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Finsler bordifications of symmetric and
certain locally symmetric spaces

MICHAEL KAPOVICH

BERNHARD LEEB

We give a geometric interpretation of the maximal Satake compactification of sym-
metric spaces X D G=K of noncompact type, showing that it arises by attaching
the horofunction boundary for a suitable G–invariant Finsler metric on X. As an
application, we establish the existence of natural bordifications, as orbifolds-with-
corners, of locally symmetric spaces X=� for arbitrary discrete subgroups � <G .
These bordifications result from attaching �–quotients of suitable domains of proper
discontinuity at infinity. We further prove that such bordifications are compactifica-
tions in the case of Anosov subgroups. We show, conversely, that Anosov subgroups
are characterized by the existence of such compactifications among uniformly regular
subgroups. Along the way, we give a positive answer, in the torsion-free case, to a
question of Haïssinsky and Tukia on convergence groups regarding the cocompactness
of their actions on the domains of discontinuity.
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1 Introduction

The goal of this paper is four-fold:

(1) We give a geometric interpretation of the maximal Satake compactification
of a symmetric space X D G=K of noncompact type by obtaining it as the
horoclosure with respect to a suitable G–invariant Finsler metric.

(2) This compactification turns out to have good dynamical properties, better, for
our purposes, than the usual visual compactification as a CAT(0) space. In it
we find natural domains of proper discontinuity for discrete subgroups � <G .
For Anosov subgroups we show that the actions on these domains are also
cocompact, thereby providing natural orbifold-with-corner compactifications of
the corresponding locally symmetric spaces.

(3) We use these dynamical results to establish new characterizations of Anosov
subgroups.

(4) We apply our techniques for proving cocompactness to the theory of abstract
convergence groups and verify the cocompactness on the domain of discontinuity
for a certain class of actions.

The study of compactifications of symmetric and locally symmetric spaces has a long
history. Let us mention the work of Satake [48], who was the first to define Satake com-
pactifications of symmetric spaces of noncompact type and used it in [47] to construct
compactifications of certain arithmetic locally symmetric spaces, Furstenberg [19],
who constructed compactifications of symmetric spaces by embedding them into spaces
of probability measures, Moore [44], who extended Furstenberg’s work and related
Furstenberg’s compactifications with Satake’s, Baily and Borel [2], who gave another
construction of compactifications of symmetric and locally symmetric spaces and estab-
lished (in the Hermitian setting) structure of normal analytic varieties for the Baily–Borel
compactifications of locally symmetric spaces, Karpelevich [36], who introduced the
Karpelevich compactification of symmetric spaces, Ash, Mumford, Rapoport and Tai [1],
who defined toroidal compactifications of locally symmetric spaces by desingularizing
Baily–Borel compactifications,1 Marden [40], who constructed certain compactifi-
cations of hyperbolic 3–dimensional manifolds associated with geometrically finite
Kleinian groups and proved that the existence of such compactifications characterizes

1Analogously to our paper, the toroidal compactification depends on some auxiliary datum, which, in
our paper, is a balanced thickening of the identity in the suitable Weyl group of G .
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geometric finiteness, Borel and Serre [9], who defined compactifications (as manifolds-
with-corners) of arithmetic locally symmetric spaces,2 Gromov [21], who defined
the horofunction compactification of general proper metric spaces, Bowditch [10]
and Ratcliffe [46], who extended Marden’s work to higher-dimensional hyperbolic
spaces and Bowditch [11], who further extended this to negatively pinched Hadamard
manifolds, and Karlsson, Metz and Noskov [35] and Walsh [52; 53], who described
horofunction compactifications of normed vector spaces and of the Teichmüller spaces.
We refer the reader to the monograph of Borel and Ji [8] for the in-depth discussion
of compactifications of higher-rank symmetric and locally symmetric spaces. In the
context of Anosov subgroups, let us mention Benoist [5], whose foundational work
including a definition of limit sets in flag manifolds of arbitrary reductive Lie groups
and a notion of contraction dynamics equivalent to the one used in this paper was of
major influence on further developments in the field and basic for our paper, Labourie’s
pioneering paper [39], where he introduced Anosov subgroups, and the paper [24] by
Guichard and Wienhard for the existence of an orbifold-with-boundary compactification
of locally symmetric quotients by Anosov subgroups of some special classes of simple
Lie groups (namely, Sp.2n;R/, SU.n; n/ and SO.n; n/). In the context of convergence
groups, let us mention the work of Gehring and Martin [20], who defined convergence
group actions on spheres, Tukia [50; 51] and Bowditch [13], who extended the concepts
of geometric finiteness from discrete group actions on ideal boundaries of hyperbolic
spaces to general convergence actions and Bowditch, who in [12] gave a topological
characterization of word-hyperbolic groups as uniform convergence groups.

We now describe our main results in more detail.

(1) We prove that the maximal Satake compactification xX S
max (see [8, Chapter 2])

is G–equivariantly homeomorphic, as a manifold-with-corners, to a regular Finsler
compactification xX FinsD xX

x� obtained by adding to X points at infinity represented by
Finsler horofunctions. These horofunctions arise as limits, modulo additive constants,
of distance functions

d
x�
x D d

x� . � ;x/;

where d
x� is a certain G–invariant Finsler distance on X associated with an interior

point x� of the model spherical Weyl chamber �mod of X. This horoclosure construction
is a special case of a well-known general construction of compactifications for metric

2Finding an analogue of the Borel–Serre compactifications in the context of Anosov subgroups was
the main impetus for our paper.
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spaces. For instance, applying it to CAT(0) spaces yields their visual compactifica-
tion. The novelty here is finding the right metric on the symmetric space X which
yields xX S

max . Our first main result, proven in Sections 5, 6 and 7, describes geometric
and dynamical properties of the Finsler compactification:

Theorem 1.1 For every regular type x� 2 int.�mod/,

xX
x�
DX t @

x�
1X

is a compactification of X as a G–space which satisfies the following properties:

(i) There are finitely many G–orbits S�mod indexed by the faces �mod of �mod

(X D S∅ ).

(ii) The stratification of xX x� by G–orbits is a G–invariant manifold-with-corners
structure.

(iii) xX
x� is homeomorphic to the closed ball, with X corresponding to the open ball.

(iv) The compactification xX x� is independent of the regular type x� in the sense that
the identity map idX extends to a natural homeomorphism of any two such
compactifications.

(v) There exists a G–equivariant homeomorphism of manifolds-with-corners be-
tween xX x� and the maximal Satake compactification xX S

max which yields a natural
correspondence of strata.

In view of (iv) we will denote the Finsler compactification from now on by xX Fins .

Remark 1.2 (i) We also give a geometric interpretation of the points in @Fins
1 X as

strong asymptote classes of Weyl sectors; see Lemma 5.23.

(ii) The strata S�mod � @
Fins
1 X at infinity naturally fiber over the partial flag manifolds

Flag�mod
ŠG=P�mod . The fibers X� for � 2 Flag�mod

, called small strata, are naturally
identified with symmetric subspaces of X, namely with cross-sections of parallel
sets. In the case �mod D �mod the fibration is a homeomorphism, S�mod Š Flag�mod

D

@FuX Š G=B , ie the Furstenberg boundary @FuX embeds at infinity as the unique
closed stratum.

(iii) The Finsler viewpoint had emerged in several instances during our earlier study
with Porti [30; 31; 34] of asymptotic and coarse properties of regular discrete isometry
groups acting on symmetric spaces and euclidean buildings. For instance, the notion

Geometry & Topology, Volume 22 (2018)



Finsler bordifications of symmetric and certain locally symmetric spaces 2537

of flag convergence (which we defined earlier in [29, Definition 7.4] in the context
of the full flag manifold of G and in [30, Definition 5.26] in full generality; see also
[31, Section 3.8]) is a special case of the Finsler convergence at infinity considered in
this paper; see Proposition 5.43. Furthermore, the Morse lemma proven in [31] can be
rephrased to the effect that regular quasigeodesics in symmetric spaces and euclidean
buildings are uniformly close to Finsler geodesics; see Section 5.1.3. In the same vein,
Morse subgroups � <G can be characterized as Finsler quasiconvex; see Section 12.1.

(iv) The maximal Satake compactification is known to carry a G–invariant real-analytic
structure; see [8].

Remark 1.3 After finishing this work we learnt about work of Anne Parreau [45],
where she studies the geometry of CAT(0) model spaces, ie of symmetric spaces of
noncompact type and euclidean buildings, from a very natural perspective, regarding
them as metric spaces with a vector-valued distance function with values in the euclidean
Weyl chamber � (called �–distance in our paper). Among other things, she shows
that basic properties of CAT(0) spaces persist in this setting, notably the convexity
of the distance, and develops a comparison geometry for the �–distance function.
Furthermore, she proves that the resulting �–valued horofunction compactifications of
model spaces are naturally homeomorphic to their maximal Satake compactifications.

(2) Our main application of Theorem 1.1 concerns discrete subgroups � <G . Recall
that if X is a negatively curved symmetric space, then the locally symmetric space
X=� (actually, an orbifold) admits the standard bordification

X=� ,! .X t�.�//=�;

where �.�/ � @1X is the domain of discontinuity of � at infinity. The quotient
.X t�.�//=� is an orbifold with boundary �.�/=� . Furthermore, a subgroup � is
convex cocompact if and only if .X t�.�//=� is compact. The main purpose of this
paper is to generalize these bordifications and compactifications to suitable classes of
discrete subgroups of higher-rank Lie groups.

In our earlier papers [30; 31; 34], we introduced several conditions for discrete sub-
groups � of semisimple Lie groups G , generalizing the notions of discreteness and
convex cocompactness in rank one; see also [27]. These properties are defined relative
to faces �mod of the spherical model Weyl chamber �mod , equivalently, with respect to
conjugacy classes of parabolic subgroups of G . The most important properties for the
purposes of this paper are regularity and asymptotic embeddedness.
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The regularity conditions capture the asymptotics of the orbits in X and are reflected
by the location of their accumulation sets in @Fins

1 X. A discrete subgroup � < G

is �mod–regular if its orbits �x � X accumulate in @Fins
1 X at the closure of the

stratum S�mod . The �mod–limit set ƒ�mod of � is then defined as the compact set of
simplices � 2 Flag�mod

such that the small stratum closure xX� contains accumulation
points. The subgroup � is �mod–antipodal if the simplices in ƒ�mod are pairwise
antipodal.3 In rank one, regularity is equivalent to discreteness.

Remark 1.4 In his influential paper, Benoist [5, Section 3.6] introduced a notion of
limit set ƒ� for Zariski dense subgroups � of reductive algebraic groups over local
fields which in the case of real semisimple Lie groups is equivalent to our concept
of �mod–limit set ƒ�mod . Benoist’s limit set ƒ� is contained in the flag manifold Y�

which in the case of real Lie groups is the full flag manifold G=B ; see the beginning
of Section 3 of his paper. It consists of the limit points of sequences contracting on
G=B ; see his Definitions 3.5 and 3.6. What we call the �mod–limit set ƒ�mod for other
face types �mod ¨ �mod is mentioned in his Remark 3.6(3), and his work implies that,
in the Zariski dense case, ƒ�mod is the image of ƒ�mod under the natural projection
Flag�mod

! Flag�mod
of flag manifolds.

Asymptotically embedded subgroups form a certain subclass of regular subgroups,
which turns out to coincide with the class of Anosov subgroups; see [30]. A discrete
subgroup � <G is �mod–asymptotically embedded if it is �mod–regular, �mod–antipodal
and intrinsically word hyperbolic, and its Gromov boundary @1� is equivariantly
homeomorphic to ƒ�mod .4

In order to obtain bordifications of locally symmetric spaces X=� , we construct
domains of proper discontinuity for � in xX Fins . These domains will depend on an
auxiliary combinatorial datum, namely a subset Th�W of the Weyl group, called a
thickening. It can be thought of as a set of “sufficiently special” relative positions of
pairs of chambers (full flags) in the Tits boundary. This datum is used to construct the
Finsler thickening ThFins.ƒ�mod/ � @

Fins
1 X of ƒ�mod a certain �–invariant saturated5

compact subset; see Section 8.3, where the reader also finds the definitions of fat and
balanced thickenings. (Balanced implies fat.)

3Here we require the face �mod to be invariant under the opposition involution of �mod . For the
corresponding parabolic subgroups this means that they are conjugate to their opposite parabolic subgroups.

4See Definition 11.1.
5A subset S � @Fins

1 X is called saturated if it is a union of small strata.
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The following result establishes the existence of natural bordifications and compacti-
fications (as orbifolds-with-corners) for locally symmetric spaces X=� by attaching
�–quotients of suitably chosen saturated domains in the Finsler boundary of X. It is a
combination of Theorems 9.16 and 11.11.

Theorem 1.5 Let � <G be a �mod–regular subgroup. Then:

(i) For each W�mod–left-invariant fat thickening Th�W , the action

� Õ X t�Fins
Th WD

xX Fins
�ThFins.ƒ�mod/

is properly discontinuous. The quotient

(1:6) .X t�Fins
Th /=�

provides a real-analytic bordification of the orbifold X=� as an orbifold-with-
corners.

(ii) If � is �mod–asymptotically embedded and Th is a W�mod–left-invariant balanced
thickening, then .X t�Fins

Th /=� is compact. In particular, the bordification is a
compactification.

Remark 1.7 (i) If � is �mod–antipodal, Th balanced and rank.X / � 2, then the
domains �Fins

Th at infinity are nonempty; see Proposition 9.23.

(ii) The construction of the domains of proper discontinuity extends in a straightfor-
ward way to all discrete subgroups � <G ; see Theorems 9.19 and 9.21.

(iii) The existence of an orbifold-with-boundary compactification of locally symmetric
quotients by Anosov subgroups of some special classes of simple Lie groups (namely,
Sp.2n;R/, SU.n; n/ and SO.n; n/) appeared in [24]; see also [23].

(3) As already mentioned, the class of asymptotically embedded subgroups coincides
with the class of Anosov subgroups. We also prove a converse of part (ii) of the
previous theorem, thereby providing a new characterization of Anosov subgroups among
uniformly regular subgroups in terms of the existence of certain compactifications of
the locally symmetric spaces. To this end, we say that a discrete subgroup � <G is
S-cocompact if there exists a �–invariant saturated open subset �� @Fins

1 X such that �
acts properly discontinuously and cocompactly on Xt�. Theorem 1.5 shows that �mod–
asymptotically embedded subgroups are S-cocompact with �D�Fins

Th . Conversely, we
prove for �–invariant face types �mod (see Section 12.2):
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Theorem 1.8 Uniformly �mod–regular S-cocompact subgroups � < G are �mod–
Anosov.

Combining the last two theorems, we obtain the characterization:

Corollary 1.9 A uniformly �mod–regular subgroup � <G is �mod–Anosov if and only
if it is S-cocompact.

Our cocompactness results thus provide a precise higher-rank analogue of the charac-
terization of convex cocompact subgroups of rank-1 Lie groups in terms of compactifi-
cations of the corresponding locally symmetric spaces.

While proving Theorem 1.8, we establish yet another coarse-geometric characterization
of �mod–Anosov subgroups, namely as uniformly �mod–regular subgroups which are
coarse retracts; see Sections 2.7 and 12 for the details. This theorem is a higher-rank
analogue of the characterization of quasiconvex subgroups of Gromov-hyperbolic
groups as coarse retracts.

(4) In Section 10.2, as an intermediate step in the proof of Theorem 1.5, we verify
a conjecture by Haïssinsky and Tukia regarding the cocompactness of convergence
group actions on their domains of discontinuity under mild extra assumptions:

Theorem 1.10 Let � Õ† be a convergence group action of a virtually torsion-free
hyperbolic group on a metrizable compact space †, and suppose that ƒ � † is an
invariant compact subset which is equivariantly homeomorphic to @1� . Then the
action � Õ†�ƒ is cocompact provided that †�ƒ has finitely many path-connected
components.
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2 Preliminaries

2.1 Notation and definitions

We note that for Hausdorff paracompact topological spaces (and in this paper we will be
dealing only with such topological spaces), Alexander–Spanier and Čech cohomology
theories are naturally isomorphic; see [49, Chapter 6.9]. Therefore, in our paper, all
cohomology is Alexander–Spanier–Čech with field coefficients (the reader can assume
that the field of coefficients is Z2 ). For manifolds and CW complexes, singular and
cellular cohomology is naturally isomorphic to the Čech cohomology. We will use the
notation H�c for cohomology with compact support. As for homology, we will use it
again with field coefficients and only for locally finite CW complexes, where we will
be using singular homology and singular locally finite homology, denoted by H lf

� . By
Kronecker duality, for each locally finite CW complex X,

.H lf
k .X //

�
ŠH k

c .X /; k � 0:

We refer the reader to [26] for the definitions of manifolds and orbifolds with corners.
The only examples of orbifolds with corners which appear in this paper are the good
ones, ie quotients of manifolds-with-corners by properly discontinuous group actions.

Throughout the paper, † will denote the angle between vectors in a euclidean vector
space and, respectively, the angular metric on spherical simplices.

2.2 Some point-set topology

Let Z and Z0 be first countable Hausdorff spaces, and let O �Z and O 0 �Z0 be
dense open subsets. Let f W Z ! Z0 be a map such that f .O/ � O 0 , and suppose
that f has the following partial continuity property: If .yn/ is a sequence in O which
converges to z 2Z , then f .yn/! f .z/ in Z0 . In particular, f jO is continuous.

Lemma 2.1 Under these assumptions, the map f is continuous.

Proof The lemma follows from a standard diagonal subsequence argument.

Let .An/ be a sequence of subsets of a metrizable topological space Z . We denote
by Acc..An// the closed subset consisting of the accumulation points of all sequences
.an/ of points an 2An .

If Acc..An//� S , we say that the sequence of subsets .An/ accumulates at a subset
S �Z .

Geometry & Topology, Volume 22 (2018)



2542 Michael Kapovich and Bernhard Leeb

If Z is compact and C �Z is a closed subset, then the sequence .An/ accumulates
at S if and only if every neighborhood U of C contains all but finitely many of the
subsets An .

2.3 Properness and dynamical relation

In the paper we will use the notion of dynamical relation between points of a topological
space Z , which is an open subset of a compact metrizable space, with respect to a
topological action � Õ Z of a discrete group. The reader will find this definition
in [18]; see also [34].

Definition 2.2 (dynamically related) Two points z; z0 2 Z are called dynamically
related with respect to a topological action � Õ Z , written

z
�
� z0;

if there exists a sequence 
n ! 1 in � and a sequence zn ! z in Z such that

n.zn/! z0 .

We write z

n
� z0 if z is dynamically related to z0 with respect to the sequence 
n!1

in � . An action is properly discontinuous if and only if no points of Z are dynamically
related to each other; see [18].

2.4 A transformation group lemma

Let K be a compact Hausdorff topological group, and let K Õ Y be a continuous
action on a compact Hausdorff space Y . We suppose that there exists a cross-section for
the action, ie a compact subset C �Y which contains precisely one point of every orbit.

Consider the natural surjective map

K �C
˛
�! Y

given by the action ˛.k;y/D ky . We observe that Y carries the quotient topology
with respect to ˛ , because K �C is compact and Y is Hausdorff. The identifications
by ˛ are determined by the stabilizers of the points in C , namely ˛.k;y/D ˛.k 0;y0/
if and only if y D y0 and k�1k 0 2 StabK .y/.

Consider now two such actions K Õ Y1 and K Õ Y2 by the same group with cross-
sections Ci � Yi , and suppose that

C1

�
�! C2

is a homeomorphism.
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Lemma 2.3 If � respects point stabilizers, ie StabK .y1/ D StabK .�.y1// for all
y1 2 C1 , then � extends to a K–equivariant homeomorphism ˆW Y1! Y2 .

Proof According to the discussion above, the stabilizer condition implies that there
exists a bijection ˆW Y1! Y2 for which the diagram

K �C1
idK ��- K �C2

Y1

˛1

? ˆ - Y2

˛2

?

commutes. Since the ˛i are quotient projections, ˆ is a homeomorphism.

2.5 Thom class

In this section H lf
� denotes locally finite homology with Z2–coefficients.

Lemma 2.4 (Thom class) Let F
�
�! E ! B be a fiber bundle whose base B is

a compact CW complex and whose fiber F is a connected m–manifold (without
boundary). Suppose that there exists a section sW B!E . Then the map

H lf
m.F /„ ƒ‚ …
ŠZ2

��
�!H lf

m.E/

induced by an inclusion of the fiber is nonzero.

Proof By thickening the section, one obtains a closed disk subbundle D! B . Then
we have the commutative diagram:

H lf
m.F /

�� - H lf
m.E/

Hm.DF ; @DF /

j
? �0�- Hm.D; @D/

?

The map j is an isomorphism. The map

H m.D; @D/
�0�

�!H m.DF ; @DF /

dual to �0� is surjective by Thom’s theorem (see eg Theorem 8.1 in [41]): there is a
class u 2H m.D; @D/, the Thom class of the disk bundle D! B , whose restriction
to each fiber defines a generator of H m.DF ; @DF /. Dually, the map �0� is injective. It
follows that the map �� is injective as well.
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2.6 The horoboundary of metric spaces

We refer the reader to [21] and [3, Chapter II.1] for the definition and basic properties
of horofunction compactification of metric spaces. In this section we describe these
notions in the context of nonsymmetric metrics; compare [53].

Let .Y; d/ be a metric space. We allow the distance d to be nonsymmetric, ie we only
require that it is positive,

d.y;y0/� 0 with equality if and only if y D y0;

and satisfies the triangle inequality

d.y;y0/C d.y0;y00/� d.y;y00/:

The symmetrized distance

d sym.y;y0/ WD d.y;y0/C d.y0;y/

is a metric in the standard sense and induces a topology on Y . One observes that d is
continuous, and the distance functions

dy WD d. � ;y/

are 1–Lipschitz with respect to d sym . These functions satisfy the inequality

(2:5) �d.y;y0/� dy � dy0 � d.y0;y/:

Let C.Y / denote the space of continuous real-valued functions, equipped with the
topology of uniform convergence on bounded subsets. Moreover, let

C.Y / WD C.Y /=R

be the quotient space of continuous functions modulo additive constants. We will
denote by Œf � 2 C.Y / the equivalence class represented by a function f 2 C.Y /, and
our notation f � g means that the difference f �g is constant.

We consider the natural map

(2:6) Y ! C.Y /; y 7! Œdy �:

It is continuous as a consequence of the triangle inequality. This map is a topological
embedding provided that Y is a geodesic space; see [3, Chapter II.1], where this is
proven for symmetric metrics, but the same proof goes through for nonsymmetric
metrics as well. We assume from now on that the space Y is geodesic.
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We identify Y with its image in C.Y / and call the closure xY the horoclosure of Y , and
@1Y WD xY �Y the horoboundary or boundary at infinity; ie we have the decomposition

xY D Y t @1Y:

We note that the horoclosure xY is Hausdorff and first countable since the space C.Y / is.

The functions representing points in @1Y are called horofunctions. We write

yn! Œh�

for a divergent sequence of points yn!1 in Y which converges to a point Œh�2 @1Y

represented by a horofunction h, ie dyn
! h modulo additive constants, and say

that .yn/ converges at infinity. Each horofunction is 1–Lipschitz with respect to the
symmetrized metric.

If the metric space .Y; d sym/ is proper (which will be the case in this paper since we
are interested in symmetric spaces), then the Arzelà–Ascoli theorem implies that the
closure xY and the boundary @1Y at infinity are compact. In this case, xY is called the
horofunction compactification of Y .

Suppose that

G Õ Y

is a d–isometric group action. Then the embedding (2.6) is equivariant with respect to
the induced action on functions by g �f D f ıg�1 . For every L> 0, the subspace of
L–Lipschitz functions LipL.Y; d

sym/� C.Y / is preserved by the action and contains,
for L� 1, the horoclosure xY . We equip G with the topology of uniform convergence
on bounded subsets, using the symmetrized metric d sym for both. Then the action
G Õ LipL.Y; d

sym/ is continuous. In particular, the action

G Õ xY

is continuous. We will use this fact in the situation when G is the isometry group of a
Riemannian symmetric space of noncompact type. In this case the topology of uniform
convergence on bounded subsets coincides with the Lie group topology.

An oriented geodesic in .Y; d/ is a “forward” isometric embedding cW I ! Y , ie for
any parameters t1 � t2 in I it holds that

d.c.t1/; c.t2//D t2� t1:
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In particular, c is continuous with respect to the symmetrized metric d sym . The metric
space .Y; d/ is called a geodesic space if any pair of points .y;y0/ can be connected
by an oriented geodesic from y to y0 .

If .Y; d/ is a geodesic space, then the horofunctions arising as limits of sequences
along geodesic rays are called Busemann functions, and their sublevel and level sets are
called horoballs and horospheres. We will denote by Hbb a horoball for the Busemann
function b , and more specifically, by Hbb;y the horoball of b which contains the
point y in its boundary horosphere.

In the situations studied in this paper, all horofunctions will turn out to be Busemann
functions; see Section 5.2.3.

Suppose that Z � Y is a closed convex subset. Then Z is a geodesic space with
respect to the induced metric, and proper if Y is proper. There is a natural map

(2:7) xZY
! xZ

from the extrinsic closure xZY � xY of Z in Y to the intrinsic horoclosure xZ of Z . It
extends idZ , and at infinity is the map @Y Z! @1Z from the boundary of Z in xY
into the horoboundary of Z given by the restriction of horofunctions to Z . If the latter
map is injective, then (2.7) is a homeomorphism and there is a natural embedding of
horoclosures

xZ! xY

given by “unique extension of horofunctions”.

2.7 Some notions of coarse geometry

Definition 2.8 A correspondence f W .X; d/ ! .X 0; d 0/ between metric spaces is
coarse Lipschitz if there exist constants L;A such that for all x;y 2 X , x0 2 f .x/

and y0 2 f .y/, we have

d 0.x0;y0/�Ld.x;y/CA:

Note that if .X; d/ is a geodesic metric space, then in order to show that f is coarse
Lipschitz it suffices to verify that there exists a constant C such that

d 0.x0;y0/� C

for all x;y 2X with d.x;y/� 1 and all x0 2 f .x/ and y0 2 f .y/.
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Two correspondences f1; f2W .X; d/! .X 0; d 0/ are said to be within distance D from
each other, written dist.f;g/�D , if for all x 2X and yi 2 fi.x/, we have

d 0.y1;y2/�D:

Two correspondences f1; f2 are said to be within finite distance from each other if
dist.f1; f2/�D for some D .

A correspondence .X; d/! .X; d/ is said to have bounded displacement if it is within
finite distance from the identity map.

Definition 2.9 A coarse Lipschitz correspondence f W .X; d/! .X 0; d 0/ is said to
have a coarse left inverse if there exists a coarse Lipschitz correspondence gW X 0!X

such that the composition g ıf has bounded displacement.

