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Flats and the flat torus theorem in systolic spaces

TOMASZ ELSNER

We prove the Systolic Flat Torus Theorem, which completes the list of basic properties
that are simultaneously true for systolic geometry and CAT.0/ geometry.

We develop the theory of minimal surfaces in systolic complexes, which is a powerful
tool in studying systolic complexes. We prove that flat minimal surfaces in a systolic
complex are almost isometrically embedded and introduce a local condition for flat
surfaces which implies minimality. We also prove that minimal surfaces are stable
under small deformations of their boundaries.

20F65, 20F67; 53C21

1 Introduction

Systolic complexes were introduced in Januszkiewicz and Świa̧tkowski [8] and, inde-
pendently, in Haglund [5]. They are connected, simply connected simplicial complexes
satisfying certain local combinatorial conditions (see Definition 2.1 for details) which
are simplicial analogues of nonpositive curvature. Systolic complexes have many
properties similar to properties of CAT.0/–spaces. However, systolicity neither implies,
nor is implied by nonpositive curvature of the complex equipped with the piecewise
Euclidean metric for which the simplices are regular Euclidean simplices.

In the study of CAT.0/–spaces it is often important to study their flat subspaces, ie
isometrically embedded Euclidean spaces En , n � 2. In the present paper we study
flat subspaces of systolic complexes. A 2–dimensional flat in a systolic complex X

is the equilaterally triangulated Euclidean plane (denoted E2
4 ) whose 1–skeleton is

isometrically embedded into X .1/ . One does not need to consider higher dimensional
flats, since systolic complexes do not contain flats of dimension larger than 2, ie there
are no systolic triangulations of En for n� 3 and there are no properly discontinuous
actions of Zn on a systolic complex for n� 3 (see Januszkiewicz–Świa̧tkowski [9]; in
Section 6 we give an alternative proof of the latter fact).

One of the main results of this paper is the Systolic Flat Torus Theorem, which
completes the list of basic properties that are simultaneously true for systolic geometry
and CAT.0/ geometry.
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Systolic Flat Torus Theorem (See Theorem 6.1.) Let G be a noncyclic free abelian
group acting properly discontinuously by simplicial automorphisms on a systolic com-
plex X . Then:

(1) G is isomorphic to Z2 .

(2) There is a G –invariant flat in X . Any two such flats are at Hausdorff distance 1.

(3) A vertex v 2 X is contained in a G–invariant flat if and only if it satisfies the
minimal displacement condition:

d.v;g.v//D min
x2X .0/

d.x;g.x// for any g 2G :

Part (2) of the theorem is elaborated in Theorem A, which characterizes flats at finite
Hausdorff distance from one another. It states that not only the flats (the images of
the embeddings of E2

4 into X ) are at Hausdorff distance 1, but also the embeddings
themselves are at distance 1. Hence the G–invariant flat given by the Systolic Flat
Torus Theorem is in some sense unique.

Theorem A (See Theorem 5.4.) Let F and F 0 be flats in a systolic complex X at
finite Hausdorff distance. Then there is a simplicial isometry f W F ! F 0 such that

dX .v; f .v//� 1 for any vertex v 2 F :

In particular, F and F 0 are at Hausdorff distance at most 1.

The main tool used in the proof of the Systolic Flat Torus Theorem is the theory of
minimal surfaces, developed in the first part of the paper (Sections 2–4). Given a
cycle 
 in the 1–skeleton of X , a surface spanning 
 is a simplicial map S W 4!X

such that 4 is a triangulation of a 2–disc and S maps @4 isomorphically onto 
 .
The surface S is minimal if 4 has the minimal number of triangles. Since we are
mainly interested in studying flats in X , the surfaces of special interest to us are flat
surfaces, ie those whose domains are simplicial discs 4� E2

4 such that the 1–skeleta
4.1/ are isometrically embedded into the 1–skeleton of E2

4 .

We answer the following questions that naturally arise when considering flat minimal
surfaces:

(1) Is it possible to characterize flat minimal surfaces in local terms?

(2) Is a flat minimal surface an isometric embedding?

(3) Is a flat minimal surface spanning a given cycle 
 unique?

(4) If cycles 
1 and 
2 are close to each other, then are minimal surfaces spanning
them close to each other?

Geometry & Topology, Volume 13 (2009)



Flats and the flat torus theorem in systolic spaces 663

The following theorems summarize more precise, but more technical results from the
main text, pertaining to the discussion above. Theorem B presents a local characteriza-
tion of flat minimal surfaces (condition (a) in the theorem) and provides the positive
answer to a slightly weakened version of question (2) (the interior of a flat minimal
surface is isometrically embedded).

Theorem B (See Theorem 4.12.) Let 4� E2
4 be a simplicial disc such that 4.1/ is

isometrically embedded into the 1–skeleton of E2
4 and @4 has no diagonals (ie non-

consecutive vertices of @4 are not connected by an edge in 4). Then for an arbitrary
simplicial map S W 4!X to a systolic complex X the following are equivalent:

(a) The restriction of S to any simplicial disc D �4 such that diam D � 3 is an
isometric embedding.

(b) The restriction of S to the subcomplex spanned by the internal vertices of 4 is
an isometric embedding.

(c) The map S is a minimal surface.

The answer to question (3) is negative – typically, there is a lot of minimal surfaces
spanning given cycle in a systolic complex. However, we proved that if one of the
surfaces is flat, then they are pairwise at Hausdorff distance 1. Moreover, they are
equivalent in the following sense:

Theorem C (See Theorem 4.12.) Let S W 4 ! X be a flat minimal surface in a
systolic complex X and let @4 have no diagonals. Then for any minimal surface
S 0W 40!X spanning the same cycle as S we have 40D4 and dX .S.v/;S

0.v//� 1

for any vertex v 24D40 .

Theorem D describes the stability of flat minimal surfaces under small deformations
of their boundaries. This is a simplified version of Theorem 4.16, where we do not
assume that S and S 0 are flat and do not use the assumption that 
 and 
 0 have equal
lengths.

Theorem D (See Theorem 4.16.) Let 
 and 
 0 be cycles of equal lengths in a
systolic complex X such that they have no diagonals. Denote by 'W 
!
 0 a simplicial
isomorphism. If S and S 0 are flat minimal surfaces spanning 
 and 
 0 , respectively,
then:

hdistX .Im S; Im S 0/� max
v2
 .0/

dX .v; '.v//C 1
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The techniques developed in this paper have more applications in the theory of systolic
spaces.

As a consequence of Theorem B we obtain the result proved by Piotr Przytycki in [10]:
a systolic complex admitting a geometric group action is Gromov-hyperbolic if and
only if it does not contain a flat (Corollary 4.14).

For systolic spaces one has a natural modification of the Isolated Flats Property (studied
by G C Hruska [6; 7] for CAT.0/–spaces). In the next paper [4] we examine systolic
spaces with the Isolated Flats Property admitting a geometric action of a group G . As
a consequence of the Systolic Flat Torus Theorem we obtain a bijective correspondence
between the equivalence classes of flats in X (two flats are equivalent if they are at
finite Hausdorff distance) and the maximal virtually abelian rank 2 subgroups in G . We
use Theorem B and Theorem D to prove that such a group G is relatively hyperbolic
with respect to its maximal virtually abelian rank 2 subgroups and to characterize
cocompact systolic complexes with the Isolated Flats Property as the complexes which
do not contain isometrically embedded triplanes (this is a systolic analogue of the
2–dimensional CAT.0/ result of D Wise, contained in [6]).

In [3] we apply Theorem B to obtain a classification of individual simplicial isometries
of systolic complexes. We show that such an isometry is either elliptic (ie fixes a
simplex) or hyperbolic (ie fixes a “thick axis” – certain subcomplex contained in
1–neighbourhood of a bi-infinite geodesic in X .1/ ).

In the forthcoming paper [2] we use Theorem B to prove the ı–thin tetrahedra property
for systolic spaces, which is a higher dimensional analogue of the ı–thin triangles
property. It states that given any 4 vertices in a systolic complex X , a tetrahedron
obtained by joining the vertices pairwise by geodesics in X .1/ and then spanning
minimal surfaces on the four arising geodesic triangles satisfies the following property:
any of its 2–dimensional faces (ie any of the minimal surfaces) is in ı–neighbourhood
of the union of the remaining three faces.

Acknowledgements The author thanks Tadeusz Januszkiewicz, Jacek Świa̧tkowski
and especially Jan Dymara for many helpful discussions and advice.

The author was partially supported by Polish Ministry of Science and Higher Education,
MNiSW grants N201 037 32/2679 and N201 012 32/0718.

2 Systolic complexes and groups

In this section we recall the definition and main properties of systolic complexes
and systolic groups, proved in Januszkiewicz–Świa̧tkowski [8; 9]. Theorem 2.4 is
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a variation of [9, Theorem 9.2] and is crucial for the present paper. The remaining
material here is just for reader’s convenience.

Let X be a simplicial complex and � a simplex of X . The link of X at � , denoted
X� , is the subcomplex of X consisting of all simplices that are disjoint from � and
together with � span a simplex of X . The (closed) star of � is the union of all (closed)
simplices containing � . A simplex � is the join of its faces �1; �2� � (what we denote
� D �1 � �2 ) if �1 and �2 are disjoint and their union spans � . A complex X is the
join of its disjoint subcomplexes K;L�X (denoted X DK �L) if X consists of all
simplices of the form � � � , where � and � are simplices of K and L, respectively.

A simplicial complex X is flag if every finite set of its vertices pairwise connected by
edges spans a simplex of X . A subcomplex Y �X is full if any simplex � �X with
all vertices in Y is contained in Y .

A cycle in X is a subcomplex 
 isomorphic to a triangulation of a circle. The length
of 
 (denoted j
 j) is the number of its edges. A diagonal of a cycle is an edge joining
its two nonconsecutive vertices.

Whenever we refer to a metric on a simplicial complex, we actually mean the 1–skeleton
of the complex equipped with the combinatorial metric (ie the geodesic metric in which
all edges have lengths 1). Thus for a simplicial complex X the symbol dX denotes the
combinatorial metric on X .1/ . Moreover, when we refer to a “geodesic” in a simplicial
complex X , we mean a geodesic in X .1/ having both endpoints in X .0/ .

Definition 2.1 (See Januszkiewicz–Świa̧tkowski [9, Section 2].) A simplicial com-
plex X is called:

� 6–large if it is flag and every cycle 
 in X of length 4� j
 j< 6 has a diagonal;

� locally 6–large if the link of X at every (nonempty) simplex is 6–large;

� systolic if it is locally 6–large, connected and simply connected.

A group acting simplicially, properly discontinuously and cocompactly on a systolic
complex is called a systolic group.

As the following fact shows, an equivalent definition of systolicity can be obtained by
replacing the words “locally 6–large” with “6–large”.

