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Rigidity of polyhedral surfaces, II

REN GUO

FENG LUO

We study the rigidity of polyhedral surfaces using variational principles. The action
functionals are derived from the cosine laws. The main focus of this paper is on the
cosine law for a nontriangular region bounded by three possibly disjoint geodesics.
Several of these cosine laws were first discovered and used by Fenchel and Nielsen.
By studying the derivative of the cosine laws, we discover a uniform approach to
several variational principles on polyhedral surfaces with or without boundary. As a
consequence, the work of Penner, Bobenko and Springborn and Thurston on rigidity
of polyhedral surfaces and circle patterns are extended to a very general context.

52C26, 52B70, 58E30; 51M10, 57Q15

1 Introduction

1.1 Variational principles

We study geometry of polyhedral surfaces using variational principles in this paper.
This can be considered as a continuation of the paper by the second author [9]. By
a polyhedral surface we mean an isometric gluing of geometric polygons in E2 (Eu-
clidean plane), H2 (hyperbolic plane) or S2 (the 2–sphere). We emphasize that the
combinatorics, ie, the topological cellular decomposition associated to a polyhedral
surface, is considered as an intrinsic part of the polyhedral surface. The investigation
of the geometry of polyhedral surfaces has a long history. Recent resurgence of interest
in this subject is mainly due to the work of William Thurston on geometrization of
3–manifolds and circle packing on surfaces since 1978. Thurston’s and Andreev’s
works on circle packing are nonvariational. The variational approach to circle packing
was introduced in a seminal paper by Colin de Verdiére [4]. Since then, many works on
variational principles on triangulated surfaces have appeared, for example Brägger [2],
Rivin [14], Leibon [8], Bobenko and Springborn [1], Luo [10; 11] and others. A uniform
approach to variational principles on triangulated surfaces, based on the derivative of
the cosine law for triangles, was proposed in [9]. It is shown in [9] that almost all
known variational principles on triangulated surfaces are covered by the cosine law for
triangles and right-angled hexagons and their Legendre transformations.
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In [9], compact triangles in spherical, Euclidean and hyperbolic geometry are the
building blocks of polyhedral surfaces. Variational principles are established for
compact triangles. The goal of this paper is to develop variational principles arising
from the cosine laws for hyperbolic polygons bounded by three geodesics. Figure 1
is the list of all ten cases of triangles in the Klein model of the hyperbolic plane. In
Figure 2, generalized hyperbolic triangles are drawn in the Poincaré model where a
horocycle is represented by a circle passing through a vertex. Cosine laws for the
cases .1; 1;�1/, .�1;�1; 1/, .�1;�1;�1/ were discovered in Fenchel and Nielsen’s
work [5]. R Penner [13] discovered the cosine law for the case .0; 0; 0/ (decorated
ideal triangles).

We observe that there is a uniform way to write the cosine laws in all these cases
(Lemma 3.1). Furthermore, there is a uniform formula for the derivative cosine laws
(Lemma 3.5). From the derivative cosine laws, we are able to find the complete list
of localized energy functionals as in [9]. These action functionals provide variational
principles for cellular decomposed surfaces. All rigidity results obtained in this paper
and the work of Thurston [17], Penner [13] and Bobenko and Springborn [1] can be
deduced from those concave energy functionals.

Figure 1: Generalized hyperbolic triangles in Klein model of hyperbolic plane

1.2 Generalized hyperbolic triangles

A decorated convex polygon in the hyperbolic plane H2 is a finite area convex polygon
P so that each ideal vertex of P is associated with a horodisk centered at the vertex.
A generalized hyperbolic triangle (or simply a generalized triangle) 4 in H2 is a
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.1; 1; 1/

.1; 1;�1/ .1; 1; 0/

.�1;�1; 1/ .0; 1;�1/ .0; 0; 1/

.�1;�1;�1/ .�1;�1; 0/ .0; 0;�1/ .0; 0; 0/

Figure 2: Generalized hyperbolic triangles in Poincaré model of hyperbolic plane

decorated convex polygon in H2 bounded by three distinct geodesics L1;L2;L3 and
all other (if any) geodesics Lij perpendicular to both Li and Lj . The complete list of
them is in Figure 2. We call Li \4 an edge of 4. In the Klein model of H2 , there
exists a Euclidean triangle z4 in R2 so that each edge of z4 corresponds to L1 , L2

or L3 .

The vertices of z4 are called (generalized) vertices of 4. Note that if v is a vertex
of z4 outside H2 [ @H2 , then v corresponds to the geodesic Lij perpendicular to
the two edges Li and Lj adjacent to the vertex v . The generalized angle (or simply
angle) a.v/ at a vertex v of 4 is defined as follows. Let Li , Lj be the edges adjacent
to v . If v 2H2 , then a.v/ is the inner angle of 4 at v ; if v 2 @H2 , a.v/ is TWICE
of the hyperbolic length of the intersection of the associated horocycle with the cusp
bounded by Li and Lj ; if v …H2[ @H2 , then a.v/ is the distance between Li and
Lj . Note that a generalized angle is always positive.

As in Figure 3, for a generalized vertex u of 4, let Bu D fug if u 2H2 , Bu be the
horodisk at u if u 2 @H2 and Bu is the half plane missing 4 bounded by Lij if
u …H2[ @H2 . The generalized edge length (or edge length for simplicity) of Li is
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Li
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Lj
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Lj
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Bu

u

Lj

Figure 3: Generalized vertices

defined as follows. The generalized length of the edge Li \4 with vertices u; v is
the distance from Bu to Bv if Bu\Bv D∅ and is the negative of the distance from
@Bu\Li to @Bv \Li if Bu\Bv ¤∅. Note that generalized edge length may be a
negative number. See Figure 4.

B1

ze

B2

l.ze/ > 0

B1

ze

B2

l.ze/ < 0

Figure 4: Generalized edge lengths

The cosine law (Lemma 3.1) for generalized triangles relates the generalized angles
with the generalized edge lengths. Given a generalized triangle 4 and a vertex v of 4,
the type " of v is defined to be " D 1 if v 2 H2 , " D 0 if v 2 @H2 and " D �1 if
v …H2[@H2 . In this way, generalized triangles are classified into ten types ."1; "2; "3/

where "i 2 f�1; 0; 1g as in Figure 2.

1.3 The work of Penner and its generalization

Suppose . zS ; zT / is a triangulated closed surface zS with the set of vertices V , the set
of edges E . We call T D f� � V j a simplex � 2 zT g an ideal triangulation of the
punctured surface S D zS �V . We call V ideal vertices (or cusps) of the surface S . If
the Euler characteristic of S is negative, a decorated hyperbolic metric .d; r/ on S ,
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introduced by Penner [13], is a complete hyperbolic metric d of finite area on S so that
each ideal vertex v is assigned a positive number rv . Let Tc.S/ be the Teichmüller
space of complete hyperbolic metrics with cusps ends on S . Then the decorated
Teichmüller space introduced in [13] is Tc.S/�RV

>0
.

a
2

b
2

c
2

a0

2

b0

2

c0

2

e�

Figure 5: Simplicial coordinates. a is a generalized angle and a
2

is the length
of the horocyclic arc.

Given a decorated hyperbolic metric .d; r/ 2 Tc.S/�RV
>0

, using the ideal triangu-
lation T , Penner defined a map ‰W Tc.S/�RV

>0
!RE as follows. Given a metric

.d; r/, each edge e 2 E is isotopic to a complete geodesic e� and each triangle �
in T is isotopic to an ideal triangle �� in the metric d . Since assigning a positive
number rv to each cusp v is the same as associating a horodisk B centered at the
cusp so that the length of @B is rv , we see that each ideal triangle �� is naturally a
decorated ideal triangle, ie, a type .0; 0; 0/ generalized hyperbolic triangle. The value
of ‰.d; r/ at an edge e 2E , is

‰.d; r/.e/D
bC c � a

2
C

b0C c0� a0

2
;

where a, a0 are the generalized angles facing e� , and b , b0 , c , c0 are the generalized
angles adjacent to e� as labeled in Figure 5.

An edge cycle .e1; t1; e2; t2; : : : ; ek ; tk/ in a triangulation T is an alternating sequence
of edges ei and faces ti in T so that adjacent faces ti and tiC1 share the same edge
ei for any i D 1; : : : ; k and tkC1 D t1 .

A beautiful theorem proved by Penner is the following.
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Theorem 1.1 (Penner [13]) Suppose .S;T / is an ideally triangulated surface of
negative Euler characteristic. Then for any vector z 2RE

�0
so that

Pk
iD1 z.ei/ > 0 for

any edge cycle .e1; t1; : : : ; ek ; tk/, there exists a unique decorated complete hyperbolic
metric .d; r/ on S so that ‰.d; r/D z .

Using the derivative cosine law associated to the decorated ideal triangle and the
associated energy function, we generalize Penner’s theorem to the following.

Theorem 1.2 Suppose .S;T / is an ideally triangulated surface of negative Euler
characteristic. Then Penner’s map ‰W Tc.S/�RV

>0
! RE is a smooth embedding

whose image is the convex polytope

P .T /D fz 2RE
j
Pk

iD1z.ei/ > 0 for any edge cycle .e1; t1; : : : ; ek ; tk/g:

We remark that, from the definition, the set P .T / is convex. It is in fact a convex
polytope defined by the finite set of linear inequalities

Pk
iD1 z.ei/ > 0 for those edge

cycles .e1; t1; : : : ; ek ; tk/ where each edge appears at most twice (see Luo [11] and
Guo [6]).

Results similar to Penner’s work have been established recently for hyperbolic cone
metric by Leibon [8] and hyperbolic metric with geodesic boundary in [11]. In fact
Leibon defined the coordinate  .e/D bCc�a

2
C

b0Cc0�a0

2
, where edge e is shared by

two hyperbolic triangles, a, a0 are the inner angles facing e , and b , b0 , c , c0 are the
inner angles adjacent to e . In [11], the coordinate is  .e/D bCc�a

2
C

b0Cc0�a0

2
, where

edge e is shared by two hyperbolic right-angled hexagons, a, a0 are the lengths of
boundary arcs e , and b , b0 , c , c0 are the lengths of boundary arcs adjacent to e .

In [9], a one-parameter family of coordinates depending on a parameter h 2 R is
introduced for hyperbolic cone metrics and hyperbolic metrics with geodesic boundary.
These coordinates generalized the ones in [8] and [11]. In fact, Leibon’s coordinate is
deformed as

 h.e/D

Z bCc�a
2

0

cosh.t/ dt C

Z b0Cc0�a0

2

0

cosh.t/ dt:

The coordinate in [11] is deformed as

 h.e/D

Z aCb�c
2

0

coshh.t/ dt C

Z a0Cb0�c0

2

0

coshh.t/ dt:

These two cases can be written in one formula as

 h.e/D

Z aCb�c
2

0

cosh.
p
"t/ dt C

Z a0Cb0�c0

2

0

cosh.
p
"t/ dt:

Geometry & Topology, Volume 13 (2009)



Rigidity of polyhedral surfaces, II 1271

Compact hyperbolic triangles correspond to "D 1. Hyperbolic right-angled hexagons
correspond to " D �1. Ideal hyperbolic triangles correspond to " D 0. These 1–
parameter family of deformations are derived from the associated 1–parameter family
of 2–dimensional Schlaefli formulas for the associated generalized hyperbolic triangles.
However, there is only one 2–dimensional Schlaefli formula for decorated ideal triangles.
This is the reason that Penner’s coordinate cannot be deformed.

The relationship between the edge invariant in [11] and Penner’s map ‰ was recently
established by Mondello [12].

