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Injections of mapping class groups
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We construct new monomorphisms between mapping class groups of surfaces. The
first family of examples injects the mapping class group of a closed surface into
that of a different closed surface. The second family of examples are defined on
mapping class groups of once-punctured surfaces and have quite curious behaviour.
For instance, some pseudo-Anosov elements are mapped to multitwists. Neither of
these two types of phenomena were previously known to be possible although the
constructions are elementary.

57M07, 20F34; 57M60, 30F60, 32G15, 57R50

1 Introduction

Let †g;k be the closed orientable surface of genus g with k marked points and
Homeo.†g;k/ the group of homeomorphisms of †g;k which map the set of marked
points to itself. If we endow Homeo.†g;k/ with the compact open topology then
Homeo0.†g;k/, the connected component of the identity, is the normal subgroup
consisting of those elements which are isotopic to the identity relative to the marked
points. The (extended) mapping class group of †g;k is the quotient group

Mod.†g;k/D Homeo.†g;k/=Homeo0.†g;k/:

Throughout this note we will assume without further mention that either g � 2, or
g D 1 and k � 2, or g D 0 and k � 5.

The problem of studying homomorphisms between mapping class groups has received
considerable attention. Automorphisms of mapping class groups were classified by
Ivanov [17] and McCarthy [26]; and injections from finite index subgroups of a
mapping class group to itself by Ivanov [18], Irmak [15; 16], Behrstock–Margalit [1]
and Shackleton [30]. Recently Harvey–Korkmaz [13] proved that there are no nontrivial
homomorphisms Mod.†g;0/!Mod.†h;0/ with h< g and g � 3.

Besides the Harvey–Korkmaz theorem, the situation for homomorphisms between
distinct mapping class groups is not well-understood and much of the research has
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focused on injective homomorphisms. For example, the fact that every finite subgroup of
Mod.†g0;1/ is cyclic implies that there are no injective homomorphisms Mod.†g;0/!

Mod.†g0;1/; see Mess [28]. A stronger result is due to Ivanov–McCarthy [19], who
proved that there are no injective homomorphisms Mod.†g;k/!Mod.†g0;k0/ for all
but finitely many pairs .g; k/ and .g0; k 0/ such that 3g0Ck 0�3g�kD 1. However, in
the same paper they observed that if k>0 then every characteristic cover †g0;k0!†g;k

induces an injective homomorphism Mod.†g;k/!Mod.†g0;k0/; see Section 2. The
presence of marked points is crucial to their construction. The first goal of this note is
to construct examples of injective homomorphisms between mapping class groups of
surfaces without marked points.

Theorem 1 For every g � 2 there is g0 > g and an injective homomorphism

�W Mod.†g;0/!Mod.†g0;0/:

As in Ivanov–McCarthy [19], the idea of the proof of Theorem 1 is to construct a
finite-sheeted covering †g0;0!†g;0 with the property that every f 2 Homeo.†g;0/

has a distinguished lift. In order to do so we combine elementary covering theory and
basic finite group theory such as the Sylow theorems.

Once the existence of injective homomorphism between mapping class groups has been
sufficiently established, it is an interesting problem to study how these homomorphisms
arise. Let �W Mod.†g;k/!Mod.†g0;k0/ be an injective homomorphism. Denoting
by T .†g;k/ and T .†g0;k0/ the Teichmüller spaces of †g;k and †g0;k0 , it follows
from the solution of the Nielsen realization problem by Kerckhoff [22] that there is a
continuous �–equivariant map

ˆW T .†g;k/! T .†g0;k0/:

If the homomorphism � is constructed as in [19] or Theorem 1 then it is not difficult
to see that, endowing both Teichmüller spaces with the Teichmüller metric, ˆ can be
chosen to be an isometric embedding. In particular, any such � is type-preserving in
the sense that it maps pseudo-Anosov and reducible elements of Mod.†g;k/ to pseudo-
Anosov and reducible elements of Mod.†g0;k0/, respectively. Moreover, the isometric
embedding ˆ extends continuously to an embedding of the Thurston compactification
ST .†g;k/ D T .†g;k/ [ PML.†g;k/ of T .†g;k/ to the Thurston compactification
ST .†g0;k0/ of T .†g0;k0/. Here PML.†g;k/ is the space of projective measured
laminations on †g;k . In particular, the limit set ƒ�.Mod.†g;k// , in the sense of
McCarthy–Papadopoulos [27], of the image of � is a proper subset of PML.†g0;k0/

homeomorphic to PML.†g;k/.
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Our next goal is to construct injective homomorphisms from Mod.†g;1/ into some
other mapping class group for which these properties fail.

