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Coarse and synthetic Weil–Petersson geometry:
quasi-flats, geodesics and relative hyperbolicity

JEFFREY BROCK

HOWARD MASUR

We analyze the coarse geometry of the Weil–Petersson metric on Teichmüller space,
focusing on applications to its synthetic geometry (in particular the behavior of
geodesics). We settle the question of the strong relative hyperbolicity of the Weil–
Petersson metric via consideration of its coarse quasi-isometric model, the pants
graph. We show that in dimension 3 the pants graph is strongly relatively hyperbolic
with respect to naturally defined product regions and show any quasi-flat lies a
bounded distance from a single product. For all higher dimensions there is no
nontrivial collection of subsets with respect to which it strongly relatively hyperbolic;
this extends a theorem of Behrstock, Druţu and Mosher [2] in dimension 6 and higher
into the intermediate range (it is hyperbolic if and only if the dimension is 1 or 2 by
Brock and Farb [7]). Stability and relative stability of quasi-geodesics in dimensions
up through 3 provide for a strong understanding of the behavior of geodesics and
a complete description of the CAT.0/–boundary of the Weil–Petersson metric via
curve-hierarchies and their associated boundary laminations.

30F60; 20F67

1 Introduction

The study of the large scale geometry of Teichmüller space and has given rise to
new perspectives on Teichmüller geometry and dynamics in recent years, with results
of Masur–Minsky [20], Brock [5], Brock–Farb [7], Behrstock–Minsky [3], Rafi [22],
Wolpert [25] and others giving insight into coarse phenomena that arise in consideration
of various metrics. Notable among these is the Weil–Petersson metric on Teich.S/,
which carries a convenient coarse description in terms of combinatorics of pants
decompositions of a surface [5].

One feature that is common to virtually all these investigations is the emergence of
obstructions to hyperbolicity (in the sense of Gromov) in higher dimensional cases –
the Weil–Petersson metric is Gromov hyperbolic if and only if the Teichmüller space
has dimension at most 2 [7]. When a space fails to be Gromov hyperbolic, the lack of
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stability properties familiar in negative curvature impedes an immediate understanding
of the behavior of geodesics and quasi-geodesics.

Nevertheless, the notion of strong relative hyperbolicity allows for similar control of
quasi-geodesics up to their behavior in certain well defined regions that are coarsely
isolated from one another. In this paper we flesh out precisely in which cases the
Weil–Petersson metric exhibits such strong relative hyperbolicity.

It is important to note that understanding the coarse, large scale structure of a metric
space can lead to a precise understanding of fine structure in the setting of CAT.0/
and NPC (nonpositively curved) geometry. As an example, our methods provide for a
complete description of the CAT.0/ boundary of the Weil–Petersson metric up through
Teichmüller spaces of dimension 3, originating out of a purely coarse combinatorial
model.

Let SDSg;n be a compact surface of genus g with n boundary components. We define
the complexity �.S/ of S to be the integer 3g�3Cn, namely, the complex dimension
of the corresponding Teichmüller space Teich.S/, or the Teichmüller dimension of S .
The initial focus of the paper will be on the cases .g; n/ 2 f.2; 0/; .1; 3/; .0; 6/g: We
say a curve 
 is domain separating if S n 
 has two components neither of which is a
three-holed sphere.

A domain separating curve 
 on S determines a set X
 � P .S/ consisting of pants
decompositions that contain 
 . When �.S/ D 3 and 
 is domain separating, the
set X
 naturally decomposes as a product of Farey graphs, each naturally the pants
graph on the complementary one-holed torus or four holed sphere in S n 
 . We show
the following.

Theorem 1 Let S D Sg;n where .g; n/ 2 f.2; 0/; .1; 3/; .0; 6/g. Then the pants graph
P .S/ is strongly relatively hyperbolic relative to the sets X
 where 
 ranges over all
domain separating curves in S .

For the purposes of the proof, we will refer to the formulation of strong relative
hyperbolicity given by Druţu and Sapir [11] and refined by Druţu [10].

Roughly speaking, relative hyperbolicity guarantees that by “coning-off” each X
 to
a single point p
 by edges of length one, the resulting metric is Gromov hyperbolic.
The theorem asserts further that this relative hyperbolicity is strong in the sense that
the subsets X
 satisfy the bounded region (or coset) penetration property (cf [13; 7]).

In particular, this condition implies that when two quasi-geodesics in P .S/ begin and
end at the same position, they enter and exit uniform neighborhoods of each X
 within
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a bounded distance of one another. We give a more formal definition in Section 3 and
prove the requisite bounded coset penetration property in Proposition 1.

Our considerations have been motivated by the notion of a hierarchy path, a particular
kind of quasi-geodesic arising out of the hyperbolicity of the curve complex. In Masur–
Minsky [20], this transitive family of quasi-geodesics in P .S/ is described, built up
from geodesics in the curve complexes of nonannular essential subsurfaces of S . Such
a quasi-geodesic is called a resolution of a hierarchy H.P1;P2/ connecting P1 and
P2 in P .S/.

In the above cases, given a resolution �W Œ0; n�! P .S/ of a hierarchy H.P1;P2/

we denote by X.�/ the union of the image of � and the Farey-graph products X
 D

P .W /�P .W c/ where 
 2 C.S/ is the common boundary of W and W c for which
either W or W c is a “component domain” of H.P1;P2/ [20].

Then Theorem 1 will follow from the following quasi-convexity result.

Theorem 2 For any resolution � of the hierarchy H.P1;P2/, the union X.�/ is
quasi-convex in P .S/.

Quasi-convexity of this set guarantees that quasi-geodesics in P .S/, while not stable in
the whole of P .S/, do satisfy a relative stability with respect to the product regions X
 .

Rank and quasi-flats A quasi-flat F in a metric space X is a quasi-isometric
embedding1

F W Rn
!X

where n� 2. The integer n is called the rank of the quasi-flat. The investigations due
to Kleiner and Leeb [17] and Eskin and Farb [12] of quasi-isometric rigidity in the
setting of higher rank symmetric spaces each used the classification of quasi-flats as a
central tool.

Let �.S/D 3, and let 
 be a separating curve for which each complementary X1 and
X2 satisfies �.Xi/D 1. Then the Farey-graph product P .X1/�P .X2/ sits naturally
in P .S/ as the subset X
 � P .S/ consisting of pants decompositions containing the
curve 
 . Theorem 2 then allows one to give a classification of maximal quasi-flats for
P .S/ in the cases when �.S/D 3.

1The map F is a quasi-isometric embedding if F distorts distances by a bounded additive and
multiplicative amount.
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Theorem 3 (Quasi-flats theorem) Let �.S/D 3. Then each quasi-flat F in P .S/

has rank 2 and lies a bounded distance from a product P .X1/�P .X2/ � P .S/ of
Farey graphs corresponding to the complementary subsurfaces of a domain-separating
curve 
 .

The geometric rank of a metric space X is the maximal positive integer n for which
X admits a quasi-isometric embedding F W Rn!X . As a consequence we obtain the
following corollary, verifying a conjecture of the first author and Farb [7] in the case
�.S/D 3. We remark that the following statement has been obtained independently
(and for all surfaces S ) by work of Behrstock and Minsky [3].

Corollary 4 (Geometric rank) When �.S/D 3 the geometric rank of the pants graph
P .S/ and hence the Weil–Petersson metric on Teich.S/ is 2.

The boundary of the Weil–Petersson metric Our main theorem has applications
for understanding the CAT.0/ geometry of the Weil–Petersson metric.

The Weil–Petersson metric on the Teichmüller space Teich.S/ has negative curvature,
but it is not complete. Its completion Teich.S/ has the structure of a CAT.0/ space,
namely, a geodesic metric space X in which pairs of points on edges of a geodesic
triangle have distance at most that of the distance between corresponding points on a
triangle in Euclidean space.

It is shown by the first author [6] that the unit tangent spheres have no natural identifi-
cation. However, the notion of an asymptote class of infinite geodesic rays is natural
and basepoint independent. When X is Gromov hyperbolic, this CAT.0/ boundary
agrees with the usual Gromov boundary.

As a consequence of Theorem 2 and the main result of Brock–Farb [7], we give a
description of the CAT.0/ boundary of the Weil–Petersson metric when 3g�3Cn� 3.

We say � is a boundary lamination if each component �0 of � is a Gromov boundary
point of C.S.�0// where S.�0/ represents the minimal subsurface of S containing �0 .
There is a natural topology on boundary laminations, which we formulate in Section 4,
but we warn the reader in advance that it is not continuous with respect to usual
topologies on laminations arising out of consideration of transverse measures.

Theorem 5 Let Sg;n satisfy 3g�3Cn� 3. Then the CAT.0/ boundary of the Weil–
Petersson metric on Teich.S/ is homeomorphic to the space of boundary laminations.
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We remark that both the notion of a boundary lamination defined here as well as the
appropriate topology on the space of such depend on the strong characterization of
quasi-geodesics of Theorem 2. Thus, with our methods, such a discussion is specific to
dimension at most 3. In a separate paper with Minsky, we develop a general notion of
a lamination associated to a Weil–Petersson geodesic ray that arises from convexity of
length functions along geodesics [8].

In the present discussion, the principal idea from Theorem 2 that infinite rays in the
Weil–Petersson metric have associated “infinite hierarchies without annuli” in the sense
of Masur and Minsky [20] gives rise to a natural way to associate infinite geodesics
in the curve complex of S or its subsurfaces. Indeed, the set of curves on S used to
construct “hierarchies” has infinite diameter in the curve complex of some subsurface
of Y of S . When there is a unique such Y , the hierarchy is essentially determined by
the asymptotic data of a point in the Gromov boundary @C.Y /. In the case at hand, the
only possibility if there is more than one such Y is that there are two such subsurfaces
Y and Y c , and the hierarchy in question has infinite diameter in each. In this case the
related rate of divergence of the geodesic in each factor C.Y / and C.Y c/ determine an
additional piece of data, the “slope” of the divergence of the ray. To encode this slope
we associate real weights to the two laminations and projectivize. We will describe
this in more detail in Section 4.

Thickness and relative hyperbolicity In the paper [7], the first author and Farb
showed that for each S with �.S/ � 3 the pants graph P .S/, and thence the Weil–
Petersson metric on Teich.S/, is not Gromov hyperbolic. As the central obstruction to
hyperbolicity is the existence of quasi-isometrically embedded product regions, one
can ask whether a line of reasoning similar to the above approach to the case �.S/D 3

might persist in higher complexity.

Behrstock, Druţu and Mosher [2] take up this theme in generality; the notion of a
thick metric space is introduced, and it is shown that for �.S/ � 6 the pants graph
P .S/ is thick. This condition is equivalent [2; 11] to the failure of strong relatively
hyperbolicity in the sense of Druţu and Sapir [11].

