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Fundamental groups of moduli stacks
of stable curves of compact type

MARCO BOGGI

Let M gn» for 2g —2+n > 0, be the moduli stack of n—pointed, genus g, stable
complex curves of compact type. Various characterizations and properties are ob-
tained of both the topological and algebraic fundamental groups of the stack M .-
For instance, in Theorem 3.20, we show that the topological fundamental groups
are linear, extending to all n > 0 previous results of Morita and Hain for g > 2 and
n=20,1.

Let I'g ,, for 2g —2 4 n > 0, be the Teichmiiller group associated with a compact
Riemann surface of genus g with n points removed Sy ;, ie the group of homotopy
classes of diffeomorphisms of Sy, which preserve the orientation of S, and a
given order of its punctures. Let Kg , be the normal subgroup of I'g , generated by
Dehn twists along separating simple closed curves (briefly s.c.c.) on S ;. The above
theory yields a characterization of g , for all n > 0, improving Johnson’s classical
results for closed and one-punctured surfaces in [13].

The Torelli group 7,5 is the kernel of the natural representation Iy, — Sp,,(Z).
The abelianization of the Torelli group 7, is determined forall g > 1 and n > 1,
thus completing classical results of Johnson [14] and Mess [18] for closed and
one-punctured surfaces.

We also prove that a connected finite étale cover M* of M gn»for g =2 hasa
Deligne-Mumford compactification M?* with finite fundamental group. This implies
that, for g > 3, any finite index subgroup of I'y containing X'¢ has vanishing first
cohomology group, improving a result of Hain [8].

32G15; 14H10, 30F60, 14F35

1 Introduction

Let Mg ,, be the moduli stack of smooth, n—pointed, genus g, complex curves and
let M g,n be its Deligne-Mumford compactification, ie the moduli stack of stable,
n—pointed, genus g, complex curves. They are actually Deligne-Mumford stacks
(briefly D-M stacks).
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248 Marco Boggi

A central role in the study of the space My , is played by the Teichmiiller group I'y .
Classically, it is defined, for a given compact Riemann surface of genus g with n
points removed Sg 5, as the mapping class group of Sg p, ie the group of homotopy
classes of diffeomorphisms of Sg , which preserve the orientation of Sg , and a given
order of its punctures. From our point of view, the most significant characterization of
I'g n is as the fundamental group of the topological stack underlying My ;.

Since, topologically, the space My 5 is an Eilenberg-MacLane space of type (7, 1),
in principle, all topological properties of M , can be derived from the study of I'g ;.
As shown in Boggi [5], also many interesting algebro-geometric properties are encoded
in the algebraic fundamental group of My ,, ie in the profinite completion of I'g ;.
According to the anabelian philosophy of Grothendieck, much more is to be expected
when one takes in Galois actions. All this undoubtedly accounts for the extraordinary
richness and difficulty of Teichmiiller theory.

At the other extreme lies the case of the D-M stack M ¢,n» Whose fundamental group
is trivial (see Proposition 1.1 in Boggi and Pikaart [6]).

The purpose of this paper is a systematic study of the topological and algebraic funda-
mental group of a partial compactification of My 5, contained as an open substack in
the Deligne—Mumford compactification M g,n» Which is, in some sense, intermediate
between the two. Let M g¢,n be the moduli stack of n—pointed, genus g stable complex
curves of compact type. In other words, the stack M ¢,n parametrizes stable curves
which have a compact generalized jacobian or, equivalently, whose dual graph is a tree.

The topological and algebraic fundamental groups of M g,n are characterized in various
ways. Let Kg , be the normal subgroup of I'g , generated by Dehn twists along
separating s.c.c. on Sg 5. The first and almost trivial characterization of the fundamental
group of /\7lg,n is as the quotient of the mapping class group I'g , by Ky . Eventually,
it is proved that the fundamental group of M g,n 18 a linear group and, more precisely,
an extension of the symplectic group Sp,,(Z) by a free abelian group of rank 2(n—1),
for g =1 and n > 1, and of rank (%) +2g(n—1), for g > 2. This is a generalization
of previous results by Morita [21] and Hain [9] who dealt with the cases g > 2 and
n =0, 1. In particular, it turns out to be a much simpler object than the Teichmiiller
group itself. It is important to stress that, in contrast with the usual situation, sometimes
the characterizations of the topological fundamental group are derived from those of
the algebraic one, as it happens for instance in the proof of Theorem 3.15.

The above theory turns out to be very useful because, even though the space M a.n
in general is not an Eilenberg—MacLane space of type (i, 1) (see Proposition A.4 in
Mondello [20]) its fundamental group still contains a lot of information on the moduli
stack M ¢,n and on the topology of its open substack Mg , as well. This will be
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apparent from the applications given in Boggi [5] to the monodromy of families of
curves of compact type. As to My ,, let us mention Proposition 5.1 and Remark 5.2.