Theorem 2 For every g � 2 there is g0 > g and an injective homomorphism
˛W Mod.†g;1/!Mod.†g0;1/ with the following properties:

(1) There are pseudo-Anosov mapping classes in Mod.†g;1/ whose image under ˛
is a multitwist. In particular, ˛ is not type-preserving.

(2) The limit set ƒ˛.Mod.†g;1// of the image of ˛ is the whole space PML.†g0;1/

of projective measured laminations on †g0;1 .

(3) In particular, there is no ˛.Mod.†g;1//–invariant proper subset of T .†g0;1/

which is convex with respect to the Teichmüller metric.

The examples constructed in Theorem 2 are described purely algebraically, but can
also be seen as the composition of a monomorphism of the type described by Ivanov–
McCarthy, composed with the (noninjective) homomorphism obtained by forgetting
some of the marked points.

We conclude this introduction by a brief plan of the paper. In Section 2 we explain
the preliminaries on induced homomorphisms from covering spaces and provide cri-
teria which allow one to construct monomorphisms from covers (see Proposition 5).
Section 3 begins by converting these criteria into statements about surjective homo-
morphisms of surface groups to finite groups (Proposition 6), and ends by finding
homomorphisms satisfying the required properties to prove Theorem 1. In Section 4 we
construct the required monomorphism ˛ and finally in Section 5 we prove Theorem 2.
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2 Homomorphisms from covers

In this section we describe the basic means of building homomorphisms of mapping
class groups from covers. Maclachlan–Harvey [24] and Birman–Hilden [5; 6] explain
this procedure, but because their situation was slightly more complicated—they were
allowing branched covers over marked points and then erasing marked points in the
covers—the work there was restricted to regular covers. As our proof of Theorem 1
exploits the irregularity of the covers involved, we cannot refer directly to their work.
Nonetheless, the ideas here are likely well-known, and we have included proofs for
completeness.

To keep better track of marked points, we will represent the surface †g;k by .†; z/,
where † is a closed surface of genus g and z � † is a set of k marked points. If
k D 1 and zD fzg, we will also write .†; z/.

Let �W z†!† be a degree d cover and zzD ��1.z/ a set of kd marked points of z†
(thus .z†;zz/ is a surface of genus g0 D d.g� 1/C 1 with kd marked points). Given
f 2 Homeo.†; z/ we say that zf 2 Homeo.z†;zz/ is a lift of f if f ı � D � ı zf . If zf
exists, then we say that f has a lift. Define

Homeo�.†; z/D ff 2 Homeo.†; z/ j there is a lift zf 2 Homeo.z†;zz/ of f g;

the group of those homeomorphism of .†; z/ that have a lift to .z†;zz/ and

Homeo��.z†;zz/D f zf 2 Homeo.z†;zz/ j zf is a lift of some f 2 Homeo�.†; z/g;

the group of lifts of homeomorphisms of .†; z/ to .z†;zz/ by � .

There is a homomorphism

��W Homeo��.z†;zz/! Homeo�.†; z/

with ��. zf /D f if zf is a lift of f . Two lifts zf1 and zf2 of a given homeomorphism f

differ by a covering transformation, and so �� fits into a short exact sequence

(1) 1 // K // Homeo��.z†;zz/
�� // Homeo�.†; z/ // 1:

where K is the deck-transformation group of the covering � . We now prove:

Proposition 3 If zf 2 Homeo��.z†;zz/\Homeo0.z†;zz/, then the image ��. zf /D f is
in Homeo0.†; z/. Moreover, the induced homomorphism

��W Homeo��.z†;zz/\Homeo0.z†;zz/! Homeo0.†; z/

is an isomorphism.
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Proof We begin by replacing both surfaces with punctured surfaces, †0 D†� z and
z†0 D z†�zz; we still denote the induced cover by �W z†0!†0 . Fix basepoints z� 2 z†0

and � 2†0 with �.z�/D � and consider the associated homomorphism

�1.�/W �1.z†
0; z�/! �1.†

0;�/:

Choosing a path � in z†0 joining the points z� and zf .z�/ we obtain an isomorphism
between �1.z†

0; zf .z�// and �1.z†
0; z�/. Abusing notation, we then have that zf induces

a homomorphism
�1. zf /W �1.z†

0; z�/! �1.z†
0; z�/:

Similarly, the projection �.�/ to †0 of the path � produces a homomorphism

�1.f /W �1.†
0;�/! �1.†

0;�/:

Taking into account that zf is a lift of f we have

(2) �1.f / ı�1.�/D �1.�/ ı�1. zf /:

The assumption that zf 2Homeo0.z†;zz/ implies that �1. zf / is an inner automorphism,
meaning that there is  2 �1.z†

