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Intersection numbers with Witten’s top Chern class

SERGEY SHADRIN

DIMITRI ZVONKINE

Witten’s top Chern class is a particular cohomology class on the moduli space of
Riemann surfaces endowed with r –spin structures. It plays a key role in Witten’s
conjecture relating to the intersection theory on these moduli spaces.

Our first goal is to compute the integral of Witten’s class over the so-called double
ramification cycles in genus 1. We obtain a simple closed formula for these integrals.

This allows us, using the methods of the first author [18], to find an algorithm for
computing the intersection numbers of the Witten class with powers of the  –classes
over any moduli space of r –spin structures, in short, all numbers involved in Witten’s
conjecture.

14H10; 14H70

1 Introduction

1.1 Aims and purposes

In 1991 E Witten formulated two conjectures relating to the intersection theory of
moduli spaces of curves [19; 20], motivated by two dimensional gravity.

The first conjecture involves moduli spaces of stable curves and certain 2-cohomology
classes on them, called  –classes. The intersection numbers of powers of the  –
classes can be arranged into a generating series that is claimed to be a solution of the
Korteweg–de Vries (or KdV) hierarchy of partial differential equations. This conjecture
was first proved by M Kontsevich in [12]. At present there are several alternative proofs
by Okounkov and Pandharipande [15], Mirzakhani [13], Kim and Liu [11], Kazarian
and Lando [10], Chen, Li and Liu [2] and Kazarian [9].

The second conjecture1 involves a more complicated moduli space, called the space
of r –spin structures. Apart from the  –classes, one considers one more cohomology
class, called the Witten top Chern class, or just Witten’s class for shortness. We are

1It was recently proved by C Faber and the authors [6], two years after the completion of the present
work.
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interested in the intersection numbers of Witten’s class with powers of the  –classes.
These intersection numbers can, once again, be arranged into a generating series, and
this series is a solution of the r –th Gelfand–Dikii (or the r –KdV) hierarchy.

Giving a proper formulation of this conjecture required joint work by several people
(references are given below). In particular, the precise definition of Witten’s top Chern
class is rather involved. However this class is known to satisfy quite simple factorization
rules.

In [18] the first author found an “almost algorithm” for computing some of the intersec-
tion numbers arising in Witten’s second conjecture using only the factorization rules
for the Witten class. More precisely, the factorization rules allow one to express more
complicated intersection numbers via simpler ones, until one arrives at unsimplifiable
cases. These can be of two types: (i) Integrals of Witten’s class (with no  –classes)
over genus 0 moduli spaces. These numbers are well-known. (ii) Integrals of Wit-
ten’s class (with no  –classes) over some special divisors on genus 1 moduli space.
(These divisors have a rather cumbersome name of double ramification divisors – see
Definitions 1.1 and 2.4.) When numbers of second type appeared in the course of
computations the algorithm blocked without giving an answer.

The purpose of this note is twofold.

First, we compute the integrals of Witten’s class over the double ramification divisors
in genus 1. It turns out that a simple closed formula exists for these integrals.

Second, we complete and give a coherent exposition of the algorithm for computing
Witten’s intersection numbers. Our computation uses only factorization rules for
Witten’s class. Therefore, we obtain the following theorem2.

Theorem 1 The intersection numbers of Witten’s class with powers of the  –classes
are entirely determined by (i) genus 0 intersection numbers involving no  –classes,
and (ii) the factorization rules for Witten’s class.

1.2 Main definitions

1.2.1 Moduli spaces Mg;n is the moduli space of smooth complex genus g curves
with n� 1 distinct numbered marked points. SMg;n is its Deligne–Mumford compacti-
fication, in other words, the moduli space of stable curves. Over SMg;n we define n

holomorphic line bundles Li . The fiber of Li over a point q 2 SMg;n is the cotangent
line to the corresponding stable curve Cq at the i –th marked point. We denote by
 i D c1.Li/ their first Chern classes.

2In [6] another proof of Theorem 1 is given; it is simpler, but less constructive.
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1.2.2 Spaces of r –spin structures Choose an integer r � 2 and pick n integers
a1; : : : an 2 f0; : : : ; r � 1g in such a way that 2g � 2�

P
ai is divisible by r . The

numbers a1; : : : ; an are assigned to the marked points x1; : : : ;xn . On a smooth
curve C one can find r2g different line bundles T with an identification

T ˝r �
�!K

�
�

X
aixi

�
:

The space of smooth curves endowed with such a line bundle T is called the space
of r –spin structures and denoted by M1=r

gIa1;:::;an
. Every r –spin structure T has r

“trivial” automorphisms given by the multiplication by r –th roots of unity along the
fibers of T . Therefore the stabilizer of the generic point of the moduli stack is Z=rZ.
However, we choose to work with the rigidified moduli space factoring out Z=rZ in
all stabilizers. Thus M1=r

gIa1;:::;an
is an unramified r2g –sheeted covering of Mg;n .

A compactification of this space, denoted by SM1=r
gIa1;:::;an

, was constructed by Jarvis
alone [8] and with Abramovich [1] (see also Chiodo [3] for a simplified version). It is
a smooth orbifold (or stack), and there is a finite projection mapping of degree r2g

pW SM1=r
gIa1;:::;an

! SMg;n:

The simplest construction [3] uses the so-called Abramovich–Vistoli twisted curves, ie,
curves that are themselves endowed with an orbifold structure. The stabilizers of the
marked points and the nodes are equal to Z=rZ, while the stabilizer of any other point
is trivial. T is then an r –th root of K.�

P
aixi/ in the orbifold sense. Alternatively,

we can forget about the orbifold structure of the curve and consider only the sheaf of
invariant sections of T . We then obtain a rank one torsion-free sheaf rather than a line
bundle, which leads to the construction of the compactification given in [8].

1.2.3 Witten’s class The rank one torsion-free sheaf (of invariant sections of) T is
defined on the universal curve xC1=r

gIa1;:::;an
over SM1=r

gIa1;:::;an
. Consider its pushforward to

the space SM1=r
gIa1;:::;an

itself. First assume that for each curve C we have H 0.C; T /D0.
Then the spaces H 1.C; T / form a vector bundle V _ over SM1=r

gIa1;:::;an
. We denote by

V the dual vector bundle and define Witten’s class as

cW .a1; : : : ; an/D cW D
1

rg
p� ctop.V /:

In other words: take the top Chern class of V , push it from SM1=r
gIa1;:::;an

to SMg;n , and
divide by rg . By the Riemann–Roch formula, the (complex) degree of Witten’s class is

deg cW D
.r � 2/.g� 1/C

P
ai

r
:

Unfortunately, in general T has both 0– and 1–cohomologies. The definition of
Witten’s class cW in this case is much more involved. There exist two compatible
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algebro-geometric constructions: see Polishchuk and Vaintrob [17] and Chiodo [4].
(Note that the definition of cW is special to our situation and uses the identification of
T ˝r with the canonical bundle. No general constructions from algebraic geometry are
expected to work.)

Witten’s class satisfies the following vanishing property, that we will use as an axiom:

If one of the ai ’s equals r � 1 then cW D 0.