1.4 Thurston–Andreev’s circle packing and its generalizations

Thurston’s work on circle packing can be summarized as follows. Suppose .†;T /
is a triangulated closed surface so that V , E , F are sets of all vertices, edges and
triangles in T . Fix a map ˆW E! Œ�

2
; ��. According to Thurston [17], a hyperbolic

circle packing metric with intersection angles ˆ is a function r W V !R>0 so that the
associated edge length function l W E!R>0 is defined as follows. In Figure 6, consider
a topological triangle with vertices vi , vj , vk . One can construct a hyperbolic triangle

qk

r.vj /

vj

qi

vk

qj

vi

r.vi/

Figure 6: Thurston–Andreev circle packing

4vivj qk such that the edges viqk , vj qk have lengths r.vi/, r.vj / respectively and
the angle at qk is ˆ.vivj /. Let l.vivj / be the length of edge vivj in the hyperbolic
triangle 4vivj qk , which is a function of r.vi/, r.vj / and given ˆ.vivj / via the cosine
law. Similarly, one obtains the edge lengths l.vjvk/, l.vkvi/.

Under the assumption that ˆW E ! Œ�
2
; ��, Thurston observed that lengths l.vivj /,

l.vjvk/ and l.vkvi/ satisfy the triangle inequality for each triangle 4vivjvk in F .
Thus there exists a hyperbolic polyhedral metric on .†;T / whose edge length function
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is l . Let KW V !R be the discrete curvature of the polyhedral metric, which sends a
vertex to 2� less the sum of all inner angles at the vertex.

Theorem 1.3 (Thurston [17]) For any closed triangulated surface .†;T / and any
ˆW E ! Œ�

2
; ��, a hyperbolic circle packing metric on .†;T / is determined by its

discrete curvature, ie, the map from r to K is injective. Furthermore, the set of all K’s
is an open convex polytope in RV .

vi

r.vi/

qk

r.vj /

vj

qi

vk

qj

"""

ı

"
"
"

ı

"
"
"

ı

Figure 7: Generalized circle packing

Since there are many other cosine laws available, we may try to use these other cosine
laws for generalized triangles of type ."; "; ı/ instead of type .1; 1; 1/ used by Thurston.
To state our result, let us fix the notation once and for all. Let

Iı D

�
R>0 if ı D 0;�1;

.0; �� if ı D 1:
VIı D

�
R>0 if ı D 0;�1;

.0; �/ if ı D 1;
(1-1)

J� D

�
R>0 if � D 1;�1;

R if � D 0:
(1-2)

A generalized circle packing metric of type ."; "; ı/ on a triangulated surface .†;T /
with weight ˆW E ! Iı is given by a radius function r W V ! J"ı so that the edge
length function l W E! J" is obtained from the radius r and weight ˆ by the cosine
law applied to the generalized triangle of type ."; "; ı/. In Figure 7, consider a triangle
with vertices vi , vj , vk in the triangulation. One can construct a generalized hyperbolic
triangle 4vivj qk of type ."; "; ı/ such that the edges viqk , vj qk have lengths r.vi/,
r.vj / respectively and the generalized angle at qk is ˆ.vivj /. Let l.vivj / be the length
of edge vivj in the generalized hyperbolic triangle 4vivj qk , which is a function of
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r.vi/, r.vj / and given ˆ.vivj / via the cosine law. Similarly, one obtains the edge
lengths l.vjvk/, l.vkvi/.

Depending on " 2 f0;�1; 1g, the numbers l.vivj /, l.vjvk/, l.vkvi/ may not be the
three edge lengths of a type ."; "; "/ triangle. Let M";ı.ˆ.vivj /; ˆ.vjvk/; ˆ.vkvi//

be the set of all .r.vi/; r.vj /; r.vk//2 J 3
"ı

such that there exists a type ."; "; "/ triangle
�vivjvk with edge lengths l.vivj /, l.vjvk/, l.vkvi/. Therefore r can only take
values in N";ı.ˆ/ a subspace of .J"ı/V , where N";ı.ˆ/ is the set of all r W V ! J"ı
such that .r.vi/; r.vj /; r.vk// 2M";ı.ˆ.vivj /; ˆ.vjvk/; ˆ.vkvi//, if vi ; vj ; vk are
vertices of a triangle.

The edge length function l W E ! J" produces a polyhedral metric on .†;T /. We
define the generalized discrete curvature of the polyhedral metric to be zKW V !R>0

sending a vertex to the sum of all generalized angles at the vertex. We remark that the
generalized discrete curvature and the discrete curvature in Theorem 1.3 differ by a
sign and a constant.

We show that Thurston’s circle packing theorem can be generalized to the following
six cases corresponding to the generalized triangles of type .�1;�1; 1/, .�1;�1;�1/,
.�1;�1; 0/, .0; 0; 1/, .0; 0;�1/, .0; 0; 0/ in Figure 8. More precisely, we list the six
cases below.

(a) For the case of .�1;�1; 1/, where ˆW E ! .0; ��, the edge length l.vivj /

is obtained from the radii r.vi/, r.vj / by the cosine law for the hyperbolic
pentagon as in Figure 8 (a).

(b) For the case of .�1;�1;�1/, where ˆW E! .0;1/, the edge length l.vivj /

is obtained from the radii r.vi/, r.vj / by the cosine law for the right-angled
hexagon as in Figure 8 (b).

(c) For the case of .�1;�1; 0/, where ˆW E! .0;1/, the edge length l.vivj / is
obtained from the radii r.vi/, r.vj / by the cosine law for the hexagon as in
Figure 8 (c).

(d) For the case of .0; 0; 1/, where ˆW E ! .0; ��, the edge length l.vivj / is
obtained from the radii r.vi/, r.vj / by the cosine law for the pentagon as in
Figure 8 (d).

(e) For the case of .0; 0;�1/, where ˆW E ! .0;1/, the edge length l.vivj / is
obtained from the radii r.vi/, r.vj / by the cosine law for the hexagon as in
Figure 8 (e).

(f) For the case of .0; 0; 0/, where ˆW E ! .0;1/, the edge length l.vivj / is
obtained from the radii r.vi/, r.vj / by the cosine law for the hexagon as in
Figure 8 (f).
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.�1;�1; 0/
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r.vj / r.vi/
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.0; 0; 1/

.d/
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ˆ.vivj /

.0; 0;�1/

.e/

r.vj / r.vi/

l.vivj /

ˆ.vivj /

.0; 0; 0/

.f/

Figure 8: Symmetric generalized triangles for generalized circle packing

Theorem 1.4 Given a closed triangulated surface .†;T / and ˆW E! Iı in the above
six cases, the generalized .�; �; ı/ type circle packing metric r 2N";ı.ˆ/ is determined
by its generalized discrete curvature zKW V !R>0 . In particular, the map from r to zK
is a smooth embedding. Furthermore, the set of all zK ’s is the space RV

>0
.

Our method of proof of Theorem 1.4 also produces a new variational proof of the
rigidity of circle packing in Thurston’s theorem (Theorem 1.3) similar to the proof
in [3]. However, unlike the proof in [3] which uses Thurston’s geometric argument
and Maple, our proof is a straight forward calculation. We are not able to establish
Theorem 1.4 for the remaining two cases of .1; 1;�1/, .1; 1; 0/ in Figure 9.

 

     

   
   

     

 

 

r.vj / r.vi/

l.vivj /

ˆ.vivj /

.1; 1;�1/

r.vj / r.vi/

l.vivj /

ˆ.vivj /

.1; 1; 0/

Figure 9: Generalized circle packing does not work in the two cases.
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Generalized circle patterns have been considered by many authors including Bobenko
and Springborn [1], Schlenker [15], Stephenson [16] and others. In particular, Stephen-
son’s question [16, page 331] about disjoint circle patterns motivates us to consider the
generalized circle packing of type .1; 1;�1/.

Furthermore, similar to the work of [3] on discrete curvature flow, for the case of "D�1

in Theorem 1.4, there exists a corresponding generalized curvature flow. Indeed, let
ri WD r.vi/ be the radii at vertex vi 2 V and zKi be the generalized discrete curvature
at vertex vi 2 V . The generalized curvature flow is

dri.t/

dt
D� zKi

1

2
eri �

1

2
"ıe�ri :

From the proof of Theorem 1.4 in Section 4, we obtain that, when ."; "; ı/ is one of
the six cases in Theorem 1.4, the flow is a negative gradient flow of a strictly concave
down function after a change of variables.

1.5 Bobenko–Springborn’s circle pattern and its generalizations

In [1], Bobenko and Springborn generalized Thurston’s circle packing pattern in
the case of ˆ � � in a different setting. The energy functional in [1] was derived
from a discrete integrable system. Let us recall briefly the framework in [1]. See
Figure 10 (a). Let .†;G/ be a cellular decomposition of a closed surface with the set
of vertices V , edges E and 2–cells F . The dual cellular decomposition G� has the
set of vertices V �.Š F / so that each 2–cell f in F contains exactly one vertex f �

in G� . If v is a vertex of a 2–cell f , we denote it by v < f . For all pairs .v; f /
where v < f , join v to f � by an arc in f , denoted by .v; f �/, so that .v; f �/ and
.v0; f �/ don’t intersect in their interior. Then these arcs

S
.v;f /.v; f

�/ decompose the
surface † into a union of quadrilaterals of the form .v; v0; f �; f 0�/ where vv0 2E ,
v < f , v0 < f 0 . According to [1], this quadrilateral decomposition of a closed surface
arises naturally from integrable systems and discrete Riemann surfaces. Now suppose
� W E ! .0; �/ is given. For r W V � ! R>0 , called a circle pattern metric, and a
quadrilateral .v; v0; f �; f 0�/, construct an E2 (or H2 ) triangle 4f �f 0�v so that
the length of the edges vf � , vf 0� are given by r.f �/, r.f 0�/ and the angle at v is
�.vv0/.

In this way the quadrilateral .v; v0; f �; f 0�/ is realized in E2 (or H2 ) as the isometric
double of the triangle 4f �f 0�v across the edge f �f 0� . Since the surface † is a
gluing of the quadrilateral .v; v0; f �; f 0�/ along edges, by isometrically gluing these
quadrilaterals, one obtains a polyhedral metric on the surface † with cone points at the
vertices V and V � . The cone angles at v 2 V are prescribed by � , the only variable
curvatures are at f � 2 V � . Bobenko–Springborn’s rigidity result says:

Geometry & Topology, Volume 13 (2009)
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f �

v0

f 0�

v

f �

r.f /

v0

�.vv0/
r.f 0/

f 0�

r.f 0/
�.vv0/

v

r.f /

(a) (b)

Figure 10: Bobenko–Springborn’s circle pattern

Theorem 1.5 (Bobenko–Springborn [1, Theorems 3 and 4]) For any cell decomposi-
tion .†;G/ of a closed surface and any map � W E! .0; �/, the circle pattern metric
r W V � ! R>0 is determined by its discrete curvature KW V � ! R for hyperbolic
polyhedral metrics and is determined up to scaling by KW V � ! R for Euclidean
polyhedral metrics.

We remark that Bobenko and Springborn [1] proved that the set of all discrete curva-
tures K forms a convex polytope. In the hyperbolic geometric setting, the essential
part of Bobenko and Springborn’s construction is to produce the hyperbolic triangle
4f �f 0�v with two prescribed edge lengths and the prescribed angle between the two
edges. Since there are eight other generalized hyperbolic triangles of type ."; "; ı/ as
listed in Figure 2, we can use them to produce hyperbolic metrics. Our result below
shows that the rigidity phenomena still hold for the other eight cases.

We assume the same setting as in [1] that .†;G/ is a cellular decomposed surface so
that V , E , F are the sets of all vertices, edges and 2–cells with dual .†;G�/. Suppose
."; "; ı/2 f�1; 0; 1g3 , and a map � W E! VIı is given (see (1-1) for the definition of VIı ).