The argument given in [2] for the thickness of the Weil–Petersson metric on Teichmüller
space runs aground in the cases of mid-range complexity, namely �.S/ D 4 and 5.
Pushing their approach a bit further we show that our strong relative hyperbolicity
theorem for �.S/D 3 is sharp in the following sense.

Theorem 6 Let S be a surface with �.S/� 4. Then pants graph P .S/ is not strongly
relatively hyperbolic with respect to any co-infinite collection of subsets.
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Here, a subset Y � X of a metric space Y is co-infinite if there are points in X at
arbitrarily large distance from Y . The theorem is a consequence of the fact that in
these cases the pants graph is thick in the sense of [2], shown in Theorem 18.

The theorem extends the relevant result of [2] which treats the case �.S/ � 6, to
the intermediate range �.S/ 2 f4; 5g and establishes the failure of strong relative
hyperbolicity with respect to any collection of co-infinite subsets in general for �.S/�4.

Theorem 6 shows that the precise control of geodesics using these coarse methods
stops in Teichmüller dimension 3 (�.S/ D 3). Interestingly, the central feature of
these non–relatively hyperbolic cases is the ability to “chain flats” in a gross sense:
roughly speaking one can join any pair of points without ever leaving a union of quasi-
isometrically embedded copies of R2 . While this can be done as early as dimension 2

for the mapping class group, this kind of connectivity only begins in dimension 4.

Plan of the paper We begin with preliminaries, condensing the notions required
from the coarse geometry of the curve complex into the manageable formulation
of a hierarchy path, namely, a particular type of quasi-geodesic in P .S/ arising
inductively from the hyperbolicity of the curve complex. In Section 3, we show that
when �.S/D 3 we have relative stability of quasi-geodesics in P .S/. In Section 4, we
deduce applications of this stability result to the finer structure of the CAT.0/ boundary
of the Weil–Petersson metric for S with �.S/ � 3. Finally, in Section 5 we exhibit
the “thickness” of the pants graph P .S/ and thence the Weil–Petersson metric for S

with �.S/ D 4 and 5 and discuss how it follows naturally that the Weil–Petersson
metric cannot be strongly relatively hyperbolic with respect to any collection of co-
infinite subsets for �.S/ � 4. This final result shows that hyperbolicity and strong
relative hyperbolicity, and the concomitant synthetic control, are sharp to Teichmüller
dimension at most 3.
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2 Preliminaries

In this section we set out some of the preliminary notions we will need.

Complexes of curves and pants Let S be a compact surface of negative Euler
characteristic. The curve complex of S , denoted C.S/, is the simplicial complex
whose vertices correspond to isotopy classes of essential simple closed curves on S

and whose k –simplices span collections of kC1 vertices whose corresponding simple
closed curves can be realized pairwise-disjointly by simple closed curves on the surface.
We will be primarily interested in the 1–skeleton of C.S/, often called the curve graph
of S , and the associated distance function dS .:; :/ on the 0–skeleton induced by the
metric obtained by assigning each edge length 1.

A related notion, the pants graph P .S/ associated to S is a graph whose vertices
correspond to pants decompositions, namely, maximal families of distinct, essential,
nonperipheral isotopy classes of simple closed curves on S so that the classes in the
family have pairwise disjoint representatives.

In this case, edges connect vertices whose corresponding pants decompositions differ
by an elementary move: pants decompositions P and P 0 differ by an elementary move
if P 0 can be obtained from P by replacing one isotopy class ˛ in P by another ˇ so
that representatives of ˇ intersect representatives of ˛ minimally among all possible
choices for ˇ . These moves have two types (see Figure 1). In the first type P n ˛

contains a torus with a hole and ˇ intersects ˛ once. In the second P n˛ contains a 4

holed sphere and ˇ intersects ˛ twice.

˛
ˇ

˛
ˇ

Figure 1: Elementary moves on pants decompositions
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It is a theorem of Hatcher and Thurston that the graph P .S/ is connected [14], and
thus there is a notion of distance between vertices obtained by metrizing P .S/ so that
each edge has length 1. We denote by d.�; �/ this distance on P .S/.

Given a subsurface Y � S that is not an annulus, work of Masur and Minsky [20]
define a coarse projection �Y from C.S/ to uniformly bounded diameter subsets of
C.Y /, as follows.

If 
 2 C.S/ intersects Y essentially, we define �Y .
 / to be the collection of curves in
C.Y / obtained by resolving the essential arcs of 
 \Y into simple closed curves. More
precisely, if X is a finite area hyperbolic structure on int.S/ chosen for reference, one
can consider the arcs of intersection of the geodesic representative 
 � of 
 with the
realization Y � of Y as a subsurface of X with geodesic boundary. For each arc ˛
of 
 � \ Y � , denote by ˛� the shortest representative of ˛ modulo the boundary of
Y � (ie up to homotopy with endpoints constrained to @Y � ). A regular neighborhood
of ˛� [ @Y � will have boundary consisting of simple closed curves in Y , some of
which will be nonperipheral in Y . The union of these nonperipheral ones makes up
the collection �Y .
 /� C.Y /. If this collection is empty, then �Y .
 / is defined to be
the empty set.

If �Y .
 / is nonempty, it is easy to see that it has uniformly bounded diameter in C.Y /.
The projection �Y is defined in exactly the same manner for pants decompositions
P : resolve arcs of intersection of the geodesic representatives of P with the geodesic
representative of Y into simple closed curves in Y and record those that are nonpe-
ripheral. Once again, it is easy to see that �Y .P / is a subset of C.Y / of uniformly
bounded diameter.

We note for any nonannular subsurface Y , at least one curve in a pants decomposition
P must have essential intersection with Y , so one always has �Y .P / 6D∅. For two
pairs of pants P1;P2 we will use the notation dY .P1;P2/ to denote

diamC.Y /.�Y .P1/[�Y .P2//:

By a result of Masur and Minsky [19], the curve complex C.Y / is ı–hyperbolic for
some ı .

Let gY be a geodesic in C.Y /.

Definition 7 For any pants P decomposition, denote by �gY
.P / a nearest point on

the geodesic gY of the projection �Y .P /.

It follows from the hyperbolicity of C.Y / that this map is coarsely well defined and
that there is a constant k � 1 such that it is k –Lipschitz.
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Definition 8 The domain Y1 is nested in the domain Y2 if Y1 � Y2 . The domains
Y1 and Y2 intersect transversely if they intersect and are not nested.

Hierarchy paths We will use a construction in [20] of a class of quasi-geodesics in
P .S/ which we call hierarchy paths and which have the following properties. Given a
positive function f .x/ and a real number M > 0, let

Œf .x/�M D

(
f .x/ if f .x/�M;

0 otherwise.

Definition 9 (Hierarchy paths) Any two pants decompositions P1 and P2 can be
connected by at least one hierarchy path �D�.P1;P2/W Œ0; n�!P .S/, with �.0/DP1

and �.n/D P2 .

These paths have the following properties.
(1) There is a constant M2 such that if Y is a subsurface of S with �.Y / � 1

and dY .P1;P2/ � M2 then there is a maximal connected interval of times
IY D Œt1; t2� such that for all t 2 IY , @Y is a curve in �.t/. We will call such a
subsurface Y a component domain of � . By convention, the full surface S is
also a component domain.

(2) For each component domain Y , there is a geodesic gY .s/ in the curve complex
C.Y /, for s in a parameter interval JY , such that for each t 2 IY , �.t/ contains
a curve in gY .s/. Furthermore, the assignment t! s.t/ is a monotonic function
from IY to JY .

(3) If Y1 and Y2 are component domains that intersect transversely, then there
is a notion �t of time order of the two domains which is the same for any
hierarchy path joining P1 and P2 . Time ordering has the property that there
is a constant M1 �M2 such that if Y1 �t Y2 then dY2

.P1; @Y1/ �M1 and
dY1

.P2; @Y2/�M1 .

(4) For any component domain Y , if IY D Œt1; t2�, then

dY .�.t/; �.t1//�M1; if t � t1;

dY .�.t/; �.t2//�M1; if t � t2:and

(5) There exist K0 and C depending on M1 so that

(2–1) d.P1;P2/�K 0;C

X
Y�S

Y nonannular

ŒdY .P1;P2/�M ;

where �K 0;C denotes equality up to the multiplicative factor K0 and additive
constant C .
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In [20] it is shown that �t defines a partial ordering on the component domains of
a hierarchy path. The notion that two properly intersecting domains Y1 and Y2 are
time-ordered refers to the fact that changes of projections to a pair of time ordered
component domains do not occur simultaneously along a path but rather sequentially.
We will denote by �.P;P 0/ a choice of a hierarchy path joining P to P 0 in P .S/.

Lemma 1 (Time order) Suppose Y1 and Y2 are transversely intersecting domains,
and P1;P2 are pants decompositions in P .S/ that satisfy

dY1
.P1;P2/� 2M1 and dY2

.P1;P2/� 2M1:

Suppose Y1 �t Y2 in �.P1;P2/. If R is another pants decomposition that satisfies

dY1
.R;P2/ > 2M1;

dY2
.P1;R/� 2M1then

jdY2
.P1;P2/� dY2

.R;P2/j � 2M1;and

and Y1 �t Y2 in any hierarchy path �.R;P2/.

Proof Since Y1 �t Y2 in a hierarchy path �.P1;P2/ we have

dY1
.@Y2;P2/�M1:

Since 2M1 >M2 , the subsurface Y1 is a component domain of a hierarchy path from
R to P2 . Arguing by contradiction suppose Y2 is not a component domain of this
latter path, or if it is, suppose Y2 �t Y1 . By the fourth property of hierarchies we
would have

dY1
.R; @Y2/�M1:

The triangle inequality then gives

dY1
.R;P2/� 2M1;

a contradiction to the assumption.

Thus Y2 is a component domain in a hierarchy path �.R;P2/ and we have Y1 �t Y2 .
Thus by the third property of hierarchies, dY2

.@Y1;R/ � M1 . Since Y1 �t Y2 in
�.P1;P2/ dY2

.@Y1;P1/�M1 as well. The triangle inequality gives the first bound.
The third property of hierarchies gives

jdY2
.@Y1;P2/� dY2

.R;P2/j �M1

jdY2
.@Y1;P2/� dY2

.P1;P2/j �M1:and

The two inequalities together finish the proof.
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3 Relative stability of quasi-geodesics

We now specialize to the case when S D Sg;n is a surface of genus g with n boundary
components, and �.S/D 3 (in other words, .g; n/ is .2; 0/, .1; 3/, or .0; 6/).

Definition 10 Let S D Sg;n where �.S/D 3. Then we say an essential subsurface
W of S is a separated domain if W is a four holed sphere or one-holed torus, and
there is another four-holed sphere or one-holed torus W c so that W and W c may be
embedded disjointly in S .

