
Geometry & Topology 13 (2009) 1779–1804 1779

Virtual fundamental classes via dg–manifolds

IONUŢ CIOCAN-FONTANINE

MIKHAIL KAPRANOV

We construct virtual fundamental classes for dg–manifolds whose tangent sheaves
have cohomology only in degrees 0 and 1. This condition is analogous to the existence
of a perfect obstruction theory in the approach of Behrend and Fantechi [3] or Li and
Tian [11]. Our class is initially defined in K–theory as the class of the structure sheaf
of the dg–manifold. We compare our construction with that of [3] as well as with
the original proposal of Kontsevich. We prove a Riemann–Roch type result for dg–
manifolds which involves integration over the virtual class. We prove a localization
theorem for our virtual classes. We also associate to any dg–manifold of our type a
cobordism class of almost complex (smooth) manifolds. This supports the intuition
that working with dg–manifolds is the correct algebro-geometric replacement of the
analytic technique of “deforming to transversal intersection”.

14F05; 14A20

Introduction

In many moduli problems in algebraic geometry there is a difference between the actual
dimension of the moduli space and the expected, or virtual, dimension. When this
happens, the moduli problem is said to be obstructed. The actual dimension, at the level
of tangent spaces, is typically the dimension of H 0 or H 1 of some coherent sheaf F ,
while the virtual dimension is the Euler characteristic of F . Over C , one can often
represent the moduli space as a possibly nontransversal intersection inside an infinite-
dimensional ambient space, and by analogy with the finite-dimension intersection
theory (see Fulton [7]) one expects a “virtual fundamental class” of the expected
dimension, associated to the moduli space. Such classes were constructed by Behrend
and Fantechi [3] and by Li and Tian [11], for the case when the obstruction is simple,
or “perfect” (typically, F has one more cohomology group). In this case the expected
dimension is less or equal than the actual one, and the class lies in the Chow group of
the moduli space.

M Kontsevich suggested in [9] that all such problems can be handled by working with
appropriate derived versions of moduli spaces. Following this suggestion, the authors
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developed in [5; 6] the basic theory of such derived objects, called dg–manifolds, and
constructed the derived versions of Grothendieck’s Quot and Hilbert schemes as well
as of Kontsevich’s moduli spaces of stable maps.

The goal of the present paper is to define virtual classes in the context of “simply
obstructed” dg–manifolds. By simply obstructed we mean that the tangent dg–spaces
have cohomology only in degrees 0 and 1. Some of the features of our approach are
similar to those of [3]. In particular, it is clear that whenever both approaches are
applicable, they give the same result. On the other hand, the language of dg–manifolds
exhibits all the necessary constructions as analogs of the most standard procedures of
usual algebraic geometry. In particular, the structure sheaf of a dg–manifold gives rise
to the K–theoretic virtual class, and we prove (Theorem 3.3.1) that it lies in the right
level of the dimension filtration and gives the homological class after passing to the
quotient. Further, we prove a Riemann–Roch-type result for dg–manifolds (Theorem
4.5.1) which involves integration over the virtual class. In a similar way, applying the
Bott–Thomason localization theorem to the structure sheaf of a dg–manifold with a
torus action gives at once the localization theorem for virtual classes proved by Graber
and Pandharipande [8].

The intuitive point of view behind the language of dg–manifolds is that they provide
an algebro-geometric analog of “deformation to transversal intersection” which often
cannot be achieved within pure algebraic geometry. We prove a result confirming this
intuition in a new way. Namely, we associate, in Theorem 4.6.4, to each dg–manifold X

of our type a cobordism class of almost complex (smooth) manifolds.

One of the most attractive features of our approach is that it suggests a definition of the
virtual class also in the case when the obstruction is no longer simple. In this case it is
not even clear a priori where the virtual class should lie, as the expected dimension
can well be greater that the actual one (due to many alternating summands in the Euler
characteristic). The language of dg–manifolds suggests that it should lie in the Chow
group (of the expected dimension) of a certain natural fiber bundle … over the moduli
space. To be precise (see Section 1.1 below), a dg–manifold X consists of a smooth
algebraic variety X 0 and a sheaf O�

X
of dg–algebras on X 0 . The role of the moduli

space is played by the subscheme �0.X / � X 0 which is the spectrum of H 0.O�
X
/.

The fiber bundle … is the spectrum of H even.O�
X
/, the ring of even cohomology, and

the odd cohomology gives a coherent sheaf H on it. The virtual class should lie in
the Chow group of … and come from the class 1 � ŒH� in its K–theory. Further,
since H even.O�

X
/ is graded, … is a cone with apex �0.X /, so it has an action of Gm

with fixed locus �0.X /. This allows one to localize all the data back to �0.X /. This
program will be developed in a future paper.
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Here is the outline of the paper. In Section 1 we develop the formalism of deformation
to the normal cone in the context of dg–manifolds. This allows us to replace, in
enumerative arguments, the underlying variety X 0 of a dg–manifold X by the normal
cone to �0.X / in X 0 . In Section 2 we introduce the class of Œ0; 1�–manifolds which
formalize the concept of a simply obstructed moduli space. An important property of
such manifolds is that the cohomology H �.O�

X
/ is bounded, so one can speak about

its class in the Grothendieck group of �0.X /. This is exactly the K–theoretic virtual
class as defined in Section 3. We also introduce in Section 3 the homological class and
compare it to the K–theoretic one. In Section 4 we give a different definition of the
homological virtual class in terms of the Chern character. This was the initial proposal
of Kontsevich [9]. Therefore our paper connects the approaches of [9] and [3]. This
equivalence of the two definitions can be seen as a particular case of a Riemann–Roch
theorem for dg–manifolds which we also prove in Section 4. Finally, Section 5 is
devoted to the Bott localization for dg–manifolds.
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was visiting the University of Minnesota. He would like to thank the University for
its hospitality and financial support. In addition, the research of the first author was
partially supported by the NSF grants DMS-0303614 and DMS-0702871, while the
research of the second author was partially supported by the NSF grant DMS-0500565.

1 Deformation to the normal cone for dg–manifolds

1.1 Notation

We recall briefly here some definitions and basic facts about dg–schemes; the reader
is referred to [5, Section 2] for more background and details. Fix a base field k of
characteristic 0. A dg–scheme is a dg–ringed space X D .X 0;O�

X
/, where X 0 is a

k –scheme and O�
X

is a sheaf of (graded-commutative) dg–algebras on X 0 , situated in
degrees �0, such that O0

X
DOX 0 and quasicoherent as a module over OX 0 . We denote

the differential in O�
X

by d . Because of the grading condition, d is linear over OX 0 .
Further, H 0.O�

X
/DOX 0=d.O�1

X
/ is a quotient of OX 0 , so �0.X / WD SpecH 0.O�

X
/

is a closed subscheme of X 0 . A dg–sheaf on a dg–scheme X is a sheaf F� of dg–
modules over O�

X
which is quasicoherent over OX 0 . A dg–sheaf is called a dg–vector

bundle, if it is bounded from above, and, considered as a sheaf of graded modules over
O�

X
, is locally free with finitely many generators in each degree.