Assume for an r 2 .J"ı/
V � and any quadrilateral .v; v0; f �; f 0�/, we can construct a

type ."; "; ı/ generalized hyperbolic triangle 4f �f 0�v so that the lengths of vf �; vf 0�

are r.f �/; r.f 0�/ respectively and the generalized angle at v is �.vv0/. Now realize
the quadrilateral .v; v0; f �; f 0�/ as the metric double of 4f �f 0�v across the edge
f �f 0� . The generalized curvature of the resulting circle pattern is concentrated at
the vertices V � . It is defined as follows. For h 2R, define the generalized curvature
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KhW V
�!R by

(1-3) Kh.f
�/D

mX
iD1

2

Z ai

1

�h
" .t/ dt

where the ai ’s are the generalized angles at the vertex f � in the triangle 4f �f 0�v
and �".t/D

R t
0 cos.

p
"x/ dx (see the definition in Section 2).

The following theorem is only considering the rigidity of the generalized Bobenko–
Springborn circle pattern. We do not have a result addressing the existence, ie, describ-
ing the imaging of the map in the following theorem. In the last two subsections about
the generalized Penner’s map and the generalized Thurston–Andreev circle packing,
we established both of rigidity and existence.

Theorem 1.6 Under the setup of generalized circle pattern above, for any ."; "; ı/ 2
f�1; 0; 1g3 and � W E ! VIı , the map from .J"ı/

V � to RV � sending r to Kh is a
smooth embedding.

Bobenko and Springborn’s circle pattern theorem (Theorem 1.5) in the hyperbolic
geometry corresponds to ."; "; ı/ D .1; 1; 1/ and h D 0 in Theorem 1.6. Bobenko
and Springborn [1] also showed that the image of fKg is an explicit open convex
polytope in RV � . It is an interesting question to investigate the images of fKhg in the
generalized setting.

We remark that there is a discrete curvature flow for each case in Theorem 1.6. Let
ri WD r.f �i /. The flow is defined by

dri.t/

dt
D�Kh.f

�
i /

�
1

2
eri �

1

2
"ıe�ri

�1�h

:

From the proof of Theorem 1.6 in Section 5, we obtain that, for any ."; "; ı/ 2

f�1; 0; 1g3 , the flow is a negative gradient flow of a strictly concave down function.

Similar situations have been considered before by Hazel. In [7], he considered the flow
for cases when hD 0 and ."; ı; "/D .1; 1; 1/, .1; 1;�1/ or .1; 1; 0/.

Acknowledgment We would like to thank referee for his/her careful reading and very
helpful suggestions and comments.
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2 A proof of Theorem 1.2

We give a proof of Theorem 1.2 in this section. The proof consists of two parts. In the
first part we show that Penner’s map ‰ is an embedding. Then we determine its image.
As in [11], the rigidity follows from the following well-known fact together with the
cosine law for decorated ideal triangles.

Lemma 2.1 If X is an open convex set in Rn and f W X ! R is smooth strictly
convex, then the gradient rf W X !Rn is injective. Furthermore, if the Hessian of f
is positive definite for all x 2X , then rf is a smooth embedding.

To begin, recall that .S;T / is an ideally triangulated surface with sets of edges, triangles
and cusps given by E , F , V . We assume that �.S/ < 0.

Following Penner [13], we will produce a smooth parametrization of the decorated
Teichmüller space Tc.S/�RV

>0
by RE using the edge lengths. From the derivative

cosine law for decorated ideal triangles, we will construct a smooth strictly concave
down function H on RE so that its gradient is Penner’s map ‰ . Then by Lemma
2.1, the map ‰W Tc.S/ � RV

>0
! RE is an embedding. To determine the image

‰.Tc.S/�RV
>0
/, we study the degenerations of decorated ideal triangles. The strategy

of the proof is the same as that in [11].

2.1 Penner’s length parametrization of Tc.S /�RV
>0

For each decorated hyperbolic metric .d; r/2Tc.S/�RV
>0

, where r D .r1; :::rjV j/, one
replaces each edge e 2E by the geodesic e� in the metric d and constructs for each
cusp vi 2 V a horocyclic disk Bri

.vi/ centered at vi whose circumference @Bri
.vi/

has length ri D r.vi/. Now, the length coordinate ld;r 2 RE of .d; r/ is defined as
follows. Given r W V !R>0 , realize each triangle �uvw in T by a decorated ideal
hyperbolic triangle with generalized angles at u, v , w being r.u/, r.v/, r.w/. Then
ld;r .e/ is the generalized edge length of the edge e D uv in the triangle �uvw . In
this way, Penner defined a length map

LW Tc.S/�RV
>0!RE

.d; r/! ld;r :

Lemma 2.2 (Penner [13]) The length map LW Tc.S/�RV
>0
!RE is a diffeomor-

phism.
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Proof By the cosine law for decorated ideal triangle, the map L satisfies for all
� 2R>0

L.d; �r/DL.d; r/� .2 ln�/.1; 1; : : : ; 1/:(2-1)

Thus, it suffices to deal with those decorated metrics .d; r/ so that r are small, ie,
L.d; r/ 2 RE

>0
. In this case, Penner proved that LjW L�1.RE

>0
/! RE

>0
is a diffeo-

morphism by a direct geometric construction using isometric gluing of decorated ideal
triangles. By (2-1), it follows that L is a diffeomorphism.

2.2 Penner’s map ‰ is a coordinate

Recall that for a decorated ideal triangle 4 with edges e1 , e2 , e3 of lengths l1 , l2 , l3
and opposite generalized angles �1; �2; �3 , the cosine law obtained by Penner [13] says

eli

2
D

2

�j�k

;
�2

i

4
D eli�lj�lk :

where fi; j ; kg D f1; 2; 3g. The derivative cosine law expressing li in terms of
.�1; �2; �3/ says

@li

@�i
D 0;

@li

@�j
D�

1

�j
:

Let xi D
1
2
.�j C �k � �i/ (or �i D xj C xk ). We call xi the radius invariant at the

edge ei in the triangle 4.

Using the derivative cosine law, we have:

Lemma 2.3 Under the same assumption as above, the differential 1–form ! DP3
iD1xidli is closed in R3 and its integration W .l/D

R l
0 ! is strictly concave down

in R3 . Furthermore,

@W

@li
D xi :(2-2)

Proof Consider the matrix H D Œ@la=@xb �3�3 . The closeness of ! is equivalent to
that H is symmetric. The strictly concavity of W will be a consequence of the negative
definiteness of H . We establish these two properties for H as follows. Assume that
indices fi; j ; kg D f1; 2; 3g. By definition, @=@xi D @=@�j C @=@�k . It follows from
the derivative cosine law that

@li

@xi
D�

�
1

�j
C

1

�k

�
;

@li

@xj
D�

1

�k

;and
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which is symmetric in i , j . This shows that the matrix H is symmetric. Further-
more, the negative matrix �H is of the form Œmab �3�3 where mab D mba > 0

and mii D mij C mik . The determinant of such a matrix can be calculated eas-
ily as 4m11m22m33 > 0, and the determinant of a principal 2 � 2 submatrix is
miimjj �m2

ij D .mij Cmik/.mij Cmjk/�m2
ij > 0. It follows that �H is positive

definite.

By the construction in Section 2.1, it suffices to show that the composition �‰ D
‰ ıL�1W RE!RE is a smooth embedding. The map �‰ is constructed explicitly as
follows. For each l 2RE and each triangle � 2 F realize � by an ideal hyperbolic
triangle together with horocycles centered at three vertices so that the generalized
edge length of an edge e in � is l.e/. Now isometrically glue these ideal hyperbolic
triangles along edges so that the horocycles match. The result is a complete finite area
hyperbolic metric on the surface S together with a horocycle at each cusp. For each
edge e 2 E , the value �‰.l/.e/ is equal to bCc�a

2
C

b0Cc0�a0

2
where a, a0 , b , b0 , c ,

c0 are generalized angles facing and adjacent to e in Figure 5. Thus�‰.l/.e/D rf .e/C rf 0.e/(2-3)

where f , f 0 are the decorated ideal triangles sharing the edge e and rf .e/, rf 0.e/ are
the radius invariants at the edge e in f , f 0 respectively.

Given a vector l 2RE , define the energy H.l/ of l to be

H.l/D
X

fi;j ;kg2F

W .l.ei/; l.ej /; l.ek//

where the sum is over all triangles fi; j ; kg in F with edges ei , ej , ek . By definition
and Lemma 2.3, H W RE!R is smooth and strictly concave down when Hessian is
negative definite. Furthermore, by (2-2) and (2-3),

@H

@l.ei/
D �‰.l/.ei/

ie, rH D �‰ . It follows from Lemma 2.1, that �‰W RE!RE is a smooth embedding.
Therefore ‰ is a smooth embedding.

2.3 The image of Penner’s map

Let � be the convex subset of RE consisting of all z 2RE such that
Pp

iD1
z.eni

/ > 0

whenever .en1
; tn1

; en2
; tn2

; : : : ; enp
; tnp

; en1
/ is an edge cycle. To show that �‰.RE/D

�, due to convexity of �, it suffices to prove that �‰.RE/ is both open and closed
in �.
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eniC1

ai eni

ci

tni
bi

Figure 11: Edge cycles

First to see that �‰.RE/��, take an edge cycle .en1
; tn1

; en2
; tn2

; : : : ; enp
; tnp

; en1
/

as shown in Figure 11 and take l 2RE .

Let the generalized angles in the decorated ideal triangle tni
in the metric L�1.l/ be

ai , bi , ci , where bi faces the edge eni
, ci faces the edge eniC1

and ai is adjacent to
eni

, eniC1
. Then the contribution to

Pp
jD1

�‰.l/.enj
/ from eni

, eniC1
in triangle tni

is given by .ai C bi � ci/=2C .ai C ci � bi=2/D ai . Thus
pX

jD1

�‰.l/.enj
/D

pX
jD1

ai > 0(2-4)

due to ai > 0 for all i . It follows that �‰.RE/ is open in � since �‰W RE!RE was
just proved to be an embedding.

It remains to prove that �‰.RE/ is closed in �. The closeness of �‰.RE/ in � requires
to show that if a sequence fl.m/ 2REg1

mD0
satisfies limm!1

�‰.l.m//D z 2�, then
fl.m/g1

mD0
contains a subsequence converging to a point in RE . Given a decorated

hyperbolic metric l.m/ 2RE on .S;T / and a generalized angle � , let � .m/ 2R3F be
the generalized angles of the decorated ideal triangles in .S;T / in the metric l.m/ . By
taking a subsequence if necessary, we may assume that limm!1

�‰.l.m// converges
in Œ�1;1�E and that for each angle �i , the limit limm!1 �

.m/
i exists in Œ0;1�.

Lemma 2.4 For all i , limm!1 �
.m/
i 2 Œ0;1/.
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Proof If otherwise, suppose that limm!1 �
.m/
1
D 1 for some angle �1 . Let

e1; e2 be the edges adjacent to the angle �1 in the triangle t . Take an edge cycle
.en1

; tn1
; en2

; tn2
; : : : ; enp

; tnp
; en1

/ which contains .e1; t; e2/ as a part. Then by the
calculation as in (2-4),

pX
iD1

z.eni
/D lim

m!1

pX
iD1

�‰.l.m//.eni
/� lim

m!1
�
.m/
1
D1:

This contradicts the assumption that z 2�.

Now, we finish the proof by contradiction as follows. If limm!1 l.m/ were not in
RE , there would exist an edge e 2 E so that limm!1 l.m/.e/ D ˙1. Let t be a
triangle adjacent to e . Let � .m/

1
; �
.m/
2

be the generalized angles in t adjacent to e in
the metric l.m/ . By the cosine law,

exp.l.m/.e//D
4

�
.m/
1
�
.m/
2

(2-5)

and � .m/
1
; �
.m/
2
2 .0;1/.

Case 1 If limm!1 l.m/.e/D �1, then limm!1 exp.l.m/.e//D 0. By (2-5), one
of limm!1 �

.m/
i must be 1. But this contradicts Lemma 2.4.