However, the most important applications, given in the present paper, of the above
results are to some questions in classical Teichmiiller theory. For » =0 and g > 2,
Johnson characterized Kg ;, as the kernel of the natural representation:

g — Out(r; (Sg)/m1(Sg)P),

where 71 (S g)[3] is the third term of the descending central series of the fundamental
group of Sg . From the point of view of Hodge theory, the weight filtration Wk (S o)
for k > 0, (see Section 2 for the definition) is the natural extension of the descending
central series to the n—punctured case. In Theorem 3.15, it is proved that, for 2g—2+n >
0, the group Ky 5 is the kernel of the natural representation:

Fgn— OUt(ﬂl(Sg,n)/W37Tl(Sg,n))-

Let 74, be the Torelli subgroup of I'g ,. It is defined as the kernel of the natural
representation I'g n — Sp,g(Z), ie as the subgroup of mapping classes of I'g,, acting
trivially on the homology of the compact surface Sg. In the series of papers [11;
12; 13; 14], Johnson computed the abelianization of 7, , for g > 3 and n = 0,1,
while Mess [18] computed the abelianization of 7,. Then in [9], Hain and Looijenga
implemented their results in order to compute H;(7g,, Q) forall g>1and n > 1.
Thanks to the above characterization of the group Kg 5, the above results are completed,
determining the abelianization of the Torelli group 7, forall g > 1 and n > 1
(Theorem 3.21).

Finally, let us mention a result which, in the light of Boggi [5], is also interesting. For
g1 and g, nonnegative integers, such that g; 4+ g, = g, and a partition of the set of
the n marking labels in two subsets of cardinality n; and n,, Knudsen [16] defined a
clutching morphism Mg, , 41 X Mg, n,+1 — Mg n Which, on the moduli space of
stable curves of compact type, restricts to a morphism M g1 +1 x M ga a1 > M g.n-
In Theorem 4.1, it is proved that such morphism induces a monomorphism between the
respective topological fundamental groups (for the algebraic fundamental groups the
situation is a little bit trickier, due to the failure of the congruence subgroup property
for SL,(Z)).

2 Level structures over moduli of curves
The purpose of this section is, basically, to provide the notation to be used in the rest

of the paper. For a more complete treatment of level structures and Teichmiiller theory,
we refer the reader, for instance, to Section 1 of Boggi [4].
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Let M g.n> for 2g —2+4+n > 0, be the stack of n—pointed, genus g, stable algebraic
curves over C. It is a regular connected proper D-M stack over C of dimension
3g —3 +n, and it contains, as an open substack, the stack Mg , of n—pointed, genus
g, smooth algebraic curves over C. By Proposition 1.1 in Boggi and Pikaart [6],
the stack M g,n 1s simply connected. On the contrary, the stack My , has plenty of
nontrivial covers which we are briefly going to introduce in this section. Its universal
cover, the Teichmiiller space T 5, is a contractible complex manifold. There is a natural
way to define homotopy groups for topological D-M stacks, as done, for instance, by
Noohi in [24; 23]. Then, the fundamental group 7; (Mg ,,a) can be identified with
the Teichmiiller modular group I'g ,, which is the deck transformation group of the
cover Ty — Mg .

A level structure M?* is a finite, connected, Galois, étale cover of the stack My ,, (by
étale cover, we mean here an étale, surjective, representable morphism of algebraic
stacks), therefore it is also represented by a regular D-M stack M?*  The level associated
to M?* is the finite index normal subgroup T'* := 7;(M?*,d’) of the Teichmiiller
group I'g .

A level structure M* dominates M* , if there is a natural étale morphism MY > MA
or, equivalently, ' < T'*. To mark the fact that M* is a level structure over M g.1>
we will often denote it by Mé’n .

The morphism p: Mg 41— Mg ,, forgetting the last label, is naturally isomorphic
to the universal curve over My ,. One can then identify the fiber p~!(a) with an
n—punctured, genus g curve C ~{Py,..., Py}, where (C, Pq,..., P,) is a curve in
the class determined by a € M, . Denote by S, , the Riemann surface underlying
C~{Py,..., Py} andfixapointad € Sg ,. Since p is a Serre fibration and 75 (M ») =
m3(Tg,n) = 0, there is a short exact sequence on fundamental groups

1 = m1(Sgn,a) = m1 (Mg py1,a) = m1(Mgu,a) — 1.
By a standard argument this defines a monodromy representation:
p: w1 (Mg, a) = Out(my (Sg,n, @)).

called the universal monodromy representation. From the above fibration, it follows
also that there is a natural representation of m;(Myg ,,a) in the group of homotopy
classes of self-homeomorphism of the Riemann surface Sy ,. Let us denote by
H0m+(Sg,,,) the subgroup of orientation preserving self-homeomorphism of Sg ,
and by Hom® (Sg,n) the subgroup consisting of homeomorphism homotopic to the
identity. The Teichmiiller modular group is classically defined to be the group of
homotopy classes of homeomorphism of Sy ,, which preserve the orientation and the
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given order of the punctures:
Tg.n := Hom™ (Sg,,)/ Hom®(Sg.p).

where Homg(Sg ) is the connected component of the identity in the topological
group of homeomorphisms Hom™ (Sg ,). By Teichmiiller theory, the monodromy
representation p is faithful and identifies the fundamental group 7y (Mg », a) with the
Teichmiiller group I'g 5.