By applying the axiom of choice, we can always replace a coarse Lipschitz correspon-
dence f W .X; d/! .X 0; d 0/ with a coarse Lipschitz map f 0W .X; d/! .X 0; d 0/ within
bounded distance from f . With this in mind, if a coarse Lipschitz correspondence
f W .X; d/! .X 0; d 0/ admits a coarse left inverse, then f is within bounded distance
from a quasiisometric embedding f 0W .X; d/! .X 0; d 0/. However, the converse is in
general false, even in the setting of maps between finitely generated groups equipped
with word metrics.

We now specialize these concepts to the context of group homomorphisms. We note
that each continuous homomorphism of groups with left-invariant proper metrics is
always coarse Lipschitz. Suppose in the remainder of this section that � is a finitely
generated group and G is a connected Lie group equipped with a left-invariant metric.

Definition 2.10 We say that for a homomorphism �W � ! G , a correspondence
r W G! � is a coarse retraction if r is a coarse left inverse to � . A subgroup � <G

is a coarse retract if the inclusion map � ,!G admits a coarse retraction.

Similarly, we say that a homomorphism �W � ! G admits a coarse equivariant
retraction if there exists a coarse Lipschitz retraction r W G! � such that

r.hg/D r.h/r.g/ for all h 2 �.�/:

Accordingly, a subgroup � <G is a coarse equivariant retract if the inclusion homo-
morphism � ,!G admits a coarse equivariant retraction.
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More generally, given an isometric action of �W � Õ X on a metric space X, we say
that a coarse retraction r W X ! � is a coarse equivariant retraction if

r.
x/D 
 r.x/ for all 
 2 � and x 2X:

In the case when X D G=K is the symmetric space associated with a connected
semisimple Lie group G , a homomorphism � ! G admits a coarse equivariant
retraction if and only if the isometric action of � on X defined via � admits a coarse
equivariant retraction. Similarly, a subgroup � <G is a coarse retract if and only if
the orbit map �! �x �X admits a coarse left inverse.

3 Symmetric spaces

3.1 Basics

We assume that the reader is familiar with basics of symmetric spaces of noncompact
type (denoted by X throughout the paper), their isometry groups, visual boundaries
and Tits boundaries. We refer the reader to [17; 37; 28] for the required background.

In what follows, G will be a connected semisimple Lie group, K < G its maximal
compact subgroup, the stabilizer of a basepoint in X which will be denoted by o

or p . Then X Š G=K . We let B < G denote the minimal parabolic subgroup. All
maximal flats in X are isometric to a model flat Fmod , which is isometric to a euclidean
space En , where n is the rank of X. The model flat comes equipped with a (finite)
Weyl group, denoted by W . This group fixes the origin 0 2 Fmod , viewing Fmod as
a vector space. We will use the notation amod for the visual boundary of Fmod ; we
will identify amod with the unit sphere in Fmod equipped with the angular metric.
The sphere amod is the model spherical apartment for the group W . A fundamental
domain for the action of W on Fmod is a certain convex cone �D�mod � Fmod , the
model euclidean Weyl chamber of W ; its visual boundary is the model spherical Weyl
chamber �mod , which is a spherical simplex in amod . We let �W �mod! �mod denote the
opposition involution, also known as the standard involution, of �mod ; it equals �w0 ,
where w0 2 W is the element sending �mod to the opposite chamber in the model
apartment amod . We let R� F�mod denote the root system of X , and ˛1; : : : ; ˛n will
denote simple roots with respect to �:

�D fx 2 Fmod W ˛i.x/� 0; i D 1; : : : ; ng:

The space X has the �–valued “distance function” d� , which is the complete G–
congruence invariant of pairs of points in X ; see [28].
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We will denote by xX DX t @1X the visual compactification of X with respect to its
Riemannian metric, equipped with the visual topology, and @TitsX the Tits boundary
of X, which is the visual boundary together with the Tits metric †Tits . The Tits
boundary carries a natural structure as a piecewise spherical simplicial complex. For
a simplex � in @TitsX we will use the notation int.�/ for the open simplex in @TitsX

which is the complement in � to the union of its proper faces.

We will denote by xy the oriented geodesic segment in X connecting a point x to
a point y ; similarly, x� will denote the geodesic ray from x 2 X asymptotic to the
point � 2 @1X.

We will always use the notation �; y� to indicate that the simplices � and y� in @TitsX

are opposite (antipodal), ie are swapped by a Cartan involution of X. Each simplex,
of course, has a continuum of antipodal simplices. Simplices � and y� are called x–
opposite if the Cartan involution sx fixing x sends � to y� . Similarly, points �; y� 2@1X

are x–opposite if sx swaps � and y� .

We will use the notation � W @TitsX ! �mod for the type map, ie the canonical projection
of the Tits building to the model chamber. For distinct points x;y 2X we let �.xy/ 2

�mod denote the type of the direction of the oriented segment xy , ie the unit vector in
the direction of the vector d�.x;y/.

For each face �mod of �mod one defines the flag manifold Flag�mod
, which is the set of

all simplices of type �mod in @TitsX. Equipped with the visual topology, Flag�mod
is

a homogeneous manifold homeomorphic to G=P , where P is a parabolic subgroup
of G stabilizing a face of type �mod . The full flag manifold G=B D Flag.�mod/ is
naturally identified with the Furstenberg boundary @FuX of X.

The flag manifolds Flag�mod
and Flag��mod

are opposite in the sense that the simplices
opposite to simplices of type �mod have type ��mod . To ease notation, we will denote
the pair of opposite flag manifolds also by Flag˙�mod

whenever convenient, ie we put
FlagC�mod

WD Flag�mod
and Flag��mod

WD Flag��mod
. The latter is also reasonable, because

the simplices ��mod; ��mod � amod lie in the same W –orbit, ie ��mod has type ��mod .
(Here we extend the notion of type to the model apartment, defining the type of a simplex
in amod as its image under the natural quotient projection amod! amod=W Š �mod .)

For a simplex y� 2 Flag��mod
, we let C.y�/ � Flag�mod

denote the subset consisting of
simplices antipodal to y� . This subset is open and dense in Flag�mod

and is called an
open Schubert stratum (or cell) in Flag�mod

.
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For a point x 2X, we denote by †xX the space of directions at x , ie the unit sphere in
the tangent space TxX. Similarly, for a spherical building B or a subcomplex C� B,
and a point � 2 C, we let †�C denote the space of directions of C at � .

For a subset Y �X we let @1Y denote the visual boundary of Y , ie its accumulation
set in the visual boundary of X. A set Y � X is said to be asymptotic to a subset
Z � @1X if Z � @1Y .

For a subset Z � @1X we let V .x;Z/ � X denote the union of geodesic rays x�

for all � 2Z . In the special case when Z D � is a simplex6 in @1X, then V .x; �/ is
the Weyl sector in X with tip x and base � . A Weyl sector whose base is a chamber
in @1X is a (euclidean) Weyl chamber in X.

Two Weyl sectors V .x1; �/ and V .x2; �/ are strongly asymptotic if for any � > 0

there exist points yi 2 V .xi ; �/ such that the subsectors V .y1; �/ and V .y2; �/ are
�–Hausdorff close.

A sequence xi 2 V .x; �/ (where � has the type �mod ) is �mod–regular if it diverges
from the boundary of V .x; �/, ie from the subsectors V .x; � 0/ for all proper faces � 0

of � .

For distinct points x;y 2X and � 2 @1X we let †x.y; �/ denote the angle between
the geodesic segment xy and the geodesic ray x� at the point x 2X.

We let b� denote the Busemann function (defined with respect to the usual Riemannian
metric on X ) associated with a point � in the visual boundary of X. The gradient
rb�.x/, for x 2X , is the unit vector tangent to the geodesic ray x� and pointing away
from �; see eg [4, page 28]. In particular, the slope of b� along a geodesic segment
xy at z 2 xy equals �cos.†x.y; �//.

Let d denote the standard distance function on X, and let Hb� denote a closed horoball
in X, which is a sublevel set fb� � tg for the Riemannian Busemann function b� .

For a chamber � � @1X we let H� denote the associated unipotent horocyclic
subgroup, the unipotent radical of the minimal parabolic subgroup B� of G sta-
bilizing � . Similarly, for a simplex � in @TitsX we let H� denote the associated
unipotent horocyclic subgroup, the unipotent radical in the parabolic subgroup P� of G

stabilizing � .

6This means a simplex with respect to the spherical Tits building structure on @1X.
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Elements of H� preserve the strong asymptote classes of geodesic rays x� , � 2 int.�/
and hence the strong asymptote classes of sectors V .x; �/. Furthermore, H� acts
transitively on the set of sectors V .x0; �/ strongly asymptotic to the given sector V .x; �/.
We refer to [7, Proposition 14.21] for an algebraic argument and to [33, Section 2.10]
for a geometric proof.

3.2 Parallel sets, stars and cones

3.2.1 Parallel sets Let s � @TitsX be an isometrically embedded (simplicial) unit
sphere. We denote by P .s/�X the parallel set associated to s , which can be defined
as the union of maximal flats F �X asymptotic to s , ie s � @1F . Alternatively, one
can define it as the union of flats f �X with ideal boundary @1f D s .

The parallel set is a totally geodesic subspace which splits metrically as the product

(3:1) P .s/Š f �CS.s/

of any of these flats and a symmetric space CS.s/ called its cross-section. Accordingly,
the ideal boundary of the parallel set is a metric suspension

(3:2) @TitsP .s/Š @Titsf ı @Tits CS.s/:

It coincides with the subbuilding B.s/� @1X consisting of the union of all apartments
a� @1X containing s ,

B.s/D @1P .s/:

It is immediate that parallel sets are nonpositively curved symmetric spaces. However,
they do not have noncompact type as their euclidean de Rham factors are nontrivial.
The factor f in the splitting (3.2) of the parallel set is then the euclidean de Rham factor
and the cross-section CS.s/ has trivial euclidean de Rham factor, ie it is a symmetric
space of noncompact type.

For a pair of antipodal simplices �C; �� � @1X there exists a unique minimal singular
sphere s D s.��; �C/ � @1X containing them. We let P .��; �C/ WD P .s.��; �C//;
this parallel set is the union of (maximal) flats F �X whose ideal boundaries contain
�� [ �C . In order to simplify the notation, we will denote B.s.��; �C// simply by
B.��; �C/. Given two antipodal points �C; �� 2 @TitsX we let B.��; �C/ denote the
subbuilding B.��; �C/, where �˙ are the antipodal simplices satisfying �˙ 2 int.�˙/.

Geometry & Topology, Volume 22 (2018)



2552 Michael Kapovich and Bernhard Leeb

We will use the notation CS.��; �C;p/ for the cross-section CS.s/ passing through
the point p 2 P .s/. Similarly, f .��; �C;p/ will denote the flat in P .��; �C/ which
is parallel to the euclidean factor of P .��; �C/ and contains p .

We will use the notation T .s/D T .��; �C/ for the group of transvections along the
flat f ; this group is the same for all flats parallel to f and depends only on s .

3.2.2 Stars

Definition 3.3 (stars) Let � � @TitsX be a simplex. We define the star7 st.�/ of the
open simplex int.�/ as the subcomplex of @TitsX consisting of all simplices intersecting
the open simplex int.�/ nontrivially (ie containing � ). In other words, st.�/ is the
smallest subcomplex of @TitsX containing all chambers � such that � � � .

We define the open star ost.�/� @1X as the union of all open simplices whose closure
intersects int.�/ nontrivially. For the model simplex �mod , we will use the notation
ost.�mod/ to denote its open star in the simplicial complex consisting of faces of �mod .

For a point � 2 @TitsX we let st.�/ � @1X denote the star of the simplex spanned
by � , ie the unique simplex � such that � 2 int.�/.

Note that ost.�/ is an open subset of the simplex �mod ; it does not include any open
faces of � except for the interior of � . Furthermore, @ st.�/ D st.�/� ost.�/ is the
union of all panels8 � of type �.�/ 6� �mod which are contained in a chamber with
face � .

Lemma 3.4 The star st.x�/ of a simplex x� � amod is a convex subset of amod . Further-
more, st.x�/ equals the intersection of the simplicial hemispheres xh� amod such that
int.x�/� int xh.

Proof If a hemisphere xh contains a simplex x� , but does not contain it in its boundary,
then all chambers containing this simplex as a face belong to the (closed) hemisphere.
Conversely, if a chamber x� does not contain x� as a face, then there exists a wall which
separates x� from x� .

Similarly, the star st.�/ of a simplex � � @TitsX is a convex subset of @TitsX. One can
represent it as the intersection of all simplicial �

2
–balls which contain int.�/ in their

interior. One can represent st.�/ also as the intersection of fewer balls:

7The star st.�/ is also known as the residue of � .
8Panels in a spherical building are codimension-one faces. The type of a panel is its projection to �mod .
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Lemma 3.5 (convexity of stars) (i) Let � � @TitsX be a simplex. Then st.�/
equals the intersection of the simplicial �

2
–balls whose interior contains int.�/.

(ii) For any simplex y� opposite to � , the star st.�/ equals the intersection of the
subbuilding B.�; y�/ D @1P .�; y�/ with all simplicial �

2
–balls whose interior

contains int.�/ and whose center lies in this subbuilding.

Proof (i) If a simplicial �
2

–ball contains a simplex � , but does not contain it in
its boundary, then all chambers containing this simplex as a face belong to this ball.
Conversely, let � be a chamber which does not contain � as a face. There exists an
apartment a� @TitsX which contains � and � . As before in the proof of Lemma 3.4,
there exists a simplicial hemisphere h� a containing � but not � . Then the simplicial
�
2

–ball with the same center as h contains � but not � .

(ii) Note first that st.�/ � B.�; y�/. Then we argue as in part (i), observing that if
� � B.�; y�/ then a can be chosen inside B.�; y�/.

3.2.3 Stars and ideal boundaries of cross-sections Let ��@1X be a simplex. We
say that two chambers �1; �2 � � are �–antipodal if there exists a segment connecting
interior points of �1; �2 and passing through an interior point of � .

The link †� st.�/ carries a natural structure as a topological spherical building, and
is naturally isomorphic as such to @1 CS.y�; �/ for any y� opposite to � . Chambers
� � st.�/ correspond to chambers in †� st.�/, and pairs of �–opposite chambers
to pairs of opposite chambers. It follows that for every chamber � � � , the set of
�–opposite chambers in st.�/ is open and dense as a subset of stFu.�/. Here, we denote
by stFu.�/� @FuX the subset of chambers containing � .

3.2.4 Weyl cones Given a simplex � in @TitsX and a point x 2 X, the union
V .x; st.�// of all rays x� with � 2 st.�/ is called the Weyl cone with the tip x and the
base st.�/. Below we will prove that Weyl cones V .x; st.�// are convex. We begin
with:

Lemma 3.6 For every x 2 P .�; y�/, the Weyl cone V .x; st.�// is contained in the
parallel set P .�; y�/.

Proof Consider a chamber � in @TitsX containing � . The Weyl sector V .x; �/ is
contained in a (unique maximal) flat F � X. Since �; y� are antipodal with respect
to x , we have � [ y� � @1F . Therefore, F � P .�; y�/.
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Proposition 3.7 (convexity of Weyl cones) Let y� be the simplex opposite to � with
respect to x . Then the Weyl cone V .x; st.�// is the intersection of the parallel set
P .�; y�/ with the horoballs which are centered at @1P .�; y�/ and contain V .x; st.�//.
In particular, V .x; st.�// is a closed convex subset of X.

Proof One inclusion is clear. We must prove that each point y 2P .�; y�/�V .x; st.�//
is not contained in one of these horoballs. There exists a maximal flat F � P .�; y�/

containing x and y . (Any two points in a parallel set lie in a common maximal flat.)
We extend the oriented segment xy to a ray x� inside F .

As in the proof of Lemma 3.5, there exists � 2 @1F such that xB
�
�; �

2

�
contains st.�/

but does not contain �. Then the horoball Hb�;x intersects F in a half-space which
contains x in its boundary hyperplane but does not contain � in its ideal boundary.
Therefore, it does not contain y . By convexity, V .x; st.�//� Hb�;x .

The following consequence will be important for us.

Corollary 3.8 (nested cones) If x0 2 V .x; st.�//, then V .x0; st.�//� V .x; st.�//.

Let xy�X be an oriented �mod–regular geodesic segment. Then we define the simplex
� D �.xy/� @1X as follows: forward extend the segment xy to the geodesic ray x� ,
and let � be the unique face of type �mod of @TitsX such that � 2 st.�/.

We refer the reader to [33, Lemma 2.16] for a proof of the following:

Lemma 3.9 (open cones) If x 2 P .�; y�/, then V .x; ost.�//�fxg is an open subset
of P .�; y�/. In particular, if xn 2 P .�; y�/ flag-converges to � , then xn 2 V .x; ost.�//
for all sufficiently large n.

Definition 3.10 (diamond) We define the �mod–diamond of a �mod–regular segment
x�xC as

}�mod.x�;xC/D V .x�; st.�C//\V .xC; st.��//� P .��; �C/;

where �˙ D �.x�x˙/.

Thus, every diamond is a convex subset of X.

3.2.5 Shadows at infinity and strong asymptoticity of Weyl cones This material
is taken from [34, Section 4.1].
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For a simplex �� 2 Flag��mod
and a point x 2X, we consider the function

(3:11) � 7! d.x;P .��; �//

on the open Schubert stratum C.��/�Flag�mod
. We denote by �C 2C.��/ the simplex

x–opposite to �� .

Lemma 3.12 The function (3.11) is continuous and proper.

Proof This follows from the fact that C.��/ and X are homogeneous spaces for the
parabolic subgroup P�� . Indeed, continuity follows from the continuity of the function

g 7! d.x;P .��;g�C//D d.g�1x;P .��; �C//

on P�� which factors through the orbit map P�� ! C.��/, g 7! g�C .

Regarding properness, note that a simplex � 2 C.��/ is determined by any point y

contained in the parallel set P .��; �/, namely as the simplex y–opposite to �� . Thus,
if P .��; �/\B.x;R/¤∅ for some fixed R> 0, then there exists g 2 P�� such that
� D g�C and d.x;gx/ <R. In particular, g lies in a compact subset. This implies
properness.

Moreover, the function (3.11) has a unique minimum zero in �C .

We define the following open subsets of C.��/ which can be regarded as shadows of
balls in X with respect to �� . For x 2X and r > 0, we put

U��;x;r WD f� 2 C.��/ j d.x;P .��; �// < rg:

The next fact expresses the uniform strong asymptoticity of asymptotic Weyl cones.

Lemma 3.13 For r;R> 0, there exists d D d.r;R/ > 0 such that if y 2 V .x; st.��//
with d.y; @V .x; st.��///� d.r;R/, then U��;x;R � U��;y;r .

Proof If U��;x;R 6�U��;y;r there exists x02B.x;R/ such that d.y;V .x0;st.��///� r .
Thus, if the assertion is wrong, there exist a sequence xn ! x1 in xB.x;R/ and
a sequence yn ! 1 in V .x; st.��// such that d.yn; @V .x; st.��/// ! C1 and
d.yn;V .xn; st.��///� r .

Let �W Œ0;C1/! V .x; ��/ be a geodesic ray with initial point x and asymptotic
to an interior point of �� . Then the sequence .yn/ eventually enters every Weyl
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cone V .�.t/; st.��//. Since the distance function d. � ;V .xn; st.��/// is convex and
bounded, and hence nonincreasing along rays asymptotic to st.��/, we have that

R� d.x;V .xn; st.��///� d.�.t/;V .xn; st.��///� d.yn;V .xn; st.��///� r

for n� n.t/. It follows that, for all t ,

R� d.�.t/;V .x1; st.��///� r:

However, the ray � is strongly asymptotic to V .x1; st.��//, a contradiction.

3.2.6 Some spherical building facts We discuss some facts from spherical building
geometry. In this paper, they are applied to the visual boundary @1X equipped with
its structure of a thick spherical Tits building. We recall that a building is thick if every
wall in the building is the intersection of three half-apartments.

First recall the following lemma; see the first part of [37, Lemma 3.10.2].9

Lemma 3.14 In a spherical building B, every point � 2 B has an antipode in every
apartment a � B, and hence for every simplex � � B , there is an opposite simplex
y� � a.

We need the more precise statement that a point has several antipodes in an apartment
unless it lies in the apartment itself:

Lemma 3.15 (cf [30, Sublemma 5.20]) Let � be a point in a spherical building B
and let a� B be an apartment. If � has only one antipode in a, then � 2 a.

Proof Suppose that � 62 a and let y� 2 a be an antipode of � . We choose a “generic”
segment �y� of length � tangent to a at y� as follows. The suspension B.�; y�/ � B
contains an apartment a0 with the same unit tangent sphere at y� , †y�a

0D†y�a. Inside a0

there exists a segment �y� whose interior does not meet simplices of codimension � 2.
Hence y�� leaves a at an interior point �¤ �; y� of a panel � � a, ie a\ �y� D �y� and
� \ �y� D �, and �� initially lies in a chamber adjacent to � but not contained in a.
Let s � a be the wall (codimension-one singular sphere) containing � . By reflecting y�
at s , one obtains a second antipode for � in a, contradiction.

We will also need the following fact:

9The statement of the second part contains a typo: H should be replaced by xB
�
�; �

2

�
\A .
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Lemma 3.16 Suppose that the spherical building B is thick. Then for any simplex
� � B, the intersection of all apartments containing � equals � .

Proof Suppose first that � is a chamber. Let � 2B�� . For a generic point � 2 int.�/,
the segment �� leaves � through an interior point of a panel. By thickness, there
exists an apartment a � B such that a\ �� D � \ �� . Then � 62 a. This shows the
assertion in the case when � is a chamber. If � is an arbitrary simplex, it follows that
the intersection of all apartments containing � is contained in the intersection of all
chambers containing � , which equals � .

4 Regularity and contraction

In this section, we discuss a class of discrete subgroups of semisimple Lie groups
which will be the framework for most of our investigations in this paper. In particular,
it contains Anosov subgroups. The class of subgroups will be distinguished by an
asymptotic regularity condition which in rank one just amounts to discreteness, but
in higher rank is strictly stronger. The condition will be formulated in two equivalent
ways. First dynamically in terms of the action on a flag manifold, then geometrically
in terms of the orbits in the symmetric space.

Much of the material in this section can be found in some form already in the founda-
tional work of Benoist (see [5, Section 3]) in the setting of Zariski dense subgroups
of reductive algebraic groups over local fields, notably the notions of regularity and
contraction, their essential equivalence, and the notion of limit set. For the sake
of completeness we give independent proofs in our setting of discrete subgroups of
semisimple Lie groups. Also our methods are rather different. We give here a geometric
treatment and present the material in a form suitable to serve as a basis for the further
development of our theory of discrete isometry groups acting on Riemannian symmetric
spaces and euclidean buildings of higher rank, such as in our papers [34; 30; 31].

4.1 Contraction

Consider the action
G Õ Flag�mod

on the flag manifold of type �mod . Recall that for a simplex �� of type ��mod we denote
by C.��/� Flag�mod

the open dense P��–orbit; it consists of the simplices opposite
to �� .
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We introduce the following dynamical conditions for sequences and subgroups in G :

Definition 4.1 (contracting sequence) A sequence .gn/ in G is �mod–contracting if
there exist simplices �C 2 Flag�mod

and �� 2 Flag��mod
such that

(4:2) gnjC.��/! �C

uniformly on compacts as n!C1.

Definition 4.3 (convergence type dynamics) A subgroup �<G is a �mod–convergence
subgroup if every sequence .
n/ of distinct elements in � contains a �mod–contracting
subsequence.

Note that �mod–contracting sequences diverge to infinity and therefore �mod–convergence
subgroups are necessarily discrete.

A notion for sequences in G equivalent to �mod–contraction had been introduced by
Benoist in his fundamental paper [5]; see in particular his Lemma 3.5(5).

The contraction property exhibits a symmetry:

Lemma 4.4 (symmetry) Property (4.2) is equivalent to the dual property that

(4:5) g�1
n jC.�C/! ��

uniformly on compacts as n!C1.

Proof Suppose that (4.2) holds but (4.5) fails. Equivalently, after extraction there
exists a sequence �n! �¤ �� in Flag��mod

such that gn�n! � 0 2C.�C/. Since �¤ �� ,
there exists y�� 2 C.��/ not opposite to � . (For instance, take an apartment in @1X

containing �� and � , and let y�� be the simplex opposite to �� in this apartment.) Hence
there is a sequence �n! y�� in Flag�mod

such that �n is not opposite to �n for all n.
(It can be obtained eg by taking a sequence hn! e in G such that �nDhn� and putting
�nD hny�� .) Since y�� 2C.��/, condition (4.2) implies that gn�n! �C . It follows that
�C is not opposite to � 0 , because gn�n is not opposite to gn�n and being opposite is an
open condition. This contradicts � 0 2 C.�C/. Therefore, condition (4.2) implies (4.5).
The converse implication follows by replacing the sequence .gn/ with .g�1

n /.

Lemma 4.6 (uniqueness) The simplices �˙ in (4.2) are uniquely determined.
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Proof Suppose that besides (4.2) we also have gnjC.� 0�/
! � 0C with simplices � 0

˙
2

Flag˙�mod
. Since the subsets C.��/ and C.� 0�/ are open dense in Flag�mod

, their
intersection is nonempty and hence � 0CD �C . Using the equivalent dual conditions (4.5)
we similarly obtain that � 0� D �� .

4.2 Regularity

The second set of asymptotic properties concerns the geometry of the orbits in X.

We first consider sequences in the euclidean model Weyl chamber �. Recall that
@�mod� D V .0; @�mod�mod/ � � is the union of faces of � which do not contain the
sector V .0; �mod/. Note that @�mod�\V .0; �mod/D @V .0; �mod/D V .0; @�mod/.

Definition 4.7 A sequence .ın/ in � is

(i) �mod–regular if it drifts away from @�mod�:

d.ın; @�mod�/!C1:

(ii) �mod–pure if it is contained in a tubular neighborhood of the sector V .0; �mod/

and drifts away from its boundary:

d.ın; @V .0; �mod//!C1:

Note that .ın/ is �mod–regular/pure if and only if .�ın/ is ��mod–regular/pure.

We extend these notions to sequences in X and G :

Definition 4.8 (regular and pure) (i) A sequence .xn/ in X is �mod–regular
(respectively, �mod–pure) if for some (any) basepoint o 2 X the sequence of
�–distances d�.o;xn/ in � has this property.

(ii) A sequence .gn/ in G is �mod–regular (respectively, �mod–pure) if for some
(any) point x 2X the orbit sequence .gnx/ in X has this property.

(iii) A subgroup � < G is �mod–regular if all sequences of distinct elements in �
have this property.

That these properties are independent of the basepoint and stable under bounded
perturbation of the sequences is due to the triangle inequality jd�.x;y/�d�.x

0;y0/j �

d.x;x0/C d.y;y0/.
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Subsequences of �mod–regular/pure sequences are again �mod–regular/pure.

Clearly, �mod–pureness is a strengthening of �mod–regularity; a sequence in � is �mod–
pure if and only if it is �mod–regular and contained in a tubular neighborhood of
V .0; �mod/.

The face type of a pure sequence is uniquely determined. Moreover, a �mod–regular
sequence is � 0mod–regular for every face type � 0mod � �mod , because @� 0mod

�� @�mod�.