Case 2 If limm!1 l.m/.e/D1, then limm!1 exp.l.m/.e//D1. Since Lemma 2.4
shows that � .m/

1
and � .m/

2
are bounded, by (2-5), one of the limits limm!1 �

.m/
i must

be zero for i D 1 or 2. Say limm!1 �
.m/
1
D 0. Let e1 be the other edge in the triangle

t so that e1 , e are adjacent to the generalized angle �1 . Let �3 be the third angle in t ,
facing e . Then by the cosine law that exp.l.m/.e1//D 4=.�

.m/
1
�
.m/
3
/ and Lemma 2.4

on the boundedness of � .m/
3

, we conclude that limm!1 l.m/.e1/D1. To summarize,
from limm!1 l.m/.e/D1 and any triangle t adjacent to e , we conclude that there
is an edge e1 and an angle �1 adjacent to e , e1 in t so that limm!1 l.m/.e1/D1

and limm!1 �
.m/
1
D 0.

Applying this procedure to e1 and the triangle t1 adjacent to e1 from the side
other than the side that t lies. We obtain the next angle, say �2 and edge e2 in
t1 so that limm!1 l.m/.e2/ D 1 and limm!1 �

.m/
2
D 0. Since there are only

finite number of edges and triangles, this procedure will produce an edge cycle
.en1

; tn1
; en2

; tn2
; : : : ; enk

; tnk
; en1

/ in T so that
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(i) limm!1 l.m/.eni
/D1 for each i ,

(ii) limm!1 �
.m/
i D 0 for each i , where �i is the angle in triangle tni

adjacent to
eni

and eniC1
.

By (2-4),

kX
iD1

z.eni
/D lim

m!1

kX
iD1

�‰.l.m//.eni
/D lim

m!1

kX
iD1

�
.m/
i D 0:

This contradicts the assumption that z 2�.

3 The derivative cosine law

We give a unified approach to all cosine laws and sine laws in this section. The
derivatives of the cosine laws are also determined. Most of the proofs are straightforward
checking and will be delayed to Appendix B.

Assume that a generalized hyperbolic triangle of type ."1; "2; "3/ 2 f�1; 0; 1g3 has
generalized angles �1; �2; �3 and opposite generalized edge lengths l1 , l2 , l3 . There
are ten different types of generalized hyperbolic triangles as shown in Figure 2. The
relationships between l 0i s and � 0i s are expressed in the cosine law and the sine law. To
state them, we introduce the two functions �"; �s depending on "; �; s; l 2R:

�".�/D

Z �

0

cos.
p
"x/ dx D

1
p
"

sin.
p
"x/;(3-1)

�s.l/D
1

2
el
�

1

2
se�l :(3-2)

To be more explicit,

�1.�/ D sin.�/; �0.�/ D �; ��1.�/ D sinh.�/;
�1.l/ D sinh.l/; �0.l/ D

1
2
el ; ��1.l/ D cosh.l/:

A simple calculation shows

�0".�/ WD
@�".�/

@�
D cos.

p
"�/;

� 0s.l/ WD
@�s.l/

@l
D

1

2
el
C

1

2
se�l :
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Lemma 3.1 (The cosine laws and the sine laws) For a generalized hyperbolic trian-
gle of type ."1; "2; "3/ 2 f�1; 0; 1g3 with generalized angles �1; �2; �3 and opposite
generalized edge lengths l1 , l2 , l3 , for fi; j ; kg D f1; 2; 3g, the following hold:

� 0"j "k
.li/D

�0"i
.�i/C �

0
"j
.�j /�

0
"k
.�k/

�"j .�j /�"k
.�k/

;(3-3)

2�2
"i

�
�i

2

�
D
� 0"j "k

.li/�
1
2
"j elj�lk �

1
2
"kelk�lj

�"k"i
.lj /�"i"j .lk/

;(3-4)

�0"i
.�i/D

�"i�
0
"j "k

.li/C �
0
"k"i

.lj /�
0
"i"j

.lk/

�"k"i
.lj /�"i"j .lk/

;(3-5)

�"i
.�i/

�"j "k
.li/
D

�"j .�j /

�"k"i
.lj /

:(3-6)

Proof In Appendix A, the cosine law and the sine law for each type of the ten
generalized hyperbolic triangles are listed. We check directly that all the formulas there
fit the uniform formulas (3-3)–(3-6).

Remark 3.2 The identity (3-6) is called the sine law. The formula (3-4) is stronger
than the formula (3-5). They are equivalent if "i D˙1. If "i D 0, the formula (3-5) is
trivial while the formula (3-4) expresses � in term of lengths l .

For the six cases of generalized triangle without ideal vertices, there is a unified strategy
to derive the cosine law (3-3) and (3-5) by using the hyperboloid model. This unified
strategy is essentially given in [18, pages 74–82]. But this method does not work for
the four cases of generalized triangle with ideal vertices.

The concepts of Gram matrix and angle Gram matrix of a generalized hyperbolic triangle
are defined as follows. For a generalized hyperbolic triangle of type ."1; "2; "3/ 2

f�1; 0; 1g3 with generalized angles �1; �2; �3 and opposite generalized edge lengths
l1 , l2 , l3 , its Gram matrix is

Gl WD �

0@ "1 � 0"1"2
.l3/ �

0
"3"1

.l2/

� 0"1"2
.l3/ "2 � 0"2"3

.l1/

� 0"3"1
.l2/ �

0
"2"3

.l1/ "3

1A
and its angle Gram matrix is

G� WD �

0@ �1 �0"3
.�3/ �

0
"2
.�2/

�0"3
.�3/ �1 �0"1

.�1/

�0"2
.�2/ �

0
"1
.�1/ �1

1A :
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Lemma 3.3 The determinants of Gl and G� satisfy the following:

det Gl D�.�"k"i
.lj /�"i"j .lk/�"i

.�i//
2(3-7)

det G� D�.�"j .�j /�"k
.�k/�"j "k

.li//
2(3-8)

For a hyperbolic triangle, Lemma 3.3 is well-known. We will prove it for a generalized
triangle in Appendix B.

By Lemma 3.3 and the sine laws (3-6), we see

M WD
1

p
� det Gl

0@ �"2"3
.l1/ 0 0

0 �"3"1
.l2/ 0

0 0 �"1"2
.l3/

1A
D

1
p
� det G�

0@ �"1
.�1/ 0 0

0 �"2
.�2/ 0

0 0 �"3
.�3/

1A :
Lemma 3.4 MGlMG� D I .

This lemma is a consequence of the cosine laws and the sine laws (3-3), (3-5) and (3-6).
It is checked by direct calculation.

Let y1 , y2 , y3 be three functions of variables x1 , x2 , x3 . Let AD . @yi

@xj
/3�3 be the

Jacobi matrix. Then the differentials dy1 , dy2 , dy3 and dx1 , dx2 , dx3 satisfy0@ dy1

dy2

dy3

1ADA

0@ dx1

dx2

dx3

1A :
Lemma 3.5 (The derivative cosine law) For a generalized hyperbolic triangle of type
."1; "2; "3/ 2 f�1; 0; 1g3 with generalized angles �1; �2; �3 and opposite generalized
edge lengths l1 , l2 , l3 , the differentials of l 0 s and � 0 s satisfy the following relations:0@ dl1

dl2
dl3

1ADM Gl

0@ d�1

d�2

d�3

1A ;(3-9)

0@ d�1

d�2

d�3

1ADM G�

0@ dl1
dl2
dl3

1A :(3-10)

We will prove Lemma 3.5 in Appendix B.
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In the rest of the section, we establish the existence of a generalized hyperbolic triangle
of type ."; "; ı/ 2 f�1; 0; 1g3 with two given edge lengths l1 , l2 and a generalized
angle � between them, where the generalized angles opposite to l1 , l2 have type "
and � has type ı . Recall VIı and J"ı are in (1-1) and (1-2).

Fix type ."; "; ı/ 2 f�1; 0; 1g3 . For a given � 2 VIı , let’s introduce the set D";ı.�/D
f.l1; l2/ 2 .J"ı/

2 j there exists a generalized hyperbolic triangle of type ."; "; ı/ with
two edge lengths l1 , l2 so that the generalized angle between them is � of type ıg.

Lemma 3.6 (1) If "D 1 or 0, then D";ı.�/D .J"ı/2 .

(2) If ."; ı/D .�1; 1/, then

D";ı.�/D f.l1; l2/ 2R2
>0 j sinh l1 sinh l2� cos � cosh l1 cosh l2 > 1g:

(3) If ."; ı/D .�1; 0/, then

D";ı.�/D f.l1; l2/ 2R2
j � > e�l1 C e�l2g:

(4) If ."; ı/D .�1;�1/, then

D";ı.�/D f.l1; l2/ 2R2
>0 j cosh � sinh l1 sinh l2� cosh l1 cosh l2 > 1g:

Proof We will construct a generalized hyperbolic triangle of type ."; "; ı/ in each
case as follows.

Denote by H2 the hyperbolic plane and by @H2 the ideal boundary of H2 .

If ."; "; ı/ D .1; 1; 1/, choose a point O 2 H2 . Draw two geodesics rays L1 , L2

starting from the point O such that the angle between L1 , L2 is � 2 .0; �/. Let Pi

be the point on Li such that the length of the segment OPi is li > 0, i D 1; 2. Then
one obtains the hyperbolic triangle by joining P1 , P2 by a geodesic segment.

If ."; "; ı/D .1; 1; 0/, choose a point O 2 @H2 and draw a horocycle centered at O .
Let H1 , H2 be two points on the horocycle such that the length of the horocyclic
arc H1H2 is �

2
> 0. For i D 1; 2, draw a geodesic Li passing through O and Hi .

Let Pi be the point on Li such that the length of the segment of HiPi is jli j and
Hi is between O , Pi on Li if and only if li > 0. Then one obtains the generalized
hyperbolic triangle by joining P1 , P2 by a geodesic segment.

If ."; "; ı/ D .1; 1;�1/, draw a geodesic segment G1G2 of length � > 0 with end
points G1 , G2 . For i D 1; 2, let Li be a geodesic ray starting from Gi perpendicular
to G1G2 and L1 , L2 are in the same half plane bounded by the geodesic containing
G1G2 . Let Pi be the point on Li such that the length of the segment GiPi is li > 0,
i D 1; 2. Then one obtains the generalized hyperbolic triangle by joining P1 , P2 by a
geodesic segment.
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If ."; "; ı/ D .0; 0; 1/, choose a point O 2 H2 . Draw two geodesics rays L1 , L2

starting form the point O such that the angle between L1 , L2 is � 2 .0; �/ and Li

ends at point Pi 2 @H2 . Join P1 , P2 by a geodesic. Let Hi be the point on the
geodesic containing Li such the length of OHi is jli j and Hi is between O;Pi if and
only if li > 0. Draw a horocycle centered at Pi passing through Hi . One obtains the
generalized triangle OP1P2 decorated by two horocycles.

If ."; "; ı/D .0; 0; 0/ or .0; 0;�1/, the construction is similar to the case of .0; 0; 1/
above.

If ."; "; ı/D .�1;�1; 1/, choose a point O 2H2 . Draw two geodesics rays L1 , L2

starting form the point O such that the angle between L1 , L2 is � 2 .0; �/. For
i D 1; 2, let Pi be the point on Li such that the length of the segment OPi is li > 0.
Let Mi be the geodesic passing through Pi perpendicular to Li . There is a generalized
hyperbolic triangle with prescribed lengths l1 , l2 and angle � if and only if the distance
between M1 , M2 is positive. The distance l between M1 , M2 can be calculated from
the cosine law of generalized triangle of type .�1;�1; 1/:

cosh l D sinh l1 sinh l2� cos � cosh l1 cosh l2:

This shows that the condition in part (2) is equivalent to l > 0.

