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Boundaries of systolic groups

DAMIAN OSAJDA
PIOTR PRZYTYCKI

For all systolic groups we construct boundaries which are EZ —structures. This
implies the Novikov conjecture for torsion-free systolic groups. The boundary is
constructed via a system of distinguished geodesics in a systolic complex, which we
prove to have coarsely similar properties to geodesics in CAT(0) spaces.

20F65, 20F67; 20F69

1 Introduction

There are many notions of boundaries of groups used for various purposes. In this paper
we focus on the notions of Z —structure and E Z —structure introduced by Bestvina [3]
and studied eg by Dranishnikov [12] and Farrell-Lafont [16]. Our main result is the
following.

Theorem A (Theorem 6.3) Leta group G act geometrically by simplicial automor-
phisms on a systolic complex X . Then there exists a compactification X = X U dX of
X satisfying the following:

(D) X is a Euclidean retract (ER).
(2) 0X isa Z-setin X .
(3) For every compact set K C X, (gK)gec is a null sequence.

(4) The action of G on X extends to an action by homeomorphisms of G on X .

A group G as in Theorem A is called a systolic group. It is a group acting geometrically
(ie cocompactly and properly discontinuously) by simplicial automorphisms on a
systolic complex—contractible simplicial complex satisfying some local combinatorial
conditions. Systolic complexes were introduced by Chepoi [8] (under the name of
bridged complexes) and, independently, by Januszkiewicz—Swiatkowski [19] and by
Haglund [17] (in Section 2 we give some background on them). Systolic complexes
(groups) have many properties of nonpositively curved spaces (groups). There are
systolic complexes that are not CAT(0) when equipped with the path metric in which
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every simplex is isometric to the standard Euclidean simplex. On the other hand, there
are systolic groups that are not hyperbolic, eg Z?. Summarizing, the systolic setting
does not reduce to the CAT(0) or to the hyperbolic one. Systolic groups admit various
combinatorial constructions (see Haglund [17], Januszkiewicz—SwiaJkowski [19] and
Arzhantseva et al [1]) with unexpected properties (see J anuszkiewicz—éwiqtkowski [20]
and Arzhantseva et al [1]). We also believe that eventually both systolic complexes
and CAT(0) cubical ones will be placed among a wider family of combinatorially
nonpositively curved contractible cell complexes.

Here we give the other definitions that appear in the statement of Theorem A. A compact
space is a Euclidean retract (or ER) if it can be embedded in some Euclidean space as
its retract. A closed subset Z of a Euclidean retract Y is called a Z —set if for every
open set U C Y, the inclusion U \ Z — U is a homotopy equivalence. A sequence
(K;)72 of subsets of a topological space Y is called a null sequence if for every open
cover U = {U;};c; of Y all but finitely many K; are U—small, ie for all but finitely
many ; there exist i () such that K; C Uy(j).

Conditions (1), (2) and (3) of Theorem A mean (following Bestvina [3], where only
free actions are considered, and Dranishnikov [12]) that any systolic group G admits
a Z—structure (X, 3X). The notion of an E Z —structure, ie a Z—structure with the
additional property (4) was explored by Farrell-Lafont [16] (in the case of a free action).

Bestvina [3] showed that some local homological invariants of the boundary dX are
related to cohomological invariants of the group. In particular, the dimension of the
boundary is an invariant of the group ie it does not depend on the Z—structure we
choose. This was generalized by Dranishnikov [12] to the case of geometric actions.
We emphasize that the homeomorphism type of the boundary is not a group invariant
(but the shape is an invariant; see Bestvina [3]). This was proved by Croke—Kleiner [10]
in the context of visual boundaries of CAT(0) spaces.

Carlsson—Pedersen [7] and Farrell-Lafont [16] proved that existence of an £ Z —struc-
ture on a torsion-free group G implies that the Novikov conjecture is true for G . Thus,
by Theorem A, we get the following.

Corollary Torsion-free systolic groups satisty the Novikov conjecture.

Bartels—Liick [2] prove the Borel conjecture (which in particular implies the Novikov
conjecture) for a class B of groups which includes CAT(0) groups and hyperbolic
groups and is closed under some elementary operations. All systolic groups known to
us belong to the class B. However it is not likely that all systolic groups belong to B.

There are only a few classes of groups for which a Z —structure (X', 3X) has been found
(and even fewer for which an E Z —structure is known). The most important examples
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are: hyperbolic groups (see Bestvina—Mess [4]) —where X is the Rips complex and
dX is the Gromov boundary; CAT(0) groups —where X is a CAT(0) space and dX
is the visual boundary of X; relatively hyperbolic groups whose parabolic subgroups
admit a Z —structure (see Dahmani [11]). Bestvina [3] asked whether every group G
with finite K(G, 1) has a Z —structure.

The question whether every systolic group has an E Z —structure was posed by Janusz-
kiewicz and Swiatkowski in 2004. Theorem A answers affirmatively this question.

We hope that, similarly to the hyperbolic and CAT(0) cases, our boundaries will be also
useful for purposes other than the ones mentioned above. In particular we think that
splittings of systolic groups can be recognized through the topology of the boundary,
as in eg Bowditch [5] and Papasoglu—Swenson [22]. Studying more refined structures
on the boundary could help in obtaining rigidity results for some systolic groups.

The essential point of our construction is the choice of the system of good geodesics
(derived from the system of Euclidean geodesics, the distinction is not important at
this moment), which is coarsely closed under taking subsegments (Theorem B below),
and which satisfies coarsely a weak form of CAT(0) condition (Theorem C below).

Recall that J anuszkiewicz—ﬁwiatkowski [19] considered a system of directed geodesics
in a systolic complex (cf Definition 2.11). One may try to define the boundary of a
systolic complex by taking the inverse limit of the following system. Consider the
sequence of combinatorial spheres around a fixed vertex O and projections from larger
to smaller spheres along the directed geodesics terminating at O. Unfortunately, the
inverse limit of this system does not satisfy, in general, property (3) of Theorem A.
Property (3) fails, for example, already for the flat systolic plane (cf Definition 7.1).

Hence, instead of using directed geodesics, we introduce Euclidean geodesics, which
behave like CAT(0) geodesics with respect to the flat subcomplexes of a systolic
complex. To define the Euclidean geodesic between two vertices, say s, ¢, in a systolic
complex, we consider the loop obtained by concatenating the two directed geodesics
joining s to ¢ and ¢ to s. Then we span a minimal surface S on this loop. (We make
use of minimal surface theory developed by Elsner [15]. To obtain some uniqueness
properties on S we complement Elsner’s theory with our results on layers, which span
the union of all 1—skeleton geodesics between ¢ and s.) The surface S is isometric to
a contractible subcomplex of the flat systolic plane and hence has a natural structure of
a CAT(0) space. The Euclidean geodesic is defined as a sequence of simplices in S,
which runs near the CAT(0) geodesic between s and ¢.

Now we pass to the more technical part of the exposition. Formally, the Euclidean
geodesic is defined for a pair of simplices o, T in a systolic complex, which satisfies
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o C Su(t),7 C Sy(o) for some n > 0 (where Sy(0) denotes the combinatorial
sphere of radius »n around o, cf Definition 2.4). The Euclidean geodesic is a certain
sequence of simplices 8, where 0 < k < n, such that 6y = 0,8, = 7, and §; C
S10k+1)s 0k +1 C S1(8x) for 0 <k < n (cf Lemma 9.15(i)). The two most significant
features of Euclidean geodesics are given by the following.

Theorem B (Theorem 12.2) Let o, t be simplices of a systolic complex X , such
that for some natural n we have 0 C Sy(t), T C Sy(0). Let (8x); _, be the Euclidean
geodesic between o and t. Take some 0 </ <m =< n and let (ry);'_; be a 1-
skeleton geodesic such that ry € 6y for | < k < m. Consider the simplices §; =
r, gl+1, ceey gm = 1y, of the Euclidean geodesic between vertices r; and ry,. Then for
each | <k <m we have |0y, gk| < C, where C is a universal constant.

Theorem C (Theorem 13.1) Let s,s’,t be vertices in a systolic complex X such
that |st| = n, |s't| = n’. Let (k)] _,» (VJQ)Z;O be 1-skeleton geodesics such that ry, €
8.1y, €8y, where (8), (8;,) are Euclidean geodesics for ¢, s and for t, s" respectively.
Then for all 0 < ¢ < 1 we have |r|cp7(cp || < c|ss’| + C, where C is a universal
constant.

The article is organized as follows. It consists of an introductory part (Sections 1-2),
two main parts (Sections 3—6 and Sections 7-13) which can be read independently and
a concluding Section 14.

In Section 2 we give a brief introduction to systolic complexes.

In the first part, assuming we have defined Euclidean geodesics satisfying Theorem B
and Theorem C, we define the boundary: In Section 3 we define the boundary as a
set of equivalence classes of good geodesic rays. Then we define topology on the
compactification obtained by adjoining the boundary (Section 4) and we show its
compactness and finite dimensionality (Section 5). Finally, in Section 6, we prove
Theorem A —the main result of the paper.

In the second part of the article we define Euclidean geodesics and establish Theorem B
and Theorem C: In Section 7 we recall Elsner’s results on minimal surfaces. In
Section 8 we study layers, whose union contains all geodesics between given vertices.
We define Euclidean geodesics in Section 9.

In the next two sections we prove Theorem 10.1 which is a weak version of Theorem B
(though with a better constant). Apart from the definitions these sections can be
skipped by a hurried reader. We decided to include them since this way of obtaining
(the weak version of) Theorem B is straightforward in opposition to the strategy in
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Section 12, which is designed to obtain Theorem C. In Section 10 we study the position
of directed geodesics between two simplices of a given Euclidean geodesic with respect
to the minimal surface appearing in its construction. Then we verify Theorem 10.1 in
Section 11 by studying CAT(0) geometry of minimal surfaces.

The last two sections are devoted to the proofs of Theorem B and Theorem C: In
Section 12 we prove (in a technically cumbersome manner) the powerful Proposition
12.1 linked with CAT(0) properties of the triangles, whose two sides are Euclidean
geodesics. Proposition 12.1 easily implies Theorem B, but its main application comes
in Section 13, where we use it to derive Theorem C.

We conclude with announcing some further results for which we do not provide proofs
in Section 14.
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2 Systolic complexes

In this section we recall (from J anuszkiewicz—Swia;ckowski [19; 20] and Haglund—
Swiatkowski [18]) the definition and basic properties of systolic complexes and groups.

Definition 2.1 A subcomplex K of a simplicial complex X is called full in X if
any simplex of X spanned by vertices of K is a simplex of K. The span of a
subcomplex K C X is the smallest full subcomplex of X containing K. We denote it
by span(K). A simplicial complex X is called flag if any set of vertices, which are
pairwise connected by edges of X', spans a simplex in X . A simplicial complex X is
called k—large, for co> k >4, if X is flag and there are no embedded cycles of length
less than &, which are full subcomplexes of X (ie X is flag and every simplicial cycle
of length at least 4 and less than k “has a diagonal”).

Definition 2.2 A simplicial complex X is called systolic if it is connected, simply
connected and links of all simplices in X are 6—large. A group I' is called systolic
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if it acts cocompactly and properly (ie geometrically) by simplicial automorphisms
on a systolic complex X . (Properly means X is locally finite and for each compact
subcomplex K C X the set of y € I" such that y(K) N K # & is finite.)

Recall a result of Januszkiewicz—Swiatkowski [19, Proposition 1.4 ], that systolic
complexes are themselves 6-large. In particular they are flag. Moreover, we have the
following.

Theorem 2.3 [19, Theorem 4.1(1)] Finite dimensional systolic complexes are con-
tractible.

Now we briefly treat the definitions and facts concerning convexity.

Definition 2.4 For every pair of subcomplexes (usually vertices) A, B in a simplicial
complex X denote by |4, B| (|ab| for vertices a, b) the combinatorial distance between
A© BO) in XD the 1-skeleton of X (ie the minimal number of edges in a simplicial
path connecting both sets). A subcomplex K of a simplicial complex X is called
3—convex if it is a full subcomplex of X and for every pair of edges ab, bc such that
a,ce€ K, |ac| =2,wehave b € K. A subcomplex K of a systolic complex X is called
convex if it is connected and links of all simplices in K are 3—convex subcomplexes
of links of those simplices in X .

J anuszkiewicz—éwiqtkowski [19, Lemma 7.2] conclude that convex subcomplexes of
a systolic complex X are full and 3—convex in X, and systolic themselves, hence
contractible by Theorem 2.3. The intersection of a family of convex subcomplexes is
convex. For a subcomplex Y C X, n > 0, the combinatorial ball B,(Y) of radius n
around Y is the span of {p € X :|p, Y| <n}. (Similarly S, (Y) = span{p € X(© :
|p,Y| =n}.) If Y is convex (in particular, if Y is a simplex) then B,(Y) is also

convex, as proved by Januszkiewicz—Swiatkowski [19, Corollary 7.5]. Combining this
with previous remarks we record:

Corollary 2.5 In systolic complexes, balls around simplices are contractible.
Haglund—-Swiatkowski prove the following.

Proposition 2.6 [18, Proposition 4.9] A full subcomplex Y of a systolic complex X
is convex if and only if Y s geodesically convex in X M (ie if all geodesics in X M
joining vertices of Y lie in YD),

We record:

Corollary 2.7 In systolic complexes balls around simplices are geodesically convex.
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We will need a crucial “projection lemma”. The residue of a simplex o in X is the
union of all simplices in X', which contain o .

Lemma 2.8 [19,Lemma7.7] LetY be aconvex subcomplex of a systolic complex X
and let o be a simplex in S1(Y). Then the intersection of the residue of ¢ and of the
complex Y is a simplex (in particular it is nonempty).

Definition 2.9 The simplex as in Lemma 2.8 is called the projection of o onto Y.
The following lemma immediately follows from Definition 2.9.

Lemma 2.10 Let o C ¢ be simplices in S1(Y) for some convex Y and let 7w, T be
their projections onto Y . Then & C 7.

Definition 2.11 For a pair of vertices v, w with |[vw| = n in a systolic complex X
we define inductively the sequence of simplices o9 = v, 071,...,0, = w as follows.
Take o; equal to the projection of ;1 onto B,_;(w) fori =1,...,n—1,n. The
sequence (07)}_, is called the d,irected geodesic from v to w (this notion is introduced
and studied by Januszkiewicz—Swiatkowski [19]).

We can extend this construction to any pair (oo, W), where W is a convex subcomplex
of X and oy is a simplex. Namely, if for some n we have oy C S, (W) then take
o; to be the projection of 0;_1 onto B,—_;(W). If oy intersects both S,(W) and
Su—1 (W) then take o4 = 09 N Sy—1 (W) and then proceed as previously. We call the
final 0, C W the projection of oy onto W . Note that this coincides with Definition
2.9. Observe that if 09 C W then the projection of oy onto W is equal to oy.

Finally, recall a powerful observation.

Lemma 2.12 [20, Lemma 4.4] Every full subcomplex of a systolic complex is
aspherical.

3 Definition of the boundary

Let X be a systolic complex. In this section we give two equivalent definitions of
the boundary of X as a set. We use the notion of Euclidean geodesics which will be
introduced in Section 9, but actually we need only its features given by Theorem B and
Theorem C. Thus, it is enough to read Sections 1-2 to follow the first part of the article
(Sections 3—6). Let C be a natural number, which is a universal constant satisfying
assertions of both Theorem B and Theorem C.
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Remark 3.1 Let (§;)7_, be a Euclidean geodesic and let vy be a vertex in §; for
some 0 <k <n. Then there exists a 1-skeleton geodesic (v;)7_, such that v; € §; for
0 <i <n. This follows from the fact that §; 1 C S1(§;), which we use for 1 <i <k,
and from §; C S1(8;41), which we use for k <i <n—1 (see Section 1 or Lemma
9.15(1)).

Definition 3.2 Let v, w be vertices of a systolic complex X. Let y = (vg =
v, V1, V2,...,U; = w) be a geodesic in the 1-skeleton of X between v and w or
let y = (v = vg, vy, v2,...) be a 1-skeleton geodesic ray starting at v (then we set
n = o00). For 0 <i < j <n, we denote the Euclidean geodesic between v; and v; by
(8;.’1 = v, 8;’4{1, .. ,5}’1 = vj). We say that y is a good geodesic between v and w
or that y is a good geodesic ray starting at v if for every 0 <i < j <n and every
i <k < j we have |vg, 5;€’J| < C +1 (the constant C is defined at the beginning of

this section).

We denote the set of all good geodesic rays in X by R. For a given vertex O of X,
we denote the set of all good geodesic rays starting at O by Ro.

The following two results are immediate corollaries of Theorem B and Theorem C.

Corollary 3.3 For every two vertices v, w € X there exists a good geodesic between
them.

Proof Let (69 =v,61,...,8, = w) be the Euclidean geodesic between v and w. By
Remark 3.1, there exists a 1-skeleton geodesic y = (vo = v, vy, V2, ...,V = w) With
v; € 6;. We claim that y is a good geodesic. To justify the claimlet 0 <i < j <n.
Let (g,-, gi+h cees gj) be the Euclidean geodesic between v; and v;. By Theorem B,
for every i <k < j, we have

ok k| < 18 8kl +1 = C +1,
which justifies the claim. O
Corollary 3.4 Let (v9 = O,v1,V3,...,Vy), (Wg = O, wy,wy,...,Wy) be good

geodesics in X . Then for all 0 < ¢ <1 we have |v|cp|Wem)| < clvpwm| + D, where
D =3C+2.

Proof Let (87), (§;") be the Euclidean geodesics between O and vy, wp, , respectively.
Fix 0 <c¢ <1. Pick Verti(.:es vi_cn |€ 8],y and w/Lcm |€ SL”ém | Which realize the distance
t0 V[¢en|» Wiem| » Tespectively. Find 1-skeleton geodesics (v))?_, and (w;)/*; such
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that v} € §7 and w} € 8. Their existence is guaranteed by Remark 3.1. By Theorem C,
we have

|v[C"lech| = |v|_C”J Ui_cnj| + |vf_cnj wicmjl + |wi_cmjwlch|
= |ULC’lJ’ 51|_Jcnj| + |v1_cnj wi_cm]| + |51|_12mj’ chmJl
< (CH+ D+ (clvgwm| +C)+ (C + 1),

as desired. O
The following simple corollary of Corollary 3.4 will be useful.

Corollary 3.5 Let (vg = O,vy,v;,...,0;), (wo = O, w,ws, ..., w;) be good geo-
desics in X . Then for all 0 < N <min{k, !} we have [vywy| < 2|vgw;|+ D.

Proof Without loss of generality we can assume that k </. Observe that | —k < |viw;|.
Hence, by Corollary 3.4, we have

lonwn| = [vgwg| + D =< |vgwy| + |wywg |+ D
=|vpwi|+( —k)+ D <2|vgw;| + D. O

Below we define the central object of the article.

Definition 3.6 The ideal boundary (or shortly the boundary) of a systolic complex X
is the set dX = R/ ~ of equivalence classes of good geodesic rays, where rays
n = (v, v1,V2,...), £ = (wp, wq,ws,...) are identified if |v;w;| is bounded above
by a constant independent of i (one can check that this happens exactly when the
Hausdorff distance between n and £ is finite). For a good geodesic ray 7, we denote
its equivalence class in dX by [7].

In order to introduce topology on X = X U dX we give another definition of the
boundary. The two definitions will turn out to be equivalent in the case of a systolic
complex with a geometric group action.

Definition 3.7 Let O be a vertex of a systolic complex X . Then the (ideal) boundary
of X with respect to the basepoint vertex O is the set o X = R/ ~ of equivalence
classes of good geodesic rays starting at O, where rays n = (v9 = O, v, v3,...), £ =
(wg = O, wy, ws,...) are identified if |v;w;| is bounded above by a constant indepen-
dent of i (again this happens exactly when the Hausdorff distance between 7 and &
is finite). For n € R, we denote its equivalence class in dp X by [5] (we hope this
ambiguity of the notation will not cause confusion).
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Lemma 3.8 Letn = (vg = 0,v,v3,...), § =(wyg = O, wy,wy,...) € Ro. Then
[n] = [§] if and only if |v;w;| < D for all i.

Proof We show that if for some i we have |v;w;|— D > 1, then [£] # [n]. Let i be
as above and R be a natural number. Then, by Corollary 3.4, we have

lvriwgi| = R(Jviw;| — D) = R.
Since R can be chosen arbitrarily large, we get [£] # [7]. ad

In the remaining part of this section we prove equivalence of the above two notions
of boundaries in the case of locally finite complexes. Assume that X is a locally
finite systolic complex. Let O € X be a fixed vertex and let n = (v°,v!,v?,. ..)
be a good geodesw ray in X. For every i > 0 we choose a good geodesic 7’

(v0 0.}, v}, .. () = v'), guaranteed by Corollary 3.3. Since B (0) is ﬁmte,
for some vertex v; € S1 (O) there are infinitely many i such that n(i) = |Ov*| > 1 and
v1 = vy . Similarly, since all balls are finite, we obtain inductively vertices vy € Si(O)
satisfying the following. For each k there are infinitely many i such that n(i) > k
and for all j < k we have v]". = v;. For each k denote some such i by i(k). The

following easy facts hold.

Lemma 3.9 The sequence (vo = O, vy, vy, ...) obtained as above is a good geodesic
ray. Moreover, for every j we have [v/v;j| <3|0v°|+ D.

Proof The first assertion follows from the fact that for every k the sequence (vo = O,
V1, V2, ..., Uk) is a subsequence of the good geodesic 7’ (&) and hence, by Definition
3.2, it is a good geodesic.

Now we prove the second assertion. Let j > 0. Consider the case of n(i(j)) <i(j)
(the case of n(z (j))>i(j) can be examined analogously). Then for k =i (j)—n(i(j))
we have |v v’(1)|—|v6(]) i(7)|. Thus we can apply Corollary 3.4 with m = n to good
geodesics ') and (v¥, vEt1 . vI()), which yields the following.

|Uk+jUj| — |vk+jv;(j)| < |vkvf)(j)| +D< (|0U0| +k)+ D.
Hence |vjvj| <k+ |vk+jvj| <|0v°| 42k + D <3]0V°|+ D,

where the last inequality follows from k& < |Ov°|, which is the triangle inequality for
vO,vi(j) and O. O

Corollary 3.10 Let X be a locally finite systolic complex and O, O’ its vertices. Then
the map ®o: 0X — dp X given by ®o([(v°, v!,v2,..)]) =[(vo = O, v, v3,...)] is
well defined. It is a bijection between dX and dp X . Its restriction @00 = ®olj,, x
is a bijection between do X and dp X .
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4 Topologyon X = X UdpX

Let X be a systolic complex and O € X be its vertex. In this section we define the
topology on the set X = X Udo X, which extends the usual topology on the simplicial
complex X . The idea is to define the topology through neighborhoods (not necessarily
open) of points in X . The only problem is to define the neighborhoods of points in the
boundary.