Let us denote by Ilg , the fundamental group of Sy , based in @ and give Il , the
standard presentation:

g
H[aivﬁi]'un”‘ul)»

i=1

Hg,n:<a1,...ag,ﬁl,...,ﬁg,ul,...,un

where u;, for i =1,...,n, is a simple loop around the puncture P;. For n > 1, let
A(g, n) be the group of automorphisms of ITg , which fix the conjugacy classes of all
u;. For n =0, let instead A(g, 0) be the image of A(g, 1) in the automorphism group
of Iy := Ilg o. Finally, let I(g,n) be the group of inner automorphisms of Ilg ;.
With this notation, the representation p is faithful and gives a natural isomorphism

Lgn=A(g.,n)/1(g,n).

The most natural way to define levels is provided by the above isomorphism. In general,
for a subgroup It <11 g¢,n» Which is invariant under A(g,n) (in such case, we simply
say that 1% is invariant), it is defined a representation:

pa: Tgn — Out(Ilg »/ %),

whose kernel we denote by I'*. When IT" has finite index in T g.n»> then I'* has finite
index in I'g ,, and is called the geometric level associated to 1*. The corresponding
level structure is denoted by /\/lé,,n.

A class of finite index invariant subgroups of the group Ilg , one can consider, in order
to define geometric level structures, is that obtained from the descending central series,
twisting by /—th powers. The descending central series is defined by nlitl.=n1 a.n
and T .= [H[k_l], IT]. Let then I/ be the invariant subgroup of Ilg , spanned by
[ —th powers and define

ikl . — okl ol

We denote the corresponding levels and level structures by rkLE ang MIKLE

Even though algebraically, the above filtration is very natural, from a geometric point
of view, the so called weight filtration is more significative. This filtration originates in
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Hodge theory and is defined as follows. Let N be the kernel of the natural morphism
g, — Ig o, filling in the punctures, and define

W = g,
Wi = N1
W = [T, ,, WKTI]- [N, Wk11T).

As for the descending central series, one has [W*TI, W!TI] < WS*/I1. The descending
central series and the weight filtration are cofinal to each other and coincide for n = 0.
Indeed, W21 < ITK] < WKTI. As above, let us define

wkitn=wkm ..

The corresponding representation is denoted by py(x,7) and the corresponding levels
and level structures are denoted by T*®*-) and M@ &-D) respectively. The kernel of
the representation ppy«: I'g n = Out(Ilg ,/ WKTI) will be instead denoted by Wk,

Of particular interest are the levels defined by the kernels of the representations:
Pm): Lg.n — Sp(H(Sg, Z/m)), form = 2.

They are denoted by I'(m) and called abelian levels of order m. The corresponding
level structures are then denoted by M),

The kernel of the representation I'g,, — Sp,,(Z) is denoted by 7T, and called the
Torelli subgroup of I'y . Note that I'(m) = rw@m and Tgn = W?T.

The usual way to compactify a level structure M* over M g,n 18 to take the nor-
malization of My , in the function field of M*. A more functorial definition can
be given in the category of log regular schemes as done by Mochizuki in [19]. Let
d be the logarithmic structure on M, , associated to the normal crossing divisor
M := Mgn~ Mqg. We define a level structure over (M, 4, ) to be a finite,
connected, log étale cover

(M*, %) - (Mg, ).

Then, by the log purity theorem, any level structure M* over M g,n admits a canonical
compactification to a level structure (M?*,3%) over (/\7lg,n, d), where M?* is the
normalization of M ¢,n in the function field of M? and 9" the logarithmic structure
associated to the normal crossing divisor dM* := M* < M?* (the Deligne—Mumford
boundary of M?*). On the other hand, it is also clear that any level structure over
(M ¢,n, 0) can be realized in this way. So, forgetting the logarithmic structure, one is
back to the previous definition. A basic property of (compactified) level structures is
the following (see, for instance, Deligne [7]):
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Proposition 2.1 If a level T'* is contained in an abelian level of order m, for some
m > 3, then the level structure M?* is represented by a projective variety.

There is a very explicit and elementary method to describe the compactifications M,
locally in the analytic topology. A neighborhood of a point a € M* s just the base of
the local universal deformation of the fiber C, in a of the universal family cr - M*.
Let us see how a neighborhood of a € dM?* can be described.

Let B— M g,n be an analytic neighborhood of the image y of a in M g,n such that:
¢ local coordinates z,, ..., 23,34+, embeds B in C3873+1 a5 an open ball;

o C:=n"!(p) is the most degenerate curve in the pullback C % B of the universal
family over B;

o an étale groupoid representing M g.n trivializes over B to Aut(C) x B = B.

Let {Q1,..., O} be the set of singular points of C and let z;, for i =1,...,s,
parametrize curves where the singularity Q; subsists. The discriminant locus 8 C B
of # has then equation z,---zy = 0. Let U = B ~ 0B. The natural morphism
U — Mg, induces a homomorphism of fundamental groups:

¢)»: 7Tl (U’ a) - 7.[1 (Mg,n,a)-

If we denote as well by T'* the subgroup of 71 (M g¢.n» @) determined by the étale cover
M+ > M g,n> a connected component U A of U xjig en M? is then determined by
the subgroup qﬁ;l (T'*) of the abelian group 71 (U, a).