Given a hierarchy path � , we denote by X.�/ the union of the image of � and the
Farey-graph products X
 D C.W /�C.W c/ where the separating curve 
 2 C.S/ is
the common boundary of the separated domains W and W c for which either W or
W c is a component domain of � .

Now Theorem 2 is a consequence of the following result, which guarantees the existence
of a contracting projection map from P .S/ to X.�/.

We remind the reader of an important contraction property that always exists for
projections to quasi-convex subsets of ı–hyperbolic metric spaces.

Definition 11 A map … has a .b; c/–contraction property if there exists b; c > 0 such
that if d.P;Q/ < b d.….P /;P / then d.….P /;….Q// < c .

In particular, if X is a ı–hyperbolic metric space then there is a pair .b; c/ so that if
g is any geodesic lying in X then the nearest point projection �gW X ! g satisfies
a .b; c/–contraction property. If a map … satisfies a .b; c/–contraction property, for
some b; c , we say it has the contraction property.

Theorem 12 Fix a hierarchy path �D �.P1;P2/. There exists a projection map

…W P .S/!X.�/

that is coarsely idempotent, coarsely Lipschitz and has the contraction property.

Moreover the projection … satisfies the following conditions: there is a constant K

depending only on the topology of S so that for each P 2 P .S/ we have:

(1) Each nonseparated component domain Z of � satisfies

dZ .….P /; �gZ
.P // <K:
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(2) Each separated component domain W and its complement W c satisfy

dW .….P /; �W .P // <K; dW c .….P /; �W c .P // <K:

We refer to the final two conditions of the theorem as the relative synchronization
property for the map …. Notice that in condition (2) we do not require that the
projection ….P / be close to any geodesic in C.W / or C.W c/.

Proof We break the proof into three parts. In part (i), we construct the projection. In
part (ii), we verify that … is relatively synchronized, coarsely idempotent and coarsely
Lipschitz. Finally, in part (iii) we show the projection … satisfies the contraction
property.

Part (i): Constructing the projection Let �W Œ0; n�! P .S/ be a hierarchy path
with �.0/D P1 and �.n/D P2 . Let

D.�/D S [fY W dY .P1;P2/� 2M1g:

Given P in P .S/, let

D.P; �/D S [fY Wmin.dY .P1;P /; dY .P;P2//� 2M1g:

First assume D.P; �/ contains a separated domain W , and either W or W c is in
D.�/. It follows immediately from Lemma 1 that there cannot be any other separated
domain (other than W c ) with the same property. In this case set

….P /D @W [�W .P /[�W c .P /

in the Farey-graph product X@W .

Now assume there is no such separating domain. Again from Lemma 1 two subsurfaces
Y1;Y2 in D.P; �/\D.�/ cannot transversely intersect. Then we let B.P; �/ denote
the union of all the isotopy classes of boundary components of the subsurfaces in
D.P; �/\D.�/ that are nonperipheral in S . We note that B.P; �/ may be empty. If
it is nonempty it is a simplex in C.S/. If B�.P; �/ denotes the realization of these
isotopy classes as a disjoint union of simple closed curves on S then consider the
complement S nN.B�.P; �/// of a union of annular neighborhoods of these curves.
If this complement contains a subsurface Y that is not a 3–holed sphere, then Y is
unique, since it cannot be a separated domain by assumption, and furthermore Y lies
in D.P; �/\D.�/. In this case Y is minimal in D.P; �/\D.�/ with respect to the
order induced by inclusion (we remind the reader that Y may be the full surface S ).

Recall k is the Lipschitz constant for the projection �gW
. Denote by W.P; �/ the

(possibly empty) set of all W � Y such that:
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� dW .P1;P2/ > 10kM1:

� IW \ IY ¤∅:

Note in particular that the first condition implies W 2D.�/. Since Y is minimal in
D.P; �/, we have W …D.P; �/ so dW .P;Pi/� 2M1 for either P1 or P2 . Then we
claim that the following order relationship holds. Either

(1) dW .P1; �gW
.P //� 5kM1 and we say P <W , or

(2) dW .�gW
.P /;P2/� 5kM1 and we say P >W .

(The definition of W.P; �/ and the triangle inequality says that both inequalities cannot
hold). To prove the claim assume without loss of generality that dW .P;P1/� 2M1 .
Let v0 be the initial vertex of the geodesic gW . By property (4) of hierarchy paths,
we have dW .P1; v0/�M1 , and so by the triangle inequality,

dW .P; v0/� 3M1:

Since �gW
.P / is the closest vertex in gW we then have

dW .P; �gW
.P //� 3M1

and so again by the triangle inequality

dW .P1; �gW
.P //� 5M1 � 5kM1

proving the claim.

Let W� denote the set of W 2W.P; �/ with P >W and let WC denote the set of
W 2W.P; �/ with P <W .

Define the subsets of the parameter values

U� D
[

W 2W�

IW and UC D
[

W 2WC

IW :

Then we let i 0
1

be the maximum parameter value in U� and i 0
2

be the minimum
parameter value in UC . (If U� D∅ take i 0

1
to be the initial point of IY and similarly

if UC D∅ take i 0
2

the maximal value of IY ). Let

P 01 D �.i
0
1/ and P 02 D �.i

0
2/:

There is a connected set J of vertices on gY that are vertices of pants decompositions
between P 0

1
D�.i 0

1
/ and P 0

2
D�.i 0

2
/. By the hyperbolicity of C.Y / there are a bounded
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number of vertices in J that are closest to the projection of P into C.Y /. Pick one
such closest v . Let �.j / be a pants decomposition that contains this v and define

….P /D �.j /:

This completes the construction.

Part (ii): The map … is relatively synchronized, coarsely idempotent and coarsely
Lipschitz We first note the following Lemma. Let Y be the surface determined by
the construction of …. If Y is a proper subsurface, then ….P /contains @Y .

Lemma 2 Suppose Y is a proper subsurface. Suppose Z transversely intersects Y ,
and dZ .P1;P2/� 4M1 . Then dZ .P;….P //� 4M1 .

Proof If the conclusion of the lemma is false, then Z is a component domain of a
hierarchy �.P;….P //. Since ….P / contains @Y , by the fourth property of hierarchies,
dY .@Z;P / �M1 . On the other hand, by the triangle inequality, for either i D 1; 2

we have dZ .Pi ;….P // � 2M1 . Without loss of generality assume this holds for
i D 1. Then again by the fourth property of hierarchies, since ….P / contains @Y ,
dY .P1; @Z/�M1 and so by the triangle inequality we have

dY .P1;P /� 2M1;

a contradiction to the fact that Y 2D.P; �/.

We now give the proof of relative synchronization. First assume that Z is not separating.
The proof breaks into cases.

Case I The subsurface Z transversely intersects Y . If dZ .P1;P2/� 4M1 , then by
property (4) of hierarchies and the fact gZ is a geodesic,

dZ .….P /; �gZ
.P //� 5M1

and we can take K D 5M1 .

If dZ .P1;P2/ � 4M1 , then by Lemma 2 we have dZ .P;….P // � 4M1 . But then
the fact that projections to geodesics are k –Lipschitz says that

dZ .�gZ
.….P //; �gZ

.P //� 4kM1:

By property (4) of hierarchies, dZ .�gZ
.….P //;….P // � M1 . Therefore by the

triangle inequality, we have the result for K D 4kM1CM1 .
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Case II Z D Y If we can show that some closest point projection v0 D �gY
.P /

satisfies
dY .v

0;J /� 3;

then by the hyperbolicity of C.Y /, certainly v0 would be within bounded distance of
….P /, the nearest point projection in J of P , and we would be done. Assume this is
false, and assume without loss of generality that all closest v0 lie before J along gY

at distance greater than 3.

Let W 2W� be the domain such that the right endpoint of IW coincides with the left
endpoint of J . Let h be the geodesic in C.Y / joining �Y .P / to v0 . Then we first
assert that every vertex of h intersects @W . If this were not true then some vertex u

of h would be within distance 1 of @W and therefore within distance 2 of J .

If dS .u; v
0/� 1 then dS .J; v

0/� 3, a contradiction to the assumption. If dS .u; v
0/� 2,

then dS .u;J /� dS .u; v
0/, and we have contradicted that there are no closest points

in J . This proves the assertion that every vertex of h must intersect @W . But then by
the first property of hierarchy paths,

dW .P; v
0/�M2:

By the fourth property of hierarchies,

dW .P1; v
0/�M1:

By the triangle inequality, dW .P;P1/�M1CM2�2M1 . Then the Lipschitz property
of projections to geodesics implies

dW .�gW
.P /; �gW

.P1//� 2kM1

and so again by the fourth property of hierarchies and the triangle inequality,

dW .P1; �gW
.P //� 2kM1CM1 < 5kM1

so P <W . This contradiction finishes the argument.

Case III The subsurface Y is a proper subsurface of Z . Since ….P / contains @Y
it is enough to show that

dZ .@Y; �gZ
.P // < 3:

Assuming otherwise, since �gZ
.P / is the closest point projection, every vertex on the

geodesic h in C.Z/ joining �Z .P / to �gZ
.P / intersects Y . Consequently, by the

first property of hierarchies, we have dY .P; �gZ
.P //�M2 . Since �gZ

.P / intersects
Y , for either i D 1; 2 dY .Pi ; �gZ

.P //�M1 , so for that value of i ,

dY .P;Pi/�M1CM2 � 2M1;
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a contradiction to Y 2D.P; �/.

Case IV The subsurface Z is a proper subsurface of Y . We can assume Z belongs
to W ; otherwise the result is immediate. Without loss of generality assume P >Z so

dZ .P2; �gZ
.P //� 5kM1:

dZ .….P /;P2/�M1Since

by the fourth property of hierarchies, we are done by the triangle inequality. We have
proved (1).

We now establish (2). If the separating W lies in D.P; �/ and either W or W c lies in
D.�/, then ….P / lies in X
 where W � S n 
 , and in this case dW .P;….P //D 0.
The cases that W …D.P; �/ or both W;W c …D.�/ follows exactly as in (1).

It follows from relative synchronization that the map is coarsely idempotent; there is a
constant K such that if P 2 �Œ0; n� then d.….P /;P /�K .

To see that the map is coarsely Lipschitz, we note that the image depends only on the
projections of P to subsurfaces of S . Since projections are Lipschitz maps, there is
a constant C such that if dW .P;P

0/ D 1, then dW .….P /;….P
0// � C . Now the

Lipschitz property follows from (2–1).

Part (iii): The projection … has the contraction property We begin this section
by establishing further properties of the projection map …. Let �0W Œ0;N �! P .S/

denote the hierarchy joining P and ….P /. The next lemma says that … is almost a
nearest point projection on � .

Lemma 3 Suppose Z is a component domain of �0 with corresponding geodesic g0
Z

and parameter interval I 0
Z

. Let j 0
Z

be the last parameter value and k 0
Z

any parameter
value.

