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Group trisections and smooth 4–manifolds

AARON ABRAMS

DAVID T GAY

ROBION KIRBY

A trisection of a smooth, closed, oriented 4–manifold is a decomposition into three
4–dimensional 1–handlebodies meeting pairwise in 3–dimensional 1–handlebodies,
with triple intersection a closed surface. The fundamental groups of the surface,
the 3–dimensional handlebodies, the 4–dimensional handlebodies and the closed 4–
manifold, with homomorphisms between them induced by inclusion, form a commu-
tative diagram of epimorphisms, which we call a trisection of the 4–manifold group.
A trisected 4–manifold thus gives a trisected group; here we show that every trisected
group uniquely determines a trisected 4–manifold. Together with Gay and Kirby’s
existence and uniqueness theorem for 4–manifold trisections, this gives a bijection
from group trisections modulo isomorphism and a certain stabilization operation
to smooth, closed, connected, oriented 4–manifolds modulo diffeomorphism. As a
consequence, smooth 4–manifold topology is, in principle, entirely group-theoretic.
For example, the smooth 4–dimensional Poincaré conjecture can be reformulated as
a purely group-theoretic statement.

57M05; 20F05

Let g and k be integers with g � k � 0. We fix the following groups, described
explicitly by presentations:

� S0 D f1g and, for g > 0, Sg D ha1; b1; : : : ; ag; bg j Œa1; b1� � � � Œag; bg�i, ie the
standard genus g surface group with standard labeled generators. We identify
this in the obvious way with �1

�
#g

S1 �S1;�
�
.

� H0 D f1g and, for g > 0, Hg D hx1; : : : ;xgi, ie a free group of rank g with g

labeled generators. We identify this in the obvious way with �1

�
\

g
S1�B2;�

�
.

Note that, if g < g0 , then Hg �Hg0 .

� Z0 D f1g and, for k > 0, Zk D hz1; : : : ; zki, ie a free group of rank k with k

labeled generators. We identify this in the obvious way with �1

�
\

k
S1�B3;�

�
.

Again, if k < k 0 then Zk �Zk0 .

Let V denote the set of vertices of a cube and let E denote the set of edges.
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Definition 1 A .g; k/–trisection of a group G is a commutative cube of groups

Hg Zk

Sg Hg Zk G

Hg Zk

such that each homomorphism is surjective and each face is a pushout.

We label the groups fGv j v 2 V g and the maps ffe j e 2Eg so that a trisection of G

is the pair .fGvg; ffeg/. A trisected isomorphism from a trisection .fGvg; ffeg/ of G

to a trisection .fG0vg; ff
0

eg/ of G0 is a collection of isomorphisms hvW Gv! G0v for
all v 2 V commuting with the fe and f 0e . A trisected isomorphism is orientation-
preserving if the isomorphism hW Sg! Sg induces an isomorphism on the abelianiza-
tions h�W Z2g! Z2g which has determinant C1.

Because all maps after the initial three fe are pushout maps, a trisection of the group
G is determined by these feW Sg ! Hg . More generally, given any triple of group
homomorphisms ˛i W A!Bi for i D 1; 2; 3, epimorphisms or not, one can define Cij

as the pushout of the maps ˛i and j̨ and Di as the pushout of the maps Bi ! Cij

and Bi! Cik . In the finitely presented setting, it becomes apparent that the Di for
i D 1; 2; 3 are canonically isomorphic when one writes down presentations for A and
the Bi and then sees what happens. Thus any triple of epimorphisms feW Sg!Hg

with rank k free pushouts uniquely determines a group trisection. (Even more generally,
Peter Teichner has pointed out that in any category with colimits, a triple of morphisms
A! Bi for i D 1; 2; 3 determines a cube of pushout maps whose far corner is the
colimit of the triple of morphisms.)

In view of this, one could define an abstract .g; k/–group trisection as a triple of
epimorphisms fi W Sg!Hg for i D 1; 2; 3, whose pairwise pushouts are rank k free
groups. By taking the colimit, an abstract group trisection then uniquely determines a
group trisection of a particular group. This parallels the distinction between an abstract
group presentation, which is a list of generators and relators but which doesn’t include
the group itself in the notation, and a presentation of a particular group G , in which
G is identified with the abstract group being presented. In any case, in this paper we
work with .g; k/–trisections of a group G .