By a dg–manifold we mean a dg–scheme X such that X 0 is a smooth algebraic
variety over k , and O�

X
, considered as a sheaf of graded OX 0 –algebras, is locally free
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with finitely many generators in each degree. In other words, locally in the Zariski
topology of X 0 , we have O�

X ;#ŠS�O
X0
.Q�1˚Q�2˚ : : : /, with Q�i vector bundles

of finite rank on X 0 . The graded vector bundle Q� can be defined globally as the
bundle Q� WDO��1

X
=.O��1

X
/2 of indecomposable elements, but it does not come with

a global embedding in O�
X

. The dg–cotangent sheaf � 1;�
X

of a dg–manifold X is
defined as the target of the universal k –derivation @W O�

X
! S�

1;�
X

. It is easy to see
that it is a dg–vector bundle, which is identified as a graded sheaf with the cotangent
bundle �1

X 0 of X 0 in degree zero, and with O�
X
˝O

X0
Q� in degrees ��1. We also

have the dg–tangent bundle

T �X DDerk.O�X ;O
�
X /DHomO�

X
.�

1;�
X
;O�X /:

Let X be a dg–manifold. For any dg–vector bundle E� on X we denote by E�j�0.X /

the restriction of E� (as a complex of vector bundles on X 0 ) to �0.X /� X 0 . The
restriction O�

X
j�0.X / will be denoted by O�

X
or simply O� . This is a sheaf of dg–

algebras on �0.X / with d W O�1!O0 vanishing. Thus O��1 is a dg–ideal in O� .
For any E� as above the restriction E�j�0.X / is a dg–module over O� .

We denote xE� D E�˝O�
X
O�0.X / the restriction of E� to �0.X / in the sense of

dg–manifolds. This is a complex of vector bundles on �0.X /. It is clear that

xE� DE�j�0.X /

ı
O��1

�E�j�0.X /:

We also denote
!� D !�X D

S�
1;�
X
; t� D t�X D xT

�
X :

These are complexes of vector bundles on �0.X / situated in degrees � 0; � 0 re-
spectively, and dual to each other. Note that we have !0 D�1

X 0 j�0.X / and !��1 D

O��1=.O��1/2 as graded vector bundles. Dually, t0 D TX 0 j�0.X / , while for n> 0

tn
D Ker

�
O�n�

!

M
iCjDn
i;j>0

O�i�
˝O�j�

�

is the space of primitive elements in O�n� . In particular, !�1DO�1 and t1DO�1� .

For a dg–bundle E� on X we have the decomposability filtration D in E�j�0.X /

DnE�j�0.X / D .O
��1/n �E�j�0.X /:

The above discussion shows the following:

1.1.1 Proposition We have

grn
D
�
E�j�0.X /

�
D xE �˝Sn.!��1/:
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1.2 The J –adic filtration and the normal cone

Let J D d.O�1
X
/�O0

X
DOX 0 be the ideal of the subscheme �0.X /. We denote by

N DN�0.X /=X 0 D Spec
M

n

J n=J nC1

the normal cone of �0.X / in X 0 . Let also

K D Kerfd1
W t1

X ! t2
X g:

This is a coherent sheaf on �0.X /. Since it is defined as the kernel of a morphism of
vector bundles, we can associate to it its total space K � t1 (which is a cone).

1.2.1 Proposition There is a natural closed embedding N �K of cones over �0.X /.

Proof We have

!�1
DO�1

DO�1
X j�0.X / DO

�1
X

ı
.dO�1

X / �O�1
X :

Therefore

t1
D Spec S.O�1/; K D Spec

�
S.O�1/=.dO�2/ �S.O�1/

�
The differential d�1W O�1

X
�J induces, after passing to the n–th symmetric power

and restricting to �0.X /, a surjective map

ınW S
n.O�1/! J n=J nC1:

Explicitly, let '1; : : : ; 'n be local sections of O�1 . Then

ın.'1 � � �'n/D d�1.z'1/ � � � d
�1.z'n/ mod J nC1

where z'i is a local section of O�1
X

extending 'i . Therefore we get a surjective
homomorphism of sheaves of algebras

ı D
M

ınW S.O
�1/!

M
J n=J nC1

which induces a closed embedding ı�W N � t1 . To show that Im.ı�/�K , it is enough
to show that ın..d'/ � '1 � � �'n�1/ D 0 for any local sections ' 2 O�2; 'i 2 O�1 .
Let z' 2O�2

X
; z'i 2O�1

X
be local sections that extend ' , 'i . Then,

ın
�
.d'/ �'1 � � �'n

�
D d�1.d�2

z'/ � d�1.z'1/ � � � d
�1.z'n/ mod J nC1

which is clearly 0.
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1.3 Deformation to the normal cone

Let V be any vector bundle on X 0 . We equip it with the J –adic filtration by set-
ting J nV D J n � V , so that V becomes a filtered module over the filtered algebra
.OX 0 ; fJ ng/. Hence grJ V is a graded module over the graded algebra grJOX 0

and gives, by localization, a coherent sheaf egrJ V on N D Spec grJOX 0 . Let
pW N ! �0.X / be the projection. The following is well known, with proof supplied
for completeness.

1.3.1 Proposition The sheaf egrJ V is identified with p�.V j�0.X //. If f W V !W is
any morphism of vector bundles on X 0 , then egrJ .f / is identified with p�.f j�0.X //.

Proof Denote for short Z D �0.X /. The surjective homomorphism V ˝O
X0

J n!

J nV induces, after restricting to Z , a surjective homomorphism

hnW .V =JV /˝OZ
.J n=J nC1/! J nV =J nC1V:

We claim that it is an isomorphism. Indeed, if V DOX 0 , the statement is tautological.
Hence it is true for a trivial bundle V D Or

X 0 . In general, the fact that hn is an
isomorphism can be verified locally on the Zariski topology, so it follows from local
triviality of V . Now, notice that V =JV D V jZ and tensoring with

L
J n=J nC1 over

OZ is geometrically the pullback p� , so
L

hn gives the required identification. The
statement about morphisms follows from the naturality of maps hn .

Next, we extend the J –adic filtration to O�
X

by setting J nO�
X

to have components
J n �Oi

X
; i � 0. Then J n is a multiplicative filtration on the sheaf of dg–algebras O�

X
,

so gr�
J
O�

X
is a graded sheaf of dg–algebras on X 0 supported on �0.X /. We have

therefore a dg–scheme
Spec .gr�J O

�
X /�!�0.X /:

The underlying ordinary scheme of this dg–scheme is Spec .gr�
J
O0

X
/DN .

