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Fundamental groups of moduli stacks
of stable curves of compact type

MARCO BOGGI

Let �Mg;n , for 2g� 2C n > 0 , be the moduli stack of n–pointed, genus g , stable
complex curves of compact type. Various characterizations and properties are ob-
tained of both the topological and algebraic fundamental groups of the stack �Mg;n .
For instance, in Theorem 3.20, we show that the topological fundamental groups
are linear, extending to all n� 0 previous results of Morita and Hain for g � 2 and
nD 0; 1 .

Let �g;n , for 2g� 2C n > 0 , be the Teichmüller group associated with a compact
Riemann surface of genus g with n points removed Sg;n , ie the group of homotopy
classes of diffeomorphisms of Sg;n which preserve the orientation of Sg;n and a
given order of its punctures. Let Kg;n be the normal subgroup of �g;n generated by
Dehn twists along separating simple closed curves (briefly s.c.c.) on Sg;n . The above
theory yields a characterization of Kg;n for all n� 0 , improving Johnson’s classical
results for closed and one-punctured surfaces in [13].

The Torelli group Tg;n is the kernel of the natural representation �g;n! Sp2g.Z/ .
The abelianization of the Torelli group Tg;n is determined for all g � 1 and n� 1 ,
thus completing classical results of Johnson [14] and Mess [18] for closed and
one-punctured surfaces.

We also prove that a connected finite étale cover �M� of �Mg;n , for g � 2 , has a
Deligne–Mumford compactification SM� with finite fundamental group. This implies
that, for g � 3 , any finite index subgroup of �g containing Kg has vanishing first
cohomology group, improving a result of Hain [8].

32G15; 14H10, 30F60, 14F35

1 Introduction

Let Mg;n be the moduli stack of smooth, n–pointed, genus g , complex curves and
let SMg;n be its Deligne–Mumford compactification, ie the moduli stack of stable,
n–pointed, genus g , complex curves. They are actually Deligne–Mumford stacks
(briefly D–M stacks).
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A central role in the study of the space Mg;n is played by the Teichmüller group �g;n .
Classically, it is defined, for a given compact Riemann surface of genus g with n

points removed Sg;n , as the mapping class group of Sg;n , ie the group of homotopy
classes of diffeomorphisms of Sg;n which preserve the orientation of Sg;n and a given
order of its punctures. From our point of view, the most significant characterization of
�g;n is as the fundamental group of the topological stack underlying Mg;n .

Since, topologically, the space Mg;n is an Eilenberg–MacLane space of type .�; 1/,
in principle, all topological properties of Mg;n can be derived from the study of �g;n .
As shown in Boggi [5], also many interesting algebro-geometric properties are encoded
in the algebraic fundamental group of Mg;n , ie in the profinite completion of �g;n .
According to the anabelian philosophy of Grothendieck, much more is to be expected
when one takes in Galois actions. All this undoubtedly accounts for the extraordinary
richness and difficulty of Teichmüller theory.

At the other extreme lies the case of the D–M stack SMg;n , whose fundamental group
is trivial (see Proposition 1.1 in Boggi and Pikaart [6]).

The purpose of this paper is a systematic study of the topological and algebraic funda-
mental group of a partial compactification of Mg;n , contained as an open substack in
the Deligne–Mumford compactification SMg;n , which is, in some sense, intermediate
between the two. Let �Mg;n be the moduli stack of n–pointed, genus g stable complex
curves of compact type. In other words, the stack �Mg;n parametrizes stable curves
which have a compact generalized jacobian or, equivalently, whose dual graph is a tree.

The topological and algebraic fundamental groups of �Mg;n are characterized in various
ways. Let Kg;n be the normal subgroup of �g;n generated by Dehn twists along
separating s.c.c. on Sg;n . The first and almost trivial characterization of the fundamental
group of �Mg;n is as the quotient of the mapping class group �g;n by Kg;n . Eventually,
it is proved that the fundamental group of �Mg;n is a linear group and, more precisely,
an extension of the symplectic group Sp2g.Z/ by a free abelian group of rank 2.n�1/,
for gD 1 and n� 1, and of rank .2g

3 /C2g.n�1/, for g � 2. This is a generalization
of previous results by Morita [21] and Hain [9] who dealt with the cases g � 2 and
nD 0; 1. In particular, it turns out to be a much simpler object than the Teichmüller
group itself. It is important to stress that, in contrast with the usual situation, sometimes
the characterizations of the topological fundamental group are derived from those of
the algebraic one, as it happens for instance in the proof of Theorem 3.15.

The above theory turns out to be very useful because, even though the space �Mg;n

in general is not an Eilenberg–MacLane space of type .�; 1/ (see Proposition A.4 in
Mondello [20]) its fundamental group still contains a lot of information on the moduli
stack �Mg;n and on the topology of its open substack Mg;n as well. This will be
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apparent from the applications given in Boggi [5] to the monodromy of families of
curves of compact type. As to Mg;n , let us mention Proposition 5.1 and Remark 5.2.

However, the most important applications, given in the present paper, of the above
results are to some questions in classical Teichmüller theory. For nD 0 and g � 2,
Johnson characterized Kg;n as the kernel of the natural representation:

�g! Out.�1.Sg/=�1.Sg/
Œ3�/;

where �1.Sg/
Œ3� is the third term of the descending central series of the fundamental

group of Sg . From the point of view of Hodge theory, the weight filtration W k�1.Sg;n/,
for k � 0, (see Section 2 for the definition) is the natural extension of the descending
central series to the n–punctured case. In Theorem 3.15, it is proved that, for 2g�2Cn>

0, the group Kg;n is the kernel of the natural representation:

�g;n! Out.�1.Sg;n/=W 3�1.Sg;n//:

Let Tg;n be the Torelli subgroup of �g;n . It is defined as the kernel of the natural
representation �g;n! Sp2g.Z/, ie as the subgroup of mapping classes of �g;n acting
trivially on the homology of the compact surface Sg . In the series of papers [11;
12; 13; 14], Johnson computed the abelianization of Tg;n for g � 3 and n D 0; 1,
while Mess [18] computed the abelianization of T2 . Then in [9], Hain and Looijenga
implemented their results in order to compute H1.Tg;n;Q/ for all g � 1 and n � 1.
Thanks to the above characterization of the group Kg;n , the above results are completed,
determining the abelianization of the Torelli group Tg;n for all g � 1 and n � 1

(Theorem 3.21).

Finally, let us mention a result which, in the light of Boggi [5], is also interesting. For
g1 and g2 nonnegative integers, such that g1Cg2 D g , and a partition of the set of
the n marking labels in two subsets of cardinality n1 and n2 , Knudsen [16] defined a
clutching morphism SMg1;n1C1 �

SMg2;n2C1!
SMg;n which, on the moduli space of

stable curves of compact type, restricts to a morphism �Mg1;n1C1�
�Mg2;n2C1!

�Mg;n .
In Theorem 4.1, it is proved that such morphism induces a monomorphism between the
respective topological fundamental groups (for the algebraic fundamental groups the
situation is a little bit trickier, due to the failure of the congruence subgroup property
for SL2.Z/).

2 Level structures over moduli of curves

The purpose of this section is, basically, to provide the notation to be used in the rest
of the paper. For a more complete treatment of level structures and Teichmüller theory,
we refer the reader, for instance, to Section 1 of Boggi [4].

Geometry & Topology, Volume 13 (2009)



250 Marco Boggi

Let SMg;n , for 2g� 2C n> 0, be the stack of n–pointed, genus g , stable algebraic
curves over C . It is a regular connected proper D–M stack over C of dimension
3g� 3C n, and it contains, as an open substack, the stack Mg;n of n–pointed, genus
g , smooth algebraic curves over C . By Proposition 1.1 in Boggi and Pikaart [6],
the stack SMg;n is simply connected. On the contrary, the stack Mg;n has plenty of
nontrivial covers which we are briefly going to introduce in this section. Its universal
cover, the Teichmüller space Tg;n , is a contractible complex manifold. There is a natural
way to define homotopy groups for topological D–M stacks, as done, for instance, by
Noohi in [24; 23]. Then, the fundamental group �1.Mg;n; a/ can be identified with
the Teichmüller modular group �g;n , which is the deck transformation group of the
cover Tg;n!Mg;n .

A level structure M� is a finite, connected, Galois, étale cover of the stack Mg;n (by
étale cover, we mean here an étale, surjective, representable morphism of algebraic
stacks), therefore it is also represented by a regular D–M stack M� . The level associated
to M� is the finite index normal subgroup �� WD �1.M�; a0/ of the Teichmüller
group �g;n .