A sequence .gn/ is �mod–regular/pure if and only if the inverse sequence .g�1
n / is

��mod–regular/pure, because d�.x;g
�1
n x/D d�.gnx;x/D �d�.x;gnx/.

Note that �mod–regular subgroups are in particular discrete. If rank.X /D 1, then dis-
creteness is equivalent to (�mod–)regularity. In higher rank, regularity can be considered
as a strengthening of discreteness: a discrete subgroup � <G may not be �mod–regular
for any face type �mod ; this can happen eg for free abelian subgroups of transvections
of rank � 2.

A property for sequences in G equivalent to regularity had appeared in the influential
work of Benoist, [5, Lemma 3.5(1)].

Lemma 4.9 (pure subsequences) Every sequence which diverges to infinity contains
a �mod–pure subsequence for some face type �mod � �mod .

Proof In the case of sequences in �, take �mod to be a minimal face type so that a
subsequence is contained in a tubular neighborhood of V .0; �mod/.

Note also that a sequence which diverges to infinity is �mod–regular if and only if it
contains �mod–pure subsequences only for face types �mod � �mod .

The lemma implies in particular that every sequence 
n!1 in a discrete subgroup
� <G contains a subsequence which is �mod–regular, even �mod–pure, for some face
type �mod .

Remark 4.10 Regularity has a natural Finsler geometric interpretation: a sequence
in X is �mod–regular if and only if, in the Finsler compactification xX FinsDX t@Fins

1 X

of X, it accumulates at the closure of the stratum S�mod � @
Fins
1 X at infinity. See

Proposition 5.42.
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4.3 Contraction implies regularity

In this section and the next, we relate contractivity and regularity for sequences and,
as a consequence, establish the equivalence between �mod–regularity and the �mod–
convergence property for discrete subgroups.

To relate contraction and regularity, it is useful to consider the G–action on flats. We
let F�mod denote the space of flats f � X of type �mod . Two flats f˙ 2 F�mod are
dynamically related with respect to a sequence .gn/ in G , written

f�
.gn/
� fC;

if there exists a sequence of flats fn! f� in F�mod such that gnfn! fC . The action
of .gn/ on F�mod is proper if and only if there are no dynamical relations with respect
to subsequences; see Section 2.3.

Dynamical relations between singular flats yield dynamical relations between maximal
ones:

Lemma 4.11 If f˙ 2F�mod are flats such that f�
.gn/
� fC , then for every maximal flat

FC � fC there exist a maximal flat F� � f� and a subsequence .gnk
/ such that

F�
.gnk

/
� FC:

Proof Let fn! f� be a sequence in F�mod such that gnfn! fC . Then there exists
a sequence of maximal flats Fn � fn such that gnFn! FC . The sequence .Fn/ is
bounded because the sequence .fn/ is, and hence .Fn/ subconverges to a maximal
flat F� � f� .

For pure sequences there are dynamical relations between singular flats of the corre-
sponding type with respect to suitable subsequences:

Lemma 4.12 If .gn/ is �mod–pure, then the action of .gn/ on F�mod is not proper.

More precisely, there exist simplices �˙ 2 Flag�mod
such that for every flat fC 2 F�mod

asymptotic to �C there exist a flat f� 2 F�mod asymptotic to �� and a subsequence
.gnk

/ such that

f�
.gnk

/
� fC:
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Proof By pureness, there exists a sequence .�n/ in Flag�mod
such that

(4:13) sup
n

d.gnx;V .x; �n// <C1

for any point x 2 X. There exists a subsequence .gnk
/ such that �nk

! �C and
g�1

nk
�nk
! �� .

Let fC 2 F�mod be asymptotic to �C . We choose x 2 fC and consider the sequence of
flats fk 2 F�mod through x asymptotic to �nk

. Then fk ! fC . The sequence of flats
.g�1

nk
fk/ is bounded as a consequence of (4.13). Therefore, after further extraction,

we obtain convergence g�1
nk
fk ! f� . The limit flat f� is asymptotic to �� because

the fk are asymptotic to g�1
nk
�nk

.

By a diagonal argument one can also show that the subsequences .gnk
/ in Lemmas 4.11

and 4.12 can be made independent of the flats FC and fC , respectively.

For contracting sequences, the possible dynamical relations between maximal flats are
restricted as follows:

Lemma 4.14 Suppose that .gn/ is �mod–contracting with (4.2), and that F�
.gn/
� FC

for maximal flats F˙ 2 F . Then �˙ � @1F˙ .

Proof Suppose that �� 6� @1F� . Then the visual boundary sphere @1F� contains
at least two different simplices y��; y� 0� opposite to �� ; see Lemma 3.15.

Let Fn!F� be a sequence in F such that gnFn!FC . Due to Fn!F� , there exist
sequences of simplices �n; �

0
n � @1Fn such that �n! y�� and � 0n! y�

0
� . In particular,

�n ¤ �
0
n for large n. After extraction, we also obtain convergence gn�n ! y�C and

gn�
0
n!y�

0
C . Moreover, since gnFn!FC , it follows that the limits y�C; y� 0C are different

simplices in @1FC .

This is however in conflict with the contraction property (4.2). In view of y��; y� 0� 2
C.��/, the contraction property implies that gn�n! �C and gn�

0
n! �C , convergence

to the same simplex, a contradiction. Thus, �� � @1F� .

Considering the inverse sequence .g�1
n / yields �C � @1FC ; see Lemma 4.4.

Combining the previous lemmas, we obtain:

Lemma 4.15 If a sequence in G is �mod–contracting and �mod–pure, then �mod� �mod .
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Proof We denote the sequence by .gn/ and assume (4.2). According to Lemmas 4.12
and 4.11, by �mod–purity, there exist simplices �˙ 2 Flag�mod

such that for every
maximal flat FC with @1FC � �C there exist a maximal flat F� with @1F� � ��

and a subsequence .gnk
/ such that

F�
.gnk

/
� FC:

By Lemma 4.14, always �C � @1FC . Varying FC , it follows that �C � �C ; see
Lemma 3.16.

From these observations, we conclude:

Proposition 4.16 (contracting implies regular) If a sequence in G is �mod–contracting
then it is �mod–regular.

Proof Consider a sequence in G which is not �mod–regular. Then a subsequence is
�mod–pure for some face type �mod � @�mod�mod ; compare Lemma 4.9. The condition
on the face type is equivalent to �mod 6� �mod . By the last lemma, the subsequence
cannot be �mod–contracting.

4.4 Regularity implies contraction

We now prove a converse to Proposition 4.16. Since contractivity involves a convergence
condition, we can expect regular sequences to be contracting only after extraction.

Consider a �mod–regular sequence .gn/ in G . After fixing a point x 2X, there exist
simplices �˙n 2 Flag˙�mod

(unique for large n) such that

(4:17) g˙1
n x 2 V .x; st.�˙n //:

Note that the sequence .g�1
n / is ��mod–regular; see the comment after Definition 4.8.

Lemma 4.18 If �˙n ! �˙ in Flag˙�mod
, then .gn/ is �mod–contracting with (4.2).

Proof Since x 2 gnV .x; st.��n //DV .gnx; st.gn�
�
n //, it follows together with gnx 2

V .x; st.�Cn // that the Weyl cones V .gnx; st.gn�
�
n // and V .x; st.�Cn // lie in the same

parallel set, namely in P .gn�
�
n ; �

C
n /, and face in opposite directions. In particular, the

simplices gn�
�
n and �Cn are x–opposite, and thus gn�

�
n converges to the simplex y�C

which is x–opposite to �C :
gn�
�
n ! y�C:
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Since the sequence .g�1
n x/ is ��mod–regular, it holds that

d.g�1
n x; @V .x; st.��n ///!C1:

By Lemma 3.13, for any r;R> 0, one has for n� n.r;R/ the inclusion of shadows:

U��n ;x;R � U��n ;g�1
n x;r :

Thus, there exist sequences of positive numbers Rn!C1 and rn! 0 such that

U��n ;x;Rn
� U��n ;g�1

n x;rn

for large n; equivalently,

(4:19) gnU��n ;x;Rn
� Ugn�

�
n ;x;rn

:

Since ��n ! �� and Rn!C1, the shadows U��n ;x;Rn
� C.��n /� Flag�mod

exhaust
C.��/ in the sense that every compact in C.��/ is contained in U��n ;x;Rn

for large n.10

On the other hand, since gn�
�
n !y�C and rn! 0, the Ugn�

�
n ;x;rn

shrink, ie Hausdorff
converge to the point �C .11 Therefore, (4.19) implies that

gnjC.��/! �C

uniformly on compacts, ie .gn/ is �mod–contracting.

With the lemma, we can add the desired converse to Proposition 4.16 and obtain a
characterization of regularity in terms of contraction:

Proposition 4.20 The following properties are equivalent for sequences in G :

(i) Every subsequence contains a �mod–contracting subsequence.

(ii) The sequence is �mod–regular.

Proof This is a direct consequence of the lemma. For the implication (ii)D) (i) one
uses the compactness of flag manifolds. The implication (i)D) (ii) is obtained as
follows (compare the proof of Proposition 4.16): If a sequence is not �mod–regular,

10Indeed, for fixed R> 0 we have Hausdorff convergence U��n ;x;R! U��;x;R in Flag�mod
, which

follows eg from the transitivity of the action Kx Õ Flag��mod
of the maximal compact subgroup Kx <G

fixing x . Furthermore, the shadows U��;x;R exhaust C.��/ as R!C1 ; see the continuity part of
Lemma 3.12.

11Indeed, Ugn�
�
n ;x;r ! Uy�C;x;r in Flag�mod

for fixed r > 0 , and Uy�C;x;r ! �C as r ! 0 , using
again the continuity part of Lemma 3.12 and the fact that the function (3.11) assumes the value zero only
in �C .
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then it contains a �mod–pure subsequence for some face type �mod 6� �mod . Every
subsequence of this subsequence is again �mod–pure and hence not �mod–contracting
by Lemma 4.15.

A version of Proposition 4.20 had already been proven by Benoist in his fundamental
work; see [5, Lemma 3.5].

We conclude for subgroups:

Theorem 4.21 A subgroup �<G is �mod–regular if and only if it is a �mod–convergence
subgroup.

Proof By definition, � is �mod–regular if and only if every sequence .
n/ of distinct
elements in � is �mod–regular, and �mod–convergence if and only if every such sequence
.
n/ has a �mod–contracting subsequence. According to the proposition, both conditions
are equivalent.

4.5 Convergence at infinity and limit sets

The discussion in the preceding two sections leads to a natural notion of convergence
at infinity for regular sequences in X and G . As regularity, it can be expressed both in
terms of orbit geometry in X and dynamics on flag manifolds.

We first consider a �mod–regular sequence .gn/ in G . Flexibilizing condition (4.17),
we choose points x;x0 2X and consider a sequence .�n/ in Flag�mod

such that

(4:22) sup
n

d.gnx;V .x0; st.�n/// <C1:

Note that the condition is independent of the choice of the points x and x0 .12

Lemma 4.23 The accumulation set of .�n/ in Flag�mod
depends only on .gn/.

Proof Let .� 0n/ be another sequence in Flag�mod
such that d.gnx;V .x0; st.� 0n/// is

uniformly bounded. Assume that after extraction �n! � and � 0n! � 0 . We must show
that � D � 0 .

We may suppose x0D x . There exist bounded sequences .bn/ and .b0n/ in G such that

gnbnx 2 V .x; st.�n// and gnb0nx 2 V .x; st.� 0n//

12Recall that the Hausdorff distance of asymptotic Weyl cones V .y; st.�// and V .y0; st.�// is bounded
by the distance d.y;y0/ of their tips.
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for all n. Note that the sequences .gnbn/ and .gnb0n/ in G are again �mod–regular. By
Lemma 4.18, after further extraction, they are �mod–contracting with

gnbnjC.��/! � and gnb0njC.� 0�/! � 0

uniformly on compacts for some ��; � 0� 2 Flag��mod
. Moreover, we may assume

convergence bn! b and b0n! b0 . Then

gnjC.b��/! � and gnjC.b0� 0�/
! � 0

uniformly on compacts. With Lemma 4.6 it follows that � D � 0 .

In view of the lemma, we can define the following notion of convergence:

Definition 4.24 (flag convergence of sequences in G ) A �mod–regular sequence .gn/

in G �mod–flag converges to a simplex � 2 Flag�mod
,

gn! �;

if �n! � in Flag�mod
for some sequence .�n/ in Flag�mod

satisfying (4.22).

We can now characterize contraction in terms of flag convergence. We rephrase
Lemma 4.18 and show that its converse holds as well:

Lemma 4.25 For a sequence .gn/ in G and simplices �˙ 2 Flag˙�mod
, the following

are equivalent:

(i) .gn/ is �mod–contracting with gnjC.��/! �C uniformly on compacts.

(ii) .gn/ is �mod–regular and g˙1
n ! �˙ .

In part (ii), the sequence .g�1
n / is ��mod–regular and g�1

n ! �� means ��mod–flag
convergence.

Proof The implication (ii)D) (i) is Lemma 4.18.

Conversely, suppose that (i) holds. Since the sequence .gn/ is �mod–contracting, it
is �mod–regular by Proposition 4.16. Let .�˙n / be sequences satisfying (4.17). We
must show that �˙n ! �˙ . Otherwise, after extraction we obtain that �˙n ! � 0

˙
with

� 0C ¤ �C or � 0� ¤ �� . Then also gnjC.� 0�/
! � 0C by Lemma 4.18, and Lemma 4.6

implies that � 0
˙
D �˙ , a contradiction.
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Conversely, we can characterize flag convergence in terms of contraction and thus give
an alternative dynamical definition of it:

Lemma 4.26 For a sequence .gn/ in G , the following are equivalent:

(i) .gn/ is �mod–regular and gn! � .

(ii) There exists a bounded sequence .bn/ in G and �� 2 Flag��mod
such that

gnbnjC.��/! � uniformly on compacts.

(iii) There exists a bounded sequence .b0n/ in G such that b0ng�1
n jC.�/ converges to

a constant map uniformly on compacts.

Proof (ii)D) (i) According to the previous lemma the sequence .gnbn/ is �mod–
regular and �mod–flag converges, gnbn ! � . Since d.gnx;gnbnx/ is uniformly
bounded, this is equivalent to .gn/ being �mod–regular and gn! � .

(i)D) (ii) The sequence .g�1
n / is ��mod–regular. There exists a bounded sequence

.b0n/ in G such that .b0ng�1
n / ��mod–flag converges, b0ng�1

n ! �� 2 Flag��mod
. We put

bn D b0n
�1 . Since also .gnbn/ is �mod–regular and gnbn ! � , it follows from the

previous lemma that gnbnjC.��/! � uniformly on compacts.

The equivalence (ii)() (iii) with b0n D b�1
n follows from Lemma 4.4.

We carry over the notion of flag convergence to sequences in X.

Consider now a �mod–regular sequence .xn/ in X. We choose again a basepoint x 2X

and consider a sequence .�n/ in Flag�mod
such that

(4:27) sup
n

d.xn;V .x; st.�n/// <C1;

analogous to (4.22). As before, the condition is independent of the choice of the point x ,
and we obtain a version of Lemma 4.23:

Lemma 4.28 The accumulation set of .�n/ in Flag�mod
depends only on .xn/.

Proof Let .gn/ be a sequence in G such that the sequence .g�1
n xn/ in X is bounded.

Then .gn/ is �mod–regular and (4.27) becomes equivalent to (4.22). This reduces the
claim to Lemma 4.23.

We therefore can define, analogous to Definition 4.24 above:
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Definition 4.29 (flag convergence of sequences in X ) A �mod–regular sequence .xn/

in X �mod–flag converges to a simplex � 2 Flag�mod
,

xn! �;

if �n! � in Flag�mod
for some sequence .�n/ in Flag�mod

satisfying (4.27).

For any �mod–regular sequence .gn/ in G and any point x 2 X, we have gn! � if
and only if gnx! � .

Flag convergence and flag limits are stable under bounded perturbations of sequences:

Lemma 4.30 (i) For any �mod–regular sequence .gn/ and any bounded sequence
.bn/ in G , the sequences .gn/ and .gnbn/ have the same �mod–flag accumulation
sets in Flag�mod

.

(ii) If .xn/ and .x0n/ are �mod–regular sequences in X such that d.xn;x
0
n/ is uni-

formly bounded, then both sequences have the same �mod–flag accumulation set
in Flag�mod

.

Proof (i) The sequence .gnbn/ is also �mod–regular and satisfies condition (4.22) if
and only if .gn/ does.

(ii) The sequence .x0n/ satisfies condition (4.27) if and only if .x0n/ does.

Remark 4.31 There is a natural topology on the bordification X t Flag�mod
which

induces �mod–flag convergence. Moreover, the bordification embeds into a natural
Finsler compactification of X ; compare Remark 4.10.

Flag convergence leads to a notion of limit sets in flag manifolds for subgroups:

Definition 4.32 (flag limit set) For a subgroup � <G , the �mod–limit set

ƒ�mod.�/� Flag�mod

is the set of possible limit simplices of �mod–flag converging �mod–regular sequences
in � , equivalently, the set of simplices �C as in (4.2) for all �mod–contracting sequences
in � .

The limit set is �–invariant and closed, as a diagonal argument shows.
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Remark 4.33 In Section 3.6 of his groundbreaking work [5], Benoist introduced a
notion of limit set ƒ� for Zariski dense subgroups � of reductive algebraic groups
over local fields which in the case of real semisimple Lie groups is equivalent to (the
dynamical version of) our concept of �mod–limit set ƒ�mod .13 What we call the �mod–
limit set ƒ�mod for other face types �mod ¨ �mod is mentioned in his Remark 3.6(3),
and his work implies that, in the Zariski dense case, ƒ�mod is the image of ƒ�mod under
the natural projection Flag�mod

! Flag�mod
of flag manifolds.

4.6 Uniform regularity

In this section we introduce stronger forms of the regularity conditions discussed in
Section 4.2.

We first consider sequences in the euclidean model Weyl chamber �.

Definition 4.34 A sequence ın!1 in � is uniformly �mod–regular if it drifts away
from @�mod� at a linear rate with respect to its norm:

lim inf
n!C1

d.ın; @�mod�/

kınk
> 0:

We extend these notions to sequences in X and G (compare Definition 4.8):

Definition 4.35 (uniformly regular) (i) A sequence .xn/ in X is uniformly �mod–
regular if for some (any) basepoint o2X the sequence of �–distances d�.o;xn/

in � has this property.

(ii) A sequence .gn/ in G is uniformly �mod–regular if for some (any) point x 2X

the orbit sequence .gnx/ in X has this property.

(iii) A subgroup � <G is uniformly �mod–regular if all sequences of distinct elements
in � have this property.

For a subgroup � < G , uniform �mod–regularity is equivalent to the visual limit set
ƒ.�/� @1X being contained in the union of the open �mod–stars.

A subgroup � <G is uniformly �mod–regular if and only if it is uniformly ��mod–regular.

13Benoist’s limit set ƒ� is contained in the flag manifold Y� which in the case of real Lie groups is
the full flag manifold G=B ; see the beginning of Section 3 of his paper. It consists of the limit points of
sequences contracting on G=B ; see his Definitions 3.5 and 3.6.
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5 Finsler compactifications of symmetric spaces

Let X DG=K be a symmetric space of noncompact type.

5.1 Finsler metrics

5.1.1 The Riemannian distance We denote by dRiem the G–invariant Riemannian
distance on X.

Let xy�X be an oriented geodesic segment. The Busemann functions b� for � 2@1X

have slope � �1 along xy , because they are 1–Lipschitz. Therefore,

(5:1) b�.x/� b�.y/� dRiem.x;y/

with equality if and only if y 2 x� . Therefore, the Riemannian distance can be
represented in the form

(5:2) dRiem.x;y/D max
�2@1X

.b�.x/� b�.y//:

5.1.2 Finsler distances We fix a type x� 2 �mod and now work only with Busemann
functions b� of this type, �.�/D x� . There is the following sharper bound for the slopes
of such Busemann functions along segments:

Lemma 5.3 The slope of a Busemann function b� of type �.�/ D x� along a non-
degenerate oriented segment xy � X is at least �cos†.�.xy/; x�/ with equality in
some point, equivalently, along the entire segment, if and only if y 2 V .x; st.�//.

Proof As we noted in Section 3.1, the slope of b� jxy in an interior point z 2 xy

equals �cos†z.y; �/. The angle †z.y; �/ assumes its minimal value †.�.zy/; x�/D

†.�.xy/; x�/ if and only if the segment zy and the ray z� are contained in a euclidean
Weyl chamber with tip at z , equivalently, if xy and x� are contained in a euclidean
Weyl chamber with tip at x , equivalently, if y 2 V .x; st.�//. In this case, the slope
of b� equals †.�.xy/; x�/ along the entire segment xy .

We define the G–invariant x�–Finsler distance d
x� W X �X ! Œ0;C1/ by

(5:4) d
x� .x;y/ WD max

�.�/Dx�

.b�.x/� b�.y//;
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where the maximum is taken over all ideal points � 2 @1X with type �.�/D x� . By
analogy with (5.1), we have the inequality

(5:5) b�.x/� b�.y/� d
x� .x;y/

for all � 2 @1X with �.�/D x� . According to the lemma, equality holds if and only if
y 2 V .x; st.�//.

The triangle inequality is clearly satisfied for d
x� . In view of diam.�mod/�

�
2

and the
lemma we have semipositivity, ie d

x� � 0. Regarding symmetry, we have the identity

(5:6) d �
x� .y;x/D d

x� .x;y/;

and hence d
x� is symmetric if and only if �x� D x� . To see (5.6) we note that, according

to the lemma, b� has maximal decay along xy if and only if by� has maximal decay
along yx , where y� 2 @1X denotes the ideal point which is x–opposite to � and has
type �x� .

The distance d
x� can be derived from the vector-valued �–distance d� by composing

it with the linear functional lx� D�bx� on Fmod ��mod (normalized at the origin):

d
x�
D lx� ı d�:

Let F �X be a maximal flat. The restriction of the distance d
x� to F can be written

intrinsically as

(5:7) d
x� .x;y/D max

�2@1F; �.�/Dx�

.b�.x/� b�.y//

for x;y 2 F , because equality holds in (5.5) if � lies in a chamber � � @1F with
y 2 V .x; �/. The restriction of d

x� to a maximal flat is thus the translation invariant
pseudometric associated to the W –invariant polyhedral seminorm on Fmod given by

(5:8) k � kx� D max
w2W

.lx� ıw
�1/:

If the seminorm k � kx� is a norm, equivalently, if d
x� is a (nonsymmetric) metric, then

d
x� is equivalent to the Riemannian distance dRiem . We describe when this is the case:

Lemma 5.9 (positivity) The following are equivalent:

(i) d
x� is a (nonsymmetric) metric.

(ii) The radius of �mod with respect to x� is < �
2

.

(iii) x� is not contained in a factor of a nontrivial spherical join decomposition of �mod .
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Proof The equivalence (i)() (ii) is immediate in view of (5.8).

To see (ii)() (iii), consider the spherical join decomposition of �mod into its irre-
ducible factors � i

mod . These have diameter < �
2

. We work now in the model apartment
and represent directions by unit vectors which we orthogonally decompose into their
� i

mod–components. Any two vectors in �mod with nontrivial � i
mod–components for

some i have angle < �
2

. This yields the implication (iii)D) (ii). The converse direction
is clear.

In particular, d
x� is a (nonsymmetric) metric if x� is regular or if X is irreducible.

If d
x� is only a pseudometric, then X splits as a product X1 �X2 such that d

x� is
degenerate precisely in the X2–direction and induces an honest (nonsymmetric) metric
on X1 .

5.1.3 Geodesics We first analyze when equality holds in the triangle inequality for
the Finsler distance. Let �mod denote the face type spanned by x� , ie x� 2 int.�mod/.

Lemma 5.10 A triple of points x;y; z 2X satisfies

d
x� .x; z/C d

x� .z;y/D d
x� .x;y/

if and only if it is contained in a parallel set P .��; �C/ for a pair of opposite simplices
�˙ 2 Flag˙�mod

and z lies in the �mod–diamond determined by x;y :

(5:11) z 2 }�mod.x;y/D V .x; st.�C//\V .y; st.��//:

Proof Assume that the equality holds. Let �C 2 Flag�mod
be a simplex such that

y 2 V .x; st.�C//, and let �C 2 �C be the ideal point with type �.�C/D x� . Then b�C
has maximal decay along xy ; see Lemma 5.3. From

d
x� .x;y/D d

x� .x; z/C d
x� .z;y/

�
�
b�C.x/� b�C.z/

�
C
�
b�C.z/� b�C.y/

�
D b�C.x/� b�C.y/D d

x� .x;y/;

it follows that b�C must have maximal decay also along the segments xz and zy .
This implies that z 2 V .x; st.�C//, again by the same lemma. Furthermore, b�� has
maximal decay along yx for the ideal point �� which is x–opposite to �C and therefore
contained in the simplex �� x–opposite to �C . It follows that also z 2 V .y; st.��//.

Conversely, if (5.11) holds, then b�C has maximal decay along xy , yz and xz , and
hence the equality is satisfied.
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It follows that the (pseudo)metric space .X; d x� / is a geodesic space. The Riemannian
geodesics in X are also d

x�–geodesics, but besides these there are other d
x�–geodesics,

due to the nonstrict convexity of balls for the norm k � kx� .

The lemma yields a precise description of all d
x�–geodesics: a path cW I ! X is an

(unparametrized) d
x�–geodesic if and only if it is contained in a parallel set P .��; �C/

with �˙ 2 Flag˙�mod
and

c.t 0/ 2 V .c.t/; st.�C// .equivalently, c.t/ 2 V .c.t 0/; st.��///

for all t < t 0 in I , ie c drifts towards �C and away from �� . As a consequence, a
geodesic cW Œt�; tC�!X is contained the diamond }�mod.c.t�/; c.tC// determined by
its endpoints. Moreover, we obtain the Finsler geometric interpretation of diamonds,
namely the diamond }�mod.x;y/ is the union of all d

x�–geodesics xy .

The most relevant case for this paper is when x� is regular, x� 2 int.�mod/. The above
discussion then specializes as follows: The pair of simplices �˙ in the lemma becomes
a pair of opposite chambers �˙ , the parallel set P .��; �C/ becomes a maximal flat
F.��; �C/, the Weyl cones V . � ; st.�˙// become euclidean Weyl chambers V . � ; �˙/.
Thus (5.11) simplifies to

z 2 V .x; �C/\V .y; ��/;

and a d
x�–geodesic cW I !X is contained in a maximal flat F.��; �C/ and

c.t 0/ 2 V .c.t/; �C/ .equivalently, c.t/ 2 V .c.t 0/; ��//

for all t < t 0 in I .

5.2 Finsler compactifications

Throughout this section we assume that the type x� is regular, x� 2 int.�mod/. In
particular, d

x� is a metric.

5.2.1 Definition If one applies the horoboundary construction (see Section 2.6) to
the Riemannian distance dRiem on X, one obtains the visual compactification

(5:12) xX DX t @1X:

The ideal boundary points are represented by Busemann functions, ie the horofunctions
are in this case precisely the Busemann functions.
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We define the x�–Finsler compactification of X as the compactification

(5:13) xX
x�
DX t @

x�
1X

obtained by applying the horoboundary construction to the Finsler distance d
x� .