Fact 2.2 (See Januszkiewicz–Świa̧tkowski [8, Proposition 1.4].) Every systolic com-
plex is 6–large. In particular, a cycle of length smaller than 6 in a systolic complex
bounds a triangulated disc with no internal vertices.
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The original definition of systolicity by Januszkiewicz and Świa̧tkowski introduces
notions of k –largeness and k –systolicity for k�6, obtained by the natural modification
of Definition 2.1 (then systolic complex means 6–systc complex). However, k –systolic
complexes for k � 7 are Gromov-hyperbolic by [8, Theorem 2.1], so they do not
contain either flats, or even wide flat surfaces (see Definition 4.1) and do not admit
properly discontinuous actions of Z2 . From our point of view they are therefore not
interesting.

Theorem 2.3 Let X be a finite dimensional systolic complex. Then:

� [8, Theorem 4.1(1)] X is contractible.

� [9, Corollary 2.3(4)] Every full subcomplex of X is aspherical.

It was proved in Januszkiewicz–Świa̧tkowski [8, Theorem 6.1] that every connected,
locally 6–large, finite dimensional complex of groups is developable. Using this result
many constructions of compact complexes with systolic universal coverings were
presented (see [8, Corollaries 19.2 and 19.3]).

The next theorem follows from the proof of Januszkiewicz–Świa̧tkowski [9, Theorem
9.2]. However, as it is an important result for the present paper, we provide its proof
below.

Theorem 2.4 Let X be a systolic complex and S a triangulation of a 2–sphere. Then
any simplicial map f W S!X can be extended to a simplicial map F W B!X , where
B is a triangulation of a 3–ball such that @B D S and B has no internal vertices.

Proof We proceed by induction on the area (the number of triangles) of S . The
smallest possible area is 4 – then S is the 2–skeleton of a tetrahedron and the statement
follows from the flagness of X . The case when S has area greater than 4 we divide
into two subcases:

Case 1 S is not flag.

As the case of the 2–skeleton of a tetrahedron has already been discussed, there exists a
cycle 
 of length 3 in S not bounding a triangle. Thus 
 disconnects S into two discs
D1 and D2 (@D1 D @D2 D 
 ). We glue a single triangle to Di , i D 1; 2 along 
 ,
obtaining a simplicial sphere Si of area smaller than the area of S (we assume S1\S2

is the added triangle) and define fi W Si!X to be the simplicial map whose restriction
to the 1–skeleton coincide with the restriction of f (fi is well-defined by the flagness
of X ). By the inductive assumption, fi can be extended to Fi W Bi!X , where Bi is
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such a triangulation of a ball that has no internal vertices and @Bi D Si . Finally, we
put B D B1[B2 and F D F1[F2 .

Case 2 S is flag.

Since the Euler characteristic of a sphere is positive, by the Gauss–Bonnet Lemma
there is a vertex v 2 S adjacent to less than 6 triangles. The link at v is a cycle 
 of
length 4 or 5 (length 3 is impossible by the flagness of S ). Thus S DD1[D2 , where
D1 D v � 
 is the closed star of v and D2 is obtained from S by removing the open
star of v . Notice that by the flagness of S the cycle 
 D @D2 D @D1 has no diagonals.

By Fact 2.2 the map f j
 can be simplicially extended over some triangulated disc C

(
 D @C ) with no internal vertices. Define B1 D v �C and let F1W B1!X be the
simplicial map whose restriction to the 0–skeleton coincides with the restriction of f
(it is well-defined by the flagness of X ). Then S2 D D2 [C is a simplicial sphere
(as 
 D @D2 D @C has no diagonals in D2 ) of area smaller than the area of S . Let
f2W S2!X be the simplicial map whose restriction to the 0–skeleton coincides with
the restriction of f . Applying the inductive assumption we extend it to F2W B2!X ,
where B2 is a triangulation of a ball with no internal vertices satisfying @B2 D S2 .
Finally, we put B D B1[B2 and F D F1[F2 .

3 Systolic triangulations of a disc

The simplest example of a systolic complex is the equilaterally triangulated Euclidean
plane – it will be called the flat systolic plane and denoted E2

4 . As we have written
before, we equip it with the combinatorial metric on the 1–skeleton and do not use any
metric on the whole complex. We define a systolic disc to be a systolic triangulation
of a 2–disc and a flat disc – a systolic disc 4 such that 4.1/ can be isometrically
embedded into E2

4 . For any vertex v 24 the defect at v is defined by the following
formula:

def4.v/D

(
6� #ftriangles in 4 containing vg if v … @4

3� #ftriangles in 4 containing vg if v 2 @4

It is clear that internal vertices of a systolic disc have nonpositive defects. Boundary
vertices will be called, for brevity, (non)positive, zero or (non)negative if their defects
are such. Throughout the paper we use the term “the sum of the defects along a
polygonal line” to mean the sum of the defects at all of its vertices but at the endpoints.

Now we state a few facts on systolic discs, frequently used in this paper.
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Fact 3.1 If 4 is a systolic disc and g is a geodesic in 4 contained in @4, then the
sum of the defects along g is at most 1.

Proof The geodesic g does not pass through any boundary vertex of defect 2. More-
over, if g passes through vertices u; v 2g� @4 of defects 1, at least one of the vertices
on g between u and v has a negative defect (by the geodesity of g ). Thus the positive
vertices on g have defects 1 and are separated by negative vertices, so the sum of the
defects is at most 1.

Lemma 3.2 (Gauss–Bonnet Lemma) If 4 is any simplicial disc, then:X
v24.0/

def.v/D 6

In particular, if 4 is a systolic disc, then the sum of the defects at its boundary vertices
is greater than or equal to 6, with the equality if and only if 4 has no internal vertices
with negative defects.

Lemma 3.3 (Pick’s Formula) Let 4 be any simplicial disc. Denote its area (ie the
number of triangles) by S , its perimeter by l and the numbers of its internal and
boundary vertices by Vi and Vb , respectively. Then:

S D 2Vi CVb � 2D l C 2.Vi � 1/

In particular, the area of a simplicial disc depends only on the numbers of its internal
and boundary vertices.

Proof Denoting by Ei the number of internal edges of 4, we obtain 3S D 2Ei C l .
The Euler characteristic of 4 is equal to 1D S � .Ei C l/C .Vi C l/, hence Ei D

S CVi � 1. Substituting the latter equation into the first one we obtain the lemma.

It follows from the biautomaticity of systolic groups (proved in Januszkiewicz-Świa̧t-
kowski [8, Theorem 13.1]) that the systolic complexes admitting a geometric group
action satisfy a quadratic isoperimetric inequality. In the subsequent lemma we prove
this fact for any systolic complex and provide explicit constants, presenting the optimal
estimate on the area of a systolic disc.

Lemma 3.4 Let 4 be a systolic disc of perimeter l and area S . Then:

(1) S � 1
6
l2 .

(2) dist.v; @4/� 1
6
l for any vertex v 24.
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The inequalities are optimal if l 6� ˙1 .mod 6/. In the remaining cases the optimal
isoperimetric inequality is S � 1

6
l2� 1 (since by Pick’s Formula S � l .mod 2/). If

l D 6kC r , where k , r are natural numbers and r < 6 the estimate is realized by the
equilaterally triangulated regular hexagon of side length kC 1 with cut off triangles
adjacent to its 6� r consecutive sides.

Proof Denote by �4.d/ the number of vertices v 2 4 satisfying dist.v; @4/D d .
We prove by induction on l that the inequality

(3-1) �4.d/�

8̂<̂
:

l � 6d if 0< d < 1
6
l

1 if d D 1
6
l

0 if d > 1
6
l

holds for any systolic disc 4 of perimeter l .

This is trivial when l < 6, as by Fact 2.2 in such a case 4 has no internal vertices. The
case l � 6 will be divided into three subcases.

Case 1 4 has a disconnecting edge e .

Then e disconnects 4 into two systolic discs 41 and 42 of perimeters l1 and l2 ,
where l1C l2 D l C 2 and 3 � l1 � l2 < l . If 0 < d � 1

6
l1 , then d < 1

6
l and by the

inductive assumption:

�4.d/D �41
.d/C�42

.d/� .l1� 6d C 1/C .l2� 6d C 1/D l C 4� 12d � l � 6d

If d > 1
6
l1 , then by the inductive assumption �4.d/ D �42

.d/ and (3-1) follows
immediately.

Case 2 The closed star of some internal vertex v 24 disconnects 4 and there are no
disconnecting edges in 4.

Then there exists a geodesic line of length 2 in 4, whose middle vertex is v , discon-
necting 4 into systolic discs 41 and 42 so that each of them contain an internal
vertex. Therefore, by Fact 2.2 their perimeters are not smaller than 6. If def4i

.v/ < 0,
then we glue 2 triangles at v obtaining a systolic disc 40i (as in Figure 1), otherwise
we put 40i WD 4i . Thus for any internal vertex w 240i different from v we have

dist4.w; @4/D dist40
i
.w; @40i/:

Denoting by l 0
1

and l 0
2

the perimeters of 40
1

and 40
2

we have l 0
1
C l 0

2
D l C 4 and
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41

v

4

42

40
1

40
2

v v

Figure 1

6 � l 0
1
� l 0

2
< l , hence l 0

1
; l 0

2
< l . If 1 < d � 1

6
l 0
1

, then d < 1
6
l and by the inductive

assumption:

�4.d/D �40
1
.d/C�40

2
.d/� .l 01� 6d C 1/C .l 02� 6d C 1/D l C 6� 12d � l � 6d

Notice that by the Gauss–Bonnet Lemma a systolic disc of perimeter 6 either has a
diagonal or is the join of a vertex and a cycle of length 6, so the case l 0

1
D l 0

2
D 6 is

impossible. Thus by the inductive assumption:

�4.1/� �40
1
.1/C�40

2
.1/C 1� .l 01� 6C 1/C .l 02� 6/C 1D l � 6

In the case when d > 1
6
l 0
1

by the inductive assumption we have �4.d/D �40
2
.d/ and

(3-1) follows immediately.

Case 3 4 cannot be disconnected either by an edge, or by a closed star of an internal
vertex.

Then the subcomplex 40 �4 spanned by all internal vertices of 4 is a deformation
retract of 4 and has no disconnecting vertices. Therefore 40 is either a systolic disc
or a single vertex v or a single edge vw . Since 4 has no disconnecting edges, in the
last two cases 4 is the closed star of v (and S D l � 6) or the union of the closed stars
of v and w (and S D l C 2� 10), respectively, whence (3-1) immediately follows.

Suppose 40 is a systolic disc of perimeter l 0 . Since for every vertex v 2 @40 �4 the
intersection 4v \ @4D ˛v is an arc in @4, we have

l C l 0 D
X
v2@40

�
j˛vjC 1

�
D

X
v2@4

�
2� def.v/

�
� 2l � 6;

where the sums are equal to the number of edges in 4 having exactly one endpoint on
@4, and the inequality is by the Gauss–Bonnet Lemma. Thus l 0 � l � 6 and applying
the inductive assumption to �40.d � 1/ D �4.d/ we complete the proof of (3-1).
Part (2) of the lemma is an immediate corollary.
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To prove part (1) we estimate the number Vi of internal vertices of 4:

Vi D

1X
dD1

�4.d/� ıC

Œ l
6
�X

dD1

�
l � 6d

�
D ıC

h l

6

i�
l � 3

h l

6

i
� 3

�
�

1

12
l2
�

1

2
l C 1;

where ı D 1 if l is divisible by 6 or ı D 0 otherwise. Now we apply Pick’s Formula
to obtain:

S D 2 .Vi � 1/C l � 2
�� 1

12
l2
�

1

2
l C 1

�
� 1

�
C l �

1

6
l2

Recall that a simplicial disc 4 is flat if 4.1/ can be isometrically embedded into E2
4 .

