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The asymptotic behavior of least pseudo-Anosov dilatations

CHIA-YEN TSAI

For a surface S with n marked points and fixed genus g � 2 , we prove that the
logarithm of the minimal dilatation of a pseudo-Anosov homeomorphism of S is on
the order of .log n/=n . This is in contrast with the cases of genus zero or one where
the order is 1=n .

37E30; 57M99, 30F60

1 Introduction

Let S D Sg;n be an orientable surface with genus g and n marked points. The
mapping class group of S is defined to be the group of homotopy classes of orientation
preserving homeomorphisms of S . We denote it by Mod.S/. Given a pseudo-Anosov
element f 2Mod.S/, let �.f / denote the dilatation of f (see Section 2.1). We define

L.Sg;n/ WD flog�.f / j f 2Mod.Sg;n/ pseudo-Anosovg:

This is precisely the length spectrum of the moduli space Mg;n of Riemann surfaces
of genus g with n marked points with respect to the Teichmuller metric; see Ivanov [8].
There is a shortest closed geodesic and we denote its length by

lg;n Dminflog�.f / j f 2Mod.Sg;n/ pseudo-Anosovg:

Our main theorem is the following:

Theorem 1.1 For any fixed g � 2, there is a constant cg � 1 depending on g such
that

log n

cgn
< lg;n <

cg log n

n
;

for all n� 3.

To contrast with known results, recall that in [13] Penner proves that for 2g�2Cn> 0,

lg;n �
log 2

12g� 12C 4n
;
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and for closed surfaces with genus g � 2,

log 2

12g� 12
� lg;0 �

log 11

g
:

The bounds on lg;0 have been improved by a number of authors; see Bauer [1],
McMullen [10], Minakawa [11]and Hironaka and Kin [7].

In [13], Penner suggests that there may be an “analogous upper bound for n ¤ 0”.
In [7], Hironaka and Kin use a concrete construction to prove that for genus g D 0,

l0;n <
log.2C

p
3/�

n�2
2

˘ �
2 log.2C

p
3/

n� 3
;

for all n � 4. The inequality is proven for even n in [7], but it follows for odd n

by letting the fixed point of their example be a marked point. Combining this with
Penner’s lower bound, one sees for n� 4,

log 2

4n� 12
� l0;n <

2 log.2C
p

3/

n� 3
;

which shows that the upper bound is on the same order as Penner’s lower bound for
g D 0. A similar situation holds for g D 1; see Section 5.1 of the Appendix.

Inspired by the construction of Hironaka and Kin, we tried to find examples of pseudo-
Anosov fg;n 2Mod.Sg;n/ with

log�.fg;n/DO

�
1

j�.Sg;n/j

�
;

for �.Sg;n/D 2� 2g� n< 0. However for any fixed g � 2, all attempts resulted in
fg;n 2Mod.Sg;n/ pseudo-Anosov with

log�.fg;n/DOg

�
log j�.Sg;n/j

j�.Sg;n/j

�
and not O

�
1

j�.Sg;n/j

�
:

This led us to prove Theorem 1.1.

The preceding discussion suggests that the asymptotic behavior of lg;n while varying
both g and n can be quite complicated, in general. Hence, we will focus on under-
standing what happens along different .g; n/–rays. In addition to the results discussed
above, there are other rays in which the asymptotic behavior of lg;n can be understood
via examples (see Section 5.2 of the Appendix) and Penner’s lower bound. Table 1
summarizes these behaviors for �.Sg;n/ < 0.

Question What are asymptotic behaviors of lg;n along different .g; n/–rays in the
.g; n/ plane?
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.g; n/–rays The asymptotic behavior of lg;n

g D 0 1=j�.Sg;n/j

g D 1 and n is even 1=j�.Sg;n/j

g D constant � 2 log
�
j�.Sg;n/j

�
=j�.Sg;n/j

nD 0; 1; 2; 3, or 4 1=j�.Sg;n/j

nD g;gC 1, or gC 2 1=j�.Sg;n/j

nD g� 1 or 2.g� 1/ 1=j�.Sg;n/j

Table 1

1.1 Outline of the paper

We will first recall some definitions and properties in Section 2. In Section 3 we prove
the lower bound of Theorem 1.1. We construct examples in Section 4 which give an
upper bound for the genus 2 case, and we extend the example to arbitrary genus g � 2

to obtain the upper bound of Theorem 1.1. Finally, we construct a pseudo-Anosov
element in Mod.S1;2n/ and obtain an upper bound on l1;2n in the Appendix.

Acknowledgements The author would like to thank Christopher Leininger for key
discussions and for revising an earlier draft. Kasra Rafi and A J Hildebrand offered
helpful suggestions and insights. I would also like to thank MSRI for its stimulating,
collaborative research environment during its fall 2007 programs.