A level structure M�0 dominates M� , if there is a natural étale morphism M�0!M�

or, equivalently, ��
0

� �� . To mark the fact that M� is a level structure over Mg;n ,
we will often denote it by M�

g;n .

The morphism pWMg;nC1!Mg;n , forgetting the last label, is naturally isomorphic
to the universal curve over Mg;n . One can then identify the fiber p�1.a/ with an
n–punctured, genus g curve C XfP1; : : : ;Png, where .C;P1; : : : ;Pn/ is a curve in
the class determined by a 2 SMg;n . Denote by Sg;n the Riemann surface underlying
CXfP1; : : : ;Png and fix a point za2Sg;n . Since p is a Serre fibration and �2.Mg;n/D

�2.Tg;n/D 0, there is a short exact sequence on fundamental groups

1! �1.Sg;n; za/! �1.Mg;nC1; za/! �1.Mg;n; a/! 1:

By a standard argument this defines a monodromy representation:

�W �1.Mg;n; a/! Out.�1.Sg;n; za//;

called the universal monodromy representation. From the above fibration, it follows
also that there is a natural representation of �1.Mg;n; a/ in the group of homotopy
classes of self-homeomorphism of the Riemann surface Sg;n . Let us denote by
HomC.Sg;n/ the subgroup of orientation preserving self-homeomorphism of Sg;n

and by Hom0.Sg;n/ the subgroup consisting of homeomorphism homotopic to the
identity. The Teichmüller modular group is classically defined to be the group of
homotopy classes of homeomorphism of Sg;n which preserve the orientation and the
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given order of the punctures:

�g;n WD HomC.Sg;n/=Hom0.Sg;n/;

where Hom0.Sg;n/ is the connected component of the identity in the topological
group of homeomorphisms HomC.Sg;n/. By Teichmüller theory, the monodromy
representation � is faithful and identifies the fundamental group �1.Mg;n; a/ with the
Teichmüller group �g;n .

Let us denote by …g;n the fundamental group of Sg;n based in za and give …g;n the
standard presentation:

…g;n D

D
˛1; : : : ˛g; ˇ1; : : : ; ˇg;u1; : : : ;un

ˇ̌̌ gY
iD1

Œ˛i ; ˇi � �un � � �u1

E
;

where ui , for i D 1; : : : ; n, is a simple loop around the puncture Pi . For n � 1, let
A.g; n/ be the group of automorphisms of …g;n which fix the conjugacy classes of all
ui . For nD 0, let instead A.g; 0/ be the image of A.g; 1/ in the automorphism group
of …g WD…g;0 . Finally, let I.g; n/ be the group of inner automorphisms of …g;n .
With this notation, the representation � is faithful and gives a natural isomorphism
�g;n ŠA.g; n/=I.g; n/.

The most natural way to define levels is provided by the above isomorphism. In general,
for a subgroup …� �…g;n , which is invariant under A.g; n/ (in such case, we simply
say that …� is invariant), it is defined a representation:

��W �g;n! Out.…g;n=…
�/;

whose kernel we denote by �� . When …� has finite index in …g;n , then �� has finite
index in �g;n and is called the geometric level associated to …� . The corresponding
level structure is denoted by M�

g;n .

A class of finite index invariant subgroups of the group …g;n one can consider, in order
to define geometric level structures, is that obtained from the descending central series,
twisting by l –th powers. The descending central series is defined by …Œ1� WD…g;n

and …Œk� WD Œ…Œk�1�;…�. Let then …l be the invariant subgroup of …g;n spanned by
l –th powers and define

…Œk�;l WD…Œk� �…l :

We denote the corresponding levels and level structures by � Œk�;l and MŒk�;l .

Even though algebraically, the above filtration is very natural, from a geometric point
of view, the so called weight filtration is more significative. This filtration originates in
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Hodge theory and is defined as follows. Let N be the kernel of the natural morphism
…g;n!…g;0 , filling in the punctures, and define

W 1… WD …g;n;

W 2… WD N �…Œ2�;

W kC1… WD Œ…g;n;W
k…� � ŒN;W k�1…�:

As for the descending central series, one has ŒW s…;W t…��W sCt…. The descending
central series and the weight filtration are cofinal to each other and coincide for nD 0.
Indeed, W 2k�1…�…Œk� �W k…. As above, let us define

W k;l…DW k… �…l :

The corresponding representation is denoted by �w.k;l/ and the corresponding levels
and level structures are denoted by �w.k;l/ and Mw.k;l/ respectively. The kernel of
the representation �W k W �g;n! Out.…g;n=W k…/ will be instead denoted by W k� .

Of particular interest are the levels defined by the kernels of the representations:

�.m/W �g;n! Sp.H1.Sg;Z=m//; for m� 2:

They are denoted by �.m/ and called abelian levels of order m. The corresponding
level structures are then denoted by M.m/ .

The kernel of the representation �g;n! Sp2g.Z/ is denoted by Tg;n and called the
Torelli subgroup of �g;n . Note that �.m/D �w.2;m/ and Tg;n DW 2� .

The usual way to compactify a level structure M� over Mg;n is to take the nor-
malization of SMg;n in the function field of M� . A more functorial definition can
be given in the category of log regular schemes as done by Mochizuki in [19]. Let
@ be the logarithmic structure on SMg;n associated to the normal crossing divisor
@M WD SMg;n XMg;n . We define a level structure over . SMg;n; @/ to be a finite,
connected, log étale cover

. SM�; @�/! . SMg;n; @/:

Then, by the log purity theorem, any level structure M� over Mg;n admits a canonical
compactification to a level structure . SM�; @�/ over . SMg;n; @/, where SM� is the
normalization of SMg;n in the function field of M� and @� the logarithmic structure
associated to the normal crossing divisor @M� WD SM� XM� (the Deligne–Mumford
boundary of SM� ). On the other hand, it is also clear that any level structure over
. SMg;n; @/ can be realized in this way. So, forgetting the logarithmic structure, one is
back to the previous definition. A basic property of (compactified) level structures is
the following (see, for instance, Deligne [7]):
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Proposition 2.1 If a level �� is contained in an abelian level of order m, for some
m� 3, then the level structure SM� is represented by a projective variety.

There is a very explicit and elementary method to describe the compactifications SM� ,
locally in the analytic topology. A neighborhood of a point a 2M� is just the base of
the local universal deformation of the fiber Ca in a of the universal family C�!M� .
Let us see how a neighborhood of a 2 @M� can be described.

Let B! SMg;n be an analytic neighborhood of the image y of a in SMg;n such that:

� local coordinates z1; :::; z3g�3Cn embeds B in C3g�3Cn as an open ball;

� C WD��1.y/ is the most degenerate curve in the pullback C �
!B of the universal

family over B ;

� an étale groupoid representing SMg;n trivializes over B to Aut.C /�B� B .

Let fQ1; : : : ;Qsg be the set of singular points of C and let zi , for i D 1; : : : ; s ,
parametrize curves where the singularity Qi subsists. The discriminant locus @B � B
of � has then equation z1 � � � zs D 0. Let U D B X @B . The natural morphism
U !Mg;n induces a homomorphism of fundamental groups:

��W �1.U; a/! �1.Mg;n; a/:

If we denote as well by �� the subgroup of �1.Mg;n; a/ determined by the étale cover
M�!Mg;n , a connected component U � of U � SMg;n

SM� is then determined by
the subgroup ��1

�
.��/ of the abelian group �1.U; a/.

Let us make the above description more explicit. Let s1; : : : ; sn be the sections of
the universal family over SMg;n and define CjU WD C X

Sn
iD1 si.U /. Let us fix a

homeomorphism between the fiber over a of the morphism CjU !U and the marking
Riemann surface Sg;n . In more detail, the local monodromy representation

�U W �1.U; a/! Out.�1.Sg;n; za//;

associated to the family CjU!U , is defined as the composition of the natural morphism
�1.U /!�1.Mg;n/ with the universal monodromy representation and can be explicitly
described as follows.

Since U is homotopic to the s–dimensional torus .S1/s , the fundamental group
�1.U; a/ is abelian and freely generated by simple loops 
i around the divisors zi ,
for i D 1; : : : ; s . Such loops can be lifted to disjoint loops z
i , for i D 1; : : : ; s , in
Sg;n , whose isotopy classes are uniquely determined and which become isotrivial after
specialization to C . One can prove that 
i is mapped by �U exactly in the element

Geometry & Topology, Volume 13 (2009)



254 Marco Boggi

of Out.�1.Sg;n; za// determined by the Dehn twist �z
i
along z
i , for i D 1; : : : ; s . In

particular, the representation �U is faithful.