1.2.4 Factorization rules We are interested in the restriction of Witten’s class to the
boundary components of the moduli space SMg;n . There are two types of boundary
components (see Figure 1): those isomorphic to SMg0;n0C1 �

SMg00;n00C1 , n0C n00 D n,
g0Cg00 D g and the unique component isomorphic to SMg�1;nC2=Z2 .

g0; n0 g00; n00 g� 1; n

Figure 1: Two possible degenerations of a stable curve

In the first case, assume for simplicity that the marked points x1; : : : ;xn0 are on the
first component of the curve, while xn0C1; : : : ;xn are on the second component. There
is a unique choice of a0; a00 2 f0; : : : ; r � 1g such that

2g0� 2� a0�

n0X
iD1

ai and 2g00� 2� a00�

nX
iDn0C1

ai

are both divisible by r . We have a0C a00 D r � 2 or a0 D a00 D r � 1. For the second
type of boundary component, we have to sum over all choices of a0; a00 such that
a0C a00 D r � 2. Now we can formulate the factorization rules.

The restriction of Witten’s class to the first type boundary component equals

cW .a1; : : : ; an/D cW .a1; : : : ; an0 ; a
0/� cW .an0C1; : : : ; an; a

00/:

The restriction of Witten’s class to the second type boundary component equals

cW .a1; : : : ; an/D
1

2

X
a0Ca00Dr�2

cW .a1; : : : ; an; a
0; a00/:
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The vanishing property and the factorization rules (for the Polishchuk–Vaintrob con-
struction) are proved in [16].

1.2.5 Intersection numbers We use the standard notation for the intersection num-
bers of Witten’s class with powers of the  –classes:

h�d1;a1
: : : �dn;an

i D

Z
SMg;n

cW .a1; : : : ; an/  
d1

1
: : :  dn

n :

Although the genus g is determined by the elements of the bracket by

.r C 1/.2g� 2C n/D
X

.rdi C ai C 1/;

we will sometimes recall it in a subscript. The integer r � 2 is supposed to be fixed
once and for all throughout the paper.

Since double ramification cycles on genus 1 moduli spaces will play a special role, let
us introduce them here (this is a particular case of Definition 2.4). Choose n integers
k1; : : : ; kn satisfying

P
ki D 0. We assume that at least one of the ki ’s is different

from 0.

We will usually assume that the list .k1; : : : ; kn/ starts with the positive integers and
ends with the negative ones, the zeroes being in the middle. We will sometimes use the
notation

.k1; : : : ; knC j 0; : : : ; 0 j
zk1; : : : ; zkn�/

with only nonnegative integers instead of

.k1; : : : ; kn/D .k1; : : : ; knC ; 0; : : : ; 0;�
zk1; : : : ;�zkn�/:

To this list of integers assign the set D.k1; : : : ; kn/ of smooth genus 1 curves
.C;x1; : : : ;xn/ such that

P
kixi is the divisor of a function on C . Let the cycle

xD.k1; : : : ; kn/ be the closure of D.k1; : : : ; kn/ in SM1;n .

Definition 1.1 We call xD.k1; : : : ; kn/ a double ramification cycle. The integral of
Witten’s class over this cycle is denoted byZ

xD.k1;:::;kn/

cW .a1; : : : ; an/D

�
k1 : : : kn

a1 : : : an

�

D

�
k1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : : : : : : : an

�
:
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Theorem 2 The integral of Witten’s class cW .a1; : : : ; an/ over the double ramification
cycle xD.k1; : : : ; kn/� SM1;n equals�

k1 : : : kn

a1 : : : an

�
gD1

D

 
1

2

nX
iD1

k2
i � 1

!
�

1

24

.n� 1/!

rn�1

nY
iD1

.r � 1� ai/

if
P

ai D r.n� 1/ and vanishes otherwise.
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2 Preliminaries

2.1 Admissible coverings

Consider a map ' from a smooth curve C to the sphere S DCP1 . On S , introduce
a (finite) set of marked points containing all the branch points of ' . On C , mark all
the preimages of the marked points on S . Now choose several disjoint simple loops
on S , that do not pass through the marked points. Suppose that if we contract these
loops we obtain a stable genus 0 curve S 0 . Now contract also all the preimages of the
loops in C to obtain a nodal curve C 0 that turns out to be automatically stable. We
have obtained a map '0 from a nodal curve of genus g to a stable curve of genus 0. It
has the same degree over every component of S 0 . Moreover, at each node of C 0 , the
projection '0 has the same local multiplicity on both components meeting at the node.

Definition 2.1 A map from a stable curve of genus g to a stable curve of genus 0
topologically equivalent to a map described above is called an admissible covering.

The space of all admissible coverings with prescribed ramification types over the
marked points is very useful for the study of moduli spaces [7]. It is not normal but
can be normalized, and thus one can study its intersection theory. We refer to Ionel’s
work [7] for detailed definitions.
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We will be particularly interested in the space of admissible coverings with multiple
ramifications only over 2 points labeled with 0 and 1, the other ramification points
being simple.

An admissible covering induces a map of finite sets

y'W (set of labels on C /! (set of labels on S/:

Although we will not stress this point every time, we will always assume that both
sets of labels of the marked points and the map y' are given once and for all. In other
words, if we choose a marked points on C , we know automatically the label of its
image on S and, conversely, if we choose a marked point on S we know the set of
labels of its preimages.

Definition 2.2 Consider the space of admissible coverings of some given genus g

with prescribed ramification types .k1; : : : ; knC/ and .zk1; : : : ; zkn�/,
P

ki D
P
zki ,

over two points labeled 0 and 1, simple ramifications over nCC n�C 2g� 2 more
points of S , and, finally, n0 additional marked points on S . The normalization of this
space is called a double ramification space or a DR-space. It is denoted by

xAD xA.k1; : : : ; knC ;

n0‚ …„ ƒ
0; : : : ; 0;�zk1; : : : ;�zkn�/:

We do not include the genus g in our notation, although, of course, the space of
coverings does depend on g .

Let KD
P

ki D
P
zki and nD nCCn�Cn0 . Then the total number of marked points

on the curve C equals N D nKC .2g�2/.K�1/. We can consider the forgetful map
j W xA! SMg;N that forgets the admissible covering retaining only its source curve.
Since the curve C is automatically stable, the map j is actually an injection and an
isomorphism with its image3. The pullbacks by j of the  –classes on SMg;N coincide
with the  –classes naturally defined on xA.

Another forgetful map f W xA! SM0;nC2g takes an admissible covering to its image
genus 0 curve. This map satisfies the following crucial property.

3Indeed, suppose the curve C is given. Here is how we reconstruct the admissible covering ' . First,
the topological structure of the image curve S of ' is determined by the following condition: two
marked points lie on different components whenever they have two preimages in C lying on different
components. (Note that every node of C necessarily separates two different irreducible components.)
Once the topological structure of S is known, it is easy to determine which component of C is mapped
to which component of S and which node is mapped to which node. Finally, to construct the map ' on
each component, we note that there are at least three special points on each component of S and that a
meromorphic function is uniquely determined by its zeroes, poles, and one more point at which its value is
known.
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Lemma 2.3 (Ionel [7, Lemma 1.17]) The map f is finite. We have

 i.xA/D
1

ki
 0. SM0;nC2g/;  nCCn0Ci.xA/D

1

zki

 1. SM0;nC2g/:

In other words, a  –class on xA at a marked zero or pole of the admissible covering
coincides, up to a constant, with the pullback of the  –class at 0 or 1 of the genus 0
moduli space.

The equality between the  –classes will be the base of our computations. For the time
being, we note two simple consequences of the finiteness of f : first, the dimension
of the DR-space equals nC 2g � 3; second, the set f �1.M0;nC2g/ of admissible
coverings with smooth source curves C is open dense in the DR-space.

Finally, we define double ramification cycles (this is a generalization of Definition 1.1).
For a given moduli space SMg;n choose an integer p , 0� p � g and nCp integers
ki . We suppose that

P
ki D 0, that none of the knC1; : : : ; knCp vanishes, and that

among k1; : : : ; kn there is at least one positive and at least one negative integer.