5.2.2 Horofunctions For a chamber � � @1X, let �� 2� denote the point of type x� .
The associated Busemann function b�� is well defined up to additive constant, and the
Busemann function b�� � b�� .x/ normalized in a point x 2X is well defined.

According to our definition (5.4) of the d
x�–distance, we have

d
x�
x WD d

x� . � ;x/Dmax
�
.b�� � b�� .x//;

where the maximum is taken over all chambers � . For a simplex � � @1X and a
point x 2X, we consider the “mixed” Busemann function

(5:14) b
x�
�;x WDmax

���
.b�� � b�� .x//

normalized in x , the maximum being taken only over the chambers which contain �
as a face. We will see that these are precisely the horofunctions for xX x� .

On a euclidean Weyl chamber with tip at x , the function d
x�
x agrees with one of

the Busemann functions occurring in the maximum: If �; y� � @1X are x–opposite
chambers, equivalently, if x 2 F.y�; �/, then

d
x� . � ;x/D b�� � b�� .x/

on V .x; y�/; see Lemma 5.3. Thus, on a Weyl cone with tip at x , the function d
x�
x

reduces to a maximum over a subfamily of Busemann functions: if �; y� � @1X are
x–opposite simplices, equivalently, if x 2 P .y�; �/, then

d
x� . � ;x/Dmax

���
.b�� � b�� .x//D b

x�
�;x

on V .x; st.y�//. For the normalized distance functions, we observe that if o 2 X is
a basepoint and if x lies in the Weyl sector V .o; �/, equivalently, if o 2 V .x; y�/ DT
y��y� V .x; y�/, then the difference b�� .o/�b�� .x/ has the same value for all chambers

� � � , and hence the function d
x�
x normalized in o is given by

(5:15) d
x�
x � d

x�
x .o/Dmax

���
.b�� � b�� .o//D b

x�
�;o

on the Weyl cone V .x; st.y�//.
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With these observations we are prepared for understanding the horofunctions, ie the
limits of (normalized) distance functions d

x�
x as x!1. We first show that the mixed

Busemann functions b
x�
�;x are horofunctions.

Lemma 5.16 Let o 2X and � 2 Flag�mod
. If .xn/ is a �mod–regular sequence in the

Weyl sector V .o; �/, then
d
x�
xn
� d
x�
xn
.o/! b

x�
�;o

uniformly on compacts in X.

Proof We proceed in two steps.

Step 1 Let y� be the simplex o–opposite to � . We first note that the claimed con-
vergence holds uniformly on compacts in P .y�; �/. In fact, on every such compact,
eventually equality holds. This follows from (5.15) and because the �mod–regularity
of the sequence .xn/ implies that the Weyl cones V .xn; st.y�// exhaust P .y�; �/ as
n!C1.

Step 2 To verify the convergence on all of X, we use the action of the unipotent
horocyclic subgroup H� . The Busemann functions b� centered at ideal points � 2 st.�/
are H�–invariant, b� ıh

�1D bh� D b� for h2H� , and hence also the mixed Busemann
functions,

b
x�
�;x ı h�1

D b
x�
�;x :

By step 1, it holds for .h;x/ 2H� �P .y�; �/ that

(5:17) d
x�
hxn
.hx/„ ƒ‚ …

d
x�
xn .x/

�d
x�
xn
.o/! b

x�
�;o.hx/„ ƒ‚ …
b
x�
�;o.x/

;

and the convergence is uniform on H� �A for A� P .y�; �/ compact. Note that

d
x� .xn; hxn/D d

x� .h�1xn;xn/! 0

as n!C1 locally uniformly in h, because .xn/ is a �mod–regular sequence in V .o; �/

and therefore drifts away from @V .o; �/. Hence

d
x�
hxn
� d
x�
xn
! 0

uniformly on X due to the triangle inequality; compare (2.5). It follows from (5.17) that

d
x�
xn
.hx/� d

x�
xn
.o/! b

x�
�;o.hx/
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locally uniformly in .h;x/, ie

d
x�
xn
� d
x�
xn
.o/! b

x�
�;o

locally uniformly on X, as claimed.

We show next that, conversely, there are no other horofunctions besides the mixed
Busemann functions b

x�
�;x :

Lemma 5.18 Let xn!1 be a divergent sequence in X. Then, after extraction, there
exist a simplex � � @1X and a point p 2X such that

d
x�
xn
� d
x�
xn
.p/! b

x�
�;p

uniformly on compacts in X.

Proof We reduce the assertion to the previous lemma using the action of the maximal
compact subgroup K<G fixing a basepoint o2X. There exists a sequence .kn/ in K

such that the sequence .knxn/ is contained in a fixed euclidean Weyl chamber V .o; �/.
After extraction, we may assume that kn ! e . We may assume moreover that the
sequence .xn/, equivalently, .knxn/ is �mod–pure for some face type �mod . Let � � �
be the face of type �mod . After further extraction, there exists a point p 2 V .o; �/ such
that .knxn/ approaches the Weyl sector V .p; �/� V .o; �/, ie there exists a sequence
.yn/ in V .p; �/ such that d.knxn;yn/! 0. The sequence .yn/ is then also �mod–pure,
and in particular �mod–regular. By the previous lemma, d

x�
yn
�d
x�
yn
.p/! b

x�
�;p uniformly

on compacts, and hence
d
x�
knxn
� d
x�
knxn

.p/! b
x�
�;p

uniformly on compacts. Since b
x�
�;p ı kn! b

x�
�;p uniformly on compacts, the assertion

follows.

Thus, the horofunctions for xX x� are precisely the mixed Busemann functions b
x�
�;p .

We now discuss some of their properties. As already mentioned, the functions b
x�
�;p are

invariant under the unipotent horocyclic subgroup H� . Moreover, they are invariant up
to additive constants under transvections towards � :

Lemma 5.19 For a transvection t with axes asymptotic to � 2 � it holds that14

b
x�
�;p ı t�1

� b
x�
�;p:

14Recall that the notation f � g for functions f;g means that f �g is a constant.
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Proof For every chamber ��� the function b�� ıt
�1�b�� is constant, because t fixes

st.�/� � and therefore b�� ı t�1 � b�� . Furthermore, the difference b�� ı t�1� b��
is independent of � because, along a t–axis, b�� is linear with slope �cos†.�.�/; x�/
independent of � . It follows that b

x�
�;p ı t�1� b

x�
�;p D b�� ı t�1� b�� is constant.

Our next aim is to distinguish the functions b
x�
�;p from each other.

Let y� be the simplex p–opposite to � , and let CS.p/D CS.�; y�;p/ denote the cross-
section of the parallel set P .�; y�/ through p .

Lemma 5.20 We have b
x�
�;p > 0 on CS.p/�fpg.

Proof Let p ¤ q 2 CS.p/. We need to find a chamber � � � such that

b�� .q/ > b�� .p/:

The latter holds if
†p.q; �� / >

�
2

because then the convex function b�� strictly increases along pq .

Let F � P .�; y�/ be a maximal flat containing pq . Then � � @1F , and we denote by
� 2 @1F the ideal point with q 2 p�. We will show that @1F contains a chamber
� � � with the desired property, equivalently, with the property that

(5:21) †Tits.�; �� / >
�
2
:

Let x� 0 2 int.�mod/ be the nearest point projection of x� 2 int.�mod/ to �mod . We denote
by � 0� 2 � the point of type x� 0 . The arcs � 0��� in @1F for � � � are perpendicular
to � . Note that � � @B

�
�; �

2

�
, because � 2 @1 CS.p/, and hence also the arc � 0�� is

perpendicular to � . Property (5.21) is equivalent to

(5:22) †� 0� .�; �� / >
�
2
:

Since the type x� is regular, the directions
���!

� 0��� for the chambers � � � correspond
to a regular Weyl orbit in the spherical Coxeter complex associated to the link of �
in @TitsX. If (5.22) would fail for all chambers � � � , then this regular Weyl orbit
would be contained in a closed hemisphere, which is impossible.15

15In a spherical Coxeter complex without sphere factor, no regular Weyl orbit is contained in a closed
hemisphere; compare Lemma 5.9.
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Based on these properties, we can now distinguish the functions b
x�
�;p from each other.

Lemma 5.23 (distinguishing horofunctions) We have b
x�
�;p � b

x�
� 0;p0 if and only if

� D � 0 and the sectors V .p; �/ and V .p0; �/ are strongly asymptotic.16

Proof We first show that � can be read off the asymptotics of b
x�
�;p .

For a chamber � and an ideal point � 2 @1X it holds that †Tits.�; �� /D†.�.�/; x�/

if and only if � 2 � , since x� 2 int.�mod/. Lemma 5.3 therefore implies that along a
ray x� , the function b�� has slope ��cos†.�.�/; x�/ if � 2 � , and slope greater than
�cos†.�.�/; x�/ everywhere if � 62� . It follows that b

x�
�;p has slope ��cos†.�.�/; x�/

along x� if and only if this is the case for the b�� for all chambers � � � , ie if and
only if � 2

T
��� � D � . Hence, b

x�
�;p � b

x�
� 0;p0 implies that � D � 0 .

Due to H�–invariance, b
x�
�;hp
Db
x�
�;p for h2H� , we may replace p , p0 by points in their

H�–orbits. We can therefore assume that p;p0 2P DP .y�; �/ with y� 2C.�/, because
every H�–orbit intersects the parallel set P (exactly once). In view of Lemma 5.19,
we may furthermore replace p , p0 by their images under transvections along lines
parallel to the euclidean factor of P , and can thus assume that they lie in the same
cross-section of P , that is, p0 2 CS.p/. Now Lemma 5.20 implies that p D p0 .

The converse follows from the invariance of the equivalence classes Œbx��;� � under H�

and the transvections along lines asymptotic to � .

Corollary 5.24 The points in @x�1X are in one-to-one correspondence with the strong
asymptote classes of Weyl sectors in X.

Note that all Finsler boundary points are limits of sequences along Weyl sectors, and
in particular limits of sequences along Finsler geodesic rays. Hence all horofunctions
are Busemann functions, as defined in Section 2.6.

Corollary 5.25 The Furstenberg boundary @FuX embeds G–equivariantly into @x�1X

as the set of equivalence classes Œbx��;� � of chambers � � @FuX.

Proof Note that b
x�
�;p � b

x�
�;p0 for any pair of points p;p0 2X. Thus, the equivariant

embedding is given by the map
� 7! Œb

x�
�;� �:

16Note that two asymptotic Weyl sectors V .x; �/ and V .x0; �/ are strongly asymptotic if and only if
their tips x and x0 lie in the same orbit of the closed subgroup of P� which is generated by H� and the
transvections along lines asymptotic to � .
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5.2.3 Convergence at infinity We fix a basepoint o 2X and denote by K <G the
maximal compact subgroup fixing o.

We first study the convergence at infinity of divergent sequences in X. Since a divergent
sequence always contains pure subsequences of some face type, we can restrict to
this case.

Let .xn/ be a �mod–pure sequence in X. There exists a sequence .�n/ in Flag�mod

such that xn 2 V .o; st.�n//. Let y�n 2 Flag��mod
denote the simplices o–opposite to �n .

Then V .o; st.�n//� P .y�n; �n/. Due to pureness, there exists a bounded sequence of
points pn 2 CS.y�n; �n; o/ such that xn belongs to the flat f .y�n; �n;pn/ through pn

with visual boundary @1f .y�n; �n;pn/D s.y�n; �n/, the singular sphere spanned by y�n

and �n ; see Section 3.2.1.

Proposition 5.26 (convergence at infinity) Under these assumptions, .xn/ converges
in xX x� if and only if there is convergence �n! � in Flag�mod

and pn!p 2CS.y�; �; o/
in X. In this case,

xn! Œb
x�
�;p �:

Proof Suppose that �n! � and pn! p . We write �n D kn� and y�n D kny� with
kn! e in K . The sequence of points

k�1
n xn 2 f .y�; �; k

�1
n pn„ƒ‚…
!p

/� P .y�; �/

is also �mod–pure and contained in a tubular neighborhood of the sector V .o; �/. It
follows that d.k�1

n xn;V .p; �//! 0. Lemma 5.16 then implies that

d
x�

k�1
n xn

� d
x�

k�1
n xn

.p/! b
x�
�;p

uniformly on compacts, and furthermore that

d
x�
xn
� d
x�
xn
.p/! b

x�
�;p;

ie xn ! Œb
x�
�;p �. The converse direction follows from this direction, Lemma 5.23

distinguishing horofunctions and the compactness of flag manifolds.

Finsler and flag convergence for divergent sequences in X are related as follows:

Corollary 5.27 (Finsler and flag convergence) If xn! Œb
x�
�;p � with �.�/D �mod , then

.xn/ is �mod–pure and �mod–flag converges xn! � .
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Proof If .xn/ were not �mod–pure, we could extract a �mod–pure subsequence for a
different face type �mod ¤ �mod . By Proposition 5.26, after further extraction, .xn/

Finsler converges to a boundary point Œbx��;q � with �.�/D �mod . However, Œbx��;q �¤ Œb
x�
�;p �

according to Lemma 5.23, a contradiction. Hence .xn/ must be �mod–pure. Since
xn 2 V .o; st.�n// and �n ! � , again due to Proposition 5.26 and Lemma 5.23, the
definition of flag convergence implies that xn! � .

We will also use the following fact:

Lemma 5.28 Let .xn/ and .x0n/ be sequences in X which are bounded distance apart
and converge at infinity xn! Œb

x�
�;p � and x0n! Œb

x�
� 0;p0 �. Then � D � 0 .

Proof Since the functions d
x�
xn
�d
x�
x0n

are uniformly bounded independently of n, also
b
x�
�;p � b

x�
� 0;p0 is bounded. This implies that � D � 0 ; compare the first part of the proof

of Lemma 5.23.

Remark 5.29 If �.�/¤ �mod , then the limit points Œbx��;p � and Œbx�� 0;p0 � are in general
different.

We now discuss the convergence of sequences at infinity.

For face types �mod � �mod , every boundary point of type �mod is a limit of boundary
points of type �mod :

Lemma 5.30 Let � � � be faces in @1X, and let .xn/ be a �.�/–regular sequence in
a sector V .p; �/. Then Œbx��;xn

�! Œb
x�
�;p �.

Proof Using Lemma 5.16, we can approximate the boundary points Œbx��;xn
� by points

in X : There exist points yn 2 V .xn; �/� V .p; �/ such that

d
x�
yn
� d
x�
yn
.xn/� b

x�
�;xn
! 0

uniformly on compacts. The sequence .yn/ is also �.�/–regular, and the same lemma
yields that

d
x�
yn
� d
x�
yn
.p/! b

x�
�;p

uniformly on compacts. It follows that Œbx��;xn
�! Œb

x�
�;p �.

The next result yields necessary conditions for the convergence of sequences at infinity:
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Lemma 5.31 If

(5:32) Œb
x�
�n;xn

�! Œb
x�
�;p �

and �.�n/D �mod for all n, then �mod � �.�/ and �n! � � � .

Proof We may assume without loss of generality that xn 2 CS.y�n; �n; o/ and p 2

CS.y�; �; o/, where y�n is o–opposite to �n and y� is o–opposite to � .

As in the proof of the previous lemma, we use Lemma 5.16 to approximate the points
Œb
x�
�n;xn

� at infinity by points yn;i 2 V .xn; �n/:

lim
i!1

yn;i D Œb
x�
�n;xn

�;

where .yn;i/i2N is a �mod–regular sequence which flag-converges to �n for each n.
Taking into account the limit (5.32), we find a diagonal subsequence yn 2 V .xn; �n/

such that

yn! Œb
x�
�;p �:

In view of openness of the cones V .o; ost.�n// in P .y�n; �n/ (see Lemma 3.9), without
loss of generality, yn 2 V .o; st.�n//, and hence there exist chambers �n � �n such
that yn 2 V .o; �n/. After extraction, we may assume that .yn/ is � 0mod–pure for some
face type � 0mod � �mod . In view of �mod–regularity of the sequence .yn/, it follows that
� 0mod � �mod .

Consider the faces �n� �
0
n��n of type �.� 0n/D �

0
mod , and denote by y� 0n the simplices o–

opposite to � 0n . There exists a bounded sequence .x0n/ of points x0n 2CS.y� 0n; �
0
n; o/ such

that yn 2 f .y�
0
n; �
0
n;x
0
n/. After further extraction, we may assume convergence � 0n! � 0

and x0n! x0 . Then yn! Œb
x�
� 0;x0 � by Proposition 5.26, and hence Œbx�� 0;x0 �D Œb

x�
�;p �. In

particular, � 0mod D �.�/ and � 0 D � . It follows that �n! � � � , ie the assertion holds
for the subsequence.

Returning to the original sequence of points Œbx��n;xn
�, our argument shows that every

subsequence has a subsequence for which the assertion holds. Thus �mod � �.�/ and
the sequence of simplices �n can only accumulate at the face � � � of type �mod . In
view of the compactness of Flag�mod

, it follows that �n! � .

Our discussion of sequential convergence implies that the Finsler compactification does
not depend on the regular type x� .

Geometry & Topology, Volume 22 (2018)



2582 Michael Kapovich and Bernhard Leeb

Proposition 5.33 (type-independence of Finsler compactification) For any two regu-
lar types x�; x� 0 2 int.�mod/, the identity map idX extends to a G–equivariant homeo-
morphism

xX
x�
! xX

x� 0

sending Œbx��;p � 7! Œb
x� 0

�;p � at infinity.

Proof The extension of idX sending Œbx��;p � 7! Œb
x� 0

�;p � is a G–equivariant bijection
xX
x� ! xX

x� 0 . The conditions given in Proposition 5.26 for sequences xn!1 in X

to converge at infinity do not depend on the type x� , ie xn! Œb
x�
�;p � in xX x� if and only

if xn! Œb
x� 0

�;p � in xX x� 0. A general point-set topology argument now implies that the
extension is a homeomorphism; see Lemma 2.1.

We therefore will from now on mostly use the notation xX Fins for xX x� .

5.2.4 Stratification and G –action For every face type �mod � �mod , we define the
stratum at infinity

(5:34) S�mod D fŒb
x�
�;p � W �.�/D �mod; p 2X g:

Furthermore, we put S∅ DX. We define the stratification of xX x� as

xX
x�
D

G
∅��mod��mod

S�mod :

In the sequel, when talking about the stratification, we will also admit ∅ as a face type.

Lemmas 5.30 and 5.31 yield for the closures of strata

(5:35) xS�mod D

G
�mod��mod

S�mod :

The stratum S∅DX is open dense, while the stratum S�modŠ@FuX (see Corollary 5.25)
is closed and contained in the closure of every other stratum.

The continuous extension of the G–action on X to xX x� is given at infinity by

g � Œb
x�
�;p �D Œb

x�
�;p ıg�1�D Œb

x�
g�;gp �:

The G–orbits are precisely the strata S�mod .

The stabilizer of a boundary point Œbx��;p � is the semidirect product

H� Ì .T .y�; �/�Kf .y�;�;p//;
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where H� � P� is the unipotent horocyclic subgroup, y� 2 C.�/ a simplex opposite
to � , f .y�; �;p/ the singular flat through p with visual boundary sphere s.y�; �/,
Kf .y�;�;p/ < G its pointwise stabilizer, and T .y�; �/ the group of transvections along
f .y�; �;p/; see Section 5.2.2.

We will use the following observation concerning the dynamics of G Õ xX
x� :

Lemma 5.36 Every open subset O � xX
x� which intersects the closed stratum @FuX

sweeps out the entire space: G �O D xX
x� .

Proof The G–orbit @FuX is in the closure of every G–orbit S�mod .

For the strata at infinity, there are the natural G–equivariant fibrations of homogeneous
G–spaces

(5:37) S�mod ! Flag�mod

by the forgetful maps Œbx��;p � 7! � . The fiber

(5:38) X� D fŒb
x�
�;p � W p 2X g

over � 2 Flag�mod
is naturally identified with the space of strong asymptote classes of

Weyl sectors V .x; �/ (see Lemma 5.23), which is in turn naturally identified with the
cross-section of the parallel set P .�; y�/ for any simplex y� 2 C.�/. We will refer to the
fibers X� as small strata. Again according to Lemmas 5.30 and 5.31, we have that

(5:39) xX� D
G
���

X� :

Note that for different simplices �1 , �2 of the same type �mod , it holds that

(5:40) xX�1
\ xX�2

D∅

because every simplex in @1X has at most one face of type �mod .

Remark 5.41 One can show that the closure xX� is naturally identified with the regular
Finsler compactification of X� .

The discussion of convergence at infinity in the previous section yields the following
characterization of pureness and regularity for divergent sequences in X in terms of
their accumulation set in the Finsler boundary:
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Proposition 5.42 (pureness and regularity) Let xn!1 be a divergent sequence.

(i) .xn/ is �mod–pure if and only if it accumulates at a compact subset of the stratum
S�mod .

(ii) .xn/ is �mod–regular if and only if it accumulates at the stratum closure xS�mod .

Proof (i) If .xn/ is �mod–pure, then Proposition 5.26 implies that it accumulates
at a compact subset of S�mod . Otherwise, if .xn/ is not �mod–pure, then it contains a
�mod–pure subsequence for another face type �mod ¤ �mod and therefore has, by the
same proposition, accumulation points in S�mod , ie outside S�mod .

(ii) If .xn/ is �mod–regular, then all �mod–pure subsequences have type �mod � �mod ,
and the assertion therefore follows from (i) and (5.35).

Similarly, we can characterize flag convergence (compare Corollary 5.27 above):

Proposition 5.43 (flag convergence) A �mod–regular sequence .xn/ �mod–flag con-
verges xn! � 2 Flag�mod

if and only if it accumulates at the small stratum closure xX� .

Proof By the previous proposition, .xn/ accumulates at xS�mod .

Suppose that we have Finsler convergence xn! Œb
x�
�;p �. By Corollary 5.27, .xn/ is �mod–

pure with �mod D �.�/ and �mod–flag converges, xn! � . Necessarily �mod � �mod ,
because .xn/ is �mod–regular. It follows that we also have �mod–flag convergence
xn! �� � � to the face �� of type �mod . Furthermore, Œbx��;p � 2 xX�� ; see (5.39).

Thus, if xn! � then all accumulation points of .xn/ in @Fins
1 X must lie in xX� . On the

other hand, if .xn/ does not �mod–flag converge to � , then after extraction it �mod–flag
converges to some other � 0¤ � and has Finsler accumulation points in the small stratum
closure xX� 0 disjoint from xX� ; see (5.40).

5.2.5 Maximal flats and Weyl sectors We first discuss maximal flats F � X. We
start by showing that their extrinsic closure in xX x� coincides with their intrinsic Finsler
compactification; compare the general discussion in the end of Section 2.6.

According to Proposition 5.26,

@
xX
x�

F D fŒb
x�
�;x � W � � @1F; x 2 Fg � @

x�
1X;

where @ xX
x�

F � @
x�
1X means the “boundary” xF �F of F inside xX x� .
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Lemma 5.44 For simplices �; �0 � @1F and points x;x0 2 F , if b
x�
�;xjF � b

x�
�0;x0 jF ,

then b
x�
�;x � b

x�
�0;x0 .

Proof One proceeds as in the proof of Lemma 5.23. The asymptotics of b
x�
�;xjF and

b
x�
�0;x0 jF allow us to read off � and �0 , and thus � D �0 . Furthermore, Lemma 5.20

implies that the singular flats spanned by the Weyl sectors V .x; �/ and V .x0; �/

coincide, equivalently, these Weyl sectors intersect. Hence they are strongly asymptotic,
which implies that b

x�
�;x � b

x�
�0;x0 .

It follows that there is a natural inclusion of Finsler compactifications

xF
x�
� xX

x� :

The stratification of xX x� induces the stratification

xF
x�
D

G
�mod

SF
�mod

by the stratum SF
∅ D F and the strata at infinity

SF
�mod
D S�mod \ @

x�
1F D fŒb

x�
�;x � W � � @1F; �.�/D �mod; x 2 Fg:

The fibration (5.37) restricts to the finite decomposition

SF
�mod
D

G
��@1F;�.�/D�mod

X F
�

into the small strata

(5:45) X F
� D fŒb

x�
�;x � W x 2 Fg

at infinity. They are euclidean spaces which are canonically identified with the affine
subspaces of F perpendicular to the Weyl sectors V .x; �/. By analogy with (5.39),
the closures of small strata decompose as

(5:46) xX F
� D

G
����@1F

X F
� :

Dynamics at infinity The subgroup TF <G of transvections along F restricts to the
group of translations on F . Unlike for the visual boundary, the induced action

TF Õ @
x�
1F

on the Finsler boundary is nontrivial in higher rank. Its orbits are the small strata X F
� ,

since t Œb
x�
x;� �D Œb

x�
tx;� � for t 2 TF . The stabilizer StabG.F / of F in G acts on F by

the affine Weyl group. Its orbits at infinity are the big strata SF
�mod

.
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It is worth pointing out how the description of the convergence at infinity simplifies for
divergent sequences contained in maximal flats. Proposition 5.26 and Corollary 5.27
reduce to:

Proposition 5.47 (convergence at infinity for maximal flats) (i) Suppose that
.xn/ is a sequence in F convergent to some Œbx��;p � 2 xF

x� . Then the sequence
.xn/ is �mod–pure, �mod D �.�/.

(ii) Suppose that .xn/ �mod–pure sequence in F which for some simplex � � @1F

of type �mod is contained in R–tubular neighborhoods of the sectors V . � ; �/ for a
fixed R<1. Then .xn/ converges in xF x� if and only if the flats f .y�; �;xn/�F

Hausdorff converge. In this case,

xn! Œb
x�
�;p �

with p 2 F such that f .y�; �;xn/! f .y�; �;p/.

The discussion for Weyl sectors V D V .p; �/ is analogous: We have

(5:48) @
xX
x�

V D fŒb
x�
�;x � W � � �;x 2 V g � @

x�
1X:

Again, horofunctions uniquely extend from V to X :

Lemma 5.49 For simplices �; �0 � � and points x;x0 2 V , if b
x�
�;xjV � b

x�
�0;x0 jV , then

b
x�
�;x � b

x�
�0;x0 .

Proof As in the case of maximal flats, compare the previous lemma, one can recognize
� and �0 from the asymptotics of b

x�
�;xjV and b

x�
�0;x0 jV , and thus see that � D �0 .

Then Lemma 5.20 implies that V .x; �/ and V .x0; �/ intersect and hence are strongly
asymptotic.

We thus have the natural inclusion

xV
x�
� xX

x� :

Furthermore, we have the stratification

(5:50) xV
x�
D

G
���

X V
�

by X V
∅ D V and the (small) strata at infinity

X V
� DX� \ @

x�
1V D fŒb

x�
�;x � W x 2 V g:
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The stratum closures decompose as

xX V
� D

G
���0��

X V
�0 :

5.2.6 Action of maximal compact subgroups Let o2X be a basepoint and K<G

the maximal compact subgroup fixing it. Let V DV .o; �/ be a euclidean Weyl chamber
in X with tip at o. We recall some facts about the action K Õ X :

(i) V is a cross-section for the action, ie every K–orbit intersects V exactly once.