If ."; "; ı/ D .�1;�1; 0/, choose a point O 2 @H2 and draw a horocycle centered
at O . Let H1 , H2 be the two points on the horocycle such that the length of the
horocyclic arc H1H2 is �

2
> 0. For i D 1; 2, draw a geodesic Li passing through O

and Hi . Let Pi be the point on Li such that the length of the segment HiPi is jli j
and Hi is between O;Pi if and only if li > 0. Let Mi be the geodesic passing through
Pi perpendicular to Li . There is a generalized hyperbolic triangle with prescribed
lengths l1 , l2 and generalized angle � if and only if the distance l between M1 , M2

is positive. The distance l between M1 , M2 can be calculated from the cosine law of
generalized triangle of type .�1;�1; 0/:

cosh l D
1

2
�2el1Cl2 � cosh.l1� l2/:

Now, one sees 1
2
�2el1Cl2 � cosh.l1 � l2/ > 1 if and only if � > e�l1 C e�l2 . This

shows part (3) holds.

If ."; "; ı/ D .�1;�1;�1/, draw a geodesic segment G1G2 of length � > 0 with
end points G1 , G2 . For i D 1; 2, let Li be a geodesic half line starting from Gi

perpendicular to G1G2 and L1 , L2 are in the same half plane bounded by the geodesic
containing G1G2 . Let Pi be the point on Li such that the length of the segment GiPi

is li > 0; i D 1; 2. Let Mi be the geodesic passing through Pi perpendicular to Li .
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There is a right-angled hexagon with prescribed lengths l1 , l2 , � if and only if the
distance l between M1 , M2 is positive. The distance l between M1 , M2 can be
calculated from the cosine law of a right-angled hexagon:

cosh l D cosh � sinh l1 sinh l2� cosh l1 cosh l2:

This shows that the condition in part (4) is equivalent to l > 0.

4 A proof of Theorem 1.4

We give a proof of the generalized circle packing theorem (Theorem 1.4) in this section.

Recall that .†;T / is a closed triangulated surface with V , E , F the sets all vertices,
edges and triangles in T . Given a type ."; "; ı/ 2 f�1; 0; 1g3 and ˆW E! Iı , for each
r 2N";ı.ˆ/, a generalized ."; "; ı/ circle packing on .†;T / is based on the following
local construction.

As in Figure 12, consider a topological triangle with vertices vi , vj , vk . One can
construct a generalized hyperbolic triangle 4vivj qk of type ."; "; ı/ such that the edges
viqk , vj qk have lengths r.vi/ WD ri , r.vj / WD rj respectively and the generalized angle
at qk is ˆ.vivj /DW �k . Let l.vivj /DW lk be the length of edge vivj in the generalized
hyperbolic triangle 4vivj qk which is a function of ri , rj . Similarly, one obtains the
edge lengths l.vjvk/DW li , l.vkvi/ WD lj . Let �i be the generalized angle of 4vivjvk

at the vertex vi . With fixed .�i ; �j ; �k/, we consider �i as a function of .ri ; rj ; rk/.

vi

qj

�i

lj

vk

qi

�k

livj

qk

�j

lk

aji

rj

�k

ri aij

Figure 12: Data for generalized circle packing

Let’s recall the definition of M";ı.ˆ.vivj /; ˆ.vjvk/; ˆ.vkvi// in Section 1.4 and
definition of D";ı.�/ in Section 3.
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Lemma 4.1 When "D 0 or �1, we have

M";ı.�1; �2; �3/ D f.r1; r2; r3/ 2 .J"ı/
3
j .ri ; rj / 2 D";ı.�k/; fi; j ; kg D f1; 2; 3gg:

Proof Given �k 2
VIı , by Lemma 3.6, for ri ; rj 2 D";ı.�k/, there is generalized

hyperbolic triangle 4vivj qk of type ."; "; ı/ with edge lengths ri , rj and angle �k

of type ı between the two edges. We obtain the edge length lk D l.vivj /. There is a
case which is not contained in Lemma 3.6: ı D 1, �k D � . It is easier since we have
lk D ri C rj .

For "D 0, we get li ; lj ; lk 2R. Thus there exists a decorated ideal triangle with three
edge lengths li , lj , lk . For "D�1, the inequality defining D�1;ı.�k/ guarantees that
li ; lj ; lk > 0. Thus there is a right-angled hexagon with three edge lengths li , lj , lk .

4.1 A proof of Theorem 1.4 for "D 0

We assume that indices i , j , k are distinct in this section. First by Lemma 3.6 and
Lemma 4.1, we have M0;ı.�i ; �j ; �k/DR3 . Therefore N0;ı.ˆ/DRV .

The case " D 0 is very simple. Indeed, for a fixed ˆW E ! Iı , there exists a map
C W V !R>0 so that for all r 2N0;ı.ˆ/DRV ,

zK.r/.v/D C.v/e�r.v/;(4-1)

ie, the discrete curvature zK.r/ is uniformly proportional to e�r.v/ . Thus, one sees
easily that the generalized circle packing metric r 2RV is determined by its generalized
discrete curvature zKW V !R and f zK.v/ j v 2 V g DRV

>0
.

Indeed, in Figure 12, the generalized triangle 4vivj qk has type .0; 0; ı/, edge lengths
ri ; rj ; lk and inner angle �k opposite to lk . By the cosine law (3-4), we have

2�2
ı

�
�k

2

�
D

� 0
0
.lk/

�0.ri/�0.rj /
D 2elk�ri�rj :

Thus

elk D �2
ı

�
�k

2

�
eriCrj :(4-2)

By the cosine law (3-4) for the decorated ideal triangle 4vivjvk (or type (0,0,0)
generalized triangle) we have

�2
k

4
D elk�li�lj :(4-3)
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Combining (4-2) and (4-3) we obtain

�2
k

4
D elk�li�lj D

�2
ı
.�k

2
/eriCrj

�2
ı
.�i

2
/erjCrk�2

ı
.
�j

2
/erkCri

D
�2
ı
.�k

2
/

�2
ı
.�i

2
/�2
ı
.
�j

2
/
e�2rk ;

hence

�k D
2�ı.

�k

2
/

�ı.
�i

2
/�ı.

�j

2
/
e�rk :(4-4)

Summing up (4-4) for all triangle having vk as a vertex, we obtain (4-1) where C.v/

depends explicitly on ı .

4.2 Rigidity of circle packing for "D�1 or ."; ı/D .1; 1/

In this subsection we prove Theorem 1.4 for the case "D�1 and give a new proof of
Thurston’s rigidity Theorem 1.3.

In the variational framework, the natural parameter is uD .u1;u2;u3/ where

ui D�

Z 1
ri

1

�"ı.t/
dt(4-5)

for "D˙1. Note that by the definition of �s , @ui=@ri > 0.

Lemma 4.2 Fix �D .�1; �2; �3/2I3
ı

, the set u.M";ı.�1; �2; �3// is an open convex
polyhedron in R3 in the following cases:

(i) "D�1, or

(ii) ."; ı/D .1; 1/ and �i 2 Œ
�
2
; ��, i D 1; 2; 3.

Proof (i) When "D �1, we have figured out the set M";ı.�1; �2; �3/ in Lemma
4.1.

If the type of �k is ı D 1, by the proof of Lemma 3.6 (2), we need lk > 0 which is
the same as

cos�k D
� cosh lk C sinh ri sinh rj

cosh ri cosh rj
<
�1C sinh ri sinh rj

cosh ri cosh rj
:(4-6)

In this case ui D�
R1

ri
1=cosh t dt D 2 arctan eri �� 2 .��

2
; 0/. Then

sinh ri D�
1

tan ui
; cosh ri D�

1

sin ui
:(4-7)

Geometry & Topology, Volume 13 (2009)



Rigidity of polyhedral surfaces, II 1291

By substituting (4-7) into (4-6), we obtain cos�k < cos.ui C uj /. Since �k 2

.0; ��, �ui � uj 2 .0; �/, we see that lk > 0 if and only if ui C uj > ��k . Then
u.M";ı.�1; �2; �3// D f.u1;u2;u3/ 2 R3

<0
j ui C uj > ��k ; fi; j ; kg D f1; 2; 3gg.

The last description shows that u.M";ı.�1; �2; �3// is a convex polyhedron.

If the type of �k is ı D 0, we need lk > 0 which is equivalent to

�2
k

2
D

cosh lk C cosh.ri � rj /

eriCrj
>

1C cosh.ri � rj /

eriCrj
D

1

2
.e�ri C e�rj /2:

Since in this case ui D�
R1

ri
1=et dt D�e�ri < 0, we see that lk > 0 is the same

as having ui C uj > ��k . Thus u.M";ı.�1; �2; �3//D f.u1;u2;u3/ 2 R3
<0
j li > 0

for all i g D f.u1;u2;u3/ 2 R3
<0
j ui C uj > ��k ; fi; j ; kg D f1; 2; 3gg. The last

description shows that u.M";ı.�1; �2; �3// is a convex polyhedron.

If the type of �k is ı D�1, we need lk > 0 which is the same as

cosh�k D
cosh lk C cosh ri cosh rj

sinh ri sinh rj

>
1C cosh ri cosh rj

sinh ri sinh rj

D
1

2

�
tanh

ri

2
tanh

rj

2
C

1

tanh ri

2
tanh rj

2

�
:

Hence lk > 0 if and only if

e��k < tanh
ri

2
tanh

rj

2
:

It follows that lk > 0 is the same as

ln tanh
ri

2
C ln tanh

rj

2
> ��k :

Since in this case ui D�
R1

ri
1=sinh t dt D ln tanh ri

2
< 0, we see that lk > 0 if and

only if uiCuj>��k . Thus u.M";ı.�1; �2; �3//Df.u1;u2;u3/2R3
<0
juiCuj>��k ;

fi; j ; kg D f1; 2; 3gg. The last description shows that u.M";ı.�1; �2; �3// is a convex
polyhedron.

(ii) When "D 1, ıD 1 and �k 2 Œ
�
2
; ��, Thurston observed M1;1.�1; �2; �3/DR3

>0
.

Indeed, �i 2 Œ
�
2
; �� implies li > rj . Similarly, lj > ri . See Figure 12. Hence liC lj >

rj C ri > lk . This shows that l1 , l2 , l3 are the lengths of a hyperbolic triangle. In this
case ui D�

R1
ri

1=sinh t dt D ln tanh ri

2
< 0. Thus u.M1;1.�1; �2; �3//DR3

<0
.

Lemma 4.3 For "D˙1 and fixed .�1; �2; �3/ 2 I3
ı

, the Jacobi matrix A of the func-
tion .�1; �2; �3/D .�1.u/; �2.u/; �3.u//W u.M";ı.�1; �2; �3//!R3 is symmetric.
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Proof Consider the ."; "; ı/�triangle 4vivj qk in Figure 12 with edge lengths ri , rj ,
lk and opposite generalized angles aji , aij , �k . By applying the derivative cosine law
(3-10) to 4vivj qk , the third row of the matrix in (3-10) is

d�k D
��ı.�k/
p
� det G�

.�0".aji/dri C �
0
".aij /drj � dlk/:

Since �k is fixed, then d�kD 0. We have dlkD�
0
".aji/driC�

0
".aij /drj . For "D˙1,

we have ui D�
R1

ri
1=�"ı.t/ dt . Then dri D �"ı.ri/dui . Thus0@ dl1

dl2
dl3

1AD
0@ 0 �0".a23/ �

0
".a32/

�0".a13/ 0 �0".a31/

�0".a12/ �
0
".a21/ 0

1A0@ dr1

dr2

dr3

1A
D

0@ 0 �0".a23/ �
0
".a32/

�0".a13/ 0 �0".a31/

�0".a12/ �
0
".a21/ 0

1A0@ �"ı.r1/ 0 0

0 �"ı.r2/ 0

0 0 �"ı.r3/

1A0@ du1

du2

du3

1A :(4-8)

For the ."; "; "/�triangle 4v1v2v3 with angles �1 , �2 , �3 and edge lengths l1 , l2 , l3 ,
by the derivative cosine law (3-9) and (4-8), we have0@ d�1

d�2

d�3

1AD �1
p
� det Gl

0@ �1.l1/ 0 0

0 �1.l2/ 0

0 0 �1.l3/

1A0@ �1 �0".�3/ �
0
".�2/

�0".�3/ �1 �0".�1/

�0".�2/ �
0
".�1/ �1

1A
0@ 0 �0".a23/ �

0
".a32/

�0".a13/ 0 �0".a31/

�0".a12/ �
0
".a21/ 0

1A0@ �"ı.r1/ 0 0

0 �"ı.r2/ 0

0 0 �"ı.r3/

1A0@ du1

du2

du3

1A
DW

�1
p
� det Gl

N

0@ du1

du2

du3

1A :
To show the Jacobi matrix A of .�1.u/; �2.u/; �3.u// is symmetric, we only need to
check that N D .Nij / is symmetric. In fact

Nij D �1.li/�"ı.rj /.��
0
".ajk/C �

0
".�j /�

0
".aji//:

By the cosine law (3-5),

Nij D �1.li/�"ı.rj /

�
�
"� 0
"ı
.rk/C �

0
"ı
.rj /�

0
1
.li/

�"ı.rj /�1.li/

C
"� 0

1
.lj /C �

0
1
.li/�

0
1
.lk/

�1.li/�1.lk/

"� 0
"ı
.ri/C �

0
"ı
.rj /�

0
1
.lk/

�"ı.rj /�1.lk/

�
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D
"� 0

1
.lk/

�
� �2

1
.lk/C �

0
"ı
.rj /�

0
1
.lj /C �

0
"ı
.ri/�

0
1
.li/

�
�2

1
.lk/

C

�
� 02

1
.lk/� �

2
1
.lk/

�
� 0
"ı
.rj /�

0
1
.li/C "

2� 0
"ı
.ri/�

0
1
.lj /

�2
1
.lk/

:

Since "D˙1; �1.lk/D
1
2
elk �

1
2
e�lk D sinh lk , we have � 02

1
.lk/� �

2
1
.lk/D 1D "2 .