Definition 2.4 Let Dg;n.k1; : : : ; knCp/ be the set of smooth curves .C;x1; : : : ;xn/

in Mg;n such that there exist p more marked points xnC1 , . . . , xnCp and a mero-
morphic function on C with no zeroes or poles outside of x1; : : : ;xnCp , the orders
of zeroes or poles being prescribed by the list k1; : : : ; knCp (ki > 0 for the zeroes,
ki < 0 for the poles, and ki D 0 for the marked points that are neither zeroes nor poles).
The closure of this set in SMg;n is called the double ramification cycle or a DR-cycle
and denoted by xDg;n.k1; : : : ; knCp/.

Recall that the list .k1; : : : ; knCp/ re-ordered in the nonincreasing order is denoted by

.k1; : : : ; knC ;

n0‚ …„ ƒ
0; : : : ; 0;�zk1; : : : ;�zkn�/;

with nCC n0C n� D nCp and K D
PnC

iD1
ki D

Pn�
iD1
zki .

Proposition 2.5 If K D 1, g � 1, then the DR-cycle xDg;n.k1; : : : ; knCp/ is empty.
Else its codimension is equal to g�p .

This fact is well-known to the experts, but the complete proof does not appear any-
where in the literature (it is usually referred to as “a generalization of Mumford’s
argument” [14]). For completeness we present the argument here.
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Proof of Proposition 2.5 xDg;n.k1; : : : ; knCp/ is defined as the closure of the set
Dg;n.k1; : : : ; knCp/�Mg;n ; hence it suffices to show that Dg;n.k1; : : : ; knCp/ is of
codimension g�p or, in other words, of dimension 2g� 3C nCp . We deduce the
proposition from the three following lemmas.

Lemma 2.6 If K D 1, g � 1, then Dg;n.k1; : : : ; knCp/ is empty. Otherwise
Dg;n.k1; : : : ; knCp/ is nonempty and its dimension is at most 2g� 3C nCp .

The idea of the proof is that Dg;n.k1; : : : ; knCp/ is the image of a so-called projec-
tivized Hurwitz space which is itself of dimension 2g� 3C nCp .

Lemma 2.7 Let p D g . Dg;n.k1; : : : ; kn/ is a Zariski open set in Mg;n . It is empty
if K D 1, g � 1, and dense otherwise.

The idea of the proof is that by moving g points on a genus g curve one can obtain
every element of the Jacobian of the curve.

Lemma 2.8 Let p D 0. Then the codimension of Dg;n.k1; : : : ; kn/ is at most g .

The idea is that locally Dg;n.k1; : : : ; knCg/ can be given by g equations.

Lemma 2.7 establishes the dimension of Dg;n.k1; : : : ; knCp/ for p D g , while Lem-
mas 2.6 and 2.8 establish the dimension of Dg;n.k1; : : : ; knCp/ for pD0. In both cases
the dimension equals 2g�3CnCp . Consider two forgetful maps Mg;nCp!Mg;n!

Mg;nCp�g . These maps send Dg;nCp.k1; : : : ; knCp/ to Dg;n.k1; : : : ; knCp/ and
then to Dg;nCp�g.k1; : : : ; knCp/. Since the dimensions of the first and the last spaces
are both equal to 2g� 3C nCp , the dimension of Dg;n.k1; : : : ; knCp/ also equals
2g� 3C nCp .

Proof of Lemma 2.6 The Hurwitz space HgIk1;:::;knCp
is the space of ramified

coverings of the sphere by (smooth connected) genus g surfaces, with ramification
types .k1; : : : ; knC/ and .zk1; : : : ; zkn�/ over 0 and 1 respectively and with n0 more
marked points on the source curve.

Let .C; f W C !CP1/ be a point of HgIk1;:::;knCp
. On CP1 mark the branch points

of f and the images of the n0 marked points on C . A generic f has mD2g�2CnCC

n� simple branch points, thus in whole there are mC n0 D 2g� 2C nCp marked
points on CP1 . (In the nongeneric case, the number of marked points is smaller.)
Now, one can reconstruct the couple .C; f / from the set of marked points and some
additional discrete information about the monodromies of the ramified covering f .
Therefore the dimension of HgIk1;:::;knCp

equals 2g� 2C nCp .
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Consider the natural forgetful map HgIk1;:::;knCp
!Mg;n . The image of this map is

Dg;n.k1; : : : ; knCp/. On the other hand, under this map, the dimension drops at least
by 1, since the points .C; f / and .C; �f / have the same image for any � 2C� . Thus
the dimension of Dg;n.k1; : : : ; knCp/ is at most 2g� 3C nCp .

Note that for g � 1, the case K D 1 (in other words, nC D n� D 1, k1 D
zk1 D 1)

is an exception: indeed in this case both HgIk1;:::;knCp
and Dg;n.k1; : : : ; knCp/ are

empty, because there are no meromorphic functions of degree 1 on a genus g � 1

surface. In all other cases, the space HgIk1;:::;knCp
is nonempty and of dimension

2g�2CnCp as claimed. Indeed, for K�2, one can always find in the symmetric group
SK two permutations �C and �� with cycle types .k1; : : : ; knC/ and .zk1; : : : ; zkn�/

respectively and m D 2g � 2C nCC n� transpositions �1; : : : ; �m such that (i) the
product �C�m : : : �1�� equals the identical permutation; and (ii) the group generated
by �C; ��; �1; : : : ; �m acts transitively on the K elements.

Proof of Lemma 2.7 For simplicity, let us choose a base point in C ; then every
divisor in C determines a point in the jacobian Jac.C /. It is easy to check that the map

C g ! Jac.C /
.xnC1; : : : ;xnCg/ 7! knC1x1C � � �C knCgxg

is of degree k2
nC1
� � � k2

nCg 6D 0. Therefore, for any curve C and any marked points
x1; : : : ;xn there exists a choice of xnC1; : : : ;xnCg such that

PnCg
iD1

kixi is the divisor
of a function. Hence the points of Mg;n that do not lie in Dg;n.k1; : : : knCg/ form a
Zariski closed set given by the following Zariski closed condition: if

PnCg
iD1

kixi is
the divisor of a function then the points x1; : : :xnCg are not pairwise distinct.

We have proved that Dg;n.k1; : : : knCg/ is a Zariski open set. Being the image of
the Hurwitz space, it is empty if and only if the Hurwitz space is empty and dense
otherwise.

Proof of Lemma 2.8 To simplify the notation, we relabel the n marked points on
the curve C by x1; : : :xnC , zx1; : : : ; zxn� , y1; : : : ;yn0

. Over Mg;n we consider two
vector bundles E and F of ranks KCn�Cg� 1 and KCn�C 2g� 2 respectively.
The fiber of E over a curve C 2Mg;n is the space of meromorphic differentials with
poles of orders zk1C 1; : : : ; zkn� C 1 at zx1; : : : ; zxn� . The vector bundle F is the sum
of nCC1 subbundles: F DH˚J1˚� � �˚JnC . Here Ji is the bundle of .ki�1/–jets
of differentials at xi , while

H DH 1
�
C n fzx1; : : : ; zxn�g; fx1; : : : ;xnCg;C

�
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is the first cohomology group of the curve C punctured at the points zx1; : : : ; zxn� and
with points x1; : : : ;xnC identified. The rank of Ji equals ki �1, while the rank of H

equals 2g� 2C n�C nC .

