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Legendrian knots, transverse knots
and combinatorial Floer homology

PETER OZSVÁTH

ZOLTÁN SZABÓ

DYLAN THURSTON

Using the combinatorial approach to knot Floer homology, we define an invariant for
Legendrian knots (or links) in the three-sphere, with values in knot Floer homology.
This invariant can also be used to construct an invariant of transverse knots.

53D12, 57R17, 57R58; 57M25

1 Introduction

We use link Floer homology to study contact phenomena for links in the three-sphere,
endowed with its standard contact structure.

Knot (or link) Floer homology is an invariant defined using Heegaard diagrams and
holomorphic disks, as in Oszváth and Szabó [15] and Rasmussen [21]. It comes in
various forms, but the version which will be of primary interest to us here is the variant
which associates to a knot K a module over ZŒU �, denoted

HFK�.K/D
M

m;a2Z

HFK�m.K; a/;

where U acts as an endomorphism which is homogeneous of degree �2 for the Maslov
grading m and degree �1 for the Alexander grading a.

Manolescu, Ozsváth and Sarkar gave [9] an explicit description of knot Floer homology
for a knot in the three-sphere as the homology groups of a chain complex CK� which
is described in terms of the combinatorics of a grid diagram for a knot. In fact, the
constructions of [9] are done with coefficients in Z=2Z; a lift of these constructions
to coefficients in Z is given by Manolescu and the authors [10], along with a purely
combinatorial proof of the fact that their homology groups are knot invariants, which
entirely circumvents the holomorphic description. Given a grid diagram G for the
mirror m.K/ of a knot K , we refer to the resulting complex as the combinatorial chain
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942 Peter Ozsváth, Zoltán Szabó and Dylan Thurston

complex for G , denoted CK�.G/. Specifically, CK�.G/ is generated by a collection
of generators S, equipped with grading functions A and M , so that

CK�.G/D
M

m;a2Z

CK�m.G; a/

where CK�m.G; a/ denotes the set of Z–linear combinations of generators x with
A.x/ D a and M.x/ D m. CK�.G/ has an explicitly defined differential @� , with
@�W CK�m.G; a/! CK�m�1.G; a/ (so the bigrading descends to homology). On the
other hand, a grid diagram may also be used to give a combinatorial presentation of
a Legendrian knot K or a transverse knot T ; we will exploit this fact here. (By our
conventions, explained in Section 4, the topological type of K is the mirror of K .)

Given a grid diagram for a knot, we will exhibit a concrete pair of generators zC and z�

for the combinatorial chain complex, both of which are cycles. These elements are
defined in Definitions 6.1 and 6.10, and the fact they are cycles is established in Lemma
6.2. Our aim here is to study this pair of cycles. We show that the pair of induced
homology classes is an invariant for Legendrian knots. To describe the bigradings
of these elements, we use the two classical invariants of a Legendrian knot K , the
Thurston–Bennequin invariant tb.K/ and the rotation number r. EK/, which we recall
in Section 2. The overall sign of the rotation number depends on the orientation of EK .
(Note that we restrict our attention in this introduction, and indeed through most of
the present paper, to the case of knots, as opposed to links, though most of the results
here carry over with minor modifications to the case of links. These generalizations
are discussed in Section 7.)

Theorem 1.1 For a grid diagram G which represents a knot, let EK D EK.G/ be
the corresponding oriented Legendrian knot. Then there are two associated cycles
zC D zC.G/ and z� D z�.G/, supported in bigradings

M.zC/D tb. EK/� r. EK/C 1; M.z�/D tb. EK/C r. EK/C 1;

A.zC/D
tb. EK/� r. EK/C 1

2
; A.z�/D

tb. EK/C r. EK/C 1

2
:

Moreover, if G and G0 are two different grid diagrams which represent Legendrian
isotopic oriented knots, then there is a quasi-isomorphism of chain complexes

ˆW CK�.G/ �! CK�.G0/

ˆ.zC.G//D zC.G0/; ˆ.z�.G//D z�.G0/:with

If G is a grid diagram representing an oriented Legendrian knot EK , then we denote
the homology classes of zC.G/ and z�.G/ in HFK�.m.K// by �C. EK/ and ��. EK/
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respectively, and refer to them as the Legendrian invariants of EK . The pair of invariants
�C. EK/ and ��. EK/ can be used to distinguish Legendrian knots with the same classical
invariants. For example, for the two different Legendrianizations of the knot 52 , EK1 and
EK2 with rD 0 and tbD 1, we have that �C. EK1/¤ �

�. EK1/, while �C. EK2/D �
�. EK2/.

See Example 8.1 below.

There is some symmetry in the construction of the cycles zC and z� . To this end,
recall the Legendrian mirror construction; see Ng [11] and Fuchs and Tabachnikov [7].
Given an oriented Legendrian knot EK , one can rotate the front projection by 180ı

around the x–axis to obtain the Legendrian knot projection of an oriented Legendrian
knot denoted �. EK/. Classical invariants are related by

tb.�. EK//D tb. EK/; r.�. EK//D� r. EK/:

One can instead reverse the orientation of EK to obtain a different oriented Legendrian
knot � EK with

tb.� EK/D tb. EK/; r.� EK/D� r. EK/:

Proposition 1.2 Suppose that G is a grid representation of EK , G1 is a grid represen-
tation of the orientation reversal � EK , and G2 is a grid representation of the Legendrian
mirror �. EK/. Then there are quasi-isomorphisms

ˆ1W CK�.G/ �! CK�.G1/; ˆ2W CK�.G/ �! CK�.G2/

which have the property that

ˆ1.z
C.G//D z�.G1/; ˆ2.z

C.G//D z�.G2/;

ˆ1.z
�.G//D zC.G1/; ˆ2.z

�.G//D zC.G2/:

More interestingly, this invariant behaves in a controlled manner under stabilizations of
the Legendrian knot. Specifically, recall that one can locally introduce a pair of cusps
in the front projection of a Legendrian knot K to obtain a new Legendrian knot K0
which is in the same topological type as K , but which is not Legendrian isotopic to the
original knot. The knot K0 is called a stabilization of K . If we fix an orientation for
K , we can distinguish the two ways of stabilizing as positive and negative. (We adhere
to the conventions spelled out, for example, in Etnyre’s survey [5], which, incidentally,
is also an excellent reference for the basic theory of Legendrian and transverse knots.
We review these conventions in Section 2.) The Legendrian invariants transforms in
the following manner under stabilizations:
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Theorem 1.3 Let EK be an oriented Legendrian knot, and EK� (respectively EKC ) be
the oriented Legendrian knots obtained as a single negative (respectively positive)
stabilization of EK . Then there are quasi-isomorphisms

ˆ�W CK�. EK/ �! CK�. EK�/; ˆCW CK�. EK/ �! CK�. EKC/

under which

��.�C. EK//D �C. EK�/; U ��C.�C. EK//D �C. EKC/;
U ���.��. EK//D ��. EK�/; �C.��. EK//D ��. EKC/;

where �˙ denotes the map induced on homology by ˆ˙ .

The above theorem suggests an application to transverse knots. A transverse knot T
inherits its orientation from the contact structure on S3 . If we let EK be a Legendrian
approximation to T (see Section 2) with the natural induced orientation, then we can
define the transverse invariant �.T / to be �C. EK/. By a result of Epstein, Fuchs and
Meyer [4] (generalized by Etnyre and Honda [6]), any two Legendrian approximations to
some given transverse knot are equal after some number of negative stabilizations. Thus,
in view of Theorem 1.3, we can conclude that the transverse invariant is independent
of the choice of Legendrian approximation EK used in its definition.

Corollary 1.4 The transverse invariant �.T / depends only on the transverse isotopy
class of the transverse knot T ; ie, if G and G0 are two grid diagrams representing two
Legendrian approximations to T , then there is a quasi-isomorphism

ˆW CK�.G/ �! CK�.G0/

whose induced map � on homology has the property that �.�.T //D �.T 0/.

In later work by Ng, Ozsváth and Thurston, the invariant � is used to distinguish
particular transversally nonisotopic knots with the same classical invariants [13].

These invariants also satisfy the following nonvanishing property.

Theorem 1.5 For any Legendrian knot EK , the homology classes �C. EK/ and ��. EK/
are nontrivial; and they are not U –torsion classes (ie, for all positive integers d , U d

times these classes is nontrivial). Similarly, for any transverse knot T , the transverse
invariant �.T / does not vanish, and indeed is not U –torsion.
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We can use this to reprove bounds on the Thurston–Bennequin invariant. Recall that
�.K/2Z is a knot concordance invariant defined using HFK�.K/ [14]. One definition
is that �.m.K// is the minimal Alexander grading of any element � of HFK�.K/ for
which U d� ¤ 0 for all integers d � 0. (This is not the usual definition of � , but we
verify in Appendix A that it is equivalent.) Combining Theorem 1.5 with Theorem 1.1,
we see at once that for any Legendrian knot K ,

(1) jr.K/jC tb.K/� 2�.K/� 1;

a bound which was first proved by Plamenevskaya [18] using the contact invariant in
Heegaard Floer homology [16]. The inequality �.K/ � g.K/ is easy to establish [15],
giving another proof of Bennequin’s inequality. Indeed, since �.K/� g�.K/ [14], we
have yet another proof of the “slice-Bennequin inequality”

jr.K/jC tb.K/� 2g�.K/� 1;

first proved using methods of gauge theory; see Rudolph [22] and Kronheimer and
Mrowka [8].

