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Homology and derived series of groups II: Dwyer’s Theorem

TIM D COCHRAN

SHELLY HARVEY

We give new information about the relationship between the low-dimensional ho-
mology of a space and the derived series of its fundamental group. Applications are
given to detecting when a set of elements of a group generates a subgroup “large
enough” to map onto a nonabelian free solvable group, and to concordance and grope
cobordism of classical links. We also greatly generalize several key homological
results employed in recent work of Cochran–Orr–Teichner in the context of classical
knot concordance.

In 1963 J Stallings established a strong relationship between the low-dimensional
homology of a group and its lower central series quotients. In 1975 W Dwyer
extended Stallings’ theorem by weakening the hypothesis on H2 . In 2003 the second
author introduced a new characteristic series, G

.n/
H

, associated to the derived series,
called the torsion-free derived series. The authors previously established a precise
analogue, for the torsion-free derived series, of Stallings’ theorem. Here our main
result is the analogue of Dwyer’s theorem for the torsion-free derived series. We also
prove a version of Dwyer’s theorem for the rational lower central series. We apply
these to give new results on the Cochran–Orr–Teichner filtration of the classical link
concordance group.

57M07; 20J06, 55P60

1 Introduction

There are many situations in topology where the homology type of a space is fixed
or is dependent only on coarse combinatorial data whereas the homotopy type, in
particular the fundamental group, is a rich source of complexity. For example, for a
knot f W Sn! SnC2 one sees by Alexander Duality that the exterior, SnC2�Sn , is
a homology circle, independent of the “knotting” of the embedding. Similarly, the
homology groups of the exterior of an algebraic curve in CP .2/ or C2 are determined
merely by the intrinsic topology of the curve. Furthermore, in studying deformations
of such embeddings, typically the homology groups of the exteriors do not vary, or are
controlled by the combinatorics of the allowable singularities, whereas the fundamental
group varies with few obvious constraints. Therefore to define interesting topological
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invariants of such embeddings, or of certain deformation classes of embeddings, it is
vital to understand to what extent the homology of a space constrains its fundamental
group. These issues are often profitably studied in purely group-theoretic terms, for
if X is a connected CW-complex then it is well-known that H1.X IZ/ŠH1.�1.X //

and that the Hurewicz map induces an exact sequence

�2.X /!H2.X /!H2.�1.X //! 1:

Thus group theoretic results quickly translate into results about spaces.

In 1963 John Stallings, in his landmark paper [30], established a strong relationship
between the low-dimensional homology of a group and its lower central series quotients.
We review his results in abbreviated form. Recall that the n–th term of the lower central
series of G , denoted Gn , is inductively defined by G1DG , GnC1D ŒGn;G�. Stallings
also defines what we shall call the rational lower central series, Gr

n , which differs
only in that Gr

nC1
consists of all those elements some finite power of which lies in

ŒGr
n ;G�.

Theorem 1.1 ([30, Theorem 3.4] Stallings’ Integral Theorem) Let �W A!B be a
homomorphism that induces an isomorphism on H1.�IZ/ and an epimorphism on
H2.�IZ/. Then, for each n, � induces an isomorphism A=An Š B=Bn .

Theorem 1.2 ([30, Theorem 7.3] Stallings’ Rational Theorem) Let �W A! B be
a homomorphism that induces an isomorphism on H1.�IQ/ and an epimorphism on
H2.�IQ/. Then, for each n, � induces a monomorphism A=Ar

n�B=Br
n , and induces

isomorphisms .Ar
n=A

r
nC1

/˝QŠ .Br
n=B

r
nC1

/˝Q.