2 Preliminaries

2.1 Homeomorphisms of a surface

We say that a homeomorphism f W S ! S is pseudo-Anosov if there are transverse
singular foliations F s and Fu together with transverse measures �s and �u such that
for some � > 1,

f .F s; �s/D .F s; ��s/;

f .Fu; �u/D .Fu; ��1�u/:

The number �D �.f / is called the dilatation of f . We call f reducible if there is
a finite disjoint union U of simple essential closed curves on S such that f leaves
U invariant. If there exists k > 0 such that f k is the identity, then f is periodic.
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A mapping class Œf � is pseudo-Anosov, reducible or periodic (respectively) if f is
homotopic to a pseudo-Anosov, reducible or periodic homeomorphism (respectively).
The following is proved in Fathi, Laudenbach and Poenaru [4].

Theorem 2.1 (Nielsen–Thurston) A mapping class Œf � 2Mod.S/ is either periodic,
reducible, or pseudo-Anosov.

As a slight abuse of notation, we sometimes refer to a mapping class Œf � by one of its
representatives f .

2.2 Markov partitions

Suppose f W S ! S is pseudo-Anosov with stable and unstable measured singular
foliations .F s; �s/ and .Fu; �u/. We define a rectangle R to be a map

�W I � I ! S;

such that � is an embedding on the interior, �.point � I/ is contained in a leaf of
Fu , and �.I � point/ is contained in a leaf of F s . We denote �.@I � I/ by @uR and
�.I � @I/ by @sR.

@sR

@sR

@uR @uRR

As a standard abuse of notation, we will write R� S for the image of a rectangle map
�W I � I ! S .

Definition 2.2 A Markov partition for f W S ! S is a decomposition of S into a
finite union of rectangles fRig

k
iD1

, such that:

(1) Int.Ri/\ Int.Rj / is empty, when i ¤ j ,

(2) f .
Sk

jD1 @
uRj /�

Sk
jD1 @

uRj ,

(3) f �1.
Sk

iD1 @
sRi/�

Sk
iD1 @

sRi .

Given a pseudo-Anosov homeomorphism f W S!S , a Markov partition is constructed
in Bestvina and Handel [2] from a train track map for f . The advantage of this
construction over Fathi, Laudenbach and Poenaru [4], for example, is that the number
of rectangles is substantially smaller. From [2], one has the following:
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Theorem 2.3 For any pseudo-Anosov homeomorphism f W S ! S of a surface S

with at least one marked point, there exists a Markov partition for f with at most
�3�.S/ rectangles.

We say that a matrix is positive (respectively, nonnegative) if all the entries are positive
(respectively, nonnegative).

We can define a transition matrix M associated to the Markov partition with rectangles
fRig

k
iD1

. The entry mi;j of M is the number of times that f .Rj / wraps over Ri ,
so M is a nonnegative integral k � k matrix. In Bestvina and Handel’s construction,
M is the same as the transition matrix of the train track map and they show it is an
integral Perron–Frobenius matrix (ie it is irreducible with nonnegative integer entries);
see Gantmacher [5]. Furthermore, the Perron–Frobenius eigenvalue �.M / D �.f /

is the dilatation of f . The width (respectively, height) of Ri is the i –th entry of the
corresponding Perron–Frobenius eigenvector of M (respectively, M T ), where the
eigenvectors are both positive by the irreducibility of M .

The following proposition will be used in proving the lower bound.

Proposition 2.4 Let M be a k � k integral Perron–Frobenius matrix. If there is a
nonzero entry on the diagonal of M , then M 2k is a positive matrix and its Perron–
Frobenius eigenvalue �.M 2k/ is at least k .

Proof We construct a directed graph � from M with k vertices figk
iD1

such that the
number of the directed edge from i to j in � equals mi;j . We observe that for any
r > 0 the .i; j /–th entry m

.r/
i;j of M r is the number of directed edge paths from i to

j of length r in � .

Since M is a Perron–Frobenius matrix, we know that � is path-connected by directed
paths. Suppose M has a nonzero entry at the .l; l/–th entry, then we will see at least
one corresponding loop edge at the vertex l . For any i and j in � , path-connectivity
ensures us that there are directed edge paths of length � k from i to l and from l

to j . This tells us that there is a directed edge path P of length � 2k from i to j

passing through l . Since we can wrap around the loop edge adjacent to l to increase
the length of P , there is always a directed edge path of length 2k from i to j . In
other words, m

.2k/
i;j is at least 1 for all i and j , so M 2k is a positive matrix.

Let v be a corresponding Perron–Frobenius eigenvector, so that we have M 2kv D

�.M 2k/v . This implies that if v D Œv1 � � � vk �
T , for all i ,

kX
jD1

m
.2k/
i;j vj D �.M

2k/vi ;

Geometry & Topology, Volume 13 (2009)
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�.M 2k/D

kX
jD1

m
.2k/
i;j

vj

vi
:or equivalently,

Choosing i such that vi � vj for all j , we obtain

�.M 2k/�

kX
jD1

m
.2k/
i;j �

kX
jD1

1D k:

The following proposition will be used in proving the upper bound.