It is interesting to compare our results here with those of Plamenevskaya [19]. In that
paper, Plamenevskaya uses braid representatives to give an invariant for transverse
knots which takes values in the Khovanov homology of the knot. She uses this to prove
the following analogue of Equation (1):

jr.K/jC tb.K/� s.K/� 1;

where now s.K/ is the Rasmussen invariant coming from Khovanov homology [20].
This bound, when combined with Rasmussen’s bound s.K/�2g�.K/, gives a different
proof of the slice-Bennequin inequality. (Ng gives a different Legendrian Thurston–
Bennequin bound using Khovanov homology [12].)

In Section 2, we review some conventions on Legendrian and transverse knots. In
Section 3, we recall the combinatorial chain complex from a grid diagram [9]. In
Section 4, we describe the relationship between grid diagrams, Legendrian knots, and
their stabilizations. In Section 5, we recall the isomorphisms on homology induced by
basic moves on grid diagrams [10]. The Legendrian invariant is defined in Section 6,
and the properties stated above are established there. In this introduction, and indeed
throughout most of this paper, we have focused on the case of knots, rather than links,
mainly for notational simplicity. In Section 7, we extend the results to the case of links
in S3 . Finally, in Section 8 we give examples of the computation of the Legendrian
elements. We reprove that the knot 52 is not Legendrian simple, and show that the link
62

3
is not, either.
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2 Legendrian and transverse knots

We first recall some standard definitions from contact topology. Etnyre’s survey [5] is
a good reference for this material.

Endow S3 with its standard contact structure � . Restricted to R3 � S3 , this contact
structure is the two-plane distribution which is the kernel of the one-form dz�y dx .

Recall that a Legendrian knot is a smooth knot K � S3 whose tangent vectors are
contained in the contact planes of � . Two knots are Legendrian isotopic if they can be
connected by a smooth one-parameter family of Legendrian knots.

There are two classical invariants of Legendrian knots, the rotation number and the
Thurston–Bennequin invariant, as follows.

Fix an embedded Seifert surface F for the oriented Legendrian knot EK . The restriction
of � to F determines an oriented two-plane bundle over F , which has a trivialization
along the boundary induced by tangent vectors to the knot. The rotation number r. EK/ is
the relative first Chern number of this two-plane field over F , relative to the trivialization
over @F .

On the other hand, the restriction of � to K determines a framing of K . The Thurston–
Bennequin number tb.K/ is the self-linking number of EK with respect to this framing.
That is, if we let EK0 denote a pushoff of EK with respect to the framing, the Thurston–
Bennequin invariant is the oriented intersection number of EK0 with F .

Note that the overall sign of the rotation number depends on the choice of orientation
for EK , but the Thurston–Bennequin invariant is independent of this choice.

It is customary to study Legendrian knots via their front projections, defined by the
projection map .x;y; z/ 7! .x; z/. The front projection of a Legendrian embedding has
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no vertical tangencies, and in the generic case, its only singularities are double-points
and cusps.

The classical invariants of (oriented) Legendrian knots EK can be read off from their
(oriented) front projections …; indeed, we have

tb.K/D wr.…/� 1
2

#fcusps in …g;(2)

r. EK/D 1
2

�
#fdownward-oriented cuspsg� #fupward-oriented cuspsg

�
;(3)

where here wr.…/ denotes the writhe of the projection, ie, the number of positive
minus the number of negative crossings of the projection.

A transverse knot is a knot T � S3 is a knot whose tangent vectors are transverse to
the contact planes of � . Two transverse knots are transverse isotopic if they can be
connected by a smooth one-parameter family of transverse knots.

There is a classical invariant for transverse knots T , the self-linking number, sl.T /. To
define this, observe first that since � is cooriented, transverse knots inherit a canonical
orientation: the orientation for which the intersection number of 
 0.t/ with the plane
�
.t/ is positive for all t 2 Œ0; 1� (or, equivalently, the evaluation of dz�y dx is positive
on a vector oriented in the direction of the knot). Next, consider a Seifert surface F

for T compatible with its orientation. Now, along T , the tangent space to F and the
contact planes � intersect in a line field, which in turn inherits a natural orientation as
“outward pointing” along F . Thus, we have a trivialization of �j@F . The self-linking
number, then, is the relative first Chern number of � on F relative to this trivialization
of � along its boundary.

Given an oriented Legendrian knot EK , there are arbitrarily close smooth curves (in the
C1 topology) which are transverse (and which inherit the same orientation as EK). We
call such a knot the (positive) transverse pushoff of EK . Conversely, a transverse knot
has a regular neighborhood which is contactomorphic to the solid torus endowed with
a standard contact structure, for which the core is transverse. There are Legendrian
curves in this solid torus which are transverse to the meridional disks, meeting each
disk in a single, transverse point of intersection. We call these Legendrian curves
the Legendrian approximations to the transverse knot T . The transverse pushoff of
a Legendrian approximation to T is transversally isotopic to T , and a Legendrian
knot EK becomes Legendrian isotopic, after it is negatively stabilized sufficiently many
times, to a Legendrian approximation to its transverse pushoff. If T is the transverse
pushoff of EK , then

sl.T /D tb. EK/� r. EK/:
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+

−

Figure 1: Introducing cusps. Given an oriented arc in an oriented Legendrian
knot, we can introduce two cusps locally, in two ways, as pictured. The top is
positive stabilization, the bottom is negative stabilization.

Any two Legendrian approximations to a transverse knot can be negatively stabilized
so that they become Legendrian isotopic [4]. Thus, Legendrian knots modulo negative
stabilization are the same as transverse knots modulo isotopy.

3 Combinatorial knot Floer homology

We now recall the combinatorial chain complex for Heegaard Floer homology from
earlier papers [9; 10], to which the reader is directed for a more in-depth treatment.

Recall that a (planar) grid diagram G lies in a square grid on the plane with n� n

squares. Each square is decorated either with an X , an O , or nothing, arranged so
that:

� every row contains exactly one X and one O ; and

� every column contains exactly one X and one O .

The number n is called the grid number of G . We number the O ’s and X ’s by
fOig

n
iD1

and fXig
n
iD1

, and we denote the two sets by O and X, respectively. (We use
here the notation from [10]; the Oi correspond to the “white dots” of [9] and the wi

of [17], while the Xi to the “black dots” of [9] and the zi of [17].)
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Given a planar grid diagram G , we place it in a standard position on the plane by
placing the bottom left corner at the origin, and making each cell a square of edge
length one. We then construct an oriented, planar link projection by drawing horizontal
segments from the O ’s to the X ’s in each row, and vertical segments from the X ’s
to the O ’s in each column. At every intersection point, we let the horizontal segment
be the underpass and the vertical one the overpass. This produces a planar diagram
for an oriented link EL in S3 . We say that EL has a grid presentation given by G . It is
easy to tell if a given grid presentation determines a knot. For the moment, we restrict
attention to this case, and return to the more general case in Section 7.

If we cyclically permute the rows or column of a grid diagram, we do not change the
link that it represents, so from now on we will think of grid diagrams as being drawn
on a torus T 2 . Let the horizontal (respectively vertical) (grid) circles be the circles in
between two adjacent rows (respectively columns) of marked squares.

Given a toroidal grid diagram G , we associate to it a chain complex
�
C�.GIF2/; @

�
�

as follows. Let S D S.G/ be the set of one-to-one correspondences between the
horizontal and vertical grid circles. More geometrically, we can think of elements of
S as n–tuples of intersection points between the horizontal and vertical grid circles,
with the property that there is exactly one intersection point on each horizontal and
vertical grid circle. Let C�.GIF2/ be the free module over F2ŒU1; : : : ;Un� generated
by elements of S, where here the fUig

n
iD1

are indeterminates.

The complex has a bigrading, induced by two functions AW S! Z and M W S! Z
defined as follows.

Given two collections A, B of finitely many points in the plane, let I.A;B/ be the
number of pairs .a1; a2/ 2 A and .b1; b2/ 2 B with a1 < b1 and a2 < b2 , and let
J .A;B/D .I.A;B/C I.B;A//=2. Take a fundamental domain for the torus which
is cut along a horizontal and vertical circle, with the left and bottom edges included.
Given a generator x2S, we view x as a collection of points in this fundamental domain.
Similarly, we view O D fOig

n
iD1

as a collection of points in the plane. Define

M.x/ WD J .x; x/� 2J .x;O/CJ .O;O/C 1:

We find it convenient to write this formula more succinctly as

(4) M.x/D J .x�O; x�O/C 1;

where we extend J bilinearly over formal sums (or differences) of subsets. M.x/
depends only on the sets x and O , but not on how we drew the torus on the plane,
as we showed earlier [10, Lemma 2.4]. Furthermore, by the argument there we can

Geometry & Topology, Volume 12 (2008)



950 Peter Ozsváth, Zoltán Szabó and Dylan Thurston

alternately compute M using a fundamental domain that includes the right and top
edges instead of the left and bottom edges.

Define MS .x/ to be the same as M.x/ with the set S playing the role of O . We
define

A.x/ WD
1

2
.MO.x/�MX.x//�

�n� 1

2

�
D J .x� 1

2
.XCO/;X�O/�

�n� 1

2

�
:

(5)

The module C�.GIF2/ inherits a bigrading from the functions M and A above, with
the additional convention that multiplication by Ui drops the Maslov grading by two
and the Alexander grading by one.

Given a pair of generators x and y, and an embedded rectangle r in T 2 whose edges are
arcs in the horizontal and vertical circles, we say that r connects x to y if x and y agree
along all but two horizontal circles, if all four corners of r are intersection points in
x[y, and if when we traverse each horizontal boundary component of r in the direction
dictated by the orientation that r inherits from T 2 , the arc is oriented from a point
in x to the point in y. Let Rect.x; y/ denote the collection of rectangles connecting x
to y. If x; y 2 S agree along all but two horizontal circles, then there are exactly two
rectangles in Rect.x; y/; otherwise Rect.x; y/D∅. A rectangle r 2 Rect.x; y/ is said
to be empty if Int.r/\ xD∅, or equivalently if Int.r/\ yD∅. The space of empty
rectangles connecting x and y is denoted Rectı.x; y/.