There is a unique .0; 0/–trisection of the trivial group. Figure 1 illustrates a .3; 1/–
trisection of the trivial group, which we will call “the standard trivial .3; 1/–trisection”.

Geometry & Topology, Volume 22 (2018)



Group trisections and smooth 4–manifolds 1539

x1

x2 z1

a1 x3

b1

a2 x1

b2 x2 z1 1

a3 x3

b3

x1

x2 z1

x3

Figure 1: A .3; 1/–trisection of the trivial group. All maps send generators to
generators or to 1; the diagram shows where each map sends each generator,
with the understanding that generators not shown to be mapped anywhere are
mapped to 1 .

Figure 2 illustrates the same diagram more topologically. For trisections with g D 1

and g D 2, see the basic 4–manifold trisection examples in Gay and Kirby [1]; in fact,
the 4–dimensional uniqueness results in Meier and Zupan [6], together with Theorem 5
below, give uniqueness statements for group trisections with g � 2.
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b2
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Figure 2: The trivial .3; 1/–trisection illustrated topologically; each color
describes a handlebody filling of the genus 3 surface, so that the curves
specify the kernels of the homomorphisms.

Definition 2 Given a .g; k/–trisection .fGvg; ffeg/ of G and a .g0; k 0/–trisection
.fG0vg; ff

0
eg/ of G0 , there is a natural “connected sum” .g00DgCg0; k 00DkCk 0/–

trisection .fG00v g; ff
00

e g/ of G00 D G �G0 defined by first shifting all the indices of
the generators for the G0v by either g (when G0v D Sg0 or G0v D Hg0 ) or k (when

Geometry & Topology, Volume 22 (2018)



1540 Aaron Abrams, David T Gay and Robion Kirby

G0v DZk0 ) and then, for each generator y of G00v , declaring f 00e .y/ to be either fe.y/

or f 0e.y/ according to whether y is in Gv or G0v .

Definition 3 The stabilization of a group trisection is the connected sum of the given
trisection with the standard trivial .3; 1/–trisection. Thus the stabilization of a .g; k/–
trisection of G is a .gC3; kC1/–trisection of the same group G DG � f1g.

Definition 4 [1] A .g; k/–trisection of a smooth, closed, oriented, connected 4–
manifold X is a decomposition X DX1[X2[X3 such that:

� Each Xi is diffeomorphic to \
k

S1 �B3 .

� Each Xi \Xj with i ¤ j is diffeomorphic to \
g

S1 �B2 .

� X1\X2\X3 is diffeomorphic to #g
S1 �S1 D†g .

If X is equipped with a basepoint p , a based trisection of .X;p/ is a trisection with
p 2 X1 \X2 \X3 . A parametrized based trisection of .X;p/ is a based trisection
equipped with fixed diffeomorphisms (the “parametrizations”) from the .Xi ;p/ to�
\

k
S1�B3;�

�
, from the .Xi \Xj ;p/ to

�
\

g
S1�B2;�

�
and from X1\X2\X3

to
�
#g

S1 �S1 D†g;�
�
, where � in each case indicates a standard fixed basepoint,

respected by the standard inclusions
�
#g

S1 �S1 D†g;�
�
,!

�
\

g
S1 �B2;�

�
,!�

\
k

S1�B3;�
�
. A trisected diffeomorphism between trisected 4–manifolds is simply

a diffeomorphism that respects the decomposition, and a trisected diffeomorphism is
orientation-preserving if it preserves orientations on each piece.

Henceforth, all manifolds are smooth, oriented and connected, and all diffeomorphisms
preserve orientation. Until further notice, trisected 4–manifolds are closed.

There is an obvious map from the set of parametrized based trisected 4–manifolds
to the set of trisected groups, which we will call G ; the groups are the fundamental
groups of the Xi and their intersections, after identification with standard models via
the parametrizations, and the maps are those induced by inclusions composed with
parametrizations. Changing the parametrizations (but respecting orientations) and
basepoint will change the group trisection by an orientation-preserving isomorphism of
trisected groups, and thus we will also view G as a map from trisected 4–manifolds to
trisected groups up to orientation-preserving isomorphism.