Proposition 2.5 Let � be the induced directed graph of an integral Perron–Frobenius
matrix M with Perron–Frobenius eigenvalue �.M /D �. Let P�.i; d/ be the total
number of paths of length d emanating from vertex i in � . Then, for all i ,

d
p

P�.i; d/ �! �.M / as d !1:

Proof Let M be an integral k �k Perron–Frobenius matrix with Perron–Frobenius
eigenvalue � and Perron–Frobenius eigenvector v . As above

kX
jD1

m
.d/
i;j vj D �.M

d /vi D �
dvi :

Let vmax Dmaxifvig and vmin Dminifvig. According to the Perron–Frobenius theory,
the irreducibility of M implies that vi > 0 for all i . For all i we have

vmin

�P
j m

.d/
i;j

�
�d

�

P
j m

.d/
i;j vj

�d
�
vmax

�P
j m

.d/
i;j

�
�d

;

vi

vmax
�

P
j m

.d/
i;j

�d
�

vi

vmin
:hence

We are done, since
P

j m
.d/
i;j D P�.i; d/ and for all i ,

d

r
vi

vmax
! 1 and d

r
vi

vmin
! 1; as d tends to1:

2.3 Lefschetz numbers

We will review some definitions and properties of Lefschetz numbers. A more complete
discussion can be found in Guillemin and Pollack [6] and Bott and Tu [3].
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Let X be a compact oriented manifold, and f W X !X be a map. Define

graph.f /D f.x; f .x//jx 2X g �X �X

and let � be the diagonal of X�X . The algebraic intersection number I.�; graph.f //
is an invariant of the homotopy class of f , called the (global) Lefschetz number of f
and it is denoted L.f /. As in [3], this can be alternatively described by

L.f /D
X
i�0

.�1/i trace.f .i/� /;(1)

where f .i/� is the matrix induced by f acting on Hi.X / D Hi.X IR/. The Euler
characteristic is the self-intersection number of the diagonal � in X �X ,

�.X /D I.�;�/DL.id/:

As seen in [6], if f has isolated fixed points, we can compute the local Lefschetz
number of f at a fixed point x in local coordinates as

Lx.f /D deg
�

z 7!
f .z/� z

jf .z/� zj

�
;

where z is on the boundary of a small disk centered at x which contains no other
fixed points. Moreover we can compute the Lefschetz number by summing the local
Lefschetz numbers of fixed points,

L.f /D
X

f .x/Dx

Lx.f /:

This description of Lx.f / is given for smooth f in [6], but it is equally valid for
continuous f since such a map is approximated by smooth maps. We will be computing
the Lefschetz number of a homeomorphism f W Sg;n ! Sg;n , ignoring the marked
points.

Proposition 2.6 If a homeomorphism f W Sg;n! Sg;n is homotopic (not necessarily
fixing the marked points) to the identity or a multitwist, then

L.f /D �.Sg;0/D 2� 2g:

A multitwist is a composition of powers of Dehn twists on pairwise disjoint simple
essential closed curves.

Proof If f is homotopic to the identity, the homotopy invariance of the Lefschetz
number tells us L.f /DL.id/D I.�;�/ which is �.Sg;0/.
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Suppose f is homotopic to a multitwist. We will use (1) to compute L.f /. Note that
Hi.Sg;0/ is 0 for i � 3, H0.Sg;0/ Š H2.Sg;0/ Š R and f .i/� is the identity when
i D 0 or 2, so this implies L.f /D 2� trace.f .1/� /.

There exists a set f
ig
k
iD1

of disjoint simple essential closed curves with some integers
ni ¤ 0 such that

f ' T n1

1
ı � � � ıT nk


k
;

where T
ni

i

is the ni –th power of a Dehn twist along 
i .

For any curve 
 ,

T
ni

i�
.Œ
 �/D Œ
 �C nih
; 
iiŒ
i �;

where Œ
 � is the homology class of 
 and h
; 
ii is the algebraic intersection number
of Œ
 � and Œ
i �. If any 
i is a separating curve, then Œ
i � is the trivial homology
class and T

ni

i�

acts trivially on H1.Sg;0/. We may therefore assume that each 
i

is nonseparating. After renaming the curves, we can assume that there is a subset
f
1; 
2; : : : ; 
sg such that y
 D

Ss
iD1 
i is nonseparating and y
 [ 
j is separating for

all j > s . Thus, for all k � j > s ,

Œ
j �D

sX
iD1

cji Œ
i �;

for some constants cji 2R. We can extend fŒ
i �g
s
iD1

to a basis of H1.Sg;0/,

f˛1; ˛2; : : : ; ˛g; ˇ1; ˇ2; : : : ; ˇgg;

where Œ
i �D ˛i for i � s � g and h˛i ; ǰ i D ıij , h˛i ; j̨ i D hˇi ; ǰ i D 0.