For a 1-skeleton geodesic or geodesic ray n = (vg, V1, V2, ...), we denote by B;(n)
the combinatorial ball of radius 1 around the subcomplex {vg, vy, v2,...}. Let C and
D = 3C + 2 be the constants from the previous section.

Definition 4.1 Let n = (vg = O, vy, v,,...) be a good geodesic ray in X and let
R>D (ie R= D+ 1)and N > 1 be natural numbers (in fact we could also allow
N =0, but this would complicate some computations later on). By Go(n, N, R) we
denote the set of all good geodesics (wg = O, wy,...,w;) with k > N and good
geodesic rays (O = wq, w1,...), such that [wyvy| < R. By G'o(n, N, R) we denote
the set

{wn, wN+1,..) [ (wo =0, wy,...) €Go(n, N, R)}.

A standard neighborhood of [n] € 90X C X is the set

Uo(.N.R) ={[§] 1§ € Go(n. N. )N Ro}U| J{intB1(€) [§ € G 0(n. N. R)} .
If it is clear what is the basepoint O, we write G(, N, R), G'(n, N, R) and U(n, N, R)
instead of Go(n, N, R), G'o(n, N, R) and Up(n, N, R).

Before we define the topology, we need the following useful lemmas. The first one is
an immediate consequence of the above definition.

Lemmad4.2 Letn & € Rp andlet N, N', R > D, R' > D be natural numbers such
that N’ > N . IfG(E, N', R') C G(1, N, R) then U(£, N’, R') C U(n, N, R).

Lemma 4.3 Let U(n, N, R) be a standard neighborhood, let £ € R be such that
[£] =[] and let R > D be a natural number. Then, for N’ > (R’ + D)N , we have
UEN',R)YCU@m, N, R).

Proof Denote n = (vg = O, v1,v,,...) and £ = (wg = O, wq, wy,...).

By Lemma 4.2, it is enough to show that for every ¢ € G(&, N, R') we have ¢ €
G(n, N, R).
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Let { = (zo = O,z21,22,...) € G(§, N', R"). By Corollary 3.4 and Lemma 3.8, we
have

/ / D<
lznon |+ SRTD

lzvun| < (Izvwnr | + [lwyvne|) + D

“R+D

<
" R'+D

Thus ¢ € G(n, N, R) and the lemma follows. ad

(R'+D)+D<R.

The following defines topology on X .

Proposition 4.4 Let A be the family of subsets A of X = X UdpX satisfying the
following. AN X is open in X and for every x € AN dpX there is some n € Ro
such that [n] = x and there is a standard neighborhood U(n, N, R) C A. Then A is a
topology on X .

Proof The only thing we have to check is the following. If A, A, € A and [5] €
A1 N A; Ndp X, then there is a standard neighborhood U(#n, N, R) of [n] contained
in A1 N Az .

Since A; € A, for i =1, 2, there are standard neighborhoods U(7;, N;, R;) C A; such
that [n;] = [n]. Thus, by Lemma 4.3, for any natural R > D there exists N > Nj,
i=1,2,suchthat U(n, N, R) CU(ny, N1, R{) NU(2, N2, Ry) CT A1 N Aj. O

Remark 4.5 The boundary dp X is a closed subset of X = X UdpX .

Remark 4.6 It is easy to verify that when X is §—hyperbolic (in the sense of Gromov)
then our boundary dp X (with topology induced from X') is homeomorphic in a natural
way with the Gromov boundary of X .

We still did not prove that the topology defined in Proposition 4.4 is nontrivial. This
will follow from the next two lemmas, in which we characterize the intersections with
the boundary of the interiors of standard neighborhoods. In particular, we show (in
Lemma 4.8) that [£] is contained in the interior of U(€, N, R).

Lemma 4.7 Foraset A C X, the intersection int AN do X consists of those points
x € dpX for which there exists a representative n with a standard neighborhood
Umn,N,R)C A.
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Proof Let B be the set of those points x € dp X for which there exists a representative
n of x with a standard neighborhood U(n, N, R) C A.

It is clear that intA N dp X C B, since int A is open in the topology defined in
Proposition 4.4. We want now to prove the converse inclusion B CintANdp X . Itis
clear that B C AN dpX . Thus to prove the lemma we only have to show that B is
open in do X (in the topology induced from X).

Let x € B and let its representative 7 be such that the standard neighborhood U(n, N, R’)
is contained in 4. By Lemma 4.3, we can assume that R’ > 2(D + 1). Choose natural
numbers R > D and N’ > RN . We claim that U(n, N, R) N dpX C B (ie that
equivalence classes of elements in G(n, N’, R) N R lie in B). This implies that B
isopenin dp X .

To justify the claim let £ € G(n, N', R) N R . To prove that [£] € B it is enough to
establish U(&, N, R) C U(n, N, R’), since the latter is contained in A. By Lemma
4.2, it is enough to show that for every ¢ € G(€, N, R), we have ¢ € G(n, N, R).
Let { = (zo = O,z1,...) € G(§, N', R). Denote n = (vg = O, vyq,...), § = (wy =
0, wi, .. )

By Corollary 3.4, we have
lzvon| S lzvwa | + [wyvy]
1 1
< (§|ZN,wN,| +D)+ (E|wN/vN/| +D)
1 1
<(=r D) (—R D)=2D )<R.
(R +D)+ R+ (D +1)

Thus ¢ € G(n, N, R’) and it follows that U(¢§, N’, R) C U(n, N, R’), which justifies
the claim. O

Lemma 4.8 Suppose that U(n, N, R) is a standard neighborhood and suppose & =
(wg = O, wy,wy,...) € Rp is such that vy = wy, where n = (vg = O, v, V3, ...).
Then [£] is contained in the interior of U(n, N, R).

Proof By Lemma 4.7, it is enough to show that there exists a standard neighborhood
U(& N’, R) of [€] contained in U(n, N, R). Let N’ > RN . By Lemma 4.2, it is
enough to show that for (zo = O, z1,23,...) € G(§, N', R), we have |zyvy| < R. By
Corollary 3.4, we have

1
R
as desired. O

1
lzvon] = [zyvwn] < E|ZN’wN’| +D=<—-R+D<=<R,
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Below we give a sufficient condition for two standard neighborhoods to be disjoint.

Lemma 4.9 Let U(n, N, R) and U(&, N, S) be two standard neighborhoods, with
n= o= 0,v1,v3,...) and £ = (wg= 0, w1, ws,...). If vywny|>R+S+D+2,
then U(n, N, R)NU(,N,S) =a.

Proof By contradiction. Assume U(n, N, R)NU(E, N, S) # 2.

Casel Letxe U, N,R)NU(E,N,S)N X. Then, by Definition 4.1, there exist
N =(vy=0,v],v},..)€G(n N,R) and & = (wy = O, wj, w)....) €GN, S)
such that x belongs to the interior of both some simplex with vertex v}( and some
simplex with vertex w;, for some k,!/ > N. Then these simplices coincide and
lvwy| < 1. By Corollary 3.5, we have

lovwi | < Jonviy |+ vy wiy |+ wywy| < R+Qlugwi|+D)+S < R+(2+D)+S,
which is a contradiction.
Case2 Letn' =(vy=0.v],v5....)€G(1 N,R) and & = (wy = O, w},w),...) €
G(E, N, S) be such that [n'] =[£’]. Then, by Lemma 3.8, we get
n y g
luvwn| = [ovvy| + oy wi| + [wywn| < R+ D+,
N NWN N

which is a contradiction. O

5 Compactness and finite dimensionality

Let X be a locally finite systolic complex and let O € X be its vertex. In this section
we show that X = X U do X is compact metrizable and (if X satisfies some additional
local finiteness conditions) finitely dimensional. We also prove that, for a different
vertex O’ of X, the compactifications X UdpX and X Udp/X are homeomorphic.

Proposition 5.1 If X is locally finite then the space X = X Udo X is second countable
and regular.

Proof It is clear that X is second countable. We show that X is regular.

First we show that X is Hausdorff. We consider only the case of two points of the
boundary—the other cases are obvious. Let [n] # [£] be two boundary points with
n=(vo=0,vq,v,,...) and £ = (wo = O, wy, wy,...). Fix a natural number R > D
(for example R = D +1). We can find NV such that [uywp| > 2R+ D +2. Then, by
Lemma 4.8, we have [n] € int U(n, N, R) and [§] €int U(€, N, R) and, by Lemma 4.9,
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we get intU(n, N, R)NintUE, N, R) CU(n, N, R)NU(E, N, R) = &. Thus we get
disjoint nonempty open neighborhoods of [1] and [£].

To show that X is regular it now suffices to find, for every point x € X and every
closed subset A C X which does not contain x, disjoint open sets U, V such that
x €U and A C V. The case of x € X is obvious, hence we consider only the case
of x =[n] € dpX, for n = (vg = O, v1,v,,...). Fix some natural R > D. Since
X \ 4 is open, by the definition of the topology (Proposition 4.4) and by Lemma
4.3, we can find a natural number N > 0 such that U(, N, R') C X \ 4, where
R >2D+2. Let NN=(R+1)N +1 andlet U =intU(n, N’, R). Observe that,
by Lemma 4.8, we have x € U. Now we define V. For each y € A N X, choose
an open set Vj, = int By (z’) for some vertex z’ in X such that y € int By(z’). Then
weset V=J{V,| ye ANX}UUJ{intU( N',R)| [§]€ ANdpX}. By Lemma
4.8, wehave ANJdpX C V,hence A C V. Thus to prove that U and V are as desired
we only need to show that U NV = &.

First we prove that U NintU(E, N, R) = &, for [§] € AN dpX. Let & =
(wog = O,wy,wy,...). Then, by Corollary 3.4 and by A NU(n, N,R') = &, we
have

/

N
lovwn| Z = (lvvwy| = D) > (R + )(R'— D)
>(R+1)(D+2)>2R+D+2.
Thus, by Lemma 4.9, U NintU(E, N', R) cU(n, N', R)NU(E,N',R) =&

Now we show that U N'Vy, = &, for y € AN X . By contradiction, assume p € UNV),.
Since p € U, there exist a vertex z of the simplex containing p in its interior and
a good geodesic (zo = O, z1,...,zx =z) € G(n, N', R), where k > N’. Then, by
Corollary 3.4, we have

N 1
|UNZN| < W|UN/ZN,|+D< §R+D§ D+ 1.

On the other hand, since p € Vy, there is a vertex z’ such that {y, p} € int B (Z’).
Then |zz/| < 1. Let (O = zy, 2], ...,z = 2') be a good geodesic. We have / > N'—1,
hence by Corollary 3.4 and Corollary 3.5, we get

|ZN/ 1Zyr—q| + D < —(2|zz|+D)+D

/
ZINZA | =
|NN|— R+

N/

- D 2
Summarizing, we have |vyzy| < [uxzn| + [zy2y| < 2D +2 < R'. It follows that
(O=zy,zy,....2; =2')€G(n, N, R") and hence y € U(n, N, R")—contradiction. O
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Corollary 5.2 If X is locally finite then the space X = X UdpX is metrizable.

Proof This follows from the Urysohn Metrization Theorem—cf Dugundji [13, Corol-
lary 9.2]. |

Proposition 5.3 If X is locally finite then the space X = X Udo X is compact.

Proof By Corollary 5.2, it is enough to show that every infinite sequence of points
in X contains a convergent subsequence. Let (x!, x2, x3 ) be a given sequence of
points in X . If for some 1 > 0 there are only finitely many x' outside the ball B,(O)
(which is finite), then we can find a convergent subsequence. From now on we assume

there is no »n as above.

For every i we choose a good geodesw ora good geodesic ray N = (vO 0, v1 , v2, .
in the following way. If x' € X then nt = (v0 0, vl,vz,... n(l)) is a good
geodes1c between O and a vertex vt (i) lylng in a common simplex with the point

. If x' € 0p X then we take n' so that x* = [n'] and we set n(i) = oo. By our
assumptlons on (x!,x2,x3,...), forevery n > 0 there exists an arbitrarily large i such
that n(i) > n. Since S (0) is finite, for some vertex vy € S1(0) there are infinitely
many i such that n(i) > 1 and v’i =v;. Let i (1) be some such i. Similarly, since
all spheres are finite, we obtain inductively vertices v, € Si(O) and numbers i (k)
satisfying the following. For each k there are infinitely many i such that n(i) > k and

for all j <k we have vji. = vj; we denote some such i >i(k —1) by i(k).

Observe that for every k the sequence (vg = O, vy, v, ..., Vg) is a subsequence of the
good geodesic or the good geodesic ray n' () and hence, by Definition 3.2, it is a good
geodesic. Thus every subsequence of the infinite sequence (vo = O, v, v;,...) isa
good geodesic and again, by Definition 3.2, (vo = O, vy, v;,...) is a good geodesic
ray.
We claim that the sequence (x"(k)),‘;‘;1 of points of X converges to [5] € 00X,
where n = (vg = O, vq,v,,...). To prove the claim it is enough to show (since
every open set containing [1] contains some U(n, N, R), by Lemma 4.3) that we have
n'®) e G(n, N, R), for every k > N . This follows from the equality vl( ) = = vy,
Wthh holds for every k > N . O

Observe that by the above proof we get the following.

Corollary 5.4 If a locally finite systolic complex is unbounded then its boundary is
nonempty.
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Below we prove that the bijection ® /o defined in Corollary 3.10 extends to a homeo-
morphism of compactifications coming from different basepoints.

Lemma 5.5 Let X be a locally finite systolic complex and let O, O’ be its vertices.
Then the map ®p/p: X Udpr X — X UdpX defined as an extension by identity on
X ofthe map ®prp: 0o X — 0o X is a homeomorphism.

Proof By compactness (Proposition 5.3) and by Corollary 3.10, we only have to
show that ® - is continuous. It is enough to check the continuity at the boundary
points. Let & = (vg = O, vy, v,,...) be obtained from a good geodesic ray n =
(v° = 0’,v',v?,...) as in the definition of the map ® o o. We show that ® ¢/ is
continuous at [n]. Let d =|00’|, let R > D be a natural number, let R’ = R+3D+6d
and let U be an open neighborhood of [£] in X U dp X . We have to show that there
exists an open neighborhood V of [5] in X U dp/ X such that ®p,o(V) C U. By
Lemma 4.3, there exists N such that Up(§, N, R")CU. Let V=intUgp/(n, N +d, R).
By Lemma 4.8, [] € V. We claim that ®o/o(V) C U —this will finish the proof.

First we show that for x € V' N X we have ®p/p(x) = x € U. For such an x choose,
by the definition of Ug/ (1, N +d, R), a good geodesic (w® = 0, w', w2, ..., wk)e
Go(n, N +d, R) such that x belongs to the interior of a simplex with vertex wk
where k > N +d. Let { = (wg = O, wy, wa,..., w; = wk) be a good geodesic
guaranteed by Corollary 3.3. Then |/ —k| < d, hence [ > N and wy is defined. By
Lemma 3.9 and Corollary 3.4, we have

lwyon| < lwyw™]+ [wNoN [+ vV oy
< (3d + D) + (|wN 4Nt L D)+ (3d + D)
<R+3D+6d=R.

This inequality implies that ¢ € Go (€, N, R’) and hence x € Up(§, N, R') C U.

Now we show that for [p] € V N dp-X we have that ®oo([p]) € U. Let p =
w® =0 wl w2 ..)eGo(n N+d R)NRo . Let = (wg=0,wq,wy,...)
be obtained from p as in the definition of ® . Then, by Lemma 3.9 and Corollary
3.4, we can perform the same computation as in the previous case to get |wyvy| <
R+3D+6d=R'. Thus ®po([p]) =[¢]€ Up (&, N, R") C U and we have completed
the proof of ® /o (V) C U and of the whole lemma. ad

Now we address the question of finite dimensionality of X . Let us remind that a
simplicial complex X is uniformly locally finite if there exists a natural number L such
that every vertex belongs to at most L different simplices. This happens for example
when some group acts geometrically on X .
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Proposition 5.6 Let X be a uniformly locally finite systolic complex. Then X =
X UdpX is finitely dimensional.

Proof Recall that a space Y has dimension at most n if, for every open cover U of Y,
there exists an open cover V < U (V is a refinement of U, ie every element of V is
contained in some element of /) such that every point in ¥ belongs to at most 7 + 1
elements of V' (ie the multiplicity of V is at most n + 1).

It is clear that X is finitely dimensional. It is thus enough to show that there exists
a constant K such that for every open (in X') cover U of dp X there exists an open
cover V <U of dp X of multiplicity at most K.

Let R > D be anatural number. Then, by uniform local finiteness, there is a constant K
such that every ball of radius at most 2R + D + 2 contains at most K vertices.

Let U be an open cover of doX in X . We construct an open cover V < U of dpo X
in X consisting of interiors of standard neighborhoods such that the multiplicity of V
is at most K.

Let R" =2R+2D. By the definition of topology (Proposition 4.4) and by Lemma 4.3,
for every [n] € dp X there exists a standard neighborhood U(#, Ny, R") contained in
some element of /. By Lemma 4.8 we have [n] € int U(57, N, R). By compactness
of dp X (Proposition 5.3 and Remark 4.5), among such neighborhoods we can find
a finite family {U (n’, Ny, R )};”:1 such that the family of smaller standard neigh-
borhoods {U(T]],Nnj , R)};.”:1 covers dp X . Let N = maX{an,an, ... Nym}. Let
A denote the set of vertices v in Sy (0O) for which there exists a good geodesic
ray starting at O and passing through v. For each v € A4, pick some such good
geodesic ray £ = (wg = O, w],w},...,wx, =v,...). We claim that the family
V={intU(EY, N, R) | v € A} is as desired.

First we show that V covers dp X . Let { = (z9 = O, z1, 23, . . .) be an arbitrary good
geodesic ray. Then zy = wf\,N and thus, by Lemma 4.8, [¢] € intU(E*N, N, R).

Now we show that V < U{. To prove this it is enough to show that for every v € A
there exists j € {1,2,...,m} such that U, N, R) C U(nj,N,]j,R/). Let ve A.
Choose j such that [£¥] € U(n/, N,j, R). By Lemma 4.2, to show that U(§”, N, R) C

U(nf,Nnj,R/) it is enough to show that, for every ¢ € G(£¥, N, R), we have ¢ €

G/, Ny, R'). Let & = (20 = O,z1,22,...,2N,...) € G(Y, N, R) and denote
n/ = (v) = 0,v],v],...). By Lemma 3.8, we have |w}’\,nj vjjvnj | < R+ D. Then, by
Corollary 3.4, we have

j < v v .] < v
|ZNnj anj | = |ZNnj wNnj | + |wNnj anj | = (lZNwN| + D) + (R+ D)

<2R+2D=TR.
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Thus ¢ € G(n/, N,;. R) and it follows that V <.

Finally, we claim that the multiplicity of V is at most K. By Lemma 4.9, if |vv'| >
2R+D+2 then intU(EY, N, R)NintU(EY', N, R)CU(£Y, N, R)NU(EY', N, R) =2
Thus multiplicity of V is at most the number of vertices in a ball of radius 2R+ D +2
in X, ie it is at most K. O

6 The main result

The aim of this section is to prove the main result of the paper—Theorem A (Theorem
6.3).

The following result will be crucial.

Proposition 6.1 [4, Proposition 2.1; 3, Lemma 1.3] Let (Y, Z) be a pair of finite-
dimensional compact metrizable spaces with Z nowhere dense in Y, and such that
Y \ Z is contractible and locally contractible and the following condition holds:

For every z € Z and every open neighborhood U of z in Y, there exists
an open neighborhood V of z contained in U such that V\ Z — U\ Z
is null-homotopic.

ThenY isanER and Z isa Z-setin Y .
Before proving Theorem A we need an important preparatory lemma.

Lemma 6.2 Let [n] € dpoX and let U(n, N, R) be a standard neighborhood of [n] in
X . Then there exists N’ such that U(n, N', R) C U(n, N, R) and the inclusion map
Un,N',R)NX < U(n, N, R)N X is null-homotopic.

Proof Let R' =4D + 7. By Lemma 4.3, there exists N such that U(n, N, R) C
U(n, N, R), so that it is enough to prove the following. For natural R > D there exists
N’ such that U(n, N’, R) C U(n, N, R’) and the inclusion map U(n, N', R) N X —
U(n, N, R’)N X is null-homotopic.

Before we start, let us give a rough idea of the proof. Let us restrict to the problem
of contracting loops from U(n, N’, R)N X in U(n, N, R") N X (this turns out to be
the most complicated case). Let o be such a loop. We connect each vertex of o by a
good geodesic with O, and we are interested in the vertex of this geodesic at certain
distance M from O, where N < M < N’. All vertices constructed in this way lie in
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a certain ball (see Condition 1 below), which is in turn contained in U(n, N, R’)N X
(see Condition 3 below). If we connect these vertices by 1—skeleton geodesics in the
right order, we obtain a loop aps, which lies in the ball considered (Corollary 2.7) and
is contractible inside this ball (Corollary 2.5). So we need to find a free homotopy
between « and o)z, which we construct via intermediate loops «;. To find that two
such consecutive loops are homotopic in U(n, N, R") N X, we need Condition 2. This
condition guarantees that all relatively small loops by which consecutive ¢; differ can
be contracted inside U(n, N, R’)N X .

Let M =N+R+1and N —1>(R+ D+ 4)M. We will show that N’ is as
desired. Denote n = (vg = O, vy, Va,...). The choice of M and N’ guarantees that
the following three conditions hold.

Condition 1 Let £ = (wo = O, wy, ..., wy) be a good geodesic with k > N’ —1 and
wr €U, N, R)NX. Then wyps € Bp11(var).

Indeed, let (zo = O,z1,...,z;) € G(n, N’, R) be such that |wyz;| <1 (guaranteed by
the definition of U(n, N’, R)). Since k > N’ — 1, we have, by Corollary 3.5, that

lwn— 1oy —1] S lwyr—1zn7—1] + |zn—1vN7 1|
< Qlwgzil+ D) + (1 + |zpvnr | +1) < R+ D + 4.

Thus, by Corollary 3.4, we have

1
warvps| < WN/—1UN/— D<—|wy— ,_ D<D+1.
|MM|_N,_1| N—1UN/—1| + _R+D+4| N—1ON—1|+ D =D+
Condition 2 Let £ = (w9 = O, wy,...,wy) be as in Condition 1. Then, for every

k>1>M +1 we have Bp3(w;) CU(n, N,R)NX.