(ii) Point stabilizers The fixed-point set in V of any element k 2 K is a Weyl
sector V .o; �/, where ∅ � � � � is the face fixed by k . In other words, if k

fixes a point p 2 V , then it fixes the smallest Weyl sector V .o; �/ containing it.
(Here, we put V .o;∅/ WD fog.)

We now establish analogous properties for the action K Õ xX
x� .

Lemma 5.51 (cross-section) xV x� � xX x� is a cross-section for the action of K Õ xX
x� .

Proof Since K � xV
x� is compact and contains K �V DX, and since X is dense in xX x� ,

it holds that K � xV
x� D xX

x� , ie every K–orbit in xX x� intersects xV x� . We must show that
every K–orbit in @x�1X intersects @x�1V only once. Suppose that

(5:52) k � Œb
x�
�;p �D Œb

x�
k�;kp �D Œb

x�
� 0;p0 �

for k 2K and Weyl sectors V .p; �/;V .p0; � 0/ � V ; see (5.48). Then, in particular,
k� D � 0 . Since �; � 0 � � , this implies that � D � 0 and k� D � .

It follows that k preserves the parallel set P .y�; �/, where y� denotes the simplex
o–opposite to � . The sectors V .kp; �/;V .p0; �/ � P .y�; �/ are strongly asymptotic,
because Œbx��;kp �D Œb

x�
�;p0 � This means that they intersect. Let q 2 V .kp; �/\V .p0; �/.

Then q; k�1q 2 V and hence k�1q D q , because V is a cross-section for the action
K Õ X. It follows that the sectors V .p; �/ and V .kp; �/ intersect and hence are
strongly asymptotic. Thus, k � Œb

x�
�;p �D Œb

x�
�;kp

�D Œb
x�
�;p �.

Lemma 5.53 Let k 2K and V .p; �/� V . The following are equivalent:

(i) k fixes Œbx��;p � 2 xV
x� .

(ii) k fixes V .p; �/ pointwise.

(iii) k fixes pointwise the smallest Weyl sector V .o; �/ containing V .p; �/.
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Proof (i)D) (ii) In the proof of the previous lemma, we saw that the sectors V .p; �/

and V .kp; �/ intersect. Since k also preserves the cross-sections of P .y�; �/, it follows
that k fixes p .

The converse direction (ii)D) (i) is trivial.

(ii)() (iii) This is clear, because the fixed-point set of k on V is a sector V .o; �/.

Let K� D P� \K denote the stabilizer of the simplex � in K , and put K∅ DK .

Corollary 5.54 (point stabilizers in compactified euclidean Weyl chambers)

(i) The points in xV x� fixed by K� are precisely the points in V .o; �/
x� .

(ii) The points with stabilizer equal to K� are precisely the points in

V .o; �/
x�
�

[
∅��¨�

V .o; �/
x� :

Notation 5.55 In view of Proposition 5.33 we will from now on denote the Finsler
compactification xX x� for x� 2 int.�mod/ by xX Fins .

6 Coxeter groups and their regular polytopes

6.1 Basics of polytopes

We refer the readers to [22; 54] for a detailed treatment of polytopes. In what follows, V

will denote a euclidean vector space, ie a finite-dimensional real vector space equipped
with an inner product .x;y/. We will use the notation V � for the dual vector space,
and for � 2 V � and x 2 V we let h�;xi D �.x/. The inner product on V defines the
inner product, again denoted by .�; �/, on the dual space.

A polytope B in V is a compact convex subset equal to the intersection of finitely
many closed half-spaces. Note that we do not require B to have nonempty interior.
The affine span hBi of B is the minimal affine subspace of V containing B . The
topological frontier of B in its affine span is the boundary @B of B . A facet of B is a
codimension-one face of @B .

Each polytope B has a face poset FB . It is the poset whose elements are the faces
of B with the order given by the inclusion relation. Two polytopes are combinatorially
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isomorphic if there is an isomorphism of their posets. Such an isomorphism necessarily
preserves the dimension of faces. Two polytopes B and B0 are combinatorially
homeomorphic if there exists a (piecewise linear) homeomorphism hW B! B0 which
sends faces to faces.

Given a polytope B whose dimension equals nD dim.V /, the polar (or dual) polytope
of B is defined as the following subset of the dual vector space:

B� D f� 2 V � W �.x/� 1 for all x 2 Bg:

Thus, � 2 B� � V � implies that the affine hyperplane H� D f�D 1g is disjoint from
the interior of B . Moreover, � 2 @B� if and only if H� has nonempty intersection
with B . Each face ' of B determines the dual face '� of B�, consisting of the
elements � 2 B� which are equal to 1 on the entire face ' . This defines a natural
bijection between the faces of B and B� :

?W ' 7! '�:

Under this bijection, faces have complementary dimensions:

dim.'/C dim.'�/D n� 1:

The bijection ? also reverses the face inclusion:

' �  () '� �  �:

In particular, the face poset of @B� is dual to the face poset of @B . If W is a group of
linear transformations preserving B , its dual action

w�.�/D � ıw�1

on V � preserves B�. The naturality of ? implies that it is W –equivariant.

A polytope B is called simplicial if its faces are simplices. It is called simple if it has
a natural structure of a manifold-with-corners: Each vertex v of B is contained in
exactly d facets, where d is the dimension of B . Equivalently, the affine functionals
defining these facets in hBi have linearly independent linear parts. For each simplicial
polytope, its dual is a simple polytope, and vice versa.

Lemma 6.1 Two polytopes are combinatorially isomorphic if and only if they are
combinatorially homeomorphic.

Proof One direction is trivial. Conversely, given an isomorphism of posets, one
constructs a combinatorial homeomorphism by induction over skeleta and coning off.
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6.2 Root systems

In this and the following sections, the euclidean vector space V is identified with the
model maximal flat Fmod for the symmetric space X ; the root system R� V � is the
root system of X. Accordingly, the Coxeter group W defined via R is the Weyl group
of X. Since the symmetric space X has noncompact type, R spans V �, ie W fixes
only the origin 0 in V .

Given a face � of the spherical Coxeter complex @1V , we define the root subsystem

R� �R

consisting of all roots which vanish identically on V .0; �/.

Each root ˛ 2 R corresponds to a coroot ˛_ 2 V , which is a vector such that the
reflection s˛W V ! V corresponding to ˛ acts on V by the formula

(6:2) s˛.x/D x� h˛;xi˛_:

The group W also acts isometrically on the dual space V � ; each reflection s˛ 2W

acts on V � as a reflection. The corresponding wall is given by the equation

f� 2 V � W h�; ˛_i D 0gI

equivalently, this wall is ˛? , the orthogonal complement of ˛ in V �.

From now on, we fix a Weyl chamber �D�mod � V for the action of W on V . The
visual boundary of � is the model spherical chamber �mod .

Notation 6.3 We let Œn� denote the set f1; : : : ; ng.

The choice of � determines the set of positive roots RC �R and the set of simple
roots ˛1; : : : ; ˛n 2RC , where nD dim.V /:

�D fx 2 V W ˛i.x/D h˛i ;xi � 0; i 2 Œn�g:

We will use the notation si D s˛i
for the simple reflections. They generate W .

The dual chamber to � is

�� � V �; �� D f� 2 V � W .˛i ; �/� 0; i 2 Œn�g:
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Remark 6.4 There is another notion of a dual cone to � in V �, namely the root
cone �_, consisting of all � 2 V � such that the restriction of � to � is nonnegative.
The root cone consists of the nonnegative linear combinations of simple roots. The
root cone contains the dual chamber but, is, with few exceptions, strictly larger.

Let B be a W –invariant polytope in V with nonempty interior. We will use the
notation �B D�\B and ��

B�
D��\B�.

Lemma 6.5 Suppose that � 2�� is such that �.x/� 1 for all x 2�B . Then � 2B�.

Proof Let � 2 V � and let v 2 int.�/� V . Then �jW v is maximal in v if and only if
� 2��. The assertion follows.

6.3 Geometry of the dual ball

We assume now that B � V is a W –invariant polytope in V with nonempty interior,
such that

�B D fx 2� W l.x/� 1g;

where l D lx� 2 int.��/ is a regular linear functional. The gradient vector of l gives a
direction x� , which is a regular point of �mod .

Set lw D w
�l D l ıw�1 , where w 2W . Then,

B D
\
w2W

fx 2 V W lw.x/� 1gI

ie the facets of B are carried by the affine hyperplanes lw D 1 for w 2W .

The polytope B defines a (possibly nonsymmetric) norm on V , namely the norm for
which B is the unit ball:

(6:6) kxk D kxkx� D max
w2W

.lw.x// :

We let !1; : : : ; !n denote the nonzero vertices of the n–simplex �B . We will label
these vertices consistently with the labeling of the simple roots: !i is the unique vertex
of �B on which ˛i does not vanish. Geometrically speaking, !i is opposite to the
facet Ai of �B carried by the wall ˛i D 0.

The regularity of l implies:
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Lemma 6.7 The polytope B is simplicial. Its facets are the simplices

fx 2 w� W lw.x/D 1g:

For each reflection si D s˛i
, the line segment !isi.!i/ is not contained in the boundary

of B .

Proof We will prove the last statement. The segment !isi.!i/ is parallel to the
vector ˛_i . If ˛_i were to be parallel to the face l D 1 of B , then hl; ˛_i i D 0, which
implies that l is singular.

Corollary 6.8 Since the polytope B is simplicial, the dual polytope B� is simple.

The chamber �� contains a distinguished vertex of ��
B�

, namely the linear functional l ;
this is the only vertex of ��

B�
contained in the interior of ��. (The other vertices

of ��
B�

are not vertices of B�.)

We now analyze the geometry of ��
B�

in more detail.

Lemma 6.9 ��
B�

is given by the set of 2n inequalities . � ; ˛i/ � 0 and h � ; !ii � 1

for i 2 Œn�.

Proof It is clear that these inequalities are necessary for � 2 V � to belong to ��
B�

.
In order to prove that they are sufficient, we have to show that each � satisfying these
inequalities belongs to B�. The inequalities h�; !ii � 1 show that the restriction of �
to �B is � 1. Now, Lemma 6.5 shows that �.x/� 1 for all x 2 B .

Close to the origin, ��
B�

is given by the n inequalities . � ; ˛i/� 0, while the other n

inequalities are strict. Close to l , it is given by the n inequalities h � ; !ii � 1, while
the other n inequalities are strict.

We define the exterior facet Ei ��
�
B�

by the equation

h � ; !ii D 1;

and the interior facet Fj ��
�
B�

as the fixed-point set of the reflection sj , equivalently,
by the equation

. � ; j̨ /D 0:

For subsets I;J � Œn�D f1; : : : ; ng we define the exterior faces

EI WD

\
i2I

Ei
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containing l , and the interior faces

FJ WD

\
j2J

Fj

containing the origin. These are nonempty faces of ��
B�

of the expected dimensions,
due to the linear independence of the !i , respectively, the j̨ .

As a consequence of the last lemma, every face of the polytope ��
B�

has the form

EI \FJ

for some subsets ∅� I;J � Œn�.

We now describe the combinatorics of the polytope ��
B�

.

Lemma 6.10 Ei \Fi D∅ for each i D 1; : : : ; n.

Proof Suppose that � 2 ��
B�

is a point of intersection of these faces. Then � is a
linear function fixed by the reflection si and satisfying the equation h�; !ii D 1. Then
�.si.!i// D 1 as well. Thus, � D 1 on the entire segment connecting the vertices
!i and si.!i/ of B . Since � belongs to B�, this segment has to be contained in the
boundary of B . But this contradicts Lemma 6.7. Therefore, such a � cannot exist.

We denote by WJ <W the subgroup generated by the reflections sj for j 2 J . The
fixed-point set of WJ on ��

B�
equals FJ .

Furthermore, we define !I as the face of B , as well as of �B , which is the convex
hull of the vertices !i for i 2 I . The dual face !�

I
of B� is given, as a subset of B�,

by the equations h � ; !ii D 1. It is contained in WJ ��
�
B�

, where we put J D Œn�� I .
Indeed, the vertices of !�

I
are the functionals lw for which the dual facet lw D 1 of B

contains !I , equivalently, for w 2WJ .

Note that WJ preserves !I and therefore also !�
I

(and acts on it as a reflection group).
The fixed-point set of WJ on WJ ��

�
B�

is contained in the intersection\
w2WJ

w��B�

and in particular in ��
B�

. This implies that

∅¤ FixWJ
.!�I /��

�
B� :
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Note that EI D !
�
I
\��

B�
. It follows that

EI \FJ � FixWJ
.!�I /¤∅:

In combination with the previous lemma, we conclude:

Lemma 6.11 For arbitrary subsets ∅� I;J � Œn�, it holds that EI \FJ ¤∅ if and
only if I \J D∅.

Next, we prove the uniqueness of the labeling of the faces.

Lemma 6.12 If EI \FJ DEI 0 \FJ 0 ¤∅, then I D I 0 and J D J 0 .

Proof Since EI \EI 0 D EI[I 0 and FJ \FJ 0 D FJ[J 0 , the proof reduces to the
case of containment I � I 0 and J � J 0 .

Suppose that j 0 2 J 0 � J . Then, intersecting both sides of the equality EI \FJ D

EI 0 \FJ 0 with Ej 0 , the previous lemma yields that

∅¤EI[fj 0g\FJ DEI 0[fj 0g\FJ 0 D∅;

a contradiction. Thus J D J 0 , and similarly I D I 0 .

For the n–cube Œ0; 1�n , we define similarly facets E0i D fti D 1g and F 0j D ftj D 0g.
They satisfy the same intersection properties as in Lemmas 6.11 and 6.12. Hence the
correspondence

EI \FJ
c
7!E0I \F 0J

is a combinatorial isomorphism between the polytopes ��
B�

and Œ0; 1�n . Lemma 6.1
now yields:

Theorem 6.13 The polytope ��
B�

is combinatorially homeomorphic to the n–cube
Œ0; 1�n ; ie there exists a combinatorial homeomorphism

��B�
h
�! Œ0; 1�n

inducing the bijection c of face posets.
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6.4 Cube structure of the compactified Weyl chamber

In this section we construct a canonical homeomorphism from the Finsler compact-
ification x�Fins of the model Weyl chamber � � V , to the cube Œ0;1�n . Recall that
˛1; : : : ; ˛n are the simple roots with respect to �. Each intersection

�i D ker.˛i/\�

is a facet of �.

For x 2� define
�!
˛.x/ WD .˛1.x/; : : : ; ˛n.x// 2 Œ0;1/

n:

This map is clearly a homeomorphism from � to Œ0;1/n . We wish to extend the
map �!˛ to a homeomorphism of the compactifications.

We recall the description of sequential convergence at infinity; see Proposition 5.47. A
sequence xk!1 in � converges at infinity if and only if the following properties hold:

(a) By parts (i) and (ii) of the proposition, there exists a face �D�mod of �modD@1�

such that for every ˛i 2R� the sequence .˛i.xk// converges.

(b) Since every �mod–pure sequence is also �mod–regular, for the other simple roots
˛ 62R� , we have divergence ˛.xk/!C1.

In other words, the sequence .xk/ converges at infinity if and only if the limit

lim
k!C1

�!
˛.xk/ 2 Œ0;1�

n

in the closed cube exists. Moreover, Proposition 5.47 combined with Lemma 5.23
implies that the extension

x�Fins �!˛
�! Œ0;1�n

sending
lim

k!C1
xk 7! lim

k!C1

�!
˛.xk/

for sequences .xk/ converging at infinity is well defined and bijective. Now, Lemma 2.1
implies that the extension is a homeomorphism. Composing with the homeomorphism

�W Œ0;1�n! Œ0; 1�n; .t1; : : : ; tn/ 7!
�
1�

1

t1C1
; : : : ; 1�

1

tnC1

�
;

we obtain:

Lemma 6.14 The map � ı�!˛ is a homeomorphism from x�Fins to the cube Œ0; 1�n . It
sends the compactification of each face x�Fins

i ; i 2 Œn�, to the face F 0i of the cube Œ0; 1�n .
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For a partition Œn�DItJ , we define ∅��I ��mod as the face fixed by the reflections sj

for j 2 J . Equivalently, the vertices of � are the directions of the vectors !i for i 2 I .

Conversely, for a face ∅� � D �mod � �mod , we define the partition Œn�D I� tJ� such
that �I� D � , ie I� indexes the vertices of � .

Moreover, we have the sector �I D
T

i2I �i D V .0; �I /�� and its compactification

x�Fins
I D

\
i2I

x�Fins
i I

compare (5.50).

Recall that our vector space V is the underlying vector space of the model maximal
flat F D Fmod . We can now combine the above lemma with the homeomorphism
constructed in Theorem 6.13:

Theorem 6.15 There exists a homeomorphism

x�Fins �
�!��B� � B�

satisfying the following:

(1) For each partition Œn�D I tJ ,

�. xX�
�I
/DEI and �.x�Fins

J /D FJ :

In particular, �.0/D 0.

(2) The map � preserves W –stabilizers: x 2 x�Fins is fixed by w 2W if and only if
�.x/ is fixed by w .

(3) As a consequence, � extends to a W –equivariant homeomorphism of the com-
pactified model flat to the dual ball:

ˆFmod W
xFFins

mod ! B�:

Proof Combining Theorem 6.13 and Lemma 6.14, we define

� D h�1
ı � ı

�!
˛:

The polytope ��
B�

is a cross-section for the action of W on B� because �� is a
cross-section for its action on V �. By Lemma 5.51, the compactified chamber x�Fins is a
cross-section for the action of W on xFFins . We also note that for J D Œn��I , the fixed-
point sets of the subgroup WJ <W in x�Fins and ��

B�
are precisely x�Fins

I
and FI ;

see Corollary 5.54. The last assertion of the theorem follows using Lemma 2.3.
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Remark 6.16 One can also derive this theorem from [8, Proposition I.18.11]. Our
proof is a direct argument which avoids symplectic geometry.

Remark 6.17 The paper [35] computes horofunctions on finite-dimensional vector
spaces V equipped with polyhedral norms, but does not address the question about the
global topology of the associated compactification of V . See also [14; 52].

Question 6.18 Suppose that k � k is a polyhedral norm on a finite-dimensional real
vector space V . Is it true that the horoclosure xV of V with respect to this norm, with
its natural stratification, is homeomorphic to the closed unit ball for the dual norm? Is
it homeomorphic to a closed ball for arbitrary norms?

After this work was completed, this question was answered in the affirmative by Ji and
Schilling [25].

7 Manifold-with-corners structure on the Finsler
compactification

In this section, we assume that x� 2 int.�mod/. We recall that the Finsler compactification
is independent of the choice of x� .

In Theorem 6.15, we proved the existence of a W –equivariant homeomorphism
ˆF W

xFFins ! B�. Since B� is a simple polytope, it has a natural structure of a
manifold-with-corners, whose strata are the faces of B�. Via the homeomorphism ˆF ,
we then endow xFFins with the structure of a manifold-with-corners as well. The
homeomorphism ˆ�1

F
sends each face �� of B� (dual to the face � of B , which we

will identify with the corresponding face of the Coxeter complex at infinity amod ) to
the ideal boundary

@Fins
1 V .0; �/:

The latter can be described as the set of strong asymptote classes of sectors V .x; �/:

ŒV .x; �/�D ŒV .x0; �/� () x � x0 2 F=Span.V .0; �//;

see Lemma 5.23. In other words, this is the stratum X F
� of xFFins ; see (5.45). The goal

of this section is to extend this manifold-with-corners structure from xFFins to xX Fins . We
will also see that this structure matches the one of the maximal Satake compactification
of X.
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7.1 Manifold-with-corners

Let � � @1X be a chamber which we view as a point in the closed stratum @FuX

of xX Fins . Let o 2X be the fixed point of K .

Lemma 7.1 For every neighborhood U of � in V .o; �/Fins and every neighbor-
hood U 0 of the identity e in K , the subset U 0 �U is a neighborhood of � in xX Fins .

Proof Suppose that there exist a neighborhood U of � and a neighborhood U 0

of e 2 K such that U 0 �U is not a neighborhood of � in xX Fins . Then there exists
a sequence �n ! � in xX Fins outside U 0 � U . There exist chambers �n such that
�n 2 V .o; �n/

Fins , and points yn 2 V .o; �n/ approximating �n such that yn! � . Our
description of sequential convergence (Proposition 5.26) implies that the sequence
.yn/ is �mod–regular and �n! � . Hence there exist elements kn! e in K such that
kn� D �n . Then, due to the continuity of the K–action, the points k�1

n �n 2 V .o; �/Fins

converge to � . Hence they enter the neighborhood U , and .kn/ enters U 0 for large n.
This is a contradiction.

Suppose now that the neighborhood U � V .o; �/Fins of � is sufficiently small, say,
disjoint from the union of the compactified sectors V .o; �/Fins over all proper faces
� ¨� . Then the stabilizer of every point in U equals the pointwise stabilizer K� DKF

of the maximal flat F � V .o; �/; see Corollary 5.54. We consider the bijective
continuous map

K=KF �U !KU � xX Fins

given by the K–action. By the previous lemma, its image KU is a neighborhood of the
closed stratum S�mod D @FuX. After shrinking U to a compact neighborhood of � , the
map becomes a homeomorphism. After further shrinking U to an open neighborhood,
the map becomes a homeomorphism onto an open neighborhood of @FuX.

Since U is a manifold-with-corners (see Theorem 6.15) and K=KF is a manifold, we
conclude, via Lemma 5.36:

Theorem 7.2 (manifold-with-corners) xX Fins is a manifold-with-corners with respect
to the stratification by the strata S�mod . In particular, the manifold-with-corners structure
is G–invariant.

This means that the k–dimensional stratum of the manifold with corner structure equals
the union of the k–dimensional strata S�mod .
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7.2 Homeomorphism to a ball

At last, we can now prove that the Finsler compactification of the symmetric space X

is K–equivariantly homeomorphic to a closed ball. Let B� be the dual ball to the unit
ball B � Fmod of the norm (6.6) on the vector space Fmod , defined via the regular
vector x� . We will identify the dual vector space of Fmod with Fmod itself using the
euclidean metric on Fmod . Hence, B� becomes a unit ball in Fmod for the dual norm

k � k
�
D k � k

�
x�

of our original norm.

Since B� � Fmod is W –invariant, the dual norm extends from Fmod to a G–invariant
function d�

x�
on X �X by

d�x�
.x;y/D kd�.x;y/k

�
x�
:

We call the set
B�.o; 1/D fq 2X W d�x�

.o; q/� 1g

the dual ball. It is preserved by the group K since K fixes the point o. As a compact
star-like subset of .X; dRiem/, it is homeomorphic to the closed ball. We can now prove:

Theorem 7.3 There exists a K–equivariant homeomorphism

xX Fins ˆ
�! B�.o; 1/

which restricts to the homeomorphism �W x�Fins ! ��
B�

from Theorem 6.15. In
particular, xX Fins is homeomorphic to the closed ball.

Proof We will use Lemma 2.3 to construct ˆ. In order to do so, we have to know
that x�Fins and ��

B�
are cross-sections for the actions of K on xX Fins and B�.o; 1/,

and that � respects the K–stabilizers.

(1) According to Lemma 5.51, x�Fins is a cross-section for the action of K on xX Fins .
Since K preserves the dual ball B�.o; 1/ and

��B� D�\B�.o; 1/;

while � is a cross-section for the action K Õ X, it follows that ��
B�

is a cross-section
for the action K Õ B�.o; 1/.

(2) The faces � with ∅ � � � � correspond to index sets J with ∅ � J� � Œn�,
where j 2 J� if and only if the reflection sj fixes � . According to Corollary 5.54, the
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fixed-point set of K� on x�Fins equals V .o; �/Fins . On the other hand, the fixed-point set
of K� on ��B� equals the interior face FJ� . By Theorem 6.15, the homeomorphism �

carries V .o; �/Fins to FJ� . Therefore, � respects the point stabilizers.

7.3 Relation to the maximal Satake compactification

It turns out that the compactification xX Fins constructed in this paper is naturally
isomorphic to the maximal Satake compactification xX S

max . To this end, we will use the
dual-cell interpretation of the maximal Satake compactification; see [8, Chapter I.19].

Theorem 7.4 There is a G–equivariant homeomorphism of manifolds-with-corners
xX Fins! xX S

max which extends the identity map X !X.

Proof We first observe that the group K acts on both compactifications so that
the cross-sections for the actions are the respective compactifications of the model
euclidean Weyl chamber � D �mod � F D Fmod . We therefore compare the W –
invariant compactifications of Fmod . On the side of xX Fins , the ideal boundary of F

is the union of small strata X F
� as in Section 5.2.5. Elements of X F

� are equivalence
classes ŒV .x; �/� of sectors V .x; �/ in F . Two sectors V .x; �/;V .x0; �/ with the same
base � are equivalent if and only if x;x0 project to the same vector in F=Span.V .0; �//.
These are exactly the strata, denoted by e.C /, in the maximal Satake compactification
of F , denoted by xFS

max (see [8, Chapter I.19]): For each sector C D V .0; �/, the
stratum e.C / is F=Span.C /. We then have a W –equivariant bijection

hW xFFins
! xFS

max

defined via the collection of maps

ŒV .x; �/� 7! Œx� 2 e.C /:

For � D∅, this is just the identity map F ! F .

In order to show that this map is a homeomorphism we note that the topology on xFS
max

is defined via roots (see [8, Chapter I.19]) and on the Weyl chamber � in F this
topology is exactly the topology on x�Fins described in terms of simple roots; compare
the proof of Lemma 6.14.

Lastly, we note that the map h we described respects the stabilizers in the group K .
Therefore, by Lemma 2.3, we obtain a K–equivariant homeomorphic extension

xX Fins
! xX S

max
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of h, which is also an extension of the identity map X ! X. Since the identity is
G–equivariant, the same holds for the extension.

Remark 7.5 The maximal Satake compactification is a real-analytic manifold with
corners on which the group G acts real-analytically; see [8, Chapter I.19]. Therefore,
the same conclusion holds for the compactification xX Fins .

7.4 Proof of Theorem 1.1

The theorem is the combination of the following results:

Part (i) is proven in Section 5.2.4, where we established that xX Fins is a union of
strata S�mod , each of which is a single G–orbit. Thus, G acts on xX Fins with finitely
many orbits.

Part (ii) is proven in Theorem 7.2, part (iii) is proven in Theorem 7.3, part (iv) is the
content of Proposition 5.33, and lastly, part (v) is established in Theorem 7.4.

8 Relative position and thickenings

8.1 Relative position at infinity and folding order

In this section, we review some combinatorial concepts from [34] related to the geometry
of Tits buildings. We will discuss here only the relative position of chambers with
respect to simplices, which is the case needed in this paper, and refer the reader to [34]
for more general treatment.