Let E†.C / be the free abelian group spanned by the edges of the dual graph †.C / of
the stable curve C . The edges of the dual graph correspond to isotopy classes of s.c.c.

e in Sg;n which become isotrivial specializing to C . The group E†.C / can then be
naturally identified with the free abelian group spanned in �g;n by the set of Dehn
twists f�
e

g. On the other hand, the fundamental group �1.U; a/ is as well naturally
isomorphic to E†.C / . So for a level �� the subgroup ��1

�
.��/ of the fundamental

group �1.U; a/ is then canonically identified with E†.C /\�
� .

An almost complete description of local monodromy coefficients for the geometric levels
�w.k;l/ is given in [26, Theorem 3.1.3], [6, Proposition 2.8] and [25, Theorem 3.3.3].
Let us collect all their results in a single statement.

Let N†.C / and S†.C / be respectively the subgroups of E†.C / spanned by edges
corresponding to nonseparating s.c.c. and by edges corresponding to separating s.c.c..
Let then S1

†.C /
be the subgroup of S†.C / spanned by edges corresponding to separating

s.c.c. bounding an unpunctured genus 1 surface. Let instead P†.C / be the subgroup
spanned by elements of the form e1 � e2 , where fe1; e2g corresponds to a cut pair
on C . Eventually, denote by P un

†.C /
the subgroup of P†.C / spanned by elements

corresponding to cut pairs bounding a surface without punctures. Let, for m; s positive
integers, ms WDm= gcd.m; s/.

Theorem 2.2 With the above notation, the kernel of �w.k;l/
U

, where U is a neighbor-
hood of ŒC � 2 SMg;n as above, is given by:

.1/ If k D 2: m N†.C /CP†.C /CS†.C /:

.2/ If k D 3: m N†.C /Cm2 P un
†.C /

CS†.C /:

.3/ If k D 4 and m is odd or 4jm: m N†.C /Cm2 S†.C /Cm6 S1
†.C /

:

If k D 4 and 2jjm: m N†.C /C
m
2

P†.C /C
m
2

S†.C /C
m3

2
S1
†.C /

:

.4/ If k � 4 and gcd.m; 6/D 1: m E†.C /:

3 Moduli spaces of stable curves of compact type

In this section, we begin the study of the moduli space �Mg;n of stable n–pointed,
genus g , complex curves of compact type. We will give various characterization both
of its topological fundamental group �1. �Mg;n; a/ and of its algebraic fundamental
group y�1. �Mg;n; a/ (in the sequel, we will often omit any mention of base points). As
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usual, the profinite completion of a given group G is denoted by yG . This motivates
the previous notation for the algebraic fundamental group of �Mg;n .

Since @ �Mg;n WD
�Mg;nXMg;n is a normal crossing divisor, the embedding Mg;n ,!�Mg;n induces an epimorphism �1.Mg;n; a/� �1. �Mg;n; a/ on fundamental groups,

whose kernel is normally generated by small loops around the irreducible components of
@ �Mg;n . As we remarked in Section 2, the isomorphism �g;nŠ�1.Mg;n; a/ identifies
such loops with Dehn twists along separating s.c.c.. Let us then define

Kg;n WD h�˛ 2 �g;n j ˛ is a separating s.c.c. on Sg;ni;

which is also called the Johnson subgroup of �g;n . We then get the following well
known characterization of �1. �Mg;n; a/, first considered in Hain and Looijenga [9]:

Proposition 3.1 Let 2g�2Cn> 0. The fundamental group of �Mg;n fits in the short
exact sequence:

1!Kg;n! �g;n! �1. �Mg;n; a/! 1:

The following definition is then natural:

Definition 3.2 For 2g� 2C n> 0, let z�g;n WD �g;n=Kg;n and let us denote by z�^g;n
its profinite completion. The isomorphism �g;n Š �1.Mg;n; a/ then identifies the
groups z�g;n and z�^g;n with the topological and the algebraic fundamental group of�Mg;n , respectively.

By Theorem 2 in Birman [3], for the case g D 2, and Theorem 6 in Johnson [13], for
the case g > 2, we know that Kg is the kernel, for nD 0, of the natural representation

�W 3 W �g;n! Out.…g;n=W 3…/:

In particular, the fundamental group of �Mg is naturally isomorphic to Im �W 3 . Passing
to profinite completions, the above representation induces a continuous representation:

y�W 3 W ��g;n! Out.�…g=W 3�…/:
A natural guess then is that, for nD 0, the algebraic fundamental group of �Mg;n is
isomorphic to Im y�W 3 . Thanks to a straightforward generalization of Corollary 3.11 in
Boggi and Pikaart [6], we will be able to prove that this actually holds for all n� 0. In
its turn, this will yield that the fundamental group of �Mg;n is isomorphic to Im �W 3 ,
for all n � 0. Besides more complete results with respect to [6], we will give here
more detailed proofs. Let us begin with the following preliminary lemma’s.
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Lemma 3.3 Let f W C ! U be a representable, flat, generically smooth morphism,
with connected fibers, over an irreducible, reduced, uniformizable complex D–M stack
U . Let Cu be the fiber over a point u 2 U , and let also zu 2 Cu . There is then an exact
sequence of topological fundamental groups:

�1.Cu; zu/! �1.C; zu/! �1.U ;u/! 1:

Proof Right exactness of the above sequence follows from the fact that f is surjective
with connected fibers. In order to prove left exactness, let us consider the universal
covers zC and zU of the D–M stacks C and U , respectively. By hypothesis, such universal
covers exist in the category of analytic spaces. Then, the given morphism f W C! U
can be lifted to a morphism of analytic spaces zf W zC! zU and the above sequence is
left exact, for a choice of u 2 U , if and only if, for any zu 2 zU lying over u, the fiber
zf �1.zu/ is connected.

Let U0 be the open substack of U over which f is smooth, C0 WD f �1.U0/ and
f 0 WD f jC0 . Let then zC0 and zU0 be the universal covers of C and U , respectively and
let zf 0W zC0! zU0 be a lift of f 0 which fits in the commutative diagram:

zC0
zf 0

//

��

zU0

��
zC

zf // zU :

Since f 0 is a Serre fibration with connected fibers, it is clear that zf 0 has connected
fibers. Therefore, the same holds for the restriction of zf to the inverse image of C0 in
zC , ie all the fibers of zf above the inverse image of U0 in zU are connected.

From the flatness of f , it follows that zf W zC! zU is a flat family of analytic spaces.
Moreover, over an open dense subset of zU , the fibers of zf are smooth and connected.
Any fiber can then, at least locally, be realized as the limit of the smooth connected
fibers and so is connected.

Let us denote by ˇ0W
SMg�1;nC2!

SMg;n the natural pinching morphism whose image
is the locus whose generic point parametrizes singular irreducible curves. An étale
cover �M� of �Mg;n compactifies to an étale cover SM�! SMg;n whose branch locus
is contained in the image of ˇ0 .

Lemma 3.4 (i) Let SM� ! SMg;n be a level structure whose branch locus is
contained in the boundary divisor ˇ0. SMg�1;nC2/. Denote by pW �g;n!�g;n�1

the epimorphism induced filling in Pn on Sg;n and let �p.�/ WD p.��/. Then
�1. SM�

g;n/D �1. SMp.�/
g;n�1/.
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(ii) Let ��1 � ��2 be two levels whose associated level structures satisfy the
hypothesis in the above item. If the natural morphism SM�1

g;n!
SM�2

g;n is étale
and, with the same notation as above, p.��1/D p.��2/, then ��1 D ��2 .

Proof Item (ii) follows directly from (i). So let us prove (i). We claim that the natural
morphism �WM�

g;n!Mp.�/
g;n�1 is a fibration in smooth curves. There is a factorization

M�
g;n

z� //

�

((PPPPPPPPPPPPPP Mg;n �Mg;n�1
Mp.�/

g;n�1

�

��

Mp.�/
g;n�1;

with z� étale and � smooth. Thus � is also smooth. In the Stein factorization of �

M�
g;n

�0

�! Y
f
�!Mp.�/

g;n�1;

the morphism �0 has connected fibers and f is finite. Therefore f is étale. By
definition of �p.�/ , the map induced on fundamental groups by � is surjective. So
the same is true for the morphism f which then is an isomorphism. Hence � D �0 .
In particular, since the morphism �W SM�

g;n!
SMp.�/

g;n�1 is also log-smooth, it is a flat
family of semistable curves. Let S be a fiber of � lying above a fiber of SMg;n!