Let us make the above description more explicit. Let sq,...,s, be the sections of
the universal family over /\7lg,,, and define C|ly := C~ J/_; si(U). Let us fix a
homeomorphism between the fiber over a of the morphism C|yy — U and the marking
Riemann surface Sg ,. In more detail, the local monodromy representation

pu: w1 (U, @) = Out( (Sg.n. @),

associated to the family C|y — U, is defined as the composition of the natural morphism
m1(U) — 71 (Mg ) with the universal monodromy representation and can be explicitly
described as follows.

Since U is homotopic to the s—dimensional torus (S!)*, the fundamental group
1 (U, a) is abelian and freely generated by simple loops y; around the divisors z;,
for i = 1,...,s. Such loops can be lifted to disjoint loops ¥;, for i =1,...,s, in
Sg,n, whose isotopy classes are uniquely determined and which become isotrivial after
specialization to C. One can prove that y; is mapped by py exactly in the element
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of Out(m1(Sg,,a)) determined by the Dehn twist 3, along };, fori =1,...,s. In
particular, the representation pg is faithful.

Let Ex(c) be the free abelian group spanned by the edges of the dual graph X(C) of
the stable curve C. The edges of the dual graph correspond to isotopy classes of s.c.c.
Ye in Sg ., which become isotrivial specializing to C'. The group E's;(c) can then be
naturally identified with the free abelian group spanned in I'y , by the set of Dehn
twists {1y, }. On the other hand, the fundamental group 7 (U, a) is as well naturally
isomorphic to E'x(c). So for a level I'* the subgroup qﬁ;l (F)“) of the fundamental
group 71(U, a) is then canonically identified with E's;(cy N r*.

An almost complete description of local monodromy coefficients for the geometric levels
rw.l) ig given in [26, Theorem 3.1.3], [6, Proposition 2.8] and [25, Theorem 3.3.3].
Let us collect all their results in a single statement.

Let Nx(c) and Sy (c) be respectively the subgroups of E'x(c) spanned by edges
corresponding to nonseparating s.c.c. and by edges corresponding to separating s.c.c..
Letthen S é ©) be the subgroup of Sx;(¢) spanned by edges corresponding to separating
s.c.c. bounding an unpunctured genus 1 surface. Let instead Py () be the subgroup
spanned by elements of the form e; — e;, where {e;, e;} corresponds to a cut pair
on C. Eventually, denote by P;“(C) the subgroup of Py () spanned by elements
corresponding to cut pairs bounding a surface without punctures. Let, for m, s positive
integers, mg := m/ ged(m, s).

Theorem 2.2 With the above notation, the kernel of ,oluj(k’l)
hood of [C] € /\7lg,n as above, is given by:

, where U is a neighbor-

(1) Ifk=2: m Nz )+ Pzc) + Sx0)-
(2) Ifk =3: m Ny (c) +m2 Pgcy + Sz (0)-
(3) Ifk =4 andm is odd or4|m: m Ny )+ ma Sx(c) + ms Sé(c)-
Ifk = 4 and 2||m: mNz)+ %3 P+ % Sz0) + 5 Sy(c)-

(4) Ifk =4 andgedim,6)=1: m Ex().

3 Moduli spaces of stable curves of compact type

In this section, we begin the study of the moduli space M g,n of stable n—pointed,
genus g, complex curves of compact type. We will give various characterization both
of its topological fundamental group (./\71 ¢.n>a) and of its algebraic fundamental
group 74 (/\7 g.n» @) (in the sequel, we will often omit any mention of base points). As
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usual, the profinite completion of a given group G is denoted by G . This motivates
the previous notation for the algebraic fundamental group of Mg 5.

Since 8/\7lg,n = ﬂg,n ~ Mg , is a normal crossing divisor, the embedding My ,, —
M ¢,n induces an epimorphism 7y (Mg »,a) = m; (./\71 ¢.n» @) on fundamental groups,
whose kernel is normally generated by small loops around the irreducible components of
M g.n- As we remarked in Section 2, the isomorphism I'y , = 1 (Mg 5, a) identifies
such loops with Dehn twists along separating s.c.c.. Let us then define

Kgn:=(tq € I'g | a is a separating s.c.c. on Sg ),

which is also called the Johnson subgroup of I'g . We then get the following well
known characterization of m;(My ,, a), first considered in Hain and Looijenga [9]:

Proposition 3.1 Let 2g —2+n > 0. The fundamental group of M g¢,n 1its in the short
exact sequence:

1 = Kegn—Tegn— 711(/\7lg,n,a) — 1.
The following definition is then natural:

Definition 3.2 For 2g —2+n > 0, let f‘g,n :=T'g,n/Kg,n and let us denote by f‘gn
its profinite completion. The isomorphism I'y ,, = 71 (Mg, a) then identifies the
groups f‘g,n and fgn
Mg n, respectively.

with the topological and the algebraic fundamental group of

By Theorem 2 in Birman [3], for the case g = 2, and Theorem 6 in Johnson [13], for
the case g > 2, we know that g is the kernel, for n = 0, of the natural representation

ows: Dgn— Out(Tlg ,/ W3TI).

In particular, the fundamental group of ./\7lg is naturally isomorphic to Im py3 . Passing
to profinite completions, the above representation induces a continuous representation:

Pws3: fg,n — Out(ﬁg/W3ﬁ).