First suppose s D k , then h j̨ ; 
ii D h j̨ ; ˛ii D 0 for all i and j . Therefore, for all j ,

f
.1/
� . j̨ /D j̨

f
.1/
� . ǰ /D ǰ C

kX
iD1

nih ǰ ; 
iiŒ
i �D ǰ C

kX
iD1

nih ǰ ; ˛ii˛i D ǰ � nj j̨ :and

So we have

f
.1/
� D

�
Ig�g �

0 Ig�g

�
and L.f /D 2� trace.f .1/� /D 2� 2g .
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For s < k , we will have

f
.1/
� . j̨ /D j̨ C

kX
iD1

nih j̨ ; 
iiŒ
i �

D j̨ C

sX
iD1

nih j̨ ; ˛ii˛i C

kX
iDsC1

nih j̨ ; 
iiŒ
i �

D j̨ C

kX
iDsC1

ni

sX
tD1

cit h j̨ ; 
t iŒ
t �

D j̨ C

kX
iDsC1

ni

sX
tD1

cit h j̨ ; ˛t i˛t

D j̨

f
.1/
� . ǰ /D ǰ C

kX
iD1

nih ǰ ; 
iiŒ
i �and

D ǰ C

sX
iD1

nih ǰ ; 
iiŒ
i �C

kX
iDsC1

ni

sX
tD1

cit h ǰ ; 
t iŒ
t �

D ǰ C

sX
iD1

nih ǰ ; ˛ii˛i C

kX
iDsC1

ni

sX
tD1

cit h ǰ ; ˛t i˛t

D

(
ǰ ; if j > s;

ǰ � nj j̨ �
Pk

iDsC1 nicij j̨ ; if j � s:

Therefore, the diagonal of the matrix f .1/� is still all 1’s and

L.f /D 2� trace.f .1/� /D 2� 2g:

3 Bounding the dilatation from below

Lemma 3.1 For any pseudo-Anosov element f 2Mod.Sg;n/ equipped with a Markov
partition, if L.f / < 0, then there is a rectangle R of the Markov partition, such that
the interiors of f .R/ and R intersect.

Proof Since f is a pseudo-Anosov homeomorphism, it has isolated fixed points.
Suppose x is an isolated fixed point of f such that one of the following happens:
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(1) x is a nonsingular fixed point and the local transverse orientation of F s is
reversed.

(2) x is a singular fixed point and no separatrix of F s emanating from x is fixed.

A separatrix of F s is a maximal arc starting at a singularity and contained in a leaf
of F s .

Claim Lx.f /DC1.

Let B be a small disk centered at x containing no other fixed point of f . First we
show that (in local coordinates) for every z 2 @B , f .z/� z ¤ ˛z for all ˛ > 0.

It is easy to verify this in case 1 by choosing local coordinates .�1; �2/ around x so
that f is given by

f .�1; �2/D

�
���1;

�1

�
�2

�
:

In case 2, we choose local coordinates around x such that the separatrices of F s

emanating from x are sent to rays from 0 through the k –th roots of unity in R2 . This
means f rotates each of the sectors bounded by these rays through an angle 2�j=k

for some j D 1; : : : ; k � 1, and so for all z 2 @B f .z/� z ¤ ˛z for all ˛ > 0.

Define a smooth map h0W @B! S1 by h0.z/D .f .z/� z/=jf .z/� zj, so Lx.f /D

deg.h0/ by definition. Let gW @B!S1 be defined by g.z/D z=jzj and h1W S
1!S1

be defined by h1.z=jzj/D .f .z/� z/=jf .z/� zj, so that h0 D h1g . Then

Lx.f /D deg.h0/D deg.h1g/D deg.h1/ deg.g/D deg.h1/

since deg.g/D 1. Note that h1 has no fixed point since for all z 2 @B ,

f .z/� z ¤ ˛z;

for all ˛ > 0. Therefore Lx.f /D deg.h1/D .�1/.1C1/ DC1.

The assumption of L.f / < 0 implies that there exists a fixed point x of f which is in
neither of the cases above. In other words, it falls into one of the cases in Figure 1. As
seen in Figure 1, there is a rectangle R of the Markov partition such that the interiors
of f .R/ and R intersect.

Let �S .3/C Mod.S/ denote the kernel of the action on H1.S IZ=3Z/, where S D

Sg;0 . In [9], it is shown that �S .3/ consists of pure mapping classes. Setting

‚.g/D ŒMod.S/ W �S .3/�;

we conclude the following.
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.

. .

.

x
x

x

Figure 1: The intersection of f .R/ and R . R is the underlying rectangle
and f .R/ is the shaded rectangle.

Lemma 3.2 Let f 2Mod.Sg;n/ be a pseudo-Anosov element and yf 2Mod.Sg;o/

be the induced mapping class obtained by forgetting marked points. There exists a
constant 1� ˛ �‚.g/ such that yf ˛ satisfies exactly one of the following:

(1) yf ˛ restricts to a pseudo-Anosov map on a connected subsurface.