0; z�/ with

�1. zf /.�/D �
�1

for all � 2 �1.z†
0; z�/. Identifying �1.z†

0; z�/ with its image under �1.�/ it follows
from (2) that the automorphism

(3) �1.†
0;�/! �1.†

0;�/; � 7! �1.�1.f /.�//

is the identity on the finite index subgroup �1.�/.�1.z†
0; z�// of �1.†

0;�/. The
uniqueness of roots in the surface group �1.†

0;�/ implies that the homomorphism (3)
is actually the identity; in other words, �1.f / is an inner automorphism. On the
other hand, the automorphism �1.f / preserves the kernel of the homomorphism
�1.†

0;�/! �1.†;�/. It follows now from the Dehn–Nielsen–Baer Theorem (see, eg
Farb–Margalit [11]) that the homeomorphism f is isotopic to the identity. This proves
the first claim.

So far, we have shown that the homomorphism

(4) ��W Homeo��.z†;zz/\Homeo0.z†;zz/! Homeo0.†; z/

is well-defined. The surjectivity of this homomorphism follows directly from the
isotopy lifting property of covers. The injectivity can be for instance seen as follows.
Endow †0 and z†0 with hyperbolic metrics so that � is a Riemannian cover. Any
element zf in the kernel of (4) is a lift of the identity and hence an isometry of z†0 .
It is well-known that the identity is the only isometry of a hyperbolic surface (with
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nonabelian fundamental group) which is homotopic to the identity. This proves that zf
is the identity concluding the proof of Proposition 3.

Denote by

Mod��.z†;zz/D fŒ zf � 2Mod.z†;zz/ j zf 2 Homeo��.z†;zz/g
Mod�.†; z/D fŒf � 2Mod.†; z/ jf 2 Homeo�.†; z/gand

the associated subgroups of the mapping class groups of † and z†, respectively. Accord-
ing to the first claim of Proposition 3, we can define ��W Mod��.z†;zz/!Mod�.†; z/
by the formula ��.Œ zf �/D Œ��. zf /�. The following is a straightforward consequence of
the second claim:

Corollary 4 The sequence (1) descends to a short exact sequence

(5) 1 // K // Mod��.z†;zz/
�� // Mod�.†; z/ // 1:

Remark Without going any further we would like to remark that the proofs of Propo-
sition 3 and Corollary 4 still apply if �W .z†;zz/! .†; z/ is a branched cover with all
branching points in zz.

The groups Homeo�.†; z/ and Mod�.†; z/ can be alternatively described as follows.
Let �1.†/ and �1.z†/ be the fundamental groups of the closed surfaces (the marked
points play no role here); as in the proof of Proposition 3 we identify �1.z†/ with a
finite index subgroup of �1.†/. The whole group Homeo.†; z/ acts on the set of
conjugacy classes of finite index subgroups of �1.†/. Since a homeomorphism f

has a lift if and only if it preserves the conjugacy class of �1.z†/ in �1.†/, we see
that Homeo�.†; z/ is the stabilizer of this conjugacy class. Similarly, this action of
Homeo.†; z/ descends to an action of Mod.†; z/ on the set of conjugacy classes
of finite index subgroups and Mod�.†; z/ is the stabilizer of the conjugacy class of
�1.z†/.

The following is now straightforward from the discussion above.

Proposition 5 Given a finite covering �W z†!†, identify �1.z†/ with a subgroup of
�1.†/ as in the proof of Proposition 3. There is an injective homomorphism

Mod.†; z/!Mod.z†;zz/

obtained by lifting mapping classes in Mod.†; z/ to Mod.z†;zz/, provided the following
two conditions are satisfied:
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(i) The conjugacy class of �1.z†/ in �1.†/ is invariant by the action of Mod.†; z/.

(ii) The sequence (5) is split.

We note that condition (ii) can be replaced by requiring (1) to split since this implies
(5) is split.

Proof By the alternate description of Mod�.†; z/, we see that condition (i) is equiva-
lent to saying that Mod.†; z/DMod�.†; z/. Therefore, the sequence (5) becomes

(6) 1 // K // Mod��.z†;zz/
�� // Mod.†; z/ // 1:

By (ii), (6) splits providing the required injective homomorphism.

To illustrate the use of Proposition 5, and since we will wish to revisit it later, we now
recall the construction due to Ivanov–McCarthy [19].

Let † have genus g � 2 and z D fzg, a single point, so that .†; z/ represents the
surface †g;1 . Let �W z†! † be a degree d characteristic cover. By this we mean
that �1.z†/ is a characteristic subgroup of �1.†/. In particular, the conjugacy class
of �1.z†/ consists of a single subgroup which is then clearly fixed by the action of
Mod.†/ and so condition (i) of Proposition 5 is satisfied.

