with .f 0n/n2N 2 T .f /,

(ii) lim
n!1

kfn�f
0

nk1 D 0:

To this end, let f 2 Lip1.G; d/ and .fn/n2N ; .f
0

n/n2N 2 T .f /. Fix `� 1 such that

ffn j n 2Ng[ ff 0n j n 2Ng � Lip``.X; dX /:

According to (1), there exists a sequence .ın/n2N of positive real numbers converging
to 0 such that .dX /P..pn/�.x�n/; �X / < ın for all n 2 N . Let n 2 N . Consider
�n WDmex�n

.fn ıpn; f jSn
/ and �n WDmex�n

.f 0n ıpn; f jSn
/. Note that

Bn WD fx 2X j jfn.x/�f
0

n.x/j � �nC �nC `ıng
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is a Borel subset of X containing BdX
.Cn; ın/ for

Cn WD fx 2X j jfn.x/�f
0

n.x/j � �nC �ng:

Considering the Borel sets

Dn WD fs 2 Sn j jfn.pn.s//�f .s/j � �ng;

D0n WD fs 2 Sn j jf
0

n.pn.s//�f .s/j � �ng;

we observe that Dn\D0n � p�1
n .Cn/, and therefore

x�n.p
�1
n .Cn//� x�n.Dn\D0n/� 1�x�n.Sn nDn/�x�n.Sn nD0n/� 1� �n� �n:

It follows that

�X .Bn/� �X .BdX
.Cn; ın//� x�n.p

�1
n .Cn//� ın � 1� �n� �n� ın:

This shows that me�X
.jfn�f

0
nj; 0/��nC�nC`ın . As this is true for arbitrary n 2N ,

the definition of T .f / and our choice of .ın/n2N imply that me�X
.jfn�f

0
nj; 0/! 0

as n!1, ie jfn�f
0

nj ! 0 in the measure �X as n!1. Let k WD 2`. Since
spt�X DX , the restriction of me�X

to C.X / is a metric, wherefore the induced
topology on C.X /, ie the topology of convergence in �X , is Hausdorff. By the Arzelà–
Ascoli theorem, Lipk

k.X; dX / is compact with respect to the topology of uniform
convergence. Given that the latter contains the topology of convergence in �X , the
two topologies coincide on the set Lipk

k.X; dX /. Since

fjfn�f
0

nj j n 2Ng[ f0g � Lipk
k.X; dX /;

we conclude that jfn�f
0

nj ! 0 uniformly as n!1. This proves (ii).

Fix a nonprincipal ultrafilter F on N . Appealing to (ii) and the Arzelà–Ascoli theorem
again, let us define

ˆW Lip1.G; d/ ! Lip.X; dX /

by setting

ˆ.f / WD lim
n!F

fn for f 2 Lip1.G; d/ with .fn/n2N 2 T .f //;

where the ultrafilter convergence applies to the uniform topology. We will show that ˆ
is a homomorphism of unital R–algebras. Evidently, .r/n2N 2 T .r/ and thus ˆ.r/D
limn!F r D r for any r 2R. Let f; f 0 2Lip1.G; d/. Pick any .fn/n2N 2T .f / and
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.f 0n/n2N 2 T .f 0/, and choose `� 1 with ffn j n 2Ng[ ff 0n j n 2Ng � Lip``.X; dX /

and
maxfkf k1; kf 0k1g � `:

It is easy to check that fnCf
0

n 2 Lip2`
2`.X; dX / and fnf

0
n 2 Lip`

2

2`2.X; dX / for every
n 2 N . Let �n WD mex�n

.fn ı pn; f jSn
/ and �n WD mex�n

.f 0n ı pn; f
0jSn

/ for n 2 N .
For each n 2N ,

fs 2 Sn j j.fnCf
0

n/.pn.s//� .f Cf
0/.s/j> �nC �ng

� fs 2 Sn j jfn.pn.s//�f .s/j> �ng[ fs 2 Sn j jf
0

n.pn.s//�f
0.s/j> �ng

and thus
mex�n

..fnCf
0

n/ ıpn; .f Cf
0/jSn

/ � �nC �n;

as well as

fs 2 Sn j j.fnf
0

n/.pn.s//� .ff
0/.s/j> `.�nC �n/g

� fs 2 Sn j jfn.pn.s//�f .s/j> �ng[ fs 2 Sn j jf
0

n.pn.s//�f
0.s/j> �ng

and therefore

mex�n
..fnf

0
n/ ıpn; .ff

0/jSn
/�maxf`.�nC �n/; �nC �ng � `.�nC �n/:

Hence, .fnCf
0

n/n2N 2 T .f Cf 0/ and .fnf
0

n/n2N 2 T .ff 0/, which readily implies

ˆ.f Cf 0/D lim
n!F

fnCf
0

n D . lim
n!F

fn/C . lim
n!F

f 0n/Dˆ.f /Cˆ.f
0/

and likewise

ˆ.ff 0/D lim
n!F

fnf
0

n D . lim
n!F

fn/. lim
n!F

f 0n/Dˆ.f /ˆ.f
0/:

This shows that ˆ is indeed a homomorphism between unital R–algebras.

Next let us prove that

(iii) kf k1 Dminfkf �k1 j f � 2ˆ�1.f /g for all f 2 Lip.X; dX /:

Note that this will imply that ˆ is surjective. We start our proof of (iii) by observing
that ˆ is contractive with respect to the supremum norm, ie

kˆ.f /k1 � kf k1 for all f 2 Lip1.G; d/:

Indeed, if f 2 Lip1.G; d/ and .fn/n2N 2 T .f /, then it is easily checked that

..fn ^kf k1/_ .�kf k1//n2N 2 T .f /;
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and thus
ˆ.f /D lim

n!F
..fn ^kf k1/_ .�kf k1//;

whence kˆ.f /k1 � kf k1 , as desired. Furthermore, since d generates the topology
of G , there exists " > 0 such that Bd .e; "/� U . By right invariance of d ,

Bd .Sm; "/\Bd .Sn; "/ � USm\USn D∅

for any two distinct m; n 2N . To prove (iii), let `� 1 and f 2 Lip`.X; dX /, and put
c WD kf k1 . According to (2), there exists a sequence of functions fn 2 Lip1.Sn; dn/

such that mex�n
..`�1f / ıpn; fn/! 0 as n!1. For every n 2N , we have

f 0n WD .. f̀n/^ c/_ .�c/ 2 Lipc
`.Sn; dn/;

mex�n
.f ıpn; f

0
n/�mex�n

.f ıpn; f̀n/� `mex�n
..`�1f / ıpn; fn/:

Consider the set S WD
S

n2N Sn and define f 0W S ! R by setting f 0jSn
D f 0n for

every n 2N . Then f 0 2 Lipc
k.S; d�S / for k WDmaxf`; 2c"�1g, since

Bd .Sm; "/\Bd .Sn; "/D∅

for any two distinct m; n2N . Utilizing a standard construction, we define f �W G!R

by
f �.g/ WD

��
inf
s2S

f 0.s/C kd.g; s/
�
^ c
�
_ .�c/ for g 2G;

and observe that f � 2 Lipc
k.G; d/. Since moreover f �jS D f 0 , it follows that

mex�n
.f ıpn; f

�
jSn
/Dmex�n

.f ıpn; f
0

n/� `mex�n
..`�1f / ıpn; fn/

for all n 2 N . Hence, .f /n2N 2 T .f �/ and therefore ˆ.f �/ D limn!F f D f .
Finally,

kf k1 D kˆ.f
�/k1 � kf

�
k1 � c D kf k1

and thus kf �k1 D kf k1 , as desired.

Let us consider the unique continuous linear operator x̂ W RUCB.G/! C.X / which
extends ˆ. Since ˆ is a homomorphism of unital R–algebras, so is x̂ . Moreover, x̂

is surjective by (iii), Lemma 4.6, and the density of Lip.X; dX / in C.X /. The map

�W RUCB.G/!R; f 7! lim
n!F

Z
fd�n;

is a left-invariant mean; cf [27, Proof of Theorem 3.2]. We will show that

(iv)
Z
x̂ .f / d�X D �.f / for all f 2 RUCB.G/:
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Since both � and the map RUCB.G/!R given by f 7!
R
x̂ .f / d�X are continuous

linear maps and Lip1.G; d/ is a dense linear subspace of RUCB.G/, it suffices to
prove that Z

ˆ.f / d�X D �.f / for all f 2 Lip1.G; d/:

Let f 2 Lip1.G; d/ and .fn/n2N 2 T .f /. Then c WD kf k1_ supn2Nkfnk1 <1.
Since .dX /P metrizes the weak topology on P.X /, assertion (1) implies that