A natural guess then is that, for n = 0, the algebraic fundamental group of M g.n 1S
isomorphic to Im py;-3 . Thanks to a straightforward generalization of Corollary 3.11 in
Boggi and Pikaart [6], we will be able to prove that this actually holds for all # > 0. In
its turn, this will yield that the fundamental group of M g,n 18 isomorphic to Im pp 3,
for all n > 0. Besides more complete results with respect to [6], we will give here
more detailed proofs. Let us begin with the following preliminary lemma’s.
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Lemma 3.3 Let f: C — U be a representable, flat, generically smooth morphism,
with connected fibers, over an irreducible, reduced, uniformizable complex D—M stack
U. Let C, be the fiber over a point u € U, and let also u € C,,. There is then an exact
sequence of topological fundamental groups:

11 (Cy, o) > m1(C,100) > (U, u) — 1.

Proof Right exactness of the above sequence follows from the fact that f is surjective
with connected fibers. In order to prove left exactness, let us consider the universal
covers C and I/ of the D-M stacks C and U, respectively. By hypothesis, such universal
covers exist in the category of analytic spaces. Then, the glven morphism f: C—>U
can be lifted to a morphism of analytic spaces f C — U and the above sequence is
left exact, for a choice of u € U, if and only if, for any & € u lying over u, the fiber
]7 ~1(#) is connected.

Let U° be the open substack of I/ over which f is smooth, C® := f~!(#/°) and
f%:= flco. Let then C° and U/° be the universal covers of C and U, respectively and
let 1% C%— 1° be alift of f° which fits in the commutative diagram:

70
50 > go

L 7 l
C—U.
Since f is a Serre fibration with connected fibers, it is clear that f~ % has connected

fibers. Therefore, the same holds for the restriction of f to the inverse image of C° in
C, ie all the fibers of f above the inverse image of 2/° in I/ are connected.

From the flatness of f, it follows that f C— U is a flat family of analytic spaces.
Moreover, over an open dense subset of U, the fibers of f are smooth and connected.
Any fiber can then, at least locally, be realized as the limit of the smooth connected
fibers and so is connected. O

Let us denote by Bo: M g—1nt2 = M ¢,n the natural pinching morphism whose image
is the locus whose generic point parametrizes singular irreducible curves. An étale
cover M* of M g,n compactifies to an étale cover M > M g,n Whose branch locus
is contained in the image of B .

Lemma 34 (i) Let M* — /\7lg,n be a level structure whose branch locus is
contained in the boundary divisor ,30(/\7lg_1,n+2) . Denote by p: T'g n— g n—1
the epimorphism induced filling in P, on Sg , and let I'? @) .= p(T'"). Then
w1 (M) = 1 (MERL ).
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(i1) Let [ < I*2 pe two levels whose associated level structures satisty the
hypothesis in the above item. If the natural morphism Mgl,, — Mgzn is étale
and, with the same notation as above, p(I'’*1) = p(I'*2), then T*1 = T'*2,

Proof Item (ii) follows directly from (i). So let us prove (i). We claim that the natural

morphism ¢: M;,n —>/\/l£,’,(nkll is a fibration in smooth curves. There is a factorization

¢
Mé,n Mg,n XMg,n—l MPO»)]

g,n—
X\ \L
Fid
Mg,

with 5 étale and 7w smooth. Thus ¢ is also smooth. In the Stein factorization of ¢

v 9 f )
,/\/lg’n — Y = ,/\/li,’

,hn—1>

the morphism ¢’ has connected fibers and f is finite. Therefore f is étale. By
definition of T?®) | the map induced on fundamental groups by ¢ is surjective. So
the same is true for the morphism f* which then is an isomorphism. Hence ¢ = ¢’.
In particular, since the morphism ¢: Mgn — /\71{;’(,3‘11 is also log-smooth, it is a flat
family of semistable curves. Let S be a fiber of ¢ lying above a fiber of Mg, —
M ¢,n—1 Which is a tree of g elliptic curves. By the assumptions made on the branch
locus of j\7l§,n — Mg n, the induced cover S — C is étale. Therefore S is a tree of
elliptic curves as well. Note that for any s.c.c. & on one of the components of S there
is a degeneration of S in the family M?n — Mgf,i‘ll , induced by a degeneration of
C in the family Mg , — Mg 1, in which « is a vanishing loop.

From the exact sequence of groups

— ¢ —
w1 (S) = 7 (ML) = m (MEQ) ) — 1,

given by Lemma 3.3, it follows that 7, (/\712,,,1) =1 (/Wﬁ,’f,i‘ll). a

In the previous section, we defined the Galois level rw®.m) a5 the kernel of the natural
representation ppk.m: g n — Ollt(Hg,n/Wk’m ).

The group Kg »(m) is defined, for 2g —2 +n > 0, to be the normal subgroup of I'g
generated by Dehn twists along separating s.c.c., m—th powers of Dehn twists along
nonseparating s.c.c. and m,—th powers of bounding pair maps t),_ll Ty, , for all cut pairs
Y1, 2 bounding an unmarked subsurface of Sg 5, (as usual, we let m, :=m/gcd(2,m)).
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Proposition 3.5 Let g > 2. Then, F;,“G’m) = Kg(m).