Further, let E� be a dg–vector bundle on X . Then we have the J –adic filtration
J nE� similarly to the above. The associated graded object gr�

J
E� is then a sheaf

of dg–modules over gr�
J
O�

X
and as such localizes to a sheaf of dg–modules egrJ E�

on the dg–scheme Spec .grJ O�X /. The following is an immediate consequence of
Proposition 1.3.1.

1.3.2 Proposition (1) The structure sheaf of the dg–scheme Spec .gr�
J
O�

X
/ is

isomorphic, as a sheaf of dg–algebras, to p�O�
X

, where p� means the usual
pullback of coherent sheaves on schemes.
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(2) With respect to the identification of (1), the sheaf of dg–modules egrJ E� is
isomorphic to p�.E�j�0.X //.

1.3.3 Proposition (1) The pullback to p�.E�j�0.X // of the filtration D is com-
patible with the differential.

(2) The sheaf of dg–algebras grp�D.p
�O�;p�dO/ is isomorphic to p�S.!��1/,

the restriction of the Koszul complex q�S.!��1/ to N � K (here qW K !

�0.X / is the projection).

(3) The sheaf of dg–modules grp�D
�
p�.E�j�0.X //

�
is isomorphic to the pullback

p�. xE˝S.!��1//.

Proof (1) It is enough to prove that the differential in E�j�0.X / (denote it ı ) is
compatible with the filtration D , ie,

ı
�
.O��1/n �E�j�0.X /

�
� .O��1/n �E�j�0.X /:

This follows from the Leibniz rule

ı.fe/D dOf � eC .�1/deg.f /�deg.e/f � ı.e/; f 2O�; e 2E�j�0.X /

and the fact that dO.O
�1/D 0.

Parts (2) and (3) follow from (1) and Proposition 1.1.1.

2 Bounded dg–manifolds and Œ0; 1�–manifolds

2.1 Œ0; n�–manifolds

Let X be a dg–manifold, and n� 0.

2.1.1 Proposition The following are equivalent:

(i) For all x 2 �0.X /.C/ the tangent dg–space T �x X is exact outside the degrees
in Œ0; n�.

(ii) The complex t�
X

is exact outside the degrees in Œ0; n�.

Proof (i)) (ii) A fiberwise exact sequence of vector bundles is exact at the level of
sheaves of sections.

(ii)) (i) This follows from the spectral sequence

Tor
O�0.X/

i .H j .t�X /; Cx/ ) H j�i.T �x X /

and the fact that T �x X is situated in degrees � 0.
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2.1.2 Definition We say that X is a Œ0; n�–manifold if the conditions of Proposition
2.1.1 are satisfied.

2.1.3 Examples (a) If Y is a projective variety of dimension n, then the dg–manifold
RQuoth.F/ constructed in [5], is a Œ0; n�–manifold for any coherent sheaf F on Y

and any polynomial h.

(b) The dg–manifold RHilbLCI
h
.Y / constructed in [6], is a Œ0; d �–manifold, where

d D deg.h/.

(c) Let X
f
!Z

g
 Y be a diagram of smooth algebraic varieties (trivial dg–structure).

Then the derived fiber product X �R
Z

Y , constructed in [5], is a Œ0; 1�–manifold. Indeed,
let .x;y/ be a point of

�0.X �
R
Z Y /DX �Z Y D f.x;y/ 2X �Y j f .x/D g.y/g:

and zD f .x/D g.y/. Then T �
.x;y/

�
X �R

Z
Y
�

is, up to quasi-isomorphism, the derived
functor of the fiber product in the category of vector spaces evaluated on the diagram

TxX
dxf
���!TzZ

dyg
 ��TyY:

This derived functor is represented by the 2–term complex

TxX ˚TyY
dxf�dyg
�������! TzZ:

In particular, when f;g are closed embeddings, the derived fiber product is the derived
intersection X \R

Z
Y which is, therefore, a Œ0; 1�–manifold.

2.1.4 Remark An affine Œ0; n�–manifold is the spectrum of a perfect resolving algebra
in the sense of Behrend [2].

2.2 Boundedness and Œ0; 1�–manifolds

2.2.1 Definition A dg–manifold X is called bounded, if H i.O�
X
/D 0 for i � 0.

2.2.2 Theorem Any Œ0; 1�–manifold is bounded.

Proof Let � D maxx2�0.X / dim H 1.T �x X /. We will prove that H i.O�
X
/ D 0 for

i < ��. Since taking cohomology sheaves commutes with completion, it is enough to
prove that 8x 2 �0.X /.C/ the complete local dg–ring�O�X ;x DO�X ˝O0

X

�OX 0;x

is exact in degrees < ��.
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2.2.3 Proposition There is a spectral sequence

E2 D S�
�
H �.T �x X /

�
) H �.�O�X ;x/:

Proof Let M � �O�
X ;x

be the maximal dg–ideal corresponding to x , ie, M DmC�O<0
X ;x

where m� �OX 0;x is the usual maximal ideal in the completed local ring. Then

M n=M nC1
' Sn.T �x X /

as dg–vector spaces, so

H �.M n=M nC1/D Sn
�
H �.T �x X /

�
:

Our spectral sequence is therefore associated to the filtration fM ng.

To finish the proof of Theorem 2.2.2, note that S�.H �.T �x X // is isomorphic to the
tensor product of the symmetric algebra of H 0.T �x X /� (situated in degree 0) and the
exterior algebra of H 1.T �x X /� with the grading being the negative of the usual grading
by the degree of exterior powers. So it clearly vanishes in degrees < ��.

2.2.4 Remark The converse to Theorem 2.2.2 is not true. For example, if E is a
vector bundle on a manifold X 0 , then

�
X 0; ƒ�.E/

�
with deg .E/D�3 is bounded

but is not a Œ0; 1�–manifold.

3 The virtual fundamental class of a Œ0; 1�–manifold

3.1 Reminder on Grothendieck and Chow groups

For any quasiprojective scheme Y we denote by Kı.Y / the Grothendieck group of
coherent sheaves on Y . For such a sheaf F we denote by ŒF � its class in Kı.Y /. We
also denote by Kı.Y / the Grothendieck ring of vector bundles. As well known, Kı.Y /

is a module over Kı.Y /. We denote by Ar .Y / the Chow group of r –dimensional
cycles on Y . Let Fr Kı.Y / be the subgroup generated by ŒF � with dim suppF � r .
Let

clr W Fr Kı.Y /!Ar .Y /˝Q; ŒF � 7!
X

Z�supp.F/ W dim.Z/Dr

multZ .F/ �Z

be the class map. See Fulton [7, Example 18.3.11].