(2) yf ˛ D Id.

(3) yf ˛ is a multitwist map.

Remark For the first two cases of Lemma 3.2, one can find ˛ bounded by a linear
function of g , but in case 3, ˛ may be exponential in g .

Theorem 3.3 For g � 2, given any pseudo-Anosov f 2Mod.Sg;n/, let ˛ be as in
Lemma 3.2. Then

log�.f /�min
�

log 2

˛.12g� 12/
,

log.6gC 3n� 6/

2˛.6gC 3n� 6/

�
:

Proof We will deal with case 1 of Lemma 3.2 first.

If yf ˛ restricts to a pseudo-Anosov homeomorphism on a connected subsurface
P

g0;n0

of Sg;0 of genus g0 with n0 boundary components (we have 2g0C n0 � 2g ), then
Penner’s lower bound tells us

log�. yf ˛/�
log 2

12g0� 12C 4n0

�
log 2

12g� 12
:

Hence log�.f /� log�. yf / > log 2=˛.12g� 12/.

If yf ˛ is homotopic to the identity or a multitwist map, from Proposition 2.6, we have
L.f ˛/DL. yf ˛/D �.Sg;0/D 2� 2g < 0. Theorem 2.3 tells us that for any pseudo-
Anosov f there is a Markov partition with k rectangles, where k ��3�.S/. Recall
that the transition matrix M obtained from the rectangles is a k �k Perron–Frobenius
matrix and the Perron–Frobenius eigenvalue �.M / equals �.f /.

By Lemma 3.1, there is a rectangle R such that the interiors of f ˛.R/ and R in-
tersect. This implies that there is a nonzero entry on the diagonal of M ˛ . Applying

Geometry & Topology, Volume 13 (2009)



2264 Chia-Yen Tsai

Proposition 2.4, we obtain that �..M ˛/2k/D �.M 2k˛/ is at least k , so we have

.�.f //2k˛
D �.f 2k˛/D �.M 2k˛/� k:

One can easily check .log x/=x is monotone decreasing for x � 3. Since

3� k � �3�.S/D 6gC 3n� 6;

hence log�.f /�
log k

2˛k
�

log.6gC 3n� 6/

2˛.6gC 3n� 6/
:

Remark Penner’s proof in [13] does not use Lefschetz numbers which we used to
conclude that �.M 2k˛/ is at least k , so we obtain a sharper lower bound for n� g .

4 An example which provides an upper bound

4.1 For the genus two case

In this section, we will construct a pseudo-Anosov f 2Mod.S2;n/ for all n� 31 then
we compute its dilatation which gives us an upper bound for l2;n .

Let S0;mC2 be a genus 0 surface with mC 2 marked points (ie a marked sphere), and
recall an example of pseudo-Anosov � 2Mod.S0;mC2/ in [7]. We view S0;mC2 as a
sphere with sC 1 marked points X circling an unmarked point x and t C 1 marked
points Y circling an unmarked point y , and a single extra marked point z . We can
also draw this as a “turnover”, as in Figure 2. Note that jX \ Y j D 1, jX j D sC 1,
jY j D t C 1 and mD sC t .

x

x

y

y

z

z

Š

Figure 2: Two way of viewing a marked sphere. Black dots are marked points
and the shaded dots on the right are marked points at the back.
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We define homeomorphisms ˛s , ˇt W S0;mC2 ! S0;mC2 such that ˛s rotates the
marked points of X counterclockwise around x and ˇt rotates the marked points of Y

clockwise around y ; see Figure 3. Define �s;t WD ˇt˛s . In [7], it is shown that �s;t

x xy y

z z

˛s

ˇt

Figure 3: Homeomorphisms ˛s and ˇt

is pseudo-Anosov by checking it satisfies the criterion of [2]. We also note that from
this one can check that x , y and z are fixed points of a pseudo-Anosov representative
of �s;t . Moreover, for s , t � 1 the dilatation of �s;t equals the largest root of the
polynomial

Ts;t .x/D xtC1.xs.x� 1/� 2/CxsC1.x�s.x�1
� 1/� 2/

D .x� 1/x.sCtC1/
� 2.xsC1

CxtC1/� .x� 1/:

The dilatation is minimized when s D bm=2c and t D dm=2e. Let us define � WD
�bm=2c,dm=2e and its dilatation is the largest root of the polynomial

Tm.x/ WD Tbm=2c,dm=2e.x/

D .x� 1/x.mC1/
� 2

�
xbm=2cC1

Cxdm=2eC1
�
� .x� 1/:

Proposition 4.1 If m � 5, then the largest real root of Tm.x/ is bounded above by
m3=m .

Proof For all m, we have Tm.1/D�4. It is sufficient to show that for all x �m3=m ,
we have Tm.x/ > 0. Dividing the inequality by x.mC1/ , it is equivalent to show

.x� 1/Cx�.mC1/ > 2
�
xbm=2c�m

Cxdm=2e�m
�
Cx�m:

For m� 5, one can verify the following inequalities hold for all x �m3=m :
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(1) x� 1> .3 log m/=m� 9=.2m/,

(2) xbm=2c�m � xdm=2e�m � 1=m,

(3) x�m � 1=.25m/.