� If Z is also a component domain of � with geodesic gZ , then

dZ .�gZ
.Pk0

Z
/; �gZ

.Pj 0
Z
//� 2kM1CKCM1C 2kı

where C.Z/ is ı hyperbolic.

� The closest point projection �g0
Z

satisfies

dZ .�g0
Z
. yP /;Pj 0

Z
/� .4C 2k/ıCM1.3kC 3/CKC 1

for all yP 2 � .
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Proof Let i 0
Z

be the initial parameter value of I 0
Z

. By the fourth property of hierar-
chies, we have

(3–1) dZ .P;Pi0
Z
/�M1 and dZ .….P /;Pj 0

Z
/�M1:

Since the projections to a geodesic is k –Lipschitz, we get

(3–2) dZ .�gZ
.P /; �gZ

.Pi0
Z
//� kM1 and dZ .�gZ

.….P //; �gZ
.Pj 0

Z
//� kM1:

Again applying the fourth property of hierarchies, we have

(3–3) dZ .….P /; �gZ
.….P ///�M1:

Thus by relative synchronization we have

(3–4) dZ .�gZ
.P /; �gZ

.….P ///�KCM1:

The triangle inequality applied to inequalities (3–2) and (3–4) gives

dZ .�gZ
.Pi0

Z
/; �gZ

.Pj 0
Z
//� 2kM1CKCM1:

The first conclusion which is stated for any parameter value now follows from the
hyperbolicity of C.Z/ and the fact that projections are Lipschitz.

We prove the second statement. Notice first that if Z is not component domain of � ,
then by the first and fourth property of hierarchies and the triangle inequality,

dZ .P;Pj 0
Z
/�M2CM1

and the projection of P to g0
Z

is even closer.

Now suppose Z is a component domain with geodesic gZ . Let v be any vertex of
gZ and let v0 D �g0

Z
.v/ its closest point projection on g0

Z
. Let v00 D �gZ

.v0/ the
closest point projection of v0 on gZ . The first conclusion of the Lemma and the fourth
property of hierarchies imply that

dZ .Pj 0
Z
; v00/� 2kM1CKCM1C 2kıC 2M1C 1:

Since v00 is the closest point to v0 on gZ , the ı hyperbolicity of C.Z/ implies that
any geodesic h joining v0 to v must pass within 2ı of v00 and therefore by the above
bound, within .2C 2k/ıCM1.2k C 3/CKC 1 of Pj 0

Z
. This gives the bound for

dZ .v
0;Pj 0

Z
/. Since any yP 2 � is distance at most M1 from gZ and the projections

to geodesics are k Lipschitz, the result now follows from the triangle inequality.

Lemma 4 There exists a constant K00 such that for any pants decomposition Q0 D

�0.i/ in the hierarchy �.P;….P //,

d.….Q0/;….P //�K0:
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Proof We bound d.….P /;….Q0// using the distance formula (2–1). Since … is
Lipschitz we need only bound dZ .….P /;….Q

0// for those Z that are component
domains of both � and the subhierarchy of �0 joining P and Q0 .

Now the first part of Lemma 3 says that the geodesic g0
Z

has bounded diameter
projection to gZ . This together with the fourth property of hierarchies and the fact
that projection to gZ is Lipschitz bounds the projection of any two points in the
subhierarchy.

Now let …0 denote the projection to the hierarchy �0 .

Lemma 5 There is K000 and C , such that if Z is a subsurface and Q is a pants
decomposition such that

dZ .…
0.Q/;….P //� C;

then:

(1) dZ .Q;….P //� 2M1 .

(2) dZ .Q;….Q/� 2M1CK .

(3) dZ .….P /;….Q//�K000 .

(4) For any W , if dW .Q;…
0.Q//� C C 2M1 then dW .Q;….P //� 2M1 .

Proof Let Q0 D …0.Q/. In order to bound the distance in C.Z/ between the pro-
jections of ….P / and ….Q/, we can assume that Z is a component domain of �
with geodesic gZ . We consider the geodesic g in C.Z/ joining �Z .….P // and
�Z .….Q//. By the fourth property of hierarchies and the hyperbolicity of C.Z/, there
is a constant ı0 such that the geodesic g is Hausdorff distance ı0 from gZ . By relative
synchronization and Lemma 3, there is a ı00 such that the closest point projection of
�Z .Q

0/ on g is within ı00 of �Z .….P // and the closest point projection of �Z .Q/

on g is within ı00 of �Z .….Q//.

We consider the quadrilateral in C.Z/ with vertices

f�Z .Q/; �Z .Q
0/; �Z .….P //; �Z .….Q//g:

The hyperbolicity of C.Z/ implies that there are constants C and ı000 depending on ı0

and ı00 so that for dZ .Q
0;….P // > C we have

dZ .Q;….P //� 2M1 and dZ .Q;….Q//� 2M1CK;

and the geodesic h joining �Z .Q/ and �Z .….Q// passes within ı000 of �Z .….P //.
We will choose C so that

C > .4C 2k/ıCM1.3kC 3/CKC 1;
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the constant on the right side coming from Lemma 3. Taken together with the fact that
closest point projection of �Z .Q/ on g is within ı00 of �Z .….Q//, we obtain the
bound

dZ .….P /;….Q// < 2ı000C ı00

by an application of the triangle inequality. Setting K000 D 2ı000C ı00 , we have the first
three statements of the Lemma.

To prove the last statement, notice again by the first part that for dW .Q
0;….P //� C ,

we have
dW .Q;….P //� 2M1:

If dW .Q
0;….P //� C , then the assumption dW .Q;Q

0/� C C 2M1 gives

dW .Q;….P /� 2M1

by the triangle inequality.

Proof of Theorem 12 To conclude the proof of Theorem 12 we seek a pair .b; c/ so
that the map … satisfies an .b; c/–contraction property. Choose b so that

b <
1

2k 0

where k 0 is the Lipschitz constant for the map …0 . Then since …0.P /D P we have

d.P;…0.Q//D d.…0.P /;…0.Q//

� k 0d.P;Q/

� bk 0d.P;….P //

<
d.P;….P //

2
:

d.…0.Q/;….P // >
d.P;….P //

2
:This implies

Set Q0 D � 0.Q/. There is a constant a0 such that if d.P;….P // � a0 , the above
inequality and the distance formula (2–1) guarantees the existence of a domain Z for
the hierarchy path �0 such that

dZ .Q
0;….P //� C C 2M1CK;

where C is the constant given by Lemma 5. Assume then that

d.P;….P //� a0:
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Let gZ 0 be the geodesic in C.Z/ in �0 ; recall gZ 0 has terminal parameter value jZ 0 .
Then the fourth property of hierarchies implies

(3–5) dZ .Q
0;Pj 0

Z
/� C CM1CK:

By the distance formula (2–1), bounding d.….P /;….Q// is equivalent to bounding
dW .….P /;….Q// for each component domain W of � and by Lemma 4 this is
equivalent to bounding dW .….Q/;….Q

0//. We first note that if

dW .Q;Q
0/� C C 2M1CK

then dW .….Q/;….Q
0//� k 0.C C 2M1CK/, since the map … is k 0–Lipschitz.

Thus we can restrict to domains W with dW .Q;Q
0/� C C 2M1CK .

Claim 13 If dW .….P /;….Q//� 2M1C 2M2 , ie W 2D.�/, then Z �W .

By way of contradiction first assume W transversely intersects Z . By the last conclu-
sion of Lemma 5 we have

dW .Q;….P //� 2M1

dZ .Q;….P //� 2M1:and

As W and Z transversely intersect, they are time ordered in any hierarchy �.Q;….P //.
If Z�t W , then since dZ .Q

0;….P //�2M1 , an application of Lemma 1 with Q0DR

from that lemma says that dW .Q;Q
0/� 2M1 , a contradiction.

Thus W �t Z in �.Q;….P //. We apply Lemma 1 again using the hierarchy
�.Q;….P // this time with R D….Q/. Since dZ .Q;….Q// � 2M1 by Lemma 5,
we conclude that dW .….P /;….Q// � 2M1 , a contradiction. We have ruled out W

transversely intersecting Z .

Next suppose W ¨ Z . By the K relative synchronization of the projection …0 , we
have

dZ .Q
0; �g0

Z
.@W //�K

so by (3–5) and the triangle inequality,

dZ .�g0
Z
.@W /;Pj 0

Z
/� C CM1:

On the other hand, since W is assumed to be a component domain of � , by the second
conclusion of Lemma 3

dZ .�g0
Z
.@W /;Pj 0

Z
/� .4C 2k/ıC 2M1.2kC 1/CM2CK < C

and again we have a contradiction. This proves the claim.
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By the claim then we need only bound dW .….Q/;….Q
0// for Z � W . By third

conclusion of Lemma 5 we have the bound for W DZ . The remaining possibility is
W contains Z . By relative synchronization,

dW .….P /; �gW
.@Z//�K; dW .….Q/; �gW

.@Z//�K:

The desired bound dW .….P /;….Q///� 2K is given by the triangle inequality.

Finally we consider the possibility that d.P;….P //� a0 so that d.P;Q/� a0b by
assumption. Then since … is yk Lipschitz for some yk we get a bound

d.….P /;….Q//� yka0b

in this case. Taking c Dmax.2K; ya0b/ we get the desired bound.

Proof of Theorem 2 This follows from the usual Mostow type argument. A proof in
this context is given by Lemma 7.1 of [19]: by Theorem 12 a quasi-geodesic cannot
stray far from the set X.�/ due to inefficiency outside of a bounded neighborhood of
the projection image.

The notion of strong relative hyperbolicity with respect to a collection of subsets,
introduced for groups by Farb [13] (see Brock and Farb [7] for a metric space notion
in a similar context to this paper) finds its currently accepted form in [11; 10].

Definition 14 A metric space is said to be strongly relatively hyperbolic with respect
to a collection of subsets H if:

(1) Given K there exists M such that the intersection of K neighborhoods of any
two subsets from H is M bounded.

(2) Given L;C , there is M such that for any pair of points x;y and subset A

from the collection H , if d.x;y/� 3 max.d.x;A/; d.y;A//, then any .L;C /
quasi-geodesic between x;y crosses the M neighborhood of A.

(3) For every k , there exists M such that every thick k –gon belongs to the M

neighborhood of one of the sets in H .

By work of Druţu [10], the last condition can be replaced by:

(3� ) For positive constants L and C there are constants M and M 0 , such that for
any .L;C /–quasi-geodesic triangle in X , there exists a set A in the collection
H whose M neighborhood intersects the three sides of the triangle, such that
the pairs of entrance points of the sides in this neighborhood starting from the
same vertex are distance at most M 0 apart.
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The proof of Theorem 1 hinges on the following Proposition, verifying a condition
reminiscent of Farb’s bounded coset penetration property of [13; 7].