Let �0; � � @1X be chambers. We view them also as points �0; � 2 @FuX. There
exists an (in general nonunique) apartment a � @1X containing these chambers,
�0; � � a, and a unique apartment chart ˛W amod ! a such that �0 D ˛.�mod/. We
define the position of � relative to �0 as the chamber

pos.�; �0/ WD ˛
�1.�/� amod:

Abusing notation, it can be regarded algebraically as the unique element

pos.�; �0/ 2W

such that
� D ˛.pos.�; �0/�mod/I
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see [34, Section 3.3]. It does not depend on the choice of the apartment a. To
see this, choose regular points �0 2 int.�0/ and � 2 int.�/ which are not antipodal,
†Tits.�; �0/ < � . Then the segment �0� is contained in a by convexity, and its image
˛�1.�0�/ in amod is independent of the chart ˛ because its initial portion ˛�1.�0�\�0/

in �mod is.

The level sets of pos. � ; �0/ in @FuX are the Schubert cells relative �0 , ie the orbits of
the minimal parabolic subgroup B�0

�G fixing �0 .

More generally, we define the position of a chamber � � @1X relative to a simplex
�0 � @1X as follows. Let �mod D �.�0/. Let again a � @1X be an apartment
containing �0 and � , and let ˛W amod ! a be a chart such that �0 D ˛.�mod/. We
define the position pos.�; �0/ of � relative to �0 as the W�mod–orbit of the chamber

˛�1.�/� amod:

It can be interpreted algebraically as a coset

pos.�; �0/ 2W�modnW:

The (strong) Bruhat order � on the Weyl group W has the following geometric inter-
pretation as folding order; see [34, Definition 3.2]. For distinct elements w1; w2 2W ,
it holds that

w1 � w2

if and only if there exists a folding map amod ! amod fixing �mod and mapping
w2�mod 7! w1�mod ; see [34, Section 3.2]. Here, by a folding map amod! amod we
mean a type-preserving continuous map which sends chambers isometrically onto
chambers.

The folding order on relative positions coincides with the inclusion order on Schubert
cycles, ie w1 � w2 if and only if the Schubert cell fpos. � ; �0/D w1g is contained in
the closure of the Schubert cell fpos. � ; �0/Dw2g, and the Schubert cycles relative �0

are the sublevel sets of pos. � ; �0/. In the case of complex semisimple Lie groups G

this inclusion relation is a classical result of Chevalley [15]; for the case of general
semisimple Lie groups we refer the reader to [34, Proposition 3.14] or, alternatively,
to [42; 43].

We also need to define the folding order more generally on positions of chambers
relative to simplices �0 of an arbitrary face type �mod . We say that

W�modx�1 ��mod W�modx�2
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for chambers x�1; x�2 � amod if and only if there exist x� 0i 2W�modx�i such that

x� 01 � x�
0
2;

equivalently, geometrically, if for some (any) chambers x� 0i 2 W�modx�i there exists a
folding map amod! amod fixing �mod and mapping x� 0

2
to x� 0

1
. (Note that the elements

in W�mod are such folding maps.)

Lemma 8.1 The relation ��mod is a partial order.

Proof Transitivity holds since the composition of folding maps is again a folding map.

To verify reflexivity, pick points �mod 2 int.�mod/ and �mod 2 int.�mod/.

Let x� D w�mod � amod be a chamber and f W amod! amod a folding map fixing �mod .
Let x�D w�mod . If the f –image of the segment �modx� is again an unbroken geodesic
segment, then the two geodesic segments are congruent by an element of W�mod , because
their initial directions at �mod are. On the other hand, if the f –image of �modx� is a
broken geodesic segment, then the distance of its endpoints is strictly smaller than its
length, and consequently f x� 6� x� . This shows that

W�modx�1 ��mod W�modx�2 ��mod W�modx�1 D) W�modx�1 DW�modx�2

and hence reflexivity.

The relative position function

posW Flag�mod
�Flag�mod

!W�modnW

is lower semicontinuous; compare the discussion of closures of Schubert cycles above.

It follows from the geometric description of the folding orders in terms of folding maps
that for face types �mod��mod the order ��mod refines the order ��mod , because a folding
map fixing �mod fixes in particular its face �mod . Thus, for chambers �1; �2 � @1X

and simplices � � � � @1X of types �mod D �.�/� �mod D �.�/ it holds that

(8:2) pos.�1; �/��mod pos.�2; �/ D) pos.�1; �/��mod pos.�2; �/:

We now describe the action of the longest element w0 2W on relative positions. Note
that w0W�modw

�1
0
D Ww0�mod D W��mod and w0 maps W�mod–orbits to W��mod–orbits.

The action of w0 therefore induces a natural map

W�modnW
w0
��!W��modnW; W�modw 7! w0W�modw DW��modw0w:
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This map is order-reversing:

(8:3) W�modw ��mod W�modw
0
() W��modw0w ���mod W��modw0w

0
I

see [34, Section 3.2].

Definition 8.4 (complementary position) We define the complementary position by

c-pos WD w0 pos :

This terminology is justified by:

Lemma 8.5 [34, Lemma 3.16] Let �; y�; � � @1X be two simplices and a chamber
contained in an apartment a, and suppose that � and y� are antipodal. Then pos.�; y�/D
c-pos.�; �/.

The relation of “complementarity” is clearly symmetric: c-c-pos D pos. Passing to
complementary relative position reverses the partial order (see (8.3)):

(8:6) pos.�1; �/��.�/ pos.�2; �/ () c-pos.�1; �/���.�/ c-pos.�2; �/:

8.2 Further properties of the folding order

This is a technical section whose main result (Proposition 8.12) will be used in the
proof of Proposition 9.12, which is the key to proving proper discontinuity of actions
of �mod–regular subgroups.

We begin with a result useful for comparing relative positions.

Lemma 8.7 (i) Let �0; �1; �2� @1X be chambers, and suppose there exists a seg-
ment �0�2 with �02 int.�0/ and �22 int.�2/ containing a point �12 int.�1/. Then

pos.�1; �0/� pos.�2; �0/

with equality if and only if �1 D �2 .

(ii) More generally, let �1; �2 � @1X be chambers and let �0 � @1X be a simplex
of type �mod . Suppose that there exists a segment �0�2 with �0 2 int.�0/ and
�2 2 int.�2/ containing a point �1 2 int.�1/. Then

pos.�1; �0/��mod pos.�2; �0/

with equality if and only if �1 D �2 .

Geometry & Topology, Volume 22 (2018)



Finsler bordifications of symmetric and certain locally symmetric spaces 2605

Proof We prove the more general assertion (ii). After perturbing �2 , we can arrange
that the subsegment �1�2 avoids codimension-two faces. Along this subsegment we
find a gallery of chambers connecting �1 to �2 . We may therefore proceed by induction
and assume that the chambers �1 and �2 are adjacent, ie share a panel � which is
intersected transversally by �1�2 . Working in an apartment containing �0; �1; �2 , the
wall through � does not contain �0 and separates st.�0/[�1 from �2 . Folding at this
wall yields the desired inequality.

We next study the values of the relative position function on stars of simplices.

We fix a reference chamber �0 � @1X. Let � � @1X be a simplex. For any interior
points � 2 int.�/ and �0 2 int.�0/, the segment ��0 enters the interior of a chamber
�� � � , ie

��0\ int.��/¤∅:

Note that the chamber �� does not depend on the interior points � and �0 . Moreover,
it is contained in any apartment containing �0 and � . We call �� the chamber in st.�/
pointing towards �0 .

Similarly, if �0�C© �0� is an extension of the segment �0� beyond �, then there exists
a chamber �C � � such that ��C\ int.�C/¤∅, and we call �C a chamber in st.�/
pointing away from �0 .

Let a � @1X be an apartment containing �0 and � . Then �� � a. Moreover,
since geodesic segments inside a extend uniquely, there exists a unique chamber
�C � st.�/\a pointing away from �0 . The chambers �˙ � a can be characterized as
follows in terms of separation from �0 by walls:

Lemma 8.8 Let � � st.�/\ a be a chamber. Then

(i) � D �C if and only if � is separated from �0 by every wall s � a containing � ,

(ii) � D �� if and only if � is not separated from �0 by any wall s� a containing � .

Proof (i) Clearly, �C is separated from �0 by every wall s � � because, using
the above notation, �0�C\ s D �. Conversely, if � is separated from �0 by all such
walls s , then � and �C lie in the same hemispheres bounded by the walls s � � in a,
and therefore must coincide.

(ii) Similarly, �� is not separated from �0 by any wall s � � because �0�\ s D �,
and conversely, if � is not separated from �0 by any wall s � � , then � and �� lie in
the same hemispheres bounded by the walls s� � in a, and therefore must coincide.

Geometry & Topology, Volume 22 (2018)



2606 Michael Kapovich and Bernhard Leeb

Remark 8.9 The assertion of the lemma remains valid if one only admits the walls
s � a such that s\ � is a panel containing � .

The chambers pointing towards and away from �0 in @1X can also be characterized
in terms of the folding order:

Lemma 8.10 The restriction of the function pos. � ; �0/ to the set of chambers con-
tained in st.�/ attains a unique minimal value in �� and a unique maximal value17

precisely in the chambers pointing away from �0 .

Proof Let � � � be a chamber and let a � @1X be an apartment containing �0

and � . Then �� � a. Let �C � st.�/ \ a be the unique chamber pointing away
from �0 .

Still using the above notation, let �0�C � �0� be an extension of the segment �0� with
endpoint �C 2 int.�C/. Let �� 2 �0�\ int.��/. The points �� and � appear in this
order on the (oriented) segment �0�C .

We now perturb the segment �0�C to a segment �0� 0C which intersects int.�/ in a
point �0 close to � and int.��/ in a point � 0� close to �� . The perturbation is possible
because � � � . Again, the points � 0� and �0 appear in this order on the perturbed
segment �0� 0C . Lemma 8.7 implies that

pos.��; �0/� pos.�; �0/� pos.�C; �0/

with equality in the first (second) inequality if and only if � D �� (� D �C ). The asser-
tion of the lemma follows because pos.�C; �0/ does not depend on the choice of a.

We now extend the lemma to the case of relative position with respect to a simplex �0 .

We pick a chamber �0 � �0 . For a simplex � , the chamber �� � st.�/ pointing
towards �0 is defined as before.

Corollary 8.11 The restriction of the function pos. � ; �0/ to the set of chambers in
st.�/ attains a unique minimal value in �� and a unique maximal value precisely in the
chambers pointing away from �0 .

Proof This is an immediate consequence of Lemma 8.10 and (8.2).

17By this we mean that it is larger than all other values.
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Combing the corollary with the discussion in Section 3.2.3, we obtain:

Proposition 8.12 Let �0; � be simplices. Then there exists a dense open subset of
chambers in stFu.�/ where the function pos. � ; �0/ attains its unique maximal value.

8.3 Thickenings

A thickening (of the neutral element) in W is a subset

Th�W

which is a union of sublevels for the folding order, ie which contains with every
element w also every element w0 satisfying w0 � w ; see [34, Section 3.4.1]. In the
theory of posets, such subsets are called ideals.

Note that
Thc
WD w0.W �Th/

is again a thickening. Here, w0 2W denotes the longest element of the Weyl group,
that is, the element of order two mapping �mod to the opposite chamber in amod . It
holds that

W D Thtw0Thc ;

and we call Thc the thickening complementary to Th.

A thickening Th�W is called fat if Th[w0ThDW , equivalently, Th� Thc . It is
called slim if Th\w0ThD ∅, equivalently, Th � Thc . It is called balanced if it is
both fat and slim, equivalently, ThD Thc ; see [34, Definition 3.25].

For types z#0; z# 2 �mod and a radius r 2 Œ0; �� we define the metric thickening

Thz#0;z#;r
WD fw 2W W d.wz#; z#0/� rg

using the natural W –invariant spherical metric d on amod ; see [34, Section 3.4.1,
formula (3.26)].

For a face type �mod � �mod , we denote by W�mod its stabilizer in W . Furthermore,
�D�w0W �mod! �mod denotes the canonical involution of the model spherical Weyl
chamber.

Lemma 8.13 (i) If z#0 2 �mod , then W�modThz#0;z#;r
D Thz#0;z#;r

.

(ii) If �z#0 D
z#0 , then Thz#0;z#;r

is fat for r � �
2

and slim for r < �
2

.
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Proof (i) For w0 2W�mod , we have that w0z#0 D
z#0 and hence

d.w0wz#; z#0/D d.wz#;w0
�1z#0„ ƒ‚ …
z#0

/:

(ii) Since w0
z#0 D��z#0 D�

z#0 , we have

d.w0wz#;�z#0/D d.wz#;�w0
z#0„ ƒ‚ …

z#0

/;

whence the assertion.

Corollary 8.14 (existence of balanced thickenings) If the face type �mod is �–invariant,
��mod D �mod , then there exists a W�mod–invariant balanced thickening Th�W .

Proof Since ��mod D �mod , there exists z#0 2 �mod such that �z#0 D
z#0 . Moreover,

there exists z# 2 �mod such that d. � z#; z#0/¤
�
2

on W . (This holds for an open dense
subset of types z# 2 �mod .) According to the lemma, the metric thickening Thz#0;z#;

�
2

is
balanced and W�mod–invariant.

Given a thickening Th�W , we obtain thickenings at infinity as follows.

First, we define the thickening in @FuX of a chamber � 2 @FuX as

ThFu.�/ WD fpos. � ; �/ 2 Thg � @FuX:

It is a finite union of Schubert cycles relative � . We then define the thickening of �
inside the Finsler ideal boundary as the “suspension” of its thickening inside the
Furstenberg boundary:

ThFins.�/ WD fŒb
x�
�;p � W stFu.�/� ThFu.�/g D

[
fX� W stFu.�/� ThFu.�/g � @

Fins
1 X;

where stFu.�/ denotes the set of chambers containing � as a face; see Section 3.2.3.
Note that ThFu.�/D ThFins.�/\ @FuX.

Lemma 8.15 ThFins.�/ is compact.

Proof Consider a sequence of points Œbx��n;pn
�2ThFins.�/, and suppose that it converges

in @Fins
1 X :

Œb
x�
�n;pn

�! Œb
x�
�;q �:

We must show that also Œbx��;q � 2 ThFins.�/.
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After extraction, we may assume that all simplices �n have the same type �.�n/D �mod .
According to Lemma 5.31, �n!���. By assumption, st.�n/�ThFu.�/, and we must
show that st.�/�ThFu.�/. Since st.�/� st.�/, this will follow from st.�/�ThFu.�/.

The latter follows from the closedness of ThFu.�/ in @FuX, because every chamber
� 0 � st.�/ is a limit of a sequence of chambers � 0n � st.�n/.

Remark 8.16 One can show that ThFins.�/� @Fins
1 X is a contractible CW complex.

In the second version of this paper on arXiv (see Theorem 8.21 there), we proved that
it is Čech acyclic.

Example 8.17 Suppose that the Weyl group W of X is of type A2 , ie is isomorphic to
the permutation group on three letters. Let s1; s2 2W denote the generators which are
the reflections in the walls of the positive chamber �mod . There is the unique balanced
thickening ThD fe; s1; s2g �W . The thickening ThFins.�/� @Fins

1 X is the wedge of
two closed disks connected at the point � : These disks are the visual compactifications
xX�1

, xX�2
of two rank-1 symmetric spaces X�i

. Here �1; �2 are the two vertices of the
edge � .

More generally, we define the thickening in @Fins
1 X of a set of chambers A� @FuX as

ThFins.A/ WD
[
�2A

ThFins.�/� @Fins
1 X:

Lemma 8.18 If A is compact, then ThFins.A/ is compact.

Proof Since @FuX is a homogeneous space for the maximal compact subgroup K ,
there exists a chamber �0 2A and a compact subset C �K such that ADC�0 . Then

ThFins.A/D C �ThFins.�0/

and is hence compact as a consequence of the previous lemma.

If the thickening Th � W is W�mod–invariant, then we can define the thickening in
@Fins
1 X of a simplex � � @1X of type �mod as

ThFins.�/ WD ThFins.�/� @Fins
1 X

for a chamber � � � . It does not depend on � . For a set A� Flag�mod
of simplices of

type �mod , we define its thickening in @Fins
1 X as

ThFins.A/ WD
[
�2A

ThFins.�/� @Fins
1 X:

Again, ThFins.A/ is compact if A is.
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Lemma 8.19 (fibration of thickenings) Let A� Flag�mod
be compact, and suppose

that the thickenings ThFins.�/ of the simplices � 2 A are pairwise disjoint. Then the
natural map

ThFins.A/
�
�!A

is a fiber bundle.

Proof Regarding continuity of � , suppose that �n! � in ThFins.A/ and �n! � in A

with �n 2 ThFins.�n/. Then � 2 ThFins.�/ by semicontinuity of relative position, and
hence �.�/D � .

In order to show that � is a fibration, we need to construct local trivializations. Fix
� 2A and an opposite simplex y� . The unipotent horocyclic subgroup Hy� acts simply
transitively on an open neighborhood of � in Flag�mod

. Now, let S �Hy� denote the
closed subset consisting of all h 2Hy� which send � to elements of A. Then S� is a
neighborhood of � in A. Restricting the action of Hy� to the subset S , we obtain a
topological embedding

S �ThFins.�/! ThFins.A/

and a local trivialization of � over a neighborhood of � in A.

9 Proper discontinuity

Our aim is to construct domains of proper discontinuity for the action

� Õ xX Fins

of discrete subgroups � <G on the Finsler compactification xX Fins of X. The proper
discontinuity of an action can be rephrased as the absence of dynamical relations, and
our construction of domains results from studying the dynamical relations between
points in xX Fins with respect to the action G Õ xX Fins and determining necessary
conditions.

The Furstenberg boundary is naturally embedded in the Finsler boundary as the closed
stratum at infinity,

@FuX � @Fins
1 X I

see Corollary 5.25. The G–action on xX Fins is determined by (fills in) the G–action on
@FuX Š Flag�mod

, and our approach is based on the study of the dynamics of the G–
action on its associated flag manifolds in [34]. We first recall from there a combinatorial

Geometry & Topology, Volume 22 (2018)



Finsler bordifications of symmetric and certain locally symmetric spaces 2611

inequality for dynamical relations in @FuX and provide an auxiliary result regarding
the dynamics of pure sequences on @FuX ; see Section 9.1. We then show in Section 9.2
how dynamical relations in @Fins

1 X imply dynamical relations in @FuX and use this
to extend the combinatorial inequality for dynamical relations from @FuX to xX Fins .
With this inequality at hand, one readily obtains domains of proper discontinuity by
removing suitable thickenings of limit sets (see Section 8.3), ie the points which have
“sufficiently special” position relative to some limit point.

9.1 Dynamics on the Furstenberg boundary

We consider the action
G Õ @FuX

on the Furstenberg boundary @FuX Š Flag�mod
. Specifically, we are interested in the

dynamics of diverging sequences in G . Let .gn/ be a �mod–contracting sequence
in G with

(9:1) gnjC.��/! �C

uniformly on compacts, where �˙ 2 Flag˙�mod
.

9.1.1 Dynamical relations We recall from [34] the following necessary condition
for dynamical relations between points in @FuX with respect to the action of .gn/:18

Proposition 9.2 (dynamical relation inequality in @FuX ; compare [34, Proposi-
tion 6.5]) Let .gn/ be a �mod–contracting sequence in G satisfying (9.1). Suppose
that there is a dynamical relation

�
.gn/
� � 0

between points �; � 0 2 @FuX. Then

(9:3) pos.� 0; �C/� c-pos.�; ��/:

Intuitively, this means that it cannot happen that � is far from �� and � 0 is far from �C ,
where “far” is to be understood as having “generic” relative position.

Proof The Furstenberg boundary @FuX is naturally identified with the regular G–
orbits G� in the visual boundary @1X. The assertion is therefore equivalent to the
implication (i)D) (ii) of [34, Proposition 6.5] in the special case of regular G–orbits.

18Proposition 6.5 of [34] applies to �mod–contracting sequences on arbitrary flag manifolds Flag�mod

for arbitrary face types �mod; �mod � �mod .
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9.1.2 Pure sequences The action of the �mod–contracting sequence .gn/ in G satis-
fying (9.1) preserves the natural fibration of flag manifolds

(9:4) ��mod W @FuX Š Flag�mod
! Flag�mod

:

For a simplex � 2 Flag�mod
,

stFu.�/D �
�1
�mod

.�/� @FuX

is the set of chambers � � � ; see Section 3.2.3. For �� 2 Flag��mod
, we denote by

CFu.��/ WD �
�1
�mod

.C.��//� @FuX

the set of chambers over C.��/, and by @CFu.��/ WD �
�1
�mod

.@C.��// its complement
in @FuX.

The contraction property (9.1) for the action of .gn/ on the base Flag�mod
translates

into the property for the dynamics on @FuX that the .gn/–orbits in CFu.��/ accu-
mulate at stFu.�/ locally uniformly (in view of the fibration (9.4)), ie that for every
compact subset A� CFu.��/ the sequence of subsets gnA accumulates at (a subset
of) stFu.�/. In the terminology of [34, Definition 5.8] this means that the sequence
.gn/ is .@CFu.��/; stFu.�//–accumulating on @FuX.

As a �mod–contracting sequence, .gn/ is in particular �mod–regular; see Section 4.3. If
we make the stronger additional assumption that .gn/ is �mod–pure (see Definition 4.8),
then its accumulation dynamics on @FuX can be described more precisely. The next
result expresses that there is only bounded distortion in the direction of the ��mod–fibers:

Proposition 9.5 Suppose that the sequence .gn/ in G is �mod–contracting as in (9.1)
and �mod–pure. Then, after extraction,

gnjCFu.��/! �

uniformly on compacts, where the limit map

�W CFu.��/! stFu.�C/

is an open (in the classical topology) algebraic map. Moreover, for every y�� 2 C.��/,
the restriction

�jstFu.y��/W stFu.y��/! stFu.�C/

is given by the restriction of an element in G , and hence is an (algebraic) homeomor-
phism.
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Proof We fix a basepoint o 2X.

We first note that we can replace the sequence .gn/ by a sequence of transvections.
Indeed, let bn! b and b0n! b0 be converging sequences in G , and put zgn WD bngnb0n .
Then the �mod–pureness of .gn/ is equivalent to the �mod–pureness of .zgn/, and (9.1)
to locally uniform convergence zgnjC.b0�1��/

! b�C . Furthermore, the locally uniform
convergence gnjCFu.��/ ! � translates into zgnjCFu.b0�1��/

! b�b0 with limit map
b�b0W CFu.b

0�1��/! stFu.b�C/. Thus, the assertion holds for .gn/ if and only if
it holds for .zgn/. Since .gn/ is �mod–pure and we may pass to a subsequence, we
can therefore replace .gn/, using a KAK–decomposition of G , by a sequence of
transvections tn with axes through o. Moreover, we may assume that the sequence
.tno/ is contained in the Weyl sector V .o; �C/ and �mod–regular, ie drifts away from
the boundary.

In this special situation, things become explicit: The simplex �� is o–opposite to �C .
The unipotent subgroup H�� acts simply transitively on C.��/� Flag�mod

and, accord-
ingly, the natural map

˛W H��� stFu.�C/! CFu.��/

is an algebraic isomorphism. The transvections tn normalize H�� , and it holds that19

ctn
! e

uniformly on compacts in H�� , where cg denotes conjugation by g . Since tn acts
trivially on stFu.�C/, we obtain for h 2H�� and � 2 stFu.�C/ that

tn.h�/D .tnht�1
n /„ ƒ‚ …

!e

.tn�/„ƒ‚…
D�

! �:

Hence,

tn! �

uniformly on compacts in CFu.��/, where �W CFu.��/! stFu.�C/ is the open con-
tinuous limit map given by �.h�/ D � . Moreover, for y�� 2 C.��/, the restriction
�jstFu.y��/W stFu.y��/! stFu.�C/ coincides with the restriction of the unique element
in H�� which maps y�� to �C . In order to see that � is algebraic, we observe that it
equals the composition of the algebraic map ˛�1 followed by the projection to the
second factor, H�� � stFu.�C/! stFu.�C/.

19See eg [17, Section 2.17].
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In general, verifying (uniform) regularity of a subgroup is not an easy task. See
eg Theorem 5.53 of [33] for a result of this kind. For Zariski dense subgroups the
verification of regularity becomes easier. The next result, which is an interesting
application of Proposition 9.5, provides a sufficient condition for �mod–regularity:

Theorem 9.6 Let �W �!G be a representation whose image is Zariski dense in G .
Suppose that Z is a compact metrizable space, � Õ Z is a discrete convergence
group action (with finite kernel), and f W Z! Flag�mod

is a �–equivariant topological
embedding. Then � has finite kernel and �.�/ is �mod–regular.

Proof In view of the Zariski density of �.�/, also f .Z/ is Zariski dense in @FuX.
Consequently, the assumption that � acts on Z with finite kernel implies that � has
finite kernel.

We assume that �.�/ is not regular.

Suppose that for some sequence 
i!1 in � , the sequence giD�.
i/2G is not �mod–
regular. Hence, after extraction, since � has only finitely many faces, the sequence .gi/

is �mod–pure for some face �mod of �mod not containing �mod . Therefore, according to
Proposition 9.5, after further extraction, there exists a pair of simplices �C 2 Flag�mod

and �� 2 Flag��mod
such that the sequence .gi/ converges on the Zariski open and dense

subset CFu.��/� @FuX to a surjective algebraic map �W CFu.��/! stFu.�C/. At the
same time, by the convergence property on Z , after extraction, .gi/ converges to a
constant map � �C on A WD f .Z/�f��g, for some (exceptional) point �� 2 f .Z/.
Therefore, regarding the gi as maps Flag�mod

! Flag�mod
, for every point � 2��1

�mod
.A/

the accumulation set of .gi.�// is contained in ��1
�mod

.�C/. Hence, the image of the
intersection

zA WD ��1
�mod

.A/\CFu.��/

under the map � is contained in ��1
�mod

.�C/. Since zA is Zariski dense and �W CFu.��/!

stFu.�C/ is surjective, the image �. zA/ is Zariski dense in stFu.�C/. It follows that
stFu.�C/� stFu.�C/. However, as �mod 6� �mod , this contradicts the property that

st.�C/ 6� st.�C/:

9.2 Dynamics on the Finsler compactification

We now consider the action
G Õ xX Fins
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on the Finsler compactification. Our goal is to construct in xX Fins domains of proper dis-
continuity for actions of discrete subgroups � <G . We refer the reader to Section 11.4
for an explicit example illustrating our general construction.

9.2.1 From Finsler to Furstenberg dynamical relations We show first that dy-
namical relations in the Finsler boundary (with respect to the action on the entire
compactification) imply intrinsic dynamical relations in the Furstenberg boundary:

Lemma 9.7 Let gn!1 be a sequence in G . Suppose there is a dynamical relation

�
.gn/
� � 0

in xX Fins between boundary points � 2 X� with � 2 Flag�mod
and � 0 2 X�0 with

�0 2 Flag�0mod
. Then, after extraction, there exist �� 2 Flag��mod

, �0� 2 Flag��0mod
and

open continuous maps

CFu.��/
�
�! stFu.�/ and CFu.�

0
�/

�0

�! stFu.�
0/

such that for every z� 2 CFu.��/\CFu.�
0
�/ there is the dynamical relation in @FuX :

(9:8) �z�
.gn/
� �0z�:

Remark 9.9 (1) CFu.��/ and CFu.�
0
�/ are open dense in @FuX, and hence also their

intersection.