To show this observe that, as in the proof of Condition 1, we have that |wn/—jvp/—1| <
R+ D + 4. Now, let z be a vertex of Bp4+3(w;). Choose a good geodesic
(zo =0, 21,22, ...,2m = z) (guaranteed by Corollary 3.3). Since / > M + 1 =
N+ R+2> N+ (D+3), we have that m > N and zp is defined. Thus, by Corollary
3.4 and Corollary 3.5, we have

N
N,_lle/—lvN’—1| +D)

(R+D+4)+D):4D+7=R’.

v < lzvwn ]+ lwy o] < Qlzmw| + D) +
<2(D+3 D _
Thus z € U(n, N, R’) N X and it follows that Bp3(w;) CU(n, N,R)NX.
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Condition 3 We have Bp1(vpr) CU(p, N,R)NX.

This follows immediately from Condition 2, but we want to record it separately.

The goal First observe that U(n, N’, R) C U(n, N, R’) by Lemma 4.3 and the defini-
tion of N'. Now we show that the map 7; (U(n, N', R)NX) — 7;(U(n, N, R’)N X)
induced by inclusion is trivial, for every i = 0,1,2,.... Let A be the smallest full
subcomplex of X containing U(n, N’, R) N X. Observe that the vertices of A4 lie
in U(n, N’, R) N X. By Condition 2, A4 is contained in U(n, N, R") N X . Thus it is
enough to show that the map 7;(A4) — 7; (U(n, N, R") N X') induced by the inclusion
is trivial and we may restrict ourselves only to simplicial spherical cycles.

Case (i = 0) Let z', 22 be two vertices of 4. We will construct a simplicial path in
U(n, N, R")N X connecting z! and z2.

Choose (using Corqllary 3.3) good geodesics (zé 0, zl‘, .. Zk( h =7 7, j=1.2.
By Condition 2, (ZM, ZM_H, - Zk(J) = z/) is contained in U(n, N, R’) and we have
zM € Bp+1(var) by Condition 1. Choose a 1-skeleton geodesic (17 = zM, Uuz,...,
u; = zM) Since balls are geodesically convex (Corollary 2.7), this geodesic is con-
tained in Bpy1(vps) and hence, by Condition 3, it is contained in U(n, N, R')N X .

Then the 1-skeleton path

1 _ .1 1 1 _ _ 2 2 2 _ -2
(Z —Zk(l),Zk(l)_l,...,ZM—ul,uz,...,ul—ZM,ZM+1,...,Zk(2)—Z )

connects z! and z? and is contained in U(n, N, R") N X . Therefore the map 7 (A4) —
7o(U(n, N, R") N X) is trivial.

Case (i =1) Leta =(z%2z!,..., 2" = z°) be a 1—skeleton loop in A. We show
that this loop can be contracted within U(n, N, R’) N X .

Choose good geodesws (20 0, Zl ye - Zk(J) = z/) (guaranteed by Corollary 3.3),
for j =0,1,2,. —1. By Zk , for k > k(j), we denote z/ . Let K be the maximum
of {k(0), k(l) k(n —1)}. Observe that, by Corollary 3.5, we have |zlj zl]+1| <
D42 (we cons1der j modulo n), for every [ = M M +1,M+2,...,K (we are
not interested in smaller /). For these [ let (zl —l tlj b zlj 2l ) z +1) be
arbitrary 1-skeleton geodesics. Record that p;(j) 5 D+2.

Thus, forevery [ =M +1,M +2,..., K and forevery j =0,1,...,n—1, we have
a 1—skeleton loop

(o d J s Jspi—1(J) Jj+1
=gz =20 0 =Zj_1-
le+ :tj’pl(j),lil’pl(])_l,., —Zl)

Geometry & Topology, Volume 13 (2009)



2828 Damian Osajda and Piotr Przytycki

of length at most
1+ pi—1(HN+14+p(j)1+D+2)+14+(D+2)=2D +6.

Hence ylj CB D_+3(zlj ). Since balls are contractible (Corollary 2.5), ylj is contractible
inside BD+3(ZIJ), which is, by Condition 2, contained in U(n, N, R"). Thus, for
M <[ < K, the loops

0,0 0,1 0,p1(0) 1,1 lpl(l) 2

= =00 PO = =0 ) 22,
..,Z;’ —lln 1,0 tln Lt ..,tln_l’p’(n D _ =z —Zl)

for consecutive / are freely homotopic in U(n, N, R').

Observe that @ = ag . On the other hand aps C Bp1(var), by Condition 1 and by
geodesic convexity of balls (Corollary 2.7). Moreover, since balls are contractible
(Corollary 2.5), aps can be contracted inside Bp41(var), which lies in U(n, N, R'),
by Condition 3. Thus « is contractible in U(n, N, R"). It follows that the map
m1(A) = 71 (U, N, R) N X) is trivial.

Case (i > 1) Since 4 is a full subcomplex of a systolic complex it is, by Lemma
2.12, aspherical and thus 7;(A4) = 0 and the map in question is obviously trivial. O

Theorem 6.3 (Theorem A) Leta group G act geometrically by simplicial automor-
phisms on a systolic complex X . Then X = X Udp X, where O is a vertex of X, is
a compactification of X satistying the following:

(D) X is a Euclidean retract (ER).

(2) doX isa Z-setin X .

(3) For every compact set K C X, (gK)gec 1is a null sequence.

(4) The action of G on X extends to an action, by homeomorphisms, of G on X .

Proof (1) and (2) By Corollary 5.2, Proposition 5.3, Remark 4.5, and Proposition
5.6 we have that (X, dp X) is a pair of finite-dimensional compact metrizable spaces.

Since X is a simplicial complex, it is locally contractible and, by Theorem 2.3, it is
contractible since it is a finitely dimensional systolic complex. By the definition of
the topology on X (cf Proposition 4.4), it is clear that dp X is nowhere dense in X .
Thus we are in a position to apply Proposition 6.1. Let x € dp X and let U be its open
neighborhood in X .

By the definition of the topology (Proposition 4.4) we can find a standard neighborhood
U, N, R) C U, where [n] = x. By Lemma 6.2, there exists a standard neighborhood

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2829

Un,N',R)cU(n, N, R)CU (with [y] €int (U(n, N’, R), by Lemma 4.8) such that
the map int (U(n, N, )N X) > U, N, R)NX =< Umn, N, RNX > UNX is
null-homotopic. Thus X is an ER and dp X isa Z-setin X .

(3) Let U be an open cover of X and let K C X be a compact set. We will show
that all but finitely many translates gK, for g € G, are U —small.

Let R > D be such that K C Bgr(z), for some vertex z. As in the proof of Proposition
5.6, we can find a natural number N, a finite set of vertices A C Sy(O) and a
collection of good geodesic rays {£V | v € A} with &Y passing through v such that
the following holds. The family V = {intU(£, N, R) | v € A} covers dp X and the
family V' = {U(€Y, N,4R) | v € A} is a refinement of /. Thus we can find an open
cover W=VUW’ of X such thatevery W € W is contained in X . By compactness—
Proposition 5.3—there is a finite subfamily of W covering X . It follows that there
exists a natural number N’ > N such that X \ Bx+(0) C | JV. By properness of the
action there exists a cofinite subset H C G such that gK C Bgr(gz) C X \ Bny/(0),
forge H.

We claim that, for every g € H, we have gK C Bg(gz) C U, N,4R)N X,
for some v € A. Assertion (3) follows then from the claim. Let g € H. Since
X\ By/(0) C | JV, there exists v € A such that gz € int U(£Y, N, R). We show
that Br(gz) CU(E”, N,4R). Let x € Br(gz) andlet { = (zy = O,z],...,z}) be a
good geodesic (which exists by Corollary 3.3) such that z; € Bgr(gz) is a vertex of
the simplex containing x in its interior. Since gz € U(EY, N, R) there exists a good
geodesic (zo = O0,z1,z2,...,2 = gz), such that |zyv| < R. We have /,k > N’ and
|z7zk| < R. Hence, by Corollary 3.5, we have

lzyvl < lzyzn| + |znvv] < Qlzjzk| + D) + |znv|
<QR+ D)+ R<4R.

Thus ¢ € G(EY, N,4R) and hence x € U(§Y, N,4R). It follows that Br(gz) C
U(§Y, N,4R). Since g € H was arbitrary we have that elements of (gK)gecpy are
V' —small and thus they are U/ —small.

(4) For g € G we defineamap go: X UdpX — X UdgpX in the following way.
For x € X let gox = gx and for x = [(vp = O,v1,v3,...)] € dpX let gox =
[(gvo=gO0, gv1,gV2,...)]€0,0X . Thisis obviously a well defined homeomorphism.
We extend the action of G on X to X UdpX by the formula g-x = ®z00(gox), for
x€dpX.ByLemma5.5 themap g-: XUdpX — XU0dpX is ahomeomorphism. To
see that (gh)-x = g-(h-x), for x € dp X, pick some representative n = (vo = O, vy, .. .)
of x. We need to show that

Penoo(ghonl) = Pgoo(g o Proo(holn)).
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Recall that, by Lemma 3.9, mappings ®g00, Proo and ®gj00 displace representa-
tive rays by a finite Hausdorff distance. Hence ®45,00(g/ o[n]) is the class of rays
starting at O at a finite Hausdorff distance from (ghvo = ghO, ghvy,...). On the other
hand, ®;00(ho[n]) is the class of rays starting at O at a finite Hausdorff distance from
(hvg = hO,hvy,...), hence g o ®pop(ho(n]) as well as Peop(g o Proo(ho[n])
is the class of rays (starting at gO and O, respectively) at a finite Hausdorff distance
from (ghvo = ghO, ghvy,...). This proves the desired equality.

Hence we get an extension of the action of G on X to an action on X by homeomor-
phisms. O

7 Flat surfaces

With this section we start the second part of the article, in which we define Euclidean
geodesics, establish Theorem B and Theorem C. Before we define Euclidean geodesics,
we first need to study, as mentioned in Section 1, the minimal surface spanned on a
pair of directed geodesics connecting given vertices. The tools for this are minimal
surfaces (Section 7) and layers (Section 8).

In this section we recall some definitions and facts concerning flat minimal surfaces in
systolic complexes proved by Elsner [14; 15].

Definition 7.1 The flat systolic plane is a systolic 2—complex obtained by equilaterally
triangulating the Euclidean plane. We denote it by IEZA. A systolic disc is a systolic
triangulation of a 2—disc and a flat disc is any systolic disc A, which can be embedded
into ]EZA, such that A is embedded isometrically into the 1—skeleton of ]EZA. A
systolic disc A is called wide if dA is a full subcomplex of A. For any vertex v € A
the defect at v (denoted by def(v)) is 6—1(v) for v ¢ A and 3—1(v) for v € A
where (v) is the number of triangles in A containing v. It is clear that internal vertices
of a systolic disc have nonpositive defects.

We will need the following easy and well known fact.

Lemma 7.2 (Gauss—Bonnet Lemma) If A is any triangulation of a 2—disc, then

> def(v) =6.

ve A0

Flat systolic discs can be characterized as follows.
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Lemma 7.3 [15, Lemma 2.5] A systolic disc D is flat if and only if it satisfies the
following three conditions:

(1) D has no internal vertices of defect < 0.
(i1) D has no boundary vertices of defect < —1.

(iii) Any segment in dD connecting vertices with defect < 0 contains a vertex of
defect > 0.

Now we recall another handful of definitions.

Definition 7.4 Let X be a systolic complex. Any simplicial map S: A — X, where
A is a triangulation of a 2—disc, is called a surface. We say that S is spanned on a
loop v, if S|ga =y . Aloop y is triangulable, if there exists a surface S spanned on
y, such that all the vertices of A are in dA. A surface S is systolic, flat or wide if
the disc A satisfies the corresponding property. If S is injective on dA and minimal
(the smallest number of triangles in A) among surfaces with the given image of JA,
then S is called minimal. A geodesic in AW s called neat if it stays out of dA
except possibly at its endpoints. A surface S is called almost geodesic if it maps neat
geodesics in AWM isometrically into X

The following is part of the main theorem of Elsner [15].

Theorem 7.5 [15, Theorem 3.1] Let X be a systolic complex. If S is a wide flat
minimal surface in X then S is almost geodesic.

We will also use the following handy fact, whose proof can be extracted from Elsner [14].
In case where y has length 2, it follows immediately from 6—largeness.

Proposition 7.6 [14, Proposition 3.10] Let X be a systolic complex and S: A — X
a wide flat minimal surface. Let y be a neat 1-skeleton geodesic in A C EZ , which is
contained in a straight line. Then, for any 1-skeleton geodesic y in X with the same
endpoints as S(y), there is another minimal surface S’: A — X such that S'(y) =¥
and S = S’ on the vertices of A outside y .

8 Layers
In this section we introduce and study the notion of layers for a pair of convex sub-

complexes of a systolic complex. If those subcomplexes are vertices v, w, then the
layer k 1is the span of all vertices, in 1—-skeleton geodesics vw, at distance k from v
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(cf Definition 8.1). In particular, simplices of the directed geodesics between v and
w (cf Definition 2.11), as well as the simplices of Euclidean geodesics (which we
construct in Section 9) lie in appropriate layers.

On the other hand, layers in systolic complexes seem to be interesting on their own.

Definition 8.1 Let V, W be convex subcomplexes of a systolic complex X and
n=|V,W|. Fori =0,1,...,n we define the layer i between V and W as the
subcomplex of X equal to B; (V)N By—;(W). We denote it by L;(V, W) (or shortly
L; when V, W are understood).

Remark 8.2 L; are convex, since they are intersections of convex B;(V'), By—;ij(W)
(see remarks after Definition 2.4).

Lemma83 () L;=S;(V)NS,—i(W),for0=<i<n.
(i) LjCSj—i(L;),for0=<i < j=<n.Inparticular L;{ C S1(L;), for 0 <i <n.

Proof (i) Without loss of generality, we only need to prove that L; C S;(V). Take a
vertex x € L;. Then we have |x, V| <i and |x, W| <n—i, while |V, W| =n. Thus
by the triangle inequality we have |x, V| =i, as desired.

(i) By (i) we have that L; N B;j_;_{(L;) = &, thus we only need to prove that
Lj C Bj_i(L;). Let x be a vertex in L;. Since, by (i), we have x € S;(V), there
is a vertex y € B;(V) at distance j —i from x. Since x € B,_j(W), we have
y€By_i(W). Thus y € L; and x € Bj_;(L;). ad

Now we study the properties of layers.
Lemma 8.4 For 0 <i <n we have that L; is co—large.

Proof Suppose the layer L; is not co—large. Then there exists an embedded cycle I
in L; of length at least 4, which is a full subcomplex of X .

Denote Dy =span{B;_1(V),T'}, Dy, =span{B,,—;—1(W),I'}. Wehave DN D, =T.
Notice that Dy U D, is a full subcomplex of X', because there are no edges in X
between vertices in B;_1(V') and vertices in B,,_;_1(W).

Observe that I' is contractible in D; (and similarly in D5). Indeed, by Lemma 8.3(i)
we have that I' C S;(V'). Thus we can project the edges of I" onto B;_;(V) (cf
Definition 2.9). If we choose a vertex in each of these projections, we get, by Lemma
2.8, that these vertices form a loop. This loop is homotopic to I' in D;. Moreover,
since B;_1(V) is contractible (by remarks after Definition 2.4) it follows that I" is
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contractible in D (and similarly in D, ), as desired. The simplicial sphere S formed
of these two contractions is contractible in D; U D,, since full subcomplexes of X
are aspherical (Lemma 2.12).

Now use Mayer—Vietoris sequence of the pair Dy, D, . Since [I'] is the image of [S]=0
under H,(D; U Dy) — H;(D1 N D) it follows that the cycle I' is homological to
zero in itself. This is a contradiction. O

Lemma 8.5 Let 01, 0,,03 be maximal simplices in the layer L; for some 0 <i <n
and 1 =01N0y, Tp=0,N0o3. Thenty Nty =T orty C 1 or 75 C 1.

Proof Without loss of generality, assume that i # 0 (but we might have i = n).
Suppose the lemma is false. Then there exist vertices py € t1\12, p2 € T2\11, ¥ €
71 N 7. By Lemma 8.3(ii) we have that 07,03 C S1(L;—1). Denote by ¢, g, some
vertices in the projections (cf Definition 2.9) of 61, 03 onto L;_;. We have |q1¢»| <1,
because both ¢; and ¢, are neighbors of r and the projection of r € L; C S1(Lj—1)
(cf Lemma 8.3(ii)) onto L;_; is a simplex (Lemma 2.8). Now we will argue that we
can assume that ¢ p, is an edge. In case ¢; # ¢, consider the 4—cycle g1g2 p2 p1¢1 -
It must have a diagonal. We can then assume without loss of generality that ¢ p, is an
edge. In case g1 = g we also have that g1 p, is an edge. In both cases it follows that
> belongs to the simplex which is the projection of ¢; € L;—1 C S;(L;) (cf Lemma
8.3(ii)) onto L;. This simplex also contains ;. But p, € oy, which contradicts the
maximality of o7 . O

Corollary 8.6 Let T be the following simplicial complex: the trapezoid built out of
the three triangles prsy, p1rpa2, par sz . Then there is no isometric embedding of T
into Ll(.l), for0<i<n.

Proof Extend the images of those three triangles to maximal simplices o1, 0,, 03 and
apply Lemma 8.5. O

Corollary 8.7 Let 0 <i <n. Let |poro| <1, |pgra|l <1 for vertices pgy,ro, Pd,"d €
L; such that |popg| = |rorg|l =d > 2 and |porg| = d, |ropgl = d. Then, for any
1 —skeleton geodesics (p;), (r;),0 <i < d, connecting py with py and ry with rg,
respectively, and for any 0 <i, j < d such that |i — j| < 1, we have that | p;rj| <1 (ie
pirj is an edge or p; =rj).

Proof We will prove the corollary by induction on d. First observe that since L;

is co-large (Lemma 8.4), the loop pop1--- pata - FiropPo is triangulable and there
exists a diagonal cutting off a triangle. There are only four possibilities for this diagonal
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and we can without loss of generality assume that this diagonal is por;. Now since
po € Sq(rgpa) and both p; and rq lie in the projection of pg onto By_1(rgpa),
then by Lemma 2.8 either p;r; is an edge or p; =ry.

Now we start the induction. If d = 2 and the loop p;rir p2 p1 is embedded, then it
has a diagonal. The rest of the required inequalities follows from applying Corollary
8.6 twice.

Suppose that for d — 1 the corollary is already proved. Then applying it to the pair
P1r1, Parq yields all the required inequalities except for the estimate on |rg py|. But
this follows from Corollary 8.6 applied to the trapezoid ro pori p1p2 - a

Corollary 8.8 If pr, p'r’ are edges in L;, for some 0 < i < n, such that |pp’| =
lrr'|=d >2and |pr'| <d,|p'r| <d, then |pr'| = |p'r|=d.

Proof By contradiction.

Case |pr'|=|p'r|=d—1 1f d >2 (if d =2 there is a diagonal in the square pr’p’rp)
then Corollary 8.7 appliedto d—1 inplaceof d, po=p , pa—1=1", ro=r, rgq_1=p’
gives |pp’| = |rr’| = d — 1, which is a contradiction.

Case |pr'|=d—1, |p'r|=d Again apply Corollary 8.7, with po = p, ro=r, pg=

rqg=p', pa—1 =r', getting |rr’| =d — 1, which is a contradiction. O

Below we present another important property of layers. Since it will not be needed
in the article, we do not include the proof. Denote L = span(L; U L;1) for some
1<i<n-1.

Lemma 8.9 L is co—large.
We end with a simple, but useful observation.

Lemma 8.10 For any edges vw, xy suchthatv,xe L;, w,y € L;4,where 0<i <n,
we have that |[vx|—|wy|| < 1.

Proof By contradiction. Suppose, without loss of generality, that |wy| =2 + |vx|.
Hence v lies on a 1-skeleton geodesic wy. Thus, by convexity of layers (Remark 8.2)
and by Proposition 2.6, we have that v lies in L;41, which is, by Lemma 8.3, disjoint
with L;, contradiction. O
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9 Euclidean geodesics

In this section we define, for a pair of simplices o, T as below, a sequence of simplices in
the layers between o and 7, which can be considered as a “Euclidean” geodesic joining
o and 7. Unlike the directed geodesics defined by Januszkiewicz and Swiatkowski
(see Definition 2.11), Euclidean geodesics are symmetric with respect to ¢ and 7.

The definition requires a lengthy preparation. Roughly speaking, we start by spanning a
minimal surface between directed geodesics from o to t and from t to 0. We observe
that this surface is flat whenever the two directed geodesics are far apart (we call the
corresponding layers thick). Next we show that this “piecewise” flat surface is in some
sense unique. This occupies the first part of the section, up to Definition 9.9. Then we
look at the geodesics in the Euclidean metric in the flat pieces and use them to define
Euclidean geodesics in systolic complexes, cf Definition 9.12. Finally, we establish
some of their basic properties.

The setting, which we fix for Sections 913 is the following. Let o, T be simplices of a
systolic complex X', such that for some natural n > 0 we have o0 C S, (7),t C Sy(0).
Let 09 C0,01,...,0pC 7t and 7, C T, Ty—1,..., Tgp C 0 be sequences of simplices in
X, such that for 0 < k <n we have that oy, 0%+ span a simplex and 7, Tx 41 span
a simplex. In particular, oy, 7% lie in the layer k between o and t (cf Definition 8.1).

Note that if 0y = 0,071,...,0, C 7 is the directed geodesic from ¢ to t and 7, =
T, Ty—1,--.,To C 0 is the directed geodesic from t to ¢ (cf Definition 2.11), then the
above condition is satisfied. This special choice of (o), (7)) will be very important
later and we will frequently distinguish it.

Definition 9.1 For 0 <i < the thickness of the layer i for (o), (tz) is the maximal
distance between vertices in ¢; and in ;. If the layer i for (o%), (tx) has thickness
<1 we say that the layer i for (oy), (t%) is thin, otherwise we say that the layer i for
(ox), (tx) is thick. If (o), (tx) are directed geodesics from o to 7 and from t to o,
respectively, then we skip “for (o), (t)” for simplicity.