There is a natural linear map vW E ! F , assigning to a meromorphic differential
from E its jets at the points xi and the cohomology class in H that it represents. Now
we claim that the curve C with n marked points belongs to Dg;n.k1; : : : ; kn/ if and
only if the map v is not injective (ie, has a nontrivial kernel). Indeed, if ˛ 2 ker v , then
˛ is an exact differential on C and f D

R
x1
˛ has poles of orders zki at zxi and zeroes

of orders ki at xi . Conversely, if f is a function with zeroes and poles like that, then
df 2 ker v .

In local coordinates the map v is given by a matrix .KC n�Cg� 1/� .KC n�C

2g � 2/. The condition that this matrix is not of the highest rank is expressed by g

equations: the vanishing of g minors. Thus locally, at the neighborhood of any point,
Dg;n.k1; : : : ; kn/ is given by g equations and has codimension at most g .

Faber and Pandharipande [5] proved that the cohomology classes Poincaré dual to any
DR-cycle belongs to the tautological ring of the moduli space of curves. Their proof
may be used to obtain new relations for intersection numbers with Witten’s class.

Introduce the following forgetful map hW xA.k1; : : : ; knCp/! SMg;n . Take an admissi-
ble covering 'W C ! S . Forget the covering itself, retaining only the source curve C .
Further, on C , forget all the preimages of the branch points on S , except 0 and 1.
Forget those preimages of 0 and 1 that correspond to knC1; : : : ; knCp , but retain the
nCC n� others. For each of the n0 additional marked points of S , retain exactly one
of its preimages (say, the one with the smallest number) and forget the others. Finally,
stabilize the curve thus obtained. We have a obtained a stable curve C with n marked
points naturally labeled by k1; : : : ; kn . This curve is the image of the initial admissible
covering under the map h.

Proposition 2.9 The map h sends the fundamental homology class of
xA.k1; : : : ; knCp/ to a multiple of the fundamental homology class of the DR-cycle
xDg;n.k1; : : : ; knCp/.

Proof This follows from Ionel’s lemma and Proposition 2.5. Indeed, both spaces have
the same dimension .nCpC2g/�3D 3g�3Cn�.g�p/. Moreover, h is surjective
because, by definition, every point in the open part of xDg;n.k1; : : : ; knCp/ gives rise
to a unique admissible covering up to the numbering of the marked points.
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Conventions By now we have introduced several spaces and forgetful maps between
them. We sum up these definitions in Figure 2.

The figure represents a DR-space

xA.k1C 1; : : : ; knC ; 0; : : : ; 0;�
zk1; : : : ;�zkn� ;�1/:

for g D 1. If we denote by K the sum
P

ki D
P
zki , the total number of marked

points on C equals N D .nC 1/.KC 1/. The figure also shows the forgetful maps
j , f and h. In this figure, as well as in the subsequent figures and in the text we
follow the following conventions. A cross represents a critical point or a branch point
of an admissible covering. Round black dots represent the marked points x1; : : : ;xn

(they are not forgotten under the map h). The images of these points under the maps
j , f , and h are also represented as round black dots. Square black dots represent
the points xnC1; : : : ;xnCp (they are forgotten under the map h). Finally, white dots
represent all the marked points on the curve C different from the critical points and
from x1; : : : ;xnCp . We will not show them in the figures when it is not necessary.

2.2 Intersection numbers in genus 0

In our computations we will need the value of the bracket

h�1;a1
�0;a2

: : : �0;an
i1 D

Z
SM1=r

gIa1;:::;an

cW  1

for
P

ai D .n� 1/r . The topological recursion relation expresses  1 as a sum of
divisors:

(1)  1 D
1

12
1

We must integrate Witten’s class over each of these divisors. The first divisor contributes
0 4 while the second one contributes

1

24

X
a0Ca00Dr�2

h�0;a1
: : : �0;an

�0;a0�0;a00i0:

This is a combination of integrals of Witten’s class (without  –classes) over genus 0
moduli spaces, and we are now going to determine its value. For simplicity, in this

4 Indeed, the integral of cW over this divisor includes as a factor the integral of cW over a genus 1
moduli space, which vanishes for reasons of dimension: deg cW D ..r�2/.g�1/C

P
ai/=rD .

P
ai/=r �

n0 � 1< n0 D dim SM1;n0 , where n0 is the number of marked points and nodes on the torus.
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section we will use nonstandard notation for the bracket: ha1; : : : ; ani instead of
h�0;a1

: : : �0;an
i0 .

Proposition 2.10 For any m� r �2 and for any x1; : : : ;xn , 0� xi � r �2,
P

xi D

nr �m� 2, we haveX
aCbDm

ha; b;x1; : : : ;xni D
.n� 1/!

rn�1

nY
iD1

.r � 1�xi/:

Proof The proof uses the known initial values of the bracket:

ha1; a2; a3i D 1 for
P

ai D r � 2;

ha1; a2; a3; a4i D
1
r

min1�i�4.ai ; r � 1� ai/ for
P

ai D 2r � 2;

and the WDVV equation. First note that the proposition is true for nD 1 (it says thatP
aCbDm 1DmC 1).

Now we assume n� 2 and proceed by induction on m.

If mD 0 then the only possible bracket is h0; 0; r � 2i.

Suppose that the proposition is true up to some m. Let us apply the WDVV equation
to the correlators containing 1; a; b;x1; : : : ;xn , the four distinguished points being 1,
a, b , and x1 . In other words, we consider all possible degenerations of the sphere
into two components such that 1 and a lie on one component, while b and x1 lie on
the other one, and then we swap the four points. We obtain the following equality.
(The summation over aC b Dm is implicitly assumed; a hat means that the symbol is
skipped; underlined symbols are not in the original list, they appear at the node of the
degenerate sphere in the WDVV formula.)

h1; a; r � 3� aihaC 1;b;x1; : : : ;xni(2)

C

X
i 6D1

h1; a;xi ;2r � 3� a�xiihaC 1Cxi � r ; b;x1; : : : ; bxi ; : : : ;xni(3)

D h1;x1; r � 3�x1iha; b;x1C 1;x2; : : : ;xni(4)

C

X
i 6D1

h1;x1;xi ; 2r � 3�x1�xii�

� ha; b;x1Cxi C 1� r ;x2; : : : ; bxi ; : : : ;xni:(5)

The term (2) is the sum over .aC 1/C b D mC 1 that we want to determine. The
missing case aC 1D 0 does not matter, because for n� 2 a single zero entry makes a
bracket vanish.

Geometry & Topology, Volume 12 (2008)



726 Sergey Shadrin and Dimitri Zvonkine

The term (3) can be evaluated by the induction assumption. It vanishes if aC1Cxi < r ,
while for aC 1C xi � r we obtain a sum over .aC 1C xi/C b DmC xi � r <m.
Thus we have

.3/D
1

r
�
.n� 2/!

rn�2

Y
j 6Di

.r � 1�xj /:

The term (4) can, once again, be evaluated by the induction assumption:

.4/D
.n� 1/!

rn�1
.r � 2�x1/

Y
j 6D1

.r � 1�xj /:

The last term (5) vanishes if x1Cxi C 1< r . Luckily, it turns out that for any i > 1,
we have x1CxiC1� r . Indeed, if aCb Dm� r �3 and x1Cxj � r �2, then the
sum of the n� 2 remaining terms equals nr �m� 2�x1�xi � .n� 2/r C 3, which
is impossible since each of them equals at most r � 2. Therefore we have

.5/D
1

r
�
.n� 2/!

rn�2
Œ.r � 1�x1/C .r � 1�xi/�

Y
j 6D1;i

.r � 1�xj /:

We deduce that

.2/D .4/C .5/� .3/D
.n� 1/!

rn�1

Y
j

.r � 1�xj /:

Remark 2.11 By looking through the proof carefully one can check that the formula
given in the proposition actually holds for m� r , except if nD 1.

