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Planar open books, monodromy factorizations
and symplectic fillings

OLGA PLAMENEVSKAYA

JEREMY VAN HORN-MORRIS

We study fillings of contact structures supported by planar open books by analyzing
positive factorizations of their monodromy. Our method is based on Wendl’s theorem
on symplectic fillings of planar open books. We prove that every virtually overtwisted
contact structure on L.p; 1/ has a unique filling, and describe fillable and nonfillable
tight contact structures on certain Seifert fibered spaces.

57R17; 53D35

1 Introduction

By Giroux’s theorem [9], a contact 3–manifold .Y; �/ is Stein fillable if and only if
it is compatible with an open book .S; �/ whose monodromy � can be represented
as a product of positive Dehn twists. Given a factorization of the monodromy into
a product � DD˛1

� � �D˛k
of positive Dehn twists around homologically nontrivial

curves ˛1; : : : ; ˛k , we can construct a Stein filling as an allowable Lefschetz fibration
over D2 with fiber S , with vanishing cycles corresponding to ˛1; : : : ; ˛k . (We say that
a Lefschetz fibration is allowable if all vanishing cycles are homologically nontrivial in
their fibers.) Conversely, if X is a Stein manifold whose boundary is .Y; �/, then X

has a structure of an allowable Lefschetz fibration by Akbulut and Ozbagci [1]. The
boundary @X D Y has an open book decomposition whose monodromy is a product
of positive Dehn twists around curves corresponding to the vanishing cycles; this open
book is compatible with the contact structure � by Plamenevskaya [25]. Thus, Stein
fillings of .Y; �/ correspond to positive factorizations of monodromies of compatible
open books. However, to detect nonfillability or to classify all Stein fillings, one would
have to consider all possible open books compatible with � .

The situation is much simpler for contact structures compatible with planar open books,
thanks to the following recent result of Chris Wendl.
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Theorem 1.1 (Wendl [27]) Suppose that .Y; �/ admits a planar open book decompo-
sition. Then every strong symplectic filling .X; !/ of .Y; �/ is symplectic deformation
equivalent to a blow-up of an allowable Lefschetz fibration compatible with the given
open book for .Y; �/.

In particular, Wendl’s theorem implies that every Stein filling of .Y; �/ is diffeomorphic
(and even symplectic deformation equivalent) to an allowable Lefschetz fibration
compatible with the given planar open book; to classify fillings or to prove nonfillability,
it suffices to study positive factorizations of the given monodromy. Even so, enumerating
positive factorizations for a given element of the mapping class is in general a very hard
question. However, we are able to analyze certain simple monodromies by means of
elementary calculations in the abelianization of the mapping class group of the planar
surface. In this paper, we give two applications: first, we complete the classification
of fillings for tight lens spaces L.p; 1/, second, we study the fillability question for
certain tight Seifert fibered spaces.

Theorem 1.2 Every virtually overtwisted contact structure on L.p; 1/ has a unique
Stein filling (up to symplectic deformation), which is also its unique weak symplectic
filling (up to symplectic deformation and blow-up).

Corollary 1.3 For p ¤ 4, every tight contact structure on L.p; 1/ has a unique Stein
filling (up to symplectic deformation), which is also its unique weak symplectic filling
(up to symplectic deformation and blow-up).

The above corollary combines Theorem 1.2 together with earlier results, giving a
complete description of fillings for tight L.p; 1/. (Note that fillings for L.4; 1/ are
also understood due to McDuff [22] and our theorem.) Recall that Eliashberg established
uniqueness of a symplectic filling (up to deformation and blow-up) for the standard
contact structure on S3 [3]. McDuff proved that standard contact structures on L.p; 1/

all have unique filling except for L.4; 1/, which has two fillings, up to blow-up and
diffeomorphism [22]. Hind showed that in McDuff’s theorem, the Stein filling of
.L.p; 1/; �std/ is in fact unique up to Stein homotopy [12]. Lisca extended these results
to obtain a classification (again up to blow-up and diffeomorphism) of symplectic
fillings for arbitrary lens spaces L.p; q/ equipped with standard contact structures [18].
(By the standard contact structure on a lens space we mean the quotient of .S3; �std/

by the action of the cyclic group. All of the above results for the standard contact
structure obviously extend to its conjugate, thus covering the two universally tight
contact structures on L.p; q/.) Theorem 1.2 extends classification of fillings in another
direction, by a different technique. Our technique also allows to reprove uniqueness of
symplectic fillings of .L.p; 1/; �std/ for p ¤ 4.
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Figure 1: Seifert fibered space M.�1I r1; r2; r3/

Our second application concerns fillability of contact structures on Seifert fibered spaces
M.�1I r1; r2; r3/. (We use this notation for the space given by the surgery diagram
of Figure 1; here and throughout the paper, r1; r2; r3 are rational numbers between 0
and 1.) Tight contact structures on such manifolds were studied by Ghiggini–Lisca–
Stipsicz [8] and Lisca–Stipsicz [19; 20]; when r1; r2 � 1=2, a complete classification
of tight contact structures on M.�1I r1; r2; r3/ was obtained in [8] (in particular, each
of these spaces is known to carry a tight contact structure). Tightness of some of
these contact structures was established by means of the Heegaard Floer theory; it was
shown in [8] that one of the tight structures on M.�1I 1=2; 1=2; 1=p/ is nonfillable.
(Recall that, in contrast, all tight contact structures on M.0I r1; r2; r3/ are fillable; see
Ghiggini–Lisca–Stipsicz [7], cf Wu [28]).