Caution Perhaps, to avoid confusion, we should not have used the word “layer” in
the above definition, since we are in fact only checking the position of o; with respect
to 7;. Even if the layer i between o and t is large, it can happen that the thickness of
the layer i for (oy), (tx) is small. However, we decided that this terminology suits
well our approach, in which we will be mostly interested in the part of the layer i
between o and v, which lies “between” o; and t;.
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Definition 9.2 A pair (i, j), where 0 <i < j < n, is called a thick interval (for
(o1), (tx)) if the layers i and j (for (oy), (tz)) are thin, i + 1 < j, and for every /,
such that i </ < j, the layer ! (for (o%), (tz)) is thick. We say that the thick interval
(i, j) contains | if i <l < j.

Lemma 9.3 (i) The thickness of consecutive layers varies at most by 1.

(i) If (i, j) is a thick interval (for (oy), (tx) ), then o;, T; are disjoint.
Proof Both parts follow immediately from Lemma 8.10. |

Definition 9.4 Let (i, j) be a thick interval (for (0% ), (tx)). Let vertices s; € oy, t €
75 be such that for each i < k < j the distance |s; ;| is maximal (ie s, #; realize
the thickness of the layer k). The sequence s;,S;41,...,58j,4j,tj—1,...1,5; is an
embedded loop by Lemma 9.3(ii), thus we can consider a minimal surface S: A — X
spanned on this loop (cf Definition 7.4). We say that S is a characteristic surface (for
the thick interval (i, j)) and A is a characteristic disc.

Lemma 9.5 Suppose that the layer k is thick. For sy, s;c € oy, g, t,’{ € 1y, if distances
|skl;€|, |s;€tk| equal the thickness of the layer k then also |sgt;| equals the thickness of
the layer k , ie if vertices sy € oy, ty € Ti realize the thickness in some pairs, then they
also realize the thickness as a pair.

Proof Immediate from the definition of thickness and Corollary 8.8. O

The lemma below summarizes the geometry of characteristic discs, which we need to
introduce the concept of a Euclidean geodesic. The special features of characteristic
discs in the case where (o), (t) are directed geodesics will be given in Lemma 9.16
at the end of this section.

Let S: A — X be a characteristic surface. Denote by vy, wy in A the preimages of
Sk, tr in X, respectively. This notation will be fixed for the entire article. Let us point
out that we use numbers i, ..., j to number the layers in A (cf Definition 8.1) between
v;iw; and v;w;, instead of 0, ... j —1i, for the sake of clarity.

Lemma 9.6 (i) A (and thus the characteristic surface S') is wide and flat,

(i) If we embed A C EZ , then the edges v;w; and v;w; are parallel and consecu-
tive layers between them are contained in consecutive straight lines (treated as
subcomplexes of EzA) parallel to the lines containing v;w; and vjw; .
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Proof (i) To prove wideness it is enough to show that any nonconsecutive vertices of
the boundary loop are at distance > 2. Since the layers k, where i < k < j, are thick
(for (o%), (1)), the only possibility for this to fail is that (without loss of generality)
|Sktx+1| = 1 for some i < k < j. If this happens, then both s; and # lie in the
projection of ;4 onto the layer k between o and t (the projection is defined by
Lemma 8.3(ii)), hence they are neighbors (Lemma 2.8), which contradicts |sz x| > 2.
Thus a characteristic disc is wide.

Before proving flatness, we need the following general observation. If I" is a 1—skeleton
geodesic, which is in the boundary of a triangulation of a disc, then the sum of the
defects at the vertices in the interior of I' is at most 1. Moreover, all the defects at
these vertices are at most 1 and each two vertices of positive defect are separated by a
vertex of negative defect.

To prove flatness we compute possible defects at the boundary vertices of A. By
wideness, they are at most 1 at v;, vj, w;, w;. Moreover, their sum over the interior
vertices of both 1-skeleton geodesics (vk)lj€= i (u)k),]€= ; 1s at most 1 (they are 1-
skeleton geodesics, since their images are). Thus Gauss—Bonnet Lemma 7.2 implies
that the defects of the interior vertlces are equal to zero, the sums of the defects over
the vertices (vk)k z+1’ (u)k)k i+1 equal 1 each and the defects at v;, vj, w;, w; are
equalto I.

We now want to say more about the defects at (vk)ljc.:. +1- Up to now we know that
their sum is 1, they equal 1,0,—1 or —2 and each two vertices of positive defect
are separated by a vertex of negative defect (since (vk),]c ; 1s a 1—skeleton geodesic).
This implies that the defects equal alternatingly 1,—1,1— 1 , 1 with possible 0’s
between them. The same holds for the defects at (wy)) _ k=i +1 Thus by Lemma 7.3
(characterization of flatness), the characteristic disc A is flat, ie we have an embedding
AC IEZA isometric on the 1—skeleton.

(i) By the computation of defects in the proof of (i) we get that the edges v;w; and
vjw;j are parallel in EZA. We also get that vy, wy, for i <k < j, are at combinatorial
distances k —i, j — k from the lines containing the edges v;w;, vjw;. Hence vg, wg
lie on the appropriate line parallel to v; w; and the vertices of A split into families lying
on geodesics v;wy . By convexity of layers, Remark 8.2, (or by direct observation)
these geodesics are equal to the layers. a

When speaking about the layers in A between v;w; and vjw;, we will often skip
“between v;w; and vjw;”
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Remark 9.7 Denote the layer k in A (between v;w; and vjw;)by L. Then S(Ly)
is contained in the layer k in X between ¢ and t. This follows from

S(Ly) C S(B—i(viwi)) N S(Bj_k(vjw;))
C Bi—i(S(viw;i)) N Bj_x(S(vjw;))
C By—i(siti) N Bj_x(s;tj)
C By—i(Bi(0)) N Bj_(Bn—j (7)) = Bi(0) N By (7).

The next lemma summarizes some uniqueness properties of characteristic surfaces for
a fixed thick interval (i, j).

Lemma 9.8 (i) A characteristic surface is almost geodesic. In particular, it is an
isometric embedding on the 1—skeleton of a subcomplex spanned by any pair of
consecutive layers between v;w; and vjw; in A.

(i1) A characteristic disc A C IEZA does not depend (up to isometry) on the choice of
Sk, and the choice of a characteristic surface.

If we have two characteristic surfaces S1: A1 — X, S»: Ay, — X, then after identifying
the characteristic discs A1 = A, (which is possible by (ii)) we have that

(iii) for any vertices x,y € Ay = A, at distance 1, S1(x) and S,(y) are also at
distance 1, ie for any two characteristic surfaces S, S, we can substitute an
image of a vertex of the first surface with the corresponding image in the second
and get another characteristic surface,

(iv) for any vertex x € A1 = A,, S1(x) and S,(x) are at distance at most 1.

Proof (i) This follows from Elsner’s Theorem 7.5, since, by Lemma 9.6(i), a charac-
teristic disc is flat and wide. The second part follows from the fact that any two vertices
in a same or consecutive layers in A C EZA can be connected by a neat geodesic, which
can be verified by direct observation.

(i) Observe that, by Lemma 9.6(ii), the isometry class of A is determined by the dis-
tances |vg Wk |, |Vg Wi 41|, for i <k < j—1, which are equal, by (i), to [sgtx|, [Sktk+1l
respectively. The value |s; ;| equals the thickness of the layer &, so it does not depend
on the choices. To prove the same for |s;?x+1|, consider two characteristic surfaces
constructed for choices s;,s; € oy, 1, tl’ € 17, where | = k,k + 1. We will prove
that [sgtk41] = |Skty 4| = I8ty |. We restrict ourselves to proving the first equality
(the second is proved analogously). By Lemma 9.5 we have that |Sk+1l;/€ +1| is the
thickness of the layer k + 1. Thus there is a characteristic surface spanned on a loop
passing through g, k., Sk+1, %, ; - Hence, by (i), the distance [sg; | is determined
by |sgtx| and |sg4qtx]|, thus it is the same as |sgfx 1|, as desired.

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2839

(iii)) If x and y are both boundary vertices, then this is obvious. Otherwise, without
loss of generality assume that x is an interior vertex of A. Suppose that x lies in the
layer k (we denote it by Ly ) in A between v;w; and vjw;. Denote the thickness of
the layer k for (o;), () by d.

First consider the case where y € L. By Remark 9.7 we have that S;(Lj) and
S>(Lg) lie in the layer k in X between ¢ and t. By Lemma 9.5 we have that
[S2(ve)S1(w)| = |S1(vi)S2(wg )| = d . Hence Corollary 8.7 applied to Sy (Lg) and
Sa(Ly) gives |S1(x)S2(y)| =1, as desired.

Now, without loss of generality, consider the remaining case that y is in the layer
k — 1 (denoted by Lj_1) in A between v;w; and vjw;. Denote by »’,x” the
common neighbors of x, y in Ly_;, Ly, respectively, and by x’ the neighbor of x
in Ly different from x”. Then we have that S7(x)S,(x")S2(1")S2(y)S>(x”)S1(x)
is a loop of length 5 from the previous case, hence it is triangulable. By (i), all
1S2(x")S2(x")]. |S2(x")S2(»)], [S2(x")S2(y)] equal 2, hence |S1(x)S2(y)| =1,
as desired.

Observe that this proof actually implies Proposition 7.6 in the case where y C v wy
for some k.

(iv) For boundary vertices this is obvious. For an interior vertex x, let x’, x” be its
neighbors in a common layer in A between v;w;, v;w; . Then, by (iii), we have that
S1(x)S2(x")S2(y)S2(x")S1(x) is a loop of length 4. Moreover, by (i), we have that
|S2(x")S2(x")| = 2. Thus |S1(x)S2(y)| <1, as desired. O

As a corollary, the following definition is allowed.

Definition 9.9 Let p be a simplex of the characteristic disc A for some thick interval
(i, j) (for (op), (tx)). Its characteristic image is a simplex in X, denoted by S(p),
which is the span of the images of p under all possible characteristic surfaces. Note
that S(p) is a simplex by Lemma 9.8(iii)—(iv), and if p C p’, then S(p) C S(p'), ie S
respects inclusions. The characteristic image of a subcomplex of A is the union of the
characteristic images of all its simplices. We call this assignment the characteristic

mapping.

If v is a vertex in S(A), we denote by S™!(v) the vertex v € A such that S(v) > 7.
We claim that this vertex is unique. Indeed, characteristic images of different layers in
A between v;w;, vjw; are disjoint since, by Remark 9.7, they lie in different layers in
X between o, t, which are disjoint by Lemma 8.3. Moreover, by Lemma 9.8(i),(iii),
we have that S (v) # S,(v’) for any characteristic surfaces S, S, and any vertices
v # v’ in a common layer in A. This justifies the claim. If p is a simplex in S(A),
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we denote by S™1(p) the span of the union of S~!(v) over all v € p. We have that
S~1(p) is a simplex, by Remark 9.7, Lemma 8.3, and Lemma 9.8(i),(iii). If Y is a
subcomplex of S(A), we denote by S~1(Y) the union of S™!(p) overall pC Y.

Having established the uniqueness properties of characteristic surfaces, we start to
exploit the CAT(0) structure of the corresponding characteristic discs. From now on,
up to the end of Section 13, unless stated otherwise, we assume that (o), (tz) are the
directed geodesics between o, T.

Definition 9.10 Let (i, j) be a thick interval and let A C IEzA be its characteristic
disc. We will define a sequence of simplices p; € A, where i < k < j, which will be
called the Euclidean diagonal of the characteristic disc A.

Let v;c, w}c be points (barycenters of edges) on the straight line segments v, wy at
distance 1/2 from vg, wg, respectively. In particular v; = w;, v; = w}. Consider
the closed polygonal domain A’ C A enclosed by the piecewise linear loop with
consecutive vertices v;, vlf+1, el v]’. =w’, w]/._l, ..., w; =v}. Note that, since A’
is simply connected, it is CAT(0) with the Euclidean path metric induced from IEZA
identified with E2. We call A’ a modified characteristic disc. Let y’ be the CAT(0)
geodesic joining v; = w; to v; = w} in A’. We call y" a CAT(0) diagonal of A.
For each i < k < j, among the vertices of A lying in the interior of the 1-skeleton
geodesic v wy we find the ones nearest to ¥’ Nv,wy, . For each k this is either a single
vertex or two vertices spanning an edge (if ¥’ goes through its barycenter and vy, wy

are not some of its vertices). We put pi equal to this vertex or this edge, accordingly.

At first sight it might seem strange that in the above definition we pass to A’ and
take the geodesic y’ there instead of doing it in A itself. However, this construction
allows us to exclude vy, wy from being in pg , which a careful reader will find to be
a necessary condition for the arguments of the combinatorial Proposition 10.2 to be
valid.

Here are some basic properties of the Euclidean diagonals.

Lemma 9.11 (i) Each pair of consecutive py, px+1, fori <k < j—1, spans a
simplex.

(i1) pj41.vi, w; span a simplex and pj_1,vj, w; span a simplex.
Proof Part (ii) is obvious, since we excluded vy, wy from being in p;. To prove

(1), consider A’ C A C ]EzA oriented in such a way that v; wy are horizontal, this is
possible by Lemma 9.6(ii). Moreover, Lemma 9.6(ii) yields that the boundary of A’
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consists of line segments at angle 30° from the vertical direction. Let y’ be as in
Definition 9.10. It is a broken line with vertices at the boundary of A’.

We claim that any line segment of 3’ is at angle less than 30° from the vertical direction.
First we prove that this angle is at most 30°. Otherwise, let p be an endpoint of such a
line segment. Obviously p is different from the endpoints of y’. The interior angle at
p between the segment of 3’ and any of the boundary line segments of A’ is less than
180°, which contradicts the fact that p is an interior vertex of a geodesic y’. Thus we
proved that any line segment of y’ is at angle at most 30° from the vertical direction.

If for some line segment of y’ this angle equals 30°, then by the previous considerations
the whole Y’ is in fact a straight line at angle 30° from the vertical. ThlS implies
that the defects at all vertices in (vy)? = ! ;41 or all vertices in (wr)l— = +1 are zero.

Contradiction. We have thus proved the claim.

Now part (i) follows from the following observation, whose proof is easy and is left
to the reader. Consider two consecutive horizontal lines o, @, in EZA. Let B be
some straight line segment joining points p € «q,r € ap at angle less than 30° from
the vertical direction. Then there exist two 2—simplices abc,bcd in IEZA such that
ab Cay,cd Coy and p € ab,r € cd. Moreover, it cannot happen simultaneously that
|pa| < |pb| and |rd| < |rc|. ad

Thus we can finally introduce the main definition of this section.

Definition 9.12 We define a sequence of simplices 8, where 0 < k < n, which is
called the Euclidean geodesic between o, T, as follows. For each k, if the layer k is
thin, then we take & to be the span of o and 7.

If the layer k is thick, consider the thick interval (i, j) which contains k. Let p; be
an appropriate simplex of the Euclidean diagonal of the characteristic disc A for (i, j)
(cf Definition 9.10). We take 6 = S(pg) (cf Definition 9.9).

Remark 9.13 In the above setting, we have 0; = S(v;), 7; = S(w;), by Lemma
9.3(ii). Hence §; = span{oj, 7;} = S(viw;).

Remark 9.14 By the symmetry of the construction, the Euclidean geodesic between
o and t becomes the Euclidean geodesic between 7 and o if we take the simplices of

the sequence in the opposite order.

Here is the justification for using the name “geodesic” in Definition 9.12.

Lemma9.15 (i) Forany 0 <k </ <n we have that 6; C S;_;(8;),6; C Sj_(6x).
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(i) Forany 0 <k <n—1 ifthe layer k or the layer k + 1 is thick, then 8 and
dk+1 span a simplex.

(iii) For any 0 </ < m < n such that there exists | <k < m such that the layer k is
thick, and for any vertices x € 8,,, y € 8;, we have |xy|=m —1.

Proof Assertion (ii) follows from Lemma 9.11(i)—(ii), Remark 9.13 and Lemma
9.8(ii1)—(v).

To prove assertion (i), say the first inclusion, observe that for any 0 < k < n we have
span(oy U tx) C Bj(span(ok41 U tx+1)). Hence, assertion (ii) gives already, for any
0<k <l <n,that 8§ C B;_;(8;). Then & C S;_x(8;) follows from Remark 9.7 and
Lemma 8.3(ii).

To prove part (iii), assume that / < k < m (other cases are easier). Take any vertex
z € 8j. Then, by (i), there are vertices x" € 8;_1, y' € §g4+1 such that |xx'| =
(k—1)—1, |yy'| =m—(k +1). By (ii) (and (i)), we have |zx'| = |zy| = 1. Hence
|xy| <m —1[ and by (i) we have |xy| =m — 1, as desired. O

Now we state an extra property of characteristic discs in the case where (o) (but (%)
not necessarily) is the directed geodesic. This property was not necessary for Definition
9.12, but will become indispensable in the next section.

Lemma 9.16 (i) If the defect at some vy, where i + 1 <k < j —1, equals —1,
then the defect at vy 41 equals 1.

(i1) The defect at v;41 equals 1.

Proof (i) Proof by contradiction. Suppose the defect at some vy, where i +1 <k <
Jj —1, equals —1, and the defect at vi4; equals 0. Denote by x the vertex next to
Vr 41 on the 1—skeleton geodesic vi4jwg4; and by y the vertex next to vg on the
1—skeleton geodesic v wy. We aim to prove that, for any characteristic surface S,
S(x) belongs to o1 . Suppose for a moment we have already proved this. Then, since
by Lemma 9.8(i) we have |S(x)S(vg42)| = 2 and at the same time S(vg42) € O3,
we get a contradiction.

Now we prove that S(x) € 0x 41 . By Remark 9.7 we have that S(x) liesin B, _;—_1(7).
Hence by the definition of projection (cf Definition 2.9) it remains to prove that S(x)
is a neighbor of each z € g;. Case z = S(y») is obvious, so suppose z # S(y).
Since, by the definition of thickness, |Z.S(wg)| < |S(vi)S(wy)|, we have by Corollary
8.7 (applied to ro = S(vg),r1 = S(»).rg = ps = S(wy) and to py = Z in case
of |ZS(wr)| = |S(vr)S(wg)| or to pg = S(vi), p1 = z in case of |ZS(wy)| <
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|S(ve)S(wg)|) that |zS(y)| = 1. Considering the loop ZS(y)S(x)S(vk+1)Z, since
IS(¥)S (k+1)| = |yvk+1] =2 (Lemma 9.8(i)), we get |2S(x)| = 1, as desired.

(i1)) By contradiction. Denote by x the vertex between v;4+; and w;4; on the 1-
skeleton geodesic v;yqw;y1. Since 0; = S(v;) (see Remark 9.13), we have by
Remark 9.7 and Lemma 9.8(iii) that S(x) belongs to 0;41. By Lemma 9.8(i) we have
|S(x)S(vi+2)| = 2. At the same time S(v;1,) € 6+, contradiction. O

We will repeat some steps of this proof later on in the proof of Lemma 10.3. We
decided, for clarity, not to intertwine these two proofs.

As a consequence of Lemma 9.16, we get the following lemma, whose proof, similar to
the proof of Lemma 9.11, we omit. Here we assume that both (oy), (tx) are directed
geodesics.

Lemma 9.17 If j —i > 2 then the CAT(0) diagonal y' in A crosses each line
orthogonal to the layers transversally.

10 Directed geodesics between simplices of Euclidean geode-
sics

In this section we start to prove a weak version of Theorem B, which concerns one of
the main properties of Euclidean geodesics. Roughly speaking, the theorem says that
pieces of Euclidean geodesics are coarsely also Euclidean geodesics.

We keep the notation from the previous section. The simplices (o), (1) are in this
section the directed geodesics between o, .

Theorem 10.1 (Weak version of Theorem B) Let o, t be simplices of a systolic
complex X , such that for some natural n we have o C Sy(t), T C Sy(0) (as required
in the definition of the Euclidean geodesic). Let (8x); _, be the Euclidean geodesic
between o and t. Take some 0 <[ < m < n and consider the simplices §; =
o1, gl_l’_l, ..., 8m = 8m of the Euclidean geodesic between §; and 8, (we can define it
by Lemma 9.15(i)). Then for each [ < k < m we have |0y, gk| <3.

The proof of Theorem 10.1 splits into two steps. The first step is to prove that directed
geodesics between §; and §,, stay close to the union of characteristic images of all
characteristic discs (for (oy), (tx)). This is the content of Proposition 10.2, whose
proof occupies the rest of this section.
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The second step is to check that characteristic images for the directed geodesics
between §; and §,, also stay close to the union of characteristic images for (oy), (7).
Properties of layers actually imply that characteristic discs of the former are embedded
into characteristic discs of the latter, modulo small neighborhood of the boundary. So
everything boils down to the fact that Theorem 10.1 is valid for CAT(0) subspaces of
the Euclidean plane. We carry out this program in the next section. We also indicate
there an argument, how to promote Theorem 10.1 to Theorem B, with a reasonable
constant C'.

A complete alternative proof of Theorem B, with a worse constant C, is obtained as a
consequence of Proposition 12.1. We present it at the end of Section 12. We advise the
reader to have a look at the proof of Theorem 10.1 via Proposition 10.2. This proof
is straightforward and allows us to introduce gradually some concepts needed later.
However, to save time, one can skip the remaining part of Section 10, go over the
definitions in Section 11 and then go directly to Section 12.

For each thick layer / <k < m contained in a thick interval (i, j) (for (o;), (t¢); from
now on we often skip “for (o;), (7;)”), denote by oy the appropriate simplex (in the
corresponding characteristic disc A) of the directed geodesic from p;, if i </, or v;
otherwise, to pm, if m < j, or v; otherwise. The simplices (0% )}"_; of the directed
geodesic from §; to §,, satisfy the following.

Proposition 10.2 Let/ <k <m.

(i) Ifthe layer k is thin, then G}, contains or is contained in oy, .

(ii) Ifthe layer k is thick, then G, contains or is contained in S(ay).

Before we give the proof of Proposition 10.2, we need to establish some necessary
lemmas. The first one describes the position of gj with respect to the characteristic
image. Like in Lemma 9.16, here (tz) does not need to be the directed geodesic.

Lemma 10.3 For a thick layer k let xj; be the vertex, which is the neighbor of
v on the 1-skeleton geodesic vy wy in the characteristic disc for the thick interval
containing k . If the defect at vy, equals 1, then o}, = S(vixy). Otherwise o, = S(vg).

Proof First of all o}, C S(vixy) follows from the definition of thickness and Propo-
sition 7.6 (one could also verify this by hand, similarly like in the proofs of Lemma
9.8(iii) and Lemma 9.16(i)). Suppose that the defect at vy is # 1. Hence |vp_1 x| =2,
by Lemma 9.16(i)—(ii). The inclusion S(vg) C oy is obvious and the converse inclusion
follows from o, C S(vgxy) and from Lemma 9.8(i).
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Now suppose the defect at vg equals 1. If the layer k — 1 is thick, then the defect
at vg_; is # 1 and we apply what we have just proved to get S(vg_1) = 0f—1. If
the layer k — 1 is thin we get immediately that S(vi_1) = 0;_; (Remark 9.13). In
both cases using Remark 9.7, Lemma 9.8(iii), and the definition of projection we get
S(vgxy) C oy, as desired. O

As a corollary we get the following technical lemma.