Let zz D ��1.z/ be the d marked points in z†, and fix one of them zz 2 zz. As the
cover is characteristic, the covering group K acts transitively on zz. So given any f 2
Homeo.†; z/, by composing with a covering transformation if necessary, we can find a
lift zf which fixes zz . This specifies a homomorphism Homeo.†; z/! Homeo��.z†;zz/
which splits the sequence (1), and hence condition (ii) of Proposition 5 is satisfied.
Therefore, � induces an injective homomorphism

Mod.†; z/!Mod.z†;zz/:

In the next section we will make use of a similar strategy to prove Theorem 1; our
covers are however going to be as noncharacteristic as possible.

3 Closed surfaces

In what follows, † is a closed surface of genus g � 2 and the marked point set z is
empty.
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Proposition 6 Let �W �1.†/!G be a surjective homomorphism to a finite group G

such that ker.�/ is characteristic. Suppose that H �G is a subgroup with

.a/ NG.H /DH; .b/ Aut.G/ �H D Inn.G/ �H:

Here NG.H / is the normalizer of H in G and Aut.G/ and Inn.G/ are the groups of
automorphisms and inner automorphisms of G , respectively.

Let �W z†!† be the cover corresponding to ��1.H /. Then conditions (i) and (ii) of
Proposition 5 are satisfied. In particular, � induces an injective homomorphism

Mod.†/!Mod.z†/:

Proof In order to relax notation we set � D �1.†/ and �0 D �1.z†/ D �
�1.H /.

The covering group K is isomorphic to the quotient N�.�0/=�0 of the normalizer of
�0 in � modulo �0 . Property (a) implies N�.�0/D �0 and hence that K is trivial.
Therefore �� in (5) is an isomorphism so the sequence splits and (ii) of Proposition 5
is satisfied.

To verify condition (i) it suffices to show that the subgroup �0 has the following
property:

(7) Aut.�/ ��0 D Inn.�/ ��0:

To see that �0 does indeed have this property, fix � 2 Aut.�/ and observe that since
� is surjective and has characteristic kernel ker.�/ there is � 2 Aut.G/ with

� ı � D � ı �:

By property (b), there is g 2G such that �.H /D gHg�1 . Since � is surjective we
have in turn  2 � with �. /D g . We have then

�.�0/D �.�
�1.H //D .� ı ��1/�1.H /D .��1

ı �/�1.H /

D ��1.�.H //D ��1.gHg�1/D ��1.H /�1
D �0

�1:

This proves (7) and thus verifies condition (i) of Proposition 5.

To prove Theorem 1, we must find a group G with a proper subgroup H < G and
a surjective homomorphism �W �1.†/!G as in Proposition 6. To construct such a
group, we consider the k –fold product S D S3 � � � � �S3 of S3 , the symmetric group
in 3 letters, with itself. Let rj W S! S3 be the projection onto the j –th factor.

Proposition 7 Let G be a subgroup of S such that rj .G/D S3 for all j D 1; ::; k . If
H is a 2–Sylow subgroup of G then H is a proper subgroup satisfying properties (a)
and (b) from Proposition 6.
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Proof Since rj is surjective and jS3j D 6 then 6 divides jGj and thus any 2–Sylow
subgroup of G is proper. Property (b) is immediate from the fact that all p–Sylow
subgroups of a finite group are conjugate.

Every p–Sylow subgroup of G is the intersection of a p–Sylow subgroup of S with G .
This is because every p–subgroup of S—in particular a p–Sylow subgroup of G —is
contained in some p–Sylow subgroup of S .

A 2–Sylow subgroup P < S has the following form: there exist X1; : : : ;Xk 2 S3 ,
each of order 2, such that

P D f .x1; : : : ;xk/ jxj DXj or xj D 1 g D hX1i � � � � � hXki;

where 1 is the identity in S3 . Let P be such a 2–Sylow subgroup with H D P \G .

Now suppose y D .y1; : : : ;yk/ 2NG.H /. We want to show that y 2H . Since y is
assumed to lie in G , it suffices to show that y 2 P .

For every j D 1; : : : ; k we first claim there exists x D .x1; : : : ;xk/ 2 H so that
xj DXj . To see this, note that rj is surjective and so there exists an element x0 2G

of order 2 such that rj .x
0/ has order 2 in S3 . We can conjugate x0 by an element

of G to some x D .x1; : : : ;xk/ 2H . Since xj D rj .x/ is nontrivial then xj DXj .

Now, conjugating x by y we have

yx D .y1x1; : : : ;
yk xk/ 2H:

Therefore, we have
yj Xj DXj or yj Xj D 1:

The second case is absurd since Xj ¤ 1, so yj Xj D Xj . Thus yj is in the centralizer
of Xj in S3 which is f1;Xj g. Since this is true for all j , we have yj DXj or yj D 1
for all j . Therefore, y 2 P as required.