"n WD

ˇ̌̌̌Z
ˆ.f / d�X �

Z
ˆ.f / d.pn/�.x�n/

ˇ̌̌̌
! 0 as n!1:

Considering that F is nonprincipal and, moreover,ˇ̌̌̌Z
ˆ.f / d�X �

Z
f d�n

ˇ̌̌̌
�

ˇ̌̌̌Z
ˆ.f / d�X �

Z
ˆ.f / d.pn/�.x�n/

ˇ̌̌̌
C

ˇ̌̌̌Z
ˆ.f / d.pn/�.x�n/�

Z
fn d.pn/�.x�n/

ˇ̌̌̌
C

ˇ̌̌̌Z
fn ıpn dx�n�

Z
f jSn

dx�n

ˇ̌̌̌
� "nCkˆ.f /�fnk1C .1C 2c/mex�n

.fn ıpn; f jSn
/

for all n 2 N , we conclude that j
R
ˆ.f / d�X �

R
f d�nj ! 0 as n ! F . This

proves (iv).

Finally, let us consider the continuous map  W X ! S.G/ given by

 .x/.f / WD x̂ .f /.x/ for x 2X; f 2 RUCB.G/:

Since x̂ is onto,  is a topological embedding. To see that  �.�X / is G–invariant,
let us note the following: for every f 2 C.S.G//, since f .�/ D �.f ı �G/ for all
� 2 S.G/, we have

f . .x//D  .x/.f ı �G/D x̂ .f ı �G/.x/

for all x 2 X , ie f ı D x̂ .f ı �G/. Also, being a Borel probability measure on a
metrizable compact space, �X is regular. As  is a continuous map between compact
Hausdorff spaces,  �.�X / must be regular as well. Therefore, in order to establish the
G –invariance of  �.�X /, it suffices to observe that, for all f 2 C.S.G// and g 2G ,Z

f ı �g d �.�X /D

Z
f ı �g ı d�X

D

Z
x̂ .f ı �g ı �G/ d�X D

Z
x̂ .f ı �G ı�g/ d�X
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(iv)
D �.f ı �G ı�g/D �.f ı �G/

(iv)
D

Z
x̂ .f ı �G/ d�X

D

Z
f ı d�X D

Z
f d �.�X /;

where �gW S.G/! S.G/ is given by � 7! g� . This completes the proof.

5 Observable diameters

In this section we will prove Theorem 1.2 and then deduce Corollary 1.3. For a start,
let us briefly recall Gromov’s concept of observable diameters [12, Chapter 31=2 ]. For
further reading, we refer to [12; 15; 28].

Definition 5.1 Let ˛ > 0. The ˛–partial diameter of a Borel probability measure �
on R is

PartDiam.�; 1�˛/ WD inffdiam.B; dR/ j B �R Borel, �.B/� 1�˛g;

where dR denotes the Euclidean metric on R. Given any Borel probability measure �
on a topological space X and a continuous pseudometric d on X , we refer to the
quantity

ObsDiam.X; d; �I �˛/ WD supfPartDiam.f�.�/; 1�˛/ j f 2 Lip1.X; d/g

as the corresponding ˛–observable diameter.

Remark 5.2 Let ˛ > 0. If � is a Borel probability measure on a topological space X

and d0 � d1 are continuous pseudometrics on X , then

ObsDiam.X; d0; �I �˛/� ObsDiam.X; d1; �I �˛/:

In particular, if G is a topological group acting continuously on a compact Hausdorff
space X and d is a continuous pseudometric on X , then

sup
x2X

ObsDiam.G; dG;x; �I �˛/� ObsDiam.G; dG;X ; �I �˛/

for every Borel probability measure � on G .

Proof of Theorem 1.2 Let X be a G–flow equipped with a G–invariant regular
Borel probability measure � . Consider a continuous pseudometric d on X and let

D WD sup
˛>0

lim inf
i!I

sup
x2X

ObsDiam.G; dG;x; �i I �˛/:
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Let E �G be finite and let " > 0. We show thatZ
sup
g2E

d.x;gx/ d�.x/�DC ":

To this end, let U WD BdG;X

�
e; "

8

�
and pick a right-uniformly continuous function

pW G! Œ0; 1� with p.e/D 1 and p.x/D 0 for all x 2G nU . For any S �G , define
pS W G! Œ0; 1� by

pS .x/ WD sup
s2S

p.xs�1/ for x 2G:

It is easy to see that fpS j S � Gg belongs to RUEB.G/. Let ı WD diam.X; d/C 1.
Since the net .�i/i2I UEB–converges to invariance over G , we find i0 2 I such that
for all i 2 I with i � i0 and all g 2E ,

(�) sup
S�G

ˇ̌̌̌Z
pS d�i �

Z
pS ı�g d�i

ˇ̌̌̌
�

"

8ı.jEjC 1/
:

Since X is compact, there exists a finite nonempty subset F � Lip1.X; d/ such that

d.x;y/� sup
f 2F

jf .x/�f .y/jC "
2

for all x;y 2X I

cf [21, Exercise 7.4.13]. For the rest of the proof, fix any i 2 I such that i � i0 and

sup
x2X

ObsDiam
�
G; dG;x; �i I �

"

8ıjF j.jEjC1/

�
�DC "

8
:

Let us prove that

(��) sup
x2X

Z
sup
g2E

sup
f 2F

jf .hx/�f .ghx/j d�i.h/�DC "
2
:

Let x 2X . Since for each f 2 F the map fx W G!R given by h 7! f .hx/ belongs
to Lip1.G; dG;x/, our choice of i ensures that

sup
f 2F

PartDiam
�
.fx/�.�i/; 1�

"

8ıjF j.jEjC1/

�
�DC "

8
:

Hence, for each f 2 F there exists a Borel set Bf �G such that

�i.Bf /� 1�
"

8ıjF j.jEjC1/

and diam.fx.Bf /; dR/ � D C "
8

. Considering the Borel set B WD
T
f 2F Bf , we

deduce that �i.B/� 1�"=.8ı.jEjC1// and moreover diam.fx.B/; dR/�DC "
8

for
each f 2F . The former implies that

R
pB d�i � 1�"=.8ı.jEjC1//. Thus, (�) asserts
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that
R

pB ı�g d�i � 1� "=.4ı.jEjC 1// for each g 2G . Since UB DBdG;X

�
B; "

8

�
by right invariance of dG;X , it readily follows that

�i

�
g�1BdG;X

�
B; "

8

��
� 1�

"

4ı.jEjC1/
:

Considering the Borel set

C WD B \
\

g2E

g�1BdG;X

�
B; "

8

�
;

we now conclude that �i.C /� 1� "=.4ı/. Furthermore,

sup
g2E

sup
f 2F

jf .hx/�f .ghx/j � DC "
4

for all h 2 C . To see this, let h 2 C . For each g 2 E , there is hg 2 B with
dG;X .hg;gh/� "

8
. Hence,

jf .hx/�f .ghx/j � jf .hx/�f .hgx/jC jf .hgx/�f .ghx/j

�
�
DC "

8

�
C dG;X .hg;gh/�DC "

4

for all g2E and f 2F , as desired. Consequently, since F is contained in Lip1.X; d/,Z
sup
g2E

sup
f 2F

jf .hx/�f .ghx/j d�i.h/

D

Z
C

sup
g2E

sup
f 2F

jf .hx/�f .ghx/j d�i.h/C ı�i.G nC /

�
�
DC "

4

�
C
"
4
�DC "

2
:

This proves (��). By the G –invariance of � along with Fubini’s theorem,Z
sup
g2E

sup
f 2F

jf .x/�f .gx/j d�.x/D

“
sup
g2E

sup
f 2F

jf .hx/�f .ghx/j d�.x/ d�i.h/

D

“
sup
g2E

sup
f 2F

jf .hx/�f .ghx/j d�i.h/ d�.x/

(��)
� DC "

2
;

and thereforeZ
sup
g2E

d.x;gx/ d�.x/�

Z
sup
g2E

sup
f 2F

jf .x/�f .gx/j d�.x/C "
2
�DC ":
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Proof of Corollary 1.3 Let X be a G –flow. Fix a continuous pseudometric d on X

and let

D WD sup
˛>0

lim inf
i!I

sup
x2X

ObsDiam.G; dG;x; �i I �˛/:

Since G is amenable due to Theorem 3.2, there exists a G–invariant regular Borel
probability measure � on X . Note that, for every finite subset E �G and every " > 0,
there exists some x 2X with supg2E d.x;gx/ <DC". Otherwise, there would exist
a finite subset E � G and some " > 0 such that supg2E d.x;gx/ � DC " for all
x 2X , whence Z

sup
g2E

d.x;gx/ d�.x/�DC ";

contradicting the conclusion of Theorem 1.2. Appealing to the compactness of X ,
hence we deduce the existence of a point x 2X with supg2G d.x;gx/�D .