SMg;n�1 which is a tree of g elliptic curves. By the assumptions made on the branch
locus of SM�

g;n!
SMg;n , the induced cover S ! C is étale. Therefore S is a tree of

elliptic curves as well. Note that for any s.c.c. ˛ on one of the components of S there
is a degeneration of S in the family SM�

g;n!
SMp.�/

g;n�1 , induced by a degeneration of
C in the family SMg;n!

SMg;n�1 , in which ˛ is a vanishing loop.

From the exact sequence of groups

�1.S/! �1. SM�
g;n/

�
! �1. SMp.�/

g;n�1/! 1;

given by Lemma 3.3, it follows that �1. SM�
g;n/D �1. SMp.�/

g;n�1/.

In the previous section, we defined the Galois level �w.k;m/ as the kernel of the natural
representation �W k;m W �g;n! Out.…g;n=W k;m…/.

The group Kg;n.m/ is defined, for 2g� 2Cn> 0, to be the normal subgroup of �g;n

generated by Dehn twists along separating s.c.c., m–th powers of Dehn twists along
nonseparating s.c.c. and m2 –th powers of bounding pair maps ��1


1
�
2

, for all cut pairs

1; 
2 bounding an unmarked subsurface of Sg;n (as usual, we let m2 WDm=gcd.2;m/).

Geometry & Topology, Volume 13 (2009)



258 Marco Boggi

Proposition 3.5 Let g � 2. Then, �w.3;m/g DKg.m/.

Proof For g D 2, the proposition is just Proposition 3.2 in [6]. The case g � 3 and
m odd was already treated in Proposition 3.4 in [6]. Here, we reproduce that proof
with the modifications needed in order to make it work also for m even.

From Theorem 2.2, it follows that Kg.m/ � �
w.3;m/
g . It then holds Kg.m/ � Tg D

�
w.3;m/
g �Tg , since, by Proposition 3.4 in [6], both groups equal �.m/. There is then a

commutative diagram with exact rows:

1 // Kg.m/ //

��

Kg.m/ � Tg
// Tg=.Kg.m/\ Tg/ //

��

1

1 // �
w.3;m/
g

// �
w.3;m/
g � Tg

// Tg=.�
w.3;m/
g \ Tg/

// 1:

Therefore, in order to prove the proposition, it is enough to show that Kg.m/\ Tg D

�
w.3;m/
g \ Tg and then that:

(�) .Kg.m/\ Tg/=Kg D .�
w.3;m/
g \ Tg/=Kg

The advantage of considering the latter identity is that it can be checked inside a
torsion free abelian group. More precisely, there is a natural representation, Johnson’s
homomorphism (defined in [11]):

j0W Tg!^
3H1.Sg;Z/=.ŒSg�^H1.Sg;Z//;

where ŒSg� 2 ^
2H1.Sg;Z/ is the fundamental class of Sg . The right-hand side is a

free Z–module of rank .2g
3 /� 2g and ker j0 DKg .

Corollary 6.4 in [26] implies that the image of the group �1.Sg/
Œ3�;m in the free abelian

group �1.Sg/
Œ2�=�1.Sg/

Œ3� is the subgroup of m2 –th powers, ie

�1.Sg/
Œ3�;m=�1.Sg/

Œ3�
Šm2 � ^

2H1.Sg;Z/=ŒSg�:

Sp the image of H1.Sg;Z/˝�1.Sg/
Œ3�;m inside ^3H1.Sg;Z/=.ŒSg�^H1.Sg;Z//

equals the submodule m2 � ^
3H1.Sg;Z/=.ŒSg�^H1.Sg;Z//.

By the computations which are carried out in [11], we know that the group Tg=Kg

embeds as a primitive submodule, with a basis given by bounding pair maps, in the
free Z–module ^3H1.Sg;Z/=.ŒSg�^H1.Sg;Z//. It then follows that an element of
Tg=Kg belongs to the submodule of m2 –th powers if and only if it can be represented
as a product of m2 –th powers of bounding pair maps. This immediately yields the
identity (�), thus completing the proof of the proposition.

The second item of the following theorem is a generalization of Theorem 3.5 in [6]:
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Theorem 3.6 (i) Let n > 0. For all m � 2, there are natural isomorphism
�1. SMw.3;m/

1;n
/Š �1. SM.m/

1;1
/. Therefore, �w.3;m/

1;n
=K1;n.m/Š �1. SM.m/

1;1
/.

(ii) Let g � 2 and n � 0. For m � 2, the level structure SMw.3;m/ over SMg;n is
simply connected. Therefore, �w.3;m/ DKg;n.m/.

Proof We have OutC.…1;1=W 3;m…/DSL2.Z=m/. Therefore, for gD 1 and nD 1,
we have �w.3;m/ D �.m/Š �1.M.m/

1;1
/. The statement of the theorem, for gD 1 and

nD 1, then follows since the generators of K1;1.m/ correspond, in the fundamental
group of M.m/

1;1
, to small loops around the punctures.

For g � 2 and nD 0; 1, from Proposition 3.5 and simple topological arguments, like
the ones given in the proof of Proposition 3.3 in [6], it follows that the level structures
SMw.3;m/

g;n are simply connected.

For n � 2, we proceed by induction on n. Let us then assume that the statement of
the theorem has been proved up to n� 1 and let us prove it for n. By Lemma 3.4 and
Theorem 2.2, it is enough to prove, with the same notation of the lemma, the identity:

p.�w.3;m/g;n /D �
w.3;m/
g;n�1

:

The inclusion p.�
w.3;m/
g;n /� �

w.3;m/
g;n�1

is trivial, since the epimorphism …g;n�…g;n�1

induces an epimorphism …g;n=W 3;m…�…g;n�1=W 3;m….

For g � 2, the reverse inclusion follows, from the fact that, by inductive hypothesis:

�
w.3;m/
g;n�1

DKg;n�1.m/D p.Kg;n.m//� p.�w.3;m/g;n /:

For g D 1 and all n� 1, there is a series of natural epimorphism:

�
w.3;m/
1;n

=K1;n.m/� �1.M.m/
1;1
/� �1. SM.m/

1;1
/:

Since, by inductive hypothesis, �w.3;m/
1;n�1

=K1;n�1.m/Š �1. SM.m/
1;1
/ and, moreover,

p.K1;n.m//DK1;n�1.m/, it follows that the natural homomorphism pW �
w.3;m/
1;n

!

�
w.3;m/
1;n�1

is surjective.

In order to complete the proof of the theorem, let us just remark that, again by simple
topological arguments, like those in the proof of Corollary 3.11 in [6], the assertion
about the simply connectedness of the level structures SMw.3;m/ implies the assertion
about the generators for the corresponding levels.

Of course, the profinite group z�^Š b�=K is naturally isomorphic to lim
 �m>0

�=K.m/.
From Theorem 3.6, we then have the following:
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Theorem 3.7 Let g � 2 and n � 0. The algebraic fundamental group of �Mg;n is
naturally isomorphic to lim

 �m>0
�g;n=�

w.3;m/ , ie to the image of the representation
y�W 3 .

Remark 3.8 For g D 1 and nD 1, from Theorem 3.6, it follows that

lim
 �
m>0

�1;1=�
w.3;m/

Š SL2.yZ/;

which is not the profinite completion of z�1;1 Š SL2.Z/. In fact, according to Theo-
rem 8.8.1 in [27], the kernel of the natural homomorphism 2SL2.Z/! SL2.yZ/ is a
free profinite group of countably infinite rank, which we denote by yF1 .

Let 2g � 2C n > 0, in general, we have z�^g;n Š ��g;n

ı
xKg;n , where ��g;n denotes

the profinite completion of the Teichmüller group �g;n and xKg;n the closure of the
group Kg;n inside ��g;n . Of course, xKg;n � ker y�W 3 , therefore the representation y�W 3

induces a natural homomorphism, which we denote in the same way:

y�W 3 W z�^g;n! Out.�…g;n=W 3�…/:
By Theorem 3.7, y�W 3 is injective for g � 2. For g D 1, the following result holds:

Theorem 3.9 For n� 1, the kernel of the natural representation

z�^1;n! Out.�…1;n=W 3�…/
is naturally isomorphic to the congruence kernel yF1 .