Let i W Z! Y be a regular embedding of codimension d such that OZ has a finite
locally free resolution by OY –modules. We denote by

i�AW Ar .Y /!Ar�d .Z/; i�K W Kı.Y /!Kı.Z/
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the Gysin maps on the Chow and Grothendieck groups. Recall that

.3:1:1/ i�K .ŒF �/D
X

i

.�1/i ŒTorOY

i .F ;OZ /�:

Recall also the following [7, Example 18.3.15].

3.1.2 Proposition We have

i�K .Fr Kı.Y //� Fr�dKı.Z/

and clr�d i�
K
D i�

A
clr .

3.2 The virtual classes

3.2.1 Definition Let X be a bounded dg–manifold. Its K–theoretic virtual funda-
mental class is defined to be ŒX �vir

K
D ŒH �.O�

X
/� 2Kı

�
�0.X /

�
.

From now on we assume that X is a Œ0; 1�–manifold and use the notation of Section 1.

3.2.2 Proposition The sheaf K (defined in Section 1.2) is locally free.

Proof This is a consequence of the following lemma.

3.2.3 Lemma Let A be a Noetherian local ring with residue field k and

Q1 d1
�!Q2 d2

�!Q3

an exact sequence of finitely generated free A–modules, which also remains exact after
tensoring with k . Then M D Ker.d1/ is free.

Proof A finitely generated A–module M is free () TorA
1 .M; k/D 0:

In our case, the resolution M �fQ1 d1
�!Q2 d2

�! Im d2g and the fact that Ker.d2˝k/D

Im .d1˝ k/ implies that Tor1.M; k/D Tor�1.Im d2; k/D 0.

Since X is a Œ0; 1�–manifold, the truncation

��1t� D ft0
!Kg

is quasi-isomorphic to t� .

3.2.4 Proposition The dual complex fK�! !0
X
g is a perfect obstruction theory on

�0.X / in the sense of [3].
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Proof The embedding of dg–schemes �0.X / ,!X induces the morphism of tangent
complexes

RT �
�
�0.X /

�
! T �X ˝O�

X
O�0.X / D t�:

Dualizing and passing to truncations, we get a morphism of 2–term complexes

fK�! !0
X g D ���1!

�
X ! ���1L�1�.�0.X //Š fJ=J

2
!�1

X 0 j�0.X / D !
0
g

which is clearly an isomorphism on H 0 .

Explicitly, this morphism is identical on the 0–th terms and on the .�1/–st terms is
induced by the surjective map

d W O�1=dO�2
�! J D dO�1

after restricting to �0 . So we have a morphism of 2–term complexes which is an
isomorphism in degree 0 and a surjection in degree .�1/, inducing an isomorphism
on H 0 and surjection on H�1 . This is precisely the definition of a perfect obstruction
theory.

Following [3], we give:

3.2.5 Definition Let i W �0.X / ! K be the embedding of the zero section. The
homological virtual fundamental class of X is the element

ŒX �vir
D i�AŒN � 2Ar .�0.X //:

Here r D vdim.X /D rk.t0/� rk.K/ is the virtual dimension of X .

3.3 Main theorem

3.3.1 Theorem The K–theoretic fundamental class ŒX �vir
K

lies in Fr K
�
�0.X /

�
and

clr
�
ŒX �vir

K

�
D ŒX �vir:

Proof Associated to the perfect obstruction theory in Proposition 3.2.4, we have the
K–theory class (cf [3, Remark 5.4])X

.�1/i ŒTor
OK

i .ON ;O�0.X //� 2Kı.�0.X //;

the sum being finite since O�0.X / has a finite locally free resolution over OK , namely
the Koszul complex. By (3.1.1), this class (which was studied first in some detail
by Lee in [10]) is simply the K–theoretic Gysin pullback of ON to �0.X / via the
embedding i , and so it follows from 3.1.2 that it satisfies the conclusions of our theorem.
Therefore it is enough to show the following:
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3.3.2 Proposition

ŒX �vir
K D

X
.�1/i ŒTor

OK

i .ON ;O�0.X //�:

Denoting qW K ! �0.X / the projection, we can write the Koszul resolution as
ƒ�.q�K�/ � O�0.X / , with the differential induced by the tautological section � 2
�.K; q�K/. The embedding K � t1 defines a quasi-isomorphism

'W K! t�1Œ1�D ft1
! t2

! � � � g; deg.ti/D i � 1:

In particular, we have a section q�.'/.�/ of the dg–bundle q�.t�1Œ1�/ on K and the
induced Koszul complex q�

�
S.!��1

X
/
�

is a resolution of O�0.X / on K .

The direct image map i�W Kı
�
�0.X /

�
! Kı.K/ preserves the dimension filtration.

By the above discussion, if i� were injective, 3.3.2, and hence our theorem, would
follow from the equality

.3:3:3/ i�ŒH
�.O�X /�D ŒH

�.q�S.!��1/˝OK
ON /�

in Kı.K/. While, in general, i� is not injective, it becomes so after passing to
equivariant K–theory. Specifically, consider the Gm –action on K given by dilations
on the fibers. By a slight abuse of notation, let us denote by

i�W K
Gm
ı

�
�0.X /

�
!KGm

ı .K/

the direct image map in Gm –equivariant K–theory. Recall that

KGm
ı .pt/DCŒ�; ��1�:

The section i embeds �0.X / into K as the fixed point locus of the action. There-
fore, it follows from the localization theorem [15, Theorem 2.1], that i� becomes an
isomorphism after tensoring with the quotient field C.�/ of CŒ�; ��1�. Since

KGm
ı

�
�0.X /

�
ŠKı

�
�0.X /

�
˝CŒ�; ��1�

has no CŒ�; ��1�–torsion, we conclude that (the equivariant version of) i� is injective.
Further, if we consider K; t1; t2; : : : as equivariant bundles on �0.X / (with Gm acting
by dilations in the fibers) and use the equivariant flat pullback q� , then the Koszul
complexes ƒ�.q�K�/ and q�

�
S.!��1

X
/
�

are equivariant resolutions of O�0.X / . Fi-
nally, we have the Gm –equivariant Gysin map i� (defined by the same formula with
Tor’s) which satisfies

i�.i
�.F//Dƒ�.q�K�/˝OK

F ; F 2KGm
ı .K/:
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We conclude that it is indeed sufficient to prove the equality (3.3.3), but in an upgraded
form, in which all maps and sheaves are considered in Gm –equivariant K–theory. So
in the rest of the proof we will deal with equivariant theory.

Let us factor i into the composition of two embeddings

.3:3:4/ �0.X /
i3
,!N

i2
,!K:

The inclusions i2 , i3 , as well as the projection pW N ! �0.X /, are Gm –equivariant
and we use the corresponding equivariant pushforward or pullback maps.