We endow C�.GIF2/ with an endomorphism @�W C�.GIF2/! C�.GIF2/ defined
by

(6) @�.x/D
X
y2S

X
r2Rectı.x;y/

U
O1.r/
1

� � �U On.r/
n � y;

where Oi.r/ denotes the number of times Oi appears in the interior of r . This differ-
ential decreases the Maslov grading by 1 and preserves a filtration by the Alexander
grading.

The filtered chain homotopy type of the above complex is a knot invariant [9]; indeed,
it is the filtered Heegaard Floer complex [15; 21]. In the sequel, we will need a slightly
less refined version of this. Let CK�.GIF2/ be the associated graded object. That is,
CK�.GIF2/ has the same bigraded set of generators as C�.GIF2/, but its differential
now counts only empty rectangles with no elements of X in them; ie, it is given by

(7) @.x/D
X
y2S

X
r2Rectı.x;y/

r\XD∅

U
O1.r/
1

� � �U On.r/
n � y:
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This complex is now bigraded, splitting as CK�.KIF2/D
L

m;a2Z CK�m.K; aIF2/,
so that the differential drops the Maslov grading m by one and preserves the Alexander
grading a. Thus, its homology groups inherit a bigrading

HFK�.KIF2/D
M

m;a2Z

HFK�m.K; aIF2/:

These groups can be viewed as a bigraded module over F2ŒU �, where U acts by
multiplication by Ui for any i D 1; : : : ; n.

Theorem 3.1 [9] The bigraded homology groups HFK�.KIF2/ agree with the knot
Floer homology of K with coefficients in F2 .

Moreover, the chain complex can be lifted to Z coefficients. Let C�.G/ be the free
ZŒU1; : : : ;Un� module generated by S. Then we have:

Theorem 3.2 [10, Theorem 4.2] There is an essentially unique function S from
Rect.x; y/ to f˙1g with the following two properties:

� the endomorphism @�W C�.G/! C�.G/ defined by

@�S .x/D
X
y2S

X
r2Rectı.x;y/

S.r/ �U O1.r/
1

� � �U On.r/
n � y

is a differential; and

� the homology of the associated complex when we set all Ui D 1 has nonzero
rank; ie, H�.C�.G/=fUi D 1gn

iD1
/˝Q is nonzero.

Moreover, the filtered quasi-isomorphism type of the complex .C�.G/; @�S /, thought
of as a complex over ZŒU � (where U acts as multiplication by any Ui ), is an invariant
of the link. In particular, it is independent of the choice of S with the above properties
and the grid diagram for K .

The proof of Theorem 3.2 gives an independent (and elementary) proof that the homol-
ogy groups are a topological invariant of K .

Remark 3.3 The group HFK�.K/ is the homology group of the associated graded
object of the filtered complex C�.K/. The filtered quasi-isomorphism type of C�.K/
is a more refined knot invariant, and indeed the more general version of Theorem
3.1 identifies this filtered quasi-isomorphism type with a corresponding more general
object associated to knots defined using holomorphic disks. In more concrete terms,
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as a result of this extra structure, HFK�.K/ is endowed with a collection of higher
differentials, the first of which is

ı1W HFK�d .K; s/! HFK�d�1.K; s� 1/:

The identification of, say, Theorem 1.1 induce isomorphisms

�W HFK�d .K.G/; s/! HFK�d .K.G
0/; s/

which commute with ı1 . We have no need for this extra structure in the current
paper, but in later work with Ng we use it to distinguish distinct transverse knots [13,
Section 3.2]. (We encounter the filtered chain homotopy type briefly in Appendix A,
when comparing the usual definition of � with the one discussed in the introduction.)

4 Grid diagrams and Legendrian knots

Grid presentations G can represent Legendrian or transverse knots in addition to
ordinary knots. Specifically, given a grid presentation G of K , we can construct a front
projection for a Legendrian realization of the mirror m.K/ of K as follows. Consider
the projection of K obtained from G as in the previous section. It is a projection
with corner points, and indeed there are four types of corner points, which we denote
northwest, southwest, southeast and northeast. Smooth all the northwest and southeast
corners of the projection, view the southwest and northeast corners as cusps, and then
tilt the diagram 45ı clockwise, so that the NE (respectively SW) corners become right
(respectively left) cusps. This gives a Legendrian front projection for the mirror of the
knot K described by G . (It is easy to find a different convention which does not give
a mirror; the present conventions appear to fit neatly with conventions on the contact
element [16].)

Before giving the combinatorial presentation of Legendrian or transverse knots, we first
recall the combinatorial presentation of links using grid diagrams. There are several
elementary moves on a grid diagram G that do not change the topological link type:

� (Cyclic permutation) Cyclically permute the rows or columns of G .

� (Commutation) For any pair of consecutive columns of G so that the X and O

from one column do not separate the X and O on the other column, switch the
decorations of these two columns, as in Figure 6. In particular, if the O and
X in one column are in adjacent rows, this move can be applied unless there is
an X or an O in one of the same rows in the adjacent column. There is also a
similar move where the roles of columns and rows are interchanged.
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� (Destabilization) For a corner c which is shared by a pair of vertically-stacked
squares X1 , O1 marked with an X and O respectively, we remove the markings
of X1 and O1 and delete the horizontal and vertical circles containing c . Indeed,
we can (and do) assume that one of X1 or O1 meets an additional square marked
by an O or an X , by the comment above about commutation when there is an
adjacent X and O . We also can (and do) assume that c is either the lower-left
or upper-right corner of O1 .

� (Stabilization) The inverse of destabilization.

Proposition 4.1 (Cromwell [2], see also Dynnikov [3]) Two grid diagrams represent
the same topological link if and only if they can be connected by a sequence of cyclic
permutation, commutation, stabilization, and destabilization moves.

We can further classify (de)stabilization moves according to the local configuration of
X ’s and O ’s. Recall that we are assuming now that three marked squares in the original
diagram share one corner. There are two data to keep track of: the marking shared by
two of these three squares (ie, an X or an O ), and the placement of the unmarked
square relative to the shared corner, either NW, SW, SE, or NE. See Figure 2.

' '

' '

Figure 2: Destabilizations. We have enumerated here the eight types of
destabilizations. The dotted lines are to be removed in the destabilized
picture. Starting from the upper left corner and reading along the top row
first, we have destabilizations of types: X:NW , O:SE , X:NE , O:SW , X:SW ,
O:NE , X:SE , and O:NW . In each destabilization the two dotted lines are
removed and the corner c is marked. The indicated pairs of destabilizations
are equivalent modulo commutation moves on the torus.
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The following two lemmas follow by elementary manipulations.

Lemma 4.2 A stabilization of type O:SE (respectively O:NE, O:NW, or O:SW)
is equivalent to a stabilization of type X:NW (respectively X:SW, X:SE, or X:NE)
followed by a sequence of commutation moves on the torus.

Proof After a stabilization at an X vertex, we can slide either of the resulting segments
of length 1 to a neighboring vertex (of type O ) by a sequence of commutation moves.
A straightforward check shows that we get a stabilization of the type as indicated in
the statement.

Lemma 4.3 A cyclic permutation is equivalent to a sequence of commutations in the
plane and (de)stabilizations of types X:NW, X:SE, O:NW, and O:SE.

Proof Since the allowed moves are symmetric under reversing orientation, we may
suppose without loss of generality that we wish to move a horizontal segment from the
top to the bottom, with left end of the segment marked X1 and right end marked O2 .
Let O1 (respectively X2 ) be the other mark in the column containing X1 (respectively
O2 ). Apply a stabilization of type X:NW at X2 , and commute the resulting horizontal
segment of length 1 to the bottom of the diagram. We now have a vertical segment
stretching the height of the diagram; apply commutation moves until it is just to the
left of the column containing X1 . Now the horizontal segment starting at X1 is of
length 1, and so can be commuted down until it is just above O1 , where we can apply
a destabilization of type O:SE to get the desired cyclic permutation.

Proposition 4.4 Two grid diagrams represent the same Legendrian link if and only
if they can be connected by a sequence of commutation and (de)stabilizations of
types X:NW and X:SE on the torus.

Proof By Lemmas 4.2 and 4.3, we can equivalently consider commutation and (de)stab-
ilizations of all types NW and SE in the rectangle (rather than on the torus).

We must now check that each type of commutation and allowed stabilization (in the
rectangle) gives an isotopy of the corresponding Legendrian knot. Indeed, after rotating
45ı and turning the corners into smooth turns or cusps as appropriate, each elementary
move of the grid diagram becomes a sequence of Legendrian Reidemeister moves of the
front projection. For instance, as shown in Figure 3, an SE stabilization becomes either
a planar isotopy or a Legendrian Reidemeister 1 move, depending on the relation of the
stabilized corner to the rest of the diagram. An example of a commutation move that
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7!

7! 7!

7!

Figure 3: The four different ways an SE stabilization can appear after con-
verting into a Legendrian front. Three of them are planar isotopy, while the
fourth is an allowed Reidemeister move on Legendrian knots.

7�!

Figure 4: A commutation move giving a Legendrian Reidemeister 2 move.

turns into a Legendrian Reidemeister 2 move is shown in Figure 4; other commutation
moves are similar, and may also involve Reidemeister 3 moves.