Below we present an intrinsic characterization of flatness.

Lemma 3.5 A simplicial disc 4 is flat if and only if it satisfies the following three
conditions:

(i) Every internal vertex of 4 has defect 0.

(ii) 4 has no boundary vertices of defect less than �1.

(iii) Any two negative vertices on @4 are separated by a positive one.

Proof We prove the “if” part (the “only if” part is trivial). If 4 has a boundary vertex
of defect �1, then 4.1/ can be isometrically embedded into a simplicial disc satisfying
(i)–(iii) having the same perimeter as 4 and larger area (by gluing two triangles onto
4 at the negative vertex). By the isoperimetric inequality (Lemma 3.4) the procedure
terminates. Therefore, without loss of generality, we can assume that 4 has no negative
vertices.

By induction on the number of positive vertices on @4 we claim that 4.1/ can be
isometrically embedded into the 1–skeleton of a simplicial disc 40 such that 40 still
satisfies (i)–(iii), has no negative vertices and, furthermore, any path in @40 joining
two distinct vertices of defects 1 passes through a vertex of defect 2. Indeed, for any
path Œu; v�, such that u; v 2 @4 have defects 1 and Œu; v� does not pass through any
positive vertex we glue an equilaterally triangulated equilateral triangle along Œu; v�
and 4.1/ can be isometrically embedded into the 1–skeleton of the resulting simplicial
disc 40 , which still satisfies (i)–(iii), has no negative vertices and has less positive
vertices on its boundary.

Applying the Gauss–Bonnet Lemma we see that 40 either has 3 nonzero vertices (each
of defect 2), or has 4 nonzero vertices (of defects 2, 1, 2, 1, in this order). It follows
that 4 is an equilateral triangulation of an equilateral triangle or of a parallelogram.
This is proved by induction on the perimeter – we cut off triangles touching one side of
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the triangle or the parallelogram and apply the inductive assumption. Therefore 4.1/

can be isometrically embedded into E2
4 .

4 Flat surfaces in systolic complexes

Let X be a systolic complex. Any simplicial map S W 4S ! X , where 4S is a
triangulation of a 2–disc will be called a surface. We often use the symbol 4S to
denote the domain of a surface S . Given a cycle 
 in X , we say that a surface S is
spanning 
 if it maps @4S isomorphically onto 
 . By the area of a simplicial disc
we mean the number of triangles in the triangulation.

Definition 4.1 A surface S W 4S !X in a systolic complex X is:
� minimal if 4S has the minimal area among surfaces extending S j@4S

;
� systolic if 4S is a systolic disc;

� flat if 4S is a flat disc, ie 4.1/
S

can be isometrically embedded into E2
4 ;

� wide if @4S is a full subcomplex of 4S .

This section is devoted to the study of flat minimal surfaces. By Januszkiewicz–
Świa̧tkowski [8, Lemma 1.7] a minimal surface S spanning a cycle 
 is nondegenerate,
ie is injective on any simplex. Thus if the complex 4S has the smallest area, then also
the map S W 4S !X has the smallest area (the area of the map S is the number of
triangles of 4S on which S is injective). The existence of minimal surfaces is given
by the following lemma:

Lemma 4.2 Let X be a systolic complex and S1 a triangulated circle. Then any
simplicial map f W S1! X can be extended to a simplicial map F W 4! X , where
4 is a systolic disc such that @4D S1 . Moreover, any minimal surface extending f
is systolic.

Proof Since X is simply connected, f can be extended to a map f 0W D2 ! X ,
where D2 is a 2–disc. Hence, by the relative Simplicial Approximation Theorem [11,
page 126], we obtain a simplicial disc 4 such that @4D S1 and a simplicial map
F W 4!X extending f . We choose 4 and F so that the area of 4 is minimal.

If 4 was not systolic, then it would have an internal vertex v adjacent to less than 6
triangles. Then we could cut out the open star of v and glue in a triangulated disc with
no internal vertices (extending the triangulation of 4v ) so that F could be extended
over the new triangulation (Fact 2.2). This would result in a simplicial disc 40 of
area smaller than the area of 4 and a simplicial map F 0W 40 ! X extending f ,
contradicting the minimality of the area of 4.
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One of the main results in this section is the characterization of wide flat minimal sur-
faces in local terms (Theorem 4.12). To state it we need the following local conditions:

Definition 4.3 A surface S W 4S !X in a systolic complex X is:

� a locally isometric immersion if for any internal vertex v 24S , the restriction
of S to the 1–skeleton of N.v/ is an isometric embedding;

� a strong locally isometric immersion if for any internal vertex v 24S and for
any edge e �4S with endpoints at internal vertices of 4S , the restrictions of
S to the 1–skeleta of N.v/ and N.e/ are isometric embeddings.

Here and subsequently N.K/ denotes the subcomplex equal to the union of all (closed)
simplices that intersect K .

4.1 Equivalent surfaces

It is natural to study flat surfaces up to some equivalence relation, defined below. We
show that if there exists a wide flat minimal surface spanning a cycle 
 , then it is
unique up to this equivalence (Theorem 4.12).

Definition 4.4 We call surfaces S and S 0 v–equivalent and write S Šv S 0 if 4S D

4S 0 and S.x/D S 0.x/ for all vertices x¤ v , where v 24S is a fixed internal vertex.

Surfaces S and S 0 are equivalent if there exist surfaces S D S0;S1; : : : ;SnD S 0 and
internal vertices v1; : : : ; vn 24S such that 4S D4S0

D � � � D4Sn
and Si�1Švi

Si

for i D 1; : : : ; n.

Informally, two surfaces are equivalent if one of them can be obtained from the other
by a sequence of small modifications. Surprisingly, such surfaces are always Hausdorff
1–close (Lemma 4.6). It is also important that this equivalence preserves the condition
of being a strong locally isometric immersion (Lemma 4.5).

Lemma 4.5 If a flat surface S in a systolic complex X is a strong locally isometric
immersion, then any surface equivalent to S also has this property.

Lemma 4.6 If flat surfaces S and S 0 in a systolic complex X are equivalent and are
locally isometric immersions, then:

dX .S.v/;S
0.v//� 1 for any internal vertex v 24S D4S 0

In particular, the Hausdorff distance between Im S and Im S 0 is at most 1.
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Before proving the lemmas, we need certain characterization of locally isometric
immersions in terms of local minimality.

Proposition 4.7 Let S be a flat surface in a systolic complex X . Then:

(1) S is a locally isometric immersion if and only if for every internal vertex v 24S

the surface S jN.v/ is minimal.

(2) S is a strong locally isometric immersion if and only if for every internal vertex
v 2 4S and for every edge e � 4S with endpoints at internal vertices the
surfaces S jN.v/ and S jN.e/ are minimal.

Proof (1) Let v 2 4S be an internal vertex. Then H D N.v/ is a hexagon trian-
gulated with 6 triangles and by Pick’s Formula S jH is not minimal if and only if
S j@H can be extended to a surface S 0 so that 4S 0 has no internal vertices. In such an
extension the cycle @H D @4S 0 has a diagonal, which implies that S jH .1/ is not an
isometric embedding.

If S jH is a minimal surface, then S j@H cannot be simplicially extended over @H [˛
for any diagonal ˛ , as otherwise it could be extended over some simplicial disc with
no internal vertices (Fact 2.2), contradicting the minimality of S jH . Thus S j@H is
injective (if S.p/DS.q/ for some vertices p¤ q 2 @H we define ˛ to be the diagonal
joining p with q if they are nonconsecutive vertices of @H or a diagonal joining p

with the other neighbour of q otherwise) and the cycle S.@H / has no diagonals. Since
diam.H /D 2, this proves that S jH .1/ is an isometric embedding.

(2) Let uv be an edge of 4S with both endpoints at internal vertices of 4S . Then
P DN.uv/ is an octagon triangulated as in Figure 2. By Pick’s Formula, the restriction
of S to P is not a minimal surface if and only if S j@P can be extended over some
simplicial disc 40 bounded by @P having at most one internal vertex. Then @P either
has a diagonal or is contained in the link of the only internal vertex of 40 . In both
cases S jP .1/ is not an isometric embedding.

If S jP is a minimal surface, then S j@P cannot be extended over @P [ ˛ for any
diagonal ˛ of @P , as otherwise it could be extended over some simplicial disc with
at most one internal vertex (by Lemma 3.4 and Pick’s Formula cycles of length 6
and 7 have fillings with at most 1 internal vertex and cycles of length smaller than
6 have fillings with no internal vertices), contrary to the minimality of S jP . Hence,
similarly as in the proof of (1), we see that S j@P is injective and the cycle S.@P / has
no diagonals.

As by (1) the restrictions of S to the 1–skeleta of N.u/ and N.v/ are isometric
embeddings, S jP is an injection onto a full subcomplex of X . Suppose S jP .1/ it is
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not an isometric embedding. Thus there are vertices t; w 2 P such that dP .t; w/D 3

and dX .S.t/;S.w//D 2 (so there exists a vertex x 2X connected by edges with S.t/

and S.w/). There are three subcases, depicted in Figure 2.

(a)

t
u v

w

(b)

t
u v

w

(c)
t

u

a

v

w

Figure 2

The pentagon S.t/S.u/S.v/S.w/x has 2 diagonals (Fact 2.2) and they are xS.u/

and xS.v/ (as the restrictions of S to the 1–skeleta of N.v/ and N.w/ are isometric
embeddings), so the images of t , u, v , w are in the link Xx . In case (c) we have
also S.a/ 2Xx (as by Fact 2.2 the square S.u/S.a/S.w/x has the diagonal xS.a/).
We see that in any case the whole image of P is contained in Xx , contrary to the
minimality of S jP . It follows from the following fact, an argument which will be used
many times in the paper.

Fact 4.8 Let H be a minimal surface in a systolic complex X such that 4H D

p � @4H (where p 24H is the only internal vertex) and j4H j D 6. If two opposite
vertices of @4H are mapped by H into some link Xy , then Im H �Xy .

In any case depicted in Figure 2 we apply the remark to S jN.u/ . It follows that
S jN.v/ also satisfies the assumptions of the above fact and we apply the fact to S jN.v/ ,
obtaining S.P /�Xx . This contradicts the minimality of S jP .

Proof of Fact 4.8 Denote consecutive boundary vertices of 4H by a1; : : : ; a6 .
Suppose H.a1/;H.a4/ 2 Xy . Since H is minimal, H j

4
.1/

H

is an isometric em-
bedding. By Fact 2.2 the pentagon H.a1/H.a2/H.a3/H.a4/y has the diagonals
yH.a2/ and yH.a3/. Similarly, there exist edges yH.a5/ and yH.a6/. The square
H.a1/H.p/H.a4/y has the diagonal yH.p/.