Proof Let us denote by xK1;n.m/ the closure of the group K1;n.m/ in the profinite
group ��1;n . By Theorem 3.6, there is a natural isomorphism ��w.3;m/

1;n

ı
xK1;n.m/ Š

y�1. SM.m/
1;1
/. Let us now observe that, identifying the fundamental group of the level

structure M.m/
1;1

with the level �.m/, there is a natural isomorphism

�1. SM.m/
1;1
/Š �.m/

ı
h�m

 j 
 a s.c.c. on S1;1i :

Therefore, there is a series of natural isomorphisms:

lim
 �
m>0

���w.3;m/
1;n

= xK1;n.m/
�
Š lim
 �
m>0

y�1. SM.m/
1;1
/

Š lim
 �
m>0

���.m/ıh�m

 j 
 a s.c.c. on S1;1i

�
D lim
 �
m>0

��.m/D yF1:
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The theorem then follows taking the inverse limit on m of the exact sequences of
profinite groups:

1!��w.3;m/
1;n

ı
xK1;n.m/ ! z�

^

1;n! Out.�…1;n=W 3;m�…/:
An easy consequence of Theorem 3.6 is also:

Proposition 3.10 For g � 2 and n � 0, let �M� be a finite connected étale cover of�Mg;n , then its compactification SM� over SMg;n has finite fundamental group.

Proof Let m be the l.c.m. of the ramification indices of the cover SM�! SMg;n over
ˇ0. SMg�1;nC2/ and let xX be the universal cover of SM� and X the inverse image of
Mg;n in xX . Then it is clear that �g;n � �1.X /�Kg;n.2m/. Therefore, �1.X / is a
finite index subgroup of �g;n and xX ! SM� a finite cover.

Corollary 3.6 in [6] can now be substantially improved as well the result by Hain in [8]
about the vanishing of the first cohomology group of levels containing the Torelli group:

Corollary 3.11 Let �� be a level in �g;n containing Kg;n .

(i) For g � 2 and n� 0, we have H 1. SM�;Z/D 0.

(ii) For g � 3 and nD 0, we have H 1.��;Z/D 0.

Proof The first statement immediately follows from Proposition 3.10. For the second
one, see the proof of Corollary 3.6 in Boggi and Pikaart [6].

The profinite group �…g;n=W 3�… is nilpotent. Therefore, there is a natural isomorphism�…g;n=W 3�…Š Y
` prime

….`/g;n=W 3….`/;

where, for a given prime ` > 0, we denote by ….`/g;n the pro–` completion of …g;n .

Let us define the group z�.`/g;n , for a given prime ` > 0 and g � 2, to be the closure of
the image of �g;n inside the virtual pro–` group Out.….`/g;n=W 3….`//. We then have
for g � 2:

z�^g;n Š
Y
` prime

z�.`/g;n:

In Corollary 7.2 of Hain and Looijenga [9], the fundamental groups of �Mg and �Mg;1

are explicitly described. Let us recall this description. Let us denote by H the first
integral homology group of the compact surface Sg , obtained filling in the punctures
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on Sg;n , and let then ! 2 ^2H be the fundamental class of Sg . According to some
results of Johnson [11; 12; 13], for nD 0; 1, the Johnson’s group Kg;n is the kernel of
some naturally defined surjective linear representations:

j0W Tg!^
3H=.! ^H / and j1W Tg;1!^

3H;

called Johnson’s homomorphisms. For nD0, by Johnson’s definition, ker j0Dker �W 3 .
Therefore, the fundamental groups of �Mg and �Mg;1 fit in the short exact sequences:

1!^3H=.! ^H /! z�g! Sp.H /! 1

1!^3H ! z�g;1! Sp.H /! 1:

Let yH Š yZ2g be the profinite completion of H . By the congruence subgroup property
for symplectic groups [2], the profinite group Sp. yH / Š Sp2g.

yZ/, for g � 2, is the
profinite completion of Sp.H /. Moreover, from item (ii) of Theorem 3.6, it follows
that the images of the levels �w.3;m/g;n in z�g;n , for m � 0, g � 2 and nD 0; 1, cut a
fundamental system of neighborhoods of the identity, for the profinite topology, on
the subgroups ^3H=.! ^H / and ^3H , for n D 0; 1, respectively. Therefore, the
algebraic fundamental groups of �Mg and �Mg;1 , for g � 2, are described by the short
exact sequences:

1!^3 yH=.! ^ yH /! z�^g ! Sp. yH /! 1

1!^3 yH ! z�^
g;1
! Sp. yH /! 1:

More in general, the topological and algebraic fundamental groups of �Mg;nC1 can be
described as abelian extensions of the topological and algebraic fundamental groups of�Mg;n for all n� 0:

Theorem 3.12 For 2g�2Cn>0, there are the following natural short exact sequences,
which, if n� 1, admit n natural splittings:

1!H ! z�g;nC1!
z�g;n! 1;

1! yH ! z�^
g;nC1

! z�^g;n! 1:

Similarly, for g � 2 and a prime ` > 0, there is a natural short exact sequence, which,
if n� 1, admits n natural splittings:

1!H .`/
! z�

.`/
g;nC1

! z�.`/g;n! 1;

where H .`/ denotes the pro–` completion of H .
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Remark 3.13 As it was pointed out by the referee, the first two sequences do not split,
when nD 0 and g � 3, and the third does not split when nD 0, g � 3 and ` jg� 1.

Proof The morphism �Mg;nC1!
�Mg;n is an n–pointed, genus g stable curve. Let

ŒC � 2 �Mg;n be such that the curve C is smooth. By Lemma 3.3, there is an exact
sequence:

�1.C /! z�g;nC1!
z�g;n! 1:

Let us show that the homomorphism �1.C /!z�g;nC1 factors through the abelianization
H1.C / of �1.C /. For g D 1, this is obvious since �1.C /ŠH1.C /. For g � 2, let
us fix a homeomorphism of the curve C with the reference genus g compact Riemann
surface Sg . There is a natural commutative diagram with exact rows:

1 // �1.Sg;n/ //

��

�g;nC1
//

��

�g;n
//

��

1

�1.Sg/ // z�g;nC1
// z�g;n

// 1;

where the vertical arrow �1.Sg;n/ ! �1.Sg/ is the epimorphism induced by the
inclusion Sg;n � Sg . Let 
 be a separating s.c.c. on Sg;n bounding a disc containing
all the punctures of Sg;n . Let then S 0 be the genus g subsurface of Sg;n with boundary

 and let �.S 0/ be the mapping class group of S 0 . Fixing the base-point on 
 , the
fundamental group of S 0 is identified with a subgroup of �.S 0/. Moreover, there is a
natural monomorphism �.S 0/ ,!�g;nC1 which is compatible with the monomorphism
�1.S

0/ ,! �1.Sg;n/ induced by the inclusion S 0 � Sg;n . By Theorem 2 in [3] and
Theorem 6 in [13], the quotient of the Torelli subgroup T .S 0/ of �.S 0/ by the normal
subgroup generated by the twists along separating s.c.c. is abelian. In particular, the
image of T .S 0/ in z�g;nC1 is abelian. Since the homomorphism �1.S

0/! �1.Sg/

induced by the inclusion S 0�Sg is an epimorphism and �1.S
0/ is contained in T .S 0/,

it follows that the image of �1.Sg/ in z�g;nC1 is abelian. In order to see that this image
is actually the abelianization H1.Sg;Z/, let us observe what follows.

The relative Jacobian J �Mg;nC1= �Mg;n , parameterizing relative Cartier divisors of de-
gree 0, is an abelian variety of rank 2g over �Mg;n . In particular, it is a Serre fibration
endowed with the natural section defined assigning the zero point in the fiber to each
point of the base. Therefore, the associated long exact homotopy sequence splits and
gives a split short exact sequence:

1!H1.C;Z/! �1.J �Mg;nC1= �Mg;n/! z�g;n! 1:

Let us remark that the existence of the splitting implies that the above short exact
sequence remains exact passing to profinite completions.
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Let j W �Mg;nC1!J �Mg;nC1= �Mg;n be the map defined assigning to the point of �Mg;nC1

parametrizing the pointed stable curve .C;P1; : : : ;PnC1/, the class .2g�2/PnC1��C

in Pic0.C / , where, by �C , we denote the Cartier divisor associated to the dualizing
sheaf of the proper curve C . This map induces, on fundamental groups, the homomor-
phism j�W z�g;nC1! �1.J �Mg;nC1= �Mg;n/ which fits in the commutative diagram with
exact rows:

H1.C;Z/ //

� .2g�2/
��

z�g;nC1
//

j�
��

z�g;n
//

id��

1

1 // H1.C;Z/ // �1.J �Mg;nC1= �Mg;n/
// z�g;n

// 1:

Now, the left hand vertical map is multiplication by 2g�2 while the right hand vertical
map is the identity. Therefore, exactness of the bottom line implies that the upper line
is a short exact sequence as well. The same argument with topological fundamental
groups replaced by the algebraic ones implies that, for 2g� 2C n> 0, there is also a
short exact sequence:

1! yH ! z�^g;nC1!
z�^g;n! 1:

The last exact sequence in the statement of Theorem 3.12 follows from the very
definition of the groups z�.`/g;n , for g � 2, n� 0 and a prime ` > 0.