It is interesting to determine which of the manifolds M.�1I r1; r2; r3/ carry tight, non-
fillable contact structures. Wendl’s theorem provides a good tool for this investigation,
because all tight contact structures on M.�1I r1; r2; r3/ admit planar open books, at
least in the case r1; r2 � 1=2. It turns out that fillability depends, in a rather subtle
way, on the arithmetics of the continued fraction expansions of r1; r2; r3 . Let

�
1

r1

D Œa1; a2; : : : ; an1
�; �

1

r2

D Œb1; b2; : : : ; bn2
�; �

1

r3

D Œc1; c2; : : : ; cn3
�;

where we adopt the notation

Œx1;x2; : : : ;xn�D�x1�
1

�x2�
1

: : : �
1

�xn

; xi 2 Z; xi � 2:

Theorem 1.4 Suppose that r1; r2 � 1=2. Let k1 , k2 be such that a1 D a2 D � � � D

ak1
D 2, b1D b2D � � � D bk2

D 2, and ak1C1 � 3, bk2C1 � 3 (if k1 < n1 , resp. k2 <

n2 ). Then the space M.�1I r1; r2; r3/ carries tight, symplectically nonfillable contact
structures if c1� 1>max.k1; k2/; otherwise all tight structures on M.�1I r1; r2; r3/

are Stein fillable.
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Our proofs of Theorem 1.2 and Theorem 1.4 use abelian information about the planar
mapping class group as provided by a nice group presentation given by Margalit and
McCammond [21]. From their presentation we extract invariants from the abelianization
which obstruct positive factorizations and hence Stein fillings. These invariants can
also determine the possible factorizations in the abelianization, which can be lifted to
factorizations in the mapping class group but only up to conjugacy. Outside of some
special cases, this isn’t enough to pin down the actual factorizations, though perhaps
more sensitive representations or a more complete understanding of the planar mapping
class group might be able to eliminate these difficulties. To get new results with this
method, we need additional tricks: the proof of Theorem 1.2 combines our invariants
with some deep topological results.

It is instructive to compare our method in Theorem 1.4 to other proofs of nonfillability.
Previous techniques (see eg Lisca [17] and Ghiggini–Lisca–Stipsicz [8]) are all based
on some version of gauge theory and the Donaldson theorem, as follows. First one
shows, using Seiberg–Witten or Heegaard Floer theory, that all symplectic fillings of
a given contact structure must be negative-definite; then the filling is completed to a
closed negative-definite 4–manifold, so that by the Donaldson theorem the intersection
form of the filling embeds into a standard diagonalizable form over the integers. Finally,
existence of such an embedding must be ruled out; often, this is possible because the
first Chern class of a Stein filling can be understood in terms of the contact structure.
We note that this method is in principle applicable to planar open books, because by
Etnyre [5] and Oszváth–Stipsicz–Szabó [24], every symplectic filling of a contact
structure � supported by a planar open book must be negative-definite, and have the
intersection form that embeds into a standard diagonalizable form over the integers;
moreover, if c1.�/D 0, then c1 of every Stein filling of � must be 0. However, the
analysis of possible embeddings of the intersection form can typically be done only
in a very limited number of cases. Our analysis of the monodromy factorizations, at
least on the level of the abelianization, appears be a lot easier to do, and works in many
situations.

Acknowledgements We are grateful to John Etnyre for some helpful conversations,
to Dan Margalit and Chris Wendl for helpful correspondence, and to Paolo Lisca and
András Stipsicz for their comments on a preliminary version of this paper.

The first author is partially supported by NSF grant DMS-0805836.

2 Lens spaces L.p; 1/ and their fillings

By Honda’s classification of tight contact structures on lens spaces [13], all tight contact
structures on L.p; 1/ arise as surgeries on Legendrian unknot with tbD�pC 1, ie
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the standard Legendrian unknot stabilized p�2 times. More precisely, there are p�1

tight contact structures �1; �2; : : : �p�1 on L.p; 1/, distinct up to isotopy; the contact
structure �k is the result of Legendrian surgery on the stabilized unknot with k cusps
on the left and p � k cusps on the right. Legendrian surgery yields a Stein filling
for �k which is diffeomorphic to the union of D4 and the 2–handle corresponding to
the surgery.

Our job is to prove that every Stein filling for a virtually overtwisted .L.p; 1/; �/ is
diffeomorphic to the one described above, and that the Stein structure is unique, at least
up to symplectic deformation. To do this, we examine factorizations of monodromies
of planar open books as products of positive Dehn twists. The question of determining
such factorizations in a general mapping class group is very hard (for example, it
includes the enumeration of all Lefschetz pencils, half of the information needed to
classify minimal symplectic manifolds). While this question in the planar mapping class
group looks like it may be simpler, we were unable to solve this problem by looking
directly at the planar mapping class group. To make our task easier, we look instead
to the abelianization of the mapping class group and solve the analogous problem
there; we find all ways to write the image of our mapping class as a sum of images of
Dehn twists. This only solves our problem up to conjugation of each factor. While this
does solve the problem in some very special cases, it is not enough for our virtually
overtwisted lens spaces. To finish the proof here, we need to invoke some powerful
theorems in low-dimensional topology. We first show that all the possible open book
decompositions with positive factorizations and which represent the same class in
the abelianization are obtained from the tight contact S3 by Legendrian surgery on
a knot with negative Thurston–Bennequin number. We can then apply the surgery
characterization of Kronheimer, Mrowka, Ozsváth and Szabó [16] and Legendrian
classification of Eliashberg and Fraser [4] of the unknot to achieve our desired result.
This reliance on the complete understanding of the unknot means the specific methods
used here will not translate easily to other questions about uniqueness of Stein fillings.
This should be seen as an indictment of our understanding of the planar mapping class
group rather than of the method itself. We hope that a better understanding of the
planar mapping class group can push these ideas to further results.

To begin, observe that the virtually overtwisted contact structures are those labeled
by �2; : : : ; �p�2 in the above notation. The corresponding Legendrian unknots have
stabilizations on both sides. Indeed, a lift of the curve C (on the left of Figure 3)
bounds an overtwisted disk in appropriate cover [11, Proposition 11.2.12]. The two
universally tight contact structures �1 and �p�1 are given by surgeries on the unknot
that has all of the stabilizations on the right or on the left. We construct planar open
books for .L.p; 1/; �k/ as follows. The standard Legendrian unknot with tb D �1
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can be represented as the core circle of a page of the open book decomposition of
.S3; �std/ with annular pages; to place the stabilized unknot on a page of an open
book for .S3; �std/, we stabilize the open book and modify the knot as described in
Etnyre [6]; see Figure 2.