We now give proofs of the lemmas stated at the beginning of this subsection.

Proof of Lemma 4.5 Since any surface equivalent to S is a flat surface, it suffices to
prove the statement for w–equivalent surfaces (for any internal vertex w 24S ). Thus
assume S 0 Šw S and denote 4 WD4S D4S 0 .

By Proposition 4.7 we need to prove the minimality of S 0jN.u/ for any internal vertex
u 2 4 and the minimality of S 0jN.uv/ for any edge uv with endpoints at internal
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vertices u; v 2 4. The minimality of S 0jN.u/ follows directly from the minimality
of S jN.u/ , unless d4.u; w/D 1, but then it follows from the minimality of S jN.uw/ .
Thus by Proposition 4.7(1), S 0 is a locally isometric immersion.

What is left to prove is the minimality of S 0jN.uv/ . The only nontrivial case is when
w 2 @N.uv/. Then we can assume, not losing generality, that w is connected by an
edge with v and consider three subcases: two depicted in Figure 2 (a) and (b) and the
third one when w is connected to both v and u. Inspecting the three subcases, case
by case, we see (using the fact that S 0 and S restricted to the 1–skeleta of N.vw/

and N.uv/, respectively, are isometric embeddings) that the map S 0jN.uv/ is injective
and the cycle 
 D S 0.@N.uv// has no diagonals. If S 0jN.uv/ was not minimal, then 

would bound a simplicial disc with at most 1 internal vertex (by Pick’s Formula). As
we have just proved that 
 has no diagonals, the disc would be the join of some vertex
x 2X and 
 . However, this would contradict the fact that the restriction of S to the
1–skeleton of N.uv/ is an isometric embedding.

Proof of Lemma 4.6 Denote 4 WD4S D4S 0 . Let S D S0;S1; : : : ;Sn D S 0 be a
sequence of surfaces such that Si�1 Švi

Si for some internal vertices v1; : : : ; vn 24.
The proof is divided into two steps. First we prove that for internal vertices v;w 24
the relations Šv and Šw “commute” in the following sense:

Step 1 If a flat surface S is a locally isometric immersion and S Šv S 0 Šw S 00 , then
there exists a surface xS such that S Šw xS Šv S 00 .

Define a map xS0W 4
.0/!X by:

xS0.x/D

(
S.x/ for x ¤ w

S 00.w/ for x D w

It extends to the simplicial map xS W 4!X if dX . xS0.x/; xS0.w//� 1 for any vertex
x 2 4w . As S 00 and xS0 coincide at all vertices but at v it suffices to check this
condition for x D v . Then either S.v/ D S 00.w/ or (denoting @N.v/ \ @N.w/ D
fa; bg) we obtain the square S.a/S.v/S.b/S 00.w/ in X , which by Fact 2.2 has the
diagonal S.v/S 00.w/ (since S is a locally isometric immersion). In both cases we
have dX . xS0.v/; xS0.w//� 1.

By Lemma 4.5 the surfaces S0; : : : ;Sn are strong locally isometric immersions. Thus
by Step 1 and by the transitivity of Švi

, we may assume that the vertices v1; : : : ; vn

are pairwise different. To complete the proof we need the following:
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Step 2 If flat surfaces S and S 0 are locally isometric immersions and are v–equivalent,
where v 24 is an internal vertex, then dX .S

0.v/;S.v//� 1.

Let a and b be two opposite vertices of @N.v/. Then S.a/ and S.b/ are not connected
by an edge in X . Thus either S.v/D S 0.v/ or the square S.a/S.v/S.b/S 0.v/ has a
diagonal (Fact 2.2), so S.v/ and S 0.v/ are at distance at most 1.

4.2 The fundamental theorem on flat surfaces

In Theorem 4.12 we answer questions (1)–(3) stated in the introduction. The answer to
question (2) (if a minimal surface is an isometric embedding) is negative, but we prove
a slightly weaker statement: every minimal surface is an almost isometric embedding.

Definition 4.9 Let S be a surface in a systolic complex X . We say that S is an
almost isometric embedding if

d4S
.u; v/D dX .S.u/;S.v//

holds for all pairs of vertices u; v 24S such that either one of the vertices is internal
or the vertices can be connected by a neat geodesic (where a neat geodesic in 4S is a
geodesic intersecting @4S at most at the endpoints).

Theorem 4.10 Let S be a wide flat surface in a systolic complex X . If S is a strong
locally isometric immersion, then it is an almost isometric embedding.

Proof Put 4 WD4S . Recall that a neat geodesic in 4 is a geodesic intersecting @4
at most at the endpoints.

Step 1 If u; v 24 can be joined by a neat geodesic, then d4.u; v/D dX .S.u/;S.v//.

Suppose there exists a surface xS equivalent to S and vertices u; v 24 which can be
joined by a neat geodesic and satisfy:

(4-1) d 0 WD dX . xS.u/; xS.v// < d4.u; v/DW d:

Choose u, v and xS minimizing d . The surface xS is a strong locally isometric
immersion (Lemma 4.5), so d > 3. Let gW Œ0; d � ! 4 be a neat geodesic with
endpoints g.0/D u and g.d/D v .

Since S is flat, we have 4� E2
4 , so we can set g.0/D u, g.1/D p as in Figure 3

and assume that g.d/D v lies in the shaded sector with vertex q (v obviously can be
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u p q

v

Figure 3

set in the larger sector with vertex p and if v was outside the shaded area, then we
would interchange u with v , reversing the direction of the geodesic, as d > 3).

By the minimality of d :

(4-2) d4.p; v/D dX . xS.p/; xS.v//D d � 1

Since p 24 is an internal vertex (g is neat), we have N.p/�4, in particular q 24.
As 4.1/ � E2

4 is an isometric embedding, q and v can be joined by a geodesic in
E2
4 contained in 4 (but not necessarily neat). Since v lies in the shaded area, we can

lengthen this geodesic to a geodesic xgW Œ0; d �!4 such that xg.0/ D u, xg.1/ D p ,
xg.2/D q , xg.d/D v .

Consider the polygonal line � D xS ı xg joining the vertices xS.u/; xS.v/ 2 X and a
geodesic �W Œ0; d 0�! X with the same endpoints. By (4-2) �jŒ1;d � is a geodesic and
as xS is a locally isometric immersion, the vertices �.0/ D xS.u/, �.1/ D xS.p/,
�.2/ D xS.q/ are pairwise different. Thus � and � are injective. The concatenation
� ���1 need not be injective, but as �jŒ1;d � is a geodesic, the geodesic � can be chosen
so that for certain l > l 0 > 0 we have �jŒl;d � D �jŒl 0;d 0� and 
 D �jŒ0;l 0� � ��1jŒ0;l� is a
cycle in X (as in Figure 4). Let D be a minimal surface spanning 
 . Choose � so
that the area of 4D is minimal.

Consider the systolic disc 4D . Any vertex on �.Œ0; l 0�/ different from the endpoints
has a nonpositive defect (the defect cannot be 2 by the geodesity of � and cannot be 1
by the minimality of the area of 4D ). The sum of the defects along � is therefore
nonpositive, the sum of the defects at its endpoints is at most 4 and the sum of defects
along �.Œ1; l �/ is at most 1 by Fact 3.1. Thus the defect at �.1/ is not smaller than 1
(by the Gauss–Bonnet Lemma) and is different from 2 (since xS is a strong locally
isometric immersion), so it is equal to 1. Thus by the Gauss–Bonnet Lemma the defects
at the vertices of �.Œ0; l 0�/ are equal to 0 and the defect at �.0/ is equal to 2, as in
Figure 4.
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 .0/

xS.u/ �.0/

 .1/

�.1/

xS.p/

�.2/

xS.q/

 .l 0/

�.l/

 .d 0/

�.d/ xS.v/

Figure 4

Therefore xS.u/; xS.q/ 2 X�.1/ , so by Fact 4.8 we have xS.N.p// � X�.1/ . Thus the
simplicial map S 0W 4!X defined on the 0–skeleton by the formula

S 0.x/D

(
xS.x/ for x ¤ p

�.1/ for x D p

is a well-defined surface. However, by (4-1)

dX .S
0.p/;S 0.v//D d 0� 1< d � 1D d4.p; v/;

contrary to the minimality of d .

Step 2 If u; v 24 are internal vertices, then they are joined by a neat geodesic in 4.

Let g be any geodesic in 4 joining u and v and let g0; : : : ;gd be its consecutive
vertices. We modify g to obtain a geodesic joining u and v which is disjoint from
@4. For any gi 2 @4 we apply (if possible) the modification depicted in Figure 5.

(a)

gi�1

gi giC1

g0i

(b)

gi�1

gi giC1

g0i

(c)

gi�1

gi giC1

g0i

Figure 5: We apply (a) if def.gi/D 1 , (b) if def.gi/D 0 and either gi�1 or
giC1 is an internal vertex and (c) if def.gi/D�1 and both gi�1 and giC1

are internal vertices.

Since 4 is wide, in any of the three cases g0i is an internal vertex, so every modification
decreases the number of vertices in Im g \ @4. Hence we perform finitely many
modifications and arrive at the situation, when Im g \ @4 is the union of disjoint
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segments in @4 containing no positive vertices and having their endpoints at negative
vertices. Since 4 is flat, it follows from Lemma 3.5 that the intersection is empty.

Step 3 If u 24 is an internal vertex and v 2 @4, then d4.u; v/D dX .S.u/;S.v//.

Let gW Œ0; d �!4 be a geodesic joining u and v . Since 4 is wide, there is an internal
vertex p 24 connected with v by an edge. There are 3 cases:

(a) If d4.u;p/D d4.u; v/C1D dC1, then we lengthen g to a geodesic g0 with
both endpoints at internal vertices, by adding the edge vp . By Step 2 and Step 1
of the proof, g0 is mapped by S to a geodesic in X and so is g .

(b) If d4.u;p/ D d � 1, then by Step 2 we can join u and p by a geodesic g0

disjoint from @4. Adding the edge pv we obtain a neat geodesic with endpoints
u and v , which by Step 1 is mapped by S to a geodesic in X and so is g .

(c) If d4.u;p/ D d , then the link of 4 at the edge vp consists of two vertices
(since p is an internal vertex). One of them is at distance d � 1 from u and
the other, say a, is at distance d C 1. Adding the edge va we obtain a longer
geodesic g0 , which still has one endpoint at internal vertex u, and we repeat the
argument. Since 4 is a finite complex, after finitely many steps we arrive at the
situation from case (a) or (b).

This concludes Step 3 and completes the proof of the theorem.

It is an important observation that any wide flat surface which is an almost isometric
embedding, is an injective map onto a full subcomplex of X (see the corollary below).
Therefore, we can treat such surfaces simply as full subcomplexes of X .