Proposition 1 Given K;C there are K1;K2 with the property that if � is any .K;C /–
quasi-geodesic joining pants decompositions, P1 and P2 , and � D �.P1;P2/ is a
hierarchy joining P1;P2 , then for any for any Farey-graph product X
 � X.�/, the
path � and the hierarchy � enter and exit a K1 neighborhood of X
 within distance
K2 of each other.

Proof By Theorem 2, given .K;C /, there exists K0 such that any .K;C /–quasi-
geodesic �.n/ stays within K0 of X.�/ where �D �.P1;P2/. By relative synchro-
nization and the distance formula (2–1) there is a constant K1 depending on K0 such
that for all n,

d.�.n/;….�.n///�K1:

Now given a Farey-graph product X
 �X.�/ with complementary domains X n 
 D

W [W c , let n be the maximal parameter value such that for all j D 1; : : : ; n, �.j /
does not lie in NK1

.X
 /, the K1 neighborhood of the product X
 .

Let IW ; IW c the parameter intervals for W;W c . (at least one of which is nonempty).
Now let j � n. If

max.jIW j; jIW c j/� k;

we claim that either ….�.j // 2X
 0 where some complementary component of 
 0 is
time ordered before W or W c , or ….�.j //D �.j 0/ where j 0 satisfies

j 0 < IW [ IW c :

Suppose on the contrary, there exists j1; j2 � n such that

….�.j1// 2X
1
[ �.j 0/

for some complementary component of 
1 time ordered before W or W c and j 0 <

IW [ IW c and
….�.j2// 2X
2

[ �.j 00/

for some complementary component of 
2 time ordered after W or W c and j 00 >

IW [ IW c .

Since X
 separates X.�/ and ….�.j1// and ….�.j2// lie in distinct components of
X.�/ nX
 , any path joining ….�.j1// and ….�.j2// must enter X
 . Since the map
… is k –Lipschitz and max.jIW j; jIW c j/� k , there must be some j1 < j0 < j2 such
that ….�.j0// 2X
 , contrary to assumption, proving the claim.
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Then since d.….�.j //; �.j //�K1 it follows from (2–1) and the fourth property of
hierarchies, that for all j � n,

dW .�.j /;P1/�K1CM1 and dW c .�.j /;P1/�K1CM1:

This implies that the first time � enters a K1 neighborhood of X
 (at time nC 1)
there is a bound on dW .P1; �.nC 1// and dW c .P1; �.nC 1// and this in turn, by
the fourth property of hierarchies implies that � enters this neighborhood a bounded
distance K2 from where � does. The same is true for the minimal parameter value m

where �.j / …NK1
.X
 / for all j �m.

For those X
 such that max.jIW j; jIW c j/�k , note that the bound d.�.n/;….�.n///�

K1 bounds
max .dW .�.n/;Pi/; dW c .�.n/;Pi// :

In particular, �.n/ enters any neighborhood of X
 a uniformly bounded distance K2

away from where �.n/ does. This completes the proof.

Proof of Theorem 1 We show property (1) is satisfied. Let X
 ;X
 0 a pair of Farey-
graph products. Let W and W c the separating domains with boundary 
 . Since 
 0

intersects both W and W c , and every curve in the Farey-graph product X
 0 is disjoint
from 
 0 , the projection of the entire Farey-graph product X
 0 to W and W c lies at
bounded distance from the projection of 
 0 . Since the projection map is Lipschitz, the
same is true of a K neighborhood of X
 0 . This together with the distance formula
(2–1) gives the first condition.

To verify (2), we can assume

d.x;y/� 6K0.4M1CM2/C 3K0C:

Again let W and W c be the components of the complement of 
 . Let a 2 X
 the
closest point to x and b 2 X
 the closest point to y . By the fourth property of
hierarchies,

dW .x; a/�M1; dW c .x; a/�M1

with the same inequalities with y and b . Then we have

dW .x;y/C dW c .x;y/� dW .a; b/C dW c .a; b/� 4M1

�
d.a; b/

K0
�C � 4M1

�
d.x;y/

3K0
�C � 4M1

� 2M2:
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Then by the first property of hierarchies, any hierarchy joining x and y passes through
X
 , and therefore by Proposition 1 any .L;C /–quasi-geodesic passes through a
bounded neighborhood of X
 .

To verify .3�/, without loss of generality assume dW .x;y/�M2 for some separated
domain W . Then any hierarchy joining x and y passes through the corresponding
Farey-graph product X
 at a point a that satisfies dW .x; a/�M1 and dW c .x; a/�M1 .
If dW .x; z/�M2 or dW c .x; z/�M2 the same estimates hold for the entry point b

for any hierarchy joining x and z . The triangle inequality then bounds the distance
between a and b in these domains. If a hierarchy joining x and z does not enter the
Farey-graph product, one has the bound M2 on dW .x; z/ and dW c .x; z/. Thus in
either case we have a bound on the distance between a and b in a fixed neighborhood
of X
 . Again by Proposition 1 this is true for any .L;C /–quasi-geodesic.

Proof of Theorem 3 Suppose �W R2! P .S/ is a .K0;C0/–quasi-isometric embed-
ding. For each R> 0 join �.�R; 0/ to �.R; 0/ by a hierarchy path �R . Now consider
for jR1j � R, the

p
2 quasi-geodesic �R;R1

in R2 consisting of segments joining
.�R; 0/ to .�R;R1/, .�R;R1/ to .R;R1/ and .R;R1/ to .R; 0/.

Its image �.�R;R1
/ is a K0

p
2CC0 quasi-geodesic joining �.�R; 0/ and �.R; 0/.

Since � is a .K0;C0/–quasi-isometry, except for an initial and final segment on each
of length R0

d.�.�R;R1
/; �R/ >

R0

K0

�C0:

Since �.�R;R1
/ must remain a bounded distance from X.�R/ it follows that for

R0=K0�C0 sufficiently large, by Theorem 1 these points on �.�R;R1
/ must lie in a

bounded neighborhood of the product of Farey graphs fX
 j 
 2 �Rg:

For R0 chosen sufficiently large, but fixed, the fact that bounded neighborhoods of
Farey-graph products have bounded intersection guarantees that this subset of �.�R;R1

/

must lie within a bounded neighborhood of a single X
 , and in addition, �.�R;R1
/

must enter and exit this neighborhood a bounded distance from where �R enters and
exits the neighborhood. The above statement is true for arbitrary R, and therefore by
enlarging R while keeping R1 fixed, we conclude there is a single X
 such that the
image of the entire horizontal line y DR1 lies in a fixed neighborhood of X
 . Since
this is true for arbitrary R1 larger than a fixed size, the entire quasi-flat must lie within
a bounded distance of a single X
 .

Proof of Corollary 4 We claim there is no quasi-isometric embedding

'W R3
! P .S/:
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To see this, note that by Theorem 3 ' maps the x -y plane to a bounded neighborhood
of a single Farey-graph product X
 and the y -z plane to a bounded neighborhood
of a product X
 0 . Since these planes meet along a line, we have that X
 and X
 0

have uniform neighborhoods with infinite diameter intersection, which implies that

 D 
 0 . Composing with the nearest point projection to X
 , we have a quasi-isometric
embedding of R3 into a product of Farey graphs, which is impossible by [17].

4 The boundary of the Weil–Petersson metric

In low complexity cases, when the pants graph is Gromov hyperbolic, the collection of
asymptote classes of geodesic rays is basepoint invariant and corresponds to the usual
Gromov boundary of the Gromov hyperbolic space.

For a general CAT.0/ space the asymptote class of an infinite geodesic ray remains a
basepoint invariant notion (see Bridson and Haefliger [4]). We find that the relative
stability of quasi-geodesics in P .S/ when �.S/D 3 provides for sufficient control
over geodesic rays in the Weil–Petersson metric to give a description of the CAT.0/
boundary in this setting as well.

To this end, we briefly recall some standard properties of the Weil–Petersson metric and
its completion. For more details, we direct the reader to Wolpert [25] and Brock [5].

The Weil–Petersson completion It is due to Wolpert and Chu that the Weil–Petersson
metric is not complete. Masur examined the structure of the completion Teich.S/ and
found a natural correspondence between the completion and the augmented Teichmüller
space, consisting of marked Riemann surfaces with nodes corresponding to a pairwise
disjoint collection of simple closed curves on S that have been pinched.

The augmented Teichmüller space has a stratified structure organized by simplices in
the curve complex. This structure is most easily described via the notion of extended
Fenchel–Nielsen coordinates as follows: given a maximal simplex � in the curve
complex C.S/, with vertex set �ı D f˛1; : : : ; ˛�.S/g the usual associated length-twist
Fenchel–Nielsen coordinates for a surface X 2 Teich.S/ are given by the product

…˛2�ı.`˛.X /; �˛.X // 2R�.S/C �R�.S/

indicating that X is assembled from hyperbolic three-holed spheres with geodesic
boundary lengths `˛.X / and twist parameters �˛.X /, ˛ 2 �ı (see Imayoshi and
Taniguchi [15]). Then the extended Fenchel–Nielsen coordinates corresponding to �
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parametrize the subset of Teich.S/ with “nodes along � ” by allowing the parameters
`˛.X /D 0, and imposing the equivalence relation

.0; �/� .0; � 0/

for coordinates .`˛; �˛/ where `˛ vanishes.

For any subsimplex �� � , then, the �–stratum Teich�.S/ refers to the locus

f`˛.X /D 0() ˛ 2 �ıg;

in other words, the subset of Teich.S/ where precisely the curves corresponding to the
vertices of � have vanishing length functions. The �–stratum has the natural structure
of a (possibly empty) product of Teichmüller spaces of the complementary subsurfaces
Y � S of nonzero Teichmüller dimension in the complement S n f˛1; : : : ; ˛kg of the
simple closed curves f˛ig corresponding to the vertices of �.

Asymptote classes and hierarchy paths We first remark that there is a natural
invariant of the asymptote class of a half-infinite hierarchy path �.n/, n 2N , in the
pants graph, which we will call a boundary lamination. Indeed, the collection of
subsurfaces W � S for which

diamW .�.Œ0; n�//!1

as n!1 form a pairwise disjoint collection of subsurfaces of S . Since each is a
component domain for the hierarchy path �.n/, each carries a geodesic gW � C.W /

of infinite length. This geodesic is asymptotic to a geodesic lamination �W (filling
W ) in the Gromov boundary @C.W / (see Klarreich [16]), so that for all n sufficiently
large, each �.n/ contains a curve in gW .

By the distance formula (2–1), if �0.n/ is another hierarchy path for which

d.�.n/; �0.n// <D

for all n, then dW .�.n/; �
0.n// <D0 for some D0 , from which it follows that �0.n/

contains curves in C.W / asymptotic to �W . Hence the union of these �W forms a
geodesic lamination on S which is an invariant of the asymptote class of �.n/.