Figure 2: Placing a stabilized knot on a page of an open book

In this setup, the page framing matches the Thurston–Bennequin framing of the Legen-
drian unknot; performing a positive Dehn twist on the curve representing the unknot, we
obtain an open book decomposition corresponding to the result of Legendrian surgery.
The resulting open book for .L.p; 1/; �k/ is shown in Figure 3: the page of the open
book is a disk with nD p� 1 holes, and the monodromy

ˆDD˛Dı1
� � �Dık�1

DıkC1
Dın

Dˇ

is the product of positive Dehn twists Dıi
around each of the holes except the k –th, and

the positive Dehn twists around the curves ˛ and ˇ . Here the order of Dehn twists is
unimportant, because for a general open book it only matters up to cyclic permutation,
and here the boundary twists commute with all other Dehn twists. However, it is
convenient to fix notation now:

Convention 2.1 Throughout the paper, we adhere to braid notation for products of
Dehn twists: in the expression D˛Dˇ , D˛ is performed first.

We first show that any positive factorization of ˆ consists of Dehn twists enclosing
the same holes. (In a disk with holes, every simple closed curve separates, and we say
that a collection of holes is enclosed by a curve if the holes lie in the component not
containing the outer boundary of the disk. Abusing the language, we will often talk
about holes enclosed by Dehn twists.)

Geometry & Topology, Volume 14 (2010)
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Figure 3: A surgery diagram for the virtually overtwisted contact structure �k

on L.p; 1/ . A lift of the curve C (dashed in the picture) bounds an embedded
overtwisted disk in a cover of .L.p; 1/; �k/ . On the left, a compatible open
book is shown. (Here p D nC 1 .) The monodromy is the product ˆ D
D˛Dı1

� � �Dık�1
DıkC1

DınDˇ of positive Dehn twists around the pictured
curves.

Lemma 2.2 For the open book shown in Figure 3, any positive factorization of the
monodromy ˆ must be given by the product of the Dehn twists Dı1

; : : : ;Dık�1
;

DıkC1
; : : :Dın

, and the Dehn twists D˛0 and Dˇ0 around some curves ˛0 and ˇ0 , such
that ˛0 encloses the same holes as ˛ , and ˇ0 the same holes as ˇ .

To prove the lemma, we will need to look closely at the mapping class group of a
planar surface; it will be convenient to work with its presentation given by Margalit
and McCammond in [21]. (Note: The conventions in [21] are opposite ours and those
used by most 4–manifold or symplectic topologists; they use left-handed Dehn twists
as the positive generators of the presentation.)

Consider a round disk with punctures arranged at the vertices of a regular n–gon
contained in the disk; let the holes be small neighborhoods of the punctures, and denote
by Dn the resulting disk with n holes. We say that a simple closed curve in Dn is
convex if it is isotopic to the boundary of the convex hull of some of the holes; a Dehn
twist around a convex curve is said to be convex. By [21], the mapping class group has
a presentation with generators given by all (distinct) convex Dehn twists, and relations
of the following two types. The first type states that Dehn twists around disjoint curves
commute. The second type consists of all possible lantern relations; a lantern relation
is the relation of the sort DADBDC DA[B[C DDA[BDB[C DA[C . Here A, B , C

are disjoint collections of holes, DA , DA[B , etc, are convex Dehn twists around the
curves enclosing the corresponding sets of holes, and the collections A, B , and C are
such that the cyclic clockwise ordering of all the holes in A[B [C , induced from
their convex position on the disk, is compatible with the ordering where we list all

Geometry & Topology, Volume 14 (2010)
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holes from A in their cyclic order, then all holes from B , then all holes from C . Each
collection A, B , C may contain one or more holes; the ordering condition ensures that
the Dehn twists are performed around curves arranged as in the usual lantern relation.
See [21] for details.

Proof of Lemma 2.2 First, observe that although the set of holes enclosed by a simple
closed 
 does not determine 
 up to isotopy, it determines, up to conjugacy, the class
of the Dehn twist D
 in Map Dn . (If 
 , 
 0 enclose the same holes, the conjugacy
between D
 and D
 0 is given by the diffeomorphism h 2Map Dn that takes 
 to 
 0 .)
Consequently, the collection of holes enclosed by 
 uniquely determines the image
of D
 in the abelianization of the mapping class group, Ab Map Dn .

It will be helpful to decompose all Dehn twists as follows: given a Dehn twist D


around a convex curve 
 that encloses r holes, we apply the lantern relation repeatedly
to write D
 as a composition of Dehn twists around (convex) curves enclosing all
possible pairs of holes among the given r , together with some Dehn twists around
single holes. Each pair of holes will contribute exactly one positive convex Dehn twist
into this decomposition; each hole will have r � 2 negative Dehn twists around it.
Similarly, we can decompose an arbitrary Dehn twist in the same fashion; however, the
Dehn twists enclosing pairs of holes will no longer have to be convex. We will refer
to Dehn twists around a pair of holes as “pairwise” Dehn twists, and to Dehn twists
around single holes as boundary twists. (The Dehn twist around the outer boundary
component of the disk will not be referred to as a boundary twist.)

Now we can decompose an arbitrary element � 2 Map Dn : write it as a product
of Dehn twists, and decompose each of them as above. (We will not be recording
the order of Dehn twists in the monodromy.) Let mij .�/ be the multiplicity of the
positive Dehn twist containing only the i –th and j –th holes in the decomposition
of � ; similarly, mi.�/ be the multiplicity of the positive Dehn twist ıi around the
i –th hole. The collection of integers mij ;mi is well-defined for � 2Map Dn : because
the multiplicities mij ;mi are invariant under lantern relations, they do not depend on
the factorization of � . Moreover, the collection fmij ;mig uniquely determines the
image of � in Ab Map Dn .