Corollary 4.11 Let S be a wide flat surface (in a systolic complex X ) which is an
almost isometric embedding. Then:

(1) For every pair of vertices u; v 24S the following holds:

d4S
.u; v/� 1� dX .S.u/;S.v//� d4S

.u; v/;

with equality on the right side if one of u and v is an internal vertex.

(2) Any geodesic line in 4S which is contained in @4S is mapped by S onto a
geodesic in X .

(3) The map S W 4S !X is injective and Im S �X is a full subcomplex.
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Proof (1) By Definition 4.9 it suffices to consider the case when u; v 2 @4S . Denote
d WD d4S

.u; v/. We need to prove that dX .S.u/;S.v// � d � 1. Since S is wide,
there is an internal vertex v0 24S connected with v by an edge. If d4S

.u; v0/� d ,
then by the triangle inequality and Definition 4.9:

dX .S.u/;S.v//C 1� dX .S.u/;S.v
0//D d4S

.u; v0/� d

Otherwise d4S
.u; v0/D d�1, so there is a geodesic gW Œ0; d �!4S joining u with v

such that g.d�1/D v0 . By the triangle inequality dX .S.u/;S.v//� d�2. If equality
holds, then (since by Definition 4.9 we have dX .S.u/;S.v

0// D d � 1) there is a
geodesic � in X joining S.u/ with S.v0/ and passing through S.v/. The geodesics �
and S ıgjŒ0;d�1� have common endpoints S.u/ and S.v0/D S.g.d � 1//. We span
a minimal surface D on the concatenation S ı gjŒ0;d�1� � �

�1 . By Lemma 4.2 the
defects at the internal vertices of 4D are nonpositive and by Fact 3.1 the sum of
the defects along any of the two boundary geodesics of 4D is at most 1, so by the
Gauss–Bonnet Lemma the defect at D�1.S.v0//2 @4D is equal to 2. Thus the vertices
S.v/ D S.g.d// 2 X and S.g.d � 2// 2 X either coincide or are connected by an
edge, whereas g.d � 2/ 24S and g.d/ 24S are at distance 2. This contradicts the
fact that the restriction of S to the 1–skeleton of N.v0/DN.g.d �1// is an isometric
embedding. Thus dX .S.u/;S.v//� d � 1.

(2) Since S is a wide flat surface, it has no boundary vertices with defects 2 and any
two negative boundary vertices are separated by a positive one (Lemma 3.5). Thus
any geodesic g contained in @4S can be lengthened to a geodesic g0 contained in
@4S so that the sum of defects along g0 is equal to 1 (ie the first and the last nonzero
vertices on g0 have defects 1). Applying to g0 the procedure from Step 2 of the proof
of Theorem 4.10 (see Figure 5) we obtain a neat geodesic g00 with the same endpoints
as g0 . Since g00 is mapped by S to a geodesic in X (Definition 4.9), so are g0 and g .

(3) By (1) we only need to prove d4S
.u; v/ D dX .S.u/;S.v// for any vertices

u; v 2 @4S such that d4S
.u; v/ � 2. Since S is wide, from (2) and Definition 4.9,

any geodesic connecting such vertices either is neat or is contained in @4S .

Theorem 4.12 (Fundamental theorem on flat surfaces) For a wide flat surface S in a
systolic complex X , the following are equivalent:

(1) S is a strong locally isometric immersion.

(2) S is an almost isometric embedding.

(3) S is a minimal surface.
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Moreover, if S is a wide flat minimal surface spanning a cycle 
 , then any minimal
surface M spanning 
 is equivalent to S . In particular, the Hausdorff distance between
Im S and Im M is at most 1.

Proof In Theorem 4.10 we proved .1/) .2/. The implication .2/) .1/ follows
immediately from the definitions (Definition 4.3 and Definition 4.9) by using Corollary
4.11(2). By Proposition 4.7 we have .3/) .1/. We only need to prove .1/) .3/.

Let S be a strong locally isometric immersion (thus by Theorem 4.10, an almost
isometric embedding and by Corollary 4.11(3) an injective map). Denote by M a
minimal surface spanning the cycle S.@4S /. Let .vi/

n
iD1

be a permutation of all
internal vertices of 4S . We construct a sequence S0; : : : Sn of wide flat surfaces such
that:

S0 D S

Si Švi
Si�1 for i D 1; : : : ; n(4-3)

Si.vi/ 2 Im M for i D 1; : : : ; n

Denote 4D4S D4Si
for i D 1; : : : ; n. Suppose Si has already been constructed.

By Lemma 4.5 Si is a strong locally isometric immersion, so by Theorem 4.10 and
Corollary 4.11(3) it is an injective map onto the full subcomplex Im Si �X . Gluing Si

and M along Si j@4 DM j@4M
we obtain a map f W P !X from a triangulation P

of a sphere (it is simplicial, since 4 is wide). By Theorem 2.4 f can be extended to
F W B!X , where B is a triangulation of a ball that has no internal vertices and satisfies
@B D P . The link PviC1

is a cycle of length 6 and the link BviC1
is a simplicial

disc (not necessarily systolic) such that @BviC1
D PviC1

. Since Si is injective and
Im Si �X is a full subcomplex, any internal vertex w 2BviC1

lies in 4M � P , so is
mapped by F into Im M .

To complete the proof we need the following lemma, which will be proved later:

Lemma 4.13 Let X be a systolic complex and 4 a simplicial disc (not necessarily
systolic) of perimeter 6. If there is a simplicial map f W 4!X such that f j@4 is an
isomorphism onto a cycle in X having no diagonals, then there exists an internal vertex
w 24 such that f .@4/�Xf .w/ .

Applying the lemma to F jBviC1
(the assumptions are satisfied, since Si is a locally

isometric immersion) we obtain an internal vertex w 2 BviC1
such that the simplicial

map defined on the 0–skeleton by

SiC1.x/D

(
Si.x/ for x ¤ viC1

F.w/ for x D viC1
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extends to a surface. Clearly SiC1 satisfies (4-3).

The last surface in the sequence, Sn , by (4-3) maps the set of internal vertices of 4
injectively into the set

fM.w/ W w 24M is an internal vertexg

(Sn is an almost isometric embedding by Lemma 4.5 and Theorem 4.10 and is injective
by Corollary 4.11(3)). Thus, since M is a minimal surface spanning the same cycle
as Sn , by Pick’s Formula 4M has not more internal vertices than 4 has. It follows
that Sn maps 4.0/ bijectively onto .Im M /.0/ and M is injective. As Im Sn �X is
a full subcomplex (Corollary 4.11(3)), we have Im M � Im Sn . But both Im M and
Im Sn are simplicial discs and they have the common boundary, so Im M D Im Sn .
Moreover, 4M Š Im M D Im SnŠ4. Therefore, identifying 4M with 4 we obtain
M D Sn , so Sn is a minimal surface and so is S .

As the above construction shows, if S is a wide flat minimal surface spanning a
cycle 
 , then any minimal surface M spanning 
 is equivalent to S . In particular,
the Hausdorff distance between Im S and Im M is at most 1 (Lemma 4.6).

Proof of Lemma 4.13 We modify f to f 0W 40! X , where 40 is a systolic disc
such that @4D @40 , the internal vertices of 40 are vertices of 4, and f j@4D f 0j@40 .
If 4 contains a cycle 
 of length 3 not bounding a triangle in 4, then we cut out
the disc of 4 bounded by 
 and glue in a single triangle. By the flagness of X we
modify f . If 4 does not contain such cycles and is not systolic, then there is an
internal vertex v 24 adjacent to 4 or 5 triangles. Then we modify 4 by cutting out
the open star of v and gluing a simplicial disc with no internal vertices, such that f can
be extended over the new triangulation (this is possible by the systolicity of X ). These
operations decrease the number of internal vertices of 4, so the procedure terminates,
producing a systolic disc 40 such that @4D @40 and a simplicial map f 0W 40!X

which extends f j@4 .

Nonconsecutive vertices of @4D @40 are not connected by an edge, because f .@4/
has no diagonals. Moreover, by the isoperimetric inequality (Lemma 3.4) the area of
40 is at most 6, so by Pick’s Formula 40 has at most one internal vertex. Therefore
40D @40 �w , where w 240 is the only internal vertex. As our procedure did not add
any new vertices, w is an internal vertex of 4 and f .w/D f 0.w/. Moreover, since
f 0.@40/D f .@4/ is a cycle in X with no diagonals, we have f 0.w/ 62 f .@40/, so
f .@4/�Xf .w/ .
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Theorem 4.12 gives an alternative proof of the next theorem, proved in Przytycki [10]
(for the definition of a flat see Section 5):

Corollary 4.14 Let X be a systolic complex, admitting a simplicial, cocompact and
properly discontinuous action of a group G . Then X is Gromov-hyperbolic if and only
if it does not contain a flat.

To prove the corollary we need the following lemma:

Lemma 4.15 Let 4 be a systolic disc and 
 � @4 a geodesic in 4.

(1) Denote by 40 �4 the subcomplex obtained by cutting out the open stars of all
the vertices v 2 
 . Then hdist4.4;40/D 1 and either 40 has a disconnecting
vertex or it is a systolic disc such that 
 0 WD @40 n @4 is a geodesic.

(2) If @4 is the concatenation of geodesics ˛ , ˇ and 
 , then for any natural c holds

 � N2c.˛ [ ˇ [4c/, where 4c � 4 is the subcomplex spanned by all the
vertices v 24 which satisfy dist.v; @4/� c .

Proof Suppose 40 has no disconnecting vertices and 
 0 is not a geodesic in 40 . Let
v0; w0 2 
 0 �40 be the endpoints of the shortest segment of 
 0 which is not a geodesic
in 40 . Connect v0 and w0 by a geodesic g0 in 40 , choose vertices v;w 2 
 connected
by edges with v0 and w0 , respectively. Let v , w and g0 be such that the subcomplex
D �4 bounded by the loop g�1 � vv0 �g0 �ww0 , where g is the segment of 
 with
endpoints v and w , has the minimal area. As D is a systolic disc, by Fact 3.1 the
sum of its defects along g is at most 1, by the minimality of its area the sum of the
defects along g0 is nonpositive, the defects at v , w , v0 and w0 are at most 1 (by the
minimality of the length of Œv0; w0�� 
 0 and the minimality of the area of D ), which
gives a contradiction to the Gauss–Bonnet Lemma. This proves (1).

To prove (2) it suffices to show that 
 �Nc.˛ [ˇ [4


c /, where 4
c �4 denotes

the subcomplex spanned by all the vertices v 2 4 satisfying dist.v; 
 / � c . We
proceed by induction on c using (1) and applying the inductive assumption to maximal
subcomplexes of 40 having no disconnecting vertices.