Let us conclude observing that, for n � 1, the tautological sections si W
�Mg;n !�Mg;nC1 , for i D 1; : : : ; n, of the universal curve �Mg;nC1!

�Mg;n induce n natural
splittings of all the short exact sequences in the statement of Theorem 3.12.

By Theorem 3.12 and the remarks preceding its statement, in particular, the following
holds:

Corollary 3.14 Let 2g� 2C n> 0. The group z�g;n is residually finite.

We can now give a characterization of Johnson’s subgroup Kg;n for all n� 0:

Theorem 3.15 Let 2g � 2C n > 0. The kernel of �W 3 W �g;n! Out.…g;n=W 3…/

is generated by Dehn twists along separating s.c.c., ie ker �W 3 DKg;n .

Proof The case of genus 0 is trivial, since ker �W 3 �K0;n D �0;n .

On the contrary, the case of genus 1 is quite tricky. Let z�˘
1;n
WD z�^

1;n
= yF1 , for all n� 1.

By Theorem 3.12 and Theorem 3.9, for all n� 1, there is a short exact sequence:

1! yZ˚ yZ! z�˘1;nC1!
z�˘1;n! 1:
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Since z�˘
1;1
Š SL2.yZ/ and the natural morphism SL2.Z/! SL2.yZ/ is injective, the

above short exact sequence and a simple induction argument yield that the natural
morphism z�1;n!

z�˘
1;n

is injective for all n� 1. Then from Theorem 3.9, the natural
morphism z�1;n!Out.…1;n=W 3…/ is also injective, which is equivalent to ker �W 3D

K1;n .

For g � 2, by Corollary 3.14 and Theorem 3.7, the representation �W 3 induces a
monomorphism z�g;n ,! Out.�…g;n=W 3�…/ which factors through the natural homo-
morphism z�g;n! Out.…g;n=W 3…/, which then is injective, ie ker �W 3 DKg;n .

Corollary 3.16 Let 2g�2Cn>0. The topological fundamental group of �Mg;n is nat-
urally isomorphic to the image of the representation �W 3 W �g;n! Out.…g;n=W 3…/.

It is not hard to extend Johnson’s construction of the linear representation j0 in [11] to
the n–pointed case. Let us consider the central abelian extension:

1!W 2…=W 3…!…g;n=W 3…!H ! 1:

Let f be an automorphism of …g;n inducing the identity on H , then the assignment

 7!f .
 /�
�1 , for 
 2…g;n , defines a homomorphism zJn.f /W …g;n!W 2…=W 3…,
which factors through H . Let us denote by AutH .…g;n/ the group of automorphisms
of …g;n inducing the identity on H . It is easy to check that the assignment f 7! jn.f /

is a homomorphism as well. It then defines an abelian representation:

zJnW AutH .…g;n/! Hom.H;W 2…=W 3…/:

Let us observe that inn.…g;n/ is contained in AutH .…g;n/. For ˛ 2…g;n , the homo-
morphism zJn.inn ˛/ is defined by the assignment 
 7! Œ˛; 
 �.

The composition zJn ı innW …g;n! Hom.H;W 2…=W 3…/ then factors through H

and its image is primitive in the codomain. Therefore, the quotient

Homext.H;W
2…=W 3…/ WD Hom.H;W 2…=W 3…/= zJn.inn.…g;n//:

is torsion free.

Definition 3.17 The homomorphism zJn induces the abelian representation of the
Torelli group:

JnW Tg;n! Homext.H;W
2…=W 3…/;

which we call Johnson’s homomorphism and whose kernel coincides with that of the
natural representation �W 3 W �g;n! Out.…g;n=W 3…/.
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From Theorem 3.15, it follows that the kernel of Jn is precisely the Johnson’s subgroup
Kg;n . In particular, ker ji D ker Ji holds, for i D 0; 1. More importantly, the quotient
Tg;n=Kg;n WD In is a torsion free abelian group which we are going to determine
explicitly. By Theorem 3.12, there is an exact commutative diagram:

1

��

1

��
1 // H //

��

H //

��

1

��
1 // InC1

//

��

z�g;nC1
//

��

Sp.H / //

o
��

1

1 // In

��

// z�g;n
//

��

Sp.H / //

��

1

1 1 1

Let us remark that the middle and then the left column admit n natural Sp.H /–
equivariant splittings. A simple induction on n then yields:

Theorem 3.18 The quotient Tg;n=Kg;n is a free abelian group.

(i) For gD 1 and n� 1, it has rank 2.n�1/. So there is a split short exact sequence:

1! Z2.n�1/
! z�1;n! SL2.Z/! 1:

(ii) For g � 2, it has rank .2g
3 /C 2g.n� 1/. So there is a short exact sequence:

1! Z.
2g
3 /C2g.n�1/

! z�g;n! Sp2g.Z/! 1:

Similar results hold for the profinite groups z�^g;n and z�.`/g;n .

Remark 3.19 Let H˚n and yH˚n denote the direct sum of n copies of the first
integral homology group of the compact Riemann surface Sg and of its profinite
completion. Let then the groups z�g;1 and z�^

g;1
, for g � 1, act on them via their

natural representations in the symplectic groups Sp.H / and Sp. yH /. Theorem 3.18
and Theorem 3.12 yield, for g � 1, natural isomorphisms:

z�g;nC1 ŠH˚n Ì z�g;1 and z�^g;nC1 Š
yH˚n Ì z�^g;1:

In particular, it follows that the groups z�g;n are linear for g D 1 and n � 1. Below,
we will see that this is the case for all 2g� 2C n> 0.
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In [21] (see also Section 2 of [22]), Morita extended Johnson’s homomorphisms j0

and j1 to the whole Teichmüller group. More precisely, let 1
2
^3 H WD ^3H ˝ZŒ1=2�.

There is a natural action of the symplectic group Sp.H / on 1
2
^3 H . By means of this

action, let us define semidirect products:

1

2
^

3 H ÌSp.H / and
1

2
^

3 H=.! ^H /ÌSp.H /;

where ! denotes the orientation class in H2.Sg/. For g � 2, Morita extended the
Johnson’s homomorphisms to natural linear representations:

m0W �g!
1

2
^

3 H=.! ^H /ÌSp.H / and m1W �g;1!
1

2
^

3 H ÌSp.H /;

whose images are respectively z�g and z�g;1 and have finite index. In particular, both
z�g and z�g;1 are linear groups. Combining Morita’s results with Remark 3.19, we
conclude that this holds true, for 2g�2Cn> 0, for all the groups z�g;n . More precisely,
we obtain the following generalization of Theorem 4.8 in [21]:

Theorem 3.20 For g � 2, the topological fundamental group of �Mg;nC1 admits a
natural embedding in the linear group .H˚n˚

1
2
^3 H /ÌSp.H / as a subgroup of

finite index.

Let 2g� 2C n> 0 and g � 1. Consider the following exact commutative diagram:

1

��

1

��

1

��
1 // …g;n\Kg;nC1

//

��

Kg;nC1
//

��

Kg;n //// 1

1 // …g;n
//

��

Tg;nC1
//

��

Tg;n //

��

1

1 // H //

��

InC1
//

��

In
//

��

1

1 1 1

In the canonical morphism …g;n ,! �g;nC1 , obtained, with the notation of Section 2,
identifying …g;n with the fundamental group of Sg X fP1; : : : ;Png based at PnC1 ,
a small loop around the puncture Pi , for i D 1; : : : ; n, is sent to the Dehn twist
along a simple s.c.c. bounding the 2–punctured disc containing Pi and PnC1 in
Sg;n . Therefore, all such elements are contained in …g;n\Kg;nC1 . Thus, passing to
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abelianizations, we obtain (here, for a given group G , we denote its abelianization by
H1.G/):

1

��

1

��
1 //

��

ker�nC1
//

��

ker�n
//

��

1

1 // H1.…g/ //

o��

H1.Tg;nC1/ //

�nC1��

H1.Tg;n/ //

�n��

1

1 // H1.…g/ //

��

InC1
//

��

In
//

��

1

1 1 1

As we already remarked, the short exact sequence 1!H1.…g/! InC1! In! 1

admits n natural splittings in the category of Sp2g.Z/–modules. Therefore, the same
holds for all the short exact sequences in the above diagram. Since I1 and I0 are, in
any case, free abelian groups, all the short exact sequences in the above commutative
diagram split in the category of abelian groups for nD 0 as well. Therefore, we have:

Theorem 3.21 Let 2g� 2C n> 0 and g � 1. For all n� 0, there is a natural short
exact sequence of Sp2g.Z/–modules which, if n> 0, admits n natural splittings:

1!H1.…g;Z/!H1.Tg;nC1;Z/!H1.Tg;n;Z/! 1:

In particular, there is a natural isomorphism of Sp2g.Z/–modules:

H1.Tg;nC1;Z/ŠH1.Tg;1;Z/˚H1.…g;Z/
˚n:

In the category of abelian groups, the short exact sequence above splits also for nD 0.