To go the other direction, we must show that every sequence of Reidemeister moves on
a Legendrian front can be turned into a corresponding sequence of grid moves. First
note that any Legendrian front projection can be turned into a grid diagram: Take the
Legendrian front and stretch it horizontally until no portion of the diagram is at an
angle of more than 45ı from the horizontal. Then the curve can be approximated by
a sequence of straight segments at an angle of ˙45ı . After rotating by 45ı counter-
clockwise and adjusting the segments to have consecutive integer coordinates, we have
a grid diagram corresponding to the front projection.

We can do the same thing with any Legendrian isotopy: stretch the intermediate
diagrams so that no edges are too steep and approximate each one by a sequence of
straight segments. It is an elementary verification that each modification along the way
(ie, change of the approximation by segments and Legendrian Reidemeister moves)
can be achieved by a sequence of commutation and allowed destabilizations.

Furthermore, a stabilization of type X:SW is a negative stabilization of the Legendrian
link (see Figure 5), so we have:
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7!

7! 7!

7!

Figure 5: Stabilizations of type X:SW , after conversion to a Legendrian front.
In each case the Legendrian knot type is changed by a negative stabilization.

Corollary 4.5 Two grid diagrams represent the same transverse link if and only if they
can be connected by a sequence of commutation and (de)stabilizations of types X:NW,
X:SE, and X:SW.

Finally we note how symmetries of the grid diagram relate to symmetries of the knot.
We consider only the symmetries that preserve the set of cusps.

Lemma 4.6 Symmetries of a grid diagram G take an oriented Legendrian knot EK to
the following Legendrian knots:

� Reflection through the x D�y axis: � EK ;
� Reflection through the x D y axis: ��. EK/; and
� Rotation by 180ı : �. EK/.

Proof Reflection of G through the x D�y axis corresponds to reflecting the front
projection through the z (vertical) axis, which in turn corresponds to rotating the
Legendrian knot by 180ı around the z–axis, which is a Legendrian isotopy. (The fact
this is a Legendrian isotopy is most easily seen by using the isotopic contact form
dz� .x dy�y dx/=2, which is rotationally symmetric.) Moreover, by considering the
orientation conventions for knot diagrams, one can easily see that this operation also
reverses the orientation of the knot.

Reflection of G through the x D y axis similarly corresponds to rotation of the
Legendrian projection by 180ı around the axis normal to the Legendrian projection
(which is the definition of Legendrian mirror), followed by a reflection through the
x D�y axis (which does not affect the Legendrian isotopy class). This operation also
reverses the orientation.

Rotation of G by 180ı is the composition of the previous two symmetries.
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5 Grid moves for knot Floer homology

We recall here the explicit maps induced by commutation and destabilization moves
in the combinatorial proof of topological invariance of HFK� [10]. We will give the
formulas over F2 ; signs can be added to all these formulas to give formulas that work
over Z [10, Section 4.2].

5.1 Commutation maps

More explicitly, suppose that G and H are two grid diagrams for the same oriented
knot EK , which differ by commuting two vertical edges. It is convenient to draw both
diagrams on the same torus, replacing a distinguished vertical circle ˇ for G with a
different one 
 for H , as pictured in Figure 6. The circles ˇ and 
 meet each other
transversally in two points a and b , which are not on a horizontal circle.

b

a

ˇ 


Figure 6: Commutation. A commutation move, viewed as replacing one
vertical circle (ˇ , undashed) with another (
 , dashed).

We define a chain map ˆˇ
 W C�.G/! C�.H / by counting pentagons in the torus.
Given x 2 S.G/ and y 2 S.H /, we let Pentˇ
 .x; y/ denote the space of embedded
pentagons with the following properties, as illustrated in Figure 10. This space is empty
unless x and y coincide at n� 2 points. An element of Pentˇ
 .x; y/ is an embedded
disk in T 2 , whose boundary consists of five arcs, each contained in horizontal or
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vertical circles. Moreover, under the orientation induced on the boundary of p , we start
at the ˇ–component of x, traverse the arc of a horizontal circle, meet its corresponding
component of y, proceed along an arc of a vertical circle, meet the corresponding
component of x, continue through another horizontal circle, meet the component of y
contained in the distinguished circle 
 , proceed along an arc in 
 , meet an intersection
point of ˇ with 
 , and finally, traverse an arc in ˇ until we arrive back at the initial
component of x. Finally, all the angles here are required to be acute. These conditions
imply that there is a particular intersection point, denoted a, between ˇ and 
 which
appears as one of the corners of any pentagon in Pentˇ
 .x; y/. The other intersection
point b appears in all of the pentagons in Pent
ˇ.y; x/. The space of empty pentagons
p 2 Pentˇ
 .x; y/ with x\ Int.p/D∅, is denoted Pentı

ˇ

.

Given x 2 S.G/, define

ˆˇ
 .x/D
X

y2S.H /

X
p2Pentı

ˇ

.x;y/

U
O1.p/
1

� � �U On.p/
n � y 2 C�.H /:

It is elementary to see that the above map induces a chain homotopy equivalence [10,
Proposition 3.2].

In this paper we will consider the above map on the associated graded object CK�.K/,
ie, where we count p 2 Pentı

ˇ

subject to the further constraint that p\XD∅.

5.2 Stabilization maps

Next, we consider the stabilization map. Let G be a grid diagram and H denote a
stabilization. We discuss in detail the case where we introduce a new column with O1

immediately above X1 , and there is another marking X2 immediately to the left or to
the right of O1 , as is the case of two of the four types of X –stabilization; the cases
where X1 is immediately above O1 can be treated symmetrically by a rotation of all
diagrams by 180ı .

Label the O in the same row as X1 by O2 . Let ˇ1 be the vertical circle just to the left
of O1 and X1 , and let ˛ denote the horizontal circle separating the squares marked O1

and X1 .

Let B D C�.G/, C D C�.H /, and let C 0 be the mapping cone of

U2�U1W BŒU1� �! BŒU1�;

ie, C 0ŒU1�D BŒU1�˚BŒU1�, endowed with the differential @0W C 0! C 0 given by

@0.a; b/D .@�a; .U2�U1/ � a� @
�b/
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where here @� denotes the differential within B . Note that B is a chain complex
over ZŒU2; : : : ;Un�, so that BŒU1� denotes the induced complex over ZŒU1; : : : ;Un�

gotten by introducing a new formal variable U1 . Let LŠ BŒU1� (respectively R) be
the subgroup of C 0 of elements of the form .c; 0/ (respectively .0; c/) for c 2 BŒU1�.
The module R inherits Alexander and Maslov gradings from its identification with
BŒU1�, while L is given the Alexander and Maslov gradings which are one less than
those it inherits from its identification with BŒU1�. With respect to these conventions,
the mapping cone is a filtered complex of R–modules. We claim that C 0 is quasi-
isomorphic to B . In fact, it is straightforward to verify that a quasi-isomorphism is
given by the map .a; b/ 7! b0 , where here b0 denotes the element of B gotten by taking
b 2 BŒU1�, and substituting U2 for the formal variable U1 .

Furthermore, there is a filtered quasi-isomorphism

(8) F W C �! C 0:

To describe this, we introduce a little more notation.

Let x0 be the intersection point of ˛ and ˇ1 . Let I � S.H / be the set of x 2 S.H /

which contain x0: There is, of course, a natural (point-wise) identification between
S.G/ and I, which drops Alexander and Maslov grading by one.

As such, the differentials within L and R count rectangles in H which do not contain
x0 on their boundary, although they may contain x0 in their interior. Note however that
the boundary operator for rectangles containing x0 does not involve the variable U1 .

For the definition of F , we must consider objects more general than rectangles, called
domains. To define them, let us view the torus T 2 as a two-dimensional cell complex,
with the toroidal grid diagram inducing the cell decomposition with n2 zero-cells,
2n2 one-cells and n2 two-cells (the little squares). Let U˛ be the one-dimensional
subcomplex of T 2 consisting of the union of the n horizontal circles.

Definition 5.1 Given x; y 2 S.H /, a path from x to y is a 1–cycle 
 on the cell
complex T 2 , such that the boundary of the intersection of 
 with U˛ is y� x. A
domain p from x to y is a two-chain in T 2 whose boundary @p is a path from x to y.
The multiplicity of Oi in a domain p , denoted Oi.p/, is the local multiplicity of the
chain p at Oi .

For example, if p is a rectangle from x to y, then the above definition of Oi.r/

coincides with the earlier definition used in Equation (6).

Only certain domains will be counted in the definition of F .
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Figure 7: Types of domains. We have listed here several domains in the
stabilized diagram, labeling the initial points by dark circles, and terminal
points by empty circles. The top row lists domains of type L , while the
second row lists some of type R . The marked O and X are the new ones in
the stabilized picture. Darker shading corresponds to higher local multiplici-
ties.

Definition 5.2 For x 2 S.H / and y 2 I� S.H /; a domain p 2 �.x; y/ is said to be
of type L (respectively R) if either it is the zero chain, in which case p has type L,
or it satisfies the following conditions:

� p has only nonnegative local multiplicities.

� For each c 2 x[ y, other than x0 , at least three of the four adjoining squares
have vanishing local multiplicities.

� In a neighborhood of x0 the local multiplicities in three of the adjoining rect-
angles are the same number k . When p has type L, the lower left corner
has local multiplicity k � 1, while for p of type R the lower right corner has
multiplicity kC 1.

� @p is connected.
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The set of type L (respectively R) domains from x to y is denoted �L.x; y/ (respec-
tively �R.x; y/). See Figure 7 for examples.