Proof of Corollary 4.14 Suppose X is not Gromov-hyperbolic. Then for every n

there exists a loop being the concatenation of three geodesics ˛n , ˇn , 
n such that

n 6�Nn.˛n[ˇn/. Let Sn be a minimal surface spanning this loop. Thus by Lemma
4.15(2) there exists a vertex v 24Sn

such that dist4Sn
.v; @4Sn

/� n
2

. Since by the
Gauss–Bonnet Lemma and Fact 3.1, there are at most 3 negative internal vertices in
4Sn

, there is a vertex w on a geodesic joining v with the closest vertex on @4Sn
,

Geometry & Topology, Volume 13 (2009)



Flats and the flat torus theorem in systolic spaces 685

such that N 1
8
� n

2
.w/ does not contain a negative internal vertex, so it is an equilaterally

triangulated regular hexagon of side length Œ1
8
�

n
2
�. The 1–skeleton of the hexagon

is isometrically embedded into 4Sn
, so by Theorem 4.12 is isometrically embedded

into X . Thus by the cocompactness of the action of G and by the standard diagonal
argument (X is uniformly locally finite, since G acts cocompactly and properly
discontinuously), there is a flat in X .

4.3 The stability of minimal surfaces

Now we answer question (4) from the introduction, proving the stability of minimal
surfaces under small modifications of their boundaries. The next theorem concerns
more general situation than wide flat surfaces, namely injective maps whose images
are full subcomplexes of X (by Corollary 4.11(3) any wide flat surface is such). We
expect the stability of minimal surfaces holds in full generality, ie that the assumption
on S and S 0 to be injective maps onto full subcomplexes is unnecessary.

To formulate the theorem we need to define the function measuring how much one of
the cycles has to be deformed to obtain the other cycle. Given cycles 
 and 
 0 in a
systolic complex X , we denote by d.
; 
 0/ the minimum of

maxfdX .f .v/; f
0.v//; v 2 C .0/

g

taken over all triangulations C of a circle and over all simplicial maps f W C ! 
 and
f 0W C ! 
 0 that are surjective and monotonous (ie the counterimages of the vertices
on 
 or 
 0 are segments in C ).

Theorem 4.16 Let 
 and 
 0 be cycles in a systolic complex X with d.
; 
 0/ D c

and let S and S 0 be minimal surfaces spanning them. If S and S 0 are injections and
Im S , Im S 0 are full subcomplexes of X , then:

(1) hdistX .Im S; Im S 0/� cC 1.

(2) If S is a flat surface and w 24.0/
S

satisfies dist.w; @4S / > cC1, then for some
surface xS which is w–equivalent to S we have xS.w/ 2 Im S 0 . In particular,
S.w/ 2N1.Im S 0/.

Proof Choose C , f and f 0 realizing d.
; 
 0/ and denote consecutive vertices of
C by t1; : : : ; tn . Choose geodesics gi , i D 1; : : : ; n in X joining f .ti/ D vi 2


 with f 0.ti/ D v0i 2 

0 (we allow gi to be a single vertex). The concatenation

viC1vi �gi � v
0
iv
0
iC1
�g�1

iC1
(we use the cyclic order of indices) is a closed path in

X , so by Lemma 4.2 there is a simplicial map si W Di ! X from a systolic disc Di

mapping @Di onto this path.
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Step 1 For any vertex w 2 4S we have S.w/ 2 N1.Im S 0 [ Im s1 [ � � � [ Im sn/.
Moreover, if S is flat and w 24S is an internal vertex, then there is a surface xS Šw S

such that xS.w/ 2 Im S 0[ Im s1[ � � � [ Im sn .

We glue maps S , S 0 and s1; : : : ; sn to obtain a simplicial map f W P !X , where P

is a triangulation of a sphere. It can be extended to F W B!X for some triangulation
B of a ball such that @B D P and B has no internal vertices (Theorem 2.4). In the
case w 2 @4S the statement is immediate. Thus consider the case when w is an
internal vertex of 4S . As w 24S � P � B , consider the link Bw – it is a filling of
the cycle Pw . Since S is injective and Im S � X is a full subcomplex, Bw has at
least one internal vertex and internal vertices of Bw are disjoint from 4S � P . Thus
S.w/ 2N1.Im S 0[ Im s1[� � �[ Im sn/. If S is a flat surface and w 24S an internal
vertex, then by Lemma 4.13 there is a surface xS which is w–equivalent to S such that
xS.w/ 2 Im S 0[ Im s1[ � � � [ Im sn .

Step 2 Let D be a systolic disc and let a1; a2; b1; b2 2 @D be such vertices that @D
is the concatenation of the edge a1a2 (or the vertex a1 , if a1 D a2 ), the edge b1b2 (or
the vertex b1 , if b1 D b2 ) and geodesics Œa1; b1� and Œa2; b2�. Then D is spanned by
all geodesics joining ai with bj for i; j D 1; 2.

We proceed by induction on the area of D . The statement is trivial when D is a single
triangle. If there is a vertex v 2 .ai ; bi/� @D of positive defect (ie of defect 1, by the
geodesity of Œai ; bi �), then we cut out two triangles adjacent to v obtaining either a
smaller disc D0 or two discs D0 and D00 intersecting at a single vertex and apply the
inductive assumption.

If a1 ¤ a2 and the defect at ai is 2, then we cut out the only triangle adjacent to ai

and apply the inductive assumption. We proceed similarly with b1 and b2 .

If none of the above cases occur, then the defects at a1 and a2 are not greater than 1
(if a1 ¤ a2 ) or the defect at a1 D a2 is not greater than 2 and similarly with b1 and
b2 , and the sum of the defects along the geodesic Œai ; bi � is nonpositive, for i D 1; 2.
Thus the sum of the defects at vertices on @D does not exceed 4, contrary to the
Gauss–Bonnet Lemma.

Step 3 Im S �NcC1.Im S 0/ and Im S 0 �NcC1.Im S/. If S is flat and w 2 4S is
an internal vertex such that dist.w; @4S / > cC1, then xS.w/ 2 Im S 0 for some surface
xS w–equivalent to S .
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By Step 2, Im si�Nc.

0/ for iD1; : : : ; n, so by Step 1 we have Im S �NcC1.Im S 0/.

Similarly we obtain Im S 0 �NcC1.Im S/. The second statement from Step 3 follows
from Lemma 4.13 applied to S jBw

and the fact that Im si �Nc.
 /�Nc.S.@4S //.

The following corollary provides the answer to question (3) from the introduction in a
more general case than Theorem 4.12 does.

Corollary 4.17 If S and S 0 are minimal surfaces which are injections onto full
subcomplexes spanning the same cycle, then the Hausdorff distance between them is at
most 1.

5 Flats in systolic complexes

A flat in a systolic complex X is a simplicial map F W E2
4!X which when restricted

to the 1–skeleton of E2
4 is an isometric embedding. Sometimes we will identify F

with its image and treat F as a subcomplex of X .

Definition 5.1 Two flats F and F 0 in a systolic complex X are called equivalent if
they are at finite Hausdorff distance.

The above definition is different from the one for flat surfaces (Definition 4.4). However,
in Lemma 5.3 we provide a characterization of the flat equivalence similar to the flat
surfaces equivalence. In Theorem 5.4 we show that the Hausdorff distance between
equivalent flats is actually at most 1 and there is a unique simplicial retraction onto F

of the subcomplex of X spanned by all flats equivalent to F .

Now we restate the main theorem from Section 4, namely Theorem 4.12, for flats. In
order to do it we generalize the notions of a locally isometric immersion and a strong
locally isometric immersion for flats by replacing the triangulated disc 4S with the
flat systolic plane E2

4 in Definition 4.3.

Theorem 5.2 Let X be a systolic complex and F W E2
4!X a simplicial map.

(1) If F is a strong locally isometric immersion, then F is a flat.

(2) If F is a locally isometric immersion and diam.Im F /� 3, then F is a flat.

Proof Part (1) of the theorem follows from Theorem 4.12 applied to F j4n
for a

sequence of regular hexagons 4n � E2
4 . To prove (2) we need to show that under the

additional assumption diam.Im F / � 3, a locally isometric immersion is actually a
strong locally isometric immersion.
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Suppose F is a locally isometric immersion, but not a strong locally isometric immer-
sion. Then by Proposition 4.7 there is an edge uv � E2

4 such that F j@N.uv/ can be
extended to a surface S (@4S D @N.uv/) so that 4S has at most one internal vertex
(Pick’s Formula). Thus either @4S has a diagonal joining two nonconsecutive vertices
(which contradicts the fact that F is a locally isometric immersion), or 4S Dw�@4S ,
where w 24S is the only internal vertex. Define x D S.w/ 2X and put:

4n D

(
N.uv/ if nD 0

N.4n�1/ if n� 1

Proceeding by induction we prove that F.4n/�Xx , for every n� 0.

(i) We already know that F.@40/�Xx , so applying Fact 4.8 to hexagons N.u/

and N.v/ we obtain F.40/�Xx .

(ii) Suppose F.4n�1/�Xx . Denote successive vertices of @4n by b1; : : : ; bk so
that b1 has defect 0. By induction on i we obtain bi 2Xx for i D 1; : : : ; k . It
follows from Fact 4.8 applied to a hexagon with the centre and two opposite
vertices on @4n�1 (in the case i D 1) or to a hexagon with the centre on @4n�1 ,
vertex bi�1 and the opposite vertex in 4n�1 . (in the case i > 1). Thus the
image of 4n is contained in Xx .

It follows that Im F �Xx , hence the diameter of Im F is not greater than 2, contrary
to the assumption.

We define for two flats a relation Šv , similar to that from Definition 4.4: flats F and
F 0 are v–equivalent if F.x/D F 0.x/ for all vertices x 2 E2

4 different from v .

Lemma 5.3 Let F and F 0 be equivalent flats in a systolic complex X . Then there
exist a sequence of vertices v1; v2; � � � 2E2

4 and a sequence of flats F DF0;F1;F2; : : :

such that:

� Fi Švi
Fi�1 for i D 1; 2; 3; : : : ;

� the flat F 00 D lim
n!1

Fn (pointwise convergence) has the same image as F 0 .

Moreover, we can choose .vi/
1
iD1

to be an arbitrary permutation of the vertices of E2
4 .

Since X .0/ is a discrete space, the pointwise convergence of flats is equivalent to the
condition that the sequence F0.v/;F1.v/; � � � 2X stabilizes for any vertex v 2E2

4 . We
therefore prove that equivalent flats are obtained from each other by a (possibly infinite)
sequence of small deformations such that on every compact subcomplex K �E2

4 only
finitely many of them are applied.
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Proof Let .vi/
1
iD1

be any permutation of the vertices of E2
4 . We construct a sequence

of flats .Fi/
1
iD0

such that:

F0 D F

Fi Švi
Fi�1 for i D 1; 2; : : :(5-1)

Fi.vi/ 2 Im F 0 for i D 1; 2; : : :

Suppose we have already constructed Fn . Denote cD hdistX .Fn;F
0/ <1 (it is finite,

since Fn and F 0 are equivalent). If Fn.vnC1/ 2 Im F 0 , then we put FnC1 WD Fn .
Otherwise, consider the regular hexagon H �E2

4 of side length 40c with centre vnC1 .
Denote by a1; : : : ; a6 the images by Fn of the vertices of H and by �1; : : : ; �6 the
images by Fn of its sides. Let �i be the shortest geodesic joining ai with F 0 and denote
its second endpoint by bi 2F 0 (we allow biDai ). Since flats are isometric embeddings,
we can join bi with biC1 by a geodesic �i contained in F 0 for i D 1; : : : ; 6 (we use
the cyclic order of indices). By Lemma 4.2 there exist simplicial maps:

� h0W H 0!X , where H 0 is a systolic disc and h0 maps @H 0 onto the closed path
�1 � � � � � �6 so that Im H 0 � Im F 0 ;

� si W Di!X , where Di is a systolic disc and si maps @Di onto the closed path
�i � �i � �

�1
iC1
� ��1

i for i D 1; : : : ; 6.