We can now prove Theorem 1.

Theorem 1 For every g � 2 there is g0 > g and an injective homomorphism

�W Mod.†g;0/!Mod.†g0;0/:

Proof The automorphism group Aut.�/ of � D �1.†g;0/ acts on Hom.�;S3/. Let
f�1; : : : ; �kg be the Aut.�/–orbit of a surjective homomorphism in Hom.�;S3/ (such
an epimorphism exists since S3 is 2–generator and � surjects a rank 2–free group).
Then

�D �1 � � � � � �k W �! S D S3 � � � � �S3
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is a homomorphism onto a subgroup G <S as in the previous section. By construction,
� has characteristic kernel. Applying Proposition 6 completes the proof.

We will now describe an alternative construction, appealing again to Proposition 6,
using a result of P Hall [12] about finite simple groups which was explained to us by
N Dunfield (see also Lemma 3.7 of Dunfield–Thurston [9]). One version of Hall’s
Theorem is as follows.

Lemma 8 (Hall) Suppose � is any group, that Q1; : : : ;Qk are finite, nonabelian
simple groups, and that �i W G!Qi is an epimorphism for i D 1; : : : ; k . If �i and �j

do not differ by an isomorphism Qi!Qj for any i ¤ j , then

�D �1 � � � � � �k W �!Q1 � � � � �Qk

is surjective.

Now consider, for example, a finite simple group of the form PSL2.Fp/ (this group is
simple when p is a prime greater than or equal to 5). Let �0W � D�1.†/! PSL2.Fp/

be an epimorphism. Again, Aut.�/ acts on Hom.�;PSL2.Fp//, and we note that
Aut.PSL2.Fp// also acts by postcomposition. Let f�1; : : : ; �ng be a maximal collection
of elements of an Aut.�/–orbit, no two of which are in the same Aut.PSL2.Fp//–orbit.
This is easily accomplished by starting with any Aut.�/–orbit and discarding some
number of elements.

The point is that now �i and �j do not differ by an automorphism of PSL2.Fp/

(unless i D j ), and by maximality, given � 2 Aut.�/ and i 2 f1; : : : ; ng, there exists
� 2 Aut.PSL2.Fp// and j 2 f1; : : : ; ng so that �i ı� D � ı �j . Therefore, if we set

�D �1 � � � � � �k W �! PSL2.Fp/� � � � �PSL2.Fp/DG;

then � has characteristic kernel and by Lemma 8, � is surjective.

Now, let H0 < PSL2.Fp/ to be the subgroup of upper triangular matrices and set
H DH0�� � ��H0 <G . Since NPSL2.Fp/.H0/DH0 , it follows that NG.H /DH so
condition (a) from Proposition 6 is satisfied. Furthermore, as with any product of non-
abelian finite simple groups, Aut.G/ acts by permuting the factors and composing with
automorphisms in each factor. The subgroup Aut.PSL2.Fp// contains Inn.PSL2.Fp//

as an index two subgroup, and it is not hard to see that Aut.PSL2.Fp// � H0 D

Inn.PSL2.Fp// �H0 . It follows that Aut.G/ �H D Inn.G/ �H , and so condition (b)
from Proposition 6 is also satisfied.

At this point we would like to observe that the proof of Theorem 1 also applies in other
situations. For instance, we obtain injective homeomorphisms between the mapping

Geometry & Topology, Volume 13 (2009)



Injections of mapping class groups 2533

class groups of two nonhomeomorphic handlebodies. Similarly, we obtain injective
homomorphisms

(8) Out.Fn/! Out.Fm/

with n<m where Out.Fn/ is the group of outer automorphisms of the free group Fn .
The existence of such homomorphisms (8) was previously obtained by Bogopol 0 skiı̆–
Puga [7] using a different argument. In the examples of [7], m grows exponentially
with n. However, the authors have only been able to obtain doubly exponential bounds
on the degree of the covers constructed in the proof of Theorem 1. Thus we ask:

Question 1 What is the minimal degree (bigger than 1) of a covering z†! † of a
closed surface † by z† for which one can find an injection Mod.†/!Mod.z†/?

4 Another injective homomorphism

We now set out to construct the homomorphism ˛ of Theorem 2.