Lemma 10.4 Suppose k < m do not satisty i <k <m < j for any thick interval
(i, j) orif they violate this then |vg 41, pm| = m — (k + 1). Then the projection of oy
onto By, (k+1)(8m) equals oy ;.

Proof To justify speaking about the projection of oy onto By, _(k41)(6,) we must
show that o C S, (6m). The simplex oy, is outside B,,_;_1(6s) by Remark 9.7
and Lemma 8.3(ii). Thus we only need to check that o3 C B,,,_x ().

To verify this, we prove that o1 C By—(k+1)(0m). If the layer k& + 1 is thin then
this follows from Lemma 9.15(@). If the layer k + 1 is thick, then denote by (i, j)
the thick interval containing k£ + 1. By Lemma 10.3 we have o1 C S(Vk41Xk+1)
(Xg+1 asin Lemma 10.3). Thus it is enough to establish the inclusion S(vg41xg41) C
By (k+1)(8). If m < j, then this follows from our hypothesis. If j < m, then from
Remark 9.13 and Lemma 9.15(i) we have

SWk+1Xk+1) CS(Bj—k+1)(vj)) C Bj—k+1)(S(vj))
C Bj—(k+1)(87) C Bk +1)(Om),

as desired.

Hence the projection of oy onto By,_(x+1)(6m) is defined. Denote it by 7. Since
By—(k+1)(8m) C By—(k+1)(t), we have m C oy . For the converse inclusion we
need o1 C Byy—(k+1)(dm), which we have just proved. ad

The next lemma is valid for any (0% ), (7% ), not necessarily directed geodesics.

Lemma 10.5 Let e be an edge in the layer k of A (between v;w;, vjw; ), such that
e has three neighboring vertices in the layer k + 1. Let X be a vertex in the residue
(defined before Lemma 2.8) of S(e) (for some characteristic surface S') in the layer
k 4+ 1 between o, t in X . Then X € S(x), where x is the vertex in the layer k + 1 of
A in the residue of e.
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Proof Denote by yq, y, the neighbors of e in the layer k + 1 of A different from x,
and let y1 = S(y1), y2 = S(y2). We claim that y1, y, are neighbors of X. Indeed,
let z; be the vertex in e, which is a neighbor of y;. Let z; = S(z;) C S(e). Observe
that both y1, X lie in the projection of Z; onto Bj,_(x+1)(tr) (by Remark 9.7), hence,
by Lemma 2.8, they are neighbors, as desired. Analogously, y,, X are neighbors. Thus,
by the easy case of Proposition 7.6, we have that X € S(x), as required. O

The following lemma describes the behavior of the simplices oy appearing in the
statement of Proposition 10.2. The proof of Lemma 10.6 requires Lemma 9.16(1)—(ii),
apart from this it is straightforward and we skip it. For the same reason we will usually
not invoke it in the proof of Proposition 10.2.

Lemma 10.6 Let A be a characteristic disc for some thick interval (i, j). Suppose
that for some i <[ <m < j we have simplices «,«’ in the layers [, m respectively
between v;w;, vjw; in A. Suppose that @ C Sy,—;(’) and o' C Sy, (). Moreover,
assume that « is an interior vertex of A or an edge disjoint with the boundary or o = v; .
Assume that o is an interior vertex or an edge disjoint with boundary or o’ = v;. Let
(ax)}_; be the directed geodesic in A joining & to o' (in particular o; = o, oty C ).
Then:

(i) If ay is an edge, then ay 41 is the unique vertex, which is in the residue of oy,
in the layer k + 1.
(i1) If oy = vg and the defect at vy equals 0, then g1 = Vg 41 -

(iii) If oy, is a vertex with two neighbors in the layer k41, both at distance m—(k +1)
from o', then a4 is an edge spanned by these two vertices.

(iv) If oy is a vertex with two neighbors in the layer k + 1, but only one of them at
distance m — (k + 1) from o, then a1 is this special vertex.

(v) Moreover, oy, never equals wy, . If oy is an edge containing wy, then the defect
at wy is —1. If aj, = vy, then the defect at vy, is not equal to 1, except possibly
for the cases k =1, j .

Now we are ready for the following.

Proof of Proposition 10.2 We prove by induction on k, for / < k < m, the following
statement, which, by Lemma 10.6 and Lemma 10.3, implies the proposition.

Induction hypothesis (1) If the layer k is thick and «y is an edge disjoint with the
boundary or meeting the boundary at a vertex of defect # 1, then G contains S(og).

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2847

(2) 1If the layer k is thick and oy is a nonboundary vertex, then G is contained
S(ag).

(3) 1If the layer k is thick and ¢y is a boundary vertex or an edge intersecting the
boundary at a vertex of defect 1, or the layer k is thin, then &, contains or is contained
in oy .

For k =/ the hypothesis is obvious. Suppose it is already proved for some / <k <m—1.
We would like to prove it for k& + 1. First suppose that the layer k is thick and oy
is an edge disjoint with the boundary or meeting the boundary at a vertex of defect
# 1 (case (1)). Then ag . is a vertex. If it is a boundary vertex, then v € ag. By
the induction hypothesis, since the defect at vy is not 1, S(ag) C G, moreover, by
Lemma 10.3 we have o C S(ok), hence o; C 6% . Hence, by Lemma 2.10, 6441 is
contained in the projection of oy onto B, (k+1)(,), which in this case equals o 4
by Lemma 10.4. Thus 6441 C 0k 41, as desired.

Now, still assuming that the layer k is thick and that « is an edge disjoint with the
boundary or meeting the boundary at a vertex of defect # 1, suppose that ;41 is not a
boundary vertex. Let X be any vertex in 6. Our goal is to prove that X € S(og41).
By induction hypothesis we know that S(ag) C 6. Since X lies in the layer k + 1
between o, T, by Remark 9.7, we can apply Lemma 10.5 with e = o . Hence we get
X € S(ag+1), as desired.

Thus we have completed the induction step in case (1), ie for the layer k thick and o
an edge disjoint with the boundary or meeting the boundary at a vertex of defect # 1.

Now suppose that the layer & is thick and o, is a nonboundary vertex (case (2)). Then it
has two neighbors in the layer k£ + 1 of A, suppose first that both of them are at distance
m—(k +1) from p,, (we put p,, =v; if m > j). Then x4 is the edge spanned by
those two vertices. If it intersects the boundary, the defect at the boundary vertex is not
1. Thus we must show that 64 contains S(og41). But by induction hypothesis we
know that 6} is contained in S(wy). Thus, by Lemma 2.10, it is enough to observe
that S(otx 1) C Byy—(k+1)(8m) . This follows from ax 1 C By—k+1)(om) -

If one of the two neighbors of ¢y in the layer k& + 1 is not at distance m — (k + 1) from
Pm, then a4 is the second neighbor, it is a nonboundary vertex (unless k + 1= j,
which will be considered in a moment) and m < j . Thus we must show that 0y 4 is
contained in S(ag1). Let Z be a vertex in 0 41 . Then Z lies on a 1—skeleton geodesic
y of length m — k from some vertex of o C S(og) to some vertex X € 8, = S(pom).
We claim that if p,,, is an edge, then the vertex x = S~!(X) € A is the vertex closer to
v then the other vertex of p,,. Indeed, let y € p,, be the vertex closer to wy,. Since
| v| > m — k and this distance is realized by a neat geodesic, hence by Lemma 9.8(i)
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we have |S(ax), S(¥)| > m—k. This proves the claim. Thus we can apply Proposition
7.6t0 y =aix and Z € y, and get Z € S(otg+1)., as desired.

Now we come back to the case k + 1 = j and o a nonboundary vertex. By induction
hypothesis we have 63 C S(og). By Lemma 9.15(i) we have that o+ = S(vg+1)
(Remark 9.13) lies in B,,;,_(k+1)(dm). Hence, by Lemma 2.10, we have that 64
contains oy 41, as desired.

Thus we have completed the induction step in case (2), ie for the layer k thick and oy
a nonboundary vertex.

Now consider the case that the layer k is thick and «y is a boundary vertex of defect
—1 or the layer k is thin, but the layer k + 1 is thick (in this case put i = k). In both
cases oy = vi . If the hypothesis of Lemma 10.4 are not satisfied, then we can finish
as in the previous case (no matter what is the direction of the inclusion given by the
induction hypothesis) getting 0% +1 C S(ag+1). Otherwise, ag 4 is the edge spanned
by two neighbors of v in the layer £ + 1. By Lemma 9.16(i)—(ii) the defect at vy 44
equals 1. Hence we want to prove that 041 either contains or is contained in oy .
We know, by the induction hypothesis, that 6 contains or is contained in oy, hence it
is enough to use Lemma 2.10 and Lemma 10.4.

Now assume that either the layer k is thick and «y is a boundary vertex of defect O or
an edge intersecting the boundary at a vertex of defect 1, or the layer k is thin and the
layer k + 1 is also thin. Similarly as before, we have that 6 contains or is contained
in oy and we want to prove that 6 contains or is contained in o 1. This follows
from Lemma 2.10 and Lemma 10.4.

Thus we have exhausted all the possibilities for case (3) and completed the induction
step. O

11 Euclidean geodesics between simplices of Euclidean geo-
desics

In this section we complete the proof of Theorem 10.1. Its first ingredient is Proposition
10.2, proved in Section 10. The second ingredient is easy 2—dimensional Euclidean
geometry, which we present as a series of lemmas in this section. Throughout the
section, we will be treating characteristic discs simultaneously as simplicial complexes
and CAT(0) metric spaces.

We start with extending in various ways the notion of a characteristic disc and surface.
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Definition 11.1 A generalized characteristic disc A for an interval (i, j), where i < j,
is a closed CAT(0) (ie simply connected) subspace of £ with the following properties.
Its boundary is a piecewise linear loop with vertices v;, ..., vj, wj, ..., w;, v; (possibly
Vg = Wy ) , such that for i <k < j the straight line segments (or points) v wy are
contained in consecutive parallel lines at distance ~/3/2. We also require, if E2 is
oriented so that v;wy are horizontal, that v lies to the left of wy, or vy = wy.

A restriction of a generalized characteristic disc to the interval (/,m), where i </ <
m =< j, is the generalized characteristic disc enclosed by the loop v - - vy wy, - - - Wy vy
We denote it by Al[f*. If a generalized characteristic disc comes from equipping a
systolic 2—complex with the standard piecewise Euclidean metric, then we call it a
simplicial generalized characteristic disc.

Remark 11.2 Characteristic discs (resp. modified characteristic discs, cf Definition
9.10) with the standard piecewise Euclidean metric are simplicial generalized charac-
teristic discs (resp. generalized characteristic discs).

Definition 11.3 Suppose that we have simplices (0% ), (tz) in the layer k between
o, T (not necessarily the simplices of the directed geodesics) defined (only) for 0 <
i <k =<j=<n,wherei < j,such that for i <k < j we have that oy, 0x+1 span a
simplex and 7, Tx+1 span a simplex. Suppose that for i <k < j the maximal distance
between vertices in 05 and in 7% is at least 2. Then we define a partial characteristic
disc and a partial characteristic surface in the following way.

We extend (o), (tx) to all 0 < k <n so that ok, 0x+1 and 7%, Tx+1 span simplices
for 0 <k <n, and ¢, 19 C 0, 04, Ty C T. (This is possible, since, for example, we
may issue directed geodesics from o;, 7; to o and from oj, 7; to 7.) Obviously, o, %
lie in the layer k between o, T forall 0 <k <n. Let (iext, Jext) be the thick interval for
extended (0% ), (t) containing (i, j). Let S: A — X be a characteristic surface for
(fexts Jext). Then we call Apes = A|lj a partial characteristic disc (which is a simplicial

generalized characteristic disc) and Sies = S|A... a partial characteristic surface.

res

Caution A characteristic surface S: A — X, where A is a characteristic disc for
a thick interval (i, j) for (o%); _,, (tk)%—, (as in Definition 9.4) is not a partial
characteristic surface for (Ok)l]c=i’ (rk)ljc=i' This is beg:alllse the layers i, j are thin.
Butif i +1 < j — 1, then already S restricted to A|{;1 is a partial characteristic
surface.

Next we show that partial characteristic surfaces satisfy most of the properties of

characteristic surfaces. Fix an interval (i, j) and simplices (Uk)l]c=i’ (Tk)ljc=i as in
Definition 11.3. Let Sies: Alres — X be a partial characteristic surface, as above.
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Lemma 11.4 (1) Ares (and thus Sy ) is flat.

(i1) If we embed A5 C EZA, then v;w; and vjw; are parallel and the consecutive
layers between them are contained in consecutive straight lines parallel to v; w;
and vjwj .

(iii) Stes is an isometric embedding on 1—skeleton of a subcomplex spanned by any
pair of consecutive layers between v;w; and vjw; in Areg.

(V) Apes C ]EZA does not depend on the choice of oy, 1y for k <i and k > j, the
choice of sy, ty for 0 < k < n, and the choice of §S'.

If we have two partial characteristic surfaces S1: A1 — X, S>: Ay — X, then after
identifying partial characteristic discs A1 = A, (which is possible by (ii)) we have that

(v) for any vertices x,y € A1 = A, at distance 1, S;(x) and S,(y) are also at
distance 1,

(vi) for any vertex x € A1 = A,, S1(x) and S,(x) are at distance at most 1,

(vii) S(vgpwy) lies in the layer k between ¢ and t.

Proof Assertions (i) and (ii) follow immediately from Lemma 9.6(i)7(ii). Assertion
(iii) follows from Lemma 9.8(i). To prove (iv) notice that A = A|l] is determined
by the distances |sxt| for i <k < j and |sgtryq| for i <k < j, by (iii). Hence,
if we fix s and 7z for i < k < j, then A does not depend on the extension of
(ox)?) k=i’ ()] %= - On the other hand, if we fix such an extension, then [sgZg|, |sglk+1]
do not depend on the choice of s, t;, by Lemma 9.8(ii).

It is a bit awkward to try to obtain assertion (v) as a consequence of Lemma 9.8(iii).
Let us say, instead, that assertion (v) follows immediately from the proof of Lemma
9.8(iii). Similarly, assertion (vi) follows from the proof of Lemma 9.8(iv).

Assertion (vii) follows directly from Remark 9.7. O

Definition 11.5 We define the partial characteristic image S(C) of a simplex p in the
partial characteristic disc as the span of S(p) over all partial characteristic surfaces S'.
By Lemma 11.4(v)—(vi), S(C) is a simplex. We call this assignment the partial
characteristic mapping. Like in Definition 9.9 we can consider also the assignment
S

Definition 11.6 Let A be a generalized characteristic disc and y, y’ be two paths
connecting some points on v;w; to points on v;w; such that intersections of y, y’
with vgwy are unique for each i < k < j. We say that y,y’ are d—close if they
intersect viwy in points at distance at most d foreach i <k < j.
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The following lemma describes the possible displacements of CAT(0) geodesics in
characteristic discs when perturbing the boundary and the endpoints.

Lemma 11.7 Let A’ C A be two generalized characteristic discs for (i, j) such
that for each i < k < j we have v, w; C vgwy (and the order is vi v, wj wy ) and
lvk vy | =d. lwgwy | <d. Then forany points x €vjw;, y €vjwj, x' €vjw;, y' €viw}
such that |xx'| <d, |yy'| <d, the CAT(0) geodesics from x to y in A and from x’
to y' in A’ are d —close in A.

Proof Denote by y,y’ the geodesics from x to y in A and from x’ to " in A’
respectively. Denote by N4 (y) the set of points in A at distance < d from y in the
direction parallel to v wy (ie the intersection with A of the union of translates of y by
a distance at most d in the direction parallel to vz wy ), and by N Lg (y) the intersection
Na(y)NA'.

Observe that N;(y) is connected, since for each k the set v wj NN (y) is nonempty
and the intersection of N (y) with each of the parallelograms vj wj wj v}, is
an intersection of two parallelograms, hence convex and connected. We claim that
Ng4(y) is convex in A. To establish this, we need to study the interior angle at vertices
of dN;(y) outside dA. The only possibility for angle greater than 180° is at the
horizontal translates of break points of y. But since y is a CAT(0) geodesic, then
each of its break points lies on the boundary of A, and the translate, for which possibly
the angle is greater than 180°, lies outside A. Thus the claim follows. Hence (by
connectedness) N (y) is convex in A’. Thus y’ C N/(y) and we are done. ]

Let us prepare the setting for the next lemma. It will help us deal with the data given
by Proposition 10.2, which is, roughly speaking, a pair of surfaces spanned on nearby
pairs of geodesics. To be more precise, let 0y, T, 0%, Tx be simplices in the layers
i <k < j between o, t satisfying conditions of Definition 11.3. Moreover, assume
that for each i <k < j we have that 63 C 6y or 6) C 0%, and Ty C Ty or Ty C 7. Let
A, A be associated partial characteristic discs, unique by Lemma 11.4(iv). Denote the
boundary vertices of A (resp. A) by Uy, Wy (resp. Vg, Wy ), its characteristic mapping
by S (resp. 3S).

Lemma 11.8 There exists a simplicial generalized characteristic disc A for (i, j) and
embeddings (thought of as mcluswns for simplicity) A C A, A C A such that the
distances |y Vx|, |wgWy| in A and the distances [Vr Uk |, |Wg Wy | in A are all <1 for
i <k < j. Moreover, |vwy|>1fori <k <j.
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Proof Foreachi <k < j,let o;"* be the greater among Oy, G and let a,’cni“ be the
smaller, let 7,7** be the greater among Ty, Ty and let rm“‘ be the smaller. Pick vertices

X € 0,’(“‘”(, Yk € T so that the distance |xg yg| is max1mal If possible, choose them

from a}cm“ ™" (if it is possible for xj, v independently, then it is possible for both
of them at the same time, by Lemma 9.5). Pick a 1-skeleton geodesic ¢ connecting
X to yp intersecting o*,‘cmn ;{“i“ (this is possible by Corollary 8.7). If x; € a}cnin,
then put 53 = xj, otherwise let s; be the neighbor of x; on ¢y . Analogously, if
Vi € r]rcm“ then put 7z = yy, otherwise let #; be the neighbor vertex of y; on ¢y.
Thus s € al;“‘“ I € rmm Let A be the partial characteristic disc for (5j), (7x) for

i <k < j. Denote its boundary vertices by v, w .

The embedding, say A C A, is defined as follows. By Proposition 7.6 there exists a
characteristic surface S: A — X such that S (vx wy) = sktk C ¢y . Moreover, again
by Proposition 7.6, the subgeodesic sktk of ¢k liesin & (A) Hence we can define the
desired mapping as the composition S8~ 16 8. To check that this is an embedding it is
enough to check that it preserves the layers (Lemma 11.4(vii)) and is isometric on the
layers (Lemma 11.4(iii)).

To prove the last assertion fix & and assume without loss of generality that amm = 0.

Then |vgwy| > |V wi| — 1> 1, as desired. ad

Now we prepare the statement of our final lemma. One can view it as a simple case of
Theorem 10.1, case of X being flat.

Let A be a characteristic disc for a thick interval (i, j) for the directed geodesics
(0% ). (tx) between o, 7 and let ' be its CAT(0) diagonal, cf Definition 9.10. Let
(or)1 k= 1 41 be the simplices of the Euclidean diagonal in A (Definition 9.10). Fix
i<l<mz=j.Ifi<l<m<j thenlet (ax)}_,, (,Bk)k_ be directed geodesics in
A from p; to py and from py, to p; respectively. If / =i then put p; = v; in the
definition of (ax)}_; and p; = w; in the definition of (ﬂk) k—m- If m = j then put
pj = wj in the definition of (,Bk)k —m and pj = v; in the definition of (ax)}'_;. For
all other purposes we will put p; = v;w;, pj = vjw;.

Let | J A be the subcomplex of A which is the span of the union of conv{way, B} over
all / <k <m. Note that _J Aisa simplicial generalized characteristic disc. Denote
the vertices of its boundary loop by (V) and (wy ). Denote by y Y the CAT(0) geodesic
joining in | J A the barycenters of p; and p,, (which lie in | J A)

Lemma 11.9 )/ restricted to A|f* and y are %—c]ose in Al

Proof We denote by Ao the generalized characteristic disc obtained from U A
by removing the following triangles: For any boundary vertex of defect 1 in the
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layers # [, m, say U, we cut off a triangle along the segment vy_; V. For any
boundary vertex of defect 2 (which is possible in the layers /, m), say v;, we cut off a
triangle along the segment joining v;4; to the barycenter of v;wy; .

We claim that | J AO is convex in A (treated as CAT(0) spaces) This means that at
all vertices of dJ Ao outside dA, the interior angle of U Ao is at most 180°. We
skip the proof, which is an easy consequence of Lemma 10.6.

Let o be the CAT(0) geodesic in | J Ao ]01n1ng the barycenter X of p; with the
barycenter y of p, (observe that X,y € | Ao). Since U Ao C A is convex, 7
agrees with the CAT(0) geodesic in A joining X, J.

Now we apply Lemma 11.7 to A’ ¥ C Al (cf Definition 9.10 for the definition of
A"), and geodesics yp in Al}" and y’ restricted to A’|7*. Observe that endpoints X, y
of o are at distance at most % from y’ Nv;wy, ¥’ Nuywy,, by the definition of oy, pp, .
Hence, by Lemma 11.7, we have that yq is %—close to y’ restricted to A[7".

Now observe that since | J Ag is also convex in | J A, we have ) = 7 and we are
done. O

Finally, we can proceed with the following.

Proof of Theorem 10.1 First suppose that the layer k for (o), (z;) is thin. Then, by
Proposition 10.2(i), 6% contains or is contained in oy, and Tj contains or is contained in
7% . Hence the thickness of the layer k for (6;), (7;) is at most 3 and thus 63 C B; (gk)
or 7 C Bl(gk), hence |gk,8k| <.

Now suppose that the layer k for (o;), (t7) is thick and suppose it is contained in a
thick interval (i, j) with a characteristic disc A. Put p; = v;w; if / <7 and py, = vjw;
if m > j. We will use the notation introduced before Lemma 11.9. First suppose that
the layer k for (G;), (7¢) is thin. Then, by Proposition 10.2(ii), the maximal distance
between vertices in S(atx) and S(By), hence (Lemma 9.8(iii)) in oy and By is at most

. Since ¥ Nvgwy lies in conv{ay, Br}, Lemma 11.9 implies that ' N v wy is at
dlstance at most 1 from conv{oy, Br}. Hence oy C By(px) or Br C Bi(pr). Thus
8k ) are at dlstance at most 1.