Stallings’ Rational Theorem has an elegant reformulation wherein the conclusion is
replaced by the conclusion that A and B have the same Malcev completion. This was
made explicit in Bousfield [1]. In 1975 William Dwyer extended Stallings’ Integral
Theorem by weakening the hypothesis on H2 and indeed found precise conditions for
when a specific lower central series quotient was preserved (Theorem 1.3 below) [14].
For this purpose he defined an important subgroup of H2.A/, denoted ˆn.A/, n� 1,
as the kernel of H2.A/!H2.A=An/. Dwyer’s “filtration” of H2.A/ has equivalent
more geometric formulations in terms of surfaces (see Definition 1.5 and subsequent
remarks) and gropes. These other formulations and the theorem below played a crucial
role in Freedman and Teichner’s work [16] on 4–manifold topology that strengthened
the foundational results of Freedman and Quinn [15]; see also Krushkal [23; 22] and
Krushkal and Teichner [24].
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Theorem 1.3 ([14, Theorem 1.1] Dwyer’s Integral Theorem) Let � W A! B be
a homomorphism that induces an isomorphism on H1.�IZ/. Then for any positive
integer n the following are equivalent:

� � induces an isomorphism A=AnC1 Š B=BnC1 .

� � induces an epimorphism H2.AIZ/=ˆn.A/!H2.BIZ/=ˆn.B/.

For completeness, we herein prove an important result that is missing from the literature.
Namely we use the Stallings–Dwyer methods to prove the following “rational version
of Dwyer’s theorem” for the (rational) lower central series. Here ˆr

n.A/, n� 1, is the
kernel of H2.AIZ/!H2.A=A

r
nIZ/. Indeed for any normal subgroup N of A, we

can define ˆN .A/ as the kernel of H2.AIZ/!H2.A=N IZ/.

Theorem 3.1 (Rational Dwyer’s Theorem) Let � WA!B be a homomorphism that
induces an isomorphism on H1.�IQ/. Then for any positive integer n the following
are equivalent:

� For each 1� k � n, � induces a monomorphism A=Ar
kC1
�B=Br

kC1
, and iso-

morphisms H�.A=A
r
kC1
IQ/ Š H�.B=B

r
kC1
IQ/; and an isomorphism

.Ar
k
=Ar

kC1
/˝QŠ .Br

k
=Br

kC1
/˝Q.

� � induces an epimorphism H2.AIQ/=hˆ
r
n.A/i !H2.BIQ/=hˆ

r
n.B/i.

Recall that the n–th term of the derived series, G.n/ , is defined by G.0/DG , G.nC1/D

ŒG.n/;G.n/�. Elementary examples show that the naive analogues of these theorems
for the derived series are false. For example, if A is the fundamental group of the
exterior of a knot in S3 then the abelianization map to Z is a homology equivalence,
but A.1/=A.2/ is the Alexander module of the knot and is usually highly nontrivial.
Therefore, until recently, there have been few if any links found between the homology
of a group and its derived series. In 1974, Ralph Strebel had some partial success that
is the starting point of our work [32]. However in [19, Section 2] the second author
introduced a new characteristic series, G.n/

H , associated to and containing the derived
series, called the torsion-free derived series. For free groups, the torsion-free derived
series coincides with the derived series. Using this larger series, the authors established
in [6] a precise analogue of Stallings’ Rational Theorem (Theorem 1.4).

In order to state this result we review the definition of the torsion-free derived series.
Observe that if a subgroup G.n/

H (normal in G ) has been defined then G.n/

H =ŒG.n/

H ;G.n/

H �

is not only an abelian group but also a right module over ZŒG=G.n/

H �, where the action
is induced from the conjugation action of G ( Œx�g D Œg�1xg�). Harvey was motivated
(by the known failures of the quotients by the derived series to respect homological

Geometry & Topology, Volume 12 (2008)



202 Tim D Cochran and Shelly Harvey

equivalences) to eliminate torsion in the module sense from the successive quotients
G.n/=G.nC1/ . Specifically set G.0/

H DG . Once G.n/

H has been inductively defined, let
Tn be the subset of G.n/

H =ŒG.n/

H ;G.n/

H � consisting of the ZŒG=G.n/

H �–torsion elements,
ie the elements Œx� for which there exists some nonzero 
 2 ZŒG=G.n/

H �, such that
Œx�
 D 0. (In fact, it was shown in [19, Proposition 2.1] that Tn is a submodule).
Consider the epimorphism of groups

G.n/

H

�n
��!