We assume that † and z† are closed surfaces of genus g � 2 and g0 � 2, respectively,
and that �W z†!† is a characteristic covering of finite degree. Let z 2† and zz 2 z† be
single marked points with �.zz/D z and let �D�1.†; z/ and z�D�1.z†; zz/. As before,
we write �1.�/W z�! � for the induced homomorphism on fundamental groups. We
write .†; z/ and .z†; zz/ for the surfaces with marked points. So we wish to construct a
homomorphism

˛W Mod.†; z/!Mod.z†; zz/:

The Birman exact sequence [4], is given by

1 // � // Mod.†; z/ // Mod.†/ // 1:

An element of Mod.†; z/ induces an automorphism of � and an element of Mod.†/
induces an outer automorphism. Since an element of � <Mod.†; z/ clearly gives us
an inner automorphism, one can check that this determines a homomorphism of short
exact sequences

(9)

1 // � //

��

Mod.†; z/ //

��

Mod.†/ //

��

1

1 // Inn.�/ // Aut.�/ // Out.�/ // 1:

Since � has trivial center, the first vertical arrow is an isomorphism. Moreover, by the
Dehn–Nielsen–Baer Theorem, the second and third vertical arrows are isomorphisms.
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A similar discussion holds for z† and z� . We will use the central vertical homomor-
phisms to identify Mod.†; z/D Aut.�/ and Mod.z†; zz/D Aut.z�/. Similarly, we use
the initial vertical arrows to identify Inn.�/D � and Inn.z�/D z� .

We are now required to construct

˛W Aut.�/! Aut.z�/:

Given � 2 Aut.�/, we define ˛.�/ 2 Aut.z�/ by the formula

˛.�/.z /D �1.�/
�1.�.�1.�/z //

for every z 2 z� . This makes sense because �1.�/ is an isomorphism onto its image,
�1.�/.z�/, which is a characteristic subgroup of � . Thus, we are simply restricting �
to �1.�/.z�/, and conjugating it back to z� by �1.�/.

Lemma 9 The homomorphism ˛W Aut.�/! Aut.z�/ is injective.

Proof Given � 2 Aut.�/, we assume that ˛.�/ is the identity. So, ˛.�/.z /D z for
all z 2 z� , and so �. / D  for all  2 �1.�/.z�/. Since �1.�/.z�/ has finite index
in � and � has unique roots, it follows that �. /D  for all  2 � . That is, � is the
identity, and ker.˛/ is trivial as required.

One can alternatively describe ˛ as follows. The Ivanov–McCarthy monomorphism
Mod.†; z/!Mod.z†;zz/ as described in Section 2 has image inside Mod.z†;zz; zz/, the
group of those homeomorphisms of .z†;zz/ which fix the single marked point zz . There
is a homomorphism (fitting into Birman’s more general exact sequence [4]) defined by
forgetting zz�zz , all the marked points except zz :

Mod.z†;zz; zz/!Mod.z†; zz/:

We leave it as an exercise for the interested reader to check that ˛ is given as the
composition

Mod.†; z/!Mod.z†;zz; zz/!Mod.z†; zz/:

5 Properties of ˛

In this section we prove Theorem 2 but before doing so we motivate it briefly. The exam-
ples of injective homomorphisms between different mapping class groups constructed
in [19] or Theorem 1 are induced by a cover in the following sense.
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Definition Let .†; z/ and .z†;zz/ be surfaces with a possibly empty finite set of points
marked. A homomorphism �W Mod.†; z/!Mod.z†;zz/ is induced by a cover if there
is a possibly branched cover �W z†!†, with all branching points of � contained in z,
with zz� ��1z, such that if z0 2 �

�1.z/ nzz then deg�.z0/ > 1 and such that there is a
continuous homomorphism

��W Homeo.†; z/! Homeo.z†;zz/;

for which ��.f / is a lift of f for all f 2 Homeo.†; z/ and �.Œf �/D Œ��.f /�.

If �W Mod.†; z/!Mod.z†;zz/ is induced by a cover �W z†!† such that zzD ��1.z/
then it follows from Proposition 3 and the remark following Corollary 4, that there is a
well-defined �–equivariant embedding

ˆW T .†; z/! T .z†;zz/:

In fact, with a little extra work, one can check that ˆ is an isometric embedding.
This remains true if zz is properly contained in ��1.z/ since the assumption on the
local degree of the cover implies that the composition of the isometric embedding
T .†; z/ ! T .z†; ��1.z// with the projection T .z†; ��1.z// ! T .z†;zz/ is still an
isometric embedding. In other words, we have:

Lemma 10 Assume that a homomorphism �W Mod.†; z/!Mod.z†;zz/ is induced by
a cover and endow the Teichmüller spaces T .†; z/ and T .z†;zz/ with the Teichmüller
metric. Then there is an �–equivariant isometric embedding

ˆW T .†; z/! T .z†;zz/:

In particular � is type-preserving in the sense that it maps pseudo-Anosov and reducible
elements of Mod.†; z/ to pseudo-Anosov and reducible elements of Mod.z†;zz/, re-
spectively. Also, the limit set ƒ�.Mod.†;z// of the image of � is a proper subset of
PML.z†;zz/ homeomorphic to PML.†; z/.