3 Computations with double ramification cycles

In this section we prove Theorem 2. By algebro-geometric arguments we find several
relations binding the values of the brackets involved in the theorem, that is, the values of
the integral of Witten’s class cW .a1; : : : ; an/ over DR-cycles D.k1; : : : ; kn/� SM1;n .
In Section 3.1 we write down these relations and prove that they suffice to determine
the values of the bracket in all cases. We prove the relations in Section 3.2.

From now on and until the end of the section we assume that
Pn

iD1 ai D .n�1/r . This
is the maximal possible value, given that 0� ai � r �1 and r j

P
ai . Accordingly, the

(complex) degree of cW .a1; : : : ; an/ equals n� 1, and it is the highest possible value.
In all other cases, the integrals we consider vanish for dimensional reasons.
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3.1 The relations

Denote by

B D h�1;a1
�0;a2

: : : ; �0;an
i1 D

1

24

.n� 1/!

rn�1

nY
iD1

.r � 1� ai/

(see Section 2.2).

Then the following relations hold.

Relation 1
.k1C1/.nCC n�C 1/B D

� .k1C nCC n�C 1/

�
k1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�

�

nCX
iD2

.ki � 1/

�
k1C 1 k2 : : : ki � 1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�

C

n�X
iD1

.zki C 1/

�
k1C 1 k2 : : : knC 0 : : : 0 zk1 : : : zki C 1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�

Relation 2

.k1C 1/B D�

�
k1 : : : knC

n0‚ …„ ƒ
0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�

C

�
k1C 1 k2 : : : knC

n0�1‚ …„ ƒ
0 : : : 0 1 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : : : : : : : an

�
Relation 3 �

1 0 : : : 0 1

a1 : : : an

�
D 0

To these relations we may add the simple observation that the brackets are invariant
under renumberings of the marked points and under a simultaneous change of sign of
all ki ’s.

One can check by direct computations that these relations are compatible with the
expression of the bracket given in Theorem 2.

Lemma 3.1 Relations 1, 2, and 3 determine the values of all brackets unambiguously.
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Proof The lemma is proved by induction on the number of nonzero entries nCC n�
in a bracket, the base of induction being given by Relation 3.

Consider a bracket whose value we would like to determine.

First case: suppose that one of the zki ’s is equal to 1 and one of the ki ’s is greater than 1
(or vice versa). Then we take our bracket to be the last term in Relation 2 and replace
it by the first term (plus a known multiple of B ). We have decreased the number of
nonzero ki ’s in the bracket to be computed.

Second case: suppose that all the (nonzero) ki ’s and zki ’s equal 1. In particular,
nC D n� . If nC D n� D 1 the bracket vanishes by Relation 3. If nC D n� � 2, we
take our bracket to be the first term in Relation 1. Our bracket is than replaced by a
sum of brackets in which one of the ki ’s and one of the zki ’s are equal to 2, while all
the others are equal to 1. Such brackets fall into the first case.

Third case: suppose that all of the ki ’s and zki ’s are greater than 1. Then we take our
bracket to be the first term of the second sum in Relation 1 and replace it by the sum
of the other terms. As a result we obtain a combination of brackets in all of which
the number zk1 is smaller than in the initial bracket. Repeating the same operation for
each bracket we are sure that zk1 will decrease by 1 with every step. Thus after a finite
number of steps we will end up with a collection of brackets all of which fall into the
first two cases.

Thus the relations determine the values of the brackets unambiguously. Since they are
compatible with the expression of Theorem 2, the theorem will be completely proved
once we will have proved the relations.

3.2 Proof of the relations

First of all, Relation 3 is obvious. The bracket in this relation denotes an integral over
an empty DR-cycle xD.1; 0; : : : ; 0;�1/, therefore it vanishes. Thus we only need to
prove Relations 1 and 2.

Consider the commutative diagram involving four moduli spaces shown in Figure 2.

Here xAD xA.k1C1; : : : ; kn;�1/ is the DR-space of genus 1 admissible coverings with
ramification types .k1C 1; k2; : : : ; knC/ and .1; zk1; : : : ; zkn�/ over 0 and 1. There
are also n0 additional marked points on the image curve S and, accordingly, n0 black
round marked points on the source curve C .

Recall that the map hW xA! SM1;n forgets all marked points on C except the round
black dots and stabilizes the curve.
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SM0;nC3

xA

?

SM1;n

SM1;.nC1/.KC1/

?

-

@
@

@
@R

f h

j

�

k1C 1

k2

k3

0

zk1

1

1

Figure 2: Four moduli spaces

In this example, the DR-cycle coincides with the whole moduli space SM1;n .

The main technique of this section is to compute the integral

I D

Z
xA

h�.cW / 1

by three different methods and to use the relations thus obtained. The three methods
can be summarized as follows.

(A) Express the  –class on SM0;nC3 as a sum of boundary divisors. By Ionel’s
lemma (Lemma 2.3), the preimages under f of these boundary divisors represent
the class  1 on xA. The images of these divisors under h turn out to be DR-
cycles. Therefore the integrals of Witten’s class over these divisors are some
values of the bracket of Definition 1.1.

(B) Same as (A) with another expression of the  –class in terms of boundary
divisors.

(C) In Section 2.2 we computed the integral

B D

Z
SM1;n

cW  1

analogous to I . Now, the classes  1 on SM1;n and on xA differ by a sum of
boundary divisors. The images of these divisors under h turn out, once again,
to be DR-cycles, and integrating Witten’s class upon them we obtain a linear
combination of brackets.
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(A) On the space SM0;nC3 in Figure 2, consider the class  at the point labeled by 0.
This class is equal to a sum of boundary divisors that we will represent as:

(6)  D 0 1

The picture represents a sum of boundary divisors where the sphere splits into two
components. The point labeled by 0 is on the first component, while the point labeled
by 1 together with some chosen branch point (say, the first one) is on the second
component. The other marked points on the sphere can be distributed arbitrarily between
the components.

Consider the preimages under f of these boundary strata.

Lemma 3.2 Among the preimages in xA of the divisors (6) consider those on which
the integral of h�.cW / does not vanish. These divisors are DIV1 , DIVi , and eDIVi in
Figure 3.

It should be understood that each picture actually represents a generic admissible
covering lying in the divisor. In other words, the divisor is the closure of the set of
admissible coverings with the topological structure shown in Figure 3.

DIV1 D

k1C 1

k2

k3

1

zk1

zk2

0 0 DIVi D

ki

k1C 1

k2

1

zk1

zk2

0 0

eDIVi D

k1C 1

k2

k3

1

zki

zk1

0 0

eDIVD

k1C 1

k2

k3

zk1

1

0

0

Figure 3: Divisors in xA
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Proof of Lemma 3.2 We consider an irreducible component of the preimage of (6)
and reason in terms of the generic admissible covering 'W C ! S in this component.

First note that the curve C cannot contain a pinched sphere (a rational irreducible com-
ponent with two identified points). Indeed, every node in C necessarily separates two
different components: one containing preimages of 0 from one containing preimages
of 1.

Suppose that C does not have a toric component. Then it looks as a ring of spheres
with several “tails”:

Each sphere of the ring contains at least 2 nodes. Thus the restriction of ' to any such
sphere is of degree at least 2. Which implies that there is at least one round black dot on
each sphere of the ring (there is at least one preimage of 0 or 1 on each component,
and the square black dot alone, being a simple preimage, is not enough for ' to have
degree 2). It follows that none of the spheres of the ring is contracted under the map h

to SM1;n . Now, the number of spheres in the ring is even (those that contain a preimage
of 0 alternate with those that contain a preimage of 1). Thus the curve C retains at
least 2 nodes after the projection to SM1;n . Which means that the codimension of the
image of the corresponding divisor under h is at least 2, so the integral of Witten’s
class on it vanishes. The conclusion is that we only need to consider curves C with a
toric component.