Remark 3.22 Theorem 3.21, together with Johnson’s computation of H1.Tg;n;Z/,
for g � 3 and nD 0; 1, in [14] and Mess’ computation of H1.T2;Z/ in [18] provides
a complete description of the abelianization of Tg;n for all 2g� 2C n> 0.

4 The effect of clutching morphisms on fundamental groups

Let � WD f
1; : : : ; 
kg be a set of distinct, nontrivial, isotopy classes of separating s.c.c.
on Sg;n , such that they admit a set of disjoint representatives none of them bounding a
disc with a single puncture. There is then a homeomorphism Sg;nX�Š

`k
iD0Sgi ;niC1 ,

where
P

gi D g ,
P

ni D n and 2gi � 1Cni > 0 for i D 0; : : : ; k . Every such set �
determines a clutching morphism, which factors through an étale cover of its image:

@� W �Mg0;n0C1 � : : :� �Mgk ;nkC1!
�Mg;n:
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This map is an embedding, except for n D 0, k D 1 and g0 D g1 , when it factors
through a Z=2–cover of its image. The image of @� is the closed irreducible substack
of �Mg;n who generically parametrizes singular curves homeomorphic to the surface
obtained collapsing on Sg;n the s.c.c. in the set � .

The aim of this section is to describe the effect of the above natural morphisms on
fundamental groups.

Theorem 4.1 Let 2g� 2C n > 0 and let � be a set of s.c.c. on Sg;n as above. The
clutching morphism @� induces on topological fundamental groups a monomorphism:

@��W �1. �Mg0;n0C1/� : : :��1. �Mgk ;nkC1/ ,! �1. �Mg;n/:

Proof It is clearly enough to prove the theorem for k D 1. Let then 
 be a separating
s.c.c. on Sg;n such that there is a homeomorphism Sg;n X 
 Š Sg0;n0C1

`
Sg1;n1C1 .

In order to prove that the induced homomorphism @
� is injective, we need to introduce
some notation.

Let �Mg;n be the real oriented blow-up of �Mg;n along the divisor �Mg;n XMg;n

(more details on this construction can be found in Section 3 of Boggi [4]). There is a
natural embedding Mg;n ,! �Mg;n which is a homotopy equivalence. So the natural
projection �Mg;n!

�Mg;n induces a short exact sequence:

1!Kg;n! �1. �Mg;n/! �1. �Mg;n/! 1:

Let y�
 ! �Mg;n be the pullback of the clutching morphism

Mg0;n0C1 �Mg1;n1C1!
�Mg;n

along the projection �Mg;n!
�Mg;n . The morphism y�
 ! �Mg;n induces a monomor-

phism �1.y�
 / ,! �g;n on fundamental groups, which identifies �1.y�
 / with the
stabilizer �E
 of the oriented isotopy class of the s.c.c. 
 on Sg;n , for the natural action of
the mapping class group �g;n . The natural projection y�
�Mg0;n0C1 �Mg1;n1C1

is the S1 –bundle inducing the classical central extension which describes the stabilizer
�E
 Š �1.y�
 / for the action of �g;n on oriented s.c.c.:

1! Z � �
 ! �1.y�
 /
p
! �g0;n0C1 ��g1;n1C1! 1:

There is also a short exact sequence:

1!Kg0;n0C1 �Kg1;n1C1! �g0;n0C1 ��g1;n1C1!
z�g0;n0C1 �

z�g1;n1C1! 1:
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From the commutative diagram

�E

� � //

p
��

�g;n

��
�g0;n0C1 ��g1;n1C1

// z�g;n;

it then follows that, in order to prove the theorem, all we need to show is that

p.�E
 \Kg;n/DKg0;n0C1 �Kg1;n1C1:

The inclusion Kg0;n0C1�Kg1;n1C1�p.�E
 \Kg;n/ being trivial, it is enough to prove
that:

p.�E
 \Kg;n/�Kg0;n0C1 �Kg1;n1C1:

Let f 2 �E
 , it can be represented by the product of two commuting homeomorphisms
f0 and f1 , supported respectively on Sg0;n0C1 and Sg1;n1C1 . It is easily checked
that f 2 Tg;n � Kg;n if and only if p.fi/ 2 Tgi ;niC1 , for i D 0; 1. Therefore, if
f 2 �E
 \Kg;n , we already know that p.fi/ 2 Tgi ;niC1 , for i D 0; 1. Let, as usual,
H WDH1.Sg/ and let then Hi WDH1.Sgi ;niC1/, for i D 0; 1. Thus, in order to prove
that actually p.fi/ 2 Kgi ;niC1 , for i D 0; 1, by Theorem 3.15, it is enough to show
that, since f is in the kernel of the Johnson’s homomorphism (see Definition 3.17):

JnW Tg;n! Homext.H;W
2…=W 3…/;

then the homomorphisms p.fi/ are in the kernel of the Johnson’s homomorphisms:

JniC1W Tgi ;niC1! Homext.Hi ;W
2…=W 3…/; for i D 0; 1:

The embeddings Sgi ;niC1 ,! Sg;n induce monomorphisms …gi ;niC1 ,!…g;n , for
i D 0; 1. From Lemma 2.5 in [6], more directly, from its proof, it follows that

…gi ;niC1\W 3…g;n DW 3…gi ;niC1; for i D 0; 1:

Therefore, for i D 0; 1, there are monomorphisms …gi ;niC1=W 3… ,!…g;n=W 3…

which fit in the commutative diagrams with exact rows:

1 // W 2…gi ;niC1=W 3… //

��

…gi ;niC1=W 3… //

��

Hi
//

��

1

1 // W 2…g;n=W 3… // …g;n=W 3… // H // 1:

So the homomorphism zJn.f /W H ! W 2…=W 3… induces by restriction the two
homomorphism zJniC1.p.fi//, for i D 0; 1. Now, f 2 ker Jn if and only if zJn.f /D

Œ˛; � for some ˛ 2 …g;n . On the other hand, as we remarked in Section 3, the
composition zJn.inn ˛/ only depends on the image x̨ 2H DH0˚H1 . Since f 2 �E
 ,
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for i D 0; 1, it follows that Œ˛; ˇ� 2W 2…gi ;niC1=W 3… for all ˇ 2Hi . It is then easy
to see that x̨ 2H0\H1 D f0g and so that fi 2 ker JniC1 , for i D 0; 1, as well.

The construction of the Johnson’s homomorphism has a profinite and a pro–` analogue.
Let us sketch the profinite case. The profinite group �…g;n=W 3�… is an extension of
torsion free abelian groups:

1!W 2�…=W 3�…! �…g;n=W 3�…! yH ! 1:

Proceeding like in Section 3 (Definition 3.17), we define the abelian representations:

zJ^n W Aut yH .
�…g;n/! Hom. yH ;W 2�…=W 3�…/;

yJnW
yTg;n! Homext.H;W

2…=W 3…/:

From the isomorphisms W 2�…=W 3�… Š .W 2…=W 3…/˝ yZ and yH Š H ˝ yZ, it
follows that the embeddings Sgi ;niC1 ,! Sg;n induce monomorphisms�…gi ;niC1=W 3�… ,! �…g;n=W 3�…;
for i D 0; 1, and that, moreover, there are natural isomorphisms:

Hom. yH ;W 2�…=W 3�…/Š Hom.H;W 2…=W 3…/˝ yZ

zJ^n .inn.�…g;n//Š zJn.inn.…g;n//˝ yZ:

The same argument of the proof of Theorem 4.1 then yields the following algebraic
version:

Theorem 4.2 Let 2g� 2C n > 0 and let � be a set of s.c.c. on Sg;n as above. The
clutching morphism @� induces on algebraic fundamental groups a homomorphism:

y@��W y�1. �Mg0;n0C1/� : : :� y�1. �Mgk ;nkC1/ ,! y�1. �Mg;n/;

which is injective for g � 1 and for gi ¤ 1, for all i D 0; : : : ; k . If gij D 1 for
0 � ij � k and j D 1; : : : ; h, then the kernel of y@�� is the product of the subgroups
yF1 contained in the factors y�1. �M1;nij

C1/, for j D 1; : : : k . A similar result holds
for the profinite groups z�.`/g;n , for all primes ` > 0.