Therefore,

.x� 1/Cx�.mC1/ > x� 1>
9

2m
>

101

25m
D 2

�
1

m
C

1

m

�
C

1

25m

� 2
�
xbm=2c�m

Cxdm=2e�m
�
Cx�m:

Remark Proposition 4.1 fails if we try to replace the bound with c1=m where c is
any constant.

Remark Hironaka and Kin [7] construct two infinite families of pseudo-Anosovs in
Mod.S0;m/, with �s;t being one of them. Unlike �s;t , the other family provides the
sharp bound on l0;m .

Next, we take a cyclic branched cover S2;n of S0;mC2 with branched points x , y , and
z , where nD 5.mC 1/C 1 (See Figure 4.). Define zX D fmarked points around zxg
and zY D fmarked points around zyg, so we have j zX \ zY j D 5, j zX j D 5.sC 1/ and
j zY j D 5.t C 1/.

x y

z

�

zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

Figure 4: � is the covering map. To form S2;n from the decagon, identify
the opposite sides. Then � is the quotient by the group generated by rotation
of an angle 2�=5 .
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zx

zx

zx

zx

zx

zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

zy

zy

zy

zy

zy

zz zz

ęs ě
t

Figure 5: Homeomorphisms ęs and ět

We lift ˛s , ˇt to S2;n and call them ęs , ět , so that ęs rotates the marked points
of zX counterclockwise around zx and ě

t rotates the marked points of zY clockwise
around zy ; see Figure 5. We define  s;t WD

ě
t ęs . It follows that  s;t is a lift of �s;t ,

and so is pseudo-Anosov with �. s;t /D �.�s;t /. An invariant train track for  s;t is
obtained by lifting the one constructed in [7], and is shown in Figure 6 for s D t D 3.

zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

zz

Figure 6: A train track for  3;3
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Hence for n D 5.m C 1/ C 1 � 31, we have constructed a pseudo-Anosov  D

 bm=2c,dm=2e 2Mod.S2;n/ with �. /D �.�/�m3=m which implies

log�. /�
3 log m

m
D

15 log.n� 6/� 15 log 5

n� 6
:

We will now extend  so that n can be an arbitrary number � 31. We add an extra
marked point p1 on S2;n between points in zX or zY except the places shown in
Figure 7.

zx zx zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

zy

zy zy

Figure 7: We are not allowed to add p1 in the places indicated by a shaded point.

Without loss of generality we assume p1 is added in zX to obtain S2;nC1 and we
define  1 WD

ě
t ęs
0
2Mod.S2;nC1/ where ęs

0 is extended from ęs in the obvious
way; see Figure 8. One can check that  1 is pseudo-Anosov via the techniques of [2].
An invariant train track for  1 is shown in Figure 9 and is obtained by modifying the
invariant train track for  shown in Figure 6.

Next, we will show �. 1/ � �. /. Let H (respectively, H1 ) be the associated
transition matrix of the train track map for  (respectively,  1 ), and let � (respectively,
�1 ) be the induced directed graph as constructed in Section 2.2.

From the construction above (ie adding p1 ), the directed graph �1 is obtained by
adding a vertex on the edge going out from some vertex i in � (that is, subdividing
the edge going out from i ) where i has exactly one edge coming in and exactly one
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zx

zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

zy

zy
zz

p1

p1

ęs
0

Figure 8: The homeomorphism ęs
0 . The figure on the right is a local picture

near the added point p1 .

edge going out. This implies P�1
.i; kC 1/D P�.i; k/ and

kC1

q
P�1

.i; kC 1/� k

q
P�1

.i; kC 1/D k
p

P�.i; k/

for all k . Since H and H1 are Perron–Frobenius matrices with Perron–Frobenius
eigenvalues corresponding to the dilatations of  and  1 , and Proposition 2.5 tells us
�.H1/� �.H /, we have �. 1/D �.H1/ is no greater than �. /D �.H /.

We can obtain  2 ,  3 and  4 by repeating the construction above of adding more
marked points without increasing dilatations (ie �. c/ � �. / for c D 1; 2; 3; 4).
Since .log m/=m� .log.mC1//=.mC1/, we need not consider the cases with c � 5.
Therefore, set f W S2;n! S2;n to be  c , where nD 5.mC1/C1C c with c < 5, and
where  0 D  . For n� 31, we have

log�.f /� log�. / <
3 log m

m
<

3 log
�

n�11
5

��
n�11

5

� ;

where mD b.n� 6/=5c.

Theorem 4.2 There exists �2 > 0 such that

l2;n <
�2 log n

n
;

for all n� 3.
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zx

zx

zx

zx

zx

zx

zy

zy

zy

zy

zy

zy

zy

zz

Figure 9: A train track for  1 . The figure on the bottom is a local picture.