Gluing FnjH , h0 and s1; : : : ; s6 we obtain a simplicial map pW S !X from certain
triangulation S of a sphere. By Theorem 2.4 we extend it to P W B! X , where B

is a triangulation of a ball that has no internal vertices and satisfies @B D S . Thus
BvnC1

is a simplicial disc of perimeter 6 (as the link SvnC1
is a cycle of length 6).

Applying Lemma 4.13 to P jBvnC1
we obtain an internal vertex y 2 BvnC1

such that
P .@BvnC1

/�XP.y/ . We put FnC1W E
2
4!X to be the simplicial map defined on the

0–skeleton by:

FnC1.x/D

(
Fn.x/ for x ¤ vnC1

P .y/ for x D vnC1

The map FnC1 coincides with the flat Fn at all vertices but vnC1 and for any vertex
w 2E2

4 there is a vertex w0 2E2
4 and a geodesic joining w with w0 that passes through

vnC1 , so:

d.w;w0/D d.FnC1.w/;FnC1.w
0//

� d.FnC1.w/;FnC1.vnC1//C d.FnC1.vnC1/;FnC1.w
0//

� d.w; vnC1/C d.vnC1; w
0/D d.w;w0/

Thus all inequalities are actually equalities, so FnC1 is a flat.
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To see that FnC1 satisfies (5-1) we need to prove that P .y/ 2 Im F 00 . Since FnjH is
an isometric embedding, y 2 BvnC1

is contained in H 0 [D1 [ � � � [D6 . Moreover,
by Lemma 3.4:

Di �N 1
6
j�i��i��

�1
iC1
���1

i
j
.@Di/�N 1

6
.cC42cCcC40c/.@Di/DN14c.@Di/�N36c.@H /

so P .Di/�N36c.P .@H //, while

dist.y;P .@H //� dist.Fn.vn/;Fn.@H //� 1D 40c � 1:

Thus y …Di , for i D 1; : : : ; 6, so y 2H 0 and therefore P .y/ 2 Im F 00 .

The flat F 00 D lim Fn satisfies Im F 00 � Im F 0 , hence Im F 00 D Im F 0 (as E2
4 is not

isomorphic to a proper subcomplex).

5.1 Thickenings of flats

Theorem 5.4 Let F be a flat in a systolic complex X . Denote by Th.F / � X (the
thickening of F ) the full subcomplex spanned by all flats at finite Hausdorff distance
from F . Then:

(1) Every maximal simplex of Th.F / has nonempty intersection with F .

(2) There is a unique simplicial retraction r W Th.F /! F . Moreover, the restriction
of r to any flat F 0 � Th.F / is an isometry.

(3) Every map sW F .0/! Th.F / such that r ı s D idF .0/ extends to a flat and every
flat in Th.F / is of this form. Moreover, r�1.v/ is a simplex in X for any vertex
v 2 F .

Proof For a vertex v 2 E2
4 we denote by �v the simplex spanned by the vertices

F 0.v/ for all flats F 0 that are v–equivalent to F (these vertices span a simplex by Fact
2.2). Clearly �v � Th.F /. Notice that by Lemma 5.3 for any flat F 0 � Th.F / and for
any vertex v 2 E2

4 there is a flat F1 such that F1 Šv F and F1.v/D F 0.v/. Hence
Th.F / is spanned by �v for v 2 E2

4 .

If F 0 Šv F Šw F 00 for some distinct vertices v;w 2 E2
4 , then by Lemma 5.3 (applied

to F 0 and F 00 ) there exists a flat xF such that F 0 Šw xF Šv F 00 . Thus:

xF .x/D

8̂<̂
:

F.x/ for x ¤ v;w

F 0.v/ for x D v

F 00.w/ for x D w

Since xF when restricted to the 1–skeleton of E2
4 is an isometric embedding, we have

dX

�
F 0.v/;F 00.w/

�
D dE2

4
.v; w/:
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Hence there are no edges joining �v with �w if v ¤ w 2 E2
4 are not connected by

an edge and every vertex of �v is connected by an edge with every vertex of �w if
v;w 2 E2

4 are connected by an edge. Thus:�
Th.F /

�.0/
D

[
v2V

�
�v
�.0/

�
Th.F /

�.1/
D

[
uv2E

�
�u � �v

�.1/(5-2)

Th.F / D

[
uvw2T

�
�u � �v � �w

�
where V , E and T denote the sets of vertices, edges and triangles of E2

4 , respectively.
This implies (1), as the maximal simplices of Th.F / are �u��v ��w , where uvw 2 T .

Any map sW F .0/!Th.F / such that s.v/2 �v for any v 2F .0/ extends to an injective
map S W F ! Th.F / such that Im S �X is a full subcomplex. By Theorem 5.2(2) S

is a flat and by Lemma 5.3 every flat in Th.F / has this form.

Let r W Th.F /! F be a simplicial retraction. For every vertex p 2 �v there is a flat
xF Šv F such that xF .v/D p . Since r jF D idF and r is simplicial, r.p/D v . Thus
r.�v/D v , for every v 2 F . Clearly the function mapping �v to v for any v 2 F has
a simplicial extension to the unique simplicial retraction r W Th.F /! F , which when
restricted to any flat is an isometry. This completes the proof of (2) and (3).

Corollary 5.5 The action of any group G on the thickening Th.F / induces an ac-
tion of G on E2

4 . Moreover, if Th.F / is locally finite and the action is properly
discontinuous, then so is the induced action on E2

4 .

Proof Denote by rF W Th.F /! F the retraction constructed in Theorem 5.4 and by
agW Th.F /!Th.F / the action of g 2G on Th.F /. Notice that by (5-2) the 1–skeleta
of �v (for v 2 E2

4 ) are precisely the connected components of the subgraph of Th.F /
consisting of the edges that cannot be extended to geodesics of length 2 inside Th.F /.
Thus ag permutes the simplices �v and we can define the action of G on E2

4 by:

G 3 g 7! .rF ıg/jF 2 Aut.F /Š Aut
�
E2
4

�
:

We need to show that .rF ıg0/ ı .rF ıg/D rF ı .g
0g/ for any g;g0 2G . Both maps

restrict to the same isometry 'W g�1.F /! F . Thus:

'�1
ı .rF ıg0/ ı .rF ıg/D '�1

ı rF ı .g
0g/

as by Theorem 5.4 there is a unique simplicial retraction of Th.F / D Th.g�1.F //

onto the flat g�1.F /, which completes the proof of the main part of the corollary. The
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second part follows from the fact that r�1
F
.v/ is a simplex in Th.F / for any vertex

v 2 F and Th.F / is locally finite.

6 Flat Torus Theorem

In this section we study virtually abelian subgroups of rank at least 2 in systolic groups.
Actually, systolic groups do not contain abelian subgroups of rank greater than 2
(see Januszkiewicz–Świa̧tkowski [9, Corollary 5.5]; we present an alternative proof in
Theorem 6.1(1)), so we are mainly interested in actions of Z2 on systolic complexes.
Actions of finite extensions of Z2 are described in Corollary 6.2.

Let X be a simplicial complex and G a group acting on X by simplicial automorphisms.
Recall that G acts cocompactly if there is a compact subset K �X intersecting every
orbit of the action, and properly discontinuously if the stabilizer of any vertex v 2X

is finite (this is a weaker condition than the usual definition for metric spaces, but for
simplicial complexes it is equivalent to the standard one).

If X admits a cocompact, properly discontinuous action of a group, then it is uniformly
locally finite (ie there is a finite upper bound for the valences of its vertices). Thus the
action of G is cocompact if and only if there are finitely many orbits of vertices.

For any g2G we define Min.g/ to be the subcomplex spanned by the vertices x2X re-
alizing the minimal displacement of g , ie satisfying d.x;g.x//Dminy2X d.y;g.y//.
We also define:

Min.G/D
\
g2G

Min.g/

We show that Min.G/ is nonempty for G Š Z2 acting properly discontinuously on a
systolic complex X . In fact, we prove that Min.G/ is the thickening of a G –invariant
flat. This result is a systolic analogue of the Flat Torus Theorem for CAT.0/–spaces
(see Bridson–Haefliger [1]).

Theorem 6.1 (Flat Torus Theorem) Let G be a noncyclic free abelian group acting
simplicially, properly discontinuously on a uniformly locally finite systolic complex X .
Then:

(1) G is isomorphic to Z2 .

(2) There is a G –invariant flat F �X , unique up to the flat equivalence.

(3) Min.G/ is nonempty and is equal to the thickening of the G –invariant flat.
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Proof Since G is torsion-free and acts properly discontinuously, the action is also
free. In Steps 1–4 we prove the theorem for G ŠZ2 . In Step 5 we complete the proof.

Step 1 There exists an H –invariant flat in X for a certain finite-index subgroup
H <G .

Choose a vertex x 2X and elements g; h 2G generating G . Connect x with g.x/

and h.x/ by geodesics ˛ and ˇ , respectively, and denote by 
 the closed path being
the concatenation ˛�g.ˇ/�h.˛�1/�ˇ�1 . By Lemma 4.2 there is a map f W 4!X ,
where 4 is a systolic disc, mapping @4 onto 
 .

Denote by Y the full subcomplex of X spanned by the orbits of all vertices of f .4/.
Then Y is G–invariant and G acts freely and cocompactly on Y . Thus by the local
finiteness of Y there is a finite-index subgroup H < G generated by gn and hn for
some n such that:

(6-1) minfdY .y;p.y// W p 2H n f1g; y 2 Y .0/g> 3;

so the quotient space Y=H is a flag simplicial complex. Since the links of Y=H are
isomorphic to the links of Y , the quotient complex is locally 6–large.

By the construction of Y , x 2Y and there are such geodesics ˛0 and ˇ0 joining x with
gn.x/ and hn.x/, respectively, that there exists a simplicial map f W 40! Y , where
40 is a simplicial disc mapping @40 to the concatenation ˛0�gn.ˇ0/�hn.˛0�1/�ˇ0�1 .
This gives us a map f 0W T ! Y=H , where T is a triangulation of a torus. The
following diagram of simplicial maps commutes:

zT
zf 0 //

��

zY

��

""
Y

||

� � // X

T
f 0 // Y=H

where zT is the universal covering of T , ie a triangulation of a plane (not necessarily
systolic). Now we modify T to a systolic triangulation, by applying three types of
modifications:

(a) If there exists in T a cycle � of length 3 not bounding a triangle in T , then
by (6-1) f .�/ is a homotopically trivial loop in Y=H and since f�W �1.T /!