The main result of this paper is that G induces a bijection between trisected 4–
manifolds up to orientation-preserving trisected diffeomorphism and trisected groups
up to orientation-preserving trisected isomorphism, and that this bijection respects
stabilizations in both categories.
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Theorem 5 There exists a map M from the set of trisected groups to the set of
trisected 4–manifolds such that M ı G is the identity up to orientation-preserving
trisected diffeomorphism and GıM is the identity up to orientation-preserving trisected
isomorphism. The unique .0; 0/–trisection of f1g maps to the unique .0; 0/–trisection
of S4 , the standard .3; 1/–trisection of f1g maps to the standard .3; 1/–trisection
of S4 , and connected sums of group trisections map to connected sums of 4–manifold
trisections. Thus M induces a bijection between the set of trisected groups modulo
orientation-preserving trisected isomorphism and stabilization and the set of smooth,
closed, connected, oriented 4–manifolds modulo orientation-preserving diffeomor-
phism.

Though it might not be obvious from a purely group-theoretic point of view, it follows
from [1] that every finitely presented group admits a trisection, because every finitely
presented group is the fundamental group of a closed, orientable 4–manifold. Even
more striking, perhaps, is that by Theorem 5 the collection of trisections of any particular
group contains all the complexity of smooth 4–manifolds with the given fundamental
group, including not just their homotopy types but also their diffeomorphism types.
In particular, there is a subset of the trisections of the trivial group corresponding to
the countably many exotic smooth structures on a given simply connected topological
4–manifold, eg the K3 surface. (To get the full countable collection, it seems likely that
g must be unbounded.) An interesting problem is to understand the equivalence relation
on group trisections that corresponds to homeomorphisms between 4–manifolds.

Considering homotopy 4–spheres, we have:

Corollary 6 The smooth 4–dimensional Poincaré conjecture is equivalent to the
following statement: “Every .3k; k/–trisection of the trivial group is stably equivalent
to the trivial trisection of the trivial group.”

Proof A .3k; k/–trisection of the trivial group gives a .3k; k/–trisection of a simply
connected 4–manifold. The Euler characteristic of a .g; k/–trisected 4–manifold
is 2 � g C 3k , so in this case we have an Euler characteristic 2 simply connected
4–manifold, ie a homotopy S4 .

One approach to proving the Poincaré conjecture would be to prove first that there is
a unique .3; 1/–trisection of f1g, or at least that every .3; 1/–trisection of f1g gives
a 4–manifold diffeomorphic to S4 , and then prove that, for any .3k; k/–trisection
of f1g, there is a nontrivial group element in the intersection of the kernels of the three
maps Sg!Hg which can be represented as an embedded curve in the corresponding
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surface †g . This would give an inductive proof since such an embedded curve would
give us a way to decompose the given trisection as a connected sum of lower-genus
trisections. In fact, this would prove more than the Poincaré conjecture; it would also
prove a 4–dimensional analog of Waldhausen’s theorem [11], to the effect that every
trisection of S4 is a stabilization of the trivial trisection and thus that any two trisections
of S4 of the same genus are isotopic. (This is not quite as strong as Meier, Schirmer
and Zupan [5, Conjecture 3.11] since their paper deals with unbalanced trisections and
unbalanced stabilizations, in which each 4–dimensional piece Xi is diffeomorphic to
some \

ki S1 �B3 , but we do not assume that k1 D k2 D k3 . The theory of group
trisections can naturally be extended to the unbalanced setting.) This strategy would be
the exact 4–dimensional parallel to the strategy outlined in Stallings [10] for proving
(or failing to prove) the 3–dimensional Poincaré conjecture.

Proof of Theorem 5 Given a .g; k/–trisection .fGvg; ffeg/ of G , we will construct
M.fGvg; ffeg/ beginning with †g D #g

S1 � S1 . For each of the three maps
feW Sg ! Hg , because these are epimorphisms it is a standard fact that there is
a diffeomorphism �eW †g ! @

�
\

g
S1 � B2

�
such that { ı �eW †g ,! \

g
S1 � B2

induces fe on �1 . See Leininger and Reid [4] for a proof; the sketch of the proof is as
follows: Note that there is a map, well defined up to homotopy by fe , from †g to a
wedge of g circles. Make this transverse to one point of each circle, not the basepoint.
Then the inverse image of those points is a collection of embedded circles in †g . Add
a 2–handle to each circle, and then the new boundary is a collection of 2–spheres. Fill
in each with 3–balls resulting in a handlebody.