We now define maps

FL
W C �! L

FR
W C �!R

where FL (respectively FR ) counts domains of type L (respectively R) without
factors of U1 . Specifically, define

FL.x/D
X
y2I

X
p2�L.x;y/

U
O2.p/
2

� � �U On.p/
n � y

FR.x/D
X
y2I

X
p2�R.x;y/

U
O2.p/
2

� � �U On.p/
n � y:

In order to identify the range of FL (respectively FR ) with L (respectively R), we
implicitly use the identification S.G/Š I� S.H /.

We put these together to define a map

F D

�
FL

FR

�
W C �! C 0:

The fact that F is a quasi-isomorphism is established in [10, Proposition 3.8].

Again, F induces also a quasi-isomorphism on the associated graded object, giving a
map from CK�.H / to the mapping cone of multiplication by U1�U2 , thought of as
an endomorphism of CK�.G/ŒU1�. This induced map counts only those domains p of
type F for which Xi.p/D 0 for all i D 2; : : : ; n. (Note that we do allow X1.p/¤ 0.)

6 Definition and invariance properties of the Legendrian in-
variants

We this setup, we can now construct the Legendrian invariant for knots. The case of
links works with minor modifications, as spelled out in Section 7.

Definition 6.1 Let G be a grid diagram for a knot, and consider the chain complex
CK�.G/. Consider elements xC , x� 2 S.G/ defined as follows. Each component of
xC is the upper right corner of some square decorated with X , while each component
of x� is the lower left corner of some square decorated with X . The chains zC and
z� are defined to be ˙xC and ˙x� , respectively, with signs specified in Definition
6.10.
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We will defer most discussion of signs until later. For now, all the proofs will work
with an arbitrary choice of signs, although at present we will only prove some of the
results up to a choice of sign. We now verify that the above chains are in fact cycles.

Lemma 6.2 The elements zC and z� are cycles in the chain complex CK�.G/.

Proof Consider any y 2 S.G/ and r 2 Rect.xC; y/. Let x1 2 xC be the upper right
corner of r . By the definition of xC , there is an X in the square to the lower left of x1 ,
and hence also an X in r . Thus, r cannot count in the definition of the differential @
for the associated graded object. An analogous argument applies to x� .

Next, we calculate the Maslov and Alexander gradings.

Lemma 6.3 We have that A.xC/D 1
2
M.xC/ and A.x�/D 1

2
M.x�/.

Proof Recall that A.xC/ D 1
2
.MO.x

C/�MX.x
C//� .n� 1=2/. Because of the

close relationship of xC and X, we have some equalities on the terms appearing in MX

when we work in a fundamental domain including the right and top edges:

I.xC;xC/D I.X;X/D I.xC;X/
I.X;xC/D I.X;X/C n:

Therefore MX.x
C/D�nC1 and A.xC/D 1

2
MO.x

C/ as desired. A similar argument
applies to x� .

Let K be the knot diagram represented by the grid diagram. Remember that the
topological type of K is the mirror of the topological type of EK .

Lemma 6.4 The Maslov gradings of the elements xC and x� are given by

M.xC/D�wr.K/� #fdownward-oriented cuspsgC 1(9)

M.x�/D�wr.K/� #fupward-oriented cuspsgC 1:(10)

Proof Each horizontal segment Ki of K goes from some Oi to some Xi . Let xi be
the point in xC to the upper right of Xi . We claim that the quantity Ci defined by

Ci WD J .fxig� fOig;x
C
�O/

is given by

Ci D #fnegative crossings on Kig� #fpositive crossings on Kig

� #fdownward-oriented cusps among fXi ;Oigg:
(11)
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To prove this, we use the horizontal segment to divide up the plane into four regions, as
follows. Let A be the vertical column through Xi , B be the vertical column through Oi ,
C be the vertical strip between A and B (note that the region C can be empty when
the arc from Oi to Xi has length one), and D be the complement of A[B[C . (Note
that D generally has two connected components.) Each region should be interpreted as
including its right boundary. Then for each Oj in D , J .fxig; fOj g/DJ .fOig; fOj g/,
and similarly for each xj in D , J .fxig; fxj g/D J .fOig; fxj g/. Thus

(12) J .fxig� fOig; .x
C
�O/\D/D 0:

Next consider Oj 2 C , so that its corresponding Xk which lies in the same column
also is in C . If the vertical arc connecting Oj to Xk does not cross Ki , we have that

J .fxig; fOj g/D J .fxig; fxkg/

J .fOig; fOj g/D J .fOig; fxkg/:and

Otherwise both equalities are off by ˙1=2. A more careful look at the orientation of
the horizontal and vertical arcs and our conventions on the crossing type reveals that in
fact

J .fxig� fOig; .x
C
�O/\C /D #fnegative crossings on Kig

� #fpositive crossings on Kig:
(13)

Finally, we claim that

(14) J .fxig�fOig; .x
C
�O/\.A[B//D�#fdownward cusps among fXi ;Oigg:

This follows from an analysis of the eight cases: whether the Oj 2A is above or below
Xi , whether the Xk 2 B is above or below Oi , and whether Oi is to the left or to the
right of Xi . These eight cases are illustrated in Figure 8.

Equation (11) now follows by adding up Equations (14), (13), and (12). Equation (9)
follows from Equation (11) by adding up the contributions of each horizontal arc, and
then adding one (as in Equation (4)). Equation (10) follows from a similar analysis,
except that in this case, the contribution from the regions in A and B are different,
and so we replace Equation (14) by the following:

J .fxig� fOig; .x
�
�O/\ .A[B//D�#fupward cusps among fXi ;Oigg:

Lemma 6.5 Let G be a grid diagram and H a stabilization of G of type X:NW or
X:SE. Then the destabilization map from C�.H / to the mapping cone of

U1�U2W C�.G/ŒU1� �! C�.G/ŒU1�
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Figure 8: By considering the eight illustrated possibilities, we verify Equation
(14). The relevant contributions to Ci are indicated by dashed lines, labelled
by the value of the contribution. In each case the sum of the contributions
equals the number of downward-oriented cusps in the front projection.

carries the two elements zC.H / and z�.H / to ˙zC.G/ and ˙z�.G/, thought of as
an element of C�.G/ � R � C 0 , in the notation of Section 5.2 (ie, where the three
markings involved are X1 , O1 , and X2 ).

Proof This follows from a case analysis of the stabilizations.

Let xC0 be the canonical generator for the stabilized diagram, and xC the corresponding
generator in the destabilized diagram, considered as an element of R.

In each case, we claim that there is only one nonzero term in F.xC0/, since there
is exactly one domain in �F .xC0; y/ which does not contain any of the Xi with
i ¤ 1. As in Lemma 6.2, this follows by considering the upper right corner of any
such domain, which must be X1 . Moreover, we claim that for this domain, the image
point y corresponds to the canonical generator xC for the destabilized picture. We
have illustrated the two cases on the left of Figure 9. Because there is only one domain,
the destabilization map carries zC.H / to ˙zC.G/ as desired. As sketched on the
right of Figure 9, a similar argument works for x� .

Lemma 6.6 Let G and H be two grid diagrams which differ by a commutation
move. Then under the map Fˇ
 W C�.G/! C�.H /, the image of the cycle zC.G/ is
˙zC.H / and the image of z�.G/ is ˙z�.H /.
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Figure 9: Invariance of the Legendrian element. We have illustrated a local
picture of a stabilized diagram. The black dots represent the canonical
elements for the stabilized diagram, the white ones represent the elements
afterwards, ie, they are destabilized at the pair of dotted lines. The left two
diagrams show xC

0 , while the right two show x�0 . In all four cases the
destabilization map counts the shaded rectangle, a region with complexity 2

of type R .

Proof We argue that there is exactly one y and one pentagon in Pent.xC.G/; y/
which does not contain some Xi in its interior, and that is the one which connects
xC.G/ to xC.H /. This can be seen from an argument like that in Lemma 6.5: there
is a pentagon taking xC.G/ to xC.H /, as illustrated in Figure 10. Suppose that  is
any other pentagon, and consider its upper right corner, which is at some c 2 xC.G/.
The subsquare just to the lower left of this c contains some Xi with i ¤ 1 or 2. The
argument for x� is similar.

Proof of Theorem 1.1, up to signs The calculations of the Maslov and Alexander
gradings of zC are Lemmas 6.4 and 6.3 respectively. The Alexander grading is given
by

A.zC/D�wr.K/� #fdownward-oriented cuspsg

D wr.m.K//� #fdownward-oriented cuspsg;

A.z�/D wr.m.K//� #fupward-oriented cuspsg:

Comparing these with the standard descriptions of tb and r from the knot projection
(Equations (2) and (3) respectively), we obtained the stated formulas for the bigradings
of zC and z� .
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ˇ


b

a

Figure 10: Small pentagon. The dark circles represent the canonical generator
xC for G , the diagram involving ˇ , while the empty circles represent the
canonical generator xC0 for H , the diagram involving 
 . The shaded
pentagon represents the map carrying xC to xC0 .

In view of Proposition 4.4, invariance under Legendrian isotopies (up to sign) follows
from Lemmas 6.5 and 6.6.

6.1 Properties of the Legendrian invariant

We now turn to the properties of �C and �� stated in the introduction.

Proof of Proposition 1.2, up to signs The fact that the two invariants are permuted
under orientation reversal follows from the symmetry of the torus which is given by
reflection through the x D �y axis. More precisely, it is easy to see that if G is a
grid diagram representing a Legendrian knot EK and H is the grid diagram obtained
from G by reflecting through this axis, then the reflection map from S.G/ to S.H /,
which takes xC.G/ to x�.H / and x�.G/ to xC.H /, induces an isomorphism of
complexes

ˆW C�.G/ �! C�.H /;

with ˆ.zC.G// D ˙z�.H / and ˆ.z�.G// D ˙zC.H /. Moreover, by Lemma 4.6,
the Legendrian knot specified by H is � EK .
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Similarly, rotation of a grid diagram G by 180ı induces an isomorphism of chain
complexes which permutes the two canonical cycles while taking EK to its Legendrian
mirror �. EK/.