Here we have identified PML.z†;zz/ with the Thurston boundary of the Teichmüller
space T .z†;zz/. McCarthy–Papadopoulos [27] defined the limit set ƒH of a subgroup
H �Mod.z†; zz/ to be the closure in PML.z†; zz/ of the set of pseudo-Anosov fixed
points (when there are no pseudo-Anosov elements, the definitions must be modified
but this is not relevant to us since, as we just remarked, �.Mod.†; z// contains such
elements).

In a nutshell, the claim of Theorem 2 is that none of these properties holds for the
homomorphism ˛ constructed in the last section.
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Theorem 2 For every g � 2 there is g0 > g and an injective homomorphism
˛W Mod.†g;1/!Mod.†g0;1/ with the following properties:

(1) There are pseudo-Anosov mapping classes in Mod.†g;1/ whose image under ˛
is a multitwist. In particular, ˛ is not type-preserving.

(2) The limit set ƒ˛.Mod.†g;1// of the image of ˛ is the whole space PML.†g0;1/

of projective measured laminations on †g0;1 .

(3) In particular, there is no ˛.Mod.†g;1//–invariant proper subset of T .†g0;1/

which is convex with respect to the Teichmüller metric.

With the same notation as in the preceding section, we use the Birman exact sequence (9)
to view � D �1.†; z/ and z� D �1.z†; zz/ as subgroups of Mod.†; z/ and Mod.z†; zz/
respectively. The proof of Theorem 2 is based on the following observation.

Lemma 11 ˛.�/ contains z� with finite index.

Proof From the definition we have ˛.�1.�/.z�//D z� , and �1.�/.z�/ < � has finite
index.

We start with the proof of the first claim of Theorem 2. To begin with, recall that in
[23], Kra proved that (the mapping class identified with)  2 � is pseudo-Anosov if
and only if the free homotopy class determined by  is filling in †—that is, every
element of the free homotopy class of  nontrivially intersects every homotopically
essential closed curve. On the other hand, if  is freely homotopic to a simple curve,
then the mapping class determined by  is a multitwist. In particular, in order to find
elements Œf � 2Mod.†g;1/ of the required type, it suffices to exhibit an element  2 �
whose free homotopy class is filling, but which lifts to a simple loop on z†. Such
loops  can be constructed as follows.

Let � be an ending lamination on z†; this is a geodesic lamination admitting a transverse
measure of full support, for which all complementary regions are ideal polygons. We
further assume that � is not the preimage of a lamination on †. Let ˇn be a sequence
of simple closed geodesics in z† which are converging to �—this is possible for any
minimal lamination; see eg Canary–Epstein–Green [8, Lemma 4.2.15]. Since � is not
a lift, we can find an element ı 2 K , the covering group of �W z†! †, for which
ı.�/¤ �. Since � is an ending lamination, � and ı.�/ fill up z†. In particular, for n

sufficiently large, ˇn and ı.ˇn/ also fill up z†. It follows that for sufficiently large n,
�.ˇn/ is filling on † and has a simple lift, ˇn , to z†. Appropriately replacing the
curves by based loops gives examples of the required type for all sufficiently large n.
This concludes the proof of the first claim of Theorem 2.
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Remark Obviously, if  2 z� fills z†, then its projection also fills †. In particular,
there are pseudo-Anosov mapping classes in Mod.†; z/ whose image under ˛ is also
pseudo-Anosov.

We now prove the second claim of Theorem 2. If H �Mod.z†;zz/ is a subgroup, let
ƒH be its limit set in the sense of McCarthy–Papadopoulos [27]; we will only consider
subgroups containing pseudo-Anosov elements. By Lemma 11, the image ˛.�/ of �
contains z� with finite index and hence

ƒz� �ƒ˛.Mod.†;z//:

On the other hand, z� is an infinite normal subgroup containing two noncommuting
pseudo-Anosov elements, and hence it follows from [27, Proposition 5.5] that

ƒz� DƒMod.z†;zz/ D PML.z†; zz/:

The second claim of Theorem 2 follows directly from the two last equations.

Finally, let us establish the third claim of Theorem 2. It follows from the definition of
the limit set and from the dynamics of pseudo-Anosov elements that if H �Mod.z†; zz/
is a subgroup (containing pseudo-Anosovs) then for any Œ�� 2ƒH and X 2 T .z†; zz/,
there is a sequence fgig �H for which limi giX D Œ��. We make use of the following
result:

Lemma 12 Let S be a surface of finite analytical type and assume that a subgroup
H �Mod.S/ contains pseudo-Anosov elements and stabilizes a proper, closed, convex
subset of T .S/ with respect to the Teichmüller metric. Then ƒH is a proper subset of
PML.S/.

Recall that a subset Z of a metric space X is convex if any geodesic segment in X

with endpoints in Z is itself contained in Z .