Let ˆ be the monodromy of the open book for .L.p; 1/; �k/ pictured in Figure 3.
Assume that ˆ is factored into a product of some positive Dehn twists. Pick the k –th
hole, which is enclosed by both curves ˛ and ˇ in Figure 3, and consider the Dehn
twists around it in the new factorization of ˆ. We consider only those Dehn twists that
enclose at least two holes; suppose there are l of them, and write n1; n2; : : : ; nl for
the number of holes they enclose.

Geometry & Topology, Volume 14 (2010)
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Now, we compute the multiplicities of the pairwise and boundary twists for ˆ that
involve the k –th hole. The Dehn twists D˛;Dˇ contribute n�1 positive pairwise Dehn
twists involving k –th hole (mikD1 for every i¤k ) and .k�2/C.n�kC1�2/Dn�3

negative boundary twists around it. On the other hand, the l positive Dehn twists
contribute .n1�1/C .n2�1/C� � �C .nl �1/ positive pairwise Dehn twists involving
the k –th hole, and .n1� 2/C .n2� 2/C : : : .nl � 2/ negative boundary Dehn twists.
As the new factorization of ˆ may have some positive boundary twists Dık

that we
haven’t yet taken into account,

n� 1D .n1� 1/C .n2� 1/C � � �C .nl � 1/;(1)

�..n� 1/� 2/� �.n1� 2/� .n2� 2/� � � � � .nl � 2/:(2)

Two cases are then possible:

(i) l D 2, and the new positive factorization of ˆ has no boundary twists around
the k –th hole.

(ii) l D 1, and there is exactly one positive boundary twist Dık
around the k –th

hole.

To rule out the second case, notice that since mik.ˆ/D 1 for every i ¤ k , the unique
positive Dehn twist in the decomposition of ˆ would have to enclose all n holes. But
then we would have m1n.ˆ/D 1, which contradicts the original definition of ˆ from
Figure 3.

The first case then tells us that the new positive decomposition of ˆ has exactly two
twists enclosing more than one hole each; there may also be some positive boundary
twists. Examining the multiplicities mij .ˆ/, mi.ˆ/ again, we see that one Dehn
twist must be around a curve that encloses the holes 1; 2; : : : k , the other around a
curve that encloses the holes k; kC 1; : : : n; denote the first curve by ˛0 , the second
by ˇ0 . In addition, there must be one positive boundary twist Dıi

around i –th hole
for each i ¤ k .

Lemma 2.3 The open book whose monodromy is the product

D˛0Dı1
� � �Dık�1

DıkC1
� � �Dın

represents .S3; �std/. The knot in S3 induced by ˇ0 is the unknot; the framing on this
unknot induced by the page framing of ˇ0 is �pC1 (compared to the Seifert framing).

Proof We can always find a self-diffeomorphism of the disk that maps ˛0 to ˛ ,
so we may assume that the curve ˛0 is standard. (Note, however, that we cannot

Geometry & Topology, Volume 14 (2010)



2086 Olga Plamenevskaya and Jeremy Van Horn-Morris

simultaneously map ˛0 to ˛ and ˇ0 to ˇ ). The open book with the monodromy
D˛0Dı1

� � �Dık�1
DıkC1

� � �Dın
is obtained from the standard open book for .S3; �std/

with annular pages by n� 1 stabilizations, so it represents the standard tight S3 as
well.

Next, we compute the page framing of the knot induced by ˇ0 ; or rather, we will
compute the surgery framing, which is the page framing minus 1. (We know that
surgery on the corresponding knot yields L.p; 1/, so the surgery framing must be ˙p ,
but the sign needs to be determined.) Consider the Kirby diagram corresponding to
the open book, Figure 4. We will destabilize the open book, starting with the holes

0

0

0

0

0

�1

�1

�1

�1

�1

�1

˛0

ˇ0

Figure 4: Surgery diagram for the open book

enclosed by ˇ0 and not by ˛0 . The knot ˇ0 will no longer lie on the page; in the Kirby
diagram, destabilizations amount to blowdowns shown in Figure 5.

After n�k D p�1�k blowdowns, the framing decreases by n�k . The knot ˇ0 has
the linking number 1 with the 0–framed unknot corresponding to the k –th hole (the one
enclosed by both ˛ and ˇ ), and the linking number zero with every other component

Geometry & Topology, Volume 14 (2010)
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0

�1

C1

�1

Figure 5: Blowing down to destabilize at holes enclosed by ˇ0

0

�1 k�p

allC1
framed

0

�1

C1
C2 C2 C2

k�p

k�p

C1 C2 C2 C2

�p

Figure 6: Computing the framing. The thick circle represents the knot in-
duced by ˇ0 , and is to be understood schematically: a priori it doesn’t have to
be an unknot, and its geometric linking with other components may be more
complicated. However, the linking numbers are as shown: the knot ˇ0 has
lk D 1 with the 0-framed component, and zero linking numbers with the rest.
It follows that the framings will change as dictated by Kirby moves in the
picture.

of the surgery link. (Note that the geometric linking may be quite complicated.) Next,
we perform further Kirby moves as in Figure 6; knowing all linking numbers in the
picture suffices for the framing calculation, even if the topological type of the knot ˇ0

is unknown. It follows that the surgery framing of the original knot induced in S3

by the curve ˇ0 is �p . To see that ˇ0 must be the unknot, we invoke a theorem of
Kronheimer–Mrowka–Ozsváth–Szabó [16] that states that the result of a �p–surgery
on a knot in S3 can be the lens space L.p; 1/ only if the knot is the unknot.
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2088 Olga Plamenevskaya and Jeremy Van Horn-Morris

Proof of Theorem 1.2 Lemma 2.3 implies that the Lefschetz fibration X correspond-
ing to the factorization of the monodromy as the product D˛0Dı1