(2) The dynamical relation (9.8) is meant to hold intrinsically inside @FuX, ie there
exists a sequence .�n/ in @FuX, not just in xX Fins , such that �n!�z� and gn�n! �0z� .

Proof By assumption, and since X is dense in xX Fins , there exists a sequence .xn/

in X such that
xn! � and gnxn! � 0:

We fix a basepoint o 2X and write

xn D ano and gnxn D bno

such that gn D bna�1
n . Then the sequences .an/ and .bn/ in G are �mod–pure and

�0mod–pure, respectively, and we have flag convergence

an! � and bn! �0I
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see Propositions 5.42 and 5.43. After extraction, we obtain that also the inverse
sequences flag converge:

a�1
n ! �� and b�1

n ! �0�

with �� 2 Flag��mod
and �0� 2 Flag��0mod

; see Lemma 4.4. The sequences .an/ and .bn/

are then contracting on the appropriate flag manifolds:

anjC.��/! � and bnjC.�0�/
! �0

uniformly on compacts.

Due to pureness, we get more precise information about the accumulation dynamics of
these sequences on @FuX. Proposition 9.5 yields that

anjCFu.��/! � and bnjCFu.�0�/
! �0

uniformly on compacts with open continuous limit maps

�W CFu.��/! stFu.�/ and �0W CFu.�
0
�/! stFu.�

0/:

Then for z� 2 CFu.��/\CFu.�
0
�/, it holds that

anz� ! �z� and gnanz� D bnz� ! �0z�;

ie we obtain the dynamical relation

�z�
.gn/
� �0z�

inside @FuX.

Remark 9.10 (extrinsic versus intrinsic dynamical relations in @FuX ) In the special
case �modD �

0
modD �mod this result says that all extrinsic dynamical relations in @FuX,

as a subset of xX Fins , are already intrinsic. More precisely, if �; � 0 2 @FuX and .xn/ is
a sequence in X such that xn! � and gnxn! � 0 in xX Fins , then there also exists a
sequence .�n/ in @FuX such that �n! � and gn�n! � 0 .

We deduce the following consequence from the technical statement in the last lemma:

Corollary 9.11 After extraction, the sequence .gn/ satisfies: if O � stFu.�/ and
O 0 � stFu.�

0/ are dense open subsets, then there exist � 2 O and � 0 2 O 0 which are
intrinsically dynamically related in @FuX with respect to .gn/.
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Proof Since � is open and continuous, the subset ��1.O/ is dense open in CFu.��/,
and hence also in @FuX. Similarly, �0�1

.O 0/ is dense open in @FuX. Consequently,
their intersection is nonempty and contains some z� . We put � D �z� and � 0 D �0z� ,
and use the lemma.

9.2.2 Dynamical relations We can now extend the combinatorial inequality for
intrinsic dynamical relations in the Furstenberg boundary (Proposition 9.2) to the
Finsler boundary:

Proposition 9.12 (dynamical relation inequality in @Fins
1 X ) Let .gn/ be a �mod–

contracting sequence in G with (9.1). Suppose that there is a dynamical relation

�
.gn/
� � 0

in xX Fins between boundary points � 2 X� with � 2 Flag�mod
and � 0 2 X�0 with

�0 2 Flag�0mod
. Then

(9:13) pos.� 0; �C/� c-pos.�; ��/

for all � 2 stFu.�/ and � 0 2 stFu.�
0/.

Proof For any two simplices �; � � @1X, the relative position pos. � ; �/ has a unique
maximal value on stFu.�/, ie all other values are smaller, and it attains this maximal
value on an dense open subset; see Proposition 8.12. Let O � stFu.�/ denote the
open dense subset where pos. � ; ��/ is maximal and O 0 � stFu.�

0/ the subset where
pos. � ; �C/ is maximal. By Corollary 9.11, after extraction, there exist � 2 O and
� 0 2O 0 which are intrinsically dynamically related in @FuX :

�
.gn/
� � 0:

Applying Proposition 9.2, we obtain that these � and � 0 satisfy inequality (9.13). The
inequality for arbitrary � 2 stFu.�/ and � 0 2 stFu.�

0/ follows.20

There are no dynamical relations in xX Fins between points in X. This leaves the case
of dynamical relations between points in X and points in @Fins

1 X , which is easy to
deal with:

20Here we use the fact that taking complementary position reverses the folding order; see (8.6).
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Lemma 9.14 Suppose that the sequence .gn/ in G is �mod–contracting with (9.1). If
there is a dynamical relation

x
.gn/
� � 0

in xX Fins between a point x 2X and a boundary point � 0 2 @Fins
1 X, then � 0 2 xX�C .

Proof Let .xn/ be any bounded sequence in X. From gn! �C it follows that also
gnxn! �C . Hence .gnxn/ accumulates in xX Fins at xX�C ; see Proposition 5.43.

Similarly, a dynamical relation �
.gn/
� x0 between a boundary point � 2 @Fins

1 X and a
point x0 2 X implies that � 2 xX�� , as follows by applying the lemma to the inverse
sequence .g�1

n /.

9.2.3 Accumulation dynamics The dynamical relation inequality for the action of
contracting sequences obtained in the previous section can be rephrased in terms of
accumulation at pairs of “complementary” thickenings at the attractive and repulsive
fixed points in Flag�mod

; compare the discussion in [34, Sections 5.2, 6.1] for dynamics
on flag manifolds.

We refer the reader to Section 8.3 for the definitions of Furstenberg and Finsler thick-
enings. Lemma 9.14 implies:

Corollary 9.15 Let .gn/ be a �mod–contracting sequence in G with (9.1), and let
∅¤ Th ¨ W be a W�mod–left-invariant thickening. Suppose that there is a dynamical
relation

xx
.gn/
� xx0

in xX Fins between points xx; xx0 2 xX Fins . Then xx 2 .Thc/Fins.��/ or xx0 2 ThFins.�C/.

Proof By our assumption on Th, we have that stFu.��/� Thc
Fu.��/ and stFu.�C/�

ThFu.�C/, equivalently, that xX�� � .Thc/Fins.��/ and xX�C �ThFins.�C/. Lemma 9.14
therefore implies the assertion if one of the points xx; xx0 lies in X.

We may therefore assume that xx; xx0 2 @Fins
1 X and apply Proposition 9.12. Let xx 2X�

with � 2 Flag�mod
and xx0 2 X�0 with �0 2 Flag�0mod

. Either pos. � ; �C/ takes values
in Th on stFu.�

0/, or the maximal value of pos. � ; �C/ on stFu.�
0/ is contained in

W �ThD w0 Thc . In the latter case, the inequality (9.13) implies that the values of
pos. � ; ��/ on stFu.�/ are contained in Thc .
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If pos. � ; �C/jstFu.�0/ takes values in Th, then stFu.�
0/� ThFu.�C/, equivalently, xX�0 �

ThFins.�C/, and hence xx0 2 ThFins.�C/. Similarly, if pos. � ; ��/jstFu.�/ takes values in
Thc , then xx 2 xX� � .Thc/Fins.��/.

In the language of accumulation dynamics introduced in [34, Section 5.2], this means
that the sequence .gn/ is ..Thc/Fins.��/;ThFins.�C//–accumulating on xX Fins .

9.2.4 Domains of proper discontinuity We now deduce our main results on proper
discontinuity; compare [34, Sections 6.2–6.4].

For a discrete subgroup � <G , we define the forward/backward �mod–limit set

ƒ˙�mod
� Flag˙�mod

as the set of all simplices �˙ as in (4.2) for all �mod–contracting sequences

.gn D/
n!1

in � ; see [34, Definition 6.9]. The limit sets ƒ˙�mod
are �–invariant and compact. If

�mod is �–invariant, then ƒC�mod
Dƒ��mod

DWƒ�mod .

Consider first the case of �mod–regular, equivalently, �mod–convergence subgroups.
Here we obtain domains by removing suitable thickenings of the �mod–limit set:

Theorem 9.16 (domains of proper discontinuity for �mod–convergence subgroups)
Let � < G be a �mod–convergence subgroup, and let ∅¤ Th ¨ W be a W�mod–left-
invariant thickening. Then the action

(9:17) � Õ xX Fins
�
�
.Thc/Fins.ƒ��mod

/[ThFins.ƒC�mod
/
�

is properly discontinuous. In particular, if �mod is �–invariant and Th is fat, then the
action

� Õ xX Fins
�ThFins.ƒ�mod/

is properly discontinuous.

Proof Suppose that there is a dynamical relation

(9:18) xx
.
n/
� xx0

in xX Fins with respect to a sequence 
n!1 in � . After extraction we may assume
that .
n/ is �mod–contracting with


njC.��/! �C
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uniformly on compacts, where �˙ 2ƒ˙�mod . Corollary 9.15 implies that

xx 2 .Thc/Fins.��/� .Thc/Fins.ƒ��mod
/ or xx0 2 ThFins.�C/� ThFins.ƒC�mod

/:

This yields the first assertion; the second follows because Thc
�Th due to fatness.21

Note that the thickenings of limit sets ThFins.ƒ˙�mod
.�// are �–invariant and compact.

This scheme of constructing domains of proper discontinuity applies equally well to
arbitrary discrete subgroups � <G ; compare the discussion in [34, Section 6.4]. One
then has to take into account the �mod–limit sets for all face types �mod . There are
several ways to proceed. The most immediate family of possibilities is the following.

Theorem 9.19 (domains of proper discontinuity for discrete subgroups I) Let � <G

be a discrete subgroup, and let ∅¤ Th�mod ¨ W be W�mod–left-invariant thickenings
for all face types �mod � �mod . Then the action

(9:20) � Õ xX Fins
�

[
�mod

�
.Thc

�mod
/Fins.ƒ��mod

/[ThFins
�mod

.ƒC�mod
/
�

is properly discontinuous.

Proof The proof is the same as for the previous theorem: Suppose that there is a
dynamical relation (9.18) in xX Fins . Then .
n/ contains for some face type �mod a
�mod–contracting subsequence and it follows as before that xx 2 .Thc

�mod
/Fins.ƒ��mod

/ or
xx0 2 ThFins

�mod
.ƒC�mod

/.

In general, these domains of proper discontinuity can be further enlarged by only
removing the thickenings of the limit simplices arising from pure sequences in the
group: Define the pure forward/backward �mod–limit set

ƒ
pure;˙
�mod �ƒ˙�mod

as the closure of the set of all simplices �˙ as in (4.2) for all �mod–pure �mod–contracting
sequences .
n/ in � . As above, we conclude:

Theorem 9.21 (domains of proper discontinuity for discrete subgroups II) Let � <G

be a discrete subgroup, and let ∅¤ Th�mod ¨ W be W�mod–left-invariant thickenings
for all face types �mod � �mod . Then the action

(9:22) � Õ xX Fins
�

[
�mod

�
.Thc

�mod
/Fins.ƒ

pure;�
�mod /[ThFins

�mod
.ƒ

pure;C
�mod /

�
is properly discontinuous.

21Here we use that if Th1 � Th2 , then ThFins
1
� ThFins

2
.
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Proof Same argument as before, taking into account that every sequence 
n!1

in � contains a subsequence which for some face type �mod is �mod–contracting and
�mod–pure.

Since the domain in (9.22) is larger than the domain in (9.20), one can in general not
expect the �–action (9.20) to be cocompact.

If � is �mod–regular, then it contains �mod–pure sequences only for the face types
�mod � �mod ; hence only these limit sets ƒ˙�mod

can be nonempty. Since W�mod �W�mod ,
we may choose Th�mod D Th�mod for these face types, and then the domain in (9.20)
coincides with the domain in Theorem 9.16.

9.2.5 Nonemptiness of domains of proper discontinuity at infinity If we assume
in addition to the hypotheses of Theorem 9.16 that � is �mod–antipodal, then it is easy
to see that, in higher rank, the domains (9.17) strictly enlarge X :

Proposition 9.23 Let � <G be a �mod–antipodal �mod–convergence subgroup and let
Th�W be a W�mod–left-invariant slim thickening. If rank.X /�2, then ThFins.ƒ�mod/¨
@Fins
1 X.

Proof If ThD∅, there is nothing to show. Suppose therefore that Th¤∅.

We consider the subcomplex C of amod corresponding to the thickening ThFu.�mod/ of
the model chamber. Since rank.X /� 2, we have that amod is connected. By slimness,
C does not contain all chambers of amod . Therefore there exists a panel x� � C such
that exactly one of two chambers in amod adjacent to it belongs to C . In terms of
chambers, this means that

stFu.x�/\ThFu.�mod/¤∅ and stFu.x�/ 6� ThFu.�mod/:

Let �0 2 ƒ�mod , and let � � @1X be a panel with pos.�; �0/ D x� . Then stFu.�/

intersects ThFu.�0/, but is not contained in it. It follows that stFu.�/ 6� ThFu.�/ for all
� 2ƒ�mod , because due to our assumptions of antipodality and slimness, the thickenings
ThFu.�/ for � 2ƒ�mod are pairwise disjoint. Consequently, X� 6� ThFins.ƒ�mod/.

Remark 9.24 Nonemptiness of domains of proper discontinuity for the �–actions on
flag manifolds is much harder to prove and requires additional assumptions. For the
case of actions on the Furstenberg boundary, see [34, Section 8].
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10 General cocompactness results

10.1 General discrete topological group actions

The main result of this section is a cocompactness theorem for a certain class of
properly discontinuous group actions � Õ�, where � is an open subset of a compact
metrizable space Z and the action extends to a topological action

� Õ Z:

In order to prove cocompactness, we need to impose certain assumptions on both �
and the action. We assume that there exists a model action

� Õ Y

on a contractible simplicial complex which is simplicial, properly discontinuous and
cocompact. We further assume that Y admits a �–equivariant contractible metrizable
compactification xY � Y . The extended action � Õ xY serves as a model for � Õ Z .
Examples of such model actions abound in geometric group theory. For instance,
if � is Gromov-hyperbolic, we can take for Y a suitable Rips complex of � and
for xY the Gromov compactification of Y . Other examples are given by isometric
properly discontinuous cocompact actions � Õ Y on piecewise-Riemannian CAT(0)
complexes Y , where xY is the visual compactification of Y .

Our next set of hypotheses relates the model action � Õ Y to the action � Õ Z . We
assume that there exists a �–equivariant continuous map of triads

(10:1) . xY ;Y; xY �Y„ƒ‚…
DWƒmod

/
zf
�! .Z; �;Z ��„ƒ‚…

DWƒ

/

such that the restriction zf jƒmod W ƒmod!ƒ is a Z2–Čech cohomology equivalence.

Theorem 10.2 Under the above assumptions, and if � is torsion-free and � is path
connected, then �=� is compact.

Proof We proceed in four steps.

Step 1 (passing to a model action on a manifold with boundary) We replace the
action � Õ Y with an action of � on a suitable manifold. Since �1.Y /D 1 and the
action � Õ Y is free, the quotient space R WD Y=� satisfies �1.R/Š � .
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We thicken R to a closed manifold without changing the fundamental group. To
do so, we first embed R as a subcomplex into the (suitably triangulated) euclidean
space E2nC1 , where nD dim.R/. We denote by N the regular neighborhood of R

in E2nC1 , and let D D @N .

Lemma 10.3 D is connected and �1.D/! �1.N /Š �1.R/ is surjective.

Proof Let N 0 WDN �R. We claim that the map D ,!N 0 is a homotopy equivalence.
The proof is the same as the one for the homotopy equivalence R!N : Each simplex
c �N is the join c1 ? c2 of a simplex c1 disjoint from R (and hence contained in D )
and a simplex c2 �R (in the extreme cases, c1 or c2 could be empty). Now, use the
straight line segments given by these join decompositions to homotope each c �R to
c1 �D .

Since R has codimension � 2 in N , it does not separate N 0 and each loop in N is
homotopic to a loop in N 0 . Hence, N 0 is connected and

�1.D/
Š
�! �1.N

0/! �1.N /

is surjective.

Lemma 10.4 There exists a connected closed manifold M which admits a map
hW R!M inducing an isomorphism of fundamental groups �1.R/! �1.M /.

Proof We start with N (the regular neighborhood of R�E2nC1 ) as above. As noted
in the proof of the previous lemma, the inclusion R!N is a homotopy equivalence,
and N is a compact manifold with boundary. Consider the closed manifold M obtained
by doubling N along its boundary D ,

M DN1[D N2;

where N1;N2 are two copies of N . We let i W D !M and ik W Nk !M denote
the inclusion maps. Since M is the double of N , we have the canonical retraction
r W M !N1 (whose restriction to N2 is a homeomorphism given by reflecting at D ).
Define the map hD i1 ıg ,

hW R
g
�!N1

i1
�!M;

where g corresponds to the inclusion R!N and hence is a homotopy equivalence.
We claim that h induces an isomorphism h� of fundamental groups.

The existence of the retraction r implies the injectivity of i1� and hence of h� .
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By Lemma 10.3, D is connected. Hence, the Seifert–van Kampen theorem implies
that �1.M / is generated by the two subgroups ik�.�1.Nk//; k D 1; 2. Since the
homomorphisms

�1.D/! �1.Nk/

are surjective (Lemma 10.3), we obtain

i1�.�1.N1//D i�.�1.D//D i2�.�1.N2//:

Hence, both homomorphisms ik�W �1.Nk/! �1.M / are surjective. The surjectivity
of h� follows.

We let mD 2nC1 denote the dimension of the manifold M and its universal cover �M.

Step 2 We let M be a manifold as in Lemma 10.4. We consider the triads (10.1) and
the diagonal �–action on their products with the universal cover �M . Dividing out the
action, we obtain bundles over M and zf induces the map of triads of bundles

(10:5) .. xY � �M /=�„ ƒ‚ …
xEmod

; .Y � �M /=�„ ƒ‚ …
Emod

; .ƒmod � �M /=�„ ƒ‚ …
Lmod

/

F
�! ..Z � �M /=�„ ƒ‚ …

xE

; .�� �M /=�„ ƒ‚ …
E

; .ƒ� �M /=�„ ƒ‚ …
L

/:

Note that E also fibers over �=� with fiber �M .

The map F of triads of bundles satisfies:

(i) F jEmod W Emod!E is proper.

(ii) F jLmod W Lmod!L is a cohomology equivalence of bundles.

Lemma 10.6 Both spaces xE and xEmod are metrizable.

Proof These spaces are fiber bundles with compact metrizable bases and fibers.
Therefore, xE and xEmod are both compact and Hausdorff. Hence, they are metrizable, for
instance, by Smirnov’s metrization theorem, because they are paracompact, Hausdorff
and locally metrizable.

Our approach to proving Theorem 10.2 is based on the following observation.

In a noncompact connected manifold, the point represents the zero class in H lf
0

. Simi-
larly, let �W F!E �

�!B be a fiber bundle over a noncompact space, where �W F!Eb
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is the homeomorphism of F to the fiber EbD�
�1.b/. If the base B is path-connected,

then the induced map

��W H
lf
� .F /!H lf

� .E/

on locally finite homology is independent of the choice of b . In order to show triviality
of this map provided that B is noncompact, note that for each class Œ�� 2Zi

c.E/ and
each locally finite class Œ�� 2H lf

m.F /, if b is chosen so that Eb is disjoint from the
support of �, then hŒ��; Œ��i D 0. Here and in the sequel we use (co)homology with
Z2–coefficients. Hence, �� D 0.

The compactness of �=� therefore follows from showing that the fiber of the bundle

�M m
!E!�=�

represents a nontrivial class in H lf
m.E/, ie that the locally finite fundamental class

Œ �M � 2 H lf
m.
�M / has a nonzero image under the inclusion induced map H lf

m.
�M /!

H lf
m.E/.

The proper map F W Emod ! E induces the map F�W H
lf
m.Emod/! H lf

m.E/ which
carries the class represented by the �M –fiber in the model Emod to the corresponding
class in E . It therefore suffices to show that

(10:7) H lf
m.
�M /„ ƒ‚ …

ŠZ2

��
�!H lf

m.Emod/
F�
��!H lf

m.E/

is a composition of injective maps. We will show injectivity of F� in step 3 and
injectivity of �� in step 4 below.

Step 3 (injectivity of F� ) We pass to compactly supported cohomology. We recall
that locally finite homology (with field coefficients) is dual to compactly supported
cohomology in the same degree via Kronecker duality. We therefore must show that
the dual map

H m
c .E/

F�

��!H m
c .Emod/

is surjective.

We now switch the fiber direction and regard E and Emod as bundles over M . We
use their compactifications xE and xEmod mentioned earlier which allow us to replace
compactly supported cohomology by relative cohomology. Since E is compact and
metrizable, while L is compact, we have a natural isomorphism of Alexander–Spanier
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cohomology groups (see [49, Lemma 11, page 321]):

H m
c .E/ŠH m. xE;L/:

Similarly, we have a natural isomorphism

H m
c .Emod/ŠH m. xEmod;Lmod/:

Thus, the surjectivity of the previous map F� is equivalent to the surjectivity of the map

H m. xE;L/
F�rel
��!H m. xEmod;Lmod/

induced by the map of pairs

(10:8) . xEmod;Lmod/
F
�! . xE;L/:

To verify the surjectivity of F�rel , we use the long exact cohomology sequence of F :

� � � H m�1. xE/ - H m�1.L/ - H m. xE;L/ - H m. xE/ - H m.L/ � � �

� � �H m�1. xEmod/

?
- H m�1.Lmod/

Š

?
- H m. xEmod;Lmod/

F�rel

?
j- H m. xEmod/

F�abs

?
- H m.Lmod/

Š

?
� � �

A diagram chase (as in the proof of the five lemma) shows that the surjectivity of F�rel
follows from the surjectivity of F�abs . Indeed, one first checks that ker j � im F�rel , and
uses this to verify the inclusion

j�1.im F�abs/� im.F�rel/:

To see that F�abs is surjective, we consider the map of bundles:

xEmod
F - xE

M
�

� xE
�
xE
mod
-

The fibration � xEmod
is a homotopy equivalence because its fibers xY are contractible. Let

sW M ! xEmod

denote a section. It follows that s ı � xE is a left homotopy inverse for F , that is,
s ı� xE ıF ' id xEmod

. Thus, the induced map on cohomology F�abs is surjective.
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Step 4 (injectivity of �� ) We consider the fiber bundle�M !Emod!R:

The map hW R!M in Lemma 10.4 yields a section of this bundle. Since the base R

of the bundle is a finite CW complex and its fiber �M is a connected m–manifold,
Lemma 2.4 implies that the induced map

H lf
m.
�M /

��
�!H lf

m.Emod/;

is injective.

This concludes the proof of Theorem 10.2.

10.2 Haïssinsky–Tukia conjecture for convergence actions

We now apply our general cocompactness result (Theorem 10.2) from the previous
section to the theory of abstract convergence groups.22 The following natural question
is due to P Haïssinsky.23 An equivalent question was asked by P Tukia in [51, page 77].
We owe the observation of the equivalence of the questions to V Gerasimov.

Let � Õ † be a convergence group action of a hyperbolic group on a metrizable
compact space, and suppose that ƒ � † is an invariant compact subset which is
equivariantly homeomorphic to @1� . Then the action � Õ�D†�ƒ is properly
discontinuous.

Question 10.9 Is the action � Õ� always cocompact?

Remark 10.10 This is true for actions which are expanding at the limit set ƒ [34].

The main result of this section is the following theorem which provides strong evidence
for a positive answer to Question 10.9 in the case of convergence group actions with
path-connected discontinuity domains.

Theorem 10.11 Let � Õ† be a convergence group action of a virtually torsion-free
hyperbolic group on a metrizable compact space †, and suppose that ƒ � † is an
invariant compact subset which is equivariantly homeomorphic to @1� . Then the action

� Õ†�ƒ

is cocompact provided that †�ƒ has finitely many path-connected components.
22See eg [13] or [50] for background on convergence groups.
23This was posed at the problem session at the Joint Seminar CNRS/JSPS Aspects of representation

theory in low-dimensional topology and 3–dimensional invariants, Carry le Rouet, November 5–9, 2012.
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Proof We proceed in three steps.

Step 1 After passing to a finite-index subgroup of � preserving each connected
component of �0 WD†�ƒ, it suffices to consider the case when �0 is path connected
(and nonempty). It also suffices to consider the case when � is torsion-free. We
let Y be a contractible locally compact simplicial complex on which � acts properly
discontinuously and cocompactly, eg a suitable Rips complex of � . The Gromov
compactification xY of Y is contractible and metrizable [6], and xY � Y Š @1�

equivariantly.

Step 2 (construction of a map of triads) Pick a point x 2�0 and define the orbit map

f W �!�0; 
 7! 
x:

This map is injective since � is torsion-free and, hence, acts freely on �0 . Let
f1W @1�!ƒ be an (the) equivariant homeomorphism. We further let x� D �[@1�
denote the Gromov compactification of � . We define the map

xf W x�!†;

whose restriction to � is f and to @1� is f1 .

Lemma 10.12 The map xf is an equivariant homeomorphism onto �x[ƒ.

Proof We first note that the natural action � Õ x� is a convergence action.

Suppose that .
n/ is a sequence in � converging to � 2 @1� ; let � D f1.�/. We
claim that

lim
n!1

f .
n/D �:

Case 1 (� is nonelementary) Without loss of generality (in view of compactness
of † and the convergence property of the action � Õ †), there exists �� 2 ƒ
such that the sequence 
nj†�f��g converges to some �C 2 ƒ uniformly on com-
pacts. Since f1 is a homeomorphism, 
n converges to f �1

1 .�C/ uniformly on
compacts in @1� � f �1

1 .��/. The assumption that � is nonelementary implies that
@1��f

�1
1 .��/ consists of more than one point. Therefore, in view of the convergence

property for the action � Õ x� , it follows that 
n converges to f �1
1 .�C/ on � (here

we again pass to a subsequence if necessary). Hence, � D f �1
1 .�C/, �C D � and the

continuity of xf follows; see Lemma 2.1.

Case 2 (� is elementary, ie � Š Z) Then � is generated by a single loxodromic
homeomorphism 
 W †! †; ie ƒD f�C; ��g. Tukia proved [50, Lemma 2D] that
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the sequence .
 n/ converges uniformly on compacts in †� f��g to �C , while the
sequence .
�n/ converges uniformly on compacts in †�f�Cg to �� . This implies
continuity of the map xf .

We now amalgamate the spaces xY and † using the homeomorphism

xf W x� D � [ @1�! �x D �x[ƒ;

where we identify � with a subset of the vertex set of the complex Y . We denote by Z

the result of the amalgamation. This space is metrizable by Urysohn’s metrization theo-
rem, since it is Hausdorff, compact and first-countable; compare also Proposition 11.5,
which provides a different proof.