Proof For g = 2, the proposition is just Proposition 3.2 in [6]. The case g > 3 and
m odd was already treated in Proposition 3.4 in [6]. Here, we reproduce that proof
with the modifications needed in order to make it work also for m even.

From Theorem 2.2, it follows that Kg(m) < T2 It then holds Kg(m) - T =
F;,” (3.m) -7, since, by Proposition 3.4 in [6], both groups equal I"(m). There is then a
commutative diagram with exact rows:

1 —= Kg(m) —= Kg(m) - Ty — Tg [ (Kg(m) N Tg) — 1

/ H /

1 — Fg)(3’m) s F;U(Lm) ,ng s 7}/(1—*‘2’0(3,’") N ,Zg) — 1.

Therefore, in order to prove the proposition, it is enough to show that g (m) N7y =
r¥3™ 7, and then that:

(*) (Kg(m) NTg)/Kg = (TEC™ N Tg) /Kg

The advantage of considering the latter identity is that it can be checked inside a
torsion free abelian group. More precisely, there is a natural representation, Johnson’s
homomorphism (defined in [11]):

jo: Ty = A Hi(Sg. )/ (Sel A Hy (Sg. 2),
where [Sg] € A2 H,; (Sg, Z) is the fundamental class of Sg. The right-hand side is a
free Z—module of rank (%) —2g and ker jo = Kg.
Corollary 6.4 in [26] implies that the image of the group 7 (S g)[3]’m in the free abelian
group 7y (Sg)[z]/nl (Sg)[3] is the subgroup of m,—th powers, ie

11 (S 1 (S 22 my - A2 Hi (Sg. 2)/[Sg)

Sp the image of H(Sg,Z) ® 11(Sg)BM inside A% H;(Sg,Z)/((Sg] A Hi(Sg, Z))
equals the submodule my - A H{ (Sg, Z)/([Sg] A Hi(Sg, Z)).

By the computations which are carried out in [11], we know that the group 7, /K,
embeds as a primitive submodule, with a basis given by bounding pair maps, in the
free Z-module N> H,(Sg,Z)/([Sg] A Hi(Sg,Z)). It then follows that an element of
T /K¢ belongs to the submodule of m;—th powers if and only if it can be represented
as a product of m,—th powers of bounding pair maps. This immediately yields the
identity (), thus completing the proof of the proposition. O

The second item of the following theorem is a generalization of Theorem 3.5 in [6]:
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Theorem 3.6 (1) Let n > 0. For all m > 2, there are natural isi)morphism
1 (MY 22 7y (M) Therefore, T Ky y(m) = my (M),

(ii) Let g >2 and n > 0. For m > 2, the level structure M®G™ over /\7lg,n is
simply connected. Therefore, T¥ G = [C, ,(m).

Proof We have Out+(H1 W3 mH) SL,(Z/m). Therefore, for g=1and n=1,
we have T?G") = T'(m) =~ 1, (/\/l1 1 ) The statement of the theorem, for g = 1 and
n =1, then follows since the generators of Ky j(m) correspond, in the fundamental

group of M™ o small loops around the punctures.

11’

For g =2 and n =0, 1, from Proposition 3.5 and simple topological arguments, like
the ones given in the proof of Proposition 3.3 in [6], it follows that the level structures

/\71?},3"") are simply connected.

For n > 2, we proceed by induction on 7. Let us then assume that the statement of
the theorem has been proved up to n — 1 and let us prove it for n. By Lemma 3.4 and
Theorem 2.2, it is enough to prove, with the same notation of the lemma, the identity:

prymy =Ty,

The inclusion p(l"w(3 m)) < Fw(3 m) is trivial, since the epimorphism ITg , —> I1g ;1
induces an epimorphism ITg, ,,/W3 0 — g g/ W3,

For g > 2, the reverse inclusion follows, from the fact that, by inductive hypothesis:

F;jr(irln) = ]Cg,n—l(m) = p(Kgn(m)) < (Fw(3 m))

For g =1 and all n > 1, there is a series of natural epimorphism:
P> Ky m) = 1y (M) = 0 (M),

Since, by inductive hypothesis, F;U’(f’rl") /K1 p—1(m) = JTI(M(m)) and, moreover,
p(K1,n(m)) = K1 —1(m), it follows that the natural homomorphlsm p: Fw(3 m_,

1—‘w(3 m)

Ln—1 18 surjective.

In order to complete the proof of the theorem, let us just remark that, again by simple
topological arguments, like those in the proof of Corollary 3.11 in [6], the assertion
about the simply connectedness of the level structures MwG.m) implies the assertion
about the generators for the corresponding levels. O

Of course, the profinite group I'" & 1:/7C is naturally isomorphic to l(il_nm>0 r/K(m).
From Theorem 3.6, we then have the following:
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Theorem 3.7 Let g > 2 and n > 0. The algebraic fundamental group of M g.n 18
naturally isomorphic to hm o Fg,n /TwGM) e to the image of the representation

Pws -

Remark 3.8 For g =1 and n = 1, from Theorem 3.6, it follows that

; w(3,m) ~ 7
lim Ty /T = SLy(Z),

m>0

which is not the profinite completion of f‘l,l =~ SL,(Z). In fact, according to Theo-
rem 8.8.1 in [27], the kernel of the natural homomorphism SL,(Z) — SL,(Z) is a
free profinite group of countably infinite rank, which we denote by Fi.