Therefore Nij is symmetric in the index i; j .

Lemma 4.4 Given .�1; �2; �3/ 2 I3
ı

, the Jacobi matrix A of

.�1; �2; �3/D .�1.u/; �2.u/; �3.u//W u.M";ı.�1; �2; �3//!R3

is negative definite in the following cases:

(i) "D�1 or

(ii) (Colin de Verdiére [4], Chow–Luo [3]) ."; ı/ D .1; 1/ and �i 2 Œ
�
2
; ��, i D

1; 2; 3.

We remark that the case (ii) for �i D � was first proved by Colin de Verdiére [4], and
was proved for �i 2 Œ

�
2
; �� in [3] using the Maple program. Our proof of (ii) is new.

Proof In the proof of Lemma 4.3, the Jacobi matrix AD .�1=
p
� det Gl/N . Hence

it is sufficient to show N is positive definite. First det N > 0. Indeed N is a
product of four matrixes. The first one and forth one are diagonal matrixes with
positive determinant. By Lemma 3.3, the determinant of the second matrix (nega-
tive of an angle Gram matrix) is positive. The determinant of the third matrix is
�0".a12/�

0
".a23/�

0
".a31/C�

0
".a32/�

0
".a21/�

0
".a13/ > 0. If "D�1, the above inequality

is obvious. If " D 1, for fi; j ; kg D f1; 2; 3g, �k , aij , aji are inner angles of a
hyperbolic triangle as in Figure 12. By the assumption �k 2 Œ

�
2
; ��, we must have

aij .0;
�
2
/. Therefore �0

1
.aij /D cos.aij / > 0. Thus the above inequality holds.

Since the set u.M";ı.�1; �2; �3// is connected and the det N ¤ 0, to show N

is positive definite, we only need to check N is positive definite at one point in
u.M";ı.�1; �2; �3//. We choose the point such that r1 D r2 D r3 D r .

Now in Figure 12 and Figure 13, in the ."; "; ı/–triangle 4vivj qk with edge lengths
r , r , lk and opposite generalized angles aij D aji , �k , let h be the geodesic length
realizing the distance between the edge vivj and the generalized vertex qk . In the
."; 1; ı/–triangle 4viRqk , where Rqk is perpendicular to vivj , by the cosine law
(3-5), we have

cos
�

2
D
�� 0
"ı
.r/C � 0

ı
.h/� 0".

lk

2
/

�ı.h/�".
lk

2
/

:
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qk

�k

r

aji vj

lk

Rvi
aij

r
h

Figure 13: Data for generalized circle packing

Thus � 0
ı
.h/D � 0

"ı
.r/=� 0".

lk

2
/. Also in 4viRqk , by the cosine law (3-5), we have

�0".aij /D
�"� 0

ı
.h/C � 0".

lk

2
/� 0
"ı
.r/

�".
lk

2
/�"ı.r/

D
� 0
"ı
.r/
�
� "C � 02" .

lk

2
/
�

� 0".
lk

2
/�. lk

2
/�"ı.r/

:

Since

�"C � 02" .l/D�"C

�
1

2
el
C

1

2
"e�l

�2

D

�
1

2
el
�

1

2
"e�l

�2

D �2
" .l/;

we have

�0".aij /D
� 0
"ı
.r/�".

lk

2
/

�"ı.r/�
0
".

lk

2
/
:(4-9)

By substituting (4-9) into N , let

N1 D

0@ �1 �0".�3/ �
0
".�2/

�0".�3/ �1 �0".�1/

�0".�2/ �
0
".�1/ �1

1A
0B@ 0 �".

l1

2
/=� 0".

l1

2
/ �".

l1

2
/=� 0".

l1

2
/

�".
l2

2
/=� 0".

l2

2
/ 0 �".

l2

2
/=� 0".

l2

2
/

�".
l3

2
/=� 0".

l3

2
/ �".

l3

2
/=� 0".

l3

2
/ 0

1CA :
Then N , N1 differ by left and right multiplication by diagonal matrices of positive
diagonal entries. We will show that the determinants of the 1� 1 and 2� 2 principal
submatrices of N1 are positive. This implies that the determinants of the 1� 1 and
2� 2 principal submatrices of N are positive. Thus N is positive definite.

Indeed, the determinant of the 1� 1 principal submatrix of N1 is

�0".�3/
�".

l2

2
/

� 0".
l2

2
/
C �0".�2/

�".
l3

2
/

� 0".
l3

2
/
:(4-10)
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The determinant of the 2� 2 principal matrix of N1 is

�
�02" .�3/� 1

��". l1

2
/

� 0".
l1

2
/

�".
l2

2
/

� 0".
l2

2
/
C
�
�0".�2/C �

0
".�1/�

0
".�3/

��". l2

2
/

� 0".
l2

2
/

�".
l3

2
/

� 0".
l3

2
/

(4-11)

C
�
�0".�1/C �

0
".�2/�

0
".�2/

��". l1

2
/

� 0".
l1

2
/

�".
l3

2
/

� 0".
l3

2
/
:

(i) If "D�1, then �0".�i/D cosh �i . Each term in (4-10) and (4-11) is positive. Hence
(4-10) and (4-11) are positive.

(ii) If "D 1, then �0".�i/D cos �i . We see that the expression in (4-10) is positive is
the same as

(4-12) cos �3 tanh
l2

2
C cos �2 tanh

l3

2
> 0:

By the cosine law, (4-12) is equivalent to

(4-13)
� cosh l3C cosh l1 cosh l2

sinh l1 sinh l2

sinh l2

1C cosh l2

C
� cosh l2C cosh l1 cosh l3

sinh l1 sinh l3

sinh l3

1C cosh l3
> 0:

By calculation, (4-13) is equivalent to

(4-14) cosh l1 >
cosh2 l2C cosh2 l3C cosh l2C cosh l3

2 cosh l2 cosh l3C cosh l2C cosh l3
:

Since l1 > jl2 � l3j, therefore cosh l1 > cosh.l2 � l3/. To show (4-14) holds, it is
enough to check

(4-15) cosh l2 cosh l3� sinh l2 sinh l3 �
cosh2 l2C cosh2 l3C cosh l2C cosh l3

2 cosh l2 cosh l3C cosh l2C cosh l3
:

We simplify the notation by introducing a WD cosh l2 > 1, b WD cosh l3 > 1. Then
(4-15) is rewritten as

(4-16) ab�

q
.a2� 1/.b2� 1/�

a2C b2C aC b

2abC aC b
:

(4-16) is equivalent to

(4-17) ab�
a2C b2C aC b

2abC aC b
�

q
.a2� 1/.b2� 1/:
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Since a> 1, b > 1, the left hand side of (4-17) is positive. To show (4-17) holds, we
square the two sides and simplify. We have

.ab4
C a4b� a3b2

� a2b3/C .a4
C b4

� 2a2b2/C .a3
C b3

� ab2
� a2b/� 0

,.abC 1/.a3
C b3

� a2b� ab2/C .a2
� b2/2 � 0

,.abC 1/.aC b/.a� b/2C .a2
� b2/2 � 0:

This shows that the expression in (4-10) is positive.

We see that the expression in (4-11) is positive is the same as

� sin2 �3 tanh
l1

2
tanh

l2

2
C
�

cos �2C cos �1 cos �3

�
tanh

l2

2
tanh

l3

2

C
�

cos �1C cos �2 cos �3

�
tanh

l1

2
tanh

l3

2
> 0:

(4-18)

By the cosine law, (4-18) is equivalent to

(4-19) � sin2 �3 tanh
l1

2
tanh

l2

2
C cosh l2 sin �1 sin �3 tanh

l2

2
tanh

l3

2

C cosh l1 sin �2 sin �3 tanh
l1

2
tanh

l3

2
> 0:

By the sine law, (4-19) is equivalent to�
cosh l1 sinh l2 tanh

l1

2
C cosh l2 sinh l1 tanh

l2

2

�
tanh

l3

2
> sinh l3 tanh

l1

2
tanh

l2

2

,
cosh l1 sinh l2

tanh l2

2

C
cosh l2 sinh l1

tanh l1

2

>
sinh l3

tanh l3

2

, cosh l1.1C cosh l2/C cosh l2.1C cosh l1/ > 1C cosh l3

,.cosh l1C cosh l2� 1/C .2 cosh l1 cosh l2� cosh l3/ > 0:

This is true since cosh l1 C cosh l2 > 1 and 2 cosh l1 cosh l2 > cosh l1 cosh l2 C

sinh l1 sinh l2 D cosh.l1 C l2/ > cosh l3 . This shows that the expression in (4-11)
is positive.

As a corollary of Lemma 4.3 and Lemma 4.4, we obtain the following result.

Corollary 4.5 Given .�1; �2; �3/2 I3
ı

, the differential 1–form
P3

iD1 �idui is closed
in u.M";ı.�1; �2; �3//. Furthermore, its integration w.u/ D

R uP3
iD1 �i dui is a

strictly concave function defined in u.M";ı.�1; �2; �3// if either

(i) "D�1 or

(ii) ."; ı/D .1; 1/ and �i 2 Œ
�
2
; ��, i D 1; 2; 3.
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Furthermore
@w

@ui
D �i :(4-20)

Let’s prove the rigidity of circle packing for "D�1, or ."; ı/D .1; 1/ and ˆW E!
Œ�

2
; ��. Fix ˆW E! Iı . For each r 2N";ı.ˆ/, define the function u in terms of r as

in (4-5) by
u.v/D�

Z 1
r.v/

1

�"ı.t/
dt:

The set of all values of u is u.N";ı.ˆ// which is an open convex set in RV due to
Lemma 4.2. To be more precise, let us label vertices V D fv1; : : : ; vng and denote
by fi; j ; kg 2 F a generalized triangle in F with vertices vi , vj , vk . Let ui D u.vi/.
Then u.N";ı.ˆ//D fu 2RV j .ui ;uj ;uk/ 2 u.M";ı.�i ; �j ; �k// if fi; j ; kg 2 F g is
convex since it is the intersection of the convex set

Q
fi;j ;kg2F u.M";ı.�i ; �j ; �k//

with affine spaces.