� � �Dık�1
DıkC1

� � �Dın
Dˇ0 is diffeomorphic to D4 with a 2–handle attached along a �p framed

unknot. (Note that the order of Dehn twists in this product is not important.) This is the
standard filling of L.p; 1/, the disk bundle with Euler number �p . Moreover, X has
a Stein structure that arises from the Legendrian surgery on a Legendrian representative
of the unknot ˇ0 , with tb D�pC 1. Since Legendrian unknots are classified by their
Thurston–Bennequin and rotation numbers [4], we know that the only unknot that can
produce .L.p; 1/; �k/ is the one shown in Figure 3, up to Legendrian isotopy. Because
a compatible symplectic structure on a Lefschetz fibration is unique up to symplectic
deformation [10], it follows that all Stein structures on X are symplectic deformation
equivalent; by Theorem 1.1, this means that the Stein filling of .L.p; 1/; �/ is unique up
to symplectic deformation, and any strong symplectic filling is unique up to symplectic
deformation and blow-up.

Finally, recall that every weak filling of a rational homology sphere can be modified
into a strong filling [23]; it follows that the weak symplectic filling of .L.p; 1/; �/ is
also unique, up to deformation and blow-up.

Remark 2.4 A very similar argument gives a new proof of McDuff’s result [22] on
uniqueness of filling for the standard (universally tight) contact structure on L.p; 1/

for p¤ 4. The page of the corresponding open book is a disk with nDp�1 holes; the
monodromy is the product of positive Dehn twists around the holes (one twist for each
hole) and the positive Dehn twist around the outer boundary component. Decomposing
this monodromy, we get one positive Dehn twist around each pair of holes, and n� 3

negative boundary twists for each hole. If there’s a different positive factorization with
l nonboundary Dehn twists involving an arbitrary fixed hole and enclosing respectively
n1; n2; : : : ; nl holes, we decompose them as before to see that Equations (1) and (2)
must again hold. It follows that a positive factorization must either be the one we started
with, or it must have two “nonboundary” Dehn twists involving each puncture, with
no boundary twists. When n¤ 3, the second case is not possible, because otherwise
some “pairwise” Dehn twists would not be present in the decomposition. It follows that
there is a unique factorization of the monodromy, with positive boundary twists around
each hole and one positive twist that encloses all the holes. (Unlike the case with
two nonboundary twists considered above, no application of the deep result of [16] is
needed here.) The classification of Legendrian unknots completes the proof as before;
we see that the Stein filling is unique up to symplectic deformation. (This is weaker
than Hind’s result [12].)

When nD 3 (ie p D 4), an alternate positive factorization of the given monodromy in-
deed exists. It is given by the classical lantern relation, and corresponds to a nonstandard
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Figure 7: Using the lantern relation to construct a nonstandard Stein filling of L.4; 1/

filling of .L.4; 1/; �std/ which is a rational homology ball. (See Figure 7 for a Kirby
calculus picture demonstrating that the lantern relation produces the nonstandard filling
constructed in [22; 18].) Note that we do not check that the nonstandard filling is unique:
indeed, the images of all the Dehn twists in Ab Map Dn are uniquely determined, but
we do not have an appropriate analog of Lemma 2.3 for this case.

Remark 2.5 The same strategy proves uniqueness of fillings for the universally tight
contact structures on L.pkC 1;p/, provided that p; k � 1, and either k � p� 2, or
p D 2. See Figure 8, where p is the number of cusps in the surgery diagram (and the
number of holes in the page of the open book); k�1 is the number of standard unknots
(and the number of the multiple boundary twists). If k > p � 2 > 0, a lantern-type
relation (see Figure 11) can be used to construct a Stein filling different from the
one given by the surgery diagram. These contact structures are covered by Lisca’s
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Figure 8: Universally tight contact structures on L.pkC 1;p/

work [18], but our technique gives a slightly stronger result: uniqueness of filling up to
symplectic deformation, not just diffeomorphism.

3 Nonfillable contact structures on Seifert fibered spaces

In this section we examine fillability of contact structures on the spaces M.�1;r1;r2;r3/.
All of these contact structures can be represented by planar open books; using Wendl’s
theorem, we can prove that a contact structure is nonfillable (in the strong symplectic
sense) by showing that its monodromy admits no positive factorization in the mapping
class group of a disk with holes. Since all of the spaces we consider are rational
homology spheres, weak symplectic nonfillability follows as well.

Interestingly, our obstructions vanish for a family of open books, and the contact
manifolds M.�1; r1; r2; r3/ corresponding to this family turn out to be Stein fillable.
This is not obvious from the given open books, as their monodromies are compositions
of both positive and negative Dehn twists. To establish fillability, we rewrite these
monodromies as products of positive Dehn twists by applying a generalized lantern
relation that we develop in Lemma 3.5. (In fact, it suffices to prove fillability of tight
contact structures M.�1I .p� 1/=p; 1=2; 1=p/, since all the contact structures in our
family arise via Legendrian surgeries on these.)

To obstruct the existence of a positive factorization, we work with abelianization of
the mapping class group as before. There we can completely determine the cone of
positive mapping classes. The complete picture can be difficult to use in general, and
so we extract some simpler invariants which are easier to use. The methods used here
generalize easily and can in practice be quite simple to apply to a given open book.
We believe that the techniques here will be useful to those looking to determine the
tightness or fillability of a contact structure given as a planar open book.
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The following lemma will be used repeatedly to control the number of Dehn twists in
possible positive factorizations.

Lemma 3.1 Let � 2 Map Dn be given as a product of (positive or negative) Dehn
twists. Suppose a hole q is enclosed by b boundary and k nonboundary twists. Here b

and k are the algebraic or signed counts of Dehn twists in a presentation of � . Then in
any positive factorization of � there are no more than kC b nonboundary Dehn twists
enclosing q .