Note that the right-hand side of (3.3.3) is equal to

.3:3:5/ i2�ŒH
�.p�S

�
!�1/

�
�:

Next, recall (Proposition 1.3.2) that the sheaf of dg–algebras p�O� on N is the local-
ization on N D Spec grJOX 0 of the sheaf of graded dg–algebras grJ O�X . Proposition
1.3.3(2) implies that

.3:3:6/ ŒH �.p�O; ı/�D ŒH �
�
p�S.!��1/

�
� 2Kı.N /

by virtue of the spectral sequence of the filtered complex
�
.p�O; ı/;p�D

�
.

3.3.7 Lemma We have a convergent spectral sequence of Gm –equivariant coherent
sheaves on N :

E1 DH �.p�O; ı/ ) i3�H
�.O�X /:

Proof The spectral sequence, together with the identification of the E1 and E1–
terms, is obtained from Proposition 1.3.2 by localizing the spectral sequence of the
sheaf of filtered dg–algebras .O�

X
;J / over N D Spec grJ OX 0 .

Denote the r –th term of this spectral sequence by Er , so it is a Gm –equivariant
coherent sheaf on N equipped with an endomorphism dr of square zero such that

H.Er ; dr /D Ker.dr /=Im.dr /DErC1:

Let us show that the spectral sequence converges, ie, for r � 0 we have dr D 0 and
Er DErC1 . Indeed, define subsheaves Zr ;Br �E1 as in [4, page 317], for example
Z1 D Ker.d1/, while Z2 is the preimage of Ker.d2/ etc. Then we have inclusions

B1 � B2 � � � � ; Z1 �Z2 � � � � ;

and isomorphisms

Er DZr=Br ; Zr=ZrC1 D BrC1=Br
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(see Cartan and Eilenberg [4, page 317]). Since E1 is a Noetherian sheaf, the sequence
.Br / stabilizes. The last isomorphism above then implies that the .Er / stabilize as
well which implies convergence. The lemma is proved.

Now the spectral sequence of the lemma implies the equality

.3:3:8/ ŒH �.p�O; ı/�D i3�ŒH
�.O�X /� 2KGm

ı .N /:

From equations (3.3.5), (3.3.6) and (3.3.8), we get (3.3.3).

4 The virtual class via the Chern character

4.1 Reminder on local Chern character and Riemann–Roch

Let Z ! Y be a closed embedding of schemes of finite type over k . We denote
by Am.Z ! Y /; m 2 Z, the m–th operational Chow group [7]. Its elements act
by homomorphisms Ap.Y /!Ap�m.Z/, and Ap.Z/DA�p.Z! pt/. When Y is
smooth, Am.Z! Y /DAdim Z�m.Z/:

If F� is a finite complex of vector bundles on Y exact outside of Z , one has the
localized Chern character

chY
Z .F

�/ 2A�.Z! Y /˝Q:

We denote by
�Z W Kı.Z/!A�.Z/

the Riemann–Roch map of Baum–Fulton–McPherson [7]. If Y is a smooth quasipro-
jective variety containing Z as a closed subscheme, and F is a coherent sheaf on Z ,
then

.4:1:1/ �Z ŒF �D chY
Z .F

�/ �Td.TY /

where F� is a locally free resolution of F on Y .

For any proper morphism f W Z!W of quasiprojective schemes we denote

f A
� W A�.Z/!A�.W /

the direct image map on the Chow groups. The Riemann–Roch theorem in the form of
Baum–Fulton–McPherson (see Fulton [7, Theorem 18.2]) says that

.4:1:2/ �W

�
f�.z/

�
D f A
�

�
�Z .z/

�
; z 2Kı.Z/:
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Let Z!Y be a closed embedding of quasiprojective schemes and F� a finite complex
of vector bundles on Y , exact outside Z . Then for any coherent sheaf G on Y we
have the Riemann–Roch formula [7, Example 18.3.12]:

.4:1:3/ �Z ŒH
�.F�˝G�/�D chY

Z .F
�/ � �Y .G/:

Let now Z be proper. Combining (4.1.3) for G D OY with the formula (4.1.2) for
W D pt, we get the following form of the Riemann–Roch theorem:

.4:1:4/ �
�
Y;H �.F�/

�
D

Z
Z

chY
Z .F

�/ �Td.TY /:

4.2 Kontsevich’s definition of the homological virtual class

Let X be a Œ0; 1�–manifold. In [9], M Kontsevich proposed to consider the element

.4:2:1/ �X D ��0.X /ŒH
�.O�X /� �Td�1.t�X / 2A�.�0.X //˝Q

as the virtual fundamental class of X . Since we use the embedding �0.X /�X 0 for
the definition of ��0.X / , we have, applying (4.1.3) to F� DO�

X
; G DOX 0 , that

.4:2:2/ �X D chX 0

�0.X /
.O�X / �Td.t�1

X
Œ1�:/

4.2.3 Theorem �X D ŒX �vir (equality in A�.�0.X // ˝Q). In particular, �X is
homogeneous of degree vdim.X /.

4.3 Proof of Theorem 4.2.3

We use the notation introduced in the proof of Theorem 3.3.1, in particular, the em-
beddings i2 , i3 , their composition i and the projections p , q . We need to show that
�X D i�

A
.ŒN �/.

Using the quasi-isomorphism t�
X
� ft0

X
!Kg, we have

�X D ��0.X /

�
ŒH �.O�X /�

�
�Td�1.t0

X / �Td.K/:

We have shown in Theorem 3.3.1 that ŒH �.O�
X
/�D i�.ON /. On the other hand, since

i is a regular embedding with normal bundle K , we have by [7, Theorem 18.2(3)]

��0.X /

�
i�.ON /

�
D Td�1.K/ � i�A

�
�K .ON /

�
;

hence
�X D i�A

�
�K .ON /

�
�Td�1.t0

X /:
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Now use the Riemann–Roch formula (4.1.2) for the embedding i2 to get

.4:3:1/ �X D i�A
�
iA
2��N .ON /

�
�Td�1.t0

X /:

Our proof is then a consequence of the following:

4.3.2 Lemma Let i W Z � Y be a closed embedding of quasiprojective schemes
with Y smooth and pW N ! Z be the projection of the normal cone N D NZ=Y .
Then

�N .ON /D p�Td.TY

ˇ̌
Z
/ � ŒN �:

Specifically, we apply the lemma to ZD�0.X /; Y DX 0 , so that t0
X
DTY

ˇ̌
Z

, getting
from (4.3.1) that

�X D i�A
�
iA
2�.p

�Td.t0
X / � ŒN �/

�
�Td�1.t0

X /:

Since p� D i�
2

q� (with i�
2

the pullback on operational Chow rings), the projection
formula gives

�X D i�A
�
q�Td.t0

X / � i
A
2�.ŒN �/

�
�Td�1.t0

X /:

But the right-hand side of the last equality is precisely i�
A
.ŒN �/, as q ı i D id�0.X / .