We now use the function in Corollary 4.5 to introduce a function W W u.N";ı.ˆ//!R
by defining

W .u/D
X

fi;j ;kg2F

w.ui ;uj ;uk/

where the sum is over all triangles in F with vertices fvi ; vj ; vkg. By Corollary 4.5,
W is smooth and strictly concave down in u.N";ı.ˆ// so that

@W

@ui
D zK.vi/

by (4-20) and the definition of zK .

By Lemma 2.1, the map rW W u.N";ı.ˆ//!RV is a smooth embedding. Thus the
map from fr 2N";ı.ˆ/g to f zK 2RV

>0
g is a smooth injective map.

4.3 The image of zK for "D�1

To prove that the image X D f zK.v/ j v 2 V g D RV
>0

for "D�1, we will show that
X is both open and closed in RV

>0
. By definition, X � RV

>0
and X is open due to

the injectivity of the map from fr 2N�1;ı.ˆ/g to RV
>0

. It remains to prove that X is
closed in RV

>0
. To this end, let us first establish the following lemma.

Lemma 4.6 Let "D�1 and .�i ; �j ; �k/ be given so that .�i ; �j ; �k/D .�i.ri ; rj ; rk/,
�j .ri ; rj ; rk/; �k.ri ; rj ; rk// are considered as functions of ri ; rj ; rk 2 J�ı . Then

lim
rk!1

�k.ri ; rj ; rk/D 0

and the convergence is uniform.
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Proof We only need to check that for constants a; b; c 2 J�ı the following holds.

(1) If lim ri D a; lim rj D b; lim rk D1, then lim �k D 0.

(2) If lim ri D c; lim rj D1; lim rk D1, then lim �k D 0.

(3) If lim ri D1; lim rj D1; lim rk D1, then lim �k D 0.

The strategy of the proof is the same for all three cases. First, in 4Pj PkQi , 4PkPiQj ,
4PiPj Qk of type .�1;�1; ı/, by the cosine law (3-4), the lengths li , lj , lk can be
written as functions of ri , rj , rk :

cosh li D 2�2
ı

�
�i

2

�
��ı.rj /��ı.rk/�

1

2
.erj�rk C erk�rj /;

cosh lj D 2�2
ı

�
�j

2

�
��ı.rk/��ı.ri/�

1

2
.erk�ri C eri�rk /;

cosh lk D 2�2
ı

�
�k

2

�
��ı.ri/��ı.rj /�

1

2
.eri�rj C erj�ri /:

When the limits of ri , rj , rk are given, we can find the limits of li , lj , lk . Then in
4PiPj Pk (of type .�1;�1;�1/), by the cosine law (3-5), write �k as a function of
li , lj , lk :

cosh �k D
cosh lk C cosh li cosh lj

sinh li sinh lj
:

Then we find the limit of �k .

(1) If lim ri D a, lim rj D b , lim rk D1, then

lim cosh li D lim
�

2�2
ı

�
�i

2

�
��ı.b/

1

2
erk �

1

2
erk�b

�
D lim

1

2
erk

�
2�2
ı

�
�i

2

�
��ı.b/� 1

�
:

Since cosh li > 0, we have 2�2
ı
.�i

2
/��ı.b/ � 1 > 0. When lim rk D 1, we have

lim cosh li D1.

By symmetry lim cosh lj D1. Furthermore lim cosh lk is finite. Therefore lim li D

lim lj D1, lim lk is finite. Hence

lim cosh �k D lim
cosh lk

sinh li sinh lj
C 1D 1:

Therefore lim �k D 0.
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(2) If lim ri D c; lim rj D1; lim rk D1, then

lim cosh li D lim
�

2�2
ı

�
�i

2

�
1

4
erjCrk �

1

2
.erj�rk C erk�rj /

�
D lim

1

2
erjCrk

�
�2
ı

�
�i

2

�
� e�2rk � e�2rj

�
D lim

1

2
erjCrk�2

ı

�
�i

2

�
D1;

lim cosh lj D lim
�

2�2
ı

�
�j

2

�
��ı.c/

1

2
erk �

1

2
erk�c

�
D lim erk

�
�2
ı

�
�j

2

�
��ı.c/�

1

2
e�c

�
D1:

Here we use the same argument as in (1).

By the same calculation of lim cosh lj , we see that lim cosh lk D lim erj ck D1 for
some constant ck . Hence

lim cosh �k D lim
cosh lk

sinh li sinh lj
C 1

D lim
cosh lk

cosh li cosh lj
C 1

D lim
erj ck

erk cj erjCrk ci
C 1

D 1:

Therefore lim �k D 0.

(3) If lim ri D1, lim rj D1, lim rk D1, by the same calculation of lim cosh li
in (2), we see that

lim cosh lkD lim eriCrj ak ; lim cosh lj D lim erkCri aj ; lim cosh liD lim erjCrk ai

for some constants

lim cosh �k D lim
cosh lk

sinh li sinh lj
C 1D lim

cosh lk

cosh li cosh lj
C 1

D lim
eriCrj ak

erkCri aj erjCrk ai
C 1D 1:

Therefore lim �k D 0.
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To show that X is closed in RV
>0

, take a sequence of radius r .m/ in Nˆ;�1 such
that limm!1

zK.m/ 2RV
>0

. To prove closedness, it is sufficient to show that there is a
subsequence, say r .m/ , so that limm!1 r .m/ is in N�1;ı.ˆ/.

Suppose otherwise, there is a subsequence, say r .m/ so that limm!1 r .m/ is in the
boundary of N�1;ı.ˆ/. For ı D˙1, there are two possibilities that either for some
v 2 V , limm!1 r .m/.v/D1 or there is an edge e such that l

.m/
e D 0. For ı D 0,

although r .m/ ’s are allowed to be negative, the limit of r .m/ can not be �1 since
when �k is given, the condition in Lemma 3.6 (3)

�k > exp.r .m/i /C exp.r .m/j /

implies that r
.m/
i is bounded away from �1. Therefore there are only those two

possibilities as in case ı D˙1.

In the first possibility, by Lemma 4.6 we see each generalized angle incident to the vertex
v converges to 0. Hence limm!1

zK.m/.v/D 0. This contradicts the assumption that
limm!1

zK.m/ 2RV
>0

.

In the second possibility, in a hyperbolic right-angled hexagon with lengths li , lj , lk
and opposite generalized angle �i , �j , �k , by the cosine law we see that

cosh �j D
cosh lj C cosh li cosh lk

sinh li sinh lk

>
cosh li cosh lk

sinh li sinh lk

�
cosh li

sinh li
:

Hence we have limli!0 �j D1. Hence the generalized discrete curvature containing
�j converges to 1. This contradicts the assumption that limm!1

zK.m/ 2RV
>0

.

Now we have finished the proof of Theorem 1.4.

5 A proof of Theorem 1.6

The proof is based on constructing a strictly concave energy function on the space of all
generalized hyperbolic triangles of type ."; "; ı/ so that its gradient is the generalized
angles. Then using Lemma 2.1 on injectivity of gradient, we establish Theorem 1.6.
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5.1 An energy functional on the space of triangles

Fix a type ."; "; ı/2f�1; 0; 1g3 . Consider ."; "; ı/ type generalized hyperbolic triangles
whose edge lengths are l1 , l2 , l3 and opposite angles �1; �2; �3 so that the angle �i

faces li and the type of �3 angle is ı . For a fixed angle �3 , all values of the two edge
lengths .l1; l2/ form the set D";ı.�3/. For the definition of D";ı.�3/, see Section 3.

For h 2 R, make a change of variables .l1; l2/ to .w1; w2/ and .�1; �2/ to .a1; a2/

as follows. Let i D 1; 2,

ai D

Z �i

1

�h
" .t/ dt(5-1)

where �".t/D
R t

0 cos.
p
"x/ dx and

wi D

Z li

1

�h�1
"ı .t/ dt(5-2)

where �"ı.t/D 1
2
et�

1
2
"ıe�t , as introduced in Section 3. By the construction, the maps

.l1; l2/ to w D .w1; w2/ and .�1; �2/ to aD .a1; a2/ are diffeomorphisms. Thus the
cosine law relating l to � can be considered, with �3 fixed, as a smooth map aD a.w/

defined on w.D";ı.�3//.

Lemma 5.1 Under the above assumption, for a fixed angle �3 , and any h 2 R, the
differential 1–form a1dw2 C a2dw1 is closed in w.D";ı.�3//. Furthermore, the
integration

F�3;h.w1; w2/D

Z .w1;w2/

.1;1/

.a1dw2C a2dw1/

is strictly concave down in w.D";ı.�3//. In particular

@F�3;h

@wi
D aj D

Z �j

1

�h
" .t/ dt(5-3)

for fi; j g D f1; 2g.

Proof If �3 is fixed, then d�3 D 0. By the derivative cosine law (3-9) we have�
dl1
dl2

�
D

�1
p
� det Gl

�
�"ı.l1/ 0

0 �"ı.l2/

��
" � 0"".l3/

� 0"".l3/ "

��
d�1

d�2

�
D

�1
p
� det Gl

�
�"ı.l1/ 0

0 �"ı.l2/

��
� 0"".l3/ "

" � 0"".l3/

��
d�2

d�1

�
:
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Since dwi D �
h�1
"ı

.li/dli , dai D �
h
" .�i/d�i , for i D 1; 2, then�

dw1

dw2

�
D

�1
p
� det Gl

�
�h
"ı
.l1/ 0

0 �h
"ı
.l2/

��
� 0"".l3/ "

" � 0"".l3/

�
�
��h
" .�2/ 0

0 ��h
" .�1/

��
da2

da1

�
DW

�1
p
� det Gl

A

�
da2

da1

�
:

Since A12 D �
h
"ı
.l1/"�

�h
" .�1/ D �

h
"ı
.l2/"�

�h
" .�2/ D A21 by the sine law (3-6), the

matrix A is symmetric. Thus the differential 1–form a1dw2 C a2dw1 is closed.
Therefore the function F�3;h.w1; w2/ is well defined.

The above calculation shows that the Hessian of the function F�3;h.w1; w2/ is the
matrix �

p
� det GlA

�1 . To show the function F�3;h.w1; w2/ is strictly concave down,
we need to check that A�1 is positive definite. It is equivalent to show that A is positive
definite. By forgetting the two diagonal matrices, it is enough to show

B D

�
� 0"".l3/ "

" � 0"".l3/

�
is positive definite. Since � 0"".l3/D 1=2.el3 C �2e�l3/ > 0 and

det B D � 02"".l3/� "
2
D

�
1

2
el3 C

1

2
""e�l3

�2

� "2
D

�
1

2
el3 �

1

2
""e�l3

�2

> 0;

the matrix B is positive definite.

5.2 A proof of Theorem 1.6

Now the proof of Theorem 1.6 follows from the routine variational framework. Let
us recall the set up in Section 1.5. Suppose .†;G/ is a cell decomposed surface so
that the sets of all vertices, edges and 2–cells are V , E , F respectively. The dual
decomposition is G� with vertices V �.Š F /. Elements in V � are denoted by f �

where f 2 F . A quadrilateral .v; v0; f �; f 0�/ 2 V � V � V � � V � in † satisfies
vv0 2E; f > vv0 and f 0 > vv0 .

Now fix a type ."; "; ı/ and a function � W E! VIı . The set of all circle pattern metrics
is E";ı.�/ D fr 2 .J"ı/V

�

j .ri ; rj / 2 D";ı.�.vivj // whenever fi ; fj share an edgeg.
For any circle pattern metric r 2 E";ı.�/ and any quadrilateral .v; v0; f �; f 0�/ 2
V � V � V � � V � where vv0 2 E; f > vv0 and f 0 > vv0 , construct a type ."; "; ı/
generalized hyperbolic triangle 4f �f 0�v so that the lengths of f �v and f 0�v are
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r.f �/, r.f 0�/, and the generalized angle at v is �.vv0/ of type ı . Realize the
quadrilateral .v; v0; f �; f 0�/ geometrically as the metric double of 4f �vf 0� along
the edge f �f 0� . Now isometrically glue all these geometric quadrilaterals along edges.
The result is a polyhedral surface. Recall that for h 2R, the Kh�curvature of r

KhW V
�
!R

is defined by (1-3).

