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From operator categories to higher operads

CLARK BARWICK

We introduce the notion of an operator category and two different models for homo-
topy theory of 1–operads over an operator category — one of which extends Lurie’s
theory of 1–operads, the other of which is completely new, even in the commutative
setting. We define perfect operator categories, and we describe a category ƒ.ˆ/
attached to a perfect operator category ˆ that provides Segal maps. We define
a wreath product of operator categories and a form of the Boardman–Vogt tensor
product that lies over it. We then give examples of operator categories that provide
universal properties for the operads An and En (1� n�C1) and also a collection
of new examples.
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1894 Clark Barwick

0 Introduction

A monoid structure on a set X is the data of a product
Q
j2J xj 2X of a collection of

elements fxj gj2J indexed on a totally ordered finite set J . These multiplications are
compatible with each other in the following sense: if �W J ! I is an order-preserving
map, then one has Y

j2J

xj D
Y
i2I

Y
j2Ji

xj :

(Here Ji is the fiber of � over i 2 I .) When � is the inclusion f1g ,! f1; 2g or
the inclusion f2g ,! f1; 2g, this expresses the existence of the (right and left) unit
in X . One extracts the associativity from the consideration of the two surjective, order-
preserving maps f1; 2; 3g ! f1; 2g. If one drops the ordering on these sets, then one
has access to an involution on f1; 2g that expresses the commutativity of the monoid
structure. The suggestion, therefore, is that the category O of totally ordered finite sets
and order-preserving maps “controls” the theory of monoids, and the category F of
finite sets “controls” the theory of commutative monoids.

If X is instead a space (or a category, or a higher category), one may turn the identities
in the description above into specified homotopies to obtain the structures observed
on loopspaces and infinite loop spaces, respectively. There are (at least) two ways to
make this idea precise:

� One selects a suitably cofibrant model E1 for the unit nonsymmetric operad and
a suitably cofibrant model E1 of the unit symmetric operad. Peter May showed
that a grouplike E1 (resp. E1 ) algebra structure on X is essentially equivalent
to a single delooping (resp. an infinite delooping) structure thereupon.

� Alternatively, one considers the category � of nonempty totally ordered finite
sets and the category � opposite to that of pointed finite sets. Graeme Segal
observed that an E1 algebra structure on a space X is equivalent to a functor
�op! Top that carries 1 to X and satisfies the so-called Segal condition, and
an E1 algebra structure on a space X is equivalent to a functor �op! Top
that carries 1 to X and satisfies the Segal condition.

Our motivating — but inchoate — observation is that the category O completely deter-
mines both the operad E1 and Segal’s theory of special �–spaces, while the category F
completely determines both the operad E1 and Segal’s theory of special �–spaces.

To make precise what one means by “determines”, we introduce here the notion of
an operator category. An operator category is a locally finite category that admits
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From operator categories to higher operads 1895

a terminal object 1 and, for any object I , any morphism i W 1 ! I , and any map
�W J ! I , a fiber Ji (ie a pullback of � along i ). Roughly speaking, an object I of
an operator category can be regarded as a finite set jI j DMor.1; I / equipped with a
suitable additional structure, and morphisms are structure-preserving maps. Of course
O and F are operator categories. Attached to any operator category ˆ is a theory of
ˆ–operads. In effect, a ˆ–operad P consists of the following: for each object I 2ˆ,
a space P.I /, a point e 2P.1/ and for each morphism �W J ! I , a composition map

P.I /�
Y
i2I

P.Ji /! P.J /:

These data are required to satisfy an associativity condition for any composable pair
of maps K ! J ! I and a condition exhibiting e as the unit. (In praxis, it is far
simpler for us to work directly with a suitable theory of 1–operads.) When ˆDO,
one obtains the theory of nonsymmetric operads, and when ˆD F, one obtains the
theory of symmetric operads. Of course, E1 is a suitably cofibrant replacement of
the unit nonsymmetric operad, and E1 is a suitably cofibrant replacement of the unit
symmetric operad.

At the same time, the categories O and F themselves support canonically defined
monads, which we shall denote by TO and TF . (For this, O and F are required to
enjoy an additional technical property, which we call perfection, but we emphasize that
under this hypothesis the monad is not additional structure.) In effect, these monads
add points to any object in all the ways one can do so functorially. So TO adds both a
new minimal point and a new maximal point to any totally ordered finite set, whereas
TF simply adds a point to a finite set. An old observation of Joyal then shows that
the Kleisli category of the monad (ie the full subcategory of algebras spanned by the
free algebras) on O is naturally equivalent to �op , and it is obvious that the Kleisli
category of the monad on F is �op . The Segal condition for a functor from one of
these categories to spaces ensures that X.I / is equivalent to

Q
i2jI jX.fig/.

For each operator category ˆ, one obtains an associated theory of ˆ–operads, and one
can form a suitably cofibrant replacement of the unit ˆ–operad, whose algebras we will
just call ˆ–algebras. (Again, we will actually work with models of 1–operads, which
permit us to dodge the delicate cofibrancy issues for strict operads.) If ˆ happens to
be perfect, then it supports a monad T , and the Kleisli category ƒ.T / of T contains a
class of Segal maps �i , and we obtain an equivalence of homotopy theories between ˆ–
algebras in spaces and functors ƒ.ˆ/! Top that satisfy the Segal condition as above.
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1896 Clark Barwick

All of this is determined the instant one has a tiny quantity of combinatorial data — the
operator category ˆ. Moreover, the axioms for an operator category are so invitingly
uncomplicated that one cannot help constructing other examples. The surprise — the
biggest of this paper — is that many operads arise in this manner.

For example, there is a wreath product of operator categories, which we describe in
Section 3: if ˆ and ‰ are operator categories, then ‰ oˆ is the category whose objects
are pairs .MI ; I / consisting of an object I 2ˆ and an object MI 2‰

�jI j . (Morphisms
are defined in the obvious way.) If ˆ and ‰ are perfect, then so is ‰ oˆ. We also
construct an external Boardman–Vogt [8] tensor product, which takes a ‰–operad
Q and a ˆ–operad P and constructs a .‰ oˆ/–operad Q˝P . In effect, .Q˝P /–
algebras are Q–algebras in P–algebras. At the same time, we show that if P is the
unit ˆ–operad and Q is the unit ‰–operad, then Q˝P is the unit .‰ oˆ/–operad.

So if we form the iterated wreath product

O.n/´O oO o � � � oO;

then we get a perfect operator category. One sees readily that the theory of (strict) O.n/–
operads coincides with Michael Batanin’s theory of .n�1/–terminal n–operads [5].
Using our theory of 1–operads, we prove the following.

Theorem The homotopy theory of O.n/–algebras is equivalent to that of En–algebras,
and the Kleisli category of the monad on O.n/ is precisely Joyal’s disk category ‚op

n .

This can be regarded as an 1–categorical analogue of Batanin’s main result [5]; the
flexibility of the present context allows for a dramatically simpler and more conceptual
proof. Moreover, since the tensor product of unit operads is again a unit operad,
this yields a description of Ek1C���Ckm as an iterated Boardman–Vogt tensor product
Ek1˝Ek2˝� � �˝Ekm . This is not in itself new. In 1988, Gerald Dunn proved a very
strict version of this fact using ordinary operads, and Michael Brinkmeier extended this
result in 2000. Later, Zbigniew Fiedorowicz and Rainer Vogt proved a more general
additivity theorem, stating that any cofibrant Ek–operad tensored with any cofibrant
E`–operad is EkC` . However, because the Boardman–Vogt tensor product of strict
operads does not preserve weak equivalences, these results are homotopically delicate
(and some early attempts to prove a result of this kind appear to be incorrect). For this
reason, Jacob Lurie’s approach via 1–operads is far better adapted to our work, and
our expression of additivity using O.n/–operads is completely combinatorial.

Another, even simpler, construction of operator categories takes an operator category ˆ
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From operator categories to higher operads 1897

and forms the full subcategory ˆ�m spanned by those objects I such that jI j is of
cardinality �m. This is again an operator category, but it is not perfect, so only the
operad story is accessible. A ˆ�m–algebra is then much like a ˆ–algebra, except
that one has only operations of arity �m. Consequently, one sees that O�m–algebras
are precisely Am–algebras. We do not know a standard name for F�m–algebras; we
write Fm for the operad freely generated by the operations of the E1–operad of
arity �m, so that F�m–algebras are Fm–algebras. More generally still, one has an
orbital category O.n/�m , providing a bifiltration of the E1–operad (Example 11.5).

Here is a table summarizing the situation:

ˆ –̂algebras in V perfect? ƒ.ˆ/

f1g AlgE0.V / yes f1g

O AlgE1.V / yes �op

O.n/ AlgEn.V / yes ‚
op
n

F AlgE1.V / yes �op

O�n AlgAn.V / no
F�n AlgFn.V / no

We introduce the 2–category of operator categories in Section 1. Given an operator
category ˆ, we develop the homotopy theory of weak operads in two ways. The first
and simplest of these models (Section 2) is as suitable families of spaces over the nerve
of a tree-like category �op

ˆ of finite sequences of objects of ˆ that is related to a version
of the dendroidal category with level structure when ˆD F; this homotopy theory —
that of complete Segal ˆ–operads — can be described for any operator category and is
easy to describe without many additional combinatorial complications. The second,
a generalization of Lurie’s theory of 1–operads, requires more technology, and will
come later (Section 7).

To prove this, we pass to a different way of describing weak operads and their algebras,
which will only work for a special class of operator categories that we call perfect
(Section 4). In effect, a perfect operator category ˆ admits a universal way of adding
elements to any object. This defines a monad on ˆ (Section 5), and the free algebras
for this monad form a supplementary category ƒ.ˆ/, called the Leinster category
(Section 6), which provides an alternative way of parametrizing the operations of an
operad over ˆ.

Our second model of the homotopy theory of weak operads over a perfect operator
category — that of ˆ–quasioperads — is a natural generalization of Lurie’s theory of
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1898 Clark Barwick

1–operads (Section 7). In effect, a ˆ–quasioperad is an inner fibration X˝!Nƒ.ˆ/

enjoying certain properties analogous to the ones developed by Lurie. We show that
this and our original model of the homotopy theory of weak operads over ˆ are
equivalent in a manner compatible with changes of operator category and the formation
of 1–categories of algebras (Section 10).

There is a monoidal structure on the 1–category of all operator categories called the
wreath product, which we describe in Section 3. An object of the wreath product ‰ oˆ
is a pair consisting of an object I 2ˆ and a collection of objects fJi j i 2 I g indexed
by the elements of I . The Boardman–Vogt tensor product of operads is externalized
relative to this wreath product in Section 8, and we deduce our identification of O.n/–
algebras with En–algebras.

An apology The results of this paper largely date from 2005–2006. Since that time,
there has been a series of dramatic advances in the study of homotopy coherent algebraic
structures, spearheaded by Moerdijk–Weiss and Lurie. As soon as I managed to record
some of these results, the techniques I employed had, discouragingly, become outmoded.
It was some time before it became clear to me how the work here interacts with some of
these new advances — particularly with Lurie’s framework. Ultimately, these advances
have simplified the work here greatly; the main result of this paper is now an immediate
consequence of the comparison between our theory of weak operads and Lurie’s.
Nevertheless, my efforts to bring this work in line with current technology have led to
an embarrassing delay in the publication of this work. I apologize for this, especially
to the students who have sought to employ aspects of the theory introduced here.

Acknowledgements All of this was inspired by the visionary preprint of Bertrand
Toën [21]. Early conversations with Markus Spitzweck were instrumental to my
understanding. It was an offhand remark in a paper of Tom Leinster [11, pages 40–43]
that led me to formulate the notion of perfection for operator categories; the Leinster
category of Section 6 is thus named after him. Haynes Miller has always been very
kind in his support and encouragement, and he has asked a number of questions that
helped refine my understanding of these objects. More recently, conversations with
Chris Schommer-Pries revitalized my interest in this material; note that Lemma 7.3 in
this paper is due to him. A visit from Clemens Berger helped me understand better
how the work here interacts with concepts he’s been developing since the dawn of the
new millennium. In addition, I’ve benefited from conversations with David Ayala, Ezra
Getzler, John Rognes, and Sarah Whitehouse.
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From operator categories to higher operads 1899

1 Operator categories

The objects of an operator category are finite sets equipped with some additional
structure. Such an object will be regarded as an indexing set for some multiplication
law. The structure of the operator category can thus be thought of determining the
associativity and commutativity constraints on that law.

1.1 Notation For any ordinary category ˆ with a terminal object 1 and for any object
K 2ˆ, we write jKj´Morˆ.1;K/. For any i 2 jKj, it will be convenient to denote
the morphism i W 1!K as fig ,!K . We call the elements of jKj points of K , but a
more familiar name (to some) might be global element.

1.2 Definition An operator category ˆ is an essentially small category that satisfies
the following three conditions:

(1.2.1) The category ˆ has a terminal object.

(1.2.2) For any morphism J ! I of ˆ and for any point i 2 jI j, there exists a fiber
Ji ´fig �I J .

(1.2.3) For any pair of objects I; J 2ˆ, the set Morˆ.J; I / is finite.

1.3 A note on terminology The notion we have defined here is distinct from the
notion of a category of operators used in the brilliant work of May and Thomason [14],
and it serves a distinct mathematical role. We hope that the obvious similarity in
nomenclature will not lead to confusion.

There are very many interesting examples of operator categories, but for now, let us
focus on a small number of these.

1.4 Example The following categories are operator categories:

(1.4.1) the trivial category f1g;

(1.4.2) the category O of ordered finite sets; and

(1.4.3) the category F of finite sets.

1.5 Example For any operator category ˆ and for any integer n� 1, write ˆ�n for
the full subcategory of ˆ spanned by those objects I 2ˆ such that #jI j � n. Then
the category ˆ�n is an operator category as well.

1.6 Example Suppose ‰ and ˆ are two operator categories. Then we may define
a category ‰ oˆ as follows. An object of ‰ oˆ will be a pair .I;M/ consisting of
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an object I 2 ˆ and a collection M D fMigi2jI j of objects of ‰ , indexed by the
points of I . A morphism .�; !/W .J;N /! .I;M/ of ‰ oˆ consists of a morphism
�W J ! I of ˆ and a collection

f!j W Nj !M�.j /gj2jJ j

of morphisms of ‰ , indexed by the points of J . Then ‰ oˆ is an operator category.
In Section 3 we will give a more systematic discussion of this story, and we will show
that this wreath product of operator categories in fact determines a monoidal structure
on the collection of all operator categories.

1.7 Example Suppose ˆ is any operator category. Then we may define a semidirect
product category ˆ Ì O as follows. An object of ˆ Ì O will be a pair .I;M/

consisting of a totally ordered finite set I 2O and a functor M W I !ˆ. A morphism
.�; !/W .J;N /! .I;M/ of ˆ ÌO consists of a morphism �W J ! I of O and a
natural transformation

!W N ! �?M

of functors J !ˆ. Then ˆÌO is an operator category.

1.8 Example Denote by C the category of finite cyclically ordered sets and monotone
maps, ie maps �W J ! I such that for any r; s; t 2 J , if Œ�.r/; �.s/; �.t/� in I , then
Œr; s; t � in J . Then C is an operator category.