Proof We generalize Equations (1)–(2). Suppose � is given as a factorization into
Dehn twists involving kC positive and k� negative Dehn twists around q , so that
k D kC�k� . Further suppose the kC positive Dehn twists enclose m1;m2; : : : ;mkC

holes, while the k� negative Dehn twists enclose respectively M1;M2; : : : ;Mk� holes
each. Assume that � has a positive factorization where the hole q is enclosed by l

nonboundary positive Dehn twists around resp. n1; n2; : : : ; nl holes. Computing the
multiplicity mq of the boundary twist around q in the decomposition of � , as well as
the pairwise multiplicities mqq0 of all pairs that involve q , we have

.m1� 1/C � � �C .mkC � 1/� .M1� 1/� � � � � .Mk� � 1/

D .n1� 1/C � � �C .nl � 1/;

.M1� 2/C � � �C .Mk� � 2/C b� .m1� 2/� � � � � .mkC � 2/

� �.n1� 2/� � � � � .nl � 2/:

It follows that kC b D kC� k�C b � l .

Example 3.2 To avoid the more tedious analysis of cases that we’ll need later on, we
begin with an example taken from [8, Figure 7], which is a tight contact structure „
on the Seifert fibered space M DM.�1I 1=2; 1=2; 1=p/. The contact structure „ is
given by the surgery diagram on the left of Figure 9; we can convert it into an open book
on the right. (The order of Dehn twists is unimportant for this particular product.) It is
shown in [8] that for p> 2 .M; „/ is not Stein fillable, and that it is not symplectically
fillable for p 6� 2 mod 8. Since .M; „/ can be represented by a planar open book,
Stein nonfillability together with Wendl’s work immediately implies that .M; „/ is
not symplectically fillable for all p > 2. We now obtain an alternative quick proof of
nonfillability, using our technique.

The monodromy ˆ of the open book representing .M; „/ is the product of several
positive and one negative Dehn twist. There are p�1� 2 holes outside of the negative
Dehn twist; denote them by s1; : : : ; sp�1 . Suppose that ˆ is factored into a product of
positive Dehn twists around some curves; let fD˛g be the set of nonboundary twists in
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Figure 9: The nonfillable tight contact structure on M.�1I 1=2; 1=2; 1=p/ .
The surgery diagram has two +1 contact surgeries (on the thicker Legendrian
unknots); the rest are Legendrian surgeries. Accordingly, the monodromy is
the product of one negative Dehn twist (around the thicker curve) and many
positive ones.

this factorization. Lemma 3.1 implies that every hole in the picture can be enclosed by
no more than two of D˛ ’s. Moreover, the pair of holes q1 and q2 is enclosed by one
positive and one negative Dehn twist, so the multiplicity mq1q2

is zero. This means
that none of D˛ ’s can enclose both q1 and q2 .

Now, consider the hole s1 . Since the pairs fq1; s1g, fq2; s1g, ft; s1g must all be
enclosed with multiplicity 1, q1 and q2 cannot be enclosed together, and s1 is enclosed
by no more than two nonboundary twists, we must have a twist D˛1

that encloses
t , q1 , and s1 (but not q2 ), and another twist D˛2

that encloses q2 and s1 (but not
q1 and t ). (The roles of q1 and q2 may be reversed). See Figure 10. Because the
pair fq2; tg has multiplicity 1, there must also be the twist D˛3

that encloses t and
q2 but not q1 and s1 . Next, consider the hole s2 . Since ms1s2

D 1, and D˛1
, D˛2

are the only nonboundary twists around s1 , the hole s2 is enclosed by exactly one
of D˛1

and D˛2
. If s2 were in D˛1

, we would have mts2
D 2 (if s2 is in D˛3

), or
mq2s2

D 0 (if it isn’t). Similarly, if s2 were in D˛2
, we have mts2

D 2 or mq1s2
D 0.

The contradiction shows that a positive factorization of ˆ can’t exist.

Remark 3.3 When p D 2, the corresponding contact structure „ is Stein fillable.
This can be seen from the open book: indeed, if there are no additional holes s2; : : : ; sk ,
by the lantern relation Figure 10 provides a positive factorization of the monodromy as
the product DıD˛3

D˛2
D˛1

, where Dı is the boundary twist around the hole q1 .
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Figure 10: Trying to construct a positive factorization for the monodromy of
the open book from Figure 9

The above argument readily generalizes to some more complicated open books repre-
senting contact structures on other spaces M.�1I r1; r2; r3/.

Recall that tight contact structures on the Seifert fibered space M.�1I r1; r2; r3/,
where r1; r2 � 1=2, were classified in [8] and can be described as follows. The space
M.�1I 1=2; 1=2; 1=p/ carries exactly three tight contact structures for each p > 2;
two of them are Stein fillable, the third is the nonfillable contact structure „ we studied
in Example 3.2. It was shown in [8] that for r1; r2 � 1=2, all tight contact structures
on M.�1I r1; r2; r3/ can be obtained via Legendrian surgeries on these three contact
structures. The Legendrian surgeries arise from the continued fraction expansions of
r1; r2; r3 ; thus, the surgeries are performed on chains of Legendrian unknots, with
coefficients ai ; bi ; ci . The Legendrian unknots must be stabilized accordingly, to match
tb�1 and the surgery coefficients. In general, many choices for stabilizations may be
possible. Fillability needs to be investigated only for those contact structures obtained
from „, as all others will automatically be fillable.

We first prove the “fillable” part of Theorem 1.4. Indeed, suppose c1Dp�max.k1; k2/.
We can assume k1 � k2 ; this assumption implies Œa1; a2; : : : ; ap�1�D Œ2; 2; : : : ; 2�D

.p�1/=p . In that case, all the tight contact structures on M.�1I r1; r2; r3/ are obtained
from M.�1I .p� 1/=p; 1=2; 1=p/ by Legendrian surgeries. Thus, it suffices to prove
the following:

Proposition 3.4 All tight contact structures on M.�1I .p�1/=p; 1=2; 1=p/ are Stein
fillable.
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Figure 11: (a) Generalized lantern relation for a disk with k C 2 holes.
(b) Proving it inductively: After m� 1 applications of the classical lantern
relation, the monodromy from the top right picture can be written as k�mC1

positive Dehn twists around ı , a negative twist around 
m , and positive twists
around ˛1; ˛2; : : : ; ˛m; ˇm , where the curve ˇm encloses m holes.