For h 2R, make a change of parameter from r 2 E";ı.�/ to w Dw.r/ 2w.E";ı.�//
so that w.r/.x/ D

R r.x/
1 �h�1

"ı
.s/ ds is given by (5-2). We now use Lemma 5.1 to

construct a smooth strictly concave function W W w.E";ı.�//! R so that rW jw is
the generalized curvature Kh of r where w Dw.r/. Then using Lemma 2.1, we see
that Theorem 1.6 follows.

Here is the construction. For w D w.r/ 2 w.E";ı.�// and for each quadrilateral
.v; v0; f �; f 0�/ in †, we define the F-energy of it in r metric to be

F�.vv0/;h.w.r.f
�//; w.r.f 0�///

where F�;h is given by Lemma 5.1. The function W W w D w.r/ 2 w.E";ı.�//! R
is the sum of F-energies of all quadrilateral .v; v0; f �; f 0�/ in r metric. By the
construction, W is smooth and strictly concave. By (5-3) we have

rW jw DKhjr

where w D w.r/. This ends the proof of Theorem 1.6.

Appendix A Formulas of cosine and sine laws

�3

l1

�2

l3

�1

l2

For fi; j ; kg D f1; 2; 3g,

cosh li D
cos �i C cos �j cos �k

sin �j sin �k

;

cos �i D
� cosh li C cosh lj cosh lk

sinh lj sinh lk
;

sin �1

sinh l1
D

sin �2

sinh l2
D

sin �3

sinh l3
:
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�3

l1

�2

l3

�1

l2

For fi; j g D f1; 2g,

sinh li D
cos �i C cos �j cosh �3

sin �j sinh �3

;

cosh l3 D
cosh �3C cos �1 cos �2

sin �1 sin �2

;

cos �i D
� sinh li C sinh lj cosh l3

cosh lj sinh l3
;

cosh �3 D
cosh l3C sinh l1 sinh l2

cosh l1 cosh l2
;

sin �1

cosh l1
D

sin �2

cosh l2
D

sinh �3

sinh l3
:

�3

l1

�2

l3

�1

l2

For fi; j g D f1; 2g,

sinh li D
cosh �i C cosh �j cos �3

sinh �j sin �3

;

cosh l3 D
cos �3C cosh �1 cosh �2

sinh �1 sinh �2

;

cos �i D
sinh li C sinh lj cosh l3

cosh lj sinh l3
;

cos �3 D
� cosh l3C sinh l1 sinh l2

cosh l1 cosh l2
;

sinh �1

cosh l1
D

sinh �2

cosh l2
D

sin �3

sinh l3
:

�3

l1

�2

l3

�1

l2

For fi; j ; kg D f1; 2; 3g,

cosh li D
cosh �i C cosh �j cosh �k

sinh �j sinh �k

;

cosh �i D
cosh li C cosh lj cosh lk

sinh lj sinh lk
;

sinh �1

sinh l1
D

sinh �2

sinh l2
D

sinh �3

sinh l3
:
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�3

2
l1

�2

l3

�1

l2

For fi; j g D f1; 2g,

eli

2
D

cos �i C cos �j
�3 sin �j

; cos �i D
�eli C elj cosh l3

elj sinh l3
;

cosh l3 D
1C cos �1 cos �2

sin �1 sin �2

;
�2

3

2
D

cosh l3� cosh.l1� l2/

el1Cl2

4

;

sin �1

el1

2

D
sin �2

el2

2

D
�3

sinh l3
:

�3

2 l1

�2

l3

�1

l2

el1

2
D

cos �1C cosh �2

�3 sinh �2

cos �1 D
�el1 C el2 sinh l3

el2 cosh l3

el2

2
D

cosh �2C cos �1

�3 sin �1

cosh �2 D
el2 C el1 sinh l3

el1 cosh l3

sinh l3 D
1C cos �1 cosh �2

sin �1 sinh �2

�2
3

2
D

sinh l3C sinh.l2� l1/

el1Cl2

4

sin �1

el1

2

D
sinh �2

el2

2

D
�3

cosh l3
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�3

2 l1

�2

l3

�1

l2

For fi; j g D f1; 2g,

eli

2
D

cosh �i C cosh �j
�3 sinh �j

; cosh �i D
eli C elj cosh l3

elj sinh l3
;

cosh l3 D
1C cosh �1 cosh �2

sinh �1 sinh �2

;
�2

3

2
D

cosh l3C cosh.l1� l2/

el1Cl2

4

;

sinh �1

el1

2

D
sinh �2

el2

2

D
�3

sinh l3
:

�3

l1

�2

2

l3

�1

2

l2

For fi; j g D f1; 2g,

eli

2
D

1C cos �3

�j sin �3

;
�2

i

4
D

eli � el3�lj

eljCl3
;

el3

2
D

1C cos �3

�1�2

; sin2 �3

2
D el3�l1�l2 ;

�1

el1
D
�2

el2
D

sin �3

el3
:
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�3

l1

�2

2
l3

�1

2

l2

For fi; j g D f1; 2g,

eli

2
D

1C cosh �3

�j sinh �3

;

el3

2
D

1C cosh �3

�1�2

;

�2
i

4
D

eli C el3�lj

eljCl3
;

sinh2 �3

2
D el3�l1�l2 ;

�1

el1
D
�2

el2
D

sinh �3

el3
:

�3

2 l1

�2

2
l3

�1

2

l2

For fi; j ; kg D f1; 2; 3g,

eli

2
D

2

�j�k

;

�2
i

4
D eli�lj�lk ;

�1

el1
D
�2

el2
D
�3

el3
:

Appendix B Proofs of Lemma 3.3 and Lemma 3.5

For simplicity, we abuse the notation. Let

g.�i/ WD �"i
.�i/; g0.�i/ WD �

0
"i
.�i/;

f .lk/ WD �"i"j .lk/; f 0.lk/ WD �
0
"i"j

.lk/;

for fi; j ; kg D f1; 2; 3g, where g , f represent functions which depend on the type of
generalized vertices.

In this simplified notation we have

� det Gl D det

0@ "1 f 0.l3/ f
0.l2/

f 0.l3/ "2 f 0.l1/

f 0.l2/ f
0.l1/ "3

1A
D "1"2"3C 2f 0.l1/f

0.l2/f
0.l3/� "1f

02.l1/� "2f
02.l2/� "3f

02.l3/:
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If "3 D 0, then g.�3/ D �3; f .l1/ D
el1

2
; f .l2/ D

el2

2
. By the cosine law (3-4), we

have

�2
3

2
D
f 0.l3/�

1
2
"1el1�l2 �

1
2
"2el2�l1

f .l1/f .l2/
:

Thus the negative of the right hand side of (3-7) is

f 2.l1/f
2.l2/g

2.�3/D f
2.l1/f

2.l2/�
2
3

D f 2.l1/f
2.l2/

2f 0.l3/� "1el1�l2 � "2el2�l1

f .l1/f .l2/

D f .l1/f .l2/.2f
0.l3/� "1el1�l2 � "2el2�l1/

D
el1

2

el2

2
.2f 0.l3/� "1el1�l2 � "2el2�l1/

D 2
el1

2

el2

2
f 0.l3/� "1

e2l1

4
� "2

e2l2

4

D� det Gl :

If "3 D˙1, then g2.�3/D "3.1�g02.�3//. And we have

f 2.li/�f
02.li/D

�
1

2
el
�

1

2
"j"ke�l

�2

�

�
1

2
el
C

1

2
"j"ke�l

�2

D�"j"k :(B-1)

Thus the negative of the right hand side of (3-7) is

f 2.l1/f
2.l2/g

2.�3/D f
2.l1/f

2.l2/.1�g02.�3//

D "3.f
2.l1/f

2.l2/� .�"3f
0.l3/Cf

0.l1/f
0.l2//

2/

D "3..f
02.l1/� "2"3/.f

02.l2/� "3"1/

�.�"3f
0.l3/Cf

0.l1/f
0.l2//

2/

D "3."1"2"
2
3C 2"3f

0.l1/f
0.l2/f

0.l3/

�"1"3f
02.l1/� "2"3f

02.l2/� "
2
3f
02.l3//

D� det Gl :

The second equality is due to the cosine law, the third equality is due to (B-1) and the
last equality is due to "3 D˙1.
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And we have

� det G� D det

0@ �1 g0.�3/ g0.�2/

g0.�3/ �1 g0.�1/

g0.�2/ g0.�1/ �1

1A
D� 1C 2g0.�1/g

0.�2/g
0.�3/Cg02.�1/Cg02.�2/Cg02.�3/:

Notice that we have

g02.�i/C "ig
2.�i/D 1:(B-2)

Thus negative of the right hand side of (3-8) is

g2.�1/g
2.�2/f

2.l3/D g2.�1/g
2.�2/.f

02.l3/� "1"2/

D .g0.�3/Cg0.�1/g
0.�2//

2
�g2.�1/g

2.�2/"1"2

D .g0.�3/Cg0.�1/g
0.�2//

2
� .1�g02.�1//.1�g02.�2//

D� det G� :

The second equality is due to the cosine law and the third equality is due to (B-2).

We can prove either one of the derivative cosine law (3-9) and (3-10). The other one
will be a corollary due to Lemma 3.4. For example, if (3-9) is true, we have0@ dl1

dl2
dl3

1ADM Gl

0@ d�1

d�2

d�3

1A :
It is equivalent to 0@ d�1

d�2

d�3

1AD .M Gl/
�1

0@ dl1
dl2
dl3

1A :
By Lemma 3.4, .MGl/

�1 DM G� . Thus we obtained (3-10):0@ d�1

d�2

d�3

1ADM G�

0@ dl1
dl2
dl3

1A :
In the following, we give a proof of (3-9). By the cosine law (3-3) we have

f 0.li/g.�j /g.�k/D g0.�i/Cg0.�j /g
0.�k/:
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After differentiating the two sides we have

f 00.li/g.�j /g.�k/dli Cf
0.li/g

0.�j /g.�k/d�j Cf
0.li/g.�j /g

0.�k/d�k

D g00.�i/d�i Cg00.�j /g
0.�k/d�j Cg0.�j /g

00.�k/d�k

which is equivalent to

(B-3) f 00.li/g.�j /g.�k/dli

D g00.�i/d�i C
�
g00.�j /g

0.�k/�f
0.li/g

0.�j /g.�k/
�
d�j

C
�
g0.�j /g

00.�k/�f
0.li/g.�j /g

0.�k/
�
d�k :

By the cosine law (3-3), the coefficient of d�j in (B-3) is

g00.�j /g
0.�k/�f

0.li/g
0.�j /g.�k/

D g00.�j /g
0.�k/�

g0.�i/Cg0.�j /g
0.�k/

g.�j /g.�k/
g0.�j /g.�k/

D
1

g.�j /

�
.g.�j /g

00.�j /�g02.�j //g
0.�k/�g0.�i/g

0.�j /
�
:(B-4)

For g.�/D sin � , or sinh � , or � , we always have

g.�j /g
00.�j /�g02.�j /D�1:

Hence (B-4) is

1

g.�j /
.�g0.�k/�g0.�i/g

0.�j //D�g.�i/f .lk/

due to the cosine law (3-3). By symmetry, the similar formula holds for the coefficient
of d�k . Hence (B-3) is

f 00.li/g.�j /g.�k/dli D g00.�i/d�i �g.�i/f .lk/d�j �g.�i/f .lj /d�k :

By the definition of f , we have f 00 D f . Thus

dli D
�g.�i/

f .li/g.�j /g.�k/

�
�

g00.�i/

g.�i/
d�i Cf .lk/d�j Cf .lj /d�k

�
D

�g.�i/

f .li/g.�j /g.�k/
."id�i Cf .lk/d�j Cf .lj /d�k/:

This proves (3-9).
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