Proof of Theorem 1.3, up to signs. Behavior under positive and negative destabi-
lization is illustrated in Figure 11. The illustrated domains, all of complexity 2 and
type R, are as before the only domains of type F starting at xC or x� which do not
contain any other Xi in their interior. In all cases the rectangle connects x˙ to the
canonical generator for the destabilized picture. For the positive destabilization of xC

and the negative destabilization of x� , the domain contains the other O in the row
containing X1 (and so the map on homology is multiplication by U ), while for the
other two cases the domain contains only X1 . Therefore the induced map ˆ on the
chain complex behaves as stated, up to a sign.

Figure 11: Behavior under positive and negative destabilization. The black
generators represent the canonical elements for the stabilized diagram, while
the white ones represent canonical elements in the destabilized one. The left
two diagrams are positive destabilization (of type X:NE) and the right two
are negative destabilization (of type X:SW). On the top row, we consider xC ,
while on the bottom row, we consider x� .

In order to prove the invariant is nonzero (Theorem 1.5), we will look at yet another
complex.

Definition 6.7 Let the complex C !.G/ be the tensor product of CK�.G/ with Lau-
rent polynomials in the fUig

n
iD1

, ie, ZŒU1;U
�1
1
; : : : ;Un;U

�1
n �. Let H !.G/ be the

homology of C !.G/, which is a module over ZŒU;U�1�.
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We will find it useful to use the following:

Definition 6.8 A domain p from x to y is a two-chain in T 2 whose boundary @p
is a path from x to y. We denote the set of domains from x to y by �.x; y/. Given
� 2�.x; y/, let Xj .�/, resp. Oj .�/, denote the local multiplicity of � at Xj , resp. Oj .

Lemma 6.9 H !.G/ is isomorphic to ZŒU;U�1�, and it is generated by ŒxC.G/� or
Œx�.G/�.

Proof The chain complexes C ! for different positions of the O ’s are isomorphic,
as follows. Suppose that G is a grid diagram with grid number m, with two al-
ternate possible placement of the O ’s: O and O0 , and let C !.G/ and C !.G0/ be
the two possible corresponding chain complexes. We will construct an isomorphism
ˆW C !.G/! C !.G0/.

Fix x0 2 S.G/ arbitrarily, let z0 and z0
0

be the corresponding elements of C !.G/ and
C !.G0/, and declare ˆ.z0/ D z0

0
. Given any generator of C !.G/ as a ZŒU1;U

�1
1
�–

module, which has the form of U
n2

2
� � �U n

m � y, it is easy to see that there is a unique
� 2�.x; y/ with Xj .�/D 0 for all j , and Oj .�/Dnj for j D 2; : : : ;m. (We use here
the fact that G represents a knot, rather than a link with more than one component.)

We then define ˆ.U2 � � �Um � y/D U O 0
2
.�/

2 � � �U
O 0m.�/
m � y. This is easily seen to be an

isomorphism of chain complexes of ZŒU;U�1�–modules, where we take U D U1 .

In particular the complex C !.G/ can be identified with the complex C !.G0/, where G0

is the grid diagram with one O directly beneath each X ; note that G0 is a diagram for
the unknot. Furthermore, note that ŒzC.G0/� in H !.G0/ is invariant up to units under
all destabilizations, by Theorems 1.3 (since multiplication by Ui is now invertible).
Therefore we can simplify G0 until we get a 2� 2 grid diagram G0 representing a
trivial unknot, where an elementary calculation shows H !.G0/ is rank one, generated
by ŒzC.G0/�. Again, similar computations work for x�.G/.

Proof of Theorem 1.5 By Lemma 6.9, the map from HFK�.G/ to H !.G/ takes
�C.G/ to a generator of H !.G/. In particular U m�C.G/ ¤ 0 for any nonnegative
integer m.

We can now complete Definition 6.1.

Definition 6.10 The signs in the definition of z�.G/ and zC.G/ in Definition 6.1 are
chosen so that zC.G/D xC.G/, and there is an m 2Z so that Œz�.G/�DU mŒzC.G/�

when thought of as elements of H !.G/.
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Proof of Theorem 1.1, with signs With the above definition, we can see that in
Lemmas 6.5 and 6.6, either zC.G/ and z�.G/ map to zC.H / and z�.H / respectively,
or they map to �zC.H / and �z�.H /, depending on whether the chosen generator of
H !.G/ maps to the chosen generator of H !.H / or its negative. By negating the chain
map ˆ from C�.G/ to C�.H / if necessary, we can make it map zC.G/ to zC.H /

and z�.G/ to z�.H /, with correct signs.

Similarly we can fix the signs in Proposition 1.2 and Theorem 1.3.

7 The case of links

Most of the discussion from the earlier parts of this paper have rather straightforward
generalizations to the case of links, as we will now show.

Let EL be an oriented Legendrian link with ` components. The contact distribution �
determines a complex line bundle over S3 equipped with a trivialization in a neigh-
borhood of EL. The Euler class of this line bundle relative to its trivialization on the
boundary gives an element of H 2.S3; ELIZ/ Š H1.S

3 �LIZ/ Š Z` , which plays
the role of the rotation number. More concretely, we obtain ` integers, ri , i D 1 : : : `,
determined by the property that if F is any surface in S3 whose boundary lies on EL,
then

he.�j@F ; EL0/; ŒF �i D
X̀
iD1

ri �#.F \mi/;

where fmig
`
iD1

are the meridians for the components of L. Similarly, the Thurston–
Bennequin framing gives an element of H1.S

3�LIZ/, which we can write as

X̀
iD1

tbi �mi :

That is, tbi is the linking number of the Legendrian pushoff of EL with the i –th
component of EL. Note that tbi depends on the orientation of EL. One alternate
(equivalent) data to tbi is the Thurston–Bennequin invariant of the i –th component
considered as a knot by itself; that choice is less convenient for us.

In terms of the front projection …D
S`

iD1…i , we have that

tbi. EL/D wr.…i/C lk.…i ;…�…i/�
1
2

#fcusps in …ig(15)

ri. EL/D 1
2

�
#fdownward-oriented cusps in …ig(16)

� #fupward-oriented cusps in …ig

�
:
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Let G be a grid diagram for EL. We can, of course, define the chain complex C�.G/
as before, but in fact, this complex also has a refinement. Specifically, we can consider
the Alexander multigrading, which is a function AW S! Z` defined as follows. We
partition O as

S`
iD1 Oi and X as

S`
iD1 Xi , where Oi (respectively Xi ) denotes

the set of Oj (respectively Xj ) corresponding to the i –th component of the link. Let
ni D #Oi . Now we can define A.x/D .A1.x/; : : : ;A`.x//, where

(17) Ai.x/D J
�

x� 1
2
.XCO/;Xi �Oi

�
�

�ni � 1

2

�
:

We can form the chain complex CL�. EL/, defined as in Equation (7). We number
the variables so that the first ` of the O ’s, O1; : : : ;O` , belong to the ` different
components of the link. Taking the homology of this module, we obtain a graded
module over RD ZŒU1; : : : ;U`�

HFL�.L/D
M
d2Z
s2Z`

HFL�d .L; s/;

where Ui acts as an endomorphism which is homogeneous of degree �2 for d ,
degree �1 for the i –th component of s, and degree 0 otherwise. This R–module is an
oriented link invariant [10] which, when specialized to coefficients in F2 , agrees with
link Floer homology [17].

Definition 6.1 readily generalizes to this context, giving a pair of elements z�; zC 2
C�.G/, each of which is a cycle in the associated graded object CL�.G/. We have
the following analogue of Theorem 1.1.

Theorem 7.1 For a grid diagram G , let EL D EL.G/ be the corresponding oriented
Legendrian link. Then there are two associated cycles zC D zC.G/ and z� D z�.G/,
supported in gradings

Aj .z
C/D

tbj . EK/� rj . EK/C 1

2
Aj .z

�/D
tbj . EK/C rj . EK/C 1

2
(18)

M.zC/D 2
X̀
jD1

Aj .z
C/C 1� ` M.z�/D 2

X̀
jD1

Aj .z
�/C 1� `;(19)

where here ` denotes the number of components of EL. Moreover, if G and G0 are two
different grid diagrams which represent Legendrian isotopic oriented links, then there
is a quasi-isomorphism of chain complexes

ˆW C�.G/ �! C�.G0/

ˆ.zC.G//D zC.G0/ ˆ.z�.G//D z�.G0/:with
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Proof Most of this proof is a straightforward generalization of the proof of Theorem
1.1. For example, Equation (19) is a straightforward adaptation of the argument from
Lemma 6.3.

Equation (18) follows along the lines of the proof of Lemma 6.4, but with a little extra
care. We first argue that

(20) 2Aj .z
C/D�wr.K/� #fdownward cusps on component j gC 1:

As in Lemma 6.4, we consider the horizontal arc Ki connecting Xi and Oi , and the
corresponding partition of the plane into regions A, B , C , and D . We also let Ki

denote the corresponding horizontal strip in the plane. We then analyze the contributions
to 2J �Ki \ .x

C�
1
2
.XCO//; .Xj �Oj /

�
coming from the portion of .Xj �Oj / in

these four possible regions.