Proof of Lemma 4.3.2 Let J �OY be the ideal of Z and

zY D Spec
1M

nD0

J n
� tn %
�!A1

D Spec CŒt �

be the deformation to the normal cone. The morphism % is flat, with %�1.0/DN and
%�1.t/' Y; t 6D 0. Let "t W %

�1.t/,!zY be the embedding and

"!
t W A�.

zY /!A��1.%
�1.t//

be the specialization map of [7, 10.1]. By [7, Example 18.3.8]

�%�1.t/.O%�1.t//D "
!
t� zY .O zY /; t 2A1:

Moreover, � zY .O zY / is uniquely defined by its specializations for t 6D 0 [7, 11.1]. In
other words, if y 2 A�. zY / is such that "!

t .y/ D �Y .OY /, t 6D 0, then necessarily
y D � zY .O zY / and hence �N .ON /D "

!
0
.y/.

We have a projection � W zY ! Y induced by the embedding OY D J 0 � t0 �
L

J n � tn .
The map � is the identity on each %�1.t/DY; t 6D 0 and is equal to ip on %�1.0/DN .
Let now yD

�
��Td.TY /

�
Œ zY �2A�. zY /. Here we view Td.TY / as an element of A�.Y /,
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so ��Td.TY /2A�. zY /DA�. zY ! zY / and y is the value of ��Td.TY / on Œ zY �2A�. zY /.
Then, clearly, y satisfies the above condition on "!

t .y/; t 6D 0, so

�N .ON /D "
!
0.y/D "

!
0

�
��Td.TY /

�
Œ zY �D p�i�Td.TY /ŒN �

as claimed.

4.4 A Riemann–Roch theorem for dg–manifolds

Let X be a Œ0; 1�–manifold. A dg–vector bundle E� on X will be called finitely
generated, if the complex xE� of vector bundles on �0.X / (see Section 1.1) is finite. In
this case H j .E�/D 0 except for finitely many j and so we have the class ŒH �.E�/�2
Kı.�0.X //.

4.4.1 Theorem
��0.X /ŒH

�.E�/�D ch. xE�/ �Td.t�X / � ŒX �
vir:

Here the first two factors on the right are considered as endomorphisms of A�
�
�0.X /

�
˝

Q and applied successively to ŒX �vir .

This is a consequence of (4.1.3), of Theorem 4.2.3, and the following fact.

4.4.2 Theorem We have the equality in Kı.�0.X //:

ŒH �.E�/�D Œ xE�� � ŒH �.O�X /�

(product of an element of Kı with an element of Kı ).

Proof We use the equivariant set-up and the notation from the proof of Theorem 3.3.1.
Since the Gm –equivariant pushforward i� D i2�i3� is injective, it is enough to show
that

.4:4:3/ i3�ŒH
�.E�/�D i3�

�
Œ xE�� � ŒH �.O�X /�

�
:

This would follow if we proved the following equality in K
Gm
ı .N /:

.4:4:4/ i3�
�
H �.E�/�D Œp� xE�˝ƒ�.p�K�/

�
:

The proof of (4.4.4) proceeds similarly to the case E� DO�
X

; see (3.3.5)–(3.3.6). To
be precise, ƒ�.p�K�/ has the Koszul differential, so the RHS of (4.4.4) is equal to�

H �
�
p� xE�˝ƒ�.p�K�/

��
which, in view of the quasi-isomorphism K! t�1Œ1� gives

.4:4:5/ Œp� xE�˝ƒ�.p�K�/
�
D
�
H �.p�. xE�˝S.!��1///

�
:
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By Proposition 1.3.2(2),

.4:4:6/ p�.E�j�0.X //' egrJ E�:

On the other hand, by Proposition 1.3.3,

.4:4:7/ grp�Dp�.E�j�0.X //' p� xE�˝p�S.!��1/:

The spectral sequence of the filtered complex .p�.E�j�0.X //;p
�D/ (together with

finite generation of E� ) implies then that ŒH �p�.E�j�0.X //� makes sense and

.4:4:8/ ŒH �p�.E�j�0.X //�D ŒH
�.p� xE�˝p�S.!��1//�:

Next, (4.4.7) and the spectral sequence of the filtered complex .E�;J / implies

.4:4:9/ ŒH �.p�E�j�0.X //�D i3�ŒH
�.E�/�:

Combining (4.4.5), (4.4.8) and (4.4.9) proves the equality (4.4.4) and therefore Theo-
rems 4.4.2 and 4.4.1.

4.4.10 Corollary For two finitely generated dg–bundles E�;F� on X we have the
equality in Kı.�0.X //:�

H �
�
E�˝O�

X
F�
��
D Œ xE�� � ŒH �.F�/�:

4.5 Consequences for the Euler characteristic

Let us assume, in the situation of Section 4.4 that �0.X / is projective. Then the Euler
characteristic

�
�
�0.X /; H �.E�/

�
D

X
.�1/i�

�
�0.X /; H i.E�/

�
is defined. Theorem 4.4.1 allows us to establish a simple formula for this Euler
characteristic.

Since �0.X / is projective, we have the degree map

degW A0.�0.X //! Z:

For any ' 2A�.�0.X //DA�
�
�0.X /! �0.X /

�
we defineZ

ŒX �vir

' D deg
�
.' � ŒX �vir/0

�
:

Here the subscript 0 means the degree 0 component of ' � ŒX �vir 2A�.�0.X //.
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4.5.1 Theorem

�
�
�0.X /; H �.E�/

�
D

Z
ŒX �vir

ch. xE�/ �Td.t�X /:

Proof This is a direct consequence of Theorem 4.4.1 and the fact that � commutes
with direct image (for the map �0.X /! pt).

4.6 Chern numbers and the cobordism class of a Œ0; 1�–manifold

Let X be a Œ0; 1�–manifold of virtual dimension d . Let P .d/ be the set of partitions
of d into ordered summands, ie, of sequences I D .i1; : : : ; ip/ with i� 2 ZC andP

i� D d . For each I 2 P .d/ we define the I –th Chern number of X to be

.4:6:1/ cI .X /D

Z
ŒX �vir

ci1
.t�X / � � � cip .t

�
X / 2 Z:

Let �U d be the cobordism group of compact almost complex manifolds of real
dimension 2d ; see Ravenel [13]. For each such manifold M the tangent bundle TM

is a complex vector bundle so it has Chern classes ci.TM / 2H 2i.M;Z/, and for each
I 2 P .d/ we have the Chern number

.4:6:2/ cI .M /D

Z
ŒM �

ci1
.TM / � � � cip .TM / 2 Z:

Here ŒM � is the usual fundamental class of M . The following is well known; see
Ravenel [13]:

4.6.3 Proposition (a) The Chern numbers are cobordism invariant.

(b) If two almost complex manifolds have the same Chern numbers, then they are
cobordant.

Our next result shows that a Œ0; 1�–manifold over C can be seen as a “virtual” smooth
complex manifold. This agrees with the intuition that working with dg–manifolds is a
replacement of deforming to transverse intersection, a technique that typically leads
outside of algebraic geometry.