G.n/

H

ŒG.n/

H ;G.n/

H �

and define G.nC1/

H to be the inverse image of Tn under �n . Then G.nC1/

H is a normal
subgroup of G.n/

H that contains ŒG.n/

H ;G.n/

H �. It follows inductively that G.nC1/

H contains
G.nC1/ . Moreover, since G.n/

H =G.nC1/

H is the quotient of the module G.n/

H =ŒG.n/

H ;G.n/

H � by
its torsion submodule, it is a ZŒG=G.n/

H � torsion-free module [31, Lemma 3.4]. Hence
the successive quotients of the torsion-free derived subgroups are torsion-free modules
over the appropriate rings. We remark that if the successive quotients, G.n/=G.nC1/ ,
of the derived series are torsion-free modules (as holds for a free group) then the
torsion-free derived series coincides with the derived series.

Theorem 1.4 [6, Theorem 4.1] Let �W A! B be a homomorphism that induces a
monomorphism on H1.�IQ/ and an epimorphism on H2.�IQ/. Suppose also that
A is finitely generated and B is finitely related. Then, for each integer n, � induces
a monomorphism A=A.n/

H � B=B.n/

H . If, in addition, � induces an isomorphism on
H1.�IQ/ then A.n/

H =A.nC1/

H ! B.n/

H =B.nC1/

H is a monomorphism between modules of
the same rank (over ZŒA=A.n/

H � and ZŒB=B.n/

H �, respectively).

The main purpose of the present paper is to prove an analogue of Dwyer’s Theorem for
the torsion-free derived series. In order to state the results, we first define the appropriate
analogue of Dwyer’s ˆn . The obvious analogue, the kernel of H2.A/!H2.A=A

.n//,
turns out to be the wrong one.

Definition 1.5 Suppose N is a normal subgroup of a group A. Let ˆN .A/ be the
image of the inclusion-induced H2.N /!H2.A/. Equivalently ˆN .A/ consists of
those classes represented by maps of closed oriented surfaces f W †!K.A; 1/ such
that f�.�1.†// � N . Such surfaces will be called N –surfaces of A. Specifically
if N D A.n/ we abbreviate ˆN .A/ by ˆ.n/.A/, n � 0. Thus ˆ.n/.A/ is the image
of H2.A

.n// ! H2.A/, or, equivalently, the subgroup of H2.A/ of elements that
can be represented an oriented surface f W † ! K.A; 1/ such that f�.�1.†// �

A.n/ . If N DA.n/

H we abbreviate ˆN .A/ by ˆ.n/

H .A/. Thus ˆ.n/

H .A/ is the image of
H2.A

.n/

H /!H2.A/ or equivalently the subgroup of H2.A/ of elements that can be
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represented an oriented surface f W †!K.A; 1/ such that f�.�1.†//�A.n/

H . Note
that since A.n/ �A.n/

H , ˆ.n/.A/�ˆ.n/

H .A/.

From this definition, it may not be immediately apparent that this is a natural analogue,
for the derived series, of Dwyer’s ˆn , because even for N DAn , ˆN .A/ is generally
much smaller than ˆN .A/. To see in what sense ˆ.n/.A/ is an analogue of ˆn.A/

first recall that Dwyer’s subgroup has the following equivalent reformulation. For any
space X , let ˆn.X / be the subgroup of H2.X / consisting of those elements that
can be represented by an oriented surface f W †! X such that, for some standard
symplectic basis of curves fai ; bi j1� i �genus.†/g of †, f�.Œai �/��1.X /n . That is,
one-half of the symplectic basis of curves maps into �1.X /n . Observe that if �1.X /n
is killed then such homology classes become spherical. From this observation it is
not difficult to see that Dwyer’s ˆn.A/ is the same as ˆn.K.A; 1// in the sense of
the reformulation (see Freedman and Teichner [16, Lemma 2.4]). Then the correct
analogue for the derived series is not to merely replace �1.X /n by �1.X /

.n/ in the
above definition, but rather to additionally require that a full symplectic basis map
into �1.X /

.n/ . Indeed ˆ.n/.A/ as defined above is clearly the subgroup of H2.A/

consisting of elements represented by an oriented surface f W † ! K.A; 1/ such
that, for some standard symplectic basis of curves fai ; bi j1 � i � genus.†/g of †,
f�.Œai �/� �1.X /

.n/ and f�.Œbi �/� �1.X /
.n/ .