Suppose C has a toric component with several “tails”:

If one of the tails contains more than one round black dot, than the projection h of
such a curve to SM1;n looks like:

Geometry & Topology, Volume 12 (2008)



732 Sergey Shadrin and Dimitri Zvonkine

The integral of Witten’s class over the divisor of such curves vanishes (see Footnote 4).
The conclusion is that each “tail” contains at most one round black dot.

Note that every component of C contains at least one black dot (round or square): either
a preimage of 0 or of 1. It follows that each tail (except perhaps one) is composed of
exactly 1 sphere containing exactly 1 black dot. The exceptional tail can be composed
of 1 or 2 spheres containing a round black dot and a square black dot. On each simple
tail the function ' has the form z 7! zk for some positive integer k .

Actually, an exceptional tail is bound to exist. Indeed, suppose there is no exceptional
tail, ie, every tail is composed of 1 sphere with a unique black dot. The image curve S

has 2 components, and in the case we consider, the preimage of one of them is the toric
component of C , while the preimage of the other is the union of the tails. Then the
latter component of S contains no marked points except 0 or 1. This is impossible,
because S is stable.

If the exceptional tail is composed of 1 sphere, then this sphere contains the black
square dot and some dot zki . This gives the divisor eDIVi . If the exceptional tail is
composed of 2 spheres, then one of them contains the square black dot, and the other
one some dot ki or k1C 1. The sphere with the square dot can contain at most one
node because the degree of ' on it equals 1. Thus we obtain the divisors DIV1 and
DIVi .

Lemma 3.2 is proved.

Now, the integral I is the sum of integrals of Witten’s class over the divisors DIV1 ,
DIVi , and eDIVi , which we will now determine.

Lemma 3.3 The contributions to I of the divisors DIV1 , DIVi , and eDIVi equal

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� k1.nCC n�/ �

�

�
k1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .ki � 1/.nCC n�/ �

�

�
k1C 1 k2 : : : ki � 1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;
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.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .zki C 1/ �

�

�
k1C 1 k2 : : : knC 0 : : : 0 zk1 : : : zki C 1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

respectively, where K D
P

ki D
P
zki .

Proof The fundamental classes of the divisors DIV1 , DIVi , and eDIVi project to
multiples of double ramification divisors in SM1;n under the map h. Thus we can
integrate Witten’s class over these double ramification divisors, which explains the
brackets that appear in the answers.

The coefficients in front of these brackets arise as products of three following factors.

(i) The transversal multiplicity of the map f on the divisor. Consider a generic
admissible covering 'W C ! S in one of the divisors. Its image S 2 SM0;nC3

under the map f has exactly one node. Consider a smooth curve zS close to S

in SM0;nC3 . Then eS will have several preimages in xA close to ' . The number
of such preimages is called the transversal multiplicity of f on the divisor. It
is readily seen to be equal to the product of indices of all nodes of C , because
every node can be smoothed in the number of ways equal to its index, as S

goes to zS . Since we need pullbacks under f of homology classes rather than
geometric preimages, we must take every divisor in xA with weight equal to the
corresponding transversal multiplicity.

(ii) The degree of h on the divisor. This is simply the number of ways to label the
marked points of C that are forgotten by h.

(iii) The factor 1=.k1C 1/ coming from Ionel’s lemma.

For DIVi , these factors are:

.i/ D .k1C 1/k2 : : : ki�1.ki � 1/kiC1 : : : knC :

This is the product of the indices of all nodes of C .

.ii/ D
.nCC n�/.nCC n�/!.K� 1/!nCCn�C1K!n0

.k1C 1/k2 : : : ki�1kiC1 : : : knC

:

The factor .nCCn�/.nCCn�/! is the number of ways to number the branch points on
the two-component genus 0 image curve, taking into account that the first ramification
point lies on the component of 1. .K�1/!nCCn�C1 is the number of ways to number
the white (noncritical) preimages of the ramification points. K!n0 is the number of
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ways to number the white preimages of the black marked points different from 0

and 1. The denominator comes from the spheres on the left of the picture of DIVi :
the restriction of the admissible covering map ' on these spheres has the form zk , and
thus z 7! e2� i=kz gives a renumbering of the white dots on such a sphere equivalent
to the initial numbering.

Multiplying these factors (without forgetting 1=.k1C 1/) we obtain the coefficient for
DIVi as claimed in the lemma. The computations for the other divisors are analogous,
so we only give the answers.

For DIV1 the factors (i) and (ii) are

.i/ D k1k2 : : : knC :

.ii/ D
.nCC n�/.nCC n�/!.K� 1/!nCCn�C1K!n0

k2 : : : knC

:

For eDIVi the factors (i) and (ii) are

.i/ D zk1 : : : zki�1 .zki C 1/ zkiC1 : : : zkn� :

.ii/ D
.nCC n�/!.K� 1/!nCCn�C1K!n0

zk1 : : : zki�1
zkiC1 : : : zkn�

:

(B) The second way of computing the integral I is not very different from the first
one. This time we start with a different presentation of the  –class at the point labeled
by 0 on SM0;nC3 :

(7)  D 0 1

The picture represents the sum of boundary divisors where the sphere splits into two
components: the point labeled by 0 is on the first component, while the point labeled
by 1 together with another chosen black marked point (say, the first one) is on the
second component.

Lemma 3.4 Among the preimages in xA of the divisors (7) consider those on which the
integral of cW does not vanish. These divisors are DIV1 , DIVi , and eDIV in Figure 3.

Proof First suppose there are no points marked with crosses on the component
of 1 on the image curve. This means that the preimages of this component are
spheres containing only black marked points. However, all these components must be
contracted under the map h. (Otherwise the integral of cW over this divisor vanishes;
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see Footnote 4.) Therefore, actually, every sphere contains exactly one black point,
except one sphere that contains a round black dot and a square black dot. This is the
divisor eDIV .

If the component of 1 in the image curve contains at least one cross-marked point,
then we have reduced the problem to the situation of Lemma 3.2. Thus the only divisors
that can give a nonzero contribution are DIV1 , DIVi , and eDIVi . However, actually
the divisors eDIVi do not appear as preimages of the divisors (7) because in this case
the component of 1 in the image contains no black dots other than 1.

Lemma 3.5 The contributions to I of the divisors DIV1 , DIVi , and eDIV equal

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� k1.nCC n�C 1/ �

�

�
k1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .ki � 1/.nCC n�C 1/ �

�

�
k1C 1 k2 : : : ki � 1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .nCC n�C 1/ �

�

�
k1C 1 k2 : : : knC

n0�1‚ …„ ƒ
0 : : : 0 1 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : : : : : : : an

�
;

respectively, where K D
P

ki D
P
zki .

Proof The proof is analogous to that of Lemma 3.3: every coefficient is the product
of three factors:

(i) the transversal multiplicity of f on the divisor, or, in other words, the product
of the node indices of the generic curve C ;

(ii) the degree of h on the divisor; and

(iii) the factor 1=.k1C 1/ coming from Ionel’s lemma.