Since xf is �–equivariant, the topological action of � on xY t† descends to a topolog-
ical action � Õ Z . This action is properly discontinuous on � WD Y [�0 �Z as for
each compact C ��, its intersections with Y and �0 are both compact and the actions
� Õ Y and � Õ�0 are properly discontinuous. Lastly, we note that, in view of the
connectivity of Y , since �0 is path connected, so is �. Since the embedding �0!�

is proper, �=� is compact if and only if �0=� is compact. We let zf W xY !Z be the
inclusion map.

Step 3 According to Theorem 10.2, �=� is compact. Therefore, �0=� is compact
as well.

Remark 10.13 It is not hard to check that � Õ Z is a convergence action; however,
this is not needed for our argument.

11 Cocompactness

We return to the discussion of discrete subgroups of Lie groups and their actions on
Finsler compactifications. In Section 9, we constructed domains of proper discontinuity.
We will now prove the cocompactness of these actions for certain classes of discrete
subgroups.

Let �mod be �–invariant. In Sections 4.2 and 4.5 we defined �mod–regular and �mod–
antipodal discrete subgroups � <G and the �mod–limit set ƒ�mod � Flag�mod

. In [30]
we defined the following class of �mod–antipodal �mod–regular subgroups:

Geometry & Topology, Volume 22 (2018)



2630 Michael Kapovich and Bernhard Leeb

Definition 11.1 (asymptotically embedded) We say that a discrete subgroup � <G is
�mod–asymptotically embedded if it is �mod–regular, �mod–antipodal and word hyperbolic
(as an abstract group), and there is a �–equivariant homeomorphism

˛W @1�
Š
�!ƒ�mod � Flag�mod

from its Gromov boundary onto its �mod–limit set.

We proved in [30] that a subgroup � < G is �mod–asymptotically embedded if and
only if it is �mod–Anosov.24

Suppose now that � <G is �mod–regular and �mod–antipodal, and that Th�W is a
W�mod–invariant balanced thickening. In this section, we will use the following notation:

y† WD xX Fins; yƒ WD ThFins.ƒ�mod/;
y� WD y†� yƒ:

According to Theorem 9.16, the action � Õ y� is properly discontinuous. We will show
that it is also cocompact provided that � is �mod–asymptotically embedded, by replacing
the action � Õ y† with a convergence action � Õ† on a certain quotient space of y†
and then applying our cocompactness result for convergence actions (Theorem 10.11).
The collapse takes place only in the thickening yƒ at infinity, so that the action � Õ y�
is not affected.

11.1 Decompositions and collapses

A decomposition R of a set Z is an equivalence relation on Z . We let DDDR denote
the subset of the power set 2Z consisting of the equivalence classes of R.

A decomposition of a Hausdorff topological space Z is closed if the elements of D are
closed subsets of Z ; a decomposition is compact if its elements are compact subsets.
Given a decomposition R of Z , one defines the quotient space Z=R. Quotient spaces
of closed decompositions are T1 but in general not Hausdorff.

Definition 11.2 A decomposition of Z is upper semicontinuous (usc) if it is closed
and for each D 2 D and each open subset U �Z containing D , there exists another
open subset V �Z containing D such that every D0 2 D intersecting V nontrivially
is already contained in U .

24This means P�mod –Anosov in the terminology of [24].
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Lemma 11.3 [16, Proposition 1, page 8] The following are equivalent for a closed
decomposition R of Z :

(i) R is usc.

(ii) For every open subset U �Z , the saturated subset

U � D
[
fD 2 D WD � U g

is open.

(iii) The quotient projection
Z

�
�!Z=R

is closed.

Proof (i)D) (ii) Let x 2 U and let D 2 D be the decomposition subset through x .
The usc property implies that U � contains a neighborhood of x .

(ii)D) (i) Take V D U �.

(ii)D) (iii) Let C � Z be closed, and let U be the complement. Then U � D

��1�.Z �C / is open, and it follows that �.C / is closed.

(iii)D) (ii) Let U �Z be open. Then U � D ��1.Z=R� �.Z �U // is open.

Let Z0 �Z be the union of all elements of D which are not singletons, and denote
by R0 the equivalence relation on Z0 induced by R.

Lemma 11.4 Suppose that Z0 is closed. Then R is usc if and only if R0 is usc.

Proof Suppose that R0 is usc. Let D 2 D . If D is a singleton, then Z �Z0 is
a saturated open neighborhood of D . On the other hand, if D � Z0 then D has a
saturated open neighborhood V 0 in Z0 . It is an intersection V 0D V \Z0 with an open
subset V �Z which is necessarily again saturated. This verifies that R is usc.

Conversely, suppose that R is usc. Then the intersection of a saturated open subset
in Z with Z0 is open and saturated in Z0 . Hence R0 is usc.

We will use the following result:

Proposition 11.5 [16, Proposition 2, page 13] If Z is metrizable and R is a compact
usc decomposition of Z , then Z=R is again metrizable.
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We now apply the notion of usc decompositions in the context of the Finsler thicken-
ing yƒ of ƒ�mod � Flag�mod

. Since � is �mod–antipodal and the thickening Th is slim,25

we obtain a compact decomposition R of y†, whose elements are singletons, namely
the points in y�, and the thickenings ThFins.�/ of the simplices � 2ƒ�mod . (One can
show that the latter are contractible; see Remark 8.16.) We let

�W y†!†

denote the quotient projection, and

ƒ WD �.yƒ/Šƒ�mod ; � WD �. y�/Š y�:

Lemma 11.6 The decomposition R of y† is compact usc.

Proof The restriction yƒ!ƒ of � is a map of compact Hausdorff spaces and hence
closed. Thus the restriction of the decomposition R to yƒ is usc; see Lemma 11.3.
Hence, by Lemma 11.4, the decomposition R is usc as well. It is also compact.

Corollary 11.7 †D y†=R is metrizable.

This corollary is relevant to us in order to do computations with Čech cohomology.

Remark 11.8 We showed in the second version of this paper on arXiv (see Lemma 10.7
there) that † is Čech acyclic; compare Remark 8.16.

11.2 Convergence action

Suppose that � < G is �mod–regular and �mod–antipodal. We continue using the
notation from the previous section. The action of � on y† descends to a continuous
action � Õ†.

Lemma 11.9 � Õ† is a convergence action.

Proof Let 
n!1 be a sequence in � . Since the group � <G is a �mod–convergence
subgroup, we may assume after extraction that .
n/ is �mod–contracting: There exist
simplices �˙ 2 Flag˙�mod

such that 
n! �C uniformly on compacts in C.��/. We
claim that 
n converges uniformly on compacts in †��.��/ to �CD�.�C/. It suffices

25See Section 8.3 for the definition.
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to show that for each sequence zn 2† converging to z ¤ �� D �.��/, we have after
extraction that

(11:10) lim
n!1


nzn D �C:

Take �n 2 ��1.zn/. Then, after extraction, �n ! � 62 ThFins.��/. According to
Corollary 9.15, the accumulation set of the sequence 
n�n is contained in ThFins.�C/.
This implies (11.10).

We note that in view of Theorem 9.16 the group � acts properly discontinuously on �.
It is also clear that ƒ is the limit set of the action � Õ†. Since y� is path-connected,
so is �.

11.3 Cocompactness

We now make the stronger assumption that � <G is �mod–asymptotically embedded.
Continuing the discussion of the previous section, we then also have an equivariant
homeomorphism @1�!ƒ�mod!ƒ. Thus, Theorem 10.11 together with Lemma 11.9
imply that the action of � Õ � is cocompact. Therefore the action of � Õ y� is
cocompact as well. By combining this with Theorems 7.2 and 9.16, we obtain the main
result of this paper:

Theorem 11.11 Let � < G be a �mod–asymptotically embedded subgroup, and let
Th�W be a W�mod–invariant balanced thickening. Then the action

� Õ xX Fins
�ThFins.ƒ�mod/

is properly discontinuous and cocompact. The quotient

. xX Fins
�ThFins.ƒ�mod//=�

has a natural structure as a compact real-analytic orbifold26 with corners.

Remark 11.12 The starting point of our proof of Theorem 11.11, namely the usage
of the bundles E and Emod in the proof of Theorem 10.2, is similar to the one in [24,
Proposition 8.10]. However, we avoid the use of Poincaré duality and do not need
homological assumptions on the space †. An essential ingredient in our proof is the
map of triads (10.1), ie the existence of a continuous extension of the equivariant proper
map zf W Y !� to a map of compactifications.

26Note that this quotient space is not, in general, a manifold but only an orbifold since the group �
may contain elements of finite order.
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Remark 11.13 (cocompactness on @FuX ) Intersecting the domain in the theorem
with @FuX yields that the corresponding actions

� Õ @FuX �ThFu.ƒ�mod/

are cocompact, thus recovering some of the cocompactness results obtained in [34].

11.4 An example of a nonregular discrete subgroup

We now consider a simple example of a nonregular discrete subgroup and show that
the action on the domain of proper discontinuity constructed earlier in Theorem 9.19 is
cocompact.

Let GD PSL.3;R/, and let � ŠZ2 be a discrete subgroup of transvections preserving
a maximal flat F � X. As in Theorem 9.19, we choose a multithickening Th� , ie
a collection of W�mod–left-invariant thickenings ∅ ¤ Th�mod ¨ W for all face types
�mod � �mod . In addition, we require that

Th��mod D Thc
�mod

for all �mod . In particular, Th�mod is the unique balanced thickening. To simplify nota-
tion, we drop the face-type index, and write Th.�/ instead of Th�mod.�/ for simplices
� 2 Flag�mod

.

There are exactly two distinct multithickenings Th� which are swapped by the involution
�W amod! amod . We let pmod denote the vertex of �mod of the type point in terms of
the projective incidence geometry associated with the group G , and let lmod denote
the other vertex of �mod of the type line. We require Th.pmod/ � amod to consist of
the two chambers containing pmod as a vertex. In other words, for a point p 2RP2

the thickening ThFu.p/ of p in the full flag manifold @FuX D Flag�mod
consists of all

the flags .p; l/. Accordingly, for each line l in the projective plane, its thickening
ThFu.l/� @FuX consists of all the flags .p; l 0/ where p 2RP2 are points incident to
the line l . Topologically speaking, ThFu.p/Š S1 while ThFu.l/ is the 2–torus, the
trivial circle bundle over l whose fibers are the thickenings ThFu.p/, p 2 l .

We let pi and li for i D 1; 2; 3 denote the singular points in @1F , where pi 2RP2

are the fixed points of � and li 2 .RP2/_ are the fixed lines of � , labeled so that li

is the line through pi�1 and piC1 (where i is taken mod 3).

We obtain

ƒCpmod
D fp1;p2;p3g Dƒ

�
lmod
; ƒ�pmod

D fl1; l2; l3g Dƒ
C

lmod
:
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Furthermore,
ƒ˙�mod

D f.pi ; lj / W i ¤ j g:

Thus,
ƒ� D

[
�mod

ƒ˙�mod
D fp1;p2;p3g[ fl1; l2; l3g[ƒ

˙
�mod

:

We have

ThFu.ƒ
C
pmod

/D Thc
Fu.ƒ

�
lmod
/; ThFu.ƒ

C

lmod
/D Thc

Fu.ƒ
�
pmod

/;

while
ThFu.ƒ

C
�mod

/D Thc
Fu.ƒ

�
�mod

/:

Therefore, the union

ThFu.ƒ�/D
[
�mod

�
Thc

Fu.ƒ
�
�mod

/[ThFu.ƒ
C
�mod

/
�
� ThFu.ƒ

C

lmod
/D @FuX

is the set of all flags .p; l/ such that p is incident to one of the lines l1; l2; l3 . Topo-
logically speaking, this set is the union of three trivial circle bundles ThFu.li/ over the
circles li , such that

ThFu.li�1/\ThFu.liC1/D ThFu.pi/;

where i is taken modulo 3.

The fact that the action

(11:14) � Õ�Fu WD @FuX �ThFu.ƒ�/

is properly discontinuous can be seen as a special case of [34, Proposition 6.21] in
our earlier work. It can be also be seen directly by observing that the action of � is
properly discontinuous on �pmod WDRP2� .l1[ l2[ l3/, since (11.14) is the preimage
of �pmod under the fibration @FuX !RP2 . Since � acts cocompactly on �pmod (the
quotient is the disjoint union of four 2–tori), the group � also acts cocompactly on the
domain (11.14). The quotient �Fu =� is a circle bundle over �pmod=� .

We now discuss the corresponding Finsler thickening

ThFins.ƒ�/D
[
�mod

�
.Thc/Fins.ƒ��mod

/[ThFins.ƒC�mod
/
�
I

see Theorem 9.19. For each point pi , the Finsler thickening of pi is the closed 2–disk,
which is the closed stratum xXpi

naturally isomorphic to a compactified hyperbolic
plane whose ideal boundary is the circle ThFu.pi/.
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For each li , its Finsler thickening ThFins.li/ is the union of a solid torus, whose
boundary is the torus ThFu.li/, and the closed 2–disk xXli

, whose boundary circle Ci

is the set of flags .p; li/ for p 2 li . The circle Ci � ThFu.li/ is a section of the circle
bundle ThFu.li/! li . In particular, ThFins.li/ is contractible.

Furthermore, we have

ThFins.li�1/\ThFins.liC1/D ThFins.pi/;

and the triple intersection of the ThFins.li/ is empty. The thickening ThFins.ƒ�/ equals
the union

3[
iD1

ThFins.li/;

which is homotopy-equivalent to the circle. The inclusion

@Fins
1 .F / ,! ThFins.ƒ�/

is a homotopy equivalence. This inclusion is the restriction of the natural embedding

xFFins ,! xX Fins:

We are now in the position to apply Theorems 9.19 and 10.2, taking � Õ xFFins as the
compactified model action, and conclude:

Proposition 11.15 The action

� Õ xX Fins
�ThFins.ƒ�/

is properly discontinuous and cocompact.

12 Characterizations of Anosov subgroups

In our earlier papers [30; 31] we gave various characterizations of Anosov subgroups
in terms of dynamics and coarse extrinsic geometry; see also our surveys [32; 27].
The most relevant characterizations for this paper are asymptotically embedded (see
Definition 11.1), and URU.

We assume from now on that �mod is �–invariant. A discrete subgroup � <G is called
�mod–URU if it is uniformly �mod–regular and undistorted; see [31]. In that work, we
proved that the �mod–URU property is equivalent to �mod–Anosov. In this section,
we will give further characterizations of the Anosov property in terms of dynamics
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(S-cocompactness) and coarse extrinsic geometry (Finsler quasiconvexity and existence
of retractions).

12.1 Finsler quasiconvexity

One can define Finsler convex subsets C �X as subspaces such that any two points
in C can be connected by some Finsler geodesic in C .

In this section we introduce the notion of Finsler quasiconvex subgroups of G , which
mimics the notion of quasiconvex subgroups of hyperbolic groups. Recall that a
subgroup � of a word hyperbolic group � 0 is called quasiconvex if discrete geodesic
segments in � 0 with endpoints in � are uniformly close to � .

Fix a type x� 2 int.�mod/. Recall that d
x� is in general only a pseudometric on X.

Definition 12.1 A discrete subgroup � <G is �mod–Finsler quasiconvex if for each
x 2X there is a constant R<C1 such that any two points in �x can be connected
by a d

x�–geodesic segment contained in the R–neighborhood NR.�x/ of �x with
respect to d

x� .

Proposition 12.2 A uniformly �mod–regular subgroup � <G is �mod–Finsler quasi-
convex if and only if it is �mod–URU.

Proof We first reduce the assertion to the case when the pseudometric d
x� is a metric.

We recall from the end of Section 5.1.2 that X splits as a product X1�X2 such that d
x�

is degenerate precisely in the X2–direction and induces a metric on X1 . In particular,
x� points in the X1–direction, ie the visual boundary points of type x� are contained
in @1X1 . Then d

x�–balls split off X2–factors, ie they are products of X2 with d
x�–balls

in X1 . The same applies to �mod–Weyl cones and �mod–diamonds. A map I ! X

from an interval is a d
x�–geodesic if and only if its projection to X1 is a d

x�–geodesic.
Furthermore, a map into X is a quasiisometric embedding with respect to d

x� if and
only if its X1–component is. We can therefore assume that d

x� is a metric.

Suppose now that � <G is �mod–Finsler quasiconvex. The closed R–neighborhood
NR.�x/ is path-connected and � acts cocompactly on it. Therefore, � is finitely
generated, and the orbit map

ox W �!NR.�x/
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is a quasiisometric embedding, where we equip NR.�x/ with a path-metric induced
by d

x� . Since the metrics dRiem and d
x� on X are equivalent, the definition of Finsler

quasiconvexity implies that the inclusion map

NR.�x/! .X; dRiem/

is a quasiisometric embedding. Therefore, � <G is undistorted. Since � was assumed
to be uniformly �mod–regular, it is �mod–URU.

The converse direction follows from our Morse lemma [31, Theorem 1.3] and the
description of the geometry of d

x�–geodesics; see Section 5.1.3.

12.2 S-cocompactness and retractions

We call an open subset �� @Fins
1 X saturated if it is a union of small strata X� .

We start with the following simple observation about Finsler convergence at infinity: If
.xn/ and .yn/ are sequences in X which are bounded distance apart (ie d.xn;yn/ is
uniformly bounded) and xn! Œb�;yn! Œb0� 2 @Fins

1 X, then the limit points Œb� and Œb0�
lie in the same small stratum X� ; see Lemma 5.28. In particular, for each saturated
open subset �� @Fins

1 X,

Œb� 2 ! () Œb� 2�:

It follows that if Œb� 2 �, then the entire accumulation set of the sequence of balls
B.xn;R/,

Acc..B.xn;R///� @
Fins
1 X;

is a compact subset of �.

Lemma 12.3 Let � < G be a discrete subgroup. Suppose that � � @Fins
1 X is a

�–invariant saturated open subset such that the action

� Õ X t�

is properly discontinuous. Then each compact subset C �X t� satisfies the following
uniform finiteness property: there exists a function fC .R/ such that for each ball
B.x;R/�X it holds that

card
�
f
 2 � W 
C \B.x;R/¤∅g

�
� fC .R/:
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Proof Suppose the contrary. Then there is a sequence of balls B.xi ;R/ intersecting C

and a sequence 
i!1 in � such that also the balls B.
ixi ;R/ intersect C . We may
assume after extraction that xi!xx and 
ixi!xx

0 in xX Fins . By the observation preced-
ing the lemma, it holds that xx; xx0 2X t�. Since these points are dynamically related
with respect to the �–action, we obtain a contradiction with proper discontinuity.

The lemma leads to the following definition.

Definition 12.4 A discrete subgroup � < G is S-cocompact if there exists a �–
invariant saturated open subset �� @Fins

1 X such that the action

� Õ X t�

is properly discontinuous and cocompact.

Note that each S-cocompact subgroup is necessarily finitely generated because it acts
properly discontinuously and cocompactly on a connected manifold with boundary.

Theorem 12.5 Each S-cocompact subgroup � < G admits a �–equivariant coarse
Lipschitz retraction r W X ! � . In particular, � is undistorted in G .

Proof Let �� @Fins
1 X be as in the definition. Let C �X t� be a compact subset

whose �–orbit covers the entire X t�. We define the coarse retraction r first by
sending each point x 2X to the subset

r.x/ WD f
 2 � W x 2 
C g � �:

This subset is clearly finite because of the proper discontinuity of the �–action, and
the assignment x 7! r.x/ is equivariant. According to Lemma 12.3, the cardinality of
the subset

f
 2 � W 
 2 r.B.x; 1//g D f
 2 � W B.x; 1/\ 
C ¤∅g

is bounded by fC .1/, independently of x . It follows that r is coarse Lipschitz.

We now apply the previous theorem to the cocompact domains of proper discontinuity
obtained earlier by removing Finsler thickenings of limit sets. The next result relates
conicality and S-cocompactness:

Theorem 12.6 Suppose that � < G is uniformly �mod–regular and �mod–antipodal.
Then � is �mod–Anosov if and only if it is S-cocompact.
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Proof We use that �mod–Anosov is equivalent to �mod–asymptotically embedded. That
�mod–asymptotically embedded implies S-cocompact is our main result, Theorem 11.11.
To prove the converse, note that each S-cocompact subgroup is undistorted in G by
Theorem 12.5. Hence, � is �mod–URU, and therefore �mod–Anosov.

A converse to Theorem 11.11 is a consequence of the following:

Corollary 12.7 Suppose that � <G is uniformly �mod–regular and that Th�W is a
W�mod–invariant balanced thickening. Then the following are equivalent:

(i) The properly discontinuous action (see Theorem 9.19)

� Õ xX Fins
�ThFins.ƒ�mod/

is cocompact.

(ii) � is S-cocompact.

(iii) � is �mod–Anosov.

Proof The implication (i)D) (ii) is obvious.

(ii)D) (iii) � is S-cocompact, hence �mod–URU by Theorem 12.5, and therefore
�mod–Anosov.

(iii)D) (i) Since �mod–Anosov is equivalent to �mod–asymptotically embedded, the
implication is the content of Theorem 11.11.

We are now ready to state the equivalence of a variety of conditions on discrete
subgroups, extending the list of equivalent conditions from [30; 31].

Theorem 12.8 The following are equivalent for uniformly �mod–regular subgroups
� <G :

(1) � is an equivariant coarse retract.

(2) � is a coarse retract.

(3) � is undistorted in G , ie �mod–URU.

(4) � is �mod–Finsler quasiconvex.

(5) � is �mod–asymptotically embedded.

(6) � is S-cocompact.

(7) � is �mod–Anosov.
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Proof The implications (1)D) (2)D) (3) are immediate. The equivalence (3)() (4)
is proven in Proposition 12.2. The equivalence (3)() (5) is one of the main results
of [31]; see Corollary 1.6 of that paper. The equivalence (5)() (7) is established
in [30]. The implication (5)D) (6) is the main result, Theorem 11.11, of this paper,
while the implication (6)D) (1) is established in Theorem 12.5.

We note that this list of equivalences is nearly a perfect match to the list of equivalent
definitions of convex cocompact subgroups of rank-1 Lie groups (see [27]), except that
convex-cocompactness is (by necessity) missing; see [38].

12.3 Examples

Example 12.9 Consider X D X1 �X2 , the product of two real hyperbolic spaces,
g D .g1;g2/ an infinite-order isometry of X, where g1;g2 are isometries of X1;X2 .
Then the cyclic subgroup � D hgi is �mod–regular if and only if neither g1 nor g2

is elliptic. The subgroup � is uniformly �mod–regular if and only if both g1;g2 are
hyperbolic isometries of X1;X2 or both are parabolic isometries. A cyclic group
generated by an element of mixed type is not uniformly �mod–regular. The Furstenberg
boundary of X is the product @1X1 � @1X2 . If � , as above, is �mod–regular and
�Ci ; �

�
i are the fixed points of gi in @1Xi ,27 then ƒ�mod.�/D f.�

�
1
; ��

2
/; .�C

1
; �C

2
/g.

In particular, in the mixed case if, say, g1 is hyperbolic and g2 is parabolic with the
unique fixed point �C

2
D ��

2
DW �2 , then ƒch.�/ D f.�

�
1
; �2/; .�

C

1
; �2/g. Note that

if � is uniformly �mod–regular then the limit set ƒ�mod.�/ is antipodal, but it is not
antipodal if � is merely regular. The limit chambers are conical limit points if g is
uniformly regular of type hyperbolic-hyperbolic, and otherwise they are not.

The Finsler compactification of X is naturally homeomorphic to xX1�
xX2 . Assume that

gD .g1;g2/, where g1 is hyperbolic (with the fixed points �C
1
; ��

1
) and g2 is parabolic

(with the fixed point �2 ). As we noted above, the group � D hgi< Isom.X / is �mod–
regular but not uniformly regular. Therefore, it is not �mod–Anosov. On the other hand,
it is S-cocompact. Namely, it acts properly discontinuously and cocompactly on

. xX1�f�
�
1 ; �
C

1
g/� xX2:

In particular, � is a coarse retract, and hence undistorted. Thus, uniform regular-
ity cannot be weakened to regularity in Theorem 12.8(1–4, 6), Theorem 12.6 and
Corollary 12.7.

27That is, �Ci and ��i are the attractive and repulsive fixed points if gi is hyperbolic, and �Ci D �
�
i

is the unique fixed point if gi is parabolic.
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v2
e1

v1

e6

v6

e5
v5

e4

v4

e3

v3

e2

��

�C

quotient by �Dh
 i e2=�

R2=�

e5=�

ˆ




Figure 1: The action of a cyclic subgroup � D h
 i on the Finsler compactifi-
cation xFFins

mod of the model flat and the quotient space of xFFins
mod �ThFins.ƒch/

by the �–action

Example 12.10 We now work out an example illustrating the equivariant collapsing
of xX Fins described in Section 11. Consider an infinite cyclic subgroup � D h
 i <
PGL.3;R/ generated by a regular hyperbolic isometry 
 . For simplicity, we only
describe the action and the collapse on the Finsler compactification of the unique
�–invariant maximal flat F � X. The Finsler compactification xFFins is a hexagon
with vertices v1; : : : ; v6 and edges e1; : : : ; e6 . The vertex set equals the Furstenberg
boundary, @FuF D fv1; : : : ; v6g. We label the vertices so that v1 and v4 correspond to
the repulsive and attractive chambers ��; �C 2 @FuF . The vertices are fixed by 
 , but

 has nontrivial dynamics on the edges: the interior points of each edge ei D Œvi ; viC1�

are moved by 
 towards one of the two endpoints of ei , namely to the one which
corresponds to the chamber in @FuF whose position relative to the attractive chamber �C
is smaller in the Bruhat order. This is in stark contrast with the action of 
 on the
visual boundary of @1F (with respect to the flat metric), which is fixed pointwise.
The �mod–limit set ƒ�mod.�/� @FuX is the 2–point set f��; �Cg D fv1; v4g � @FuF .
The balanced thickening of ƒ�mod.�/ inside @Fins

1 F is the union (of closed edges)

ThFins.��/[ThFins.�C/D .e3[ e4/[ .e1[ e6/ :

The intersection

�D�.�/D�Fins
Th .�/\ @

Fins
1 F
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is the union of the interiors of the edges e2 and e5 . The rectangle ˆ in Figure 1
is a (compact) fundamental domain for the action of � on F [ �. The quotient
.F [�/=� is homeomorphic to the cylinder S1 � Œ�1; 1�. Now, let us collapse each
thickening ThFins.��/;ThFins.�C/ to a point. The result is a convergence action of �
on the quotient space Q, homeomorphic to the closed 2–disk D2 . Note that collapsing
is natural here since, before the collapse, the mapping 
 has too many fixed points
in @Fins

1 F , namely all vertices v1; : : : ; v6 , while an infinite cyclic group acting as a
discrete convergence group can have at most two fixed points [50]. After the collapse
only two fixed points are left, namely the projections (still denoted by �C; �� ) of v1

and v4 . On the quotient space Q we recover the familiar attractive-repulsive dynamics
of hyperbolic isometries 
 of H2 acting on the visual compactification of H2 : The
point �C is the attractive point and the point �� is the repulsive point for the action
of 
 . That is,

lim
n!1


 n
D �C

uniformly on compacts in Q�f��g, and

lim
n!�1


�n
D ��

uniformly on compacts in Q�f�Cg.
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