Proof We only need to check fillability of the (unique) contact structure on the
manifold M.�1I .p � 1/=p; 1=2; 1=p/ obtained by Legendrian surgery on „. Its
contact surgery diagram is shown on the left of Figure 12; to build the open book, we
translate the chains of small unknots in the surgery diagram into sequences of push-offs
of the stabilized unknot they are linked to. This is possible because the standard
Legendrian meridian and the push-off of a Legendrian knot are Legendrian isotopic in
the manifold obtained by Legendrian surgery on this knot [2]. The resulting open book
is on the right of Figure 12. To prove the proposition, we rewrite the monodromy as a
product of positive Dehn twists using the lantern-type relation of Lemma 3.5 below.

Geometry & Topology, Volume 14 (2010)



Planar open books, monodromy factorizations and symplectic fillings 2095

.

.

.

.

.

.

.

.

.
s1 sp�1

p� 1 twists

Figure 12: A fillable contact structure on M.�1I .p� 1/=p; 1=2; 1=p/

Lemma 3.5 In the mapping class group of the disk with kC 2 holes, the relation

.Dı/
kDı1

Dı2
� � �DıkC1

D˛ DDˇD˛kC1
� � �D˛2

D˛1

holds for positive Dehn twists around curves shown in Figure 11(a). Our convention
for products means that in the right-hand side, Dˇ is performed first.

Proof The classical lantern relation, together with an inductive argument, shows that
the relation

.Dı/
kD˛Dı1

Dı2
� � �DıkC1 D .Dı/

k�mC1D˛.D
m
/�1Dˇm

D˛m
� � �D˛2

D˛1

holds for each m, kC 1�m� 2. The right-hand side of this identity is illustrated on
Figure 11(b); note that 
kC1 D ˛ .

It remains to prove the nonfillability part of Theorem 1.4. To this end, we construct the
candidate nonfillable structures as follows. As before, we consider contact structures
obtained by Legendrian surgery on .M.�1I 1=2; 1=2; 1=p/;„/ (for various values
p > 2). The coefficients a1; : : : ; ak1

; b1; : : : ; bk2
are equal to 2 and thus correspond

to standard unknots with no stabilizations. If k1 < n1 or k2 < n2 , there are some
coefficients ak1C1; bk2C1; : : : that are greater than 2. This means that the corresponding
Legendrian unknots must be stabilized; we assume that all stabilizations are chosen on
the left. Similarly, we stabilize on the left all the unknots corresponding to the continued
fraction expansion r3 D Œc1; c2; : : : cn3

�; note that c1 D p if our contact structure
is obtained from .M.�1I 1=2; 1=2; 1=p/;„/. The resulting contact structure � on
M.�1I r1; r2; r3/ is given by the contact surgery diagram and the open book shown
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Figure 13: Nonfillable tight contact structures on M.�1I r1; r2; r3/ , with
1> r1; r2 � 1=2

in Figure 13. (As in Proposition 3.4, we use the identification of the meridian and
the push-off of a Legendrian knot in a surgered manifold [2] to translate the chains of
small unknots in the surgery diagram into sequences of iterated and possibly stabilized
push-offs.)

Recall that � is tight by [8] (indeed, the Heegaard Floer contact invariant c.„/ is
nonzero, so c.�/¤ 0 as well).

Proposition 3.6 The contact structure � on M.�1I r1; r2; r3/ described above and
shown in Figure 13 is nonfillable.
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Proof We first point out several features of the open book representing � . The
monodromy is the product of Dehn twists itemized below: there is a unique negative
Dehn twist (explicitly mentioned in the list), and all other Dehn twists are positive.

� There is a collection of n1 Dehn twists enclosing the holes q1 and t ; k1 of
them enclose exactly these two holes, the extra n1� k1 , if present, all enclose a
hole w1 , but not q2 or s1; s2; : : : ; sc1�1 .

� There is a collection of n2 Dehn twists enclosing the holes q2 and t ; k2 of
them enclose exactly these two holes, an extra n2� k2 , if present, all enclose a
hole w2 , but not q1 or s1; s2; : : : ; sc1�1 .

� There is one negative Dehn twist enclosing three holes q1 , q2 and t .

� There are n3 Dehn twists enclosing c1C2 holes q1 , q2 , t , and s1; s2; : : : ; sc1�1 ,
and perhaps some additional holes (but not w1 or w2 ).

Our task is to show that this monodromy admits no positive factorization. We will do
so by analyzing the Dehn twists that can enclose the holes si . First, notice that since
the multiplicity of any pair fw1; sig, fw2; sig is zero, any Dehn twist in a positive
factorization that encloses of the si ’s cannot enclose w1 or w2 . We will refer to the
nonboundary Dehn twists that contain neither w1 nor w2 as inner Dehn twists; the
(nonboundary) Dehn twists containing w1 or w2 will be called outer twists, and will
not play much role in our argument.

First, we will calculate multiplicities of pairs of holes and use Lemma 3.1 to establish
the following properties of any possible positive factorization.

(a) Exactly n3� 1 inner Dehn twists contain both q1 and q2 ; all of these contain t .

(b) Exactly k1 inner Dehn twists contain q1 and t , but not q2 (call these tq1 –twists).

(c) Exactly k2 inner Dehn twists contain q2 and t but not q1 (call these tq2 –twists).

(d) There is at most one inner Dehn twist D˛1
that contains q1 but not q2 or t .

(e) There is at most one inner Dehn twist D˛2
that contains q2 but not q1 or t .