The computation of the degree of h is slightly different from that in Lemma 3.3. Indeed,
in Lemma 3.3 the first step was to label the nCCn�C1 branch points on S , under the
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restriction that the first of them lies on the component of 1. In the present situation,
we count all the ways to label the marked points, with no restrictions. At first sight it
may seem that we do have a restriction: the first of the n0 additional marked points
must lie on the component of 1. However, actually, the n0 additional marked points
are not forgotten by h; so they are already labeled and this condition is already satisfied.

For DIV1 we have

.i/ D k1k2 : : : knC :

.ii/ D
.nCC n�C 1/!.K� 1/!nCCn�C1K!n0

k2 : : : knC

:

For DIVi we have

.i/ D .k1C 1/k2 : : : ki�1.ki � 1/kiC1 : : : knC :

.ii/ D
.nCC n�C 1/!.K� 1/!nCCn�C1K!n0

.k1C 1/k2 : : : ki�1kiC1 : : : knC

:

For eDIV we have

.i/ D zk1 : : : zkn� :

.ii/ D
.nCC n�C 1/!.K� 1/!nCCn�C1K!n0

zk1 : : : zkn�

:

(C) Now we are going to evaluate

I D

Z
xA

h�.cW / 1.xA/

using the value

B D

Z
SM1;n

cW  1. SM1;n/:

If the class  1 on xA were a pullback of the class  1 on SM1;n , then we would simply
have I DB �deg h. However this equality is actually incorrect, because h�. 1. SM1;n//

and  1.xA/ differ.

Lemma 3.6 The difference  1.xA/�h�. 1. SM1;n// can be represented as the sum of
divisors

k2 : : : knC DIV1 C

nCX
iD2

k2 : : : ki�1.ki � 1/kiC1 : : : knC DIVi
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(the divisors being shown in Figure 3) and, in addition, some other divisors on which
the integral of cW vanishes.

Proof There is a subtlety in finding the difference  1.xA/� h�. 1. SM1;n//. First
consider the difference  1. SM1;.nC1/.KC1//��

�. 1. SM1;n// in the upper right moduli
space in Figure 2. It is given by the divisor D1 of all stable curves on which the first
black marked point (k1C 1) is situated on a component contracted by � . Now we
consider the intersection of this divisor with the image j .xA/. It turns out that this
intersection is not necessarily transversal, and its multiplicity gives the coefficients that
appear in the formulation of the lemma.

Now we take the pullback of the intersection by j . Let us consider an irreducible
component of this pullback

j �
�
 1. SM1;.nC1/.KC1//��

�. 1. SM1;n//
�

and a generic admissible covering ' in this component.

The image curve of ' in SM0;nC3 has a unique node (otherwise the codimension of
such a component in xA would be at least 2).

Moreover, this node separates 0 and 1. Indeed, otherwise the component containing
the point k1C1 also contains some preimage of1. Since this component is contracted
by h, the only possible preimage is the square black dot (and there are no other
preimages of 1). Thus the degree of ' on this component equals 1. But this implies
k1C 1D 1, which is impossible.

On the component of 1 there exists at least one cross marked point. Indeed, other-
wise there is no ramification over this component, so all the ramification is over the
component containing 0. Then the point k1C 1 lies on the torical component, which
is impossible, since this component should be contracted by h.

Thus we have reduced the problem to the situation of Lemma 3.2 with the additional
restriction that the component containing the point k1C 1 should be contracted by h.
This restriction excludes the divisors eDIVi but allows the divisors DIV1 and DIVi .

It remains to find the multiplicity of the intersection j .xA/\D1 along j .DIV1/ and
j .DIVi/. This multiplicity is easily seen to be equal to the product of indices of the
nodes that are smoothed as a generic point of the intersection moves to a generic
point of D1 (that is, all nodes except one). Such products of indices are precisely the
coefficients stated in the lemma.
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Lemma 3.7 The contributions to I of the integral B and that of the divisors DIV1

and DIVi equal

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .k1C 1/.nCC n�C 1/ � B;

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .k1C 1/.nCC n�C 1/ �

�

�
k1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

.nCC n�/!.K� 1/!nCCn�C1K!n0

k1C 1
� .ki � 1/.nCC n�C 1/ �

�

�
k1C 1 k2 : : : ki � 1 : : : knC 0 : : : 0 zk1 : : : zkn�

a1 : : : : : : : : : : : : : : : an

�
;

respectively, where K D
P

ki D
P
zki .

Proof The coefficient of B is just the degree of h. The coefficients of the other two
brackets are obtained as products of two factors:

(i) the coefficients of the divisors appearing in Lemma 3.6 and

(ii) the degree of h on the divisor.

Here, as in Lemma 3.5, when we compute the degree of h we count all possible ways
to label the marked points on C with no restriction.

For DIV1 these factors equal:

.i/ D k2 : : : knC :

.ii/ D
.nCC n�C 1/!.K� 1/!nCCn�C1K!n0

k2 : : : knC

:

For DIVi these factors equal:

.i/ k2 : : : ki�1.ki � 1/kiC1 : : : knC :

.ii/
.nCC n�C 1/!.K� 1/!nCCn�C1K!n0

.k1C 1/k2 : : : ki�1kiC1 : : : knC

:
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Thus we have established three expressions, (A), (B), and (C) for the integral I .

Writing .A/D .C/ we obtain Relation 1: the first term of Lemma 3.7 gives the left-
hand side, while the other terms of Lemma 3.7 and Lemma 3.3 combine to give the
right-hand side.

Similarly, the equality .B/D .C/ gives Relation 2.

4 An algorithm to compute Witten’s intersection numbers

Here we present an algorithm for computing any number h�d1;a1
: : : �dn;an

i. This
algorithm is rather hard to implement on a computer because it involves enumerating
all possible degenerations of an admissible covering satisfying some given properties.
Thus this section is best viewed as a constructive proof of Theorem 1. Examples of
concrete application of steps of this algorithm can be found in [18].

Suppose we are given n nonnegative integers d1; : : : ; dn . Choose an integer p , 0�

p�g and n numbers k1; : : : ; kn with sum
P

ki Dp and bounded by jki j> g
P

j dj .
Consider the DR-space xAD xA.k1; : : : ; kn;�1; : : : ;�1/, where the list ends with p

numbers �1 so that the total sum is 0 as it should be.

As explained in Section 2.1, the forgetful map hW xA! SMg;n sends xA to the DR-cycle
xDg;n.k1; : : : ; kn;�1; : : : ;�1/ of codimension g�p in SMg;n .

We are going to compute the integral

(8)
Z
xA

h�.cW  
d1

1
: : :  dn

n /D deg.h/
Z
xD

cW  
d1

1
: : :  dn

n :

If p D g this will give us the value of the bracket h�d1;a1
: : : �dn;an

i. Note, however
that our result is actually more general.

Our algorithm for computing Integral (8) can be summed up as follows.

While the class  i on SMg;n is, in general, not representable by boundary divisors,
its pullback to xA can be easily represented as a sum like that. At each step we will
consider one  –class and replace it by a sum of divisors. Thus we will be reduced to
computing the integral of a product cW � .powers of  -classes/ over some divisors, the
number of  –classes having decreased by 1. Using the factorization rules for Witten’s
class, we will be able to represent each integral over a boundary divisor as a product of
analogous integrals over simpler DR-spaces.

Proposition 4.1 The integral (8) can be effectively expressed as a combination of
analogous integrals with a smaller sum

P
di .
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Proof (1) Expressing the pullback h�. i/ as a sum of boundary divisors of xA.