We conclude this section with some remarks about further consequences of Theorem 1.2.
For this purpose, we briefly clarify the connection between observable diameters and
the Lévy property in uniform spaces, cf [20, Definition 2.6].

Definition 5.3 Let X be a uniform space. For an entourage U of X , let

U ŒA� WD fy 2X j there exists an x 2A with .x;y/ 2 U g for A�X:

A net .�i/i2I of Borel probability measures on X is called a Lévy net in X if, for
every family .Bi/i2I of Borel subsets of X and any open entourage U of X ,

lim inf
i!I

�i.Bi/ > 0 D) lim
i!I

�i.U ŒBi �/D 1:

Let us recall that every measurable real-valued function f W X !R on a probability
measure space .X;B; �/ admits a (not necessarily unique) median, ie a real number
m 2R with

�.fx 2X j f .x/�mg/� 1
2
� �.fx 2X j f .x/�mg/:

We will need the following well-known fact.

Lemma 5.4 [13, Definition 2.5] Let X be a uniform space, let d be a uniformly
continuous pseudometric on X , and let .�i/i2I be a Lévy net of Borel probability
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measures on X . For each pair .i; f / 2 I �Lip1.X; d/, let mi.f / be a median of f
with respect to �i . For every " > 0,

sup
f 2Lip1.X ;d/

�i.fx 2X j jf .x/�mi.f /j> "g/! 0 as i ! I:

Proof We include the proof for the sake of convenience. Let " > 0. Since d is uni-
formly continuous, there is a symmetric open entourage U of X such that d.x;y/� "

for all .x;y/2U . For all .i; f /2I�Lip1.X; d/, we conclude that U ŒAi.f /��Bi.f /

and U ŒA0i.f /�� B0i.f /, where

Ai.f / WD fx 2X j f .x/�mi.f /g; Bi.f /WD fx 2X j f .x/�mi.f /C "g;

A0i.f / WD fx 2X j f .x/�mi.f /g; B0i.f / WD fx 2X j f .x/�mi.f /� "g:

Hence, U ŒAi.f /�\U ŒA0i.f /�� Bi.f /\B0i.f / for all .i; f / 2 i �Lip1.X; d/. We
will show that

sup
f 2Lip1.X ;d/

�i

�
X n .Bi.f /\B0i.f //

�
! 0 as i ! I:

Let ı > 0. For each pair .i; f /2 I �Lip1.X; d/, our hypothesis on mi.f / asserts that

minf�i.Ai.f //; �i.A
0
i.f //g �

1
2
:

Since .�i/i2I is a Lévy net in X , there exists i0 2 I such that for all i 2 I with i � i0

and for all f 2 Lip1.X; d/,

�i.U ŒAi.f /�/� 1� ı
2
:

Otherwise, the subset˚
i 2 I j there exists an f 2 Lip1.X; d/ such that �i.U ŒAi.f /�/ < 1� ı

2

	
would be cofinal in I , which is easily seen to contradict the Lévy property. Likewise,
there exists some i1 2 I with i1 � i0 such that for all i 2 I with i � i1 and for all
f 2 Lip1.X; d/,

�i.U ŒA
0
i.f /�/� 1� ı

2
:

Consequently, if i 2 I with i � i1 , then

�i.Bi.f /\B0i.f // � �i.U ŒAi.f /�\U ŒA0i.f /�/ � 1� ı

for every f 2 Lip1.X; d/, which means that

sup
f 2Lip1.X ;d/

�i

�
X n .Bi.f /\B0i.f //

�
� ı:
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The following is a fairly well-known fact about mm–spaces (see eg [28, Proposition 5.7])
adapted to uniform spaces in a straightforward manner.

Proposition 5.5 Let .�i/i2I be a net of Borel probability measures on a uniform
space X . The following are equivalent:

(1) .�i/i2I is a Lévy net in X .