4.6.4 Theorem Let kDC and X be a Œ0; 1�–manifold over C of virtual dimension d .
Then there exists a (unique, up to cobordism) almost complex manifold M of real
dimension 2d such that cI .M /D cI .X / for all I 2 P .d/.
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Proof We first recall the concept of Schur functors [12]. Let ˛ D .˛1 � ˛2 � � � � / be
a weakly decreasing sequence of nonnegative integers terminating in zeroes. Let also
Vectk be the category of finite-dimensional k –vector spaces. Then we have the Schur
functor †˛W Vectk!Vectk . If V D kd , then †˛.kd / is “the” space of the irreducible
representation of the algebraic group GLd=k with highest weight ˛ . The functor †˛

can be applied to vector bundles (and projective modules over any commutative k –
algebra). In particular, if k DC and M is an almost complex manifold, then we have
the complex vector bundle †˛.TM / on M . In this case the number

�˛.M /D

Z
ŒM �

ch.†˛.TM // �Td.TM /

is expressible as a universal Q–linear combination of the Chern numbers of M :

.4:6:5/ �˛.M /D
X

I

qI
˛cI .M /; qI

˛ 2Q:

The following is a reformulation of the Hattori–Stong theorem; see Ravenel [13] and
Stong [14]:

4.6.6 Theorem Let .�I /I2P.d/ be a system of integers labelled by P .d/. Then the
following are equivalent:

(1) There exists an almost complex manifold M (unique up to cobordism) such that
cI .M /D �I for all I 2 P .d/.

(2) For any ˛ as above the number
P

I qI
˛�I is an integer.

We now prove that the condition (ii) holds for �I D cI .X / where X is a Œ0; 1�–manifold
of virtual dimension d . Indeed, the Schur functors apply equally well to dg–bundles
on X . See, eg, Akin, Buchsbaum and Weyman [1] for Schur functors of complexes. If
E� is a finitely generated bundle, then so is †˛.E�/. Further, Schur functors commute
with restrictions of bundles, so in particular,

†˛.E�/D†˛. xE�/:

Now, applying Theorem 4.5.1, we see thatX
I

qI
˛cI .X /D

Z
ŒX �vir

ch.†˛t�X / �Td.t�X /D �.X; †
˛T �X / 2 Z;

whence the statement.
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4.6.7 Example Let X be a smooth projective variety of dimension n over C , let E

be a vector bundle of rank r on X , and let s 2 �.X;E/ be a global section. We
denote by Z the zero locus of s (assumed to be nonempty), and by i its inclusion
in X . The Koszul complex .ƒ�E; d D ds/ is a sheaf of dg–algebras on X , hence
we get a Œ0; 1�–manifold XE;s of virtual dimension n� r , with �0.XE;s/DZ and
t� D ŒTX

ˇ̌
Z
! E

ˇ̌
Z
�. The homological virtual class satisfies i�ŒXE;s �

vir D cr .E/.
The cobordism class in this case can be realized explicitly as the zero locus M in
X of any other section s0 of E which is regular, and XE;s deforms algebraically to
M �qis XE;s0 .

4.6.8 Remark In general, it may be impossible to find an algebraic deformation as
in 4.6.7 above of a Œ0; 1�–manifold to a smooth variety of the expected dimension. Our
cobordism class rectifies this defect, at least as far as numerical invariants are concerned.
For example, it follows from Theorem 4.6.6 that any “genus” of complex manifolds
which is expressible by universal formulas in Chern numbers, can be extended to
Œ0; 1�–manifolds and will satisfy the same properties in this enlarged setting.

5 Localization

5.1 Background

Let G D .Gm/
n be an n–dimensional algebraic torus over k . For a G–scheme Z

we denote by KG.Z/ the Grothendieck group of G–equivariant coherent sheaves
on Z and by Kı

G
.Z/ the Grothendieck ring of G –vector bundles on Z . We denote by

Rep.G/DKG.pt/ the representation ring of G (which is a Laurent polynomial ring)
and by FRep.G/ its field of fractions. The following is well-known; see Thomason [15,
Lemma 3.2].

5.1.1 Lemma If the G –action on Z is trivial, and Z is quasiprojective, then, for every
G –bundle E satisfying EG D 0, the element Œƒ�.E/� is invertible in the localization
Kı

G
.Z/˝Rep.G/ FRep.G/.

Let Y be a smooth quasiprojective G –variety and Z�Y an invariant closed subscheme.
We will need a version of the Bott localization formula for Z .

Denote �W ZG!Z , z�W Y G! Y the embeddings of the fixed point loci, so we have
the Cartesian square of closed embeddings:

.5:1:2/
Z

j // Y

ZG

�

OO

zj // Y G

z�

OO
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Note that z� is a regular embedding (and Y G is smooth). Let N be the normal bundle
of Y G in Y and N � its dual bundle. Let

.5:1:3/ �!
W KG.Z/!KG.Z

G/

be the K–theoretic Gysin map defined by putting, for each coherent G –sheaf F on Z :

.5:1:4/ �!.ŒF �/D
X

l

.�1/l
�
zj �TorOY

l
.j�F ;OY G /

�
:

Here the Tor–sheaves are supported on ZG . This is a K–theoretic analog of the refined
Gysin map of Fulton [7]. Like that map, �! depends not only on the morphism � , but
on the entire diagram (5.1.2).

5.1.5 Theorem For any � 2KG.Z/ we have the equality

� D ��

�
�!.�/�

ƒ�
�
N �jZG

���
in the group KG.Z/˝Rep.G/ FRep.G/.

Proof By the result of Thomason [15, Theorem 2.1],

.5:1:6/ ��W KG.Z
G/˝Rep.G/ FRep.G/!KG.Z/˝Rep.G/ FRep.G/

is an isomorphism, so � D ��.�/ for some � in the left-hand side of (5.1.6). On the
other hand, for any coherent G –sheaf L on ZG we have

�!��ŒL�D
�
TorOY
� .zj�L;OY G /

�
D
�
zj�L˝O

Y G
TorOY
� .OY G ;OY G /

�
D ŒL� �

�
ƒ�
�
N �

ˇ̌
ZG

��
:

Therefore �!� D � �
�
ƒ�
�
N �

ˇ̌
ZG

��
:

This means that the fraction in the RHS of the equality claimed in Theorem 5.1.5, is
equal to �, and the equality is true since � D ��.�/.