(f) Each of the holes s1; s2; : : : ; sc1�1 is contained in exactly n3C 1 nonboundary
Dehn twists, exactly n3 of which enclose t , exactly n3 enclose q1 and exactly
n3 enclose q2 .

(g) Any two holes si , sj are enclosed together by exactly n3 Dehn twists.

To prove (a), observe that the multiplicity of the pair fq1; q2g is n3� 1, which means
there must be n3 � 1 Dehn twists enclosing both holes. Each of them is an inner
twist, since mq2;w1

D mq1;w2
D 0. To see that all of these contain t , notice that by
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Lemma 3.1 there are at most n1Cn2Cn3�1 Dehn twists containing t ; n1�k1 resp.
n2 � k2 of these must enclose w1 resp. w2 , so there are at most k1C k2C n3 � 1

inner Dehn twists containing t . Of these, at least k1C n3 � 1 contain q1 (because
mq1t Dn1Cn3�1, and q1 can be in no more than n1�k1 outer Dehn twists containing
t and w1 , and in none containing w2 ). Similarly, at least k2 contain q2 . Since all
three holes t , q1 , and q2 can be enclosed together by no more than n3�1 inner twists,
the statements (a), (b) and (c) follow.

To prove (d), observe that by Lemma 3.1 there are at most n1Cn3 nonboundary Dehn
twists enclosing q1 . Of these, n1� k1 are outer twists (containing w1 ). This leaves
at most k1C n3 inner twists enclosing q1 . By (a) and (b), at most one of these inner
twists can contain neither t nor q2 . The proof of (e) is similar.

Finally, (f) follows from the fact that mq1si
Dmq2si

Dmsi t D n3 , together with (a)
and Lemma 3.1; (g) is merely a multiplicity count.

We now show that properties (a)–(f) cannot hold if c1� 1>max.k1; k2/. Indeed, (f),
(a), (d) and (e) imply that each of the holes si is enclosed by n3� 1 twists containing
the three holes t , q1 , q2 (these are the twists described in (a)). For the remaining
two twists enclosing si , there are two possibilities: (i) a tq1 –twist and D˛2

, or (ii) a
tq2 twist and D˛1

. Moreover, no two of the holes si can be contained in the same
tq1 –twist: they are also both contained in the D˛2

twist and in all the twists of (a),
which contradicts (g). Similarly, no two si ’s can be contained in the same tq2 –twist.
Because c1� 1>max.k1; k2/, we conclude that there must be a nonempty subset of
fs1; s2; : : : ; sc1�1g for which (i) holds true, and a nonempty subset for which (ii) holds
true. Pick a hole from the first subset and another from the second; since we’ve listed
all the n3C 1 twists enclosing each of these holes, we see that this pair of holes is
enclosed together only by the n3� 1 twists containing the three holes t , q1 , q2 . This
is a contradiction with (g).

Remark 3.7 In fact, we have established nonfillability for a much wider class of
contact structures on Seifert spaces M.�1I r1; r2; r3/ for which the condition c1� 1>

max.k1; k2/ is satisfied. Indeed, we only used the hypothesis that the unknots corre-
sponding to ak1C1 and bk2C1 have at least one stabilization on the left, and that the
unknot corresponding to c1 has more than max.k1; k2/ stabilizations on the left. All
the other stabilizations may be chosen arbitrarily.

4 Concluding remarks

In the previous section, we worked with the spaces M.�1; r1; r2; r3/ such that r1; r2�

1=2 because this condition was essential for the classification results and for the proofs
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of tightness of [8]. In fact, with slightly more tedious case-by-case analysis, one
can extend our nonfillability results to certain spaces M.�1I r1; r2; r3/, with arbitrary
r1; r2 2 .0; 1/. We can also consider Seifert fibered spaces with more than 3 singular
fibers; it is not hard to give sufficient conditions for an open book similar to the one in
Figure 13 to represent a nonfillable contact structure. One can also hope to understand
fillability for a wider class of open books (not necessarily planar) by using the fiber sum
construction of [26]. In many of these situations, contact structures can be shown to be
nonfillable by easy combinatorial considerations in the abelianization of the mapping
class groups of planar surfaces.

However, nonfillability does not seem to be an interesting property unless the contact
structure is known to be tight. In most cases, a proof of tightness requires an application
of Heegaard Floer homology. For the spaces M.�1; r1; r2; : : : ; rk/, nonvanishing
of the Heegaard Floer contact invariant (and thus tightness) can be checked via the
criterion of [19, Theorem 1.2], although this often requires lengthy calculations related
to Heegaard Floer homology (see [20]).

It would be interesting to find hypotheses on the monodromy of a planar open book
that ensure tightness of the corresponding contact structure. One related condition is
the right-veering property of an open book [14]; indeed, a contact structure is tight
if and only if every compatible open book is right-veering. In general, one needs to
consider all compatible open books; indeed, by stabilizing an arbitrary open book, one
can always obtain a right-veering open book representing the given contact structure.
This is shown in [14, Proposition 6.1]; in fact, the proof of that proposition shows that
stabilizations can be done without increasing the genus of the open book (but increasing
the number of its boundary components). Thus, every contact structure supported by
a planar open book can be supported by a right-veering planar open book. In fact,
one can perform additional stabilizations to increase the pairwise multiplicities of the
monodromy; it is not hard to show that every contact structure supported by a planar
open book is supported by a planar open book with right-veering monodromy and
positive pairwise multiplicities. By contrast, recall that a contact structure supported by
an open book of genus one with one boundary component is tight if this particular open
book is right-veering [15]; one can hope that since planar open books are another very
special case, some sufficient conditions for a given monodromy to ensure tightness can
be found.

In another direction, it would be interesting to generalize the classification results of
Section 1. Indeed, it is possible to analyze positive factorizations in the abelianization
of the mapping class group for a wide class of contact structures. However, we have
no analogs of Lemma 2.3 (in fact no analogs of the theorem of [16]), and this poses a
major obstacle for further classification results.
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