Now suppose that the layer k& for (5;), (7;) is thick. Let A be the characteristic disc
for the thick interval (7, j) containing k for (&), (Z;). If the layer k for (ay), (Bs)
(between p;, pm in A) is thin, then the thickness of the layer k for (G;), (7¢) is at
most 3, by Proposition 10.2(ii). Hence & C By (8;) or Tx C B;(8;). By Lemma 11.9
we have |pg, x| <1 and |px, Bx| < 1, hence altogether |gk’5k| <2.
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So suppose that the layer k& for (cxt) (B:) in A is thick, let i, f be the thick interval for
(0ry), (,3 ‘) containing k and let A be the Correspondlng characteristic disc. Observe
that A = U A|] Let imax be the maximum of 7,7 and jy;, be the minimum of ] ]
Obviously lmdx <k < jmin. ASSUmE imax + 1 < jmin — 1, in the case of equality the
argument is similar and we omit it.

By Proposition 10.2(ii) we can apply Lemma 11.8 to A and A restricted to the
interval (imax—+1, jmin—1). Denote by A the simplicial generalized characteristic disc
for (imax+1, jmin—1) guaranteed by Lemma 11.8. Denote by A’ the generalized
characteristic disc obtained from A by removing horizontal (the direction of v;w;)
%—nelghborhood of the boundary, which is allowed because [vw| > 1 by Lemma 11.8.
Let A’ be the modified characteristic in A and 7’ the CAT(O) dlagonal of A (cf
Definition 9.10). Define a generalized characteristlc disc A’ C U A and a CAT(0)
geodesic )7/ in A’ as follows. For each / < < m denote by v}, @; points on U, W,
at distance 1 5 from v, wy, respectively, if U; # w,. Otherwise, put vt = s, wt = Wy;.
Let A’ be the generalized characteristic disc enclosed by the 1oop v, l 0 W), e WD lvl‘
Let 7" be the CAT(0) geodes1c in A/ joining vl =w, ! and v, = w,,. By Lemma 11 8
(applied to restricted A and A) we have inclusions of A’ into A’ |j i +1 , A l]:;: +
with distances |v}0}|, |w,w}| in A EAANTTATART A’ all at most 1 for imax + 1 <

tfjmin_l-

Now we will choose a special point X € v 1 w 41+ Without loss of generality as-

sume imax =1, hence |3; 4 1; 1] =2. Choose any Xinv; W . atdistance
"/

<1 from 7', which is possible, since |v,max+1vlmax+1| <1 and |wlmax+1w,~max+1| <1.

; o~ ~ = . 2 —.
§/1nce |_vimax+ll.vimax+ll =1, X is also at distance at most 1 from y’. Choose y in
v; o Wj  _yinan analogous way.

By this construction the endpoints of ¥ and 9’ restricted to (imax+1, jmin—1) are at

/ ]mm 1 ! jmin_1
distance at most 1 from X, y in A TR A TR

Lemma 11.7, we get that " and }’ restrlcted 0 (imax + 1, jmin — 1) are 1—close to

the CAT(0) geodesic X7 in A’ (in A/ |Jmm N Jm;“ 11 respectively).

respectively. Thus, using twice

«+1°
By Lemma 11.9, ¥’ and 7 are ——close in A[f". By Lemma 11.7, y’ and y are
——close in A |l] Putting those four estimates together we get that Jy, 8k are at distance
at most 3, as desired. O

We end this section by indicating, how Theorem 10.1 can be promoted to Theorem B,
with a reasonable constant C. The difference in statements comes from substituting
81, 6m with x € §;, y € 8, such that |[xy| =m — /. As a first step, we check that
Proposition 10.2 implies that the directed geodesics between x and y lie near the union
of characteristic images of characteristic discs for (o), (tx). This follows from the

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2855

fact that directed geodesics in systolic complexes satisfy the so called fellow traveler
property with a good constant; see Januszkiewicz—Swiatkowski [19, Sections 11-12].
The second step is to reprove Lemma 11.8 allowing 63 and 6 (and similarly 7z and
T ) to be farther apart, at distance bounded by the above fellow traveler constant. Then

some minor changes in the proof of Theorem 10.1 yield Theorem B.

We will give a different complete proof of Theorem B (though with a worse constant)
in the next section.

12 Characteristic discs spanned on Euclidean geodesics

In this section we prove the following crucial proposition, which, roughly speaking,
says that in a characteristic disc spanned on a Euclidean geodesic and an arbitrary other
geodesic, the boundary segment corresponding to the Euclidean geodesic is coarsely
a CAT(0) geodesic. We introduce the following notation, which will be fixed for the
whole section.

Let o, T be simplices in a systolic complex X satisfying as before 0 C S, (t), T C Sy (0)
and suppose that (px)y _q- (&)} —, are 1-skeleton geodesics with endpoints in o and
T such that ry € 8, where (8x);_, is the Euclidean geodesic between o and 7.
Let 0 <ipr < jpr < n be a thick interval for (pg), (rx) and let Ap,,S,, be the
corresponding characteristic disc and mapping. Let y,, be the CAT(0) geodesic in
Apy joining the barycenters of the unique edges in the layers ip,, jpr.

Proposition 12.1 y,, is 97—close to the boundary path S, ((ry)).

This proposition has fundamental consequences. One of them is Theorem C, which says
roughly this: in a “Euclidean geodesic triangle”, the distance between the midpoints of
two sides is, up to an additive constant, smaller than half of the length of the third side.
We study this in the next section.

The second consequence of Proposition 12.1 is an alternative proof of the following.

Theorem 12.2 (Theorem B) Let o, t be simplices of a systolic complex X , such
that for some natural n we have o C Sy(t), T C Sy(0). Let (8x); _, be the Euclidean
geodesic between o and t. Take some 0 </ < m < n and let (rg)}"_,; be a 1-
skeleton geodesic such that ry, € 6y for | < k < m. Consider the simplices §; =
rl, glﬂ, e, gm = ry, of the Euclidean geodesic between vertices r; and ry,. Then for
each | <k <m we have |§, gk| < C, where C is a universal constant.
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Proof Extend (rg))'_; to a 1-skeleton geodesic (rx)j _, between o, T so that ry € 6
(this is possible by Lemma 9.15(i)). Let ('r“k);c”= ; be any 1-skeleton geodesic between
r; and ry, such that 7 € 5/(- Put additionally 7 =r for 0 <k </ and for m <k <n.
Let A,7 be the characteristic disc for some thick interval for (7g)y _,, (rx)y _, and let
y,7 be the CAT(0) geodesic joining the barycenters of its outermost edges. Let S,7
be the corresponding characteristic mapping.

Notice that A, is also a characteristic disc for (rg)}"_;, (Fx)}—; between r; and ry.
Applying twice Proposition 12.1 we obtain that y,5 is 97—close to both S=! ((rx))
and S-!((7x)). This proves that for all / < k < m we have |r;7%| < 194, hence

|0k, 6% | < 194. Thus any C > 194 satisfies the assertion of the theorem. ad

The proof of Proposition 12.1 is rather technical. This is the reason we decided to
present the straightforward proof of Theorem 10.1 (the weak version of Theorem B)
via Proposition 10.2. Before we get into technical details of the proof, split into various
lemmas, we present an outline, which hopefully helps to keep track of the main ideas.

Outline of the proof of Proposition 12.1 We are dealing with configurations of four
geodesics between o and t: the directed geodesics, denoted by (o)} o, (k)7 —, S
in the previous sections, (1)} _,» which goes along the Euclidean geodesic &y, and the
fourth arbitrary 1-skeleton geodesic (px)y_, - For the layer k thick (for (o%), (tx))
we have that 6 = S(pr), where py is the simplex of the Euclidean diagonal in
appropriate characteristic disc A for (0% ), (tx). Hence we need to find out, what is
the possible position of (pj) with respect to S(A). It turns out that in each layer
there are 1—skeleton geodesics between simplices oy, 75 and pj , which form a very
thin triangle (Lemma 12.3). The intersection with S(A) of the center simplex of this
triangle will be later denoted by Xy .

In Lemma 12.4 we study, how do X vary with k. Assume for simplicity that p; stay
away from S(A). Then it turns out that first (ie for small k) ¥ follow S(wy), next
the barycenters of ¥ lie in the characteristic image of a vertical line in A and last
Xk follow S(vg). The CAT(0) diagonal ¥’ of A crosses this line at most once. Thus
we can divide each “thick” interval (an interval with all layers thick, in opposition to
the thick interval with thin endpoint layers) for (o), (tx) into three subintervals: the
“initial” one, for which y; = S™!(¥) is far to the right from pj or near wy € JA,
the “middle” one, for which xj is near pi, and the “final” one, for which xj is far to
the left from p; or near v, € dA; see Lemma 12.8. Moreover, in the “initial” (resp.
“final”) interval we can distinguish a “preinitial” (resp. “postfinal”) interval in which j’
stays away from wj € A’ (resp. v, € dA"), where A’ is the modified characteristic
disc. This distinction is done in the main body of the proof of Proposition 12.1. The
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vertices S, 1(rx) in Ap,, for k in one of these intervals, are positioned as follows. The
vertices of the “middle” interval together with the vertices of the other ones outside the
“preinitial” and “postfinal” intervals form a coarse vertical line (this is a consequence
of Lemma 12.9), while the vertices of the “preinitial” and “postfinal” intervals form
also coarse CAT(0) geodesics, fortunately forming with the coarse vertical line angles
> 180° at the endpoints. This proves Proposition 12.1 in the simple case of a single
“thick” interval for (oy), (tz).

In the complex case, the question is, how may the various “thick” intervals and thin
layers for (o), (tx) alternate. We define roughly the following notions. A “thin”
interval is an interval of not very thick layers. A “proper thin” interval is a “thin”
interval with thin layers at the beginning and at the end. A “very thick” interval is
an interval containing a layer that is very thick. In Lemma 12.11 we prove that the
vertices S, ,1 (%), for k in a “thin” interval, form a coarse vertical line. In Corollary
12.10 we prove that if at the beginning of a thin layer there is an adjoined “thick”
interval, then this “thick” interval has the “final” subinterval constructed above “thin”.
Similarly, if at the end of a thin layer there is an adjoined “thick” interval, then this
thick interval has the “initial” subinterval “thin”. The last piece of the puzzle is an
assertion in Lemma 12.8, that for a “very thick” interval, either its “initial” or “final”
subinterval is non-“thin”.

The way to put these pieces together is the following. We take a maximal “proper
thin” interval. The “very thick” interval adjoined at the beginning of this “proper thin”
interval must have either the “initial” or the “final” subinterval non-“thin” (Lemma
12.8), but the possibility of the “final” subinterval non-“thin” is excluded (Corollary
12.10). Thus its “initial” subinterval is non-*“thin” and this excludes the possibility
that some thin layer (hence any layer) is adjoined at the beginning of this “very thick”
interval (Corollary 12.10). We can apply analogous considerations to the “very thick”
interval adjoined at the end of the “proper thin” interval. Altogether, we have the
following configuration: the “proper thin” interval, with a “very thick” interval with
“thin” “final” subinterval adjoined at the beginning, and with a “very thick” interval with
“thin” “initial” subinterval adjoined at the end. Moreover, in the first of the “very thick”
intervals we distinguish the “preinitial” interval and in the second one we distinguish the
“postfinal” interval. The vertices Sp_rl (ri), for k outside the “preinitial” and “postfinal”
intervals, form a coarse vertical line (Lemma 12.9 and Lemma 12.11), and the ones
for k in the “preinitial” and “postfinal” intervals form also coarse CAT(0) geodesics
forming with the coarse vertical line angles > 180° at the endpoints. This ends the
outline of the proof of Proposition 12.1.

The following lemma treats configurations of three vertices in a layer. Denote the layers
between o, 1t by L.
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Lemma 12.3 Suppose p, s,t are three vertices in Ly, . Then either there exists a vertex
such that there are 1—skeleton geodesics ps, pt, st passing through this vertex or there
exists a triangle (ie a 2—simplex) such that there are 1—skeleton geodesics ps, pt, st
passing through the edges of this triangle.

Proof Let p’ be a vertex farthest from p lying both on some 1-skeleton geodesic
ps and some 1-skeleton geodesic pt. Let s’ be a vertex farthest from s lying both
on some 1-skeleton geodesic sp’ and some 1-skeleton geodesic s¢. Finally let ¢/
be a vertex farthest from ¢ lying both on some 1-skeleton geodesic 7p’ and some
1 —skeleton geodesic 7s’. If two of the vertices p’, s, 1" coincide, then all three coincide
and the lemma follows immediately. Suppose now that those three vertices are distinct.

From the choice of p’,s’,t’ it follows that any loop I" obtained by concatenating some
1—skeleton geodesics p’s’, s’t’,t' p’ is embedded in Ly . Since Ly is convex (Remark
8.2), it is contractible (see remarks after Definition 2.4), hence I' is contractible in
Ly, (we could also invoke Lemma 8.4). Consider a surface 7: D — L of minimal
area spanned on such a geodesic triangle I" (we allow the geodesics to vary). By
minimality of area the defects at interior vertices of D and at interior vertices of the
boundary geodesics are nonpositive. Since by Gauss—Bonnet Lemma 7.2 the total sum
of defects equals 6, we get that all mentioned vertices have defects 0 and the vertices
of the geodesic triangle D have defect 2. Hence D is a subcomplex of ]EZA which
is a Euclidean equilateral triangle. Denote the length of the side of this triangle by
d > 0. If d > 2 then let u be the vertex in D such that 7T'(u) = p’, let uy,u, be
its neighbors in D, let u3 be the common neighbor of u, u, in D different from u
and let u4 be the neighbor of u different from previously mentioned vertices. By
Corollary 8.6 applied to the trapezoid T (u)T (u1)T (u3)T (u3)T (u4) either we have
an edge T (u)T (u3) or T(uz)T (usg). In the first case the vertex 7' (u3) turns out to
lie on some 1-skeleton geodesics sp,tp contradicting the choice of p’. In the second
case the vertex T (u;) turns out to lie some 1—skeleton geodesics sp, tp, also giving
a contradiction. Hence d = 1 and the lemma follows. O

In the next lemma we analyze the possible position of (pj) with respect to the partial
characteristic image S(A) of a partial characteristic disc A for (i, j) for (o%), (tx).
This means that we assume that the layers i <k < j are thick, cf Definition 11.3. In
the language of the outline of the proof of Proposition 12.1 this is the “thick” interval.
The boundary vertices of A are, as always, denoted by (vg), (wg).

Foreach i <k < j let s € oy, t; € T3 be chosen as in the previous sections to maximize
the distance |s?;|. Moreover, among those, choose s, #; to maximize the distances
| pesi|s | Prti| (it is possible to do this independently by Lemma 9.5). For each k
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perform in Ly the construction of s, ,#; , p; as in the proof of Lemma 12.3 and denote
Xk = s}{l}{, which is an edge or a vertex in some 1-skeleton geodesic s ;. Denote

o= 1= : VAPV
){k = 8 ). Qbserve that ?(k does not depend on the choice of sg, t, sy, 4, P »
since it is determined by the distances |sit|, |Sk k|, |tk Px|. Lemmas 12.4-12.8 are
devoted to studying the position of yj with respectto p; (the simplices of the Euclidean
diagonal).

The paths (vg), (wg) are the boundary components of A.

Finally, note that in the lemma below we actually do not have to assume that (o), (tz)
are directed geodesics.

Lemma 12.4 In the above setting, assume that for all i <k < j we have py # p;c
(this does not depend on the choice of p}{ ). Thenfori <k < j,

(1) if Xk, xkx+1 are both edges, then they both intersect the same boundary compo-
nent,

(ii) ifone of Xk, Xk+1- SaY Xk, 1s an edge, and the second is a vertex, then either
Xk» Xk+1 Span a simplex, or they intersect the same boundary component,

(i) if xx. xx+1 are both vertices, then they both lie on the same boundary compo-
nent.

If we remove the assumption that pj # p;c , then in case (i) we only have that x; C
S1(Xx+1) and xx+1 C S1(xx), case (ii) remains unchanged, and in case (iii) we only
have that xj, xx+1 Span an edge.

Proof We first prove the last assertion. We need to prove (up to interchanging k
with k + 1) that for a vertex ug € xx either there exists a neighbor of ug in x4,
Or Xk, Xk+1 Intersect the same boundary component. Suppose the first part of this
alternative does not hold. Then, up to interchanging vy with wy, we have the following
configuration (which it will take some time to describe, since we need to name all the
vertices that come into play):

We have uy # wy,, and we denote by u#; the vertex following uo on 1-skeleton geodesic
in A from ug to wg, and by u, the vertex following u; if u; # wy. In the layer
k + 1 we denote by z; # wg 4+ the vertex in the residue of ugu; and by z, the vertex
following z; on 1-skeleton geodesic zywg4 1. The configuration is the following:
Xk+1 lies on the 1—skeleton geodesic zyWy 41 .-

Fix some 1-skeleton geodesics s; ~--s;, Y tl’ pr- P; for / =k, k + 1. Consider a
partial characteristic surface S: A — X such that for / =k, k41 we have that S (v;w;)
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(where v;w; is the 1-skeleton geodesic in A) contains s; - --s; and tl/ -+ -7 (this is pos-
sible by Proposition 7.6). Then S(z2) € k41" S CSk+1° " Sp 1 Pt " Ph+1
(where possibly s,’c = p;c +1)- By Proposition 7.6 applied to the partial characteristic
surface for pg, pr+1, Sk, Sk+1 containing sg ---s,/c, there is a neighbor of S(z;) on
Sk =S Dy "+ Pk (where possibly 5; = p;). Denote this neighbor by X. Since
S(ug) € Xx, we have that X % S(u1), X # S(u,). Moreover, since the vertices in the
1-skeleton geodesic viug are not neighbors of z,, we have by Lemma 11.4(iii)
that X ¢ sg---s5,. So X € p;c-upk. But by Lemma 2.8 the vertices X, S(u1),
together with S(u;), if defined, span a simplex. On the other hand, S(u;), and
S(uy) if defined, lie on the 1-skeleton geodesic py - - p}ct,’C -+ -1 passing through Xx.
Since X, S(u1), and S(u,), if defined, are different vertices, this is only possible if
X = py,S(uo) =53, S(uy) =t and uy = wy, ie uy is not defined. Then yxy is an
edge, xk+1 1s a vertex, and they intersect the same boundary component, which is
the second possibility of the alternative. Thus we have proved the last assertion of the
lemma. In particular, we have proved assertion (ii).

Now we will be proving assertions (i) and (iii) and we may already assume that py # p;c
fori <k=<j.

First we prove (i), by contradiction. Suppose that xz, xx+1 are both edges, and without
loss of generality suppose that x; does not intersect the boundary. This implies that
s;c # Sk, t]’C # 1. Let Z be a vertex in the projection (cf Definition 2.9) of the triangle
sty onto the layer Ly ;. By Lemma 10.5 applied thrice we get that Z lies on 1-
skeleton geodesics between all pairs of vertices from {Sg 41, t%+1. Pk+1}> thus Xi+1
is a vertex. Contradiction.

Now we prove (iii), by contradiction. Suppose that xx, xx+1 are both vertices and
one of them is nonboundary. Then in the layers k,k + 1 of A there are vertices,
which are common neighbors of xg, xx+1, denote them by u (in the layer k) and
by z (in the layer k + 1). Moreover, either x; # vx and Yx4+1 7 Vgk41. OF Xk #
wy and Yg4+1 7# Wr4+1. Assume without loss of generality that the latter holds.
Consider the partial characteristic disc Ap; for pg, pr41, ik, tk+1 (we are allowed
to do this, since |prtx| = |prXk| + |Xktx| = 2 and similarly |pgy1#k+1| = 2) and
the corresponding partial characteristic mapping Sp. Let x be the common neighbor
of Sy (Xk): Sy (X41) in Apy lying on Sy (pXe) Of Syt (pk+1Xk41). Assume,
without loss of generality, that Sp,(x) C L. Since vertices in Sp;(x), S(u) C L
are neighbors of Xz € L1, we have by Lemma 2.8 that Sp;(x) and S(u) span
a simplex. On the other hand, ¥ lies by definition on some 1—skeleton geodesic
Dk Sk - By Proposition 7.6, its segments py X and XSk intersect Sp,(x) and S(u),
respectively (outside X ). Hence Xj separates vertices from Sp(x) and S(u) on a
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1—skeleton geodesic py sy . Contradiction. Thus we have proved assertion (iii) and
hence the whole lemma. a

Let us introduce the following language.

Definition 12.5 We will refer to the horizontal coordinates of points in various char-
acteristic discs. Namely, we view a characteristic disc as a CAT(0) subspace of E2.
There we consider cartesian coordinates such that the layers are contained in horizontal
lines. We also specify that the horizontal coordinate increases (from the left to the
right) in the direction from v; to wy. We denote the horizontal coordinate of a point
z by z*. If A is a vertical line in A, then its horizontal coordinate is denoted by A*X.

We will need the following technical lemma, which helps to compare the horizontal
coordinates of the preimages of vertices of X in various characteristic discs.

Lemma 12.6 Suppose that A, A? are partial characteristic discs (and S', S? resp.
characteristic mappings) for the interval (i, j) for some sequences of simplices (0,&),
(‘C]i), (alf), (t,f) in the layers Lj between o, t. Suppose (Pk)£=,~» (ﬁk);jmi are 1—
skeleton geodesics such that for i <k < j we have that py., py € Ly and, forl =1, 2,
we have py., py € SL(AY) but (SH) 1 (pr) # (SY) ™ (P). Then, if we vary i <k < j,
the differences within ((S')™1(px))* and within ((S?)~'(px))* agree.

Proof Apply Lemma 11.4(iii). O
The following notions will help us formulate neatly the upcoming lemma.

Definition 12.7 Let A be a simplicial generalized characteristic disc for (i, j) such
that |vpwy| > 2 for i <k < j. Let x, p be some simplices in the layer k of A, and
c € Z4. We say that yx is

e J-left if either v; € x or x is a neighbor vertex of vy, which has defect 1 in
case k #1,j ordefect 2incase k =i or k = j,

e 0J-right if either wy € x or x is a neighbor vertex of wy, which has defect 1 in
case k #1,j ordefect 2incase k =i or k = j,

o c-left from p if |x, p| = ¢ and yx lies on v p,
e c-right from p if |x, p| > ¢ and yx lies on pwy.