We note that the case when �.S/� 2, the asymptote class is uniquely determined by
this lamination, since in these low complexity cases the boundary lamination associated
to a hierarchy path is connected, and any two hierarchy paths with the same boundary
lamination lie a bounded distance apart: this can be seen directly from property (4) of
the definition of hierarchy paths. The distance formula (2–1) guarantees that for any
proper subsurface Y ¨ S , the projections �Y .�.n// begin at �Y .�.0// and lie at a
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bounded distance from the geodesic joining �Y .�.0// to �Y .�/ (where this geodesic
is infinite if � is a lamination in Y ).

To relate this discussion to Weil–Petersson geodesics, we begin by associating to each
a hierarchy path � (via Theorem 2) and then associating to that the corresponding
boundary lamination for the asymptote class of � in P .S/.

Let fX.t/g1
tD0

be a geodesic in the Weil–Petersson metric. Then by Theorem 1 of [5]
the geodesic X.t/ describes a quasi-geodesic fPng

1
nD0

in P .S/ by taking its image
under the quasi-isometry

QW Teich.S/! P .S/:

By Theorem 2, there is a hierarchy path �.n/, so that the quasi-geodesic fPng stays
a bounded distance from the associated set X.�/: To fix attention on the underlying
pants decomposition we adopt the notation

�.n/DQn:

As the ray X.t/ is half-infinite, the path Qn has the property that for some component
domain W , we have

diamW .fQng
1
nD0/D1

and, moreover, that if this property holds for more than one component domain, then
the corresponding two subsurfaces are complementary separated domains.

Since each domain W for � with this property carries a unique geodesic gW , it also
carries a corresponding boundary point � in @C.W / to which gW is asymptotic. Given
� we call the union of such boundary points a boundary lamination for � . Note that
such laminations are purely irrational: a boundary lamination contains no simple closed
curves. When this union is disconnected, we associate real weights to each component
up to scale.

The boundary laminations are topologized as follows: given a sequence �n of boundary
laminations, we say �n converges to � if one of the following holds:

(1) There is a single domain W and a connected �2@C.W / for which �W .�n/!�.

(2) There are two complementary separated domains W and W c in S for which
�W .�n/ converges to �W 2 @C.W / and �W c .�n/ converges to �W c 2 @C.W c/

and

lim
n!1

dW .P; �n/

dW c .P; �n/
Dm
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in which case we have

� D m�W C�W c if m 2 .0;1/;

� D �W if mD1;

� D �W c if mD 0:

Then we have the following.

Theorem 15 Let S be a surface for which �.S/� 3. Then the CAT.0/ boundary of
the Weil–Petersson metric is homeomorphic to the space of boundary laminations.

Proof Given a ray r D X.t/ in the visual sphere at X D X.0/, let �.r/ denote the
associated boundary lamination for X.t/. We first show that this association is well
defined and injective.

From the discussion preceding the statement of the theorem, each infinite Weil–
Petersson geodesic ray X.t/ determines either a connected geodesic lamination �
or a weighted sum of connected laminations �1 and �2 .

In the case when we have the connected lamination �, it is easy to see that any other
geodesic ray Y .t/ that lies a bounded distance from X.s.t// for some reparametrization
s.t/, determines the same boundary lamination �.

Injectivity To see that there is a unique asymptote class of geodesic rays with
associated lamination � we assume first that the minimal subsurface S.�/ D W

containing � is not a separated domain.

With this assumption, the first possibility is that W D S . Then � is a filling lamination
in the boundary of the curve complex of S . Now suppose X1.t/ and X2.t/ are geodesic
rays through the base point X , each determining �. Associated to X1.t/ and X2.t/

are hierarchy paths �1.n/ and �2.n/ each with some initial pants decomposition Q0 .
The main geodesics m1 and m2 of �1 and �2 are infinite in the curve complex of S ,
and each converges to �.

By the first property of hierarchies, for any subsurface W such that dW .Q0; �/�M2 ,
there are connected intervals of times Œs1; t1� and Œs2; t2�, such that for every time in
these intervals the hierarchy paths �1; �2 contain @W . Furthermore by the fourth
property of hierarchies and the triangle inequality, since both hierarchies start with Q0 ,

dW .�1.s1/; �2.s2//� 2M1;

and since both main geodesics converge to �,

dW .�1.t1/; �2.t2//� 2M1:
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This means that �1 and �2 are bounded distance apart at these times, and the same is
then true of the corresponding Weil–Petersson geodesics X1 and X2 .

Since the Weil–Petersson metric on the completion is CAT.0/, the two geodesics stay
a uniform distance apart between these two points. If there are infinitely many such
W , this proves the geodesics determine the same asymptote class. If there are only
finitely many, then after some point, the hierarchy paths are bounded distance apart,
since their main geodesics are bounded distance apart and projections to all subsurfaces
are bounded. The same is then true for the geodesics.

Next assume W ¨ S and W is not separated. Then the boundary stratum in Teich.S/
determined by @W is not a product and is in fact isometric to Teich.W /. Let � denote
the simplex in the curve complex corresponding to the curves in @W that are not in
@S . The condition that � is a boundary lamination for X.t/ implies that there is a
hierarchy path �.n/ whose underlying pants decomposition we again denote by Qn ,
so that @W represent curves in Qn for all n sufficiently large. Thus X.t/ lies at a
bounded distance from the boundary stratum Teich� .S/ corresponding to the vanishing
of the extended length function `� for the simplex � . Since this stratum Teich� .S/ is
a lower dimensional Teichmüller space (�.W / < 3) we have that Teich� .S/ is itself
Gromov-hyperbolic by [7]. Thus, the lamination � determines a unique asymptote
class of geodesics in Teich� .S/, and hence in Teich.S/.

The discussion when W is a separated domain follows from the limiting case when �
is disconnected.

When the associated boundary lamination is disconnected and breaks into components
�1 and �2 , then there is a separating curve 
 and a pair of complementary domains
W1 and W2 in S n 
 with �i 2 @C.Wi/.

In this case, the pants decompositions Qn contain the curve 
 for all n sufficiently
large. The implication for X.t/ is that for all t sufficiently large the surface X.t/ has
a shortest pants decomposition Pt that is a uniformly bounded distance from a pants
decomposition Qn2X
 . Since the pants graph is quasi-isometric to the Weil–Petersson
metric, we have that points on the geodesic X.t/ lie at a uniformly bounded distance
from the boundary stratum Teich
 .S/ where the extended length function `
 for 

vanishes.

The nearest point projection

}
 W Teich.S/! Teich
 .S/

to the boundary stratum Teich
 .S/ determines a path

Z.t/D }
 .X.t//
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in Teich
 .S/. The projection of Z.t/ to each factor, in turn, lies a bounded distance
from a unique geodesic. Let g.t/� Teich.W1/ denote the geodesic in the first factor
and h.t/� Teich.W2/ the geodesic in the second.

Each infinite geodesic ray r based at g.0/� h.0/ in the product

fg.s/� h.t/ j s; t 2RCg

is determined by its slope, in other words, the unique value of m 2 RC so that
r D f.g.mt/; h.t//g where g and h are assumed parametrized by arclength.

Since the Weil–Petersson completion is CAT.0/, it follows that X.t/ has a well defined
slope in Teich
 .S/ namely, any geodesic in Teich
 .S/ within a uniformly bounded
neighborhood of X.t/ has slope m. It follows that the boundary lamination

Œm�1C�2�

uniquely specifies the geodesic ray X.t/ based at X.0/.

For the final case when � is connected but its minimal subsurface S.�/ is a separated
domain W , we note that this corresponds to the case above with slope m D 0 or
mD1, in other words, one of the two factors is bounded.

Surjectivity We now show that the assignment of a boundary lamination is surjective.
In other words, we must show further that given any boundary lamination � there is a
geodesic ray with that boundary lamination associated to its asymptote class.

To see this for connected �, we take a hierarchy path �.n/ whose only infinite geodesic
lies in C.S.�// and is asymptotic to �. We denote by Cn 2 Teich.S/ the maximally
noded surface obtained by pinching the curves in the underlying pants decomposition
Qn for �.n/.

Then the sequence of Weil–Petersson geodesic rays Xn.t/ beginning at X D Xn.0/

and terminating at the maximally noded surface Cn has a limit X1 in the visual sphere
based at X , after passing to a subsequence (by compactness of the visual sphere).

We claim X1.t/ is an infinite geodesic ray. Let

sn D
1

`X .Qn/

where `X .Qn/ denotes the total length of the geodesic representatives of the curves in
Qn on X . Then for each Xn.t/ we have

`Xn.t/.snQn/� 1
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by convexity of length functions along geodesics (see Wolpert [24]) since the length at
X is 1, and the length converges to zero at the other endpoint.

Assume X1.t/ has finite length T . Let � be any limit of snQn in ML.S/ after
passing to a subsequence. By a theorem of Klarreich [16], � is a measure on �.

Bicontinuity of length on Teich.S/�ML.S/ guarantees that for any t < T we have

`X1.t/.�/� 1:

Let ˛ be the (possibly empty) boundary of the minimal subsurface S.�/ containing �.
Let � be the simplex in the curve complex corresponding so that X1.T / 2 Teich� .S/.
We note that

lim
t!T

`X1.t/.�/� 1

which guarantees that for each simple closed curve 
 2 �0 , we have

i.
; �/D 0:

Otherwise, since `X1.t/.
 /! 0 as t ! T , we would have `X1.t/.�/!1. (In
particular, we may conclude that � does not fill S ).

Noting that Xn.T / converges in the completion to X1.T /, we have that the distance
dn from Xn.T / to the stratum Teich� .S/ is tending to zero. Since i.
; �/D 0, by
the choice of Qn , for large n the maximal cusps Cn lie in the completion of the �
stratum Teich� .S/, and their distance in the completion from X1.T / is diverging.

As the � –stratum is totally geodesic, the fact that the completion Teich.S/ is a CAT.0/
space guarantees that for any T 0>T , the surfaces Xn.T

0/ converge into the � –stratum
as well. To see this note that the geodesics Yn.s/ joining X1.T / to Cn have the
property that for any s0 , Yn.s0/ lies in the � –stratum. But the distance of the segments
Xn.ŒT;T

0�/ from the geodesics Yn tends to zero, so the distance from Xn.T
0/ to

Teich� .S/ tends to zero.

It follows that the finite-length geodesic segments Xn.Œ0;T
0�/ have endpoints con-

verging in the completion and thus these limiting endpoints are the endpoints of a
geodesic segment whose interior lies in the maximal stratum containing its endpoints
(see Daskalopoulos and Wentworth [9] and Wolpert [25]).

Since one endpoint of each geodesic Xn.Œ0;T
0�/ is the base surface X , the interior of

the limit segment lies in the interior of Teichmüller space. But by [25], parametrizations
of the approximating geodesics Xn.Œ0;T

0�/ proportional to arclength converge to the
parametrization proportional to arclength of the limit segment. Thus, the limit X1.T /

of the sequence fXn.T /g lies in the interior of this geodesic limit, contradicting the
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assumption that X1.T / 2 Teich� .S/. We conclude that the limiting geodesic X1 is
infinite.