Proof of Lemma 12 Assume that ƒH D PML.S/ and that Z � T .S/ is an H –
invariant convex closed subset; fix a point X 2 Z . Given Œ�� 2 PML.S/ uniquely
ergodic, by [14] there is a unique geodesic ray ��.t/ in T .S/ with ��.0/D X and
limt!1 �

�.t/D Œ��. Since Œ��2ƒH there is a sequence fgig�H with limi giX D Œ��.

Up to subsequence, the geodesics ŒX;giX � converge to a geodesic ray from X . By
the unique ergodicity of Œ��, the limiting ray must be �� . Since the set Z is convex
and X and giX both belong to Z , we have that ŒX;giX � � Z . By continuity, this
implies that the ray �� � Z as well. We derive that Z contains all rays starting in X

and tending to a uniquely ergodic point in PML.S/. By [25], this set of rays is dense
in T .S/; hence Z D T .S/.
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We have proved that if ƒH D PML.z†; zz/ then T .S/ does not contain any proper,
closed, nonempty convex H –invariant sets.

It follows directly from the second claim of Theorem 2 and Lemma 12 that there is
no ˛.Mod.†; z//–invariant subset of T .z†; zz/ which is convex with respect to the
Teichmüller metric. This concludes the proof of Theorem 2.

Before moving on we would like add some observations. To begin with, observe that
the same argument used in [21, Theorem 2.4] shows that there is no ˛–equivariant
continuous map PML.†; z/! PML.z†; zz/. Observe also that the arguments given
above can be used to prove that there is also no ˛.Mod.†; z//–invariant proper subset
of T .z†; zz/ which is convex with respect to the Weil–Petersson metric. The needed facts
about the Weil–Petersson metric can be found in [20]; more precisely, see Theorem 1.4
and Theorem 1.8 therein.

From some point of view, it may be more natural to consider the Weil–Petersson than
the Teichmüller metric. For a start, observe that if a homomorphism is induced by
a nonbranched cover then the map provided by Lemma 10 is, up to scaling, also an
isometric embedding with respect to the Weil–Petersson metric; its image is totally
geodesic. Also, if † � †0 is a compact subsurface then the mapping class group
of † is (usually) isomorphic to a subgroup of the mapping class group of †0 ; see
Paris–Rolfsen [29] and Bell–Margalit [2]. We have then an equivariant map from the
Teichmüller space of † to the Weil–Petersson completion of the Teichmüller space
of †0 whose image is totally geodesic and hence convex.

Something positive about ˛ While there are no ˛–equivariant isometric embeddings
of T .†; z/ to T .z†; zz/ it is not difficult to construct such a map which is holomorphic.
In fact, the covering z� induces an equivariant holomorphic embedding T .†; z/!
T .z†;zz/. Filling all the punctures but zz yields then a holomorphic fibration T .z†;zz/!
T .z†; zz/; see Bers [3]. The composition

F W T .†; z/! T .z†; zz/

is the desired ˛–equivariant holomorphic map. Observe that being holomorphic, F is
1–Lipschitz with respect to the Teichmüller metric; this follows from the fact that the
Teichmüller metric and the Kobayashi metric coincide on Teichmüller space.

A brief computation using the Ahlfors Lemma proves that the projection map T .z†;zz/!
T .z†; zz/ is 1–Lipschitz with respect to the Weil–Petersson metrics. On the other hand,
the lifting map T .†; z/!T .z†;zz/ is, again with respect to the Weil–Petersson metrics,
a homothety onto its image. In particular, the map F is Lipschitz with respect to the
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Weil–Petersson metrics on the source and target Teichmüller spaces. This implies for
example that the induced map

f WM.†; z/!M.z†; zz/

between the corresponding moduli spaces has finite energy. On the other hand, being
holomorphic, the map f is harmonic [10, 8.15] and its image is minimal by the
Wirtinger inequality.

Musings on a questions of Farb and Margalit As mentioned in the introduction, it
is an interesting problem to study how injective homomorphisms between mapping
class groups arise. In this spirit, Farb–Margalit (see Question 2 in [2]) have asked:

Question 2 (Farb–Margalit) Is every injective homomorphism of mapping class
groups geometric?

A problem with this question is that the word geometric does not have a precise meaning.
In some sense, Theorem 2 asserts that it is difficult to find an interpretation of the
word geometric for which the answer can be positive (at least as long as punctures
are not explicitly avoided). This is a sad fact since one would hope that the answer to
this question is “yes”. A possible interpretation of the word geometric could be that
every such homomorphism induces an algebraic morphism between the corresponding
moduli spaces. Another may be simply that it is induced by some manipulation of
surfaces. In fact, it may turn out that the second definition is equivalent to the first one.
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