In all that follows, c is a positive integer. When all the pieces of the proof of Proposition
12.1 are put together, we assign ¢ = 5. But before this happens, we use the variable c,
in order to help keeping track of the role of the constant in the various lemmas.
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Lemma 12.8 Assume that for some i < j and eachi <k < j the layer k is thick for
(o), (t), and | pg, 8x| = ¢ + 4. Then there exist i <1 <m < j such that

(1) fori <k <[ we have that yj is d—right or ¢ —right from py,
(i) among [ <k < m the differences within («Sp_r1 (re))* are <c+1,

(iii) for m < k < j we have that yj is d—left or c—left from py .

Moreover, if the maximal thickness of the layers (for (oy), (tx)) from i to j is at
least 2¢ + 4 and the layers i — 1, j + 1 are thin, then there are [, m as above such that
either m < j and vj’.‘ 1 v,’;l 11 > ¢ (in the characteristic disc for the thick interval
(i—1,j+1))orl>iandw;  —wy K >c.

The ranges for k in (i), (ii) and (iii), define the “initial” subinterval, the “middle”
subinterval and the “final” subinterval of a “thick” interval discussed in the outline of
the proof of Proposition 12.1. The last assertion, in the language of the outline, states
that a “very thick” interval has either its “initial” or “final” subinterval non-*“thin”.

Proof First we give the proof of (i)—(iii) under an additional assumption that for all
i <k <j wehave p; # p;c (recall that this does not depend on the choice of p;c).
The outline of the proof with this assumption was already given at the beginning of the
section.

To start, observe that from Lemma 12.4 and Lemma 9.16(i)—(ii) we get immediately
the following.

Corollary There exist i <!’ <m’ < j such that

(1) fori <k <!’ the simplex xj is d-right,

(2) forl’ <k <m’ the simplices xj are alternatingly edges and vertices and their
barycenters lie on a straight vertical line A in A ; moreover for I’ < k <m' the
simplices xj do not meet vy, wy,

(3) form’ <k < j the simplex yj is d—left.

Recall that the restriction to A (the partial characteristic disc for (i, j) for (o%), (tx))
of the CAT(0) diagonal y’ (cf Definition 9.10) in the characteristic disc (Definition
9.4) containing A crosses transversally each vertical line in A, by Lemma 9.17 (since
(j+1)—(i—1)>2). Let I’ <] <m’ be maximal satisfying (3’ Nvgwy)* ka—c—% for
I’ <k <. Similarly, let // <m <m’ be minimal satisfying (y’ Nvgwg)* >A*+¢ —1—%
form <k <m'.
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We prove that assertion (i) is satisfied with / as above. First consider i < k < /’. Then
assertion (i) follows from assertion (1) of the corollary. Now suppose that [’ <k <.
Then, by the definitions of / and pg, if pi is a vertex, then pj < A* —c — % and
if pg is an edge then the horizontal coordinates of its vertices are at most A* —c.
Moreover, in case the latter inequality is an equality, we have that x; is a vertex. In all
cases xj lies to the right of p; and the distance between them is at least ¢, as desired.

Analogously, assertion (iii) holds with m as above.

Now we prove assertion (ii). Consider / <k <m.If [ =m =1[' or | = m = n’, then
(ii) follows immediately. Otherwise, by the definition of m,/ we have (y' Nv;w;)* >
)\X—c—% and (Y Ny wy,)* < Ax+c+%, hence kx—c—% <(y'Nugwg)* < )\x+c+% )
By the definition of py, via similar considerations as in the previous paragraph, we
have that diam(px U xx) <c + 1 and |pg, xx| < ¢. By the former inequality we have
that p;c are at distance at most ¢ + 1 from r; . (Record the latter one, ie |, xx| < c,
which we will need later in the proof.)

We would like to compute the differences within (S, 1 p;c))x ,when we vary [ <k <m.
These differences are equal to the differences within (S[js1 ( p}{))x in Apg, where Sy
(resp. Apy) is the partial characteristic mapping (resp. partial characteristic disc) for
(Pi)f—; (sx)7; - To see this, it is enough to apply Lemma 12.6 with (p;), (px) in
place of (pg), (Px), where we use our additional assumption py # p; .

We claim that (81751 (p}.))* vary at most by % for / <k <m. Indeed, by our additional
assumption and assertion (2) of the corollary we have, for [ < k < m, that pj #
Dys Sk # Sp» Ui # t.. Thus we can apply Lemma 12.4 with (sg), (pk). (#) in place
of (0%), (tx), (px) to obtain, for / <k < m, that the barycenters of Sp_sl (p;cs;c) lie on
a common vertical line in A, . This justifies the claim.

Thus (S, 1 Py))* vary at most by %, for / <k <m. Let u be the greater among (at
most two) values attained by (S, 1 p}c))x . By the previous estimates we have that
(Sp_,1 (re))* < 4+ c+ 1. On the other hand, we have u < (Sp_rl (rr))”*. Hence we
obtain that the differences within (S, 1(rg))* are <c+ 1, as desired.

Now we must remove the additional assumption that for all i <k < j we have pj # p}c .
We have now only the last assertion of Lemma 12.4 at our disposal.

Leti <ij < j1<ip = ja<--<ig=jq=j,where jj <ipy;—1for1<h<g,be
such that exactly for i, <k < j, our additional assumption is satisfied. For all other
i <k <j,inparticular, for k =i, —1, j,+1 (where 1 <h <gq), except possibly for i;—1
ifitequals i —1, and j, + 1 ifitequals j 41, we have |xx, pr| = | pk. Ok|—1=c+3.
Thus for k =iy, jj, except possibly for iy if it equals i and for j, if it equals j, we
have, by Lemma 9.11 and by the last assertion of Lemma 12.4, that |xx, px| = ¢+ 1.
So for all k not contained in the (open) intervals (i, jz) we have |xi, pi| = ¢+ 1.
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Put for a moment jo =i, iyz41 = j. By the previous paragraph, by Lemma 9.11 and
by the last assertion of Lemma 12.4, for any 0 </ < ¢ and all j; < k <ij4, either
pr lies always between yj and vy, or pr lies always between xj and wy.

Now let us analyze what happens for a fixed 1 <h < ¢ for i, <k < j,. Apply our
argument under the additional assumption p; = p}c to i =iy, j = jp. Observe that
if |xi),. pi,| = ¢ + 1 (which holds unless possibly # =1 and i; =) and ;, lies
between p;, and v;, , then we have that / = m = i}, (otherwise we have recorded
that |pg, xx| < ¢ for [ <k <m). Similarly, if |x;,, pj,| = ¢ + 1 (which holds unless
possibly 4 = ¢ and j; = j) and yj, lies between pj;, and wj,, then [ =m = jj,.
In particular, those two situations cannot happen simultaneously, and if any of them
happens, then either assertion (i) or assertion (iii) is valid for all i, <k < jj.

Summarizing, there can be at most one / such that / # j; and m # ij. If there is no
such £, then either assertion (i) or assertion (iii) holds for all i <k < j and we are
done. If not, define /, m as in the previous argument for i =iy, j = j,. They satisfy
assertions (i)—(iii), as required.

Finally, we prove the last assertion. Pick A,/,m as above. Let )’ be the CAT(0)
diagonal of the characteristic disc A for (i — 1, j + 1). Since the maximal thickness
for (o%), (zx) of the layers from i to j is > 2c¢ + 4, then by Lemma 9.16(i)—(ii),
we have that v]’.‘ +1—Wj_; = 2c¢+ 1. Thus we can assume without loss of generality
that A —w¥ | > ¢+ % Thus A* — (' Nvjw;)* > ¢ + % and / > i. Observe that
A goes through the barycenter of x;, hence wy | =A™ — % so wy, —w  >c,as
desired. m|

The next lemma in particular guarantees that in a “thick” interval, the vertices S, L)
for k in the “final” subinterval outside the “postfinal” subinterval form a coarse vertical
line. We consider it, together with the previous lemma, the heart of the proof of
Proposition 12.1. Below we put A to be the characteristic disc for the thick interval
containing i, j for (oy), (tx). Let v, w be its boundary vertices, etc.

Lemma 12.9 Suppose that for some i < j and for all i <k < j the layer k is thick
for (o%), (tx), |pr,0k| = ¢ +2 > 7 and yxj is either d-left or c¢—left from py.. If
' Nvjpiwj41)* = et %, then v | — v <c.

Proof By contradiction. Roughly, the idea is the following. If v}‘ 1 Is relatively large
with respect to vy, this means that the directed geodesic (oy) performs in the layers
i,...,Jj anunexpected turn towards (7). On the other hand, there is plenty of room in
the partial characteristic disc A, for (pg), (tx), since py are far away from Jy , hence
(as we will see) away from o} . By assumption on x; the corresponding characteristic
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image Sy (Ap;) almost passes through oj . We can then see through A, that (o)
actually goes vertically for all consecutive i <k < j. This yields a contradiction.

x x . L
Formally, suppose v i1 TV = C By increasing i, if necessary, we may assume that

.. . < i e X _axs x
i is maximal < j satisfying Vig, TV ¢ Hence Vit

—vf =c.

We claim that for all i < k < j we have that x; is d-left. Indeed, by maximality of i
we have (' Nvj41wj+1)*—vy <c+ % By Lemma 9.17 we have that (y' Nvgwy )™ —
(y' Nvjy1wj4q)* < 0. Putting these inequalities together implies that |vg, px| < c.
Hence if x; is c-left from pg, then it equals vy, thus it is also d—left, as required.
Thus we have proved the claim. Moreover, |vg, px| < ¢ together with |pg, x| > ¢+ 2

gives also that |pg,ox| > 2 and py #1; fori <k <j.

Denote hj = S_l(l;c) € Xk - By the claim we have |vg/i| < 1. Let Ap; be the charac-
teristic disc for the thick interval (ip, jpr) for (pg). (fx) containing i <k < j and let
Spt be the corresponding characteristic mapping (we have | py x| = | Pt |+t = 2,
since xy is d-left). Denote vy = Sp_t1 (pr), Wg = Sp_,l (tr). Let hy = Sp_,l (t). Since
for i <k < j wehave |tx7; | > 1, by Lemma 12.6 the differences within 47 (coordinates
in A) and within }776‘ (coordinates in Ap;) agree.

Now observe that t,’{ spans a simplex with o by the claim, Lemma 10.3 and Lemma
9.8(iii)—(iv), for all i <k < j. Denote ¢ = span{t/,0;}. Denote by ¢; = ¢, $i11,...
the simplices of the directed geodesic from ¢ to 7. Denote by B the simplices of
the directed geodesic from #; to 7. By Lemma 2.10 we have Bx C ¢ D oy for k —i
even, and By D ¢ C oy for k —i odd. Denote by « the simplices of the directed
geodesic in Ap; from hi to Vj,, Wi, -

First we prove that for all i <k < j we have vy ¢ oy . For k =i this follows from
pi #t]. For k > i we argue by contradiction. Let i < ko < j be minimal such that
Uk, € g, - Observe that A, is actually a partial characteristic disc for (px), (tx) and
(7x) is the directed geodesic from 7 to 0. Hence, similarly as in Lemma 10.6, for
i <k <kg the simplices o, are alternatingly vertices and edges, with barycenters on
a common vertical line. Moreover, by minimality of k¢, we have that oy, is an edge.
By Lemma 10.5 and Lemma 2.10 (applied alternatingly for consecutive layers exactly
as in the proof of Proposition 10.2), we have that B C Sp;(ax) for k —i even and
Spe(ag) C By for k —i odd, for all i <k < kg. In particular, since «; is a vertex and
oy, is an edge, we have that py, € Sps(ak,) C Br, O Pk, C Ok, - But this contradicts
| Pko+ Oko| = 2. Hence we proved that for all i <k < j we have U ¢ a.

From the above proof we also get that for all i <k < j we have B; C Sy/(a) for
k —i even and Sy;(ag) C Bi for k —i odd, and the simplices oy are alternatingly
vertices and edges, with barycenters on a common vertical line. Since t,’C and o span
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a simplex, this implies that #;_ € B3(Spr(ax)), hence i{k € By(ag), fori <k <j.
Since the barycenters of oy lie on a common vertical line through /;, we conclude that
|hy —hy| 52% for i <k < j,in particular for k = j. But hi —hi =hi —hy zc—lé.
This contradicts ¢ > 5. |

We immediately get the following corollary, which excludes the possibility of adjoining
a non-“thin” “final” subinterval of a “thick” interval to the beginning of a thin layer for

(0%), () -

Corollary 12.10 Suppose that for some i < j the layer j + 1 is thin for (o), (t%),
and for all i <k < j the layer k is thick for (o}.), (tx), | pk,0k| = ¢ +2>7 and xj
is either d—left or ¢ —left from py . Then v¥ 1T v <c.

The next preparatory lemma takes care of the “thin” intervals for (o), (7). Let d be
a positive integer.

Lemma 12.11 Suppose that for some i < j the layers i, j for (o} ), (tx) have thick-
ness at most d and for all i <k < j the layer k for (oy), (tz) has thickness at most
2¢ + 3 and |py, 8| = 2¢ + 4. Then the differences within (Sp_,1 (r))* are at most

c+2d+23.

We can also obtain an estimate independent of ¢ on the differences within (S, rl (re))™.
However, we will not need it.

Proof We can define p;c as usual (even for thin layers). Observe that we have
Pk # Py | Pk-0k| =2, and |pg, 1| = 2, fori <k < j.Let5; € Ok, Ix € Ty realize
maximal distances from py to oy, i, respectively. Let Aps, Apr, Sps, Spr denote the
characteristic discs and mappings for (pg), (ox) and (pg), (tx), respectively, for the
thick intervals containing all i <k < j. Since pp # p;c, we have by Lemma 12.6
that the differences within (S, (px))* . within (S,! (px))*, and within (S, (px))™
agree, if we vary k among i <k < ;.

For i <k < j denote §; = S, 5, ix = S, (1x). Let i <k; <ky < j. By
Lemma 9.16(i)—(ii) we have that Sk —sk > l and tk —lk < ; In particular,
sk2 s]xz—i and §; s,’c‘ >—— forz<k1<k2<] Hence

. . 1
X - X . X . X X X
skz_sklzsj —Si—IZ[j —li —1—26{2—26[—15

. . 1
Analogously fe, — 1, =2d + 15.
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It will be convenient for us to assume that the coordinates in Az, A, agree on
Sp_sl (pr) and S, 1 (pr), so that we can compare coordinates of points in Ay and A ;.
With this convention, for any is ki.kz < j we have that $§ — t']fz > 55 — if —-1>
—d — 1. Analogously s'lfl —t,fz <d + 1. So altogether the differences within all
the s,’g , t',f, where i < k < j, are at most 2d + 1%. In particular, if we denote by
a the minimum over k of &,’(‘, i,f and by b the maximum over k of &;{‘, l';{‘ , we get

b—a<2d+13.

For a fixed k, since the thickness of the layer k is at most 2¢ + 3, we have that
ISkri] <c+1 or |fpri| <c+1, hence

min{| piSk|. | Prte|} < | prrel + ¢+ 1,

thus r;¥ = a—(c +1). On the other hand, by convexity of balls we have

| prcric] < max{| prSil. | prlkl},

hence rf < b. Altogether, this implies that the differences within (S, 1(ri))* are at
most

1 1
(c+1)+(2d+1§)+1:c+2d+2§. 0

Finally, we prove the following easy lemma, which is needed both here and later in
Section 13.

Lemma 12.12 Let A be a generalized characteristic disc for (i, j). Let y be a
CAT(0) geodesic in A connecting some points in v;w;,vjwj. Fori <k < j let
hy € vpwy be some points at distance < % from y N vgwy. Let Asplit C A be
the generalized characteristic disc for (i, j) with wy substituted with hj,. Then the

CAT(0) geodesic h;hj in Asplit is 1—close to the piecewise linear boundary path
hihit1--hj.

Proof Fori <k < j let hj_be the points on vgwy with (4} )*=max{(y Nvgwg)™, A7}
Let Acye C A be the generalized characteristic disc for (i, j) with wj substituted
with h}(. Then y is also a CAT(0) geodesic in Ay,. By Lemma 11.7 applied to
Asplit C Agye we have that the CAT(0) geodesic /;h; in Asplit is %—close to y,
hence 1—close to the path h;h;q---hj. ]

Now we are ready to put together all pieces of the puzzle.

Proof of Proposition 12.1 Put ¢ = 5. For the layers k such that |pgri| <7c + 12
there is nothing to prove. Now suppose that for some i’ < j’, where j'—i’ > 2, we
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have |pjrir| = |pjrrjr| = Tc + 12 and for i’ < k < j' we have |pgri| = 7c¢ + 13,
hence |pg, x| = 7c 4+ 12. In particular, pj are as far from & as required in Lemma
12.9 and Corollary 12.10.

Let Ap, be the partial characteristic disc for (i’, j’) for (pg). (rx), and let S, be the
corresponding partial characteristic mapping. Denote ug = S, L(r).

Step 1 There exist i’ <! <m < j’ such that

(1) for i’ <k <1 the layer k is thick for (07), (t), every 1—skeleton geodesic py i
intersects &, and (' Nvgwy)™ < wy — % (in the appropriate characteristic disc
for (0y), (t;), with the usual notation vy, wy, etc.),

(2) among / <k < m the differences within u3 are at most 7c + 10%,

(3) for j' >k > m the layer k is thick for (o;), (7;), every 1—skeleton geodesic
Pkl intersects 8y, and (y' Nvgwy)* > v + %

This is the division into the “preinitial” interval, the union of the central intervals, and
the “postfinal” interval in the language of the outline of the proof.

Let us justify Step 1. First consider the simple case that there are no thin layers for
(0% ), (t) among the layers i” < k < j’. Then Lemma 12.8 applied to i =i’, j = j’
gives us a pair of numbers [/, m’, which satisfies assertions (1) and (3) of Step 1 (with
I’,m’ in place of /,m), except for the statements on the position of )’ (we will refer
to these as incomplete assertions (1) and (3)).

Let / <!’ be minimal > i’ such that (y" Nvw;)* = wf — % (if there is no such /, in
particular, if // =i’, then we put / = /’). Similarly, let m > m’ be maximal < j’ such
that (y' Nvpwm)* = v, + % (if there is no such m, in particular, if m’ = j’, then we
put m = m’). Obviously, /,m satisfy complete assertions (1) and (3) of Step 1. To
prove that they satisfy assertion (2), we need the following.

Claim Among [ <k <!’'—1 the differences within u;. are at most ¢ +1. Analogously,
among m’ + 1 <k <m the differences within u; are at most ¢ + 1.

To justify the claim, we need to introduce some notation. Up to the end of the proof
of the claim we consider / < k <[’ — 1. Observe that the layers k for (pg), (sx)
are thick, since by incomplete assertion (1) we have that | pgsi| > | pk, 0i|. Denote
by A,S (resp. Aps, Sps) the characteristic disc and mapping for the thick interval
containing k for (o7), (t;) (resp. for (py), (s;)). For each k let i be the vertex
in 8 N pgsy closest to py (for some 1-skeleton geodesic pysy ). By Proposition
7.6 we have that /iy € Sps(Aps). Denote hy = S~ (hy), iz'k = S;sl (hy). Since by
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incomplete assertion (1) we have s; # s;c, Lemma 12.6 gives that the differences
within —A7 and within i[;c“ agree (the sign changes since (s;) plays the role of the left
boundary component in S(A) and the right one in Sp5(As)). By Lemma 12.6 applied
to Aps and Ay, and since |pgri| = |prhi| or | prrkl = |prhi| + 1, we have that
the differences within uy differ at most by 1 from the differences within }7;{‘ . Hence
the differences within uy differ at most by 1 from the differences within —Ay.

Now we can proceed with justifying the claim. By Lemma 12.9 we have wy,_; —wj <
¢, hence (y' Nvyw;)* = wj_, —c. Thus, by Lemma 9.17, we have (y' Nvgwy)™ >
wy,_, —c for all k. This implies, by the definition of pg, that A7 > wy,_; —c¢— %
On the other hand, by Lemma 9.16 we have that wy <wy,_, + % hence we have
hz < w;i_l - % Thus the differences within 47 are at most ¢, hence the differences
within 7 are at most ¢ + 1. This justifies the first assertion of the claim. The second
one is proved analogously.

Now we can finish the proof of Step 1 in the simple case that there are no thin layers for
(0% ), (tx), among the layers i’ <k < j’. To prove assertion (2), we need to compare
u}c‘l and u}c‘z, for | <k; <k, <m. Assume, which is the worst possible case, that
[ <ky<!I'—1and m'+1 <k, <m. By Lemma 12.8(ii) and by the claim we have

1 1
|ug, —u,| = lug, —uf,_ll+§+|u;‘,—u§1,|+§+|u;,+l —ug, |
1 1
E(c+1)+§+(c+l)+§+(c+l),

which is even better then the required estimate. This ends the proof of Step 1 in the
simple case.

Now consider the complex case that there is a thin layer among the layers i’ <k < j’.
Let (lg,mg) be a maximal (with respect to inclusion) interval, with i’ <[lo <mgy < j’,
such that the layers [y, mg are thin for (o), (1) and for [y < k < my the layer k has
thickness at most 2¢ + 3 (possibly /g = mg). This is the “proper thin” interval of the
outline of the proof.

First we argue that for i’ <k < /y and mg < k < j’ the layer k is thick. Otherwise,
suppose without loss of generality that k¢ is maximal < /y such that the layer kg
is thin. Then, by maximality of (/y,m¢), the thick interval (kg,[y) contains some
k such that the layer k& has thickness at least 2¢ 4+ 4. Thus by the last assertion of
Lemma 12.8 appliedto i =ko+ 1,7 =1y —1 we get kg <! <m < [y so that either
m <lp—1 and vl)(‘)—vl’fz_‘_1 >c,or ! >kog+1 and wlx_1 —w,’go > ¢. In both cases
this contradicts Corollary 12.10 applied respectivelyto i =m + 1, j =[lp—1, or to
i =1-1,j =ko+ 1 with the roles of v, w interchanged and the order on naturals
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inversed. Thus we have proved that for i’ <k <[y and mg < k < j’ the layer k is
thick for (oy), (tx).

Now we can apply Lemma 12.8 to i =i’, j = Ily— 1. Denote by [/, m’ the pair of
numbers given by its assertion. By Corollary 12.10 we have that vl’(‘) — vy <c for
m’ + 1 <k <ly. Similarly, we apply Lemma 12.8 to i = mqo+ 1, j = j’ and denote
by [”,m" the pair of numbers given by its assertion. By Corollary 12.10 we have
WE — Wy, < ¢ formg <k < [ — 1. Hence, by Lemma 9.16(i)—(ii), the thickness of
the layer k, for m" + 1 <k </y and for my <k <I’—1,is at most ¢ + 1.