It follows that we can extract a limiting infinite geodesic ray X1 based at X , that lies
within a uniform neighborhood of the union of maximal cusps

S1
nD0Cn . When � is

connected it follows that X1 has associated boundary lamination �.

To treat the case when � is disconnected, assume that

�Dm�1C�2

where �i 2 C.Wi/ lies in the boundary of the curve complex of the separated domain
Wi . Let 
 be the separating curve for which S n 
 D W1 tW2 . Then there is a
geodesic gm in

Teich
 .S/D Teich.W1/�Teich.W2/

of slope m in the 
 –stratum running through the nearest point X 0 to X in Teich
 .S/.
Let Cn2Teich.S/ denote a collection of points so that C02Teich
 .S/ is the maximally
noded surface closest to X 0 , and:

(1) Each Cn is a maximally noded surface in Teich
 .S/.

(2) Each Cn lies a uniform distance D from the geodesic gm .

(3) The pants decompositions Qn pinched in Cn determine a hierarchy path �.n/
for which the projection �Wi

.�.n// is asymptotic to �i in @C.Wi/.

Then we may apply the previous argument to conclude that the limit X1 of the geodesic
segments Xn.t/ joining X to Cn is an infinite geodesic ray at X that lies uniformly
bounded distance from the geodesic gm ; in other words, X1 lies in the asymptote
class with projective boundary lamination

m�1C�2:

Continuity We now show that the assignment of a lamination to a ray is continuous.
A family of infinite rays Xn.t/ based at X.0/ converge to X.t/ if there is a constant
D so that for each T > 0 there is an n so that

d.Xn.t/;X.t// <D

for all t � T . By the quasi-isometry between the pants graph and the Weil–Petersson
metric, we have a D0 for which

d.Pn.t/;P .t// <D0
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for all t � T , where Pn.t/ and P .t/ are shortest pants decompositions on Xn.t/

and X.t/ respectively (and are thus the images of Xn.t/ and X.t/ under the quasi-
isometry).

But for any W � S , the above guarantees that for any T > 0 there is an NT so that

(4–1) dW .Pn.T /;P .T // <D00

for all n>NT .

If � 2 @C.W / is a component of the boundary lamination for X.t/, then we have that
�W .P .t//! � as t !1. Thus, if �n is the boundary lamination for Xn , we have
�W .�n/! �, by an application of the fact that �W .Pn.T // lies a bounded distance
from the geodesic in C.W / joining �W .Pn.0// to �W .�n/ and that the bound (4–1)
holds for each T and all n>NT .

This suffices to show continuity in the case when � is connected. For the disconnected
case, we apply the bound (4–1) to each separated domain and observe that the divergence
of the projections guarantees that the ratios converge.

To show continuity of the inverse, assume rn is a sequence of rays determining �n ; r

is a ray determining � and �n! �. We need to show rn! r . Since the association
of laminations to infinite rays is 1–1 and continuous on the subset of infinite rays
in the visual sphere, it is enough to show that some subsequence of rn converges to
an infinite ray yr . Suppose � fills W . The hierarchy �n determined by �n gives a
sequence of pants decompositions Qn;k . If W DS choose any sequence Qn;kn

where
kn !1. If W ¨ S choose a last pants decomposition Qn;kn

containing @W . In
either case as in the proof of surjectivity, Qn;kn

converges projectively to a measure
� on �. The geodesic Xn.t/ joining the basepoint X to the corresponding maximal
cusp Cn;kn

stays in a uniform neighborhood of rn and has length going to 1. If yr
is a finite ray defined on Œ0;T � then the fact that the completion is CAT.0/ implies
that Xn.T /! yr.T /. Now the same argument as in the proof of surjectivity gives a
contradiction. This finishes the proof.

5 Non–relative hyperbolicity

In this section we address the question of the strong relative hyperbolicity of P .S/ and
the Weil–Petersson metric on Teich.S/ when �.S/ > 3. We will borrow extensively
from the ideas and terminology of [2], who show that for surfaces S with �.S/� 6

that P .S/ is thick, a condition which will, in this context, guarantee that P .S/ is not
strongly relatively hyperbolic with respect to any collection of co-infinite subsets (a
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subset of a metric space is co-infinite if there are points in the space at an arbitrarily
large distance from the set).

For the purposes of exposition, we say S is of mid-range complexity if �.S/ 2 f4; 5g,
in other words, S D Sg;n and we have

.g; n/ 2 f.0; 7/; .0; 8/; .1; 4/; .1; 5/; .2; 1/; .2; 2/g:

Definition 16 A curve 
 is said to be domain separating if it separates S into two
components Y and Y c , neither of which is a 3–holed sphere.

Accordingly, let Csep.S/� C.S/ be the set of domain separating curves.

If 
 2Csep.S/ and Y1 and Y2 are disjoint subsurfaces of S n
 with �.Yi/� 1, i D 1; 2,
any two hierarchy paths �1 and �2 in P .Y1/ and P .Y2/ determine a quasi-flat

�1 � �2W Z�Z! P .S/;

namely, quasi-isometrically embedding Z�Z in P .S/ with constants not depending
on 
 , �1 or �2 (this was observed in [7] – it follows from the distance formula (2–1)).

In [2] a general definition is given for a collection of metric spaces to be uniformly
thick of order at most nC 1.

Definition 17 [2, Definition 7.1] A metric space is thick of order zero if it is uncon-
stricted.

A metric space is thick of order at most nC1 with respect to a collection L of subsets
of X if:

� With their restricted metric from X , the subsets in L are uniformly thick of
order n.

� For some fixed r > 0,
X D

[
L2L

Nr .L/:

� Any two elements L and L0 in L can be thickly connected; there exists a
sequence LDL1;L2; : : : ;Lm DL0 with Li 2 L and with

diam.Nr .Li/\Nr .LiC1//D1

for all 1� i �m� 1.

A collection fXig is called uniformly thick of order at most nC 1 if a uniform r can
be taken in the above definition.
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The condition that a metric space be unconstricted makes use of the asymptotic cone
of a metric space, which will not be necessary for our considerations. We will work
instead with uniform quasi-flats discussed above, which are themselves uniformly
unconstricted (see Behrstock, Druţu and Mosher [2]).

Theorem 18 If �.S/2f4; 5g and S¤S2;1 then P .S/ is thick of order 1. If SDS2;1

then P .S/ is thick of order at most 2.

In [2] the first statement of the theorem is established for P .S/ when �.S/ � 6, as
well as for the mapping class group when �.S/� 2.

As in what follows, their proof is based on finding thickly connected chains of quasi-flats.
In our cases, the existence of such chains relies on a detailed study of the connectivity
of the subcomplex of domain separating curves Csep.S/� C.S/.

Lemma 6 Let S D Sg;n , where .g; n/ 2 f.1; 4/; .1; 5/; .0; 7/; .0; 8/g. Then Csep.S/

is connected.

Proof Let ˛ and ˇ lie in Csep.S/. It suffices either to find 
 2 Csep.S/ disjoint from
˛ such that i.
; ˇ/ < i.˛; ˇ/, or to replace ˛ with ˛0 2 Csep.S/ disjoint from ˛ so
that i.˛0; ˇ/D i.˛; ˇ/ and then find such a 
 . For then in at most two steps we have
reduced intersection numbers, and inductively we can find the desired path.

We now consider the cases of S1;4 and S0;7 . Let � be an arc in the complement of
˛ joining ˇ to the puncture p . Then we say ˇ0 is obtained from ˇ by moving the
puncture p across ˇ along � if ˇ0 is the component of the boundary of a regular
neighborhood of ˇ[ � not isotopic to ˇ .

Start with the case S D S1;4 . Given ˛ and ˇ in Csep.S/ we may move a puncture
across one of these along an arc in the complement of the other if necessary to arrange
that they enclose different numbers of punctures, either four or three. Without loss of
generality assume that S n˛ contains a subsurface Y containing four punctures.

We claim that not all arcs of ˇ\Y with endpoints on ˛ can lie in the homotopy class
mod ˛ that separates the four punctures in Y into two pairs of punctures. For each pair
lies in a single component of the complement of ˇ one of which must contain three
punctures by hypothesis. Thus there must be a homotopy class of arcs in Y that has
exactly 3 punctures in its complement, and now a surgery produces a curve 
 disjoint
from ˛ .

For S D S0;7 every curve in Csep.S/ divides the surface into two components, one of
which contains three punctures and one of which contains four punctures. Let Y be
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the component of S n˛ that contains four punctures. If some arc of ˇ\Y separates
one puncture from the other three, we may perform a surgery as above. Thus assume
each arc of ˇ\Y separates the punctures in Y into two pairs of punctures. One pair
lies in the component of the complement of ˇ containing four punctures.

There are two cases. In the first case, all four of the punctures in Y are in the same
component of the complement of ˇ . In that case we can move any of the punctures
across ˛ , or equivalently find a disjoint ˛0 . Then the three remaining punctures in the
complement of ˛0 are in the same component of the complement of ˇ as the one moved
puncture which is now in the component of the complement of ˛0 containing four
punctures. The other three punctures are in the other component of the complement of
ˇ , and thus the moved puncture is separated by an arc from those punctures. We have
reduced to the case where we can now perform a surgery.

In the second case, a pair of punctures in Y are in the same component of the comple-
ment of ˇ as a pair of punctures in the complement of Y . We now move one of these
punctures in Y across ˛ forming ˛0 . Now there are three punctures in the component
of the complement of ˛0 that contains four punctures that are in the same component
of the complement of ˇ and again we can perform the surgery.

The cases S D S0;8 and S D S1;5 follow readily from the observation that filling in a
puncture gives a well defined map from

Csep.Sg;n/! C.Sg;n�1/

whose image lies in N1.Csep.Sg;n�1// and contains Csep.Sg;n�1/.

Thus, given a pair of curves in Csep.S1;5/ we may find separating curves at distance
1 from these whose images lie in Csep.S1;4/ after filling in the appropriate puncture,
and similarly for S0;8 . These cases of the lemma then follow from the connectivity of
Csep.S1;4/ and Csep.S0;7/.

Lemma 7 Let S D S2;2 . Given 
1; 
N 2 Csep.S/ there is a sequence 
1; 
2; : : : ; 
N

of curves in Csep.S/ such that for each i �N � 1, either 
i and 
iC1 are disjoint or
S n .
i [ 
iC1/ is a sphere with 4 punctures.

Proof By filling in the punctures we can consider the curves as lying on a closed
surface. By a result of Schleimer [23] (see also Putman [21]) on a closed surface of
genus 2 there is a sequence 
1; : : : ; 
N of separating curves such that successive curves
intersect minimally, which means four times. This implies that some complementary
component of their union is an annulus. Since on the punctured surface we may
move the punctures across separating curves so that they both lie in one of these
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complementary annuli, we can produce a sequence of separating curves satisfying the
conditions of the Lemma.