1.9 Example Denote by G the category of finite simple graphs. Then G is an operator
category.

1.10 Definition A functor GW ‰!ˆ between operator categories will be said to be
admissible if it preserves terminal objects and the formation of fibers. An admissible
functor GW ‰ ! ˆ will be said to be an operator morphism if in addition, for any
object I of ‰ , the induced morphism jI j ! jGI j is a surjection.

1.11 Example (1.11.1) Any equivalence ‰ �
��!ˆ between operator categories is

an operator morphism.

(1.11.2) For any operator category ˆ, the assignment I 7! jI j is an operator morphism
uW ˆ! F.

(1.11.3) For any operator category ˆ, the inclusion f1g ,!ˆ of the terminal object
is an operator morphism.
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From operator categories to higher operads 1901

(1.11.4) For any operator category ˆ and for any positive integer n, the inclusion
ˆ�n ,!ˆ is an operator morphism.

(1.11.5) For any operator category ˆ, the unique functor ˆ! f1g is an admissible
functor, but it is generally not an operator morphism.

1.12 Proposition Suppose GW ‰!ˆ is an operator morphism. Then for any object I
of ‰ , the induced map jI j ! jGI j is a bijection.

Proof Two points i; j 2 jI j are distinct if and only if the underlying set jj�1figj Š
jj j�1fig of the fiber of one point along the other is empty — or, equivalently, if and only
if the intersection i \ j has no points, that is, ji \ j j is empty. Since G and I 7! jI j
are admissible, one also has a bijection jG.j�1fig/j Š jG.j /j�1fG.i/g. Since G is
an operator morphism, the map

jj�1figj ! jG.j�1fig/j Š jG.j /j�1fG.i/g

is surjective, so if the source is empty, then the target is as well.

1.12.1 Corollary Suppose

‰

X ˆ

G

H

F

is a commutative triangle of admissible functors in which F is an operator morphism;
then G is an operator morphism if and only if H is.

We organize the collection of operator categories into an 1–category.

1.13 Notation Denote by Adm the (strict) 2–category in which the objects are small
operator categories, the 1–morphisms are admissible functors, and the 2–morphisms
are isomorphisms of functors. Denote by Op the sub-2–category of Adm in which the
objects are small operator categories, the 1–morphisms are operator morphisms, and
the 2–morphisms are isomorphisms of functors.

Applying the nerve to each Mor–groupoid in Adm and Op, we obtain categories
enriched in fibrant simplicial sets, and we may apply the simplicial nerve to obtain 1–
categories that are 2–categories in the sense of [12, Section 2.3.4] (which could perhaps
more precisely be called “.2; 1/–categories”). We will refer to these 1–categories as
Adm and Op.
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As a result of Proposition 1.12, we have the following.

1.14 Proposition The trivial operator category f1g is initial in both Adm and Op,
and it is terminal in Adm. The operator category F is terminal in Op.

2 Complete Segal operads

Any operator category gives rise to a theory of operads (elsewhere called a colored
operad or multicategory). Here we define a weak version of this theory, as well as its
theory of algebras. To this end, we first single out an important class of morphisms of
an operator category.

2.1 Definition A morphism K! J of an operator category ˆ is a fiber inclusion if
there exists a morphism J ! I and a point i 2 jI j such that the square

K J

fig I

is a pullback square. A morphism K! J is an interval inclusion if it can be written
as the composite of a finite sequence of fiber inclusions. An interval inclusion will be
denoted by a hooked arrow K ,! J .

2.2 Example (2.2.1) Any isomorphism of an operator category ˆ is a fiber inclusion,
and any point of any object of an operator category ˆ is a fiber inclusion.

(2.2.2) Suppose that I is an object of O. Then for any elements i0; i1 2 jI j, write
Œi0; i1� for the subset of elements i 2 jI j such that i0 � i � i1 , with the
induced ordering. A morphism J ! I is a fiber inclusion if and only if
it is a monomorphism whose image is precisely Œi0; i1� for some elements
i0; i1 2 jI j. Interval inclusions and fibers inclusions coincide in O.

(2.2.3) In the category F, fiber inclusions are precisely monomorphisms. Again
interval inclusions and fibers inclusions coincide.

2.3 We make the following observations:

(2.3.1) Interval inclusions in an operator category are monomorphisms.

(2.3.2) If ˆ is an operator category, then the pullback of any morphism L! J along
any interval inclusion K ,!J exists, and the canonical morphism K�JL!L

is an interval inclusion.
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(2.3.3) Suppose ˆ is an operator category, �W K ,! J an interval inclusion in ˆ, and
 W L!K a morphism of ˆ. Then  is an interval inclusion if and only if
� ı is.

(2.3.4) Suppose ˆ is an operator category, K ,! J an interval inclusion, and j 2 jJ j
a point. Then either the fiber Kj is a terminal object or else jKj j D¿.

2.4 Definition Suppose ˆ is an operator category. Then a ˆ–sequence is a pair .m; I /
consisting of an object m2� and a functor I W m!ˆ. We will denote such an object by

ŒI0! I1! � � � ! Im�:

A morphism .�; �/W .n; J /! .m; I / of ˆ–sequences consists of a morphism of �
�W n!m and a natural transformation �W J!I ı� such that for any integer 0�k�m,
the morphism �k W Jk ! I�.k/ is an interval inclusion, and for any pair of integers
0� k � `�m, the square

Jk I�.k/

J` I�.`/

�k

�`

is a pullback of ˆ. Denote by �ˆ the category of ˆ–sequences.

Any admissible functor GW ‰ ! ˆ induces a functor �‰ ! �ˆ that is given by
.m; I / 7! .m; G ı I /.

2.5 Notation Suppose ˆ is an operator category and X W �op
ˆ !Kan a functor. We

study three classes of maps:

(2.5.1) For any ˆ–sequence .m; I / and for any point i 2 jImj, one obtains a map

XŒI0! I1! � � � ! Im�!XŒI0;i ! I1;i ! � � � ! fig�:

Consequently, one obtains a map

p.m;I /W XŒI0! I1! � � � ! Im�!
Y
i2jImj

XŒI0;i ! I1;i ! � � � ! fig�:

(2.5.2) For any ˆ–sequence .m; I /, one obtains a map

sm;I W XŒI0! � � � ! Im�!XŒI0! I1��
h
XŒI1�

� � � �
h
ŒIm�1�

XŒIm�1! Im�;

where the target is the homotopy fiber product.
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(2.5.3) Lastly, the inclusion f1g ,!ˆ induces an inclusion �Š�f1g ,!�ˆ ; hence
X restricts to a simplicial space .X j�op/, and one can define the map

r W .X j�op/0! .X j�op/K ;

where K D �3=.�f0;2g t�f1;3g/, and .X j�op/K is the homotopy limit of
the diagram

�
op
=K
!�op .X j�op/

����! sSet:

2.6 Definition Suppose ˆ is an operator category. A complete Segal ˆ–operad is a
left fibration qW X ! N�

op
ˆ such that any functor �op

ˆ ! Kan that classifies q has
the property that the maps p.m;I / , s.m;I / , and r (Notation 2.5) are all equivalences. A
morphism gW X ! Y of complete Segal ˆ–operads is a commutative diagram:

X Y

N�
op
ˆ

g

A morphism gW X ! Y will be said to be a equivalence of complete Segal ˆ–operads
if it is a covariant weak equivalence.

Denote by Operadˆ;�CSS the full simplicial subcategory of sSet=N�op
ˆ

spanned by the
complete Segal ˆ–operads. This is a fibrant simplicial category, so we can define an
1–category OperadˆCSS as the simplicial nerve of OperadˆCSS .

2.7 Suppose ˆ is an operator category. We refer to the fiber of a complete Segal
ˆ–operad X over an object

ŒI0! I1! � � � ! Im� 2�
op
ˆ

as the space of operations of type ŒI0! I1! � � � ! Im�. The space of operations of
type f1g is the space of objects of X or interior 1–groupoid of X , and the space of
operations of type I is the space of I–tuples of objects of X . Let us denote by

ŒI0=I1= � � � =Im�MapX
�
.x0i0/i02jI0j; : : : ; .x

m
im
/im2jImj

�
the fiber of the map XŒI0! I1! � � � ! Im�!X.I0/� � � � �X.Im/ over the vertex
..x0i0/i02jI0j; : : : ; .x

m
im
/im2jImj/. The condition that X is a complete Segal ˆ–operad
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then gives equivalences

ŒJ=I=f1g�MapX
�
.xj /j2jJ j; .yi /i2jI j; z

�
' ŒI=f1g�MapX

�
.yi /i2jI j; z

�
� ŒJ=I �MapX

�
.xj /j2jJ j; .yi /i2jI j

�
' ŒI=f1g�MapX

�
.yi /i2jI j; z

�
�

Y
i2jI j

ŒJi=fig�MapX
�
.xj /j2jJi j; yi

�
;

and the map

ŒJ=I=f1g�MapX
�
.xj /j2jJ j; .yi /i2jI j; z

�
! ŒJ=f1g�MapX

�
.xj /j2jJ j; z

�
induced by the map

J f1g

J I f1g

amounts to a polycomposition map, which is defined up to coherent homotopy. The
functoriality in N�op

ˆ amounts to a coherent associativity condition.

We immediately obtain the following characterization of equivalences between complete
Segal ˆ–operads.

2.8 Proposition Suppose ˆ is an operator category. Then a morphism gW X ! Y of
complete Segal ˆ–operads is an equivalence if and only if these conditions are satisfied:

(2.8.1) Essential surjectivity The map �0XŒf1g�! �0Y Œf1g� is surjective.

(2.8.2) Full faithfulness For any object I 2ˆ, any vertex x 2XŒI �0 , and any vertex
y 2XŒf1g�0 , the induced map

ŒI=f1g�MapX .x; y/! ŒI=f1g�MapY .g.x/; g.y//

is an equivalence.

2.9 Example For any operator category ˆ, the identity functor on the simplicial
set N�op

ˆ is a complete Segal ˆ–operad — the terminal complete Segal ˆ–operad,
which we denote by Uˆ . These complete Segal ˆ–operads, for suitable choice of ˆ,
give rise to all the operads discussed in the introduction. In particular, when ˆD F, we
show that the terminal complete Segal F–operad UF is equivalent to the operad E1
(Section 11).

2.10 Example When ˆ D f1g, we find that a complete Segal f1g–operad is a left
fibration X !N�op classified by a complete Segal space in the sense of Rezk [16].
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(In particular, Operadf1gCSS is a homotopy theory of .1; 1/–categories, in the sense
of [4].) For simplicity, we will, by a small abuse, call such left fibrations complete
Segal spaces.

2.11 Example When ˆD F, we obtain a new homotopy theory of weak symmetric
operads, which we will show is equivalent to Lurie’s in Section 10.

Using the left Bousfield localization [9; 2] of the covariant model structure [12,
Proposition 2.1.4.7] with respect to the set Sˆ of those morphisms that represent
the morphisms in Notation 2.5, one obtains the following.

2.12 Proposition The category sSet=N�op
ˆ

admits a left proper, tractable, simplicial
model structure — called the operadic model structure — with these properties:

(2.12.1) A map X!Y over N�op
ˆ is a cofibration if and only if it is a monomorphism.

(2.12.2) An object X!N�
op
ˆ is fibrant if and only if it is a complete Segal ˆ–operad.

(2.12.3) A map X ! Y of simplicial sets over N�op
ˆ is a weak equivalence if and

only if for any complete Segal ˆ–operad Z , the induced map

Map=N�op
ˆ
.Y;Z/!Map=N�op

ˆ
.X;Z/

is a weak equivalence.

(2.12.4) A map X ! Y between complete Segal ˆ–operads is a weak equivalence
if and only if it is an equivalence of complete Segal ˆ–operads.

2.12.1 Corollary The 1–category OperadˆCSS of complete Segal ˆ–operads is an
accessible localization of the functor 1–category Fun.N�op

ˆ ;Kan/; in particular, it is
a presentable 1–category.

Critically, the homotopy theory of weak operads over operator categories is functorial
with respect to operator morphisms.

2.13 Proposition For any operator morphism GW ‰!ˆ, the adjunction

GŠW sSet=N�op
‰
� sSet=N�op

ˆ
WG?

is a Quillen adjunction for the operadic model structure.

Proof It is enough to note that the functor G? is a right adjoint for the covariant
model structure, and a left fibration X !N�

op
ˆ is a complete Segal ˆ–operad only if

G?X ŠX �N�op
ˆ
N�

op
‰ !N�

op
‰ is a complete Segal ‰–operad.
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2.13.1 Corollary An operator morphism GW ‰!ˆ induces an adjunction

GŠW Operad‰CSS�OperadˆCSS WG
?

of 1–categories.

2.14 Example For any operator category ‰ , the right adjoint

p?W Operad‰!Operadf1g

induced by the inclusion pW f1g ,! ‰ carries any complete Segal ‰–operad to its
underlying complete Segal space.

2.15 Example When ˆ D F, the notion of a complete Segal ˆ–operad is closely
related to the usual notion of a symmetric operad in simplicial sets. For any operator
category ‰ , the right adjoint u?W OperadF

CSS!Operad‰CSS induced by the essentially
unique operator morphism uW ‰ ! F carries any complete Segal F–operad to its
underlying complete Segal ‰–operad. The left adjoint Symm WD uŠ carries any
complete Segal ‰–operad to its symmetrization.

2.16 Example When ‰DO, we show below that the symmetrization of the terminal
complete Segal O–operad UO is equivalent to the operad E1 , or, equivalently, the
operad A1 . When ‰ D O�n for some integer n � 1, we show below that the
symmetrization of the terminal complete Segal O�n–operad UO�n is equivalent to the
operad An (Section 11).

We note that it will sometimes be convenient to work with a straightened variant of the
operadic model structure of Proposition 2.12, which is provided by the following left
Bousfield localization of the injective model structure.

2.17 Proposition The category Fun.�op
ˆ ; sSet/ admits a left proper tractable model

structure — called the operadic model structure — with the following properties:

(2.17.1) A natural transformation X!Y is a cofibration if and only if it is a monomor-
phism.

(2.17.2) An object X is fibrant if and only if it is valued in Kan complexes, and it
classifies a complete Segal ˆ–operad.

(2.17.3) A natural transformation X ! Y is a weak equivalence if and only if for any
fibrant object Z , the induced map

Map.Y;Z/!Map.X;Z/

is a weak equivalence.
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2.18 For any operator category ˆ, it is clear that the straightening/unstraightening
Quillen equivalence of [12, Section 2.2.1] localizes to a Quillen equivalence

StW sSet=N�op � Fun.�op
ˆ ; sSet/ WUn

between the operadic model structures on Fun.�op
ˆ ; sSet/ and sSet=N�op

ˆ
.

3 Wreath products

Roughly speaking, if the objects of an operator category index a certain sort of multipli-
cations, then the objects of a wreath product of two operator categories ˆ and ‰ index
ˆ–multiplications in objects that already possess ‰–multiplications. This provides a
wealth of new examples of operator categories, and with this insight, we can introduce
the operator categories O.n/ (1� n <1), which are key to the combinatorial gadgets
that characterize the operads En .

3.1 Definition Suppose ˆ is an operator category. Then a coronal fibration

pW X !Nˆ

is a cartesian fibration such that, for any object I 2ˆ, the functors

fXI !Xfig j i 2 jI jg

together exhibit the fiber XI as a product of the fibers Xfig . In this situation, p will
be said to exhibit X as a wreath product of X1 with ˆ.

3.2 Notation Denote by Ocart.Cat1/ the subcategory [12, Section 1.2.11] of the
1–category

O.Cat1/´ Fun.�1;Cat1/

whose objects are cartesian fibrations and whose morphisms carry cartesian morphisms
to cartesian morphisms. Let Catcart

1=S denote the fiber of the target functor

t W Ocart.Cat1/! Cat1

over an object fSg �Cat1 . Note that Catcart
1=S may be identified with the nerve of the

cartesian simplicial model category of marked simplicial sets over S [12, Proposition
3.1.3.7], whence it is the relative nerve of the category of cartesian fibrations over S ,
equipped with the cartesian equivalences.
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Now for any operator category ˆ, denote by

Cor=Nˆ � Catcart
1;=Nˆ

the full subcategory spanned by the coronal fibrations.

3.3 Lemma Suppose ˆ is an operator category with a terminal object 1. Then the
functor Cor=Nˆ ! Cat1 given by the extraction X 7! X1 of the fiber over 1 is a
trivial fibration.

Proof It is a direct consequence of straightening [12, Section 3.2] that the 1–
category Catcart

1;=Nˆ is equivalent to the functor 1–category Fun.Nˆop;Cat1/, and
the functor Catcart

1;=Nˆ ! Cat1 given by the assignment X 7! X1 corresponds to
evaluation at 1 2Nˆop . Now the result follows from the observation that a cartesian
fibration pW X !Nˆ is a coronal fibration if and only if the corresponding functor
FpW Nˆ

op! Cat1 is a right Kan extension of the restriction of Fp to f1g.

3.4 Notation For any 1–category C and any operator category ˆ, we write C oˆ
for the total space X of a coronal fibration pW X ! Nˆ such that C appears as
the fiber over a terminal object. One can make the assignment C ! C oˆ into a
functor by choosing a terminal object 1 2 ˆ and a section of the trivial fibration
Cor=Nˆ ! Cat1 informally described as the assignment X 7! X1 . The space of
these choices is contractible.

3.5 Lemma If F W ‰!ˆ is an operator morphism, then the pullback

F ?pW X �NˆN‰!N‰

of a coronal fibration pW X !Nˆ is a coronal fibration.

Proof Suppose I 2‰ . The maps .X�NˆN‰/I! .X�NˆN‰/fig for i 2 jI j can be
identified with the maps XFI !XF fig . Since the map jI j! jFI j is a bijection, these
maps exhibit the fiber .X �NˆN‰/I as a product of the fibers .X �NˆN‰/fig .

This lemma, combined with the previous one, implies that pullback along an operator
morphism F W ‰!ˆ induces an equivalence of 1–categories

Cor=Nˆ �
��! Cor=N‰I

they also imply that the whole 1–category of coronal fibrations is equivalent to
the 1–category Op�Cat1 . We will return momentarily to a special case of this
observation.
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3.6 Lemma Suppose ˆ is an operator category, and suppose pW X!Nˆ is a coronal
fibration such that the fiber X1 is the nerve of an operator category. Then X itself is
also the nerve of an operator category, and p is the nerve of an admissible functor.

Proof Since X1 is a 1–category, every fiber XI 'X
�jI j
1 is a 1–category. It follows

that X itself is a 1–category. The fact that X has a terminal object and all fibers
follows directly from [12, Proposition 4.3.1.10].

Informally, we conclude that the wreath product of two operator categories is again an
operator category.

3.7 Lemma Suppose ˆ and ˆ0 are operator categories, and suppose pW ˆ0 ! ˆ

is an admissible functor whose nerve is a coronal fibration. Then for any operator
morphism F W ‰!ˆ and any pullback diagram

‰0 ˆ0

‰ ˆ

F 0

q p

F

the functor q is admissible, and the functor F 0 is an operator morphism.

Proof It is a simple matter to see that q and F 0 are admissible functors. To check that
F 0 is an operator morphism, let us note first that F 0 induces an equivalence ‰0�

�
��!ˆ0� ;

hence for any object K 2‰0� , the natural map jKj ! jF 0Kj is a bijection. Now for
any object J 2‰ , the decomposition ‰0J ' .‰

0
?/
�jJ j gives, for any object K of ‰0

lying over J , a decomposition of finite sets

jKj Š
a
j2jJ j

jKfj gj:

After applying F 0 , we similarly obtain a decomposition of finite sets

jF 0Kj Š
a

i2jFJ j

j.F 0K/figj:

We thus conclude that the map jKj ! jF 0Kj is a bijection since both the map jJ j !
jFJ j and all the maps jKfj gj ! jKF fj gj are bijections.

We now set about showing that the wreath product defines a monoidal structure on the
1–category Op.
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3.8 Notation Denote by M the ordinary category whose objects are pairs .m; i/
consisting of an integer m � 0 and an integer 0 � i � m and whose morphisms
.n; j /! .m; i/ are maps �W m! n of � such that j � �.i/. This category comes
equipped with a natural projection M!�op .

Denote by E.Adm/ the simplicial set over N� specified by the following universal
property. We require, for any simplicial set K and any map � W K!N�op , a bijection

Mor=N�op.K;E.Adm/op/ŠMor.K �N�op NM;Admop/;

functorial in � . Now by [12, Corollary 3.2.2.13], the map E.Adm/ ! N� is a
cartesian fibration, and E.Adm/ is an 1–category whose objects are pairs .m;X/
consisting of an integer m � 0 and a functor X W .�m/op ! Adm. A morphism
.�; g/W .n; Y / ! .m;X/ can be regarded as a map �W n ! m of � and an edge
gW Y ! �?X in Fun..�n/op;Adm/.

Denote by Opo the following subcategory of E.Adm/. The objects of Opo are those
pairs .m;X/2E.Adm/ such that for any integer 1� i �m, the nerve of the admissible
functor Xi !Xi�1 is a coronal fibration, and the operator category X0 is equivalent
to f�g. The morphisms .n; Y / ! .m;X/ are those pairs .�; g/ such that for any
integer 0� i � n, the admissible functor Yi !X�.i/ is an operator morphism.

3.9 Proposition The inner fibration .Opo/op!N�op is a monoidal 1–category.

Proof We first show that Opo!N� is a cartesian fibration. Indeed, for any object
.m;X/ of Opo and any edge �W n!m of N�, there exists a morphism Z! �?X

in which ZW .�n/op! Adm is a diagram such that Z0 is equivalent to f1g and, for
any integers 0� i � j � n, the following is a pullback square:

Zj X�.j /

Zi X�.i/

It is straightforward now to check that the resulting edge Z!X is cartesian over � .

It now remains to show that for any integer m� 0, the natural map

�mW Opom!
mY
iD1

Opo
fi�1;ig

is an equivalence of1–categories. This is the functor that assigns to any object .m;X/
of Opom the tuple

.X.m/1; X.m� 1/1; : : : ; X.2/1; X.1//;
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where X.k/1 denotes the fiber of X.k/!X.k�1/ over a terminal object of X.k�1/.
It follows from Lemma 3.3 that this functor is indeed an equivalence.

3.10 Example Of course we may form the wreath product of any two operator
categories, but of particular import are the operator categories obtained by forming the
iterated wreath product of O with itself:

O.n/´O oO o � � � oO:

As Clemens Berger has observed, the homotopy theory of complete Segal O.n/–operads
is a homotopy-coherent variant of Batanin’s notion of an .n�1/–terminal n–operad [5].
We prove below that the little n–cubes operad En is equivalent to the symmetrization
Symm.UO.n// of the terminal complete Segal O.n/–operad (Section 11). This is a
variant of Batanin’s result in [5].

4 Perfect operator categories

The May–Thomason category of a symmetric operad [14] is a category that lives over
Segal’s category �op of pointed finite sets. Lurie’s theory of1–operads [13, Chapter 2]
is built upon a generalization of this picture. How do we understand the relationship
between the operator category F and the category �op ? For nonsymmetric operads,
one has a similar May–Thomason construction over �op [20]. How do we understand
the relationship between the operator category O and the category �op ? Is it analogous
to the relationship between the operator category F and the category �op ?

At first blush, the answer appears to be no: �op is the category of pointed objects of F,
and �op is opposite of the category of nonempty objects of O. Expressed this way,
�op and �op don’t look the least bit similar. However, an insight that we inherited
from Tom Leinster [11, pages 40–43] shows us how to think of them each as special
cases of a general construction. This insight leads us to study a special class of operator
categories, which we call perfect. We discuss the key properties of these operator
categories here. In the next section we find that perfect operator categories admit a
canonical monad, and in the section after that, we use that monad to define what we
call the Leinster category ƒ.ˆ/ of a perfect operator category, and we show that

ƒ.F/' �op and ƒ.O/'�op:

These Leinster categories will be the foundation upon which our analogue of Lurie’s
theory of 1–operads over operator categories is built.
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The first property enjoyed by perfect operator categories is the existence of a point
classifier. Point classifiers play a role in the theory of perfect operator categories that
is in many respects analogous to the role played by the subobject classifier in topos
theory.

4.1 Definition Suppose ˆ is an operator category. Consider the category ˆcons

whose objects are points — that is, maps fig ! I , which we shall denote by .I; i/ —
and whose morphisms .I; i/! .J; j / are pullback squares:

fig I

fj g J

A point classifier for ˆ is a terminal object T of ˆcons .

If a point classifier in a pointed category exists, then it is essentially unique.

4.2 Proposition Suppose ˆ is an operator category, and suppose .T; t/ is a point
classifier for ˆ. Then there is a functor �W ˆcons! .ˆ=T / such that the square

ˆcons .ˆ=T /

f1g ˆ

�

fib

is a pullback square, where fibW .ˆ=T /!ˆ is the functor that assigns to any morphism
I ! T its fiber over t .

Proof Compose the equivalence of categories ˆcons ���! .ˆcons=T / with the inclusion
.ˆcons=T / ,! .ˆ=T / to construct the functor �. Now the result follows from the
universal property of T .

4.3 Definition Suppose ˆ is an operator category, and suppose .T; t/ is a point
classifier for ˆ. Then for any object .I; i/ of ˆ� , the unique conservative morphism
.I; i/! .T; t/ will be called the classifying morphism for i , and will be denoted by �i .
We shall call the point t 2 jT j the special point of T , and for any morphism I ! T

of ˆ, the fiber It will be called the special fiber. Write fibW .ˆ=T /! ˆ for the
special fiber functor I 7! It .

4.4 Example (4.4.1) The category f1g trivially has a point classifier.
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(4.4.2) The category O� of pointed ordered finite sets has a point classifier, namely,
TO ´ f0; 1; 2g, wherein 1 is the special point. Indeed, suppose .J; j / is a pointed
ordered finite set. Then there is a morphism �j W J ! TO defined by the formula

�j .k/´

8<:
0 if k < j;
1 if k D j;
2 otherwise.

The fiber of �j is of course the point j itself, and �j is moreover unique with this
property.

(4.4.3) The category F� of pointed finite sets has a point classifier, namely, the set
TF ´ f0; 1g, wherein 1 is the special point. Indeed, this is a consequence of the
observation that TF is the subobject classifier for the topos of sets.

(4.4.4) The category .O oO/� has a point classifier. This is the object

.TO; f�; TO;�g/;

which may be pictured thus:

� TO �

�

� ı �

�

TOW � � �

This trend continues: the category .O.n//� has a point classifier, which may be repre-
sented in Rn as the special point at the origin and 2n points at the intersection of the
unit .n�1/–sphere and the coordinate axes.

4.5 Example Suppose F W ‰!ˆ is a fully faithful operator morphism, and suppose
.T; t/ is an object of ‰� such that F.T; t/ is a point classifier for ˆ� . Then .T; t/ is
a point classifier for ‰� as well.

It follows that for any integer m� 3, the category O�m;� has a point classifier, and
for any integer n� 2, the category F�n;� has a point classifier.

4.6 Definition An operator category ˆ is perfect if these conditions are satisfied:

(4.6.1) The category ˆ� contains a point classifier .Tˆ; tˆ/.

(4.6.2) The special fiber functor fibW .ˆ=Tˆ/!ˆ admits a right adjoint Eˆ .
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One denotes the full subcategory of Adm (resp. of Op) spanned by the perfect operator
categories by Admperf (resp. Opperf ).

4.7 Notation As a rule, we drop the subscripts from the notation for the point classifier
and the right adjoint of fib if it is clear from the context which operator category is
under consideration.

If ˆ is a perfect operator category, then let us abuse notation by writing T for the
endofunctor of ˆ obtained by composing EW ˆ! .ˆ=Tˆ/ with the forgetful functor
.ˆ=Tˆ/!ˆ. Hence for some object I of ˆ, the notation EI will denote TI along
with the structure morphism eI W TI!T . This abuse is partly justified by the following
observation.

4.8 Proposition If ˆ is a perfect operator category, then the structural morphism
e1W T .1/! T is an isomorphism.

4.8.1 Corollary If ˆ is a perfect operator category, and I is an object of ˆ, then
eI D T .Š/, where Š W I ! 1 is the canonical morphism.

4.9 Example (4.9.1) Of course the operator category f1g is perfect.

(4.9.2) The operator category O is perfect; the functor E assigns to any ordered
finite set I the ordered finite set TI obtained by adding a single point at the
beginning and a single point at the end, along with the unique map eI W TI!T

whose special fiber is precisely I � TI .

(4.9.3) The operator category F is perfect; the functor E assigns to any finite set I
the finite set TI obtained by adding a disjoint basepoint to I , along with the
unique map eI W TI ! T whose special fiber is precisely I � TI .

(4.9.4) For any integer n� 1, neither O�n nor F�n is perfect.

(4.9.5) The operator category O oO is perfect. The functor TOoO carries an object
.I;M/ to an object

.TOI; fS�g�2jTOI j/;

where S� D 1 if � is either of the endpoints in TOI and S� D TOMi if
�D i 2 jI j � jTOI j.

More generally, wreath products of perfect operator categories are perfect.

4.10 Proposition Suppose ˆ and ‰ are two perfect operator categories. Then the
operator category ‰ oˆ is perfect as well.
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Proof Choose point classifiers .Tˆ; tˆ/ of ˆ and .T‰; t‰/ of ‰ and a terminal object
1 2‰ . Consider an object T‰oˆ D .Tˆ; fS�g�2jTˆj/ of ‰ oˆ in which

S� D

�
1 if �¤ tˆ;
T‰ if �D tˆ:

Consider the point t‰oˆ´ .tˆ; t‰/ 2 jT‰oˆj. Clearly the pair .T‰oˆ; t‰oˆ/ is a point
classifier of ‰ oˆ.

The right adjoint E‰oˆ of the special fiber functor fib is defined by carrying any object
.I; fMigi2jI j/ to the object .TˆI; fNj gj2jTˆI j/, where

Nj D

�
1 if j … jI j � jTˆI j;

T‰Mj if j 2 jI j � jTˆI j;

along with the morphism

.TˆI; fNj gj2jTˆI j/! .Tˆ; fS�g�2jTˆj/

given by eI W TˆI ! Tˆ and, for any j 2 jTˆI j, the morphism eMj W T‰Mj ! T‰

when j 2 jI j, and the identity map on 1 when j … jI j.

This allows us to restrict the monoidal structure of Proposition 3.9 to a monoidal
structure on Opperf .

4.10.1 Corollary Denote by Opperf;o the full subcategory of Opo spanned by those
pairs .m;X/ such that each Xi is perfect. Then the composite .Opperf;o/op!N�op is
a monoidal 1–category.

Consequently, we obtain the following example.

4.11 Example The operator categories O.n/ are all perfect.

5 The canonical monad on a perfect operator category

A perfect operator category ˆ always comes equipped with a monad. In effect, this
monad adds points “in every direction” in ˆ; these “directions” are indexed by the
“nonspecial” points of the point classifier.

5.1 Observe that for any object I of an operator category ˆ, and any point i 2 jI j, the
fiber functor .�/i is already right adjoint to the fully faithful functor pi W ˆ! .ˆ=I /

that sends any object J of ˆ to the composite

J ! fig ,! I:
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Observe that ˆ thus has the structure of a localization of .ˆ=I /; that is, the unit
J ! pi .J /i is an isomorphism.

If ˆ is perfect, there is a string of adjoints

ˆ
pt

E

.ˆ=T /

and as the following result shows, ˆ is both a localization and a colocalization
of .ˆ=T /.

5.2 Lemma If ˆ is a perfect operator X–category, then the adjoint pair .fib; E/
gives ˆ the structure of a colocalization of .ˆ=T /.

Proof The claim is simply that the counit �W fib ıE ! idˆ is an isomorphism.
The inverse to the unit idˆ ! fib ıpt induces a morphism �W pt ! E of functors
ˆ! .ˆ=T /; this gives a morphism �W idˆ! T of endofunctors of ˆ.

Now for any object I of ˆ, the resulting square

I TI

ftg T

is a pullback square; indeed, a commutative diagram

I 0 TI

ftg T

is the same data as a morphism ptI
0!EI of .ˆ=T /, which is in turn the same data

as a morphism I 0 Š .ptI
0/t ! I .

If ˆ is a perfect operator category, then, in effect, the endofunctor T W ˆ!ˆ, when
applied to an object of ˆ, adds as few points as possible in as many directions as
possible. It turns out that this endofunctor is a monad; let us now construct a natural
transformation �W T 2! T that, together with the natural transformation �W idˆ! T

from the previous proof, will exhibit a monad structure on T .

5.3 Notation Suppose ˆ is a perfect operator category. The embedding �T W T ,!TT

permits us to regard the special point t 2 jT j as a point of TT as well. Now consider
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the classifying morphism �t W TT ! T . Its special fiber is the point �T .t/, so that the
following diagram is a pullback:

ftg T TT

ftg T

�T

�t

5.4 Notation For any object I of a perfect operator category ˆ, the functor E
induces a functor

E=I W .ˆ=I /! .ˆ=TI /;

which is right adjoint to the functor ��1I ´��TI I W .ˆ=TI /! .ˆ=I /.

5.5 This feature of the endofunctor T W ˆ!ˆ is what makes it a local or parametric
right adjoint; see [23, Definition 2.3].

5.6 Lemma If ˆ is a perfect operator category, then there is an isomorphism of
functors

�W fib �
��! fib ı�t;Š ıE=TT ;

where �t;ŠW .ˆ=TT /! .ˆ=T / is the functor given by composition with �t .

Proof For any morphism �W J ! T , every square of the diagram

Jt J TJ

ftg T TT

ftg T

�

�T

T�

�t

is a pullback square.

5.7 By adjunction, we obtain a natural transformation � W �t;Š ıE=T ! E ı fib. If
�W I ! T is a morphism of ˆ, then one can apply T to this morphism to obtain a
morphism T .�/W TI ! TT . One can, alternatively, apply T to the special fiber It to
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From operator categories to higher operads 1919

obtain a morphism T .It /! T . The component �I then fits into a commutative square:

TI T .It /

TT T

�J

T.�/ eIt

�t

Here, the special fiber of I inside TI is mapped isomorphically to the special fiber
of T .It / under �I .

5.8 Definition Suppose ˆ is a perfect operator category. Define a morphism of
endofunctors �W T 2! T as the composition

T 2 D U ıE ıU ıE D U ı�t;Š ıE=T ıE
idı�ıid
����!U ıE ıfib ıE idı�

���!U ıE D T;

where �W fib ıE! idˆ is the counit isomorphism (Lemma 5.2).

5.9 More explicitly, if I is an object of ˆ, then one has, following 5.7, a commutative
diagram:

(5.9.1)

T 2I T ..TI /t / TI

TT T

�TI Š

T.eI /

�t

The composite T 2I ! TI is the component �I .

5.10 Theorem The endofunctor T on a perfect operator category ˆ is a monad with
unit �W idˆ! T and multiplication �W T 2! T .

The proof, though quite elementary, is a little involved, so we postpone it (Appendix B).

5.11 Example When ˆ D F, the monad T is the partial map monad, so that the
set of maps J ! TI is precisely the set of partial maps J �K! I . We emphasize,
however, that this is not the case in general.

5.12 The monad T is a local or parametric right adjoint [23, Definition 2.3] as well.
Work of Mark Weber [23, Proposition 2.6; 22, Proposition 5.9] shows that this implies
instantly that the Kleisli category of this monad admits a factorization system, which
is the inert/active factorization we describe in a more pedestrian way in Lemma 7.3
below. (See also [7, Section 2.6].)
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Let us turn to the functoriality of this monad structure in admissible functors.

5.13 An admissible functor F W ‰!ˆ between perfect operator categories induces a
functor

F=T‰ W .‰=T‰/! .ˆ=FT‰/;

and there is a unique conservative morphism �F.t‰/W .FT‰; F .t‰//! .Tˆ; tˆ/ of ˆ� .
So let F=T (with no subscript on T ) denote the composite

.‰=T‰/
F=T‰
���! .ˆ=FT‰/

�F.t‰/;Š�����! .ˆ=Tˆ/:

We now have the following trivial observations.

5.14 Lemma For any admissible functor F W ‰!ˆ between perfect operator cate-
gories, there is a natural isomorphism ˇF W fibˆ ıF=T

�
��! F ıfib‰ .

5.15 Lemma For any admissible functor F W ‰ ! ˆ between perfect operator
categories, the natural transformation F ! fibˆ ı F=T ı E‰ corresponding to the
isomorphism ˇF by adjunction is itself an isomorphism.

Adjoint to the inverse of this isomorphism is a natural transformation

˛F W F=T ıE‰!Eˆ ıF:

It may be characterized as follows.

5.16 Proposition For any object I of ‰ , there is a unique commutative square

FT‰I TˆFI

FT‰ Tˆ

˛F;I

�F.t‰/

of ˆ whose special fiber is the square:

FI FI

F ft‰g ftˆg

The natural transformation ˛F is generally not an isomorphism, but it does behave
well with respect to the monad structure.
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From operator categories to higher operads 1921

5.17 More precisely, recall that if C and D are categories equipped with monads
.TC ; �C ; �C / and TD , then a colax morphism of monads .F; �/W .C; TC /! .D; TD/

is a functor F W C !D equipped with a natural transformation �W FTC ! TDF with
the property that the following diagrams of Fun.C;D/ commute:

(5.17.1)

FT 2C

TDFTC

FTC

T 2DF

TDF

�TC

F�C

�DF

�

TC� and

FTC

F

TDF

F �

�F

�

Thus the interaction of the natural transformation ˛F with the monad structures on ‰
and ˆ is summarized by the following result.

5.18 Theorem An admissible functor F W ‰ ! ˆ of perfect operator categories
induces a colax morphism of monads .F; ˛F /W .‰; T‰/! .ˆ; Tˆ/.

Again we postpone the proof (Appendix C).

5.19 Observe that the uniqueness of conservative morphisms with target .Tˆ; tˆ/
implies that if GW X!‰ is another admissible functor of perfect operator X–categories,
then .F ıG/=T D F=T ıG=T . Hence the assignment ˆ 7! .ˆ=T / defines a functor
Admperf

! Cat. On the other hand, there is a forgetful functor Admperf
! Cat.

Now the functor ˇ of Lemma 5.14 can be regarded as a natural transformation from
the functor ˆ 7! .ˆ=T / to the forgetful functor Admperf

! Cat such that for any
perfect operator category ˆ, one has ˇˆ D fibˆ . Similarly, ˛ can be regarded as a
lax natural transformation from the forgetful functor Admperf

! Cat to the functor
ˆ 7! .ˆ=T / such that for any perfect operator category ˆ, one has ˛ˆ DEˆ .

5.20 A 2–morphism �W .F; �/! .F 0; �0/ of colax morphisms of monads is an iso-
morphism of functors �W F ! F 0 such that the following square commutes:

FTC TDF

F 0TC TDF
0

�

�TC TD�

�
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1922 Clark Barwick

Composition and identities are defined in the obvious manner; hence this defines a 2–
category Mndcolax of small categories with monads and colax functors. By applying the
nerve of each Mor–groupoid and taking the simplicial nerve of the resulting simplicial
category, we obtain a quasicategory Mndcolax , which is in fact a 2–category in the
sense of [12, Section 2.3.4].

We may summarize Theorems 5.10 and 5.18 together by stating that the assignment
ˆ 7! .ˆ; T / defines a functor Admperf

!Mndcolax .

6 Leinster categories

The Kleisli category of the canonical monad on a perfect operator category ˆ is
the category of free algebras for this monad. It can be thought of as indexing both
operations in ˆ as well as projection maps in a coherent manner. In the examples of
interest, this Kleisli category recovers a number of combinatorial categories familiar to
homotopy theorists.

In particular, we’ll find that the Kleisli category of the canonical monad on F is
Segal’s �op , the Kleisli category of the canonical monad on O is �op , and the Kleisli
category of the canonical monad on O.n/ is Joyal’s ‚op

n

6.1 Definition Suppose ˆ is a perfect operator category. Then the Leinster category
ƒ.ˆ/ of ˆ is the Kleisli category of the monad Tˆ .

6.2 That is, the objects of the Leinster category of a perfect operator category ˆ are
precisely those of ˆ itself, and for any two objects I and J ,

Morƒ.ˆ/.J; I /´Morˆ.J; TI /:

The identity at an object I is the unit �I W I ! TI . The composition law is defined by
the composite

Morˆ.K; TJ /�Morˆ.J; TI /
id�Tˆ
���!Morˆ.K; TJ /�Morˆ.TJ; T 2I /

ı
�!Morˆ.K; T 2I /

�I;�
���!Morˆ.K; TI /

for objects I , J , and K .

6.3 Suppose now that F W ‰!ˆ is an admissible functor of perfect operator categories.
Since colax morphisms of monoids induce functors of their Kleisli categories, and in fact
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From operator categories to higher operads 1923

this is a functor Mndcolax!Cat, it follows that f induces a functor ƒ.F /W ƒ.‰/!
ƒ.ˆ/ of the Leinster categories.

The admissible functor F induces a functor ƒ.F /W ƒ.‰/!ƒ.ˆ/ such that the map
on objects is simply

Objƒ.F /D ObjF W Objƒ.‰/D Obj‰! ObjˆD Objƒ.ˆ/;

and the map on morphisms is given by

Mor‰.J; T‰I /!Morˆ.FJ; FT‰I /
˛F;�
���!Morˆ.FJ; TˆFI/

(Proposition 5.16).

Consequently, the Leinster category construction defines a functor

ƒW Admperf
! Cat:

6.4 Example For any object I of a perfect operator category ˆ and for any point
i 2 jI j, the classifying morphism �i W I ! T of ˆ is a morphism I ! fig of ƒ.ˆ/.
In particular, of course, fig is not terminal in ƒ.ˆ/.

6.5 Example The Leinster category of F is Segal’s category �op of pointed finite
sets [1; 18].

6.6 Example Let us study the Leinster category of O. Denote by ? and > the two
points of T .¿/, so that

T .¿/D f?;>gI

these correspond to two wide morphisms T ! T .¿/, and for any object I of ƒ.O/,
they give rise to a map

cI WD .?Š;>Š/W Morƒ.O/.I;�/!Morƒ.O/.I;¿/�Morƒ.O/.I;¿/:

The map cI is injective, so for any �; 2Morƒ.O/.I;¿/, denote by �? the unique
element of Morƒ.O/.I;�/ such that cI .� ? /D .�;  /, if it exists.

Then the subset cI .Morƒ.O/.I;�//�Morƒ.O/.I;¿/�Morƒ.O/.I;¿/ is a total order-
ing � on Morƒ.O/.I;¿/; in particular, for any �; 2Morƒ.O/.I;¿/, the element  
is the successor of � if and only if � ? D �i for some point i 2 jI j.
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The functor Morƒ.O/.�;¿/ thus defines a functor ƒ.O/op!�, where � is defined
as the full subcategory of O consisting of nonempty objects; a quasiinverse functor is
given by

n 7! n_´Mor�.n; 1/:

We deduce that ƒ.O/ is equivalent to �op . (This observation goes back at least to
Street [19].)

The following result is trivial to prove.

6.7 Proposition Suppose pW ˆ0!ˆ is an admissible functor between perfect opera-
tor categories that is also a Grothendieck fibration classifying a functor ˆop!Admperf .
Then the functor ƒ.ˆ0/!ƒ.ˆ/ is a Grothendieck fibration such that for any object
I 2ˆ, one has .ƒ.ˆ0//I 'ƒ.ˆ0I /.

6.8 Example The previous result now immediately implies that the Leinster category
of the iterated wreath product O.n/ coincides with Berger’s iterated wreath product
.� o� o � � � o�/op [6]. In particular, ƒ.O.n// is equivalent to Joyal’s category ‚op

n .

7 Quasioperads and their algebras

When ˆ is a perfect operator category, the theory of complete Segal ˆ–operads
introduced above can also be codified in a manner similar to Lurie’s theory of 1–
operads [13, Chapter 2]. Here, we explain how to generalize the basic elements of
Lurie’s theory to any perfect operator category; in most cases the proofs are trivial
extensions of the proofs of loc. cit.

The following terminology was first introduced on �op by Lurie.

7.1 Definition Suppose ˆ is a perfect operator category. We call a morphism J ! I

of ƒ.ˆ/ inert if the corresponding morphism J ! TI in ˆ has the property that the
natural morphism

J �TI I ! I

is an isomorphism. Denote by ƒ�.ˆ/ the collection of inert morphisms of ƒ.ˆ/. We
will simply write Nƒ.ˆ/ for the marked simplicial set .Nƒ.ˆ/;ƒ�.ˆ//.
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From operator categories to higher operads 1925

Let us call a morphism J ! I of ƒ.ˆ/ active if the corresponding morphism J ! TI

of ˆ factors as
J ,! TJ ! TI;

where the morphism TJ ! TI is of the form T� for some morphism �W J ! I of ˆ.
Denote by ƒ�.ˆ/ the collection of active morphisms of ƒ.ˆ/.

7.2 Suppose ˆ is a perfect operator category. We observe the following:

(7.2.1) A morphism J ! I of ƒ.ˆ/ is active if and only if the corresponding
morphism J ! TI in ˆ has the property that the natural morphism

J �TI I ! J

is an isomorphism.

(7.2.2) A morphism of ƒ.ˆ/ is both inert and active if and only if it is an isomorphism.

Suppose  W K! J and �W J ! I are morphisms of ƒ.ˆ/. We further note:

(7.2.3) If  is inert, then � ı is inert if and only if � is.

(7.2.4) Dually, if � is active, then � ı is active if and only if  is.

It is an observation of Christopher Schommer-Pries that ƒ.ˆ/ always admits an inert-
active factorization system. In fact, Weber proves this as a natural consequence of the
fact that T is a local or parametric right adjoint; see [23, Proposition 2.6] and [22,
Proposition 5.9]. (See also [7, Section 2.6]. In their language, what we call “inert”,
Weber and others call “generic”, and what we call “active”, they call “free”.) Berger
has introduced the concept of a moment category that codifies the salient features of
this factorization system, which we intend to explore elsewhere. For now, we simply
record the observation of Schommer-Pries (with a perhaps suboptimal proof).

7.3 Lemma (Schommer-Pries) Every morphism J ! I of the Leinster category of a
perfect operator category ˆ admits a factorization J !K! I into an inert morphism
J !K followed by an active morphism K! I . Moreover, this factorization is unique
up to unique isomorphism.

Proof Using the structural morphism eI W TI ! I , regard the morphism J ! TI

as a morphism over T . Set K´ J �TI I ; the projection K ! I in ˆ induces an
active morphism K ! I in ƒ.ˆ/. Now the universal property of T states that the
set of maps J ! TK over T is in bijection with the set of maps Jt !K . Hence we
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may choose the canonical isomorphism Jt ŠK , yielding a morphism J ! TK . It is
obvious from the construction that this now gives the desired factorization J !K! I

of the original morphism, and the uniqueness follows from the observations above.

7.4 Example When ˆD F, a pointed map �W JC! IC of �op corresponds to an
inert morphism in our sense if and only if it is inert in the sense of Lurie, that is, if and
only if the inverse image ��1.i/ of any point i 2 I is a singleton. It corresponds to an
active morphism in our sense if and only if it is active in the sense of Lurie, that is, if
and only if the inverse image of the base point is a singleton.

7.5 Example When ˆDO, a morphism �W m! n of �op corresponds to an inert
morphism in our sense if and only if it corresponds to an injection n!m given by the
formula i 7! iCk for some fixed integer k� 1. It corresponds to an active morphism in
our sense if and only if it corresponds to a map n!m that carries 0 to 0 and n to m.

7.6 Proposition The functor ƒ.‰/ ! ƒ.ˆ/ induced by an admissible functor
F W ‰!ˆ of perfect operator categories preserves inert morphisms.

Proof Suppose J ! I is an inert morphism of ƒ.ˆ/. Consider the rectangle:

F.J �TI I / FI FI

FJ F TI TFI

Š

˛F;I

The left-hand square is a pullback since F is admissible; the morphism

F.J �TI I /! FI

is an isomorphism because J ! I is inert; and the fact that right-hand square is a
pullback follows from the characterization of ˛F;I given in Proposition 5.16.

7.7 Notation Suppose X is an 1–category, S a 1–category, and qW X ! S a
functor. Suppose x; y 2X , and suppose gW q.x/! q.y/ is a morphism of S . Denote
by MapgX .x; y/ the union of the connected components of MapX .x; y/ lying over the
connected component of g in MapS .q.x/; q.y//.

We can now define the notion of ˆ–quasioperad in exact analogy with Lurie [13,
Definition 2.1.1.10].
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7.8 Definition Suppose ˆ is an operator category. Then a ˆ–quasioperad or 1–
operad over ˆ is an inner fibration pW X˝!Nƒ.ˆ/ satisfying these conditions:

(7.8.1) For every morphism �W J ! I of ƒ�.ˆ/ and every object x 2X˝J , there is
a p–cocartesian edge x! y in X˝ covering � .

(7.8.2) For any objects I; J 2ˆ, any objects x 2X˝I and y 2X˝J , any morphism
�W J ! I of ƒ.ˆ/, and any p–cocartesian edges fy ! yi j i 2 jI jg lying
over the inert morphisms f�i W I ! fig j i 2 jI jg, the induced map

Map�
X˝
.x; y/!

Y
i2jI j

Map�iı�
X˝

.x; yi /

is an equivalence.

(7.8.3) For any object I 2 ˆ, the p–cocartesian morphisms lying over the inert
morphisms fI ! fig j i 2 jI jg together induce an equivalence

X˝I !
Y
i2jI j

X˝
fig
:

7.9 Example When ˆD F, the above definition coincides with Lurie’s definition of
1–operad [13].

7.10 Example When ˆD f1g, the conditions of the above definition are trivial, and
we are simply left with the notion of a quasicategory.

In light of [13, Proposition 2.1.2.5], the inert-active factorization on the Leinster
category of a perfect operator category lifts to any 1–operad over it.

7.11 Definition Suppose ˆ is a perfect operator category, and suppose

pW X˝!Nƒ.ˆ/

is a ˆ–quasioperad. Call a p–cocartesian edge of X˝ that covers an inert morphism
of ƒ.ˆ/ inert. Dually, call any edge of X˝ that covers an active morphism of ƒ.ˆ/
active.

7.12 Proposition For any perfect operator category and any ˆ–quasioperad X˝ , the
inert morphisms and the active morphisms determine a factorization system on X˝ .

As in [13, Section 2.1.4], we can introduce a model category of 1–preoperads over a
perfect operator category ˆ whose fibrant objects are 1–operads over ˆ.
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7.13 Notation As in [13, Notation 2.1.4.5], for any operator category ˆ and any
1–operad X˝ over ˆ, denote by X˝;\ the object .X˝; E/ of sSetC

=Nƒ.ˆ/
, where E

denotes the collection of inert morphisms of X˝ .

7.14 For any perfect operator category ˆ, consider the categorical pattern (in the
sense of Lurie; see [13, Appendix B])

PD .M; T; fp˛W ƒ
2
0!Nƒ.ˆ/g˛2A/

on the simplicial set Nƒ.ˆ/. The class M consists of all the inert morphisms of ƒ.ˆ/;
the class T is the class of all 2–simplices; and the set A is the set of diagrams
I  J ! I 0 of ƒ.ˆ/ in which both J ! I and J ! I 0 are inert, and

jJ j D jJ �TI I j t jJ �TI 0 I
0
j Š jI j t jI 0j:

Now applying [13, Theorem B.0.19] to the categorical pattern P, one deduces the
following.

7.15 Theorem Suppose ˆ is a perfect operator category. There exists a left proper,
tractable, simplicial model structure — called the operadic model structure — on
sSetC

=Nƒ.ˆ/
with the following properties:

(7.15.1) A marked map X ! Y over Nƒ.ˆ/ is a cofibration if and only if it is a
monomorphism.

(7.15.2) A marked simplicial set over Nƒ.ˆ/ is fibrant if and only if it is of the form
Z˝;\ for some ˆ–quasioperad Z˝ .

(7.15.3) A marked map X ! Y over Nƒ.ˆ/ is a weak equivalence if and only if for
any ˆ–quasioperad Z˝ , the induced map

Map=Nƒ.ˆ/.Y;Z
˝;\/!Map=Nƒ.ˆ/.X;Z

˝;\/

is a weak equivalence.

7.16 Notation For any perfect operator category ˆ, denote by Operadˆ;�1 the
simplicial subcategory of sSetC

=Nƒ.ˆ/
spanned by the fibrant objects for the operadic

model structure. Since this is a fibrant simplicial category, we may apply the nerve to
obtain an 1–category Operadˆ1 .

Using Lurie’s characterization [13, Lemma B.2.4(3)] of P–equivalences between fibrant
objects, we obtain the following.
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7.17 Proposition Suppose ˆ is a perfect operator category. Then a morphism of
ˆ–quasioperads gW X ! Y is an equivalence if and only if the following conditions
are satisfied:

(7.17.1) Essential surjectivity The functor Xf1g! Yf1g is essentially surjective.

(7.17.2) Full faithfulness For any object I 2ˆ, any vertex x 2XI , and any vertex
y 2Xf1g , the induced map

Map˛X .x; y/!Map˛Y .g.x/; g.y//

is an equivalence, where ˛ is the unique active morphism I ! f1g of ƒ.ˆ/.

We may apply [13, Proposition B.2.9] to the functors ƒ.‰/ ! ƒ.ˆ/ induced by
operator morphisms ‰! ˆ thanks to Proposition 7.6; it follows that the operadic
model structure on sSetC

=Nƒ.ˆ/
enjoys the same functoriality in ˆ that is enjoyed by

the operadic model structure on the category sSet=N�op
ˆ

(Proposition 2.13):

7.18 Proposition For any operator morphism GW ‰!ˆ, the adjunction

GŠW sSetC
=Nƒ.‰/

� sSetC
=Nƒ.ˆ/

WG?

is a Quillen adjunction for the operadic model structure.

8 Boardman–Vogt tensor products and weak algebras

It is well known that the classical Boardman–Vogt tensor product [8] exhibits better
homotopical properties when it is extended to suitably weak operads, as in [15] and [13].
It can also be externalized over the wreath product construction given the previous
section, as we now demonstrate.

8.1 Notation For any operator categories ˆ and ‰ , consider the functor

oW ‰�ˆ!‰ oˆ

that carries the pair .J; I / to the object J o I ´ ..Ji /i2jI jI I /, in which Ji D J for
each i 2 jI j. This induces a functor

W W �‰ ���ˆ!�‰oˆ

given by the assignment

.ŒJ0! � � � ! Jm�; ŒI0! � � � ! Im�/ 7! ŒJ0 o I0! � � � ! Jm o Im�:
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8.2 It is clear that for any operator morphisms H W ‰0 ! ‰ and GW ˆ0 ! ˆ, the
following square commutes:

�‰0 ���ˆ0 �‰0oˆ0

�‰ ���ˆ �‰oˆ

W

W

8.3 Definition Suppose ˆ and ‰ are operator categories, and suppose pW X!N�
op
ˆ

and qW Y ! N�
op
‰ are left fibrations. For any complete Segal .‰ oˆ/–operad Z , a

pairing .X; Y /!Z is a commutative diagram:

Y �N�op X Z

N�
op
‰ �N�

op N�
op
ˆ N�

op
‰oˆ

.q;p/

W

Write Pair‰;ˆ.Y;X IZ/ for the simplicial set Map=N�op
‰oˆ

.Y �N�op X;Z/ of pairings
.Y;X/!Z .

8.4 Proposition Suppose ˆ and ‰ are operator categories, and suppose X!N�
op
ˆ

and Y !N�
op
‰ are left fibrations. Then the functor

Pair‰;ˆ.Y;X I �/W Operad‰oˆ;op
!Kan

is corepresentable.

Proof Denote by LFib.S/ the simplicial nerve of the simplicial category of left
fibrations to a fixed simplicial set S . Denote by LW LFib.N�op

‰oˆ/! Operad‰oˆ

the left adjoint to the inclusion. Then Pair‰;ˆ.Y;X I �/ is corepresented by the object
LWŠ.Y �N�op X/.

8.5 Definition Suppose ˆ and ‰ are operator categories, X!N�
op
ˆ and Y !N�

op
‰

left fibrations, and Z a complete Segal .‰ oˆ/–operad. A pairing .Y;X/!Z will
be said to exhibit Z as the Boardman–Vogt tensor product of Y and X if and only if
for every complete Segal .‰ oˆ/–operad Z0 , it induces an equivalence

MapOperad‰oˆ.Z;Z
0/ ���! Pair‰;ˆ..Y;X/;Z0/:

In the presence of such a pairing, we write Y ‰˝ˆX for Z . Using [12], one can
organize this into a functor

�
‰
˝
ˆ
�W LFib.N�op

ˆ /
op
�LFib.N�op

‰ /
op
!Operad‰oˆ:
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8.6 Warning In contrast with the Boardman–Vogt tensor product of ordinary symmet-
ric operads, note that the order matters here: since the wreath product is noncommutative,
the objects Y ‰˝ˆX and Xˆ˝‰Y are not even objects of the same 1–category.

It follows immediately from 8.2 that the Boardman–Vogt tensor product is compatible
with operator morphisms.

8.7 Proposition For any operator morphisms H W ‰0!‰ and GW ˆ0!ˆ and for
any left fibrations X !N�

op
ˆ0 and Y !N�

op
‰0 , there is a canonical equivalence

.H oG/Š.Y
‰0
˝
ˆ0X/'HŠY

‰
˝
ˆGŠX

of complete Segal .‰ oˆ/–operads.

It is easy to see that the Boardman–Vogt tensor product preserves colimits separately
in each variable. Consequently, we obtain the following.

8.8 Proposition Suppose ˆ and ‰ are operator categories, and suppose X!N�
op
ˆ

and Y !N�
op
‰ are left fibrations. Then the functors

�
‰
˝
ˆX W LFib.N�op

‰ /
op
!Operad‰oˆ

and
Y ‰˝ˆ�W LFib.N�op

ˆ /
op
!Operad‰oˆ

each admit a right adjoint, denoted by Algˆ;‰oˆ.X;�/ and Alg‰;‰oˆ.Y;�/, respec-
tively.

8.9 Hence for any two operator categories ˆ and ‰ , we obtain a pair of functors

Alg‰;‰oˆW LFib.N�op
‰ /

op
�Operad‰oˆ! LFib.N�op

ˆ /

and
Algˆ;‰oˆW LFib.N�op

ˆ /
op
�Operad‰oˆ! LFib.N�op

‰ /:

In fact, these functors are valued in the 1–category of weak operads. That is, suppose
ˆ and ‰ are operator categories, suppose

X !N�
op
ˆ and Y !N�

op
‰

are left fibrations, and suppose Z is a complete Segal .‰ oˆ/–operad; then the left
fibration Alg‰;‰oˆ.Y;Z/!N�

op
ˆ is a complete Segal ˆ–operad, and the left fibration

Algˆ;‰oˆ.X;Z/!N�
op
‰ is a complete Segal ‰–operad.
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This is not an entirely formal matter. It suffices to prove this for X and Y corepre-
sentable. In this case, one shows that forming the Boardman–Vogt tensor product of any
corepresentable left fibration with any element of the set Sˆ (or S‰ ) of Proposition 2.12
itself lies in the strongly saturated class generated by S‰oˆ . We leave these details to
the reader.

Now let’s concentrate on the situation in which one of the two complete Segal operads
is the terminal operad.

8.10 Notation Suppose ˆ and ‰ are two operator categories. For any complete
Segal .‰ oˆ/–operad Z , we will write Monˆ;‰oˆ.Z/ for Algˆ;‰oˆ.Uˆ; Z/, and we
will write Monˆ;‰oˆ.Z/ for Alg‰;‰oˆ.U‰; Z/.

8.11 Suppose ˆ is an operator category. Note that we have canonical equivalences
ˆ o f1g 'ˆ' f1g oˆ, through which the functor Algˆ;ˆof1g and Algˆ;f1goˆ may be
identified. We write

AlgˆW LFib.N�op
ˆ /

op
�Operadˆ! LFib.N�op/

for the common functor. For any left fibration Y ! N�
op
ˆ and any complete Segal

ˆ–operad Z , we will refer to objects of Algˆ.Y;Z/ (ie those 0–simplices that lie
over 0 2N�op ) as Y –algebras in Z . If Y is the terminal ˆ–operad Uˆ , then we will
refer to Y –algebras in Z as complete Segal ˆ–monoids in Z .

8.12 Theorem For any two operator categories ˆ and ‰ , the pairing

.U‰; Uˆ/! U‰oˆ

given by W exhibits U‰oˆ as the Boardman–Vogt tensor product of U‰ and Uˆ .

The proof is a bit involved, so it appears in an appendix; see Appendix A.

8.12.1 Corollary For any two operator categories ˆ and ‰ , one has, for any .‰ oˆ/–
operad Z , canonical equivalences

Mon‰oˆ.Z/'Monˆ.Mon‰;‰oˆ.Z//'Mon‰.Monˆ;‰oˆ.Z//:

Roughly speaking, we have shown that complete Segal .‰ oˆ/–monoids are complete
Segal ‰–monoids in complete Segal ˆ–monoids, which in turn are complete Segal
ˆ–monoids in complete Segal ‰–monoids.
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8.13 Example The .1; 1/–category of complete Segal O.n/–monoids (in some
complete Segal O.n/–operad Z ) is equivalent to the .1; 1/–category

MonO;O.MonO;OoO. � � �MonO;O.n/.Z/ � � � //

of complete Segal O–monoids in complete Segal O–monoids in : : : in complete Segal
O–monoids in Z . The assertion that the operad En is equivalent to the symmetrization
of the terminal O.n/–operad (Proposition 11.4) thus states that if Z is a symmetric
operad, then the homotopy theory of En–algebras in Z is equivalent to the homotopy
theory of complete Segal O–monoids in complete Segal O–monoids in : : : in complete
Segal O–monoids in the underlying complete Segal O.n/–operad of Z .

8.14 Example For any integers n�m� 0, we have an inclusion

sW O.m/ Š .f1g.n�m/ oO.m// ,! .O.n�m/ oO.m//ŠO.n/;

which is a section of the coronal fibration pW O.n/ ! O.m/ . We can thus form the
colimit O.1/´ colimn�0 O.n/ . This can be viewed as the category whose objects
are sequences

.M1;M2; : : : /

with Mn 2O.n/ such that for every for each n� 1, one has p.Mn/DMn�1 and for
each n� 1, one has s.Mn/DMnC1 . Then O.1/ is an operator category.

9 Boardman–Vogt tensor products and 1–algebras

We can define an analogue of the Boardman–Vogt tensor product introduced in Section 8
and study its interaction with the model structure introduced in Section 7. Once again,
in most cases the proofs are trivial extensions of the proofs of [13, Chapter 2].

9.1 Notation For any perfect operator categories ˆ and ‰ , define a natural transfor-
mation

!W o ı .T‰ �Tˆ/! T‰oˆ ı o

as follows. For any pair .K; I / 2‰�ˆ, let

!.K;I/ D ..�j /j2jTˆI j; idTˆI /W T‰K oTˆI ! T‰oˆ.K o I /

be the morphism in which

�j D

�
idT‰K if j 2 jI j � jTˆI j;
Š if j … jI j:
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Using this, we obtain an induced functor W W ƒ.‰/�ƒ.ˆ/!ƒ.‰ oˆ/ on the Leinster
categories given by the assignment .K; I / 7!K o I .

9.2 Definition Suppose ˆ and ‰ are two perfect operator categories, suppose X 2
sSetC

=Nƒ.ˆ/
, and suppose Y 2 sSetC

=Nƒ.‰/
. Write Y ‰˝ˆX for the product Y �X ,

regarded as a marked simplicial set over Nƒ.‰ oˆ/ via

Y �X !Nƒ.‰/�Nƒ.ˆ/ W
�!Nƒ.‰ oˆ/:

We call this the Boardman–Vogt tensor product of Y and X .

9.3 Consider the operator category F. To relate our Boardman–Vogt tensor prod-
uct to the monoidal structure ˇ constructed in [13], we need only note that the
functor ^W �op��op! �op of [13] is isomorphic to the composition of the functor
W W ƒ.F/�ƒ.F/ ! ƒ.F o F/ with the functor ƒ.F o F/ ! ƒ.F/ induced by the
unique operator morphism U W F oF! F. Consequently, we obtain an isomorphism
UŠ.Y

F˝FX/Š Y ˇX .

9.4 Proposition For any operator morphisms H W ‰0!‰ and GW ˆ0!ˆ between
perfect operator categories, and for any objects Y 2 sSet=Nƒ.‰0/ and X 2 sSet=Nƒ.ˆ0/ ,
there is a canonical isomorphism

.H oG/Š.Y
‰0
˝
ˆ0X/ŠHŠY

‰
˝
ˆGŠX

of simplicial sets over Nƒ.‰ oˆ/.

The Boardman–Vogt tensor product preserves colimits separately in each variable.
Consequently, we have the following.

9.5 Proposition Suppose ˆ and ‰ are two perfect operator categories, suppose
X 2 sSet=Nƒ.ˆ/ , and suppose Y 2 sSet=Nƒ.‰/ . Then the functors

Y ‰˝ˆ�W sSetC
=Nƒ.ˆ/

! sSetC
Nƒ.‰oˆ/

and

�
‰
˝
ˆX W sSetC

=Nƒ.‰/
! sSetC

Nƒ.‰oˆ/

both admit right adjoints.
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9.6 Notation For any two perfect operator categories ˆ and ‰ , we obtain a pair of
functors

Alg‰;‰oˆ1 W .sSetC
=Nƒ.‰/

/op
� sSetC

=Nƒ.‰oˆ/
! sSetC

=Nƒ.ˆ/

and
Algˆ;‰oˆ1 W .sSetC

=Nƒ.ˆ/
/op
� sSetC

=Nƒ.‰oˆ/
! sSetC

=Nƒ.‰/

such that Alg‰;‰oˆ1 .Y;�/ is right adjoint to Y ‰˝ˆ� and Algˆ;‰oˆ1 .X;�/ is right
adjoint to �‰˝ˆX .

It is clear that these functors, along with the Boardman–Vogt tensor product, comprise
an adjunction of two variables sSetC

=Nƒ.‰/
� sSetC

=Nƒ.ˆ/
! sSetC

=Nƒ.‰oˆ/
.

The interaction between this variant of the Boardman–Vogt tensor product and the
operadic model structure is the most one could hope for. We apply [13, Remark B.2.5
and Proposition B.2.9] to the functors W W ƒ.‰/�ƒ.ˆ/!ƒ.‰ oˆ/ to deduce the
following.

9.7 Theorem For any two perfect operator categories ˆ and ‰ , the functors ‰˝ˆ ,
Alg‰;‰oˆ1 , and Algˆ;‰oˆ1 form a Quillen adjunction of two variables for the operadic
model structures.

9.8 Notation Suppose ˆ and ‰ are two perfect operator categories. For any .‰ oˆ/–
quasioperad Z , we will write Monˆ;‰oˆ1 .Z/ for Algˆ;‰oˆ1 .Uˆ; Z/, and we will write
Monˆ;‰oˆ1 .Z/ for Alg‰;‰oˆ1 .U‰; Z/.

9.9 Suppose ˆ is a perfect operator category. Note that we have canonical equivalences
ˆ o f1g 'ˆ' f1g oˆ, through which the functors Algˆ;ˆof1g1 and Algˆ;f1goˆ1 may be
identified. We write

Algˆ1W .sSetC
=Nƒ.ˆ/

/op
� sSetC

=Nƒ.ˆ/
! sSetC

for the common functor. For any marked map Y ! Nƒ.ˆ/ and any 1–operad Z
over ˆ, we will refer to objects of the quasicategory Algˆ1.Y;Z/ as 1–algebras
over Y in Z . If Y is the terminal ˆ–operad Uˆ , then we will refer to Y –algebras
in Z as 1–monoids over ˆ in Z .

The following theorem is proved exactly as in [13, Theorem 2.4.4.3].

9.10 Theorem For any two operator categories ˆ and ‰ , the functor W induces an
equivalence U‰‰˝ˆUˆ �

��! U‰oˆ .
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9.10.1 Corollary For any two perfect operator categories ˆ and ‰ , one has, for any
.‰ oˆ/–operad Z , canonical equivalences

Mon‰oˆ1 .Z/'Monˆ1.Mon‰;‰oˆ1 .Z//'Mon‰1.Monˆ;‰oˆ1 .Z//:

10 Complete Segal operads versus quasioperads

We now compare our two approaches to the theory of complete Segal ˆ–operads. Here
is the main theorem.

Theorem For any perfect operator category ˆ, there exist inverse equivalences of
1–categories

P˝W OperadˆCSS 'Operadˆ1 WC:

We get these by obtaining homotopy equivalences of relative categories (Theorem 10.16).

We begin with the functor P˝ . To construct this functor, we must first relate the
Leinster category ƒ.ˆ/ to the category of ˆ–sequences �ˆ .

10.1 Notation Suppose ˆ is a perfect operator category. For any object m 2 �,
denote by zO.m/ the twisted arrow category of m; this is a poset whose objects are
pairs of integers .i; j / such that 0 � i � j � m, and .i 0; j 0/ � .i; j / if and only if
i � i 0 � j 0 � j .

Now for any m–simplex � W m!Nƒ.ˆ/ corresponding to a sequence of morphisms

I0! I1! � � � ! Im

in ƒ.ˆ/, we obtain a functor F� W zO.m/op!�ˆ , given by the formula

F� .i; j /´ ŒI0 �TIj Ij ! I1 �TIj Ij ! � � � ! Ii �TIj Ij �:

We write ��ˆ for the colimit of the diagram j ı F� , where j denotes the Yoneda
embedding �ˆ ,! Fun.�op

ˆ ;Set/.

The assignment � 7! ��ˆ is functorial with respect to the category Simp.ƒ.ˆ//,
whose objects are pairs .m; �/ consisting of an object m 2 � and an m–simplex
� W m ! Nƒ.ˆ/ of ƒ.ˆ/ and whose morphisms .m; �/ ! .n; �/ are morphisms
�W m! n of � and a natural isomorphism � Š � ı�; in particular, we obtain a functor

��ˆW �Fun.m; ƒ.ˆ//! �Fun.�op
ˆ ;Set/:
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10.2 Construction Suppose that ˆ is a perfect operator category, and suppose that
X W �

op
ˆ ! sSet is a functor. For any integer m� 0 and any m–simplex

� W m!Nƒ.ˆ/;

one may define a simplicial set X.��ˆ/ via right Kan extension, so that

X.��ˆ/Š lim
.i;j /2zO.m/

X.F� .i; j //:

The assignment � 7!X.��ˆ/ defines a functor �Fun.m; ƒ.ˆ//op! sSet. Apply the
construction of [12, Definition 3.2.5.2] to this functor to obtain a map

P˝.X/m!N�Fun.m; ƒ.ˆ//op:

This map is functorial in m 2�op , whence we obtain a morphism of simplicial spaces

P˝.X/! Nƒ.ˆ/;

where Nƒ.ˆ/ is the classifying diagram of the category ƒ.ˆ/ in the sense of Rezk
[16, 3.5] — except that in each degree we are taking the nerve of the opposite groupoid.

10.3 Proposition Suppose ˆ is a perfect operator category, and suppose that

X W �
op
ˆ !Kan

is a functor. Assume that X that is fibrant for the injective model structure on the
category Fun.�op

ˆ ; sSet/, and that X classifies a complete Segal ˆ–operad. Then
P˝.X/ is a complete Segal space.

Proof To see that P˝.X/ is Reedy fibrant, consider any square:

ƒn
k

P˝.X/m

�n limk¤m P˝.X/k

Unwinding the definitions, we see that a lift �n! P˝.X/m amounts to a lift � of the
diagram

ƒn
k

N�Fun.m; ƒ.ˆ//op

�n limk¤mN�Fun.k; ƒ.ˆ//op
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along with a compatible collection of maps �J!X.��.maxJ/
ˆ /, one for each nonempty

subset J � m. The existence of the lift � follows from [16, Lemma 3.9], and the
compatible collection of maps follows from the injective fibrancy.

Showing the Segal conditions on P˝.X/ reduces to showing that for any m–simplex
� W m!ƒ.ˆ/, the induced map

X.��ˆ/!X.�
� jf0;1g
ˆ /�

X.�
�jf1g
ˆ /

� � � �
X.�

�jfm�1g
ˆ /

X.�
� jfm�1;mg
ˆ /

is a weak equivalence. But this follows from the fact that, for X itself, the maps sn;J
are all equivalences.

The completeness conditions on P˝.X/ reduce to the assertion that for any object
I 2ˆ, the natural map

XŒI �!XŒI D I D I D I ��XŒIDI ��XŒIDI �XŒI �

is a weak equivalence, where the maps XŒI D I D I D I �!XŒI D I � are given by
the inclusions f0; 2g ,!f0; 1; 2; 3g and f1; 3g ,!f0; 1; 2; 3g. But this follows from the
case when I D f1g along with the decomposition

XŒI �'
Y
i2jI j

XŒfig�:

The results of [10] thus motivate the following.

10.4 Definition Suppose ˆ is a perfect operator category, and suppose

X W �
op
ˆ ! sSet

is a functor. Then we define a simplicial set P˝.X/ in the following manner. For
any m 2 �op , an m–simplex .�; x/ of P˝.X/ consists of a functor � W m! ƒ.ˆ/

and a vertex x 2 X.��ˆ/0 . This is obviously functorial in m, and the assignment
.�; x/ 7! � defines a projection P˝.X/ ! Nƒ.ˆ/. Hence we obtain a functor
P˝W Fun.�op

ˆ ; sSet/! sSet=Nƒ.ˆ/ .

10.5 Suppose ˆ is a perfect operator category, and suppose

X W �
op
ˆ ! sSet

is a functor. Note that the fiber of P˝.X/ over an object I 2ƒ.ˆ/ is the simplicial
set whose m–simplices are the vertices of X.m; I /, where .m; I / denotes the constant
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sequence I D I D � � �D I of length m. In particular, the fiber over f1g is the simplicial
set whose m–simplices are the vertices of the simplicial set .X j�op/m .

10.6 Proposition Suppose ˆ is a perfect operator category, and suppose

X W �
op
ˆ ! sSet

is a functor. Assume that X is fibrant for the operadic model structure on the category
Fun.�op

ˆ ; sSet/. Then P˝.X/ is a ˆ–quasioperad.

Proof Since the m–simplices of P˝.X/ can be identified with the 0–simplices of
P˝.X/m , Proposition 10.3 and [10, Theorem 4.11] together imply that P˝.X/ is
a quasicategory, whence by [12, Proposition 2.3.1.5], P˝.X/! ƒ.ˆ/ is an inner
fibration.

Suppose J ! I is an inert morphism of ƒ.ˆ/, and suppose that x 2 P˝.X/J is an
object; hence x 2XŒJ �0 . Let x0 2XŒJ �TI I � be its image under the map induced by
the interval inclusion J �TI I ,! J . Now we may use the inverse to the isomorphism
J �TI I ! I to define a morphism of ˆ–sequences

ŒJ �TI I ! I �! ŒJ �TI I �;

and one may consider the image x00 of x0 in XŒJ �TI I ! I � under the induced
map. The pair .x; x00/ 2XŒJ ��XŒJ�TI I �XŒJ �TI I ! I � is now a cocartesian edge
covering � .

Suppose that the following are given:

� two objects I; J 2ˆ,

� vertices x 2 P˝.X/I and y 2 P˝.X/J ,

� a morphism �W J ! I of ƒ.ˆ/, and

� p–cocartesian edges fy ! yi j i 2 jI jg that lie over the inert morphisms
f�i W I ! fig j i 2 jI jg.

Now the simplicial set Map�
P˝.X/

.x; y/ can be identified with the fiber of the natural
map

XŒJ ��XŒJ�TI I �XŒJ �TI I ! I �!XŒJ ��XŒI �

over the point .x; y/. The fact that the induced map

Map�
X˝
.x; y/!

Y
i2jI j

Map�iı�
X˝

.x; yi /
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is an equivalence thus follows from the decomposition

XŒJ ��XŒJ�TI I �XŒJ �TI I ! I �'XŒJ ��Q
i2jI jXŒJi �

Y
i2jI j

XŒJi ! fig�

!XŒJ ��
Y
i2jI j

XŒfig�'XŒJ ��XŒI �:

Finally, we must show that for any object I 2ˆ and for any I–tuple

.yi /i2jI j 2
Y
i2jI j

P˝.X/fig;

there exists an object y 2 P˝.X/I a collection of cocartesian edges y ! yi lying
over the inert edges I ! fig. For this, choose y 2XŒI � that maps to .yi /i2jI j . (This
is possible since the map XŒI �!

Q
i2jI jXŒfig� is a trivial fibration.) For any point

i 2 jI j, the image of y under the natural map

XŒI �ŠXŒI ��XŒfig�XŒfig�!XŒI ��XŒfig�XŒfig D fig�

is the desired cocartesian edge y! yi .

10.7 Example When ˆD f1g, the functor P˝ carries a complete Segal space X to
the quasicategory whose m–simplices are the 0–simplices of Xm . By a theorem of
Joyal and Tierney [10, Theorem 4.11], this is known to be an equivalence of homotopy
theories.

It is obvious from the construction given here that P˝ is compatible with changes of
operator category, in the following sense.

10.8 Proposition Suppose GW ‰ ! ˆ is an operator morphism between perfect
operator categories. Then we have a natural isomorphism of functors

P˝ ıG? ŠG? ıP˝:

10.9 Proposition Suppose ˆ is a perfect operator category. A morphism X ! Y

between injectively fibrant complete Segal ˆ–operads is a weak equivalence if and
only if the induced morphism P˝.X/! P˝.Y / is so.

Proof Let us use the characterizations of Propositions 2.8 and 7.17. Combining the
example and the proposition above, we deduce that a morphism X ! Y of complete
Segal ˆ–operads induces an essentially surjective functor on underlying complete
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Segal spaces if and only if the morphism P˝.X/! P˝.Y / induces an essentially
surjective functor on underlying quasicategories.

On the other hand, if I 2 ˆ, and if ˛W I ! f1g is the morphism of ƒ.ˆ/ given
by I ! ftg ! T , then for any complete Segal ˆ–operad X , the mapping space
Map˛X .x; y/ is equivalent to the fiber of the map

XŒI ! f1g� ! XŒI ��XŒf1g�:

In particular, a morphism X ! Y of complete Segal ˆ–operads is fully faithful if and
only if the induced morphism P˝.X/! P˝.Y / of ˆ–quasicategories is so.

In other words, P˝ is a relative functor in the sense of [3], and it reflects weak
equivalences.

To define a functor in the opposite direction, we introduce the following.

10.10 Construction Suppose ˆ is a perfect operator category and .m; I / is a
ˆ–sequence. Define a poset A.m; I / as follows: the objects are triples .r; s; i/,
where r and s are integers such that 0 � r � s � m and i 2 jIsj; we declare that
.r; s; i/� .r 0; s0; i 0/ if and only if r � r 0� s0� s , and i 0 7! i under the map jIs0 j! jIsj.

Let A.m; I /� be the set of morphisms of A.m; I / of the form .r; s; i/! .r; s0; i 0/.
Using the factorization system on ƒ.ˆ/ of Lemma 7.3, we deduce that there is a
functor A.m; I /!ƒ.ˆ/ given by the assignment

.r; s; i/ 7! Ir;i ´ Ir �Is fig;

under which morphisms of A.m; I /� are carried to inert morphisms of ƒ.ˆ/.

Now the assignment .m; I /! .NA.m; I /; A.m; I /�/ defines a functor

NAW �ˆ! sSetC
=Nƒ.ˆ/

:

For any object X˝ 2 sSetC
=Nƒ.ˆ/

, write C.X/ for the functor �op
ˆ ! sSet given by

the assignment
.m; I / 7!Map]

Nƒ.ˆ/
.NA.m; I /; X˝/:

10.11 Example When ˆDf1g, the category A.m; f1g/ is the opposite of the twisted
arrow category zO.m/, and in N zO.m/op , the marked edges are precisely the morphisms
.r; s/! .r; s0/. Now the inclusion m ,! N zO.m/op given by r 7! .r;m/ induces a
marked anodyne morphism on nerves. Consequently, for any quasicategory X , one
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has C.X/m ' �Fun.�m; X/, which is an inverse homotopy equivalence of P˝ by
the theorem of Joyal and Tierney [10, Theorem 4.11].

The construction .m; I / 7!NA.m; I / is compatible with changes of operator category.
That is, for any operator morphism GW ‰! ˆ between perfect operator categories,
one has a canonical isomorphism GŠNA.m; I /ŠNA.m;GI/. Consequently, we have
the following.

10.12 Lemma For any operator morphism GW ‰ ! ˆ between perfect operator
categories, there is a natural isomorphism

C ıG? ŠG? ıC:

10.13 Proposition Suppose ˆ is a perfect operator category, and suppose X˝ is a
ˆ–quasioperad. Then C.X˝/ is fibrant for the operadic model structure.

Proof The fact that C.X˝/ is fibrant for the injective model structure follows from
[12, Remark A.2.9.27] and the observation that .m; I / 7! .NA.m; I /; A.m; I /�/ is
cofibrant for the projective model structure on Fun.�ˆ; sSetC

=Nƒ.ˆ/
/.

For any ˆ–sequence ŒI0! � � � ! Im�, the canonical mapa
i2jImj

NAŒI0;i ! � � � ! fig� ! NAŒI0! � � � ! Im�

is an isomorphism by definition. Moreover, for any integer 0� k �m, an elementary
computation shows that the inclusion

NAŒI0! � � � ! Ik�[
NAŒIk�NAŒIk! � � � ! Im� ,! NAŒI0! � � � ! Im�

is P–anodyne.

It thus remains only to observe that the underlying simplicial set p?C.X˝/ is a
complete Segal space, and this follows from Lemma 10.12 and Example 10.11.

10.14 Proposition Suppose ˆ is a perfect operator category. A morphism X˝!Y ˝

between ˆ–quasioperads is a weak equivalence if and only if the induced morphism
C.X˝/! C.Y ˝/ of complete Segal ˆ–operads is so.

Proof Let us use the characterizations of Propositions 2.8 and 7.17. Applying
Lemma 10.12 and Example 10.11, we see that X˝! Y ˝ is essentially surjective if
and only if the morphism C.X˝/! C.Y ˝/ is so.
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To complete the proof, let us note that the inclusion �1 ,! NAŒI ! f1g� given
by r 7! .r;m; 1/ is P–anodyne for any object I 2 ˆ. Consequently, we obtain an
equivalence

ŒI=f1g�MapC.X˝/..xi /i2jI j; y/'Map˛
X˝
.x; y/

for any objects x 2 X˝I , y 2 X˝
f1g

, and any collection fx ! xi j i 2 jI jg of inert
morphisms.

In other words, C , when restricted to ˆ–quasioperads is a relative functor in the sense
of [3], and it reflects weak equivalences. In fact, it is part of a Quillen pair.

10.14.1 Corollary Suppose ˆ is a perfect operator category. Then the functors

BW Fun.�op
ˆ ; sSet/� sSetC

=Nƒ.ˆ/
WC

given by the formulas

B.X/´

Z .m;I /
NA.m; I /�X.m; I /]

and
C.Y ˝/.m; I /´Map]

Nƒ.ˆ/
.NA.m; I /; Y ˝/

form a Quillen pair for the operadic model structures.

10.15 Note that, using the functor C along with [13, Construction 2.1.1.7], we can
now form the nerve of any symmetric operad enriched in Kan complexes as a complete
Segal F–operad.

We are now ready to state the main result of this section.

10.16 Theorem For any perfect operator category ˆ, the functors

P˝W OperadˆCSS!Operadˆ1
and

C W Operadˆ1!OperadˆCSS

are inverse equivalences of 1–categories.

Proof Since we have shown that each functor is conservative, it is sufficient for us to
furnish a natural transformation �W id!P˝ıC that is objectwise essentially surjective
and fully faithful.
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For any object m2�, any m–simplex � W m!ƒ.ˆ/, and any integers 0� i � j �m,
consider the functor f�;i;j W AF� .i; j / ! m over ƒ.ˆ/ given by the assignment
.r; s; k/ 7! r ; these are compatible with one another and hence define a map

f� W colim.i;j /2zO.m/NAF� .i; j /!�m

in sSetC
=Nƒ.ˆ/

. This induces, for any ˆ–quasioperad X˝ , a map

X˝m !MorNƒ.colim.i;j /2zO.m/NAF� .i; j /; X
˝/Š P˝.C.X˝//m;

natural in X˝ , hence a natural transformation �W id! P˝ ıC .

When ˆD f1g, the functor f�;i;j is the projection zO.m/op!m given by .r; s/! r ,
which is a retract of the map considered in Example 10.11, which thus must induce an
equivalence. Hence by functoriality in ˆ, it follows that � is objectwise an equivalence
on underlying quasicategories, and in particular is objectwise essentially surjective.

Suppose I 2 ˆ, and consider the 1–simplex of ƒ.ˆ/ given by the unique active
morphism ˛W I ! f1g. The map f˛W NAŒI ! f1g�!�1 is a retract of the inclusion
�1 ,! NAŒI ! f1g� considered in the proof of Proposition 10.14. Consequently, it
induces equivalences

Map˛
X˝
.x; y/ ���!Map˛

P˝.C.X˝//
.x; y/;

whence � is objectwise fully faithful.

10.17 Conjecture We expect that the axiom system given in [4] should have an
analogue for homotopy theories of weak operads over a fixed operator category ˆ, and
that a corresponding unicity theorem should hold.

We conclude with a remark on the compatibility between the equivalences

OperadˆCSS 'Operadˆ1

and the Boardman–Vogt tensor product.

10.18 Proposition Suppose ˆ is a perfect operator category, and suppose X and Z
are two ˆ–quasioperads. Then one has a canonical equivalence

C.Algˆ1.X;Z//' Algˆ.CX;CZ/:
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Proof The claim is equivalent to the claim that for any simplicial space Y , one has a
projection formula

B.Y /f1g˝ˆX ' B.Y f1g˝ˆCX/:

Note that B preserves all weak equivalences (as it is left Quillen for the injective model
structure on Fun.�op

ˆ ; sSet/) and all colimits; hence it preserves all homotopy colimits.
Consequently, we may assume that Y is either �0 or �1 . In the former case, the
result is obvious; in the latter, it follows from a computation.

In general, we expect that the equivalence C is fully compatible with the Boardman–
Vogt tensor products for any perfect operator categories, so that

C.Y ‰˝ˆX/' C.Y /‰˝ˆC.X/:

This is true when both X and Y are terminal quasioperads by Theorems 8.12 and 9.10.

11 Some examples of complete Segal ˆ–monoids

We may now prove the assertions stated in the introduction. First, we note that [13,
Corollary 5.1.1.5] states the following.

11.1 Proposition The1–operad E1 over F is equivalent to the terminal1–operad
over F.

Applying the functor C , we may also state this result in the context of complete Segal
F–operads.

11.1.1 Corollary The complete Segal F–operad C.E1/ is equivalent to the terminal
complete Segal F–operad UF .

We may equally well state this result from the perspective of the 1–categories of
algebras.

11.1.2 Corollary The 1–category of E1–algebras in an 1–operad Z over F is
equivalent to the quasicategory associated with the complete Segal space MonF.Z/.

Similarly, [13, Proposition 4.1.2.10 and Example 5.1.0.7], in light of the theory devel-
oped here, state the following.
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11.2 Proposition The associative 1–operad over F and the 1–operad E1 over F
are each equivalent to the symmetrization of the terminal 1–operad over O.

11.2.1 Corollary The complete Segal F–operad C.E1/ is equivalent to the sym-
metrization of the terminal complete Segal O–operad UO .

11.2.2 Corollary The 1–category of E1–algebras in an 1–operad Z over F is
equivalent to the quasicategory associated with the complete Segal space MonO.u?Z/.

Since the operad An is the suboperad of E1 generated by the operations of arity � n,
we deduce the following.

11.3 Proposition The complete Segal operad C.An/ is equivalent to the symmetriza-
tion of the terminal complete Segal O�n–operad.

11.3.1 Corollary The1–category of An–algebras in an1–operad Z over F is equiv-
alent to the quasicategory associated with the complete Segal space MonO�n.u?Z/.

Finally, we have Proposition 11.4, which follows from [13, Theorem 5.1.2.2] and 9.3.

11.4 Proposition For any integer k � 0, the 1–operad Ek over F is equivalent to
the symmetrization of the terminal 1–operad over O.k/ .

11.4.1 Corollary For any integer k � 0, the 1–category of Ek–algebras in an 1–
operad Z over F is equivalent to the quasicategory associated with the complete Segal
space MonO.k/.U ?Z/.

11.4.2 Corollary The 1–category of Ek–algebras (in spaces) is equivalent to the
1–category of left fibrations

X !Nƒ.O.k//'N‚op
k

satisfying the Segal condition, so that for any object I 2 O.k/ , the inert morphisms
f�i W I ! fig j i 2 jI jg induce an equivalence

XI
�
��!

Y
i2jI j

Xfig:
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11.5 Example The formalism we have introduced invites the study of a wide range
of new examples as well. In particular, let us contemplate the operator categories
O.n/�m´ .O.n//�m . They fit together in a diagram:

f1g O�1 .O oO/�1 � � � O.n/�1 � � � F�1

f1g O�2 .O oO/�2 � � � O.n/�2 � � � F�2

:::
:::

:::
:::

:::

f1g O�m .O oO/�m � � � O.n/�m � � � F�m

:::
:::

:::
:::

:::

f1g O O oO � � � O.n/ � � � F

By forming the symmetrization Anm of the terminal complete Segal O.n/�m–operad, we
obtain a diagram of weak symmetric operads:

E0 A1 A21
� � � An1

� � � A11

E0 A2 A22
� � � An2

� � � A12

:::
:::

:::
:::

:::

E0 Am A2m � � � Anm � � � A1m

:::
:::

:::
:::

:::

E0 E1 E2 � � � En � � � E1
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This is an interesting bifiltration fAnmgm;n of the E1–operad that incorporates both
the En–operads as well as the An–operads. This filtration appears to include much
that is already known about obstruction theories for finding E1 structures on spectra.
In particular, when nD 1, we are simply looking at the filtration of E1 ' A1 by the
operads An . When nD1, we are filtering E1 by the suboperads generated by the
operations of arity �m, When mD1, we are looking at the filtration of E1 by the
operads En . And finally, when mD nC 1, we expect that an algebra over AnnC1 is
the same thing as an n–stage E1 structure in the sense of Robinson [17, Section 5.2],
thereby giving his “diagonal” filtration on E1 , though we have not checked this.

Appendix A: A proof of Theorem 8.12

Suppose ˆ and ‰ are two operator categories. The theorem claims that the functor

W W N�
op
‰ �N�

op N�
op
ˆ !N�

op
‰oˆ

is a weak equivalence in the operadic model structure on sSet=N�op
‰oˆ

. Note that
this functor is faithful (in fact, pseudomonic), but not full. Let us call any object or
morphism in its image rectangular.

The proof proceeds as follows: we find a full subcategory �op
‰ ��

op�
op
ˆ �V

op��
op
‰oˆ

first, and we show that the inclusion N�
op
‰ �N�

op N�
op
ˆ ,! NV op is an operadic

weak equivalence. Then we replace the inclusion NV op ,!N�
op
‰oˆ by a suitable left

fibration Y !N�
op
‰oˆ , which we then show has contractible fibers by showing that

every map in from a finite simplicial set can, up to homotopy, be “coned off”.

A.1 Now let V denote the full subcategory of �op
‰oˆ spanned by those objects

ŒK0 ! � � � ! Km� such that for every integer 1 � i � m, the fibers of the map
Ki�1!Ki are all rectangular. Note that if Z is a .‰ oˆ/–operad, then for any object
ŒK0! � � � !Km� 2 V , we have a natural equivalence from ZŒK0! � � � !Km� to
the (homotopy) limit of a diagramQ

k12jK1j
ZŒK0;k1 ! fk1g� � � �

Q
km2jKmj

ZŒKm�1;km ! fkmg�

Q
k12jKi j

ZŒfk1g�
Q
km�12jKm�1j

ZŒfkm�1g�

in which all the terms are the fiber of Z over rectangular objects, and all the maps
that appear are induced by rectangular morphisms. Consequently, one may extend any
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map of simplicial sets N�op
‰ �N�

op N�
op
ˆ !Z over N�op

‰oˆ , in a unique way up to
homotopy, to a map NV op!Z over N�op

‰oˆ ; in other words, the map

ŒNV op; Z�N�op
‰oˆ
! ŒN�

op
‰ �N�

op N�
op
ˆ ; Z�N�op

‰oˆ

is a bijection. Hence the functor W induces a weak equivalence

N�
op
‰ �N�

op N�
op
ˆ
�
��!NV op

in the operadic model structure on sSet=N�op
‰oˆ

.

A.2 Now the inclusion NV op ,! .N�
op
‰oˆ/NV op= is a trivial cofibration for the

covariant model structure, and the target is fibrant [13, Corollary 2.1.2.2]. Hence it
suffices now to prove that the natural map of left fibrations .N�op

‰oˆ/NV op=!N�
op
‰oˆ

is a pointwise weak equivalence. In other words, we aim to show that for any object
.m; K/D ŒK0!� � �!Km�, the nerve of the ordinary category V.m;K/= is contractible.

A.3 The objects of V.m;K/= can be described as triples�
�W m! n; LW n!‰ oˆ; �W K! L ı �

�
consisting of a morphism � of �, a functor LW n! ‰ oˆ such that every fiber of
each morphism Lj�1! Lj is rectangular, and a map �W K! L ı � such that each
morphism �i W Ki ,! L�.i/ is an interval inclusion and the squares

Ki�1 L�.i�1/

Ki L�.i/

are all pullbacks. Now denote by R.m;K/ � V.m;K/= the full subcategory spanned by
those objects .�W m! n; L; �/ such that

� � has the property that �.0/D 0 and �.m/D n,

� L�.i/ DKi for any 0� i �m, and

� �i is the identity for any 0� i �m.

The inclusion i of this subcategory admits a retraction r given by the functor carrying
any triple .� Wm!p;M; /2V.m;K/= to the triple .�Wm!n;L;�/2R.m;K/ in which

� �W m! nD p�.0/= =�.m/ is the morphism induced by � ,

� Lj DMj �M�.m/ Km for any �.0/� j � �.m/, and

� �i is the identity for any 0� i �m.
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The factorization of  through � provides a natural transformation i ı r! id; hence
we have a weak homotopy equivalence NV.m;K/='NR.m;K/ . It thus remains to show
that the nerve of R.m;K/ is contractible.

A.4 If there exists an integer 1 � i � m such that the morphism Ki�1! Ki is an
isomorphism, then it is easy to see that the natural functor

RŒK0!���!Ki�1!KiC1!���!Km�!RŒK0!���!Km�

induces an equivalence on nerves. Consequently, we may assume that none of the
morphisms Ki�1 ! Ki is an isomorphism, and consequently, that for any object
.�W m! n; L; �/ 2R.m;K/ , the map � is injective.

Now for any integer m� 0, we note that the natural functor

RŒK0!���!Km�!RŒK0!K1� � � � � �RŒKm�1!Km�

is an equivalence of categories. Hence we reduce to the case in which mD 1.

A.5 So suppose that mD 1, and let us set about showing that the nerve of the category
RŒK0!K1� is contractible. By definition any morphism gW L!M of ‰ oˆ can be
factored, in an essentially unique manner, as a map L!M.g/ covering the identity
morphism in ˆ, followed by a morphism M.g/!M that is cocartesian for the coronal
fibration ‰ oˆ!ˆ. Let us call this a coronal factorization. The resulting sequence
ŒL!M.g/!M� clearly lies in V .

Fix a coronal factorization ŒK0!K01!K1�2RŒK0!K1� . Our aim is now to produce,
for any finite simplicial set X and any map gW X!NRŒK0!K1� , a weakly contractible
simplicial set P �g �X with a distinguished vertex v and an extension of g to a map
GW P �g !NRŒK0!K1� such that GjXDg and G.v/D ŒK0!K01!K1�2RŒK0!K1� .
This will complete the proof.

A.6 We now set about constructing the simplicial set P �g . Denote by I the category
whose objects are objects n 2� such that n � 1 and whose morphisms n! n0 are
morphisms n! n0 of � that carry 0 to 0 and n to n0 . We have an obvious projection
RŒK0!K1�! I given by .�W 1! n; L; �/ 7! n.

Let P be the following category. The objects will be triples .n;p; h/, where m;p 2 I,
and h is a functor p ! Fun.1;n/ such that h.0/ D 00, h.m/ D nn, and for any
1� i � n, the map h.i � 1/! h.i/ is of the form of one of the following:

ij ! ik; ik! jk; or ik! .i C 1/.kC 1/:
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A morphism .n;p; h/! .n0;p0; h0/ of P is a morphism � W n! n0 of I such that one
has an inclusion

fh.i/ j 0� i � ng � f�.h0.i 0// j 0� i 0 � n0g:

We have the obvious projection qW P! I given by .n;p; h/ 7! n.

For any integer n� 1, one has a map n! Fun.1;n/ that carries each i to the identity
map at i . This defines a section i0W I! P of q . There is another section i1W I! P
of q , which carries an object n to the triple .n; 2; Œ00! 0n! nn�/.

For any integer N � 1, we can consider the full subcategory I�N � I spanned by those
objects n such that n�N , and we can consider the pullback P�N ´ I�N �I P. One
shows easily that when restricted to IN , there exist a zigzag of natural transformations
connecting i0 and i1 and a zigzag of natural transformations connecting i0 ıq and the
identity map on P�N .

Now for any finite simplicial set X and any map gW X !NRŒK0!K1� , let Pg denote
the fiber product:

Pg NP

X NRŒK0!K1� N I

The sections i0 and i1 pull back to sections of Pg!X . Since X is finite, there exists
an integer N � 1 such that the composite X ! NRŒK0!K1�! N I factors through
N I�N . Hence the zigzag of homotopies between i0 and i1 and between i0 ı q and
the identity map on P�N lift, and we deduce that Pg !X is an equivalence.

Now set P �g D Pg=i1.X/; let v be the vertex corresponding to i1.X/, and regard X
as a simplicial subset of P �g via i0 . It is thus clear that P �g is weakly contractible.

A.7 Now we define the extension of g to a map GW P �g ! NRŒK0!K1� . Applying
the coronal factorization repeatedly, one obtains, functorially, for any object

ŒK0 D L0! L1! � � � ! Ln DK1� 2RŒK0!K1�;

a functor LW Fun.1;n/!‰ oˆ such that

� for any integer 0� i � n, one has Li i D Li ,
� the factorization Li i ! Lij ! Ljj is a coronal factorization, and
� the factorization K0 D L0! L0n! Ln DK1 is equal to our chosen coronal

factorization K0!K01!K1 .

Geometry & Topology, Volume 22 (2018)



1952 Clark Barwick

It is easy to check that the morphisms

Lij ! Lik; Lik! Ljk; and Lik! L.iC1/.kC1/

all have rectangular fibers. This defines an extension of g to a map

Pg !NRŒK0!K1�;

which then factors through P �g , as desired.

Appendix B: A proof of Theorem 5.10

Suppose ˆ is a perfect operator category. There are two unit axioms and an associativity
axiom to be checked for the endofunctor T equipped with the natural transformations
� and �.

B.1 The first unit axiom is the assertion that .T �/ ı � D idT . To verify this, we
first claim that for any morphism �W I ! T of ˆ, one has �I ı �I D U�I , where
�W id.ˆ=T /!E ıfib is the unit natural transformation. Indeed, the diagram

TJ

J TT T .Jt /

T

�J �J

�t

commutes, and the special fiber of the composite is the identity on Jt . Hence one has

.T �/ ı�D .UE�/ ı .U�E/:

The triangle identity for the adjunction .fib; E/ now implies that

.T �/ ı�D U idE D idT ;

as desired. The second unit axiom is analogous.

B.2 It remains to prove the associativity condition; that is, that for any object I 2ˆ,
the following diagram commutes:

(B.2.1)
T 3I T 2I

T 2I TI

T�I

�TI �I

�I
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We begin with the following key technical lemma.

B.3 Lemma For any object I of ˆ, the following rectangle is a pullback:

I TI T 2I

I TI

�I �TI

�I

�I

Now we can prove the associativity.

Proof Form the larger diagram:

I TI T 2I

I TI

� T

�I �TI

�I

�I

eI

t

The lower diagram is a pullback diagram; hence it suffices to show that the exterior
rectangle is a pullback. To verify this, observe that �� D �t ; hence the naturality of �
implies that the square

T 2I TT

TI T

TeI

�I �t

eI

commutes, since eI D T . Š /. All the rectangles of the diagram

I TI T 2I

� T TT

� T

�I �TI

TeI

t �T

�t

t

are pullback squares, whence the desired result.
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B.4 The first claim is that, using the structure morphism eI W TI ! T , one may view
the square (B.2.1) as a square of .ˆ=T /; that is, we claim that the diagram

(B.4.1)

T 2I TI

T 3I T

T 2I TI

�I

T�I

�TI

eI

eI

�I

commutes. To see this, consider the cube:

T 2T TT

T 3I T 2I

TT T

T 2I TI

T 2eI

�t

�T

T�t �t

TeI

eI

TeI

�I

�TI

T�I �I

The outer square commutes since each composite T 2T !T is a conservative morphism
.T 2T; �TT �T .t//! .T; t/. The top square commutes by naturality, and the commu-
tativity of the two side faces and the bottom face follows from the commutativity
of (5.9.1). Thus the outer rectangle

T 3I T 2I

T 2T TT

TT T

�TI

T 2eI TeI

�T

T�t �t

�t

commutes, and it follows that (B.4.1) does as well, since the bottom square of the
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following diagram commutes:

T 3I T 2I

T 2I TI

TT T

�TI

T�I �I

�I

TeI eI

�t

Now write K for the special fiber of the composite

T 3I
�TI
���!T 2I

�I
�!TI

eI
�!T;

and write L for the special fiber of the composite

T 3I
T�I
���!T 2I

�I
�!TI

eI
�!T:

By adjunction it suffices to show that the two morphisms of special fibers K ! I

and L! I are equal. To compute K , consider the following diagram:

I TI T 2I T 3I

I TI T 2I

I TI

� T

�I �TI �T 2I

�I �TI

�I

t

�TI

�I

eI

By B.3, every rectangle of this diagram is a pullback. To compute L, consider the
following diagram:

I TI T 2I T 3I

I TI T 2I

I TI

� T

�I �TI �T 2I

�I �TI

�I

t

T�I

�I

eI
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Again by B.3, and since T preserves all pullbacks, every rectangle of this diagram is a
pullback. Hence K DLD I , and the morphisms K! I and L! I are each simply
the identity.

This completes the proof of the theorem.

Appendix C: A proof of Theorem 5.18

Fix an admissible functor F W ‰!ˆ between perfect operator categories. We have to
show that the two diagrams (5.17.1) commute with C D‰ , D Dˆ, and �D ˛F .

C.1 Note that F induces a functor

F=TT W .‰=T‰T‰/! .ˆ=TˆTˆ/

that assigns to any object I ! T‰T‰ the composite

FI ! FT‰T‰
˛F;T‰
����!TˆFT‰

Tˆ�F.t‰/
������!TˆTˆ:

The commutativity of the first diagram of (5.17.1) follows directly from the following.

C.2 Lemma The following diagram of natural transformations of functors

.ˆ=Tˆ/! .‰=T‰/

commutes:

F=T ı�t‰;Š ıE‰;=T‰ �tˆ;Š ıF=TT ıE‰;=T‰ �tˆ;Š ıEˆ;=Tˆ ıF=T

F=T ıE‰ ıfib‰ Eˆ ıF ıfib‰ Eˆ ıfibˆ ıF=T

F=T ı�‰

�tˆ;Š ı˛F

�ˆ ıF=T

˛F ıfib‰

Proof Suppose  W J ! T‰ is a morphism. The claim is that the diagram

FT‰J TˆFJ

FT‰Jt‰ Tˆ.FJ /F.t‰/

Geometry & Topology, Volume 22 (2018)
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of .ˆ=Tˆ/ commutes, where the structure morphisms in question are

FT‰J
FT‰ 
�����!FT‰T‰

F.�t‰ /�����!FT‰
�F.t‰/����!Tˆ;

TˆFJ
TˆF 
�����!TˆFT‰

Tˆ�F.t‰/������!TˆTˆ
�tˆ���!Tˆ;

FT‰Jt‰
FeJt‰
����!FT‰

�F.t‰/����!Tˆ;

and of course the usual structure morphism eF.Jt‰ /
W TˆF.Jt‰/! Tˆ . By adjunction

it suffices to show that the square of special fibers

.FT‰J /tˆ .TˆFJ /tˆ

.FT‰Jt‰/tˆ .Tˆ.FJ /F.t‰//tˆ

commutes. But since the special fiber of the morphisms ˛F;J and ˛F;Jt‰ are each the
identity, the special fiber square is in particular commutative.

C.3 We now prove the commutativity of the second diagram of (5.17.1). The claim is
that for any object J of ‰ , the diagram

FT‰J

FJ

TˆFJ

F �J

�FJF

˛F;J

commutes. By composing with the structure map eFJ W TˆFJ ! Tˆ , this can be re-
garded as a diagram of .ˆ=Tˆ/. Hence it suffices to verify that the special fiber triangle

.FT‰J /tˆ

.FJ /tˆ

.TˆFJ /tˆ

commutes. But since the special fiber of ˛F;J W FT‰J ! TˆFJ is the identity on FJ ,
the special fiber triangle commutes.

This completes the proof of the theorem.

Geometry & Topology, Volume 22 (2018)
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