As in Equation (12), we have

(21) 2J �Ki \ .x
C
�

1
2
.XCO//;D\ .Xj �Oj /

�
D 0:

As in Equation (13), provided that Ki �Lj , we have

(22) 2J
�
Ki \ .x

C
�

1
2
.XCO//;C \ .Xj �Oj /

�
D #fnegative crossings of Lj with Kig

� #fpositive crossings of Lj with Kig:

Finally, we consider the analogue of Equation (14). If Ki is an arc on component j ,
by considering the eight cases from Figure 8, we have that

(23) 2J �Ki \ .x
C
�

1
2
.XCO//; .A[B/\ .Xj �Oj /

�
D 1� #fdownward cusps among fXi ;Oigg

� .1
2

if O\Ki is above the X in its column/

C .1
2

if X\Ki is below the O in its column/:

Otherwise, this contribution is zero. We deduce Equation (20) by adding up half the
local contributions calculated above and subtracting .ni � 1/=2, as in Equation (17).
The statement for Aj .x

C/ follows now from that equation, together with Equations (15)
and (16).

The definition of xC and x� is as before. The proof of invariance under the chain
map up to signs follows identically. The signs in the definition of zC and z� are fixed
later, in Definition 7.5.
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Let �C. EL/ and ��. EL/ denote the homology classes in HFL�.L/ of zC.G/ and
z�.G/. These are Legendrian invariants of EL. Behavior under orientation reversal of
all components simultaneously and Legendrian mirror is the same as in Proposition
1.2. The analogue of Theorem 1.3 is the following.

Theorem 7.2 Let EL be an oriented Legendrian link, and EL� (respectively ELC ) be ori-
ented Legendrian links obtained as a single negative (respectively positive) stabilization
of EL on the j –th component. Then there is a quasi-isomorphism

ˆ�W C. EL/ �! C. EL�/
ˆCW C. EL/ �! C. ELC/

under which

ˆ�.�C. EL//D �C. EL�/ Uj �ˆ
�.��. EL//D ��. EL�/

Uj �ˆ
C.�C. EL//D �C. ELC/ ˆC.��. EL//D ��. ELC/:

Proof This is a straightforward generalization of the proof of Theorem 1.3.

Similarly, we have the following generalization of Theorem 1.5:

Theorem 7.3 For a Legendrian link EL, the homology classes �C. EL/ and ��. EL/ are
nontrivial; and indeed, they are not Ui –torsion for any of the Ui .

Proof A little more care is needed than in the case of knots: H !.G/ now does depend
on the placement of the Oi . However, if we consider the new complex C 0.G/ D

C�.G/=fUi D 1gm
iD1

, then the homology of this complex H 0.G/ obviously no longer
depends on the placement of the Oi (since they play no role in the C 0.G/). Thus we
can move placements of the O to realize the unknot. But we already know by Theorem
1.5 that the invariants for the unknot do not vanish in HFK� , so they do not vanish in
H 0.G/, so both �C. EL/ and ��. EL/ represent nontrivial homology classes in H 0.G/.
It follows readily that the two classes are not Ui –torsion for any of the Ui .

As a final point in this section, we turn to the signs entering the definition of �C.L/
and ��.L/, generalizing Definition 6.10 to the case of links.

Let C 00.G/D C.G/=fU1 D � � � D U` D 1g, where as usual we number the Ui so that
the first ` correspond to the ` distinct components of the link. Although the complex
no longer inherits neither an Alexander of Maslov gradings, C 00 retains an integral
grading given by N DM � 2AC `� 1.
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Lemma 7.4 We have that H�.C
00.G//ŠH�.T

`�1/, and the elements ŒxC.G/� and
Œx�.G/� generate the zero-dimensional part.

Proof Let C 0.G/ denote the complex studied in the proof of Theorem 7.3. As in that
proof, its homology is independent of the placement of the Oi , so it is isomorphic to the
value for the unknot, from which it is easy to see that H�.C

0.G//ŠH�.T
m�1/ with

an appropriate overall grading shift. (Remember that H�.T
m�1/ is a .m� 1/–fold

tensor product of a space V 0 with itself, where V 0 Š Z˚Z with one generator in
degree 0 and one in degree 1.)

Note that C 0.G/D C 00.G/=fU`C1 D � � � D Um D 1g. Moreover, in C 0.G/, each Ui

is homotopy equivalent to multiplication by 1. (This follows from the fact that in
CL� , multiplication by Ui and multiplication by Uj are chain homotopic if Oi and
Oj correspond to the same component of the link; see [10, Lemma 2.9], together
with the fact that we have set Ui D 1 for i D 1; : : : ; ` in C 00.G/.) Thus, it follows
that H�.C

0.G// Š H�.C
00.G// ˝ H�.T

m�`/. Combining this with the fact that
H�.C

0.G//ŠH�.T
m�1/, we can conclude that H�.C

00.G//ŠH�.T
`�1/.

From the proof of Theorem 7.3, ŒxC.G/� and Œx�.G/� are primitive elements in
H�.C

00.G//. From Equation (19), we conclude that they both are supported in degree
zero.

In view of Lemma 7.4, can generalize Definition 6.10 to the case of links, as follows.

Definition 7.5 The signs in the definition of zC and z� are chosen so that ŒzC.G/�
and Œz�.G/� represent the same class in the homology of C 00.G/DC.G/=fU1D � � � D

U` D 1g.

This is clearly compatible with Definition 6.10 in the case where `D 1, and as before
we can now fix the signs in Theorems 7.1 and 7.2.

8 Examples: The knot 52 and the link 62
3

To demonstrate that our invariant is nontrivial, we will use it to distinguish different
Legendrian representatives of the knot 52 and the link 62

3
. Throughout this section we

will work over F2 .
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Example 8.1 The unoriented Legendrian knots K1 and K2 with front projections

K1 D and K2 D ;

both of topological type 52 and having tbD 1 and rD 0, are not Legendrian isotopic.

This example was first found by Chekanov [1].

Proof Reflecting through the vertical axis takes both front projections shown above to
themselves with orientation reversed. As in Lemma 4.6, reflecting the front through the
vertical axis corresponds to rotating the Legendrian knot by 180ı around the z–axis,
which is an isotopy. Therefore the two oriented Legendrian knots are both isotopic to
their reverse and it suffices to prove the result for one orientation.

Grid diagrams G1 , G2 for the two Legendrian knots are shown in Figure 12. On G1 ,
we have indicated the generator zC . From the diagram it is straightforward to check
that zC is isolated in the chain complex: for all generators x, there are no rectangles in
Rectı.x; zC/ with empty intersection with X and O . By the symmetry of the diagram,
the same is true for z� . It follows that �C. EK1/¤ �

�. EK1/.

G1W G2W

Figure 12: Grid diagrams for two different Legendrian representatives of the
knot 52 . The left diagram shows the generator zC . The right diagram shows
a generator y so that @yD zCC z� .

On the other hand, consider the generator y shown on G2 in Figure 12. An elementary
check shows that @.y/D zCC z� ; therefore �C. EK2/D �

�. EK2/. But if EK1 and EK2

were Legendrian isotopic (with either orientation), by Theorem 1.1 there would be an
isomorphism from HFK�. EK1/ to HFK�. EK2/ taking �C. EK1/ to �C. EK2/ and ��. EK1/

to ��. EK2/, a contradiction.
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Remark 8.2 This example shows that the transverse invariant �.T / is only an invariant
up to quasi-isomorphisms (and not as an element of an abstract homology group). In
particular, a sequence of elementary moves from a grid diagram G back to itself induces
a quasi-isomorphism that need not be the identity. Indeed, an elementary calculation
shows that the knots EK1 and EK2 become Legendrian isotopic after either one positive or
one negative stabilization. If we follow a path of grid diagrams that takes G1 to G2 via
a positive stabilization and destabilization, followed by a path that takes G2 to G1 via
a negative stabilization and destabilization, we first take ��. EK1/ to ��. EK2/, which is
equal to �C. EK2/, which we take to �C. EK2/. Since ��. EK1/¤ �

C. EK2/, this sequence
of grid moves induces a nontrivial automorphism of HFK�. EK1/.

Example 8.3 The oriented Legendrian links EL3 and EL4 with front projections

EL3 D and EL4 D ;

both of topological type 62
3

and having tbi D 1 and ri D 0 for i D 1; 2, are not
Legendrian isotopic.

Proof Grid diagrams G3 and G4 for these two links are shown in Figure 13. It is
easy to verify that zC.G3/ and z�.G3/ are isolated in the chain complex, as for G1 .
It follows that �C. EL3/¤ �

�. EL3/. On the other hand, we have indicated a generator y
on G4 so that @.y/D zCC z� , so �C. EL4/D �

�. EL4/.

G3W G4W

Figure 13: Grid diagrams G3 and G4 for EL1 and EL2 . The left diagram
shows zC.G3/ . The right diagram shows a generator y with @yD zCC z� .
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Appendix A On �

We found it convenient to work with HFK� in the present paper. In particular, in the
introduction, we gave a definition of � which refers to HFK� , ie, it is defined in terms
of the associated graded object for the Alexander filtration. By contrast, the usual
definition of � refers to the filtered complex cCF [14]. For completeness, we repeat
this definition, putting it in terms of grid diagrams.

Consider the chain complex C�.G/ as in Equation (6). This chain complex has a
Z filtration, induced by the Alexander filtration, whose associated graded object is
CK�.G/ considered throughout most of this paper.

We will need two constructions, as follows. If we set U1 D 0, we obtain a new chain
complex yC.G/, filtered by subcomplexes �F.K; s/, which are generated by elements
with Alexander grading � s . Following [14], we define

�.K/Dmin f s j �F.K; s/ �! cHF.S3/ is nontrivial g:

More symmetrically, we can consider the filtration �F.K; s/ on

zC .G/D C�.G/=.U1 D � � � D Un D 0/;

where �F.K; s/, once again, is generated by those intersection points x with A.x/� s .
This, too, could be used to calculate � : Define

z�.K/Dmin f s jH�.�F.K; s// �!H�. zC .G// is nontrivial g:

Lemma A.1 z�.K/D �.K/� nC 1.