Now suppose S is any surface of mid-range complexity other than S2;1 . If Y � S

is a proper essential subsurface with �.Y /� 1 and �.n/ is a hierarchy path in P .Y /,
we denote by j�.n/j the collection of curves in the pants decomposition �.n/ together
with components of @Y that are nonperipheral in S .

If Y1 and Y2 are disjoint essential subsurfaces of S and �1 and �2 are bi-infinite
hierarchy paths in P .Y1/ and P .Y2/ for which the union j�1.n/j[j�2.m/j (forgetting
possible repetitions of curves) is a pants decomposition of S , then we denote by

Q�1;�2
W Z�Z! P .S/

the natural quasi-flat determined by

Q�1;�2
.m; n/D j�1.n/j [ j�2.m/j:

Given 
 2 Csep.S/, we let L
 denote all such quasi-flats Q�1;�2
with image in X
 (so

that 
 lies in each pants decomposition in the image of Q�1;�2
). Finally, let L denote

the union of all quasi-flats in all L
 , in other words

LD fQ 2 L
 W 
 2 Csep.S/g:

As we have remarked before, there are constants K > 1 and C > 0 such that each Q in
L is .K;C /–quasi-isometrically embedded into P .S/, so the collection of quasi-flats
L is uniformly thick of order 0, in the sense of [2].

Lemma 8 If S has mid-range complexity and S 6D S2;1 then every P 2 P .S/ is
within distance 1 of an element in L.

Proof Given a 
 2 Csep.S/ and a pants decomposition P containing 
 , we can find
an element of L
 containing P : this amounts to observing that there are bi-infinite
hierarchy paths through any point in P .Y / for Y a component of S n 
 . Thus, it
suffices to show that each pants decomposition P 2 P .S/ lies within distance 1 of
some P 0 containing a separating curve.

In the case of the sphere it is obvious that every pants decomposition contains a curve
in Csep.S/ so we consider the case of S1;4 . We can assume that there are curves
ˇ1 and ˇ2 in P surrounding a pair of punctures each; otherwise we would be done.
The complement of ˇ1[ˇ2 is a torus Z with 2 punctures. If there is a curve in Z

that bounds a punctured torus we again are done; so assume otherwise. This means
that there are curves ˇ3 and ˇ4 in P which each cut Z into a 4 holed sphere. An
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elementary move now changes one of these into a pants decomposition containing a
curve that bounds a punctured torus.

In the case of S1;5 we can again assume the existence of ˇ1 and ˇ2 as in the previous
case. The complement now is a torus Z with 3 holes. If there is a curve that surrounds
both ˇ1 and ˇ2 or surrounds one of these curves and the remaining puncture x , we
are finished. If there is a curve which cuts off a punctured torus, we are again finished.
Thus, we assume the remaining possibility holds: there is a curve ˇ3 2 P which cuts
Z into a 5 holed sphere W . We can now assume there is a curve ˇ4 2 P which cuts
W into a 4 holed sphere V and a 3–holed sphere, and so that the union ˇ3 [ ˇ4

separates Z . Without loss of generality we can assume ˇ1 is a boundary curve of V .
Inside V there is a last curve ˇ5 2 P which separates x from ˇ1 ; for otherwise we
would be done. Now an elementary move inside V replaces ˇ5 with one that contains
x and ˇ1 , and hence lies in Csep.S/.

The case of S2;2 is easier since in the closed genus 2 every pants decomposition is
distance at most 1 from one containing a separating curve.

The proof that P .S/, for S ¤ S2;1 , is thick of order at most 1 is concluded by:

Proposition 2 Any two quasi-flats Q and Q0 in L can be thickly connected: there
exists a sequence

QDQ1; : : : ;QN DQ0

with Qi 2 L, and for some fixed r > 0,

diam.Nr .Qi/\Nr .QiC1//D1

for all 1� i �N � 1.

Proof Consider Sg;n where .g; n/ 2 f.0; 7/; .0; 8/; .1; 4/; .1; 5/g. The proof of the
Proposition in these cases follows from following two observations:

(1) Given 
 2 Csep.S/, and quasi-flats QDQ�1;�2
and Q0 DQ�1;�

0
2

in L
 , there
is a quasi-flat Q00 DQ�1;�

00
2

in L
 so that

diam.Q\Q00/D1 and diam.Q00\Q0/D1:

(2) Given any disjoint pair 
 and 
 0 in Csep.S/, there is a quasi-flat Q in P .S/ so
that Q 2 L
 \L
 0 .
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To see the first statement, we need only observe that if Y is the component of S n 


containing j�2.0/j and j�0
2
.0/j there is a bi-infinite hierarchy path �00

2
in P .Y / so that

�00
2
.0/D �2.0/ and �00

2
.j /D �0

2
.0/ for some j . Then we have

Q.Z� f0g/DQ00.Z� f0g/ and Q00.Z� fj g/DQ0.Z� f0g/;

so each intersection Q\Q00 and Q00\Q0 has infinite diameter.

To see the second assertion, observe that for disjoint curves 
 and 
 0 in Csep.S/, that
determine precisely two components Z1 and Z2 in S n 
 [ 
 0 with �.Zi/ � 1 for
i D 1; 2, we may take �i to be a bi-infinite hierarchy path in P .Zi/, and the quasi-flat
Q�1;�2

lies in L
 \ L
 0 , satisfying the claim. If S n 
 [ 
 0 has three components
each with complexity 1, there is a third curve 
 00 2 Csep.S/ disjoint from 
 and 
 0

and separating them, so that taking Zi to be the two components of S n 
 [ 
 0 not
containing 
 00 and �1 and �2 as before, we have a hierarchy path

�02.n/D j�2.n/j [ 

00

for which the quasi-flat Q�1;�
0
2

satisfies the claim.

When S D S2;2 and Csep.S/ is not necessarily connected, we replace condition (2)
with:

(20 ) If S D S2;2 and 
 and 
 0 in Csep.S/ intersect in such a way that S n 
 [ 
 0

contains a 4–holed sphere Z , then there is an r > 0 and quasi-flats Q 2L
 and
Q0 2 L
 0 for which

diam.Nr .Q/\Nr .Q0//D1:

To see this, let Y be the component of S n 
 not containing Z and let Y 0 be the
component of S n 
 0 not containing Z . Let �1 be any bi-infinite hierarchy path in
P .Z/. Taking �2 in P .Y / and �0

2
in P .Y 0/ to be bi-infinite hierarchy paths, we

obtain quasi-flats
QDQ�1;�2

and Q0 DQ�1;�
0
2
:

Then letting r be the distance between Q.0; 0/ and Q0.0; 0/, we see that

diam.Nr .Q.Z� f0g//\Nr .Q0.Z� f0g///D1:

To prove the claim, we need only observe that the configuration of 
 and 
 0 on S is
unique up to homeomorphisms of S to see that r can be taken independently of the
pair of curves 
 and 
 0 .

Applying Lemma 7, we may find a sequence of curves f
ig in Csep.S/ satisfying
the conclusions of the lemma. Conditions (1), (2) and (20 ) guarantee that we can
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thickly connect quasi-flats in each L
i
to join quasi-flats in L
i

that thickly connect to
quasi-flats in L
i�1

and L
iC1
. The Proposition follows.

In [1] it was shown that P .S/ is not unconstricted, which, in particular, guarantees
that P .S/ cannot be thick of order zero. It follows that in the cases above that P .S/

is thick of order exactly 1 (we thank Jason Behrstock for alerting us to this point).

We now consider the remaining case.

Proposition 3 Let S 0 D S2;1 . The pants graph P .S 0/ is thick of order at most 2.

Proof Let x denote the puncture on S 0 and let S be the closed surface of genus 2

obtained by adding x to S 0 . It is well known that there exists an injective homomor-
phism

�1.S;x/!Mod.S 0/

obtained by “pushing x around a loop.” By a theorem of Kra [18], if 
 2 �1.S;x/

has positive geometric intersection with every essential nonperipheral simple closed
curve (
 is filling), then its image under this homomorphism is a pseudo-Anosov
diffeomorphism. Let G be the image of �1.S;x/.

Filling in the puncture also induces a map

…W C.S 0/! C.S/:

The action of G preserves each fiber …�1.˛/I˛ 2 C.S/. It is known [23, Proposition
4.3] that the fibers …�1.˛/ are connected. Given 
 2 C.S/, let �X
 be the collection
of pants decompositions in P .S 0/ so that each P 2 �X
 contains some 
 0 2…�1.
 /.

Lemma 9 Let 
 2 Csep.S/. Then �X
 is thick of order at most 1 and the collection L
of all �X
 for 
 2 Csep.S/ is uniformly thick.

Proof Each 
 0 2…�1.
 / divides the surface S 0 into subsurfaces Y1 and Y2 with
�.Yi/ � 1. Taking hierarchy paths �i in P .Yi/ and quasi-flats Q�1;�2

as before,
connectedness of the fiber allows us to argue using conditions (1) and (2) from the
previous Proposition that for any two curves 
 0 and 
 00 in the fiber …�1.
 /, quasi-flats
in L
 0 and L
 00 can be thickly connected within �X
 .

Since each P 2 �X
 lies in some quasi-flat of this form, we have �X
 is thick of order 1.
Since the constants do not depend on 
 , the union L is a collection of uniformly thick
subsets of P .S 0/.
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We now conclude the proof that P .S 0/ is thick of order at most 2.

Exactly as in the case of S2;2 , any point in P .S 0/ is within distance at 1 of a point in
L. Now we show that any two elements of L can be thickly connected. Given 
1 and

N in Csep.S

0/, we join them by a sequence 
1; : : : ; 
N in Csep.S
0/ where successive

curves are either disjoint or intersect minimally. There is a uniform constant C 0 and
pants decompositions, Pi that contain 
i , such that

d.Pi ;PiC1/� C 0:

Now let � be a pseudo-Anosov element in G . The orbit

f�n.Pi/g
1
nD�1

is an infinite diameter subset of �X
i
. As � acts isometrically on P .S 0/, we have

d.�n.Pi/; �
n.PiC1//D d.Pi ;PiC1/

� C 0:

This guarantees that �X
1
and �X
N

can be thickly connected.

Proof of Theorem 6 By Theorem 18 (for �.S/D 4 and 5) and [2, Corollary 7.9] the
pants graph cannot be asymptotically tree-graded for each S with �.S/� 4.

The theorem then follows immediately from the equivalence of strong relative hyperbol-
icity with the condition that a metric space is asymptotically tree-graded [11, Theorem
4.1].

Remark It is interesting to note that the proof of Theorem 6 does not show that
P .S2;1/ is thick of order exactly 2. It would be interesting to know whether P .S2;1/

presents such a special case.
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