For a low-dimensional topologist the following remark may be enlightening. Dwyer’s
ˆn.X / is the subgroup consisting of those homology classes that can be represented by
half-gropes of class n+1 whereas ˆ.n/.X / is the subgroup consisting of those classes
that can be represented by symmetric gropes of height n.

The following is then the main result of this paper.

Theorem 2.1 (Main Theorem) Let A be finitely generated and B finitely related.
Suppose �W A! B induces a monomorphism on H1.�IQ/ and induces an epimor-
phism ��W H2.AIQ/! H2.BIQ/=hˆ

.n/

H .B/i (ie the cokernel of ��W H2.AIQ/!
H2.BIQ/ is spanned by B.n/

H –surfaces). Then � induces a monomorphism A=A.nC1/

H

�B=B.nC1/

H . If, in addition, � induces an isomorphism on H1.�IQ/ then, in addition,
A.n/

H =A.nC1/

H and B.n/

H =B.nC1/

H have the same rank (as modules over ZŒA=A.n/

H � and
ZŒB=B.n/

H �, respectively).

Since the torsion-free derived series of a free group is merely the ordinary derived
series, we have the following application that makes no mention of the torsion-free
derived series.
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Corollary 2.2 Suppose F is a free group, B is a finitely related group, � W F ! B

induces a monomorphism on H1.�IQ/ and H2.BIQ/ is spanned by B.n/ –surfaces.
Then � induces a monomorphism F=F .nC1/�B=B.nC1/ (similarly for any m� nC1).

One of the algebraic applications of the work of Stallings and Dwyer is a criterion
for when a set AD fa1; : : : ; amg of elements of a group B generates a free subgroup
A of rank m. Indeed, if B is itself a free group then it is a classical result that if
A is linearly independent modulo F2 then, for any n, it freely generates, in F=Fn ,
a free-nilpotent subgroup [26, p 117,42.35, p 76,26.33]. It follows that A is free of
rank m. Stallings improves on this result by weakening the hypothesis that B be free
to the hypothesis that H2.BIQ/ D 0. (See also Strebel [32, p 303–304].) The H2

condition is still quite restrictive. Dwyer’s work weakens this condition, replacing it by
the condition that all Massey products of 1–dimensional classes vanish for B . More
precisely, Dwyer shows that if the integral Massey products vanish up to and including
order n� 1 then A is “large enough” that it maps onto the free nilpotent group of rank
m and nilpotency class n [14, Proposition 4.3]. Our work can be applied to generalize
these results to give a criterion for when A freely generates, in B=B.n/ , a free-solvable
subgroup, that is to say, A is “large enough” to map onto the free solvable group of
rank m and derived length n.

Proposition 4.1 Suppose that B is a finitely related group and A is the subgroup
generated by AD fai ji 2 Ig � B . Suppose A is linearly independent in H1.BIQ/
and suppose that H2.BIQ/D hˆ

.n�1/.B/i. Then A=A.n/ is the free solvable group
of derived length n on A, that is, if F is the free group on A then the map F ! A

induces an isomorphism F=F .n/ŠA=A.n/ . In particular A maps onto the free solvable
group on A of derived length n and hence is not nilpotent if m> 1. Moreover A=A.n/

embeds in B=B.n/ .

Stallings’ theorems and Dwyer’s extensions have also had many applications in topology
and our results provide extensions of these. For example, if L0 and L1 are oriented,
ordered, m–component links of circles in S3 , we say they are concordant if there exist
compact oriented annuli †i ; 1� i �m, properly and disjointly embedded in S3� Œ0; 1�,
restricting to Lj on S3 � fj g, j D 0; 1. By Alexander Duality, the inclusion maps
..S3 � fj g/�Lj /! .S3 � Œ0; 1�/�

`
†i/ induce integral homology equivalences.