Proof The chain complex zC .G/ is filtered quasi-isomorphic to the filtered mapping
cone of an iterated mapping cylinder�

C.G/

U1 D 0

�
˝R

�O
i¤1

RŒ�1;�1�
Ui
�!R

�
;

where RDZŒU1; : : : ;Un�, and RŒ�1;�1� denotes R with a shift in bigrading so that
1 has both Alexander filtration and Maslov grading of �1 (see [10, Lemma 2.1]). Since
multiplication by Ui on C is filtered chain homotopic to multiplication by U1 (which
we have set equal to zero in the quotient complex), the above mapping cylinder is in
fact filtered quasi-isomorphic to�

C

U1 D 0

�
˝V n�1;
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where V is a free Abelian group generated by two elements, one with Maslov and
Alexander bigrading .0; 0/, and another with Maslov and Alexander bigrading .�1;�1/.
In particular, if we always choose the second generator of V , we get a subcomplex
of zC .G/ which is isomorphic to yC .G/ with both gradings shifted by �nC 1. The
element with minimal Alexander filtration mapping nontrivially to H�. zC .G// will
always live in this subcomplex.

To fit the definition of � above into the discussion from the introduction, define

� 0.K/Dmax f s 2 Z j 9� 2 HFK�.K; s/ such that 8d � 0; U d� ¤ 0 g:

Lemma A.2 � 0.K/D �.m.K//.

Proof Let C 0.G/ D C�.G/˝ ZŒU �, where all Ui act on ZŒU � by multiplication
by U . We think of C 0.G/ as a bigraded complex (rather than as a filtered one), writing
C 0.G/D

L
s2Z C 0.G; s/, where here s refers to the Alexander grading. The homology

of C 0.G/ is easily seen to agree with HF�.G/˝V n�1 (following Lemma A.1), where
the tensor product is taken in the bigraded sense and, as before, V is a rank two module
generated by two elements, one with Maslov and Alexander bigrading .0; 0/, and
another with Maslov and Alexander bigrading .�1;�1/. It follows readily that

� 0.K/Dmax f s 2 Z j 9 � 2H�.C
0.G; s// such that 8d � 0; U d� ¤ 0 g:

Given any s 2 Z, C 0.G; s/ is a chain complex over Z which still retains its Maslov
grading. It is generated by elements U m � x with m � 0 and A.x/ � m D s , its
differentials count those empty rectangles with

P
i Xi.r/D 0, and each rectangle is

counted with multiplicity U
P

i Oi .r/ . Let C 00.G; s/ be the chain complex generated
over Z by those x 2 S with A.x/� s and differential

(24) @00.x/D
X

y2S.G/

X
r2Rectı.x;y/

r\XD∅

S.r/ � y:

There is a canonical inclusion of complexes �W C 00.G; s/� C 00.G; s� 1/. Let C 00.G/

be the union of all C 00.G; s/. For all s 2Z, there is an isomorphism of chain complexes
of Z–modules

�sW C
0.G; s/ �! C 00.G; s/

�s.U
mx/D x;defined by
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which fits into the diagram

C 0.G; s/ ����! C 00.G; s/

U

??y �

??y
C 0.G; s� 1/ ����! C 00.G; s� 1/:

Therefore the inclusion of H�.C
0.G; s// into the direct limit of H�.C

0.G;�// (with
connecting map U ) corresponds to the inclusion of H�.C

00.G; s// into the homology
of C 00.G/.

Let G0 be the grid diagram obtained by reversing the roles of the Oi and the Xi in G ;
G0 is a diagram for �K , the knot K with the orientation reversed. Let A.xIG0/ be
the Alexander grading with respect to G0 . By Equation (5) we see that A.xIG0/ D
�A.xIG/� nC 1, so C 00.G; s/ Š F.G0;�s � nC 1/. Therefore the filtered chain
homotopy type of C 00.G/ is identified with the filtered chain homotopy type of zC .G0/,
with modified filtration degree. Thus � 0.K/D�z�.�K/� nC 1 and, by Lemma A.1,
� 0.K/D��.�K/. We also have �.K/D �.�K/D��.m.K// [14]. (This last step
can also be proved using grid diagrams alone, cf [10, Proposition 5.5].) Putting these
together, we complete the proof.

References
[1] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441–

483 MR1946550

[2] P R Cromwell, Embedding knots and links in an open book. I. Basic properties, Topol-
ogy Appl. 64 (1995) 37–58 MR1339757

[3] I A Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190
(2006) 29–76 MR2232855

[4] J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse ap-
proximations of Legendrian knots, Pacific J. Math. 201 (2001) 89–106 MR1867893

[5] J B Etnyre, Legendrian and transversal knots, from: “Handbook of knot theory”,
Elsevier B. V., Amsterdam (2005) 105–185 MR2179261

[6] J B Etnyre, K Honda, Knots and contact geometry. I. Torus knots and the figure eight
knot, J. Symplectic Geom. 1 (2001) 63–120 MR1959579

[7] D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard
contact space, Topology 36 (1997) 1025–1053 MR1445553

[8] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces. I, Topology 32
(1993) 773–826 MR1241873

Geometry & Topology, Volume 12 (2008)

http://dx.doi.org/10.1007/s002220200212
http://www.ams.org/mathscinet-getitem?mr=1946550
http://dx.doi.org/10.1016/0166-8641(94)00087-J
http://www.ams.org/mathscinet-getitem?mr=1339757
http://www.ams.org/mathscinet-getitem?mr=2232855
http://www.ams.org/mathscinet-getitem?mr=1867893
http://www.ams.org/mathscinet-getitem?mr=2179261
http://projecteuclid.org/getRecord?id=euclid.jsg/1092316299
http://projecteuclid.org/getRecord?id=euclid.jsg/1092316299
http://www.ams.org/mathscinet-getitem?mr=1959579
http://dx.doi.org/10.1016/S0040-9383(96)00035-3
http://dx.doi.org/10.1016/S0040-9383(96)00035-3
http://www.ams.org/mathscinet-getitem?mr=1445553
http://dx.doi.org/10.1016/0040-9383(93)90051-V
http://www.ams.org/mathscinet-getitem?mr=1241873


Legendrian knots, transverse knots and combinatorial Floer homology 979
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[17] P Ozsváth, Z Szabó, Holomorphic disks, link invariants, and the multi-variable
Alexander polynomial, to appear in Algebr. Geom. Topol. 8 (2008) arXiv:
math.GT/0512286

[18] O Plamenevskaya, Bounds for the Thurston–Bennequin number from Floer homology,
Algebr. Geom. Topol. 4 (2004) 399–406 MR2077671

[19] O Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13
(2006) 571–586 MR2250492

[20] J A Rasmussen, Khovanov homology and the slice genus, to appear in Invent. Math.
arXiv:math.GT/0402131

[21] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University
(2003) arXiv:math.GT/0306378

[22] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge
theory, Invent. Math. 119 (1995) 155–163 MR1309974

Department of Mathematics, Columbia University
New York, NY 10027

Department of Mathematics, Princeton University
Princeton, New Jersey 08544

Department of Mathematics, Barnard College, Columbia University
New York, NY 10027

petero@math.columbia.edu, szabo@math.princeton.edu,
dthurston@barnard.edu

Geometry & Topology, Volume 12 (2008)

http://arxiv.org/abs/math.GT/0607691
http://www.ams.org/mathscinet-getitem?mr=2372850
http://dx.doi.org/10.1016/S0040-9383(02)00010-1
http://www.ams.org/mathscinet-getitem?mr=1928645
http://dx.doi.org/10.2140/agt.2005.5.1637
http://www.ams.org/mathscinet-getitem?mr=2186113
http://arxiv.org/abs/math.GT/0703446
http://dx.doi.org/10.2140/gt.2003.7.615
http://www.ams.org/mathscinet-getitem?mr=2026543
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.1215/S0012-7094-04-12912-4
http://www.ams.org/mathscinet-getitem?mr=2153455
http://arxiv.org/abs/math.GT/0512286
http://arxiv.org/abs/math.GT/0512286
http://dx.doi.org/10.2140/agt.2004.4.399
http://www.ams.org/mathscinet-getitem?mr=2077671
http://www.ams.org/mathscinet-getitem?mr=2250492
http://arxiv.org/abs/math.GT/0402131
http://arxiv.org/abs/math.GT/0306378
http://dx.doi.org/10.1007/BF01245177
http://dx.doi.org/10.1007/BF01245177
http://www.ams.org/mathscinet-getitem?mr=1309974
mailto:petero@math.columbia.edu
mailto:szabo@math.princeton.edu
mailto:dthurston@barnard.edu


980 Peter Ozsváth, Zoltán Szabó and Dylan Thurston

Proposed: Yasha Eliashberg Received: 21 February 2007
Seconded: Tom Mrowka, John Morgan Revised: 5 January 2008

Geometry & Topology, Volume 12 (2008)


	1. Introduction
	2. Legendrian and transverse knots
	3. Combinatorial knot Floer homology
	4. Grid diagrams and Legendrian knots
	5. Grid moves for knot Floer homology
	5.1. Commutation maps
	5.2. Stabilization maps

	6. Definition and invariance properties of the Legendrian invariants
	6.1. Properties of the Legendrian invariant

	7. The case of links
	8. Examples: The knot 5_2 and the link 6_3^2
	Appendix A. On tau
	References