Consider the class  i D i. SMg;n/ on SMg;n and the corresponding class ‰i D i.xA/
on xA. The pullback h�. i/ to xA can be represented as a sum of divisors in the
following way. First, the class ‰i can, by Ionel’s lemma (Lemma 2.3), be replaced by
the pullback of the  –class at 0 or at 1 on SM0;nCpC2g . The latter class is easy to
represent by a sum of divisors; see Equation (6). Second, the difference ‰i � h�. i/

is equal to the sum (with certain coefficients) of divisors Di formed by the admissible
coverings for which the component of the source curve containing the i –th marked
point is contracted by h (cf Lemma 3.6).

(2) The image curve of a generic admissible covering in every boundary divisor has a
unique node separating 0 and 1.

Let us consider an irreducible component of one of the above divisors and a generic
admissible covering ' in this component. The image curve of ' in SM0;nCpC2g has a
unique node because otherwise the codimension of such a component in xA would be
at least 2.

Let us prove that this node separates 0 and 1. Indeed, this is obvious by construction
for the divisors involved in the expression of ‰i . As for the divisors representing the
difference ‰i � h�. i/, suppose that the node on the image curve does not separate 0

and1. Consider the component of the source curve C containing the i –th black round
marked point. This component must contain both a preimage of 0 and a preimage of1.
On the other hand, it is, by construction, contracted by h. Thus the only possibility is
that it contains a unique round black dot (a preimage of 0) and one or several square
black dots (since these are forgotten by h). But then the degree of ' on this component
is equal to jki j and, at the same time, to the number of square black dots. Since we
assumed that jki j> g

P
dj � g � p , this is impossible.

(3) Splitting the admissible covering.

Denote by DIV the boundary divisor of xA under consideration.

Our aim is to construct a map

uW DIV! xA1 � � � � �
xAc

from DIV to a product of DR-spaces. This is done as follows.

Take an admissible covering 'W C ! S from DIV. For a generic f , the curve S has
exactly one node: we call this node essential. For a nongeneric f , the curve S can
have other nodes in addition to the essential one. Similarly, call essential nodes of C
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the preimages of the essential node of S . These nodes are present for all admissible
coverings of f , but for a nongeneric admissible covering, C can have more nodes.

Now split (in other words, normalize) the essential nodes of C and of S . The curve S

splits into two rational curves, 0 lying on one component and 1 on the other. The
curve C splits in several connected components that we call parts. This is shown
in Figure 4 (the meaning of various markings will be explained later). The parts are
denoted by roman numerals.

k

k�1

0 1

x

I
II

III
IV

V

Figure 4: A boundary divisor is isomorphic to a product of several simpler
DR-spaces.

Thus for each part j of C we have obtained a map 'j W Cj ! Sj . (The curves Cj

are the parts of C and hence different for different j ’s, while Sj is one of the two
components of S and hence can be the same for different j ’s.)

The map 'j is not necessarily an admissible covering. Indeed, in most cases there is a
black round dot or a cross on Sj that has only white round dots as preimages in the
part Cj . Consider, for instance, a critical point (a cross) on part IV in Figure 4. Its
image is a branch point (a cross) in S . This cross has several only (white) preimages
on parts II and V.

Once we have separated the parts, we must forget these “useless” white points. More
precisely, we (i) forget those marked points on Sj that have only white preimages in
Cj (together with these white preimages), (ii) contract the unstable components of Sj

and their preimages in Cj . If, once we have forgotten all the useless marked points,
the curve Sj has become unstable, then we ignore the corresponding part altogether.
We say that this part has vanished. For example, in Figure 4 part II vanishes.

Denote by c the number of parts that have not vanished after this procedure (cD4 in our
example). Denote by xA1; : : : ; xAc the corresponding DR-spaces. We have constructed
a map

uW DIV! xA1 � � � � �
xAc :
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We have dim DIV �
P

dim xAj . The inequality becomes an equality if and only if
c D 2. In other words: above each of the two components of S , all parts except one
contain only white dots and hence vanish5.

When the dimensions coincide, u sends the fundamental homology class of DIV to a
multiple of the fundamental homology class of the product in the image. Indeed, u is
a nonramified covering on the open part of DIV where the curve S has exactly one
node.

(4) Re-assigning the  –classes.

Recall that the map h takes the source curve in Figure 4, forgets all the marked points
except the round black dots and stabilizes the curve. We are interested in the preimages
of the  –classes under h. During the stabilization the marked points from certain
parts can land on some other parts. In the figure, the  –class assigned to the point
labeled with k (on part I) will land on part IV. Similarly, the  –class assigned to the
round black dot of part V will land on part III, at the point marked with an x .

Lemma 4.2 Every class h�. i/ on DIV coincides with the class h�j . l/ on xAj for
some j and l .

Proof Stabilizing the source curve is equivalent to first contracting the unstable parts,
then stabilizing the curve thus obtained. The class h�. x/ at some marked point x is
transformed into the class h�j . y/, where y is the image of x once we have contracted
the unstable parts of the curve, while j is the part on which y lies.

It follows from the lemma that the integrand in the integral (8) is a pullback from
xA1 � � � � �

xAc . In particular, the integral vanishes if dim DIV>
P

dim xAj .

(5) Splitting the integral.

Now assume that dim DIVD
P

dim xAj

Then we can split the integral (8) into a product of similar integrals over xA1 , . . . , xAc

with the  –classes assigned as explained in step (4).

The total number of  –classes in these integrals equals
P

di�1, because we replaced
one of the  –classes by the boundary divisors.

This completes the proof of Proposition 4.1.

5 The dimension of DIV is equal to the number of marked points on S (other than 0 , 1 and the
node) minus 2. The dimension of a DR-space is equal to the number of marked points on S (other than 0

and 1) minus 1. The total number of marked points on S does not change as we separate the parts, but
each part that does not vanish contributes an additional “minus 1”. Thus the dimension of xA1 � � � � �

xAc

equals the number of marked points on S minus c .
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Proposition 4.1 constitutes the recursive step of our algorithm. To make things precise
we must add two comments.

(a) The condition jki j > g
P

dj is easily seen to be still satisfied for the smaller
DR-spaces. Indeed, an index k of a zero or a pole can decrease only by “annihilating”
one or several black squares. For instance, in Figure 4 the initial index k has become
equal to k � 1 on part IV by annihilating one square black dot. Thus

P
dj decreases

by 1, while jki j decreases by at most p � g .

(b) The restriction of Witten’s class (more precisely, of h�.cW /) on the components
is obtained by using the factorization rules. This involves some choices or remainders
modulo r . For example, in Figure 4, we will have to sum over r � 1 possibilities of
the remainders at the nodes connecting parts III and IV. The remainders assigned to
the square dots are equal to 0 since they are forgotten under the map h.

Proof of Theorem 1 Assume we want to find the value of an integral over SMg;n

involving Witten’s class and powers of the  –classes. First, using the above lemmas
we can get rid of the  –classes and reduce the problem to computing the integral of
Witten’s class over DR-spaces. Comparing the degree of Witten’s class

deg cW D
.r � 2/.g� 1/C

P
ai

r
�
.r � 2/.nCg� 1/

r

to the dimension of a DR-cycle

dimD 2g� 3C nCp � 2g� 3C n;

we see that such an integral can be nonzero only in 2 cases: either for genus 0 or for
DR-cycles of codimension 1 in genus 1. The genus zero integrals are well-known,
while the case of double ramification divisors in genus 1 was treated in Section 3.

Remark 4.3 Our first goal was to compute the integral of cW  
d1

1
: : :  

dn
n over the

moduli spaces SMg;n , but we actually computed such integrals over all DR-cycles satis-
fying the strange-looking condition jki j> g

P
dj . This generalization is unavoidable

if we want to make the algorithm work. It is easy to see that even if we start with an
integral over a moduli space the algorithm can immediately lead us to integrals over
DR-cycles.
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