Proof From the discussion above, for n� 31,

l2;n <
3 log

�
n�11

5

��
n�11

5

� <
�0

2
log n

n
;

for some �0
2

. For 3� n� 30, let �00
2
Dmaxfl2;3; l2;4; : : : ; l2;30g then

l2;n � �
00
2 D

�
�002

31

log 31

�
log 31

31
<

�
�002

31

log 31

�
log n

n
:

Let �2 WDmaxf�0
2
; �00

2
.31= log 31/g.
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4.2 Higher genus cases

We can generalize our construction and extend to any genus g > 2. For any fixed
g > 2, we define  to be a homeomorphism of Sg;n in the same fashion with nD

.2gC1/.mC1/C1 by taking an appropriate branched cover over S0;mC2 , and we can
again extend to arbitrary n by adding c extra marked points and constructing  c . Define
f W Sg;n! Sg;n to be  c where nD .2gC 1/.mC 1/C 1C c . If n� 6.2gC 1/C 1,
then

log�.f / <
3 log m

m
; where mD

�
n� 1

2gC 1

�
� 1

<
3 log

�n�4g�3
2gC1

��n�4g�3
2gC1

� :

Theorem 4.3 For any fixed g � 2, there exists �g > 0 such that

lg;n <
�g log n

n
;

for all n� 3.

Proof This is similar to the proof of Theorem 4.2, where �g is defined to be

�g WDmax
�
�0g; �

00
g

12gC 7

log.12gC 7/

�
:

Proof of Theorem 1.1 We only need to prove that the lower bounds on log�.f / of
Theorem 3.3 are bounded below by .log n/=.!gn/ for some !g depending only on g ,
then let cg D maxf�g; !gg. We use the monotone decreasing property of .log n/=n

for n� 3. Let

!0g.˛/ WD
˛.12g� 12/

log 2

log 3

3
�
˛.12g� 12/

log 2

log n

n

and so

log 2

˛.12g� 12/
�

log n

!0g.˛/n
:

For n� g� 1,

log.6gC 3n� 6/

2˛.6gC 3n� 6/
�

log 9n

2˛9n
>

1

18˛

log n

n
:
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For 3� n< g� 1,

log.6gC 3n� 6/

2˛.6gC 3n� 6/
>

log.9.g� 1//

2˛9.g� 1/
>

log g

18˛g

3

log 3

log n

n
:

Let !g WDmaxf!0g.˛/; 18˛; .6˛g log 3/= log gg, where 0� ˛ �‚.g/.

5 Appendix

5.1 Torus with marked points

We will construct an example to prove that l1;2n has an upper bound of the same order
as Penner’s lower bound in [13], ie l1;2n DO.1=n/. The construction is analogous to
the one given by Penner for Sg;0 in [13].

Let S1;2n be a marked torus of 2n marked points. Let a and b be essential simple
closed curves as in Figure 10. Let T �1

a be the left Dehn twist along a and Tb be the

a

b

Figure 10: Essential simple closed curves a and b on a marked torus

right Dehn twist along b , then we define

f WD � ıTb ıT �1
a 2Mod.S1;2n/

where � rotates the torus clockwise by an angle of 2�=n, so it sends each marked point
to the one which is two to the right. As in [12], f n is shown to be pseudo-Anosov,
and thus so is f . Figure 11 shows a bigon track for f n .

We obtain the 2n � 2n transition matrix M n associated to the train track map of
f n where M n is an integral Perron–Frobenius matrix and the Perron–Frobenius
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Figure 11: A bigon track for f n

eigenvalues �.M n/ is the dilatation �.f n/ of f n . For n � 5, we have M n D N ,
where

N D

0BBBBBBBBBBBBBBBBBBBB@

A1 B1 0 0 � � � 0 0 D1

A2 B2 B1 0 � � � 0 0 0

0 B3 B2 B1 � � � 0 0 0

0 0 B3 B2 � � � 0 0 0

0 0 0 B3 � � � 0 0 0

0 0 0 0 � � � 0 0 0
:::

:::
:::

::: � � �
:::

:::
:::

0 0 0 0 � � � 0 0 0

0 0 0 0 � � � B1 0 0

0 0 0 0 � � � B2 B1 0

0 0 0 0 � � � B3 B2 D2

A3 C 0 0 � � � 0 B3 D3

1CCCCCCCCCCCCCCCCCCCCA

;

and

A1 D

�
1 1

1 2

�
; A2 D

�
0 0

1 1

�
; A3 D

�
1 2

1 2

�
; C D

�
0 1

0 1

�
;

B1 D

�
0 1

0 1

�
; B2 D

�
1 1

1 3

�
; B3 D

�
0 0

1 1

�
;

D1 D

�
0 0

1 0

�
; D2 D

�
0 1

0 1

�
; D3 D

�
2 1

2 3

�
:

Geometry & Topology, Volume 13 (2009)