Define, similarly as before, / </’ to be minimal >i" such that (y’ Nv;w;)* = wy —%

(if there is no such /, in particular, if / = i’, then we put / = ["), in appropriate
characteristic disc. Similarly, let m > m” be maximal < j’ such that (' N vy w,)* =
vy + % (if there is no such m, in particular, if m” = j’, then we put m = m").

For [, m as above we have that assertion (1) follows from Lemma 12.8(i) and asser-
tion (3) follows from Lemma 12.8(iii). As for assertion (2), assume, which is the worst
possible case, that / <ky <I’—1 and m” + 1 <k, <m. Combining Lemma 12.11
appliedto i =m’+1, j=1"—1, d = ¢+ 1 with Lemma 12.8(ii) and with the claim
above (which is also valid in this complex case) we get

|u;§1 —ui2| < |ui1 —u;‘,_1|+%+|”f/_”fn’| +%+ |ty 1 — Uy
b2 b 5 ey —
S(c+1)+%+(6’+1)+%+(C+2d+2%)
+%+(c+1)+%+(0+1)=7c+10%,

as required. Thus we have completed the proof of Step 1.
Step 2y, is 97—lose to (uy).

For the layers i’ < k <[ define A, S, Aps, Sps and hy € px C A, Ek € Aps, hy =
S(hy) = Sps (Ek) like in Step 1 (which is possible by assertion (1) of Step 1). Recall
that the differences within uy differ at most by 1 from the differences within —Ay .
In particular, since for i’ <k < ky </ we have h;{‘l — h;{‘z <1 (by Lemma 9.17 and
the definition of py ), it follows that uzz— uzl < 1%. Analogously we choose vertices
hj € py (in appropriate characteristic disc) for m < k < j’, so that | prri| = | prchi|

or |prr| = | prhi| + 1. Hence for m < k, < ky < j' we have uzz—uzl < 1%.
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Let / < ko < m be such that uio is minimal. Let « be a vertical line segment in A,
from the layer max{/ —1,i’ + 1} to the layer min{m + 1, ;' — 1} at distance 2 to the
left from wuy,, . By assertion (2) of Step 1 and by the fact that |pgrg| > 7c + 13 this
line segment is really contained in A,,. Let B, 8, be CAT(0) geodesics in A,
connecting u;/, ujs to the endpoints of «. Since ”k —u}{c < 11 fori’ <k; <k, <l
and m <k, <k < j’, we have for all i’ <k < j’ that uy > a”. Hence the region in
Apy to the right of the concatenation ,8101,82 is convex, and thus contains the CAT(0)
geodesic in Ap, joining u; with u;js.

We claim that B; is (7¢ + 15)—close to (uy). Indeed, if / =i’ or / — 1 =i’, then
this is easy. Otherwise, let i’ <k </ —1. Let A” C A|’7! be the generalized
characteristic disc for (i’,/ — 1) obtained from A’ |l ~! (the modified characteristic
disc, in which y’ is a CAT(O) geodesic) by substituting wk with w , such that
(wy)* = hi 4 1. Denote y’ restricted to the layers from i’ to / — 1 by y | . We
have y |l C A” and by assertion (1) of Step 1 we have that y |l I does not touch
the (w;) boundary component of A’, hence it 1s also in A” a CAT(0) geodesic
(which does not touch w/ ) Let A s C Aps| ! be the generalized characteristic
disc for (i’,1—1) obtarned from A, s|l., by deleting %—horizontal neighborhood of
the boundary component corresponding to (sz). Observe that there is an (orientation
reversing) embedding e”: A” — A}, and that e”(y’) is still a CAT(0) geodesic in
Al Moreover, ¢”(hy) = Iy, so that |e” (v N vgwg) | < 5

Let Apy C Aps|i/_ be the generalized characteristic disc for (i’,/ — 1) obtained
from A/ s by splitting along Ek (in fact /iy is a 1-skeleton geodesic and A,y is the

partial characterrstrc disc for (pg), (hk) but we do not need this). By Lemma 12.12
the CAT(0) geodesic hi /hl 1 in A,y is 1—close to the boundary path (hk) Now
recall that there is an embedding e: A,; — Ap,, such that |e(hk)uk| <1. Letus
compute the distances between the endpoints of the image under e of the CAT(0)
geodesic }7,-/5;_1 and the endpoints of B; in A,,. The distance between e(ﬁi/) and
u; is at most 1, and the distance between the second pair of endpoints is at most
2+ (7c+ 10%) + % by assertion (2) of Step 1. Hence, by Lemma 11.7, we have that
e(};,-/gl_l) is (7¢ + 13)—close to ;. Recall that e(ﬁi/ﬁl_l) is 1—close to e((h~k)),
which is 1—close to (u). Altogether, B is ((7¢ + 13) + 1 + 1)—close to (uy), as
desired. Thus we have justified the claim. Analogously, £, is (7¢ + 15)—close to (uy).

From the claim and since, by assertion (2) of Step 1, « is (7c + 13)—close to (i),
it follows that the two boundary components of the convex region in A, to the
right of ﬂlo{,Bz_l are (7c¢ + 15)—close. Hence the CAT(0) geodesic ujujs in Ap, is
(7¢ + 15)—close to (ux). Now consider the CAT(0) geodesic yp, in Ap, (which
appears in the statement of the proposition) restricted to the layers from i’ to j’. Since

Geometry & Topology, Volume 13 (2009)



2872 Damian Osajda and Piotr Przytycki

its endpoints are at distance < 7c¢ + 12 from the endpoints of u; u: (this is because
|pirrir] =Tc +12 = |pjrrjr|), we get (by Lemma 11.7, we do not vary the boundary
this time) that y,, is (14c + 27)—close to uy, as desired (recall that ¢ = 5). ad

13 Contracting

In this section we prove the following consequence of Proposition 12.1, which summa-
rizes the contracting properties of Euclidean geodesics.

Theorem 13.1 (Theorem C) Let s,s’,t be vertices in a systolic complex X such
that |st| = n, |s't| = n’. Let (rk)}_,» (”I/c)z/:o be 1-skeleton geodesics such that ry, €
8.1y, €8y, where (8), (8;,) are Euclidean geodesics for t, s and for t, s" respectively.
Then for all 0 < ¢ <1 we have |”Lan”fcn’J| <c|ss'| + C, where C is a universal
constant.

In the proof we need three easy preparatory lemmas.

Lemma 13.2 Let D be a 2—dimensional systolic complex (in particular CAT(0) with
the standard piecewise Euclidean metric). Let x, y be vertices in D. Then there exists
a 1-skeleton geodesic w in D joining x,y such that if Dq is the union with o of
a connected component of D \ w, then the CAT(0) geodesic xy inis 1—close to w in
L N Dy, where L is the convex hullin D of x U y.

Proof Let L; be the layers in D between x, y. Then L is the span in D of the union
of L;. Observe that L is convex in CAT(0) sense in D. Hence the CAT(0) geodesic
xy in D is contained in L. Now similarly as in Definition 9.10 define vertices w; € L;
to be the vertices nearest to xy N L; (possibly nonunique). Analogously as in Lemma
9.11 one proves that w;, w;+1 are neighbors, hence (w;) form a path @, which is
a 1-skeleton geodesic. By the construction we have |w;, xy N L;| < % (here |-, -|
denotes the distance along the straight line). For a fixed Dy the CAT(0) geodesic xy
in Dy is contained in the convex L N Dy, hence it is 1—close to @ by Lemma 12.12
applied to L. O

Lemma 13.3 Let A be a generalized characteristic disc for (i, j). Let Asplit C A
be a generalized characteristic disc for (i, j) with wy substituted with 1y, for some
Wy € vpwy . Let v,y be CAT(0) geodesics with common endpoints in the layers i, j
in A, Asplit, respectively. Then y N v wy is not farther from vy than y N v wy .

Proof Let Ay C A be the characteristic disc for (i, j) with wy substituted with
y Nvgwyg . Then Ay N Asplit is convex in Asplit and we are done. a
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Lemma 13.4 Let T be a CAT(0) (ie simply connected) subspace of E?, whose
boundary is an embedded loop which consists of three geodesic (in T ) segments
o, B,y , where « is contained in a straight line in E. Denote x = BN y. Let n be
a geodesic in T contained in a straight line parallel to « with endpoints on 8,y . Let
¢ denote the ratio of the distances in E? between x and the line containing 1 and
between x and the line containing «. Then |n|/|o| < c.

Proof Let y;,y, € E? be points on the line containing 7 colinear with x and the
endpoints of «. By the Tales Theorem we have |y y,|/|¢| = ¢. On the other hand,
since B,y are geodesics in T, we get that n C y1y,. a

We are now ready for the endgame.

Proof of Theorem 13.1 (Theorem C) Let m be maximal satisfying r,, = r;,. First
assume that [cn] < m or |en'| < m, say |cn'] < m. Then [r|ep || < 194
Indeed, let A be the characteristic disc for (r;), (r/) between ¢ and rp, = r,,, for the
thick interval containing |cn’| (if layer |cn’] is thin then there is nothing to prove).
Then by Proposition 12.1 applied to (r;)?_, and r(,...7,. Tmi1....Tn We get that
the CAT(0) geodesic in A joining the barycenters of the two outermost edges is 97—
close to the boundary component corresponding to (r;). Similarly we get that this
CAT(0) geodesic is 97—close to the second boundary component. Altogether we get
that |r|ep)7{en || < 194, as desired. This yields

|r|_cnj rﬁcn/Jl = |r|_an rl_cn’]| + |V|_cn’Jr|icn’J| <|len]| - |_CI’l’J| + 194
<cln—n'| +195 <c|ss| + 195,

as required. So from now on we assume that |cn| > m and |cn’| > m.

Let & be minimal such that r; lies on some 1-skeleton geodesic ss’. Now let k” be
minimal such that r;, lies on some 1-skeleton geodesic rgs’. Consider various 1-
skeleton geodesics ¥ connecting ry with rg/. The loops rprp41 -+ Fi 1/fr]’€,r,’€,_1 R .
are embedded by the choice of m, k, k’. Consider a surface S: D — X of minimal area
spanned on such a loop (we allow ¥ to vary). By minimality of the area D is systolic,
hence CAT(0) with respect to the standard piecewise Euclidean metric. Denote the
preimages of r;,r/, ¥ in D by x;, x], a respectively. We attach to D at xy, x,’c/, Xm =
x,, three simplicial paths 8, f’, ¢ of lengths n —k,n’ — k', m respectively and denote
obtained in this way simplicial (and CAT(0)) complex by D’. Denote the vertices in
D'\ D by xp,...,Xg41,by x,/l,,...,x;dﬂ, and by xg =x6,...,xm_1 =x;n_1
B, B, ¢ respectively.

By minimality of the area of D, the path Baf’~! is a CAT(0) geodesic in D’. Let
D1, D, be simplicial spans in D’ of the unions of all 1-skeleton geodesics from x

in
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to x, and from xo to x,,, respectively. Observe that Dy, D, are convex (in CAT(0)
sense) in D', hence the CAT(0) geodesics in D’ from xg to x, and from x; to x7,
agree with CAT(0) geodesics joining those pairs of points in D1, D,, respectively. By
Proposition 12.1, (x;) is 97—close (in D) to the CAT(0) geodesic xox, and (x}) is
97—close (in D;) to the CAT(0) geodesic x;x;,

Our goal, which immediately implies Theorem 13.1 (Theorem C), is to get an estimate
|xL6an/Lcn/J | < clxnx,,|+ C with some universal constant C.

We claim that for any three consecutive vertices v, w,u on o we have that |xow| =

|xov| + 1 implies |xou| = |xow| + 1. We prove this claim by contradiction. If
|xou| = |xow|—1 then, by Lemma 2.8, u, v are neighbors contradicting the fact that
vwu is a 1-skeleton geodesic. If |xou| = |xow]|, then by Lemma 2.8 there exists

a vertex z € D in the projection of the edge wu onto Bjy,,|(xo). Again by Lemma 2.8,
we have that |zv| < 1. Thus the defect at w is at least 1, contradicting the minimality
of the area of D. This justifies the claim.

The claim implies that « is a concatenation ojxg®,, Where vertices in «g are at
constant distance from xq and oy, &y are contained in 1-skeleton geodesic rays in D’
issuing from xo. We apply Lemma 13.2 to obtain a special 1—skeleton geodesic w in
D’ connecting x¢ to oy Nag. Let 51 be the union of w and all of the components
of D'\ w containing some x; (ie on one “side” of a)) Denote by 5c the union of w
with the other components of D"\ @. Denote by w’ a 1-skeleton geodes1c connectmg
Xo to g Moy glven by Lemma 13.2 applied do Dc Let D, be the union of o’ with
the components of DC \ o contalnmg some X Denote the union of @’ with the other
components of Df \w by Dy.

Note that, since 51 C Dy, 52 C D,, by Lemma 13.3 we have that (x;) is 97—close
to the CAT(0) geodesic xgx; in D; and (x7) is 97—close to the CAT(0) geodesic
x(’)x’l’}, in 5% . Moreover, by Lemma 13.2 and Lemma 13.3, the CAT(0) geodesics
in Dy, D1, D, joining the endpoints of @, @’ are 1—close (in particular 97—close) to
w,o, respectively. Moreover, vertices in ¢ are at constant distance from xq in 50,
and a)oz1 1w a2 are 1-skeleton geodesics in 51,3;, respectively. Thus substituting
D' = Do, Dl, D2 we have reduced the proof of our goal (up to replacing C with 3C)

to the following two special cases:

(1) Vertices in « are at a constant distance from x¢ (hence from xj,), or

(i) n' =k’ and ax, ---x; is a l-skeleton geodesic.

Observe that it is now possible that x; = x] for i > m. Let m’ be maximal such that
Xpr =X, If [en| <m’ or [cn’| <m’, say the latter, then, since the CAT(0) geodesics

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2875

XoXn, X(X,, in D" coincide on xox,,’, we get that |chn/Jx|/_Cn/J| <97 +97 = 194,
hence

|x|_cnjx/|_cn/J| = |x|_cnjx|_cn’J| + |x|_cn’Jx,|_cn/J|
<|len] —len' ||+ 194 < c|n—n'| + 195 < ¢|xpx,, | + 195,

as desired. So from now on we can assume that |cn| > m’, [cn’| > m’, and we can
replace the component of D’ \ x5, containing xo with a simplicial path of length m’.
Let D be as before the maximal subcomplex of D’ which is a topological disc.

First suppose that we are in case (i). Observe that (up to increasing C by 2) we can
assume that n = k and n’ = k’. This is because once we proved our estimate for
n =k,n" =k’ we can concatenate an estimate realizing path x| Jx/Lc k'] with the
paths X|ck| - X|¢cn) and x/[ck’J “'x,Lcn’J’ obtaining a path from x|, to x,Lcn’J of
length

(Len] = Lek]) + X ek X[ epr | + (Len'] = [ek'])
<(cn—k)+ 1)+ (c|xpxp |+ C) + (c(n’ — k') + 1)
= (c(|xnxi]) + 1) + (clxpxpr| + C) + (c(|xwxp ) + 1) = ¢c|xpxpw| + (C +2),

as required.

We claim that D is flat and the interior vertices of o have defect 0. Indeed, observe that
the defects at the interior vertices of o and at the interior vertices of D are nonpositive,
whereas the defect at x,,,» = x,,, is at most 2. Hence, by Gauss—Bonnet Lemma 7.2,
it is enough to prove that the sums of the defects at the vertices of each of the paths
Xm/+41 -+ Xg and x;n,_H -+ Xy are at most 2. Suppose otherwise, without loss of
generality, that the sum of the defects at the vertices of X,/ --- Xy is = 3. Denote
the vertex following xz on « by y. Then |x,yy| < |Xpr+1Xk|, hence |xoy| < |xoxk],
which contradicts the hypothesis of case (ii)). Thus we have proved the claim. In

particular, « is contained in a straight line in D C IEZA and k = k'.

Define 7 to be the path in D starting at x|, reaching x[c k| contained (in D C IEZA)
in a straight line parallel to «. Let &1, &, be CAT(0) geodesics in D joining xj; with
Xm and x; with x] , = xpy, respectively. Let z; = nN§;, for i = 1,2. We have
|X|ck z1] = 97 and |22xi_ck J| < 97 (again exceptionally |-, -| denotes the distance
along the straight line). Let m” be maximal such that &; N Xyrx), , = & N Xy X, .
Then for all i <m" we have & Nx;x] = & N x;x]. In particular, if [ck| < m", then
z1 =z and |n| < 194, as desired. If [ck] > m", then we apply Lemma 13.4 with
T C D the geodesic triangle with vertices xx, x;, &1 N Xpr X, = & 0 XX, . We
get that [n] < ¢|xgx; |+ 194, as desired.
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Now suppose that we are in case (ii). Like in case (i) (up to increasing C by 1) we
can assume that n = k. Since the boundary of D is a union of two geodesics, by
Gauss—Bonnet Lemma 7.2, D is flat. Consider an embedding D C IEZA such that the
layers (denoted by Lj ) between X, = x;n, and xj in ]EZA are horizontal and x; are
to the left from x7, for i < k’. By minimality of area, « is contained in a straight line
in D C IEZA. Like in case (i), let &1, &, be CAT(0) geodesics in D joining xj; with
Xm and x;, with X} , = X, respectively. Similarly like in the previous case, let m”
be maximal such that & N Ly,» =&, N Ly,». Denote u =& N Ly, =& N Ly, By
the same argument as after the choice of m’, we can assume that [ck’| > m”. Let
21 =& NLck), 22 =5 N Lckr). Let y1 € L¢x) N D be the vertex with minimal
possible y{ but > z{. Similarly, let y; € L4/} N D be the vertex with maximal
possible y3 but < z3. We claim that |y; y2| = [ck ] —[ck’].

Before we justify the claim, observe that it already implies the theorem. Indeed, the
claim gives

X Lek )X ey | = X ek 1]+ [1v2l + 192X g
<97+ (lck] —|ck'])+97
<97+ (c(k'—k) +1) 4+ 97 = ¢|xxp, | + 195,

as desired.

Finally, let us justify the claim. We need to show that yJ —y < (|ck]—|ck’])/2. By
the choice of m” we have that zq, z, lie in the Euclidean triangle in EZA with vertices
X, x;c,, u. Denote by u; (resp. u;) the vertex on the edge uxy (resp. ux,/c,) of this
triangle in L|cx) (resp. L|ck’|). Assume without loss of generality that |ck’]/k" >
|ck |/ k. Denote then by ux the vertex on the edge ux; dividing this edge in same
proportion as the proportion in which u, divides ux/’c,. By the Tales Theorem, and
since ujusx C uxy forms with the vertical direction angle at most 30°, we have that

1

uy —uy < (uy —uy) + (i —ut) <c(xg—(xp)%) + 3

ck —ck! 1 |ck]—|ck']

LS Y
;T3 c 2 +

ck|—|ck’
hence yf—yf<Z§—Zf§u§—uf<L J2|_ J+1‘

Thus, since yy — yy and (|ck| —[ck’])/2 differ by an integer (because y;, y, are
vertices in ]E2A), we have y} —y7 < (|ck]—[ck’])/2, as desired. This ends the proof
of the claim and of the whole theorem. |
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If we followed the constants carefully, we would get that Theorem 13.1 (Theorem C)
is satisfied with any C > 204.

14 Final remarks

In this section we state some additional results on the compactification X, for which
we do not provide proofs.

E Z —structures explored by Farrell-Lafont [16] in relation to the Novikov conjecture
concern only the torsion-free group case. To get similar results (Novikov conjecture)
for a group G with torsion one needs to construct an appropriate compactification
(which we will also call an E Z —structure) of a classifying space for proper G —actions,
denoted EG. EG is a contractible space with a proper G action such that, for every
finite subgroup F of G, the set EGF C EG of points fixed by F (the fixed point set
of F') is contractible (in particular nonempty). For more details on £G see Liick [21].

Relying on the work of Przytycki [23], Chepoi—Osajda [9] proved the following.

Theorem 14.1 Let a group G act geometrically by simplicial automorphisms on a
systolic complex X . Then X is a finite model for EG .

We claim the following.
Claim 14.2 Letagroup G act geometrically by simplicial automorphisms on a systolic

complex X. Let X = X U0X. Then

(1) for every finite subgroup F of G, the fixed point set X ¥ is contractible,
(2) for every finite subgroup F of G, the fixed point set X ¥’ is dense in X T .

Assertion 2 is easy to prove, ie the only difficulties in proving Claim 14.2 concern
assertion 1. To obtain it one has to reprove Lemma 6.2 with X ¥ in place of X .

Combining Theorem 14.1, Theorem 6.3 (Theorem A), Claim 14.2, and Theorem 4.1 of
Rosenthal [24], we immediately get the following.

Claim 14.3 The Novikov conjecture holds for systolic groups.

Now we turn to the question of determining our boundary in some specific cases. We
have already mentioned the case of hyperbolic systolic groups in Remark 4.6. Now we
consider the CAT(0) case. After making it through the second part of the article, the
reader should not be surprised by the following.
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Claim 14.4 If X is a two-dimensional simplicial complex, which is CAT(0) (which
is equivalent with systolic in dimension two), then its compactification by the CAT(0)
visual boundary is homeomorphic in a natural way with our X .

For example, this implies that our boundary of a systolic Euclidean plane is a circle.
The argument for Claim 14.4 is that our compactification is constructed using Euclidean
geodesics in systolic complexes, which in this case are coarsely CAT(0) geodesics.

The next claim concerns the following construction, which has not yet appeared in the
literature. Namely Elsner and Przytycki had developed a way to turn equivariantly any
V'H—-complex (see Bridson—Wise [6]) which is CAT(0) into a systolic complex (that is
how they observed that the abelian product of two free groups is systolic). Although the
resulting complex is usually not 2—dimensional, the only higher dimensional simplices
that appear are used to deal with branching at the vertical edges. This is why we believe
that the CAT(0) visual boundary of the original V’H—complex is homeomorphic in a
natural way with our boundary of the resulting systolic complex.

In particular, this would imply that there is a systolic group acting geometrically on
two systolic complexes whose (our) boundaries are not homeomorphic. Namely, in the
family of torus complexes defined by Croke—Kleiner [10] the complexes with o = %
and @ = % have universal covers with nonhomeomorphic CAT(0) visual boundaries.
At the same time, there is a torus complex with o = % , whose universal cover is 2—
dimensional systolic while there also is a torus complex with o = Z-, whose universal

cover is a VH—complex, which is CAT(0).
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