Thus Stallings’ theorem implies that the isomorphism type of each of the quotients
A=An , where AD�1.S

3�L/, is an invariant of the concordance type of a link. Using
this, A Casson showed that Milnor’s invariants of links are concordance invariants [3].
The invariance under concordance of other link invariants such as the rank of the
Alexander module (A.1/=A.2/ ) and certain signature invariants were also established
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using Stallings’ theorem; see Hillman [20, p 52], Smolinsky [29], Levine [25] and
Friedl [17]. Our previous work on the torsion-free derived series [19; 6] has led to
corresponding new “higher-order” concordance invariants arising from “higher-order”
signatures and ranks [19; 18]. Dwyer’s theorem on the lower-central series and our
present work on the torsion-free-derived series allow one to show that these invariants
are unchanged under weaker equivalence relations involving certain surfaces instead of
the annuli that appear in the definition of link concordance. This allows for analogues of
all of the above results. These other equivalence relations on knots and links have been
much studied recently in many different contexts and are related to notions of gropes;
see Conant [11], Teichner [33] and Krushkal–Teichner [24], Conant–Teichner [13; 12],
Cochran–Orr–Teichner [7; 8] and Cochran–Teichner [9]. In particular, as applications
of our main theorem we show that a family of Cheeger–Gromov von Neumann �–
invariants of links and 3–manifolds considered by Harvey in [19] are actually invariants
of weaker equivalence relations involving gropes similar but more general than those
considered in [7; 9] (generalizing [19, Section 6]). In Section 4 we extend the work of
[19, Section 6] on the Cochran–Orr–Teichner filtration F.n/ of the classical disk-link
concordance group. For example our results allow for the following sharpening of
Harvey’s [19, Theorem 6.8]. Definitions and details are given in Section 4.

Theorem 4.5 In the category of m–component ordered oriented string links (m> 1),
each of the quotients F.n/=FQ

.n:5/
contains a subgroup, consisting entirely of boundary

links, whose abelianization has infinite Q–rank.

Acknowledgements The first author was partially supported by NSF DMS-0406573.
The second author was partially supported by NSF DMS-0539044 and a fellowship
from the Alfred P Sloan Foundation.

2 The main theorem

In this section we recall and prove the main theorem.

Theorem 2.1 (Main Theorem) Let A be finitely generated and B finitely related.
Suppose �W A! B induces a monomorphism on H1.�IQ/ and induces an epimor-
phism ��W H2.AIQ/ ! H2.BIQ/=hˆ

.n/

H .B/i. Then � induces a monomorphism
A=A.nC1/

H
� B=B.nC1/

H (similarly for any m � nC 1). If � induces an isomorphism
on H1.�IQ/ then � induces a monomorphism A.n/

H =A.nC1/

H !B.n/

H =B.nC1/

H between
modules of the same rank (over ZŒA=A.n/

H � and ZŒB=B.n/

H � respectively).
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Corollary 2.2 Suppose F is a free group, B is a finitely related group, �W F ! B

induces a monomorphism on H1.�IQ/ and H2.BIQ/ is spanned by B.n/ –surfaces
(or more generally B.n/

H –surfaces). Then � induces a monomorphism F=F .nC1/ �

B=B.nC1/ (similarly for any m� nC 1).

Before proving Theorem 2.1, we offer reasonable motivation for the hypothesis on H2 .
Consider the epimorphism �W A! A=A.nC1/ � B . This homomorphism certainly
induces isomorphisms A=A.i/ Š B=B.i/ for 0� i � nC 1. If an analog of Dwyer’s
theorem were to hold then � would satisfy an appropriate condition on H2 . Therefore
let us examine the cokernel of H2.A/ ! H2.A=A

.nC1// and allow it to suggest a
reasonable condition on H2 . Thinking topologically, consider a normal generating
set f
ig for A.nC1/ . We may obtain an Eilenberg–Maclane space K.A=A.nC1/; 1/ by
adjoining to K.A; 1/ 2–cells �i along circles @.�i/ representing the 
i , and then
adding cells of dimension 3 and higher. Since 
i 2A.nC1/ , 
i D

Q
j Œ˛ij ; ˇij � where

˛ij ; ˇij 2A.n/ . Thus @.�i/ is the boundary of a map fi W †i!K.A; 1/ of a compact
orientable surface †i with a standard symplectic basis faij ; bij j1� j � genus.†i/g

where .fi/�.Œaij �/D˛ij and .fi/�.Œbij �/Dˇij . The cokernel of ��W H2.A/!H2.B/

is generated by the set of closed surfaces f�i [fi.†i/g which are n–surfaces of B as
defined above.