Let 2g —2 +n > 0, in general, we have f‘A ~ fg n/IEg n, Where f .n denotes
the profinite completlon of the Teichmiiller group I'gn and ICg n the closure of the
group Kg , inside F - Of course, ICg n < ker pyys, therefore the representation Py 3
induces a natural homomorphlsm, which we denote in the same way:

Pws: T — Out(Tlg,/ W3TI).

By Theorem 3.7, py3 is injective for g > 2. For g = 1, the following result holds:

Theorem 3.9 For n > 1, the kernel of the natural representation
I}, — Out(TTy ./ WD)
is naturally isomorphic to the congruence kernel ﬁoo
Proof Let us denote by .n(m) the closure of the group Ky ,(m) in the profinite
group I'y ,. By Theorem 3.6, there is a natural isomorphism Fw(3 m)/ 1 n(m) =

7 (./\/l1 1 ). Let us now observe that, identifying the fundamental group of the level
structure /\/l1 1) with the level I"(m), there is a natural isomorphism

nl(/\/l%)) ~ F(m)/(rl’,"| y as.c.c.on Sy 1) .
Therefore, there is a series of natural isomorphisms:

- (PwBm) 7 ~ Tim 2. ( g
tim (T /Ky (m)) 2= Tim 7, (M)

m=>0 m=>0
~ l(iLn(I‘(m)/(tJ’,”| y as.c.c.on Sy ;)= l<ln I'(m) = Feo.
m=>0 m=>0
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The theorem then follows taking the inverse limit on m of the exact sequences of
profinite groups:

1 - f;‘j,(f’m)/lel,n(m) — f‘fn — Out(ﬁl,n/W3’mﬁ). ]
An easy consequence of Theorem 3.6 is also:

Pr0p0s1t10n 310 Forg=>2andn >0, let M? be a finite connected étale cover of
M g,n» then its compactification /\/l)‘ over Mg, has finite fundamental group.

Proof Let m be the l.c.m. of the ramification indices of the cover M* — Mg , over
Bo(M g—1 n+2) and let X be the universal cover of M* and X the inverse image of
Mg in X . Then it is clear that Fg n> nl(X) > Kg,n(2m). Therefore, 7;(X) is a
finite index subgroup of I'g , and X — M?” a finite cover. |

Corollary 3.6 in [6] can now be substantially improved as well the result by Hain in [§]
about the vanishing of the first cohomology group of levels containing the Torelli group:

Corollary 3.11 Let I'* be a level in Ty, containing Kg .

(i) Forg>2 andn >0, we have H'(M*,Z) =0.
(ii) For g >3 andn =0, we have H'(T'*,Z) = 0.

Proof The first statement immediately follows from Proposition 3.10. For the second
one, see the proof of Corollary 3.6 in Boggi and Pikaart [6]. O

The profinite group I gn/ W3 is nilpotent. Therefore, there is a natural isomorphism
Ogn/W3 [[ 08,/ w3n®,
£ prime

where, for a given prime £ > 0, we denote by Hg% the pro—{ completion of Il ,.

Let us define the group I‘é(, ,),, for a given prime £ > 0 and g > 2, to be the closure of

the image of I'g , inside the virtual pro—£ group Out(HgL /W3T1©). We then have

for g > 2:
.= [] FO.
£ prime
In Corollary 7.2 of Hain and Looijenga [9], the fundamental groups of M ¢ and M g1
are explicitly described. Let us recall this description. Let us denote by H the first
integral homology group of the compact surface Sy, obtained filling in the punctures
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on Sg.,, and let then w € A2 H be the fundamental class of Sg. According to some
results of Johnson [11; 12; 13], for n = 0, I, the Johnson’s group Kg , is the kernel of
some naturally defined surjective linear representations:

Jo: Tg—>/\3H/(a)/\H) and  ji: Tg — AH,

called Johnson’s homomorphisms. For n =0, by Johnson’s definition, ker jo =ker pp3.
Therefore, the fundamental groups of Mg and My ; fit in the short exact sequences:

1 - ASH/(wAH) = Tg — Sp(H) — 1

1 - AYH — Ty — Sp(H) — 1.

Let H = 7€ be the profinite completion of H . By the congruence subgroup property
for symplectic groups [2], the profinite group Sp(}AI ) = Spy, (2), for g > 2, is the
profinite completion of Sp(H). Moreover, from item (ii) of Theorem 3.6, it follows
that the images of the levels Fg,‘j,(f’m) in f‘g,n, form=>0,g>2andn=0,1,cuta
fundamental system of neighborhoods of the identity, for the profinite topology, on
the subgroups A3H/(w A H) and A3H, for n = 0, 1, respectively. Therefore, the
algebraic fundamental groups of M ¢ and M .1, for g > 2, are described by the short

exact sequences:

1= AYH /(0 A H) — Ty — Sp(H) — 1

1—>/\3I§—>f‘£1—>5p(l§)—>1.

More in general, the topological and algebraic fundamental groups of M g.n-+1 can be
described as abelian extensions of the topological and algebraic fundamental groups of
Mg forall n > 0:

Theorem 3.12 For 2g—2+n > 0, there are the following natural short exact sequences,
which, if n > 1, admit n natural splittings:

1> H— fg,n-{—l — fg’n — 1,

~/\
— Fg’n — 1.