Each �e is unique up to postcomposing with a diffeomorphism of @
�
\

g
S1 �B2

�
which extends over \

g
S1�B2 . To see this, suppose that we have two diffeomorphisms

�e; �
0
eW †g! @

�
\

g
S1�B2

�
such that both { ı�e and { ı�0e induce fe on �1 . Then,

in particular, the kernels of {ı�e and {ı�0e coincide. So �0.��1
e .@D//, for any properly

embedded disk D in \
g

S1 �B2 , is a simple closed curve in @
�
\

g
S1 �B2

�
which

bounds a disk in \
g

S1�B2 and thus, by Dehn’s lemma — see Papakyriakopoulos [8] —
also bounds an embedded disk. Thus, thinking of �e and �0e as defining two handlebody
fillings of †g , we see that any simple closed curve that bounds an embedded disk in
one handlebody bounds an embedded disk in the other handlebody, and thus the two
fillings are diffeomorphic.

Use these three diffeomorphisms to attach three copies of \
g

S1�B2 , crossed with I ,
to @†g�D2 in the standard way, giving a 4–manifold with three boundary components,
each presented with a genus g Heegaard splitting. (Note that the cyclic ordering of the
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three handlebodies is essential to determine the orientation of the resulting 4–manifold,
and that this is reflected in our definition of group trisection by the fact that the maps
and groups are explicitly labeled by edges and vertices of a standard cube.)

Because each pushout from the initial three maps gives a free group of rank k , we
know that the three boundary components mentioned above are closed 3–manifolds
with rank k free fundamental groups. It is another well-known fact that each of these
3–manifolds is diffeomorphic to #k

S1 �S2 . This follows from Kneser’s conjecture
(proved by Stallings [9]) that a free product decomposition of the fundamental group
of a 3–manifold corresponds to a connected sum decomposition of the manifold, as
well as Perelman’s proof — see Morgan and Tian [7] — of the 3–dimensional Poincaré
conjecture, which shows that no connected summand has trivial fundamental group.
A prime connected summand (ie one that doesn’t decompose further) therefore has
fundamental group Z, and a standard argument using the loop and sphere theorems —
see Papakyriakopoulos [8] — and the Hurewicz theorem shows that an orientable prime
3–manifold with fundamental group Z must be S1�S2 . See Hempel [2, Theorem 5.2]
for further details.

Any two ways of filling in a connected sum of copies of S1�S2 with a 4–dimensional
1–handlebody differ by a diffeomorphism of the connected sum, and Laudenbach and
Poénaru [3] proved that any such diffeomorphism extends to a diffeomorphism of the
handlebody. Thus we can attach a copy \

k
S1 �B3 to each boundary component to

produce a closed 4–manifold X which is uniquely determined up to diffeomorphism by
this construction. As constructed, X comes with a trisection in which each Xi , Xi\Xj

and X1\X2\X3 is by construction identified with the appropriate model manifold,
with a standard basepoint in X1\X2\X3 . In other words, we have constructed a based,
parametrized trisected 4–manifold uniquely determined up to trisected diffeomorphism
by the given trisected group. This is the definition of M.fGvg; ffeg/. Note that the
parametrizations are not uniquely determined, due to the indeterminacy associated to,
first, filling in the 3–dimensional handlebodies associated with the surjections †g!Fg

and, second, attaching the 4–dimensional 1–handlebodies using the identification of
each of the three closed 3–manifolds with #k

S1 �S2 .

We have thus far proved that the map M is well defined. We now need to show
that M ı G and G ıM are the identity maps on appropriate sets up to appropriate
equivalences. The map G simply applies the �1 functor to all pieces of a based,
parametrized trisection of a 4–manifold, so clearly GıM recovers the original trisected
group up to isomorphism (one needs to choose parametrizations to apply G , hence the
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isomorphism). Similarly, starting with a trisected 4–manifold and applying first G and
then M, the arguments above about the well-definedness of G.fGvg; ffeg/ also show
that the resulting trisected 4–manifold is diffeomorphic to the initial one.