Proof of Theorem 2.1 The proof of the first claim is by induction on n. The case
nD0 is clear since A=A.1/

H is merely H1.AIZ/=fZ–Torsiong and the hypothesis that �
induces a monomorphism on H1.�IQ/ implies that it also induces a monomorphism
on H1.�IZ/ modulo torsion. Now assume that the first claim holds for n, ie �
induces a monomorphism A=A.n/

H � B=B.n/

H . We will prove that it holds for nC 1,
under the hypothesis that the cokernel of ��W H2.AIQ/!H2.BIQ/ is spanned by
B.n/

H –surfaces.

It follows from [19, Proposition 2.2] that �.A.nC1/

H / � B.nC1/

H . Hence the diagram
below exists and is commutative. By the Five Lemma, it suffices to show that � induces
a monomorphism A.n/

H =A.nC1/

H ! B.n/

H =B.nC1/

H .

1 ����!
A

.n/

H

A
.nC1/

H

����!
A

A
.nC1/

H

����!
A

A
.n/

H

����! 1??y� ??y�nC1

??y�n

1 ����!
B

.n/

H

B
.nC1/

H

����!
B

B
.nC1/

H

����!
B

B
.n/

H

����! 1

The proof follows exactly the proof of [6, Theorem 4.1] until we reach our Proposition
2.6. However, we will present a slightly different approach, as suggested by the referee.
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The strategy is to show that, essentially by definition, the module A.n/

H =A.nC1/

H can be
formulated in terms of the homology of A with certain twisted coefficients, and to then
to prove the key theorem showing that an integral homology equivalence guarantees a
homology equivalence with twisted coefficients modulo torsion (Proposition 2.6). For
simplicity we abbreviate A=A.n/

H by An and B=B.n/

H by Bn .

Suppose that A.n/

H =A.nC1/

H ! B.n/

H =B.nC1/

H were not injective. Then, by examining the
diagram below, we see that there would exist an a 2A.n/

H representing a non-torsion
class Œa� in A.n/

H =ŒA.n/

H ;A.n/

H � such that �.a/ represents a ZBn –torsion class, Œ�.a/�, in
B.n/

H =ŒB.n/

H ;B.n/

H �.
A

.n/

H

ŒA
.n/

H
;A

.n/

H
�

�A
����!

A
.n/

H

A
.nC1/

H??y� ??y�
B

.n/

H

ŒB
.n/

H
;B

.n/

H
�

�B
����!

B
.n/

H

B
.nC1/

H

Thus it suffices to show:

Corollary 2.3 Under the map

��W
A.n/

H

ŒA.n/

H ;A.n/

H �
!

B.n/

H

ŒB.n/

H ;B.n/

H �

if Œ�.a/�is a ZBn –torsion class then Œa� is a ZAn –torsion class.

This Corollary has a homological interpretation.

Remark 2.4 A.n/

H =ŒA.n/

H ;A.n/

H �ŠH1.A
.n/

H IZ/ŠH1.AIZŒA=A
.n/

H �/. The second equiv-
alence is, for an algebraist, a consequence of Shapiro’s Lemma [2, Proposition 2.6,
p 73]. For a topologist, H1.AIZŒA=A

.n/

H �/ may be thought of as the first homology
with twisted coefficients of an aspherical space K.A; 1/ where �1.K.A; 1// Š A

and the coefficient system is induced by �1.K.A; 1// Š A! A=A.n/

H [21, p 335].
Then H1.K.A; 1/IZŒA=A

.n/

H �/ can be interpreted as the first homology module of the
covering space of K(A,1) corresponding to the subgroup A.n/

H , which is A.n/

H =ŒA.n/

H ;A.n/

H �

[34, Theorems VI3.4 and 3.4*].

In