(2) For every uniformly continuous pseudometric d on X and every ˛ > 0,

lim
i!I

ObsDiam.X; d; �i I �˛/D 0:

(3) For every bounded uniformly continuous pseudometric d on X and every ˛ > 0,

lim
i!I

ObsDiam.X; d; �i I �˛/D 0:

Proof (1) D) (2) Consider a uniformly continuous pseudometric d on X . For every
i 2 I and f 2 Lip1.X; d/, let mi.f / be a median of f with respect to �i . Let ˛ > 0.
We show that

lim
i!I

ObsDiam.X; d; �i I �˛/D 0:

Let "> 0. By (1) and Lemma 5.4, there exists i0 2 I such that for all i 2 I with i � i0 ,

(�) sup
f 2Lip1.X ;d/

�i

�˚
x 2X

ˇ̌
jf .x/�mi.f /j �

"
2

	�
� ˛:

We argue that for all i 2 I with i � i0 ,

ObsDiam.X; d; �i I �˛/� ":

Let i 2 I where i � i0 . If f 2 Lip1.X; d/, then Bi.f / WDBdR

�
mi.f /;

"
2

�
is a Borel

subset of R with diam.Bi.f /; dR/� " and

f�.�i/.Bi.f //D �i

�˚
x 2X

ˇ̌
jf .x/�mi.f /j<

"
2

	�
� 1�˛

thanks to (�), wherefore PartDiam.f�.�i/; 1�˛/� ". This completes the argument.

(2) D) (3) Trivial.

(3) D) (1) Let U be an open entourage of X . According to classical work of
Weil [34], there exist ı > 0 and a uniformly continuous pseudometric d on X with
diam.X; d/ � 1 such that f.x;y/ 2 X �X j d.x;y/ < ıg � U . Consider a family
.Bi/i2I of Borel subsets of X such that � WD lim infi!I �i.Bi/> 0. In order to verify
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that limi!I �i.U ŒBi �/D1, let ">0. Fix any i02I with inff�i.Bi/ j i 2I; i� i0g>
�
2

.
By (3), there is an i1 2 I with i1 � i0 such that for all i 2 I with i � i1 ,

(��) ObsDiam
�
X; d; �i I �min

˚
"; �

2

	�
< ı:

We argue that for all i 2 I with i � i1 ,

�i.U ŒBi �/� 1� ":

To this end, let i 2 I with i � i1 . Note that fi W X ! R, x 7! inffd.x;y/ j y 2 Big

belongs to Lip1.X; d/. Hence, by (��), there exists a Borel subset Ci �X with

�i.Ci/� 1�min
˚
"; �

2

	
and diam.fi.Ci/; dR/ < ı:

The former implies that �i.Bi\Ci/ > 0 and thus Bi\Ci ¤∅, wherefore 0 2 fi.Ci/.
Since diam.fi.Ci/; dR/ < ı , we now conclude that fi.Ci/� .�ı; ı/ and hence Ci �

Bd .Bi ; ı/� U ŒBi �. It follows that �i.U ŒBi �/� �i.Ci/� 1� ", as desired.

As any bounded right-uniformly continuous pseudometric on a topological group is
bounded from above by a bounded continuous right-invariant pseudometric, we arrive
at the following characterization of the Lévy property on topological groups (with their
right uniformity).

Corollary 5.6 Let .�i/i2I be a net of Borel probability measures on a topological
group G . The following are equivalent:

(1) .�i/i2I is a Lévy net in G .

(2) For every continuous right-invariant pseudometric d on G and every ˛ > 0,

lim
i!I

ObsDiam.G; d; �i I �˛/D 0:

(3) For every bounded continuous right-invariant pseudometric d on G and every
˛ > 0,

lim
i!I

ObsDiam.G; d; �i I �˛/D 0:

In view of Corollary 5.6, let us point out two consequences of our results. For one
thing, Corollary 1.3 yields a quantitative version of [13, Theorem 7.1], ie the extreme
amenability of Lévy groups. And for another thing, Theorem 1.2 readily implies [24,
Theorem 3.9], an extension of the result for Polish groups by Pestov [23, Theorem 5.7]
generalizing earlier work of Glasner, Tsirelson and Weiss [10, Theorem 1.1].
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Corollary 5.7 [24, Theorem 3.9] If a topological group G admits a Lévy net of
Borel probability measures UEB–converging to invariance over G , then G is whirly
amenable, ie

� G is amenable, and

� every invariant regular Borel probability measure on a G–flow is supported on
the set of fixed points.

Proof The amenability of G is due to Theorem 3.2, while the second assertion follows
immediately from Theorem 1.2 combined with Corollary 5.6 and Remark 5.2.

Let us finish with an open problem.

Remark 5.8 Since the Lévy property can be stated in the more general framework
of uniform spaces, it would be very interesting to know if Gromov’s concentration
topology admits an equally natural extension in that context. If so, then one may hope to
generalize Theorem 1.1 to the case of topological groups with nonmetrizable universal
minimal flow.
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