�1.Y=H / is injective, � is homotopically trivial in T . Therefore, it disconnects
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T into two components, one of them being a simplicial disc. Replacing the disc
with a single triangle we obtain another triangulation T 0 of the torus. The map
f can be extended over the new triangulation, since Y=H is a flag complex.

(b) If any cycle of length 3 in T bounds a triangle and there is a vertex v 2 T

adjacent to 4 or 5 triangles, we cut out the open star of v and glue a filling without
internal vertices instead so that f 0 can be extended over the new triangulation
(it is possible, since Y=H is locally 6–large), obtaining another simplicial
triangulation T 0 of the torus.

(c) If any cycle of length 3 in T bounds a triangle and there exists a vertex v

adjacent to 6 or more triangles such that f 0.Tv/ can be filled without internal
vertices, then we apply the procedure from (b) also in this case.

As we modify T , we modify f 0 . Since each operation (a), (b), (c) decreases the number
of vertices in T , the procedure terminates. Therefore, without loss of generality, we
can assume that any vertex in T is adjacent to at least 6 triangles and f 0j@N.v/ cannot
be extended over a simplicial disc with boundary @N.v/ and with no internal vertices,
for any vertex v 2 T . Since the Euler characteristic of a torus is 0, that implies that
any vertex is adjacent to exactly 6 triangles, so the universal covering zT is isomorphic
to E2

4 and ef 0 W zT ! zY is a locally isometric immersion (Proposition 4.7(1)). The
composition of f 0 and the covering map zY ! Y is a locally isometric immersion
pW E2

4 ! Y , whose image is H –invariant. Since Y � X is a full subcomplex, p

treated as a map into X is also a locally isometric immersion, so by Theorem 5.2 it is
an H –invariant flat (the diameter of its image is greater than 3 by the local finiteness
of X and by the freedom of the action of G ).

Step 2 If there exists in X an H –invariant flat F , where H < G is a finite-index
subgroup, then there exists a G –invariant flat F 0 . Moreover, any vertex v 2 Th.F / is
contained in some G –invariant flat.

Let g1; : : : ;gn 2 G be representatives of all cosets of H . Since G is abelian, Fi D

gi.F / are H –invariant flats. As F .0/ consists of a finite number of H –orbits, there is
a constant c such that hdistX .Hx;F /� c and similarly hdistX .Hgi.x/;Fi/� c . As
any two H –orbits are at finite Hausdorff distance, Fi is at finite Hausdorff distance
from F , so by Theorem 5.4 we have Fi � Th.F / for i D 1; : : : ; n. For every g 2G

there is an i such that g.F /DFi , so g.Th.F //DTh.Fi/DTh.F / (the latter equality
follows from the fact that the Hausdorff distance between Fi and F is finite) and Th.F /
is therefore G –invariant. By Corollary 5.5 the retraction r W Th.F /!F ŠE2

4 defined
in Theorem 5.4 induces an action of G on E2

4 , which is free, as G is torsion-free. We
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choose equivariantly vertices F 0.v/ 2 r�1.v/�X for v 2 E2
4 and by Theorem 5.4(3)

extend it to a G –invariant flat F 0W E2
4!X .

Step 3 If F is a G–invariant flat, then F � Min.G/. In particular, Min.G/ is
nonempty.

Let g 2 G , v 2 F and y 2 Min.g/. There is a g–invariant geodesic in F passing
through v , on which g acts by a translation. By the triangle inequality:

n � d.v;g.v//D d.v;gn.v//� d.v;y/C d.y;gn.y//C d.gn.y/;gn.v//

� 2 � d.v;y/C n � d.y;g.y//

for any natural n, so d.v;g.v// � d.y;g.y//, hence v 2Min.g/. As this holds for
any g 2G and for any vertex v 2 F , we have F �Min.G/.

Step 4 If F is a G –invariant flat, then Min.G/D Th.F /.

By Step 2 and Step 3 we have Th.F /�Min.G/. Now we prove the opposite inclu-
sion. Choose an arbitrary vertex v 2 Min.G/. It suffices to find a G–invariant flat
containing v .

Choose in F .1/ two convex half-lines k and l with a common endpoint x intersecting
at the angle 2

3
� . Since the action of G on F Š E2

4 is cocompact, there are nontrivial
elements g; h 2 G such that g.x/ 2 k and h.x/ 2 l . Replacing g and h by some
powers we can assume that d.x;g.x//D d.x; h.x// > 3. Therefore the vertices x ,
g.x/, h.x/, g2h.x/, gh2.x/, g2h2.x/ and the geodesics ˛ (joining x with g.x/),
ˇ (joining x with h.x/), 
 (joining h.x/ with gh2.x/), gh2.˛/, g2h.ˇ/, gh�1.
 /

bound a regular hexagon in F (as in Figure 6(a)).

(a)

h.x/




gh2.x/ gh2.˛/ g2h2.x/

g2h. /

g2h.x/

gh�1.
 /

g.x/˛x

 

(b)

h.v/

�

gh2.v/ gh2. / g2h2.v/

g2h. /

g2h.v/

gh�1.�/

g.v/�v

 

Figure 6
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Join the vertices v , g.v/, h.v/, g2h.v/, gh2.v/, g2h2.v/ in X by geodesics � , � , �
and gh2.�/, g2h.�/ and hg�1.�/ (as in Figure 6(b)). Since x; v 2Min.G/, for any
elements p; q 2G we have:

(6-2) d.p.x/; q.x//D d.p.v/; q.v//

Notice that any two consecutive sides of the hexagon in Figure 6(a) form a geodesic
in X and by (6-2) so do consecutive sides of the hexagon in Figure 6(b) – thus
they intersect only at the endpoints. Since the distance between opposite vertices
of the hexagon in (a) is twice the length of its side, the nonconsecutive sides are
also disjoint in (b) (again by (6-2)). Thus the closed path being the concatenation
� � � �� � gh2.��1/ � g2h.��1/ � gh�1.��1/ is a cycle in X . Let S be a minimal
surface spanning this cycle and denote by y1; : : : ;y6 2 @4S the vertices mapping to
vertices of the hexagon in (b).

By Lemma 4.2 the simplicial disc 4S is systolic, ie any of its internal vertices has
nonpositive defect. Since any two consecutive sides of the hexagon in (b) form a
geodesic in X , any vertex v 2 @4S is adjacent to at least 2 triangles and @4S is the
union of three geodesic arcs: Œy1;y3�, Œy3;y5�, Œy5;y1�. By Fact 3.1 the sum of the
defects along any of the three arcs is at most 1. As the sum of the defects at internal
vertices of 4S is nonpositive, and by the Gauss–Bonnet Lemma the sum of the defects
at all vertices of 4S is 6, we have that any internal vertex has defect 0 (is adjacent to
exactly 6 triangles) and the defects at y1 , y3 , y5 are equal to 1. Similarly we prove
that the defects at y2 , y4 , y6 are equal to 1 (as in Figure 6(b)).

Since Œyi�1;yi �[ Œyi ;yiC1� and Œyi ;yiC1�[ ŒyiC1;yiC2�, i D 1; : : : ; 6 (we use the
cyclic order of indices) are geodesics in 4S , for any vertex w 2 .yi ;yiC1/ � @4S

of defect 1 there are vertices of negative defects w0 2 .yi ; w/ and w00 2 .w;yiC1/.
Moreover, any two vertices w1; w2 2 .yi ;yiC1/ � @4S of defects 1 are separated
by a vertex of negative defect. Thus either the sum of the defects along .yi ;yiC1/ is
negative or there are no positive vertices (and also no negative vertices) on .yi ;yiC1/.
As the sum of the defects at vertices of @4S is 6 and the defect at yi , i D 1; : : : ; 6 is
equal to 1, there are no nonzero vertices on @4S different from y1; : : : ;y6 . Thus 4S

is a regular equilaterally triangulated hexagon (isomorphic to the one in Figure 6(a)).

Let H <G be the subgroup generated by g and h. As H satisfies (6-1), X=H is a
locally 6–large simplicial complex. As a quotient of S we obtain a simplicial map
f W T ! X=H , where T is a triangulation of a torus such that any vertex of T is
adjacent to exactly 6 triangles. If there is a vertex y 2 T such that f .Ty/ can be filled
with a disc with no internal vertices, we can apply the minimizing procedure from
Step 1 (starting with operation (c)), resulting in a triangulation of a torus T 0 and a
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simplicial map f 0W T 0!X=H such that the universal covering ef 0 W eT 0 !X is a flat
F 0 in X at finite Hausdorff distance from F . Moreover, F 0 has a smaller number of
H –orbits of vertices than F , which is impossible, as by Corollary 5.5 retractions rF

and rF 0 induce isomorphic actions on E2
4 .

Thus the universal covering zT is isomorphic to E2
4 and zf W E2

4 ! X is a locally
isometric immersion, so by Theorem 5.2 it is an H –invariant flat. Moreover, by the
construction v 2 Im zf , so by Step 2 there is a G–invariant flat passing through v ,
which completes the proof of the inclusion Min.G/� Th.F /.

Step 5 G is a free abelian group of rank 2.

Assume G Š Zn for n > 2. Let H < G be a subgroup isomorphic to Z2 . We have
already proved that Min.H /D Th.F / for an H –invariant flat F � X . Since every
g 2G centralizes H , it preserves Min.H /, so the thickening Th.F / is G–invariant.
Since G is torsion-free, the retraction r W Th.F /! F Š E2

4 defined in Theorem 5.4
induces a free action of G on E2

4 (Corollary 5.5). However, there are no free actions
of Zn on E2

4 for n> 2.

Corollary 6.2 Let a group G act simplicially, properly discontinuously on a uniformly
locally finite systolic complex X .

(1) If G is a virtually abelian group of rank 2, then there is a flat F , unique up to
the flat equivalence, such that Th.F / is G –invariant.

(2) If H <G is a maximal virtually abelian rank 2 subgroup, then there is a flat F ,
unique up to the flat equivalence, such that StabG.Th.F //DH:

Proof There is a finite index subgroup A < G isomorphic to Z2 and a finite index
normal subgroup N C G isomorphic to Z2 (eg N D

T
g2G g�1Ag ). By the Flat

Torus Theorem there is an N –invariant flat F in X , unique up to the flat equivalence.
Let g1; : : : ;gk be representatives of all cosets of N in G . The flats Fi D gi.F /,
i D 1; : : : ; k are N –invariant (as g�1

i Ngi DN ), so by the Flat Torus Theorem they
are equivalent to F . Thus G stabilizes the thickening Th.F /, which proves (1).

To prove (2) consider the H –invariant thickening Th.F /. By Corollary 5.5 the induced
action of StabG.Th.F // on F Š E2

4 is properly discontinuous and as the stabilizer
StabG.Th.F // contains a subgroup isomorphic to Z2 it is also cocompact. Thus
StabG.Th.F / is a virtually abelian rank 2 group and (2) follows from the maximality
of H .
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