2274 Chia-Yen Tsai

For n� 5, the greatest column sum of M n is 9 and the greatest row sum of M n is
11. One can verify that both the greatest column sum and the greatest row sum are
� 11 for 0< n� 4. Therefore, for n� 1,

11� �.M n/D�.f n/D .�.f //n

) l1;2n � log�.f /�
log 11

n
:

5.2 Higher genus with marked points

In all of the following examples we obtain a mapping class zf 2 Mod.Sg;n/ from
f 2 Mod.Sg;0/ by adding marked points on the closed surface Sg;0 , where f is
a composition of Dehn twists along some set T of closed geodesics. We can add
one marked point in each of the complementary disks of the curves in T without
creating essential reducing curves. By [12, Theorem 3.1], the induced mapping class
zf 2Mod.Sg;n/ is pseudo-Anosov with dilatation �. zf /D �.f /.

Example 1 Penner [13] constructed a pseudo-Anosov mapping class f 2Mod.Sg;0/

with dilatation �.f /� .log 11/=g for g � 2, where

f WD � ıTc ıT �1
a ıTb:

and T˛ is the Dehn twist along ˛ . Here T DA[B[ C with

AD
gG

iD1

ai ; B D
gG

iD1

bi and C D
gG

iD1

ci :

We can add g marked points as in the Figure 12 so that zf 2Mod.Sg;g/ is pseudo-
Anosov. Therefore,

lg;g � log�. zf /�
log 11

g
:

We can also add extra marked points at the fixed points of the rotation. For g � 2, we
will have for c D 0; 1 and 2,

lg;gCc � log�. zf /�
log 11

g
;

where zf 2Mod.Sg;gCc/.
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a

b

c

�

Figure 12: A pseudo-Anosov zf 2Mod.Sg;g/

Example 2 For all g � 3, define f W Sg;0! Sg;0 to be

f WD � ıTb1
ıT �1

a1
;

where

�.a1/D agC1; �.b1/D bgC1

�.ai/D ai�1; �.bi/D bi�1; i D 2; : : : ;gC 1:and

a1a2

a3

a4agC1

b1b2b3
b4

b5bgC1

Figure 13: A pseudo-Anosov f 2Mod.Sg;0/

We construct the .2gC 2/� .2gC 2/ transition matrix M .gC1/ with respect to the
spanning vectors associated with geodesics in T . We will get M .gC1/DN for g � 3,
where the matrices are the same as in the Appendix (Section 5.1). Therefore for g � 3

we have

log�.f /�
log 9

gC 1
:
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Here T DA[B with

AD
gG

iD1

ai and B D
gG

iD1

bi :

For g � 3 and c D 0; 1; 2; 3; 4, we have

lg;c � log�. zf /�
log 9

gC 1
;

where zf 2Mod.Sg;c/.

Example 3 For g � 5, define f W Sg;0! Sg;0 by

f WD � ıTd1
ıT �1

c1
ıTb1

ıTa1
;

where

�.a1/D ag�1; �.b1/D bg�1; �.c1/D cg�1; �.d1/D dg�1

�.ai/D ai�1; �.bi/D bi�1; �.ci/D ci�1; �.di/D di�1; i D 2; : : : ;g� 1:and

a1

a2

a3

ag�3

ag�2

ag�1

b1

b2

b3

bg�3

bg�2

bg�1

c1

c2

c3

cg�3

cg�2

cg�1 d1 d2

d3

d4

dg�3

dg�2

dg�1

Figure 14: A pseudo-Anosov f 2Mod.Sg;0/

Similarly, we have the .4g�4/�.4g�4/ transition matrix M .g�1/ with respect to the
spanning vectors associated with the geodesics in T . For g� 5 we have M .g�1/DN
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where

A1 D

0BB@
1 0 1 0

0 1 1 0

1 1 3 1

1 1 3 2

1CCA ; A2 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 0

1 1 3 1

1CCA ; A3 D

0BB@
0 0 0 0

0 0 0 0

1 1 3 2

1 1 3 0

1CCA ;

B1 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

1CCA ; B2 D

0BB@
1 0 1 0

0 1 1 0

1 1 3 1

1 1 3 3

1CCA ; B3 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 0

1 1 3 1

1CCA ;

C D

0BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

1CCA ;

D1 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

1CCA ; D2 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

1CCA ; D3 D

0BB@
1 0 1 0

0 1 1 0

1 1 4 1

1 1 4 3

1CCA :
For g � 5, the greatest column sum of M .g�1/ is 17 and the greatest row sum of
M .g�1/ is 21, hence

log�.f /�
log 17

g� 1
:

Here T DA[B[ C [D with

AD
gG

iD1

ai ; B D
gG

iD1

bi ; C D
gG

iD1

ci and DD
gG

iD1

di :

For c D 1 and 2, we can induce zf 2Mod.Sg;c.g�1// with

lg;c.g�1/ � log�. zf /�
log 17

g� 1
;

when g � 5.
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