5.2 The setup

Let X be a Œ0; 1�–manifold with G–action. Then we have the fixed point (dg–)sub-
manifold X G �X , with

.X G/0 D .X 0/G ; �0.X
G/D �0.X /

G ;

O�
X G D

�
O�X

ˇ̌
.X 0/G

�
G
.the coinvariants/:
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Let i W X G,!X be the embedding and �� D i�T �
X
=T �

X G be the dg–normal bundle of
X G . It has the induced G–action. As in Section 1.1 we denote by x�� the restriction
of �� to �0.X /

G in the sense of dg–manifolds. Thus we have a split exact sequence
of complexes of vector bundles

.5:2:1/ 0! t�
.X /G

! t�X
ˇ̌
�0.X /G

!x��! 0; t�
X G D

�
t�X
ˇ̌
�0.X /G

�G
:

This shows the following:

5.2.2 Proposition X G is again a Œ0; 1�–manifold, and x�� is fiberwise exact outside
of degrees 0, 1.

Therefore

.5:2:3/ x��0 D
˚
x�0
! Kerfx�1 d

�! x�2
g
	

is a 2–term G–complex of bundles on �0.X /
G quasi-isomorphic to x�� . This is

precisely the “moving part” of the obstruction theory t�
X

in the sense of [8].

5.3 K –theoretic localization for Œ0; 1�–manifolds

In the setup of Section 5.2 let E� be a finitely generated G–equivariant dg–vector
bundle on X . We denote by

i�E� D .i0/�1E�˝.i0/�1O�
X
O�

X G

the restriction of E� to X G in the sense of dg–manifolds. We have the class ŒH �.E�/�2
KG.�0.X //. In particular, for E� D O�

X
we get the G–equivariant version of the

K–theoretic virtual class

ŒX �
vir;G
K
D ŒH �.O�X /� 2KG.�0.X //;

and, furthermore,
ŒH �.i�O�X /�D ŒX

G �vir
K :

5.3.1 Theorem In KG.�0.X //˝Rep.G/ FRep.G/ we have the equality

ŒH �.E�/�D �0.i/�

��
H �.i�E�/

��
ƒ�.x��0�/

� �;
where Œƒ�.x��0�/� is defined as Œƒ�.x�00�/�=Œƒ�.x�10�/�; see (5.2.3).
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Proof We apply Theorem 5.1.5 to Y DX 0 , Z D �0.X /, so �D �0.i/, e� D i0 , and
we keep the notation j , zj for the other two morphisms. We take � D ŒH �.E�/�. Then
j�� D ŒE

�� 2 KG.X
0/. Because E� is, in particular, a complex of vector bundles

on X 0 , taking Tor’s of H �.E�/ with OX 0G , as in (5.1.4), gives the same element of
K–theory as just tensoring E� with OX 0G , ie, forming the restriction E�

ˇ̌
X 0G . In

other words,

.5:3:2/ �0.i/
! ŒH �.E�/�D

�
H �

�
E�
ˇ̌
X 0G

��
:

Note further that N , being the normal bundle of X 0G in X 0 , is the same as �0 , so
N
ˇ̌
�0.X G/

D x�0 . So Theorem 5.1.5 gives

.5:3:3/ ŒH �.E�/�D �0.i/�

��
H �

�
E�
ˇ̌
X 0G

���
ƒ�

�
x�0�

�� �
:

To prove Theorem 5.3.1 it then suffices to prove the following equality in KG.�0.X
G//:

.5:3:4/ Œƒ�.x�10�/� �
�
H �

�
E�
ˇ̌
X 0G

��
D ŒH �.i�E�/�:

Let I� � O�
X

be the dg–ideal of X G , so I0 � OX 0 is the ideal of X 0G . Then we
have

.5:3:5/ E�
ˇ̌
X 0G DE�=I0E�; i�E�DE�=I�E�D

�
E�
ˇ̌
X 0G

� ı
I��1

�
�
E�
ˇ̌
X 0G

�
:

Further, the usual interpretation of the conormal bundle holds in the dg–situation as
well: I�=.I�/2 D �� . Therefore I��1=.I��1/2 � I0 D .��/��1 , and we deduce for
the I��1 –adic filtration:

.I��1/d �
�
E�
ˇ̌
X 0G

�.
.I��1/dC1

� .E�
ˇ̌
X 0G /

D i�.E�/˝O�
XG

Sd ..��/��1/:
.5:3:6/

Notice that Corollary 4.4.10 is applicable to equivariant K-groups as well. Applying it
to the dg–variety X G , we get�

H �
�
i�E�˝O�

XG
Sd ..��/��1/

��
D ŒSd ..x��/��1/� � ŒH �.i�E�/�

D ŒSd .x�10�/� � ŒH �.i�E/�;
.5:3:7/

where the last equality follows from the quasi-isomorphism of .x��/��1 with x�10� .

Now, at the formal level, if we replace E�
ˇ̌
X 0G by the (infinite) sum of the quotients

of the I��1 –adic filtration, given by (5.3.6), we get the sum of the classes of the
symmetric powers of x�10� which is (formally) inverse to the class of the exterior
algebra in (5.3.4). This can be made rigorous by performing the deformation to the
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normal cone to X G in X , ie, by considering the I�–adic filtration in O�
X

and its
associated graded sheaf of algebras grI O�X . Its spectrum is NX G=X , the (dg)-normal
bundle to X G in X considered as a dg–manifold. Let us denote it yX . Note that its
underlying scheme yX 0 is NX 0G=X 0 , the normal bundle to X 0G in X 0 . At the same
time yX G D X G . Let yi W X G ! yX be the embedding. Taking the I –adic filtration
in E� , we have that grI E� is a module over grI O�X and thus gives a dg–vector
bundle yE� on yX . As in (3.3.4)–(3.3.5), the argument with a spectral sequence of
coherent sheaves on NX 0G=X 0 , converging for Noetherian reasons, gives that

.5:3:8/
�
H �.E�

ˇ̌
X 0G

��
D
�
H �. yE�

ˇ̌
X 0G

��
; ŒH �.i�E/�D ŒH �.yi� yE/�:

So we can and will assume in proving (5.3.4) that X D yX coincides with the normal
bundle to the fixed point locus. In this case, the I�–adic filtration comes from a grading,
so

E�
ˇ̌
X 0G D

1M
dD0

.i�E/˝O�
XG

Sd ..��/��1/;

and the left-hand side of (5.3.4) becomes, by Corollary 4.4.10,

.5:3:9/
h
H �

�
ƒ�..��/��1/˝O�

XG
S�..��/��1/˝O�

XG
i�E

�i
:

Let d be the differential in the triple tensor product of complexes in (5.3.9). We can add
to d another summand ı , the Koszul differential on ƒ�˝S� tensored with the identity
on the third factor, and we can arrange the tensor product into a double complex. The
cohomology with respect to ı is then i�E , so H �

d
.H �

ı
/DH �.i�E/, and a spectral

sequence argument shows that its class in KG.�0.X
G// is the same as the class of

H �
dCı

. On the other hand, the class of H �
dCı

is equal to that of H �
d

, as we see from
the other spectral sequence corresponding to the double complex. This proves the
equality (5.3.4) and Theorem 5.3.1.
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