Let us remark the analogy with the properties of the natural stratification of the moduli
stack Ag of principally polarized complex abelian varieties of dimension g , given by
the loci of decomposable abelian varieties. For every couple of positive integers g1

and g2 such that g1Cg2 D g , there is indeed a natural morphisms of D–M stacks:

Ag1
�Ag2

!Ag;

Geometry & Topology, Volume 13 (2009)



272 Marco Boggi

which is étale on the image and an embedding if and only if g1 ¤ g2 . The homo-
morphism induced on topological fundamental groups is always a monomorphism,
corresponding to the natural monomorphism Sp2g1

.Z/�Sp2g2
.Z/ ,! Sp2g.Z/. The

homomorphism induced on algebraic fundamental groups is a monomorphism if gi¤ 1,
for both i D 1; 2. Otherwise, its kernel is the product of the kernels of the natural
epimorphisms bSp2gi

.Z/� Sp2gi
.yZ/, for i D 1; 2, which is nontrivial if and only if

gi D 1.

A significant difference between the moduli stacks �Mg;n and the moduli stacks Ag is
the fact that �1.Ag/ is nontrivial whenever dim Ag > 0 while �1. �M0;n/D f1g for
all n� 3. In particular, the moduli space �M0;4 D

SM0;4 is a sphere, from which, by
standard arguments (see Proposition A.4 of Mondello [20]), it follows that the moduli
stack of curves of compact type �Mg;n is not a classifying space for the group z�g;n ,
for g D 2 and n� 2, g D 3 and n� 1, and for all g > 3.

More precisely, in [20], it is proved that the stack �Mg;n is a classifying space if and
only if .g; n/D .0; 3/; .1; 1/; .2; 0/. This is in sharp contrast with the case of the stack
Ag , which is a classifying space for the group Sp2g.Z/ for all g � 1.

5 On the cohomology of z�g;n

The Teichmüller space Tg;n is contractible, hence the cohomology of the group �g;n

is naturally isomorphic to the cohomology of the space Mg;n .

Let us define some natural cohomology classes on the Deligne–Mumford compactifica-
tion SMg;n . By restriction, we will then get cohomology classes for Mg;n and so for
the Teichmüller group �g;n .

The morphism pW SMg;nC1 !
SMg;n (forgetting the last labeled point) is naturally

identified with the universal curve. Let !p be its relative dualizing line bundle, let the
si , for i D 1; : : : ; n be the tautological sections of p and let Li WD s�i .!p/.

The first Chern class of the line bundle Li , which is denoted by  i , is a cohomology
class in H 2. SMg;n;Q/, for i D 1; : : : ; n. Then, for r � 0, let

�r WD ��. 
rC1
nC1

/ 2H 2r . SMg;n;Q/:

The  i , for i D 1; : : : ; n, together with the �r , for r � 0, are called tautological classes.
Let us denote in the same way their restrictions to Mg;n . They span a subalgebra of
the cohomology ring H�.Mg;n;Q/, called the tautological algebra. All geometrically
relevant cohomology classes are contained there.
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In fact, much more is true. Harer [10] proved that the cohomology of �g;n stabilizes in
degrees less or equal than .g�1/=2. Recently, in a spectacular breakthrough, following
a conjecture of Mumford, Madsen and Weiss [17] proved that, in the stable range, all
the rational cohomology of Mg;n coincides with the tautological algebra.

The natural epimorphism �g;n� z�g;n induces a homomorphism of cohomology rings
H�.z�g;n/!H�.�g;n/. It is then natural to ask whether the tautological algebra is
in the image of this homomorphism. As we are going to show, from some results of
Morita, it follows that this is the case for g � 2 and all n� 0. This is in contrast with
the case of the natural epimorphism �g;n! Sp2g.Z/. In fact, the image of the induced
homomorphism H�.Sp2g.Z//!H�.�g;n/ contains only the classes �2i , for i � 0.

Let us review Morita’s results. Denote respectively by Ug and Ug;1 the abelian groups
1
2
^3 H=.! ^H / and 1

2
^3 H defined in Section 3. In [22], Morita showed that, for

g � 2 and nD 0; 1, there is a natural homomorphism of cohomology rings

H�.Ug;n;Q/
Sp
!H�.Ug;n ÌSp2g.Z/;Q/;

which, combined with the homomorphism

H�.Ug;n ÌSp2g.Z/;Q/!H�.�g;n;Q/;

induced by Morita’s extension of Johnson’s homomorphism, provides a homomorphism
of cohomology rings

H�.Ug;n;Q/
Sp
!H�.�g;n;Q/;

whose image contains the tautological algebra. In particular, since the above homo-
morphism factors through the natural homomorphism H�.z�g;n;Q/!H�.�g;n;Q/,
it follows that the image of the latter contains as well the tautological algebra, for
nD 0; 1. Morita’s result easily extends to the n–pointed case, for all n� 0:

Proposition 5.1 Let g � 2.

(i) The natural homomorphism �g;n!
z�g;n induces a homomorphism on coho-

mology rings
H�.z�g;n;Q/!H�.�g;n;Q/;

whose image contains the tautological algebra.

(ii) The natural homomorphism �g;n!
z�
.`/
g;n induces a homomorphism of the `–adic

cohomology rings

H�.z�.`/g;n;Q`/!H�.�g;n;Q`/;

whose image contains the tautological algebra.
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Proof The first item of the proposition has been proved for nD 0; 1. For n> 1, let
us consider the natural epimorphisms pi W �g;n ! �g;1 , corresponding to filling in
the set of punctures fP1; : : : ;Png X fPig on Sg;n , for i D 1; : : : ; n. Let then S i

g;n be
the Riemann surface with boundary obtained from Sg;n removing a small open disc
Di containing Pi and let us denote by �.S i

g;n/ the mapping class group of S i
g;n , for

iD1; : : : ; n. There is a natural epimorphism �.S i
g;n/��g;n with kernel generated by

the Dehn twist along the s.c.c. @Di . Then the class  i 2H 2.�g;n;Q/, for i D 1; : : : ; n,
corresponds to the central extension:

1! Z! �.S i
g;n/! �g;n! 1:

It is clear that such extension is just the pullback along pi of the extension:

1! Z! �.S1
g;1/! �g;1! 1;

ie that  i D p�i . 1/, for i D 1; : : : ; n. For i D 1; : : : ; n, there is a commutative
diagram:

H 2.z�g;1/
//

��

H 2.�g;1/

p�
i��

H 2.z�g;n/
// H 2.�g;n/:

Since the image of H 2.z�g;1/ in H 2.�g;1/ contains  1 , it follows that p�i . 1/D  i

is in the image of H 2.z�g;n/ in H 2.�g;n/, for i D 1; : : : ; n.

As to the classes �r , for r � 1, letting pW �g;nC1! �g;n be the epimorphism corre-
sponding to filling in the nC1–th puncture on Sg;nC1 , the identity p�.�1/D�1� nC1

holds in H 2.�g;nC1/ and, more in general, p�.�r / equals the sum of the class �r in
H 2r .�g;nC1/ plus a polynomial in lower degree tautological classes (this is proved in
Arbarello and Cornalba [1]). Therefore, a simple induction and an argument similar to
the above yields that �r 2H�.�g;n/ is in the image of H�.z�g;n/, for all r � 1, thus
completing the proof of item (i) of the theorem.

In order to prove item (i), we just need to remark the following. Let U
.`/
g;n , for nD 0; 1,

be the pro–` completion of the finitely generated abelian group Ug;n . The natural
homomorphism Ug;n! U

.`/
g;n then induces an isomorphism on `–adic cohomology

H�.U
.`/
g;n;Q`/ Š H�.Ug;n;Q`/, for n D 0; 1. The argument produced to prove (i)

then extends to the `–adic case.

Remark 5.2 In Kawazumi and Morita [15], it is actually proved that the image of the
natural homomorphism H�.z�g;n;Q/!H�.�g;n;Q/, for nD 0; 1, in the stable range,
equals the tautological algebra (this result is antecedent to the proof of Mumford’s
conjecture).
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