7 ~/\
1—>H—>Fg,nJrl

Similarly, for g > 2 and a prime £ > 0, there is a natural short exact sequence, which,

if n > 1, admits n natural splittings:

1= HO L FO

gn+1 I:&(,‘} -1,

where H®) denotes the pro—{ completion of H .
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Remark 3.13 As it was pointed out by the referee, the first two sequences do not split,
when n = 0 and g > 3, and the third does not split when n =0, g >3 and £ | g — 1.

Proof The morphism M gntl = M g,n 18 an n—pointed, genus g stable curve. Let
[C] e M ¢,n be such that the curve C is smooth. By Lemma 3.3, there is an exact
sequence:

11 (C) —> fg,n+1 — f‘g,n — 1.

Let us show that the homomorphism 71 (C) — I:g, n+1 factors through the abelianization
H;(C) of m1(C). For g =1, this is obvious since 71(C) = H{(C). For g > 2, let
us fix a homeomorphism of the curve C with the reference genus g compact Riemann
surface Sg. There is a natural commutative diagram with exact rows:

1 — nl(Sg,n) —Tgnt1 —=Tgn —1

} ’ }

m1(Sg) —= i:;g,n-H - fg,n — 1

where the vertical arrow 71 (Sg,n) — 71(Sg) is the epimorphism induced by the
inclusion Sg , C Sg. Let y be a separating s.c.c. on Sg , bounding a disc containing
all the punctures of Sg . Let then S be the genus g subsurface of Sy , with boundary
y and let T'(S”) be the mapping class group of S’. Fixing the base-point on y, the
fundamental group of S’ is identified with a subgroup of I'(S”). Moreover, there is a
natural monomorphism I'(S”) < I'g ,41 which is compatible with the monomorphism
71(S") <> m1(Sg,n) induced by the inclusion S’ C Sg . By Theorem 2 in [3] and
Theorem 6 in [13], the quotient of the Torelli subgroup 7 (S’) of I'(S’) by the normal
subgroup generated by the twists along separating s.c.c. is abelian. In particular, the
image of 7(S’) in f‘g’n_l’_] is abelian. Since the homomorphism 7 (S’) — 71(Sg)
induced by the inclusion S’ C Sy is an epimorphism and 71 (S”) is contained in 7 (S”),
it follows that the image of 7 (Sg) in fg,n-l—l is abelian. In order to see that this image
is actually the abelianization H;(Sg,Z), let us observe what follows.

The relative Jacobian Jxi, , /51, » Parameterizing relative Cartier divisors of de-
gree 0, is an abelian variety of rank 2g over Mg 5. In particular, it is a Serre fibration
endowed with the natural section defined assigning the zero point in the fiber to each
point of the base. Therefore, the associated long exact homotopy sequence splits and
gives a split short exact sequence:

1= Hi{(C.Z) = 71(Tity 1 /51gm) = Lgin — 1.

Let us remark that the existence of the splitting implies that the above short exact
sequence remains exact passing to profinite completions.
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Let j: Mg,n_f_] —> TRy i1/ #g.n D the map defined assigning to the point of Mg,n+1
parametrizing the pointed stable curve (C, Py, ..., Pyy1), theclass (2g—2) Py4+1—kC
in Pic®(C) , where, by k¢, we denote the Cartier divisor associated to the dualizing
sheaf of the proper curve C. This map induces, on fundamental groups, the homomor-
phism j: fg,n—i—l — (T ftg 41/ #1g.n) Which fits in the commutative diagram with
exact rows:

Hy(C,7Z) Tgpi1 —— Tgn—>1

i- (2g—2) ij* iid

1 — Hl (Cv Z) — 7 (\-7./\71g’n+1//\71g.n) - fg,n — 1.

Now, the left hand vertical map is multiplication by 2g —2 while the right hand vertical
map is the identity. Therefore, exactness of the bottom line implies that the upper line
is a short exact sequence as well. The same argument with topological fundamental
groups replaced by the algebraic ones implies that, for 2g —2 471 > 0, there is also a
short exact sequence:

1> H—>T,,  —>T,—> L
The last exact sequence in the statement of Theorem 3.12 follows from the very

definition of the groups f‘é(,e,),, for g > 2, n>0 and a prime £ > 0.

Let us conclude observing that, for n > 1, the tautologlcal sections s;: /\/lg n—
/\/lg’,,ﬂ ,fori =1,...,n, of the universal curve Mg n+1 — Mg n induce 7 natural
splittings of all the short exact sequences in the statement of Theorem 3.12. a

By Theorem 3.12 and the remarks preceding its statement, in particular, the following
holds:

Corollary 3.14 Let2g—2+n > 0. The group fg,n is residually finite.
We can now give a characterization of Johnson’s subgroup Kg , for all n > 0:

Theorem 3.15 Let 2g —2 +n > 0. The kernel of py3: Tgn — Out(Tlg ,/ W3TI)
is generated by Dehn twists along separating s.c.c., ie ker pys = Kg .

Proof The case of genus 0 is trivial, since ker py3 > Ko, = Lo 5.

On the contrary,