The main result of [1] is that every smooth, closed, connected, oriented 4–manifold
has a trisection, and that any two trisections of the same 4–manifold become isotopic
after performing some number of connected sums with the standard .3; 1/–trisection
of S4 . The connected sum operation and the .3; 1/–trisection on the group side are
constructed exactly to correspond to stabilization of manifolds via the map M. This
shows that M induces a bijection between trisected groups up to orientation-preserving
isomorphism and stabilization and oriented 4–manifolds up to orientation-preserving
diffeomorphism.

Acknowledgements This work was supported by NSF grant DMS-1207721 and by
two grants from the Simons Foundation (#359873 to Gay and #281189 to Abrams).

References
[1] D Gay, R Kirby, Trisecting 4–manifolds, Geom. Topol. 20 (2016) 3097–3132 MR

[2] J Hempel, 3–Manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press (1976) MR

[3] F Laudenbach, V Poénaru, A note on 4–dimensional handlebodies, Bull. Soc. Math.
France 100 (1972) 337–344 MR

[4] C J Leininger, A W Reid, The co-rank conjecture for 3–manifold groups, Algebr.
Geom. Topol. 2 (2002) 37–50 MR

[5] J Meier, T Schirmer, A Zupan, Classification of trisections and the generalized
property R conjecture, Proc. Amer. Math. Soc. 144 (2016) 4983–4997 MR

[6] J Meier, A Zupan, Genus-two trisections are standard, Geom. Topol. 21 (2017) 1583–
1630 MR

[7] J Morgan, G Tian, The geometrization conjecture, Clay Mathematics Monographs 5,
Amer. Math. Soc., Providence, RI (2014) MR

[8] C D Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math.
66 (1957) 1–26 MR

[9] J R Stallings, Some topological proofs and extensions of Grusko’s theorem, PhD thesis,
Princeton University (1959) MR Available at https://search.proquest.com/
docview/301879281

[10] J Stallings, How not to prove the Poincaré conjecture, from “Topology seminar” (R H
Bing, R J Bean, editors), Ann. of Math. Stud. 60, Princeton Univ. Press (1966) 83–88
MR

Geometry & Topology, Volume 22 (2018)

http://dx.doi.org/10.2140/gt.2016.20.3097
http://msp.org/idx/mr/3590351
http://msp.org/idx/mr/0415619
http://www.numdam.org/item?id=BSMF_1972__100__337_0
http://msp.org/idx/mr/0317343
http://dx.doi.org/10.2140/agt.2002.2.37
http://msp.org/idx/mr/1885215
http://dx.doi.org/10.1090/proc/13105
http://dx.doi.org/10.1090/proc/13105
http://msp.org/idx/mr/3544545
http://dx.doi.org/10.2140/gt.2017.21.1583
http://msp.org/idx/mr/3650079
http://msp.org/idx/mr/3186136
http://dx.doi.org/10.2307/1970113
http://msp.org/idx/mr/0090053
http://msp.org/idx/mr/2612898
https://search.proquest.com/docview/301879281
https://search.proquest.com/docview/301879281
http://msp.org/idx/mr/2906378


Group trisections and smooth 4–manifolds 1545

[11] F Waldhausen, Heegaard–Zerlegungen der 3–Sphäre, Topology 7 (1968) 195–203
MR

Mathematics Department, Washington and Lee University
Lexington, VA, United States

Euclid Lab and Department of Mathematics, University of Georgia
Athens, GA, United States

Department of Mathematics, University of California
Berkeley, CA, United States

abramsa@wlu.edu, d.gay@euclidlab.org, kirby@math.berkeley.edu

Proposed: Peter Teichner Received: 1 June 2016
Seconded: Walter Neumann, András I Stipsicz Accepted: 19 August 2017

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/0040-9383(68)90027-X
http://msp.org/idx/mr/0227992
mailto:abramsa@wlu.edu
mailto:d.gay@euclidlab.org
mailto:kirby@math.berkeley.edu
http://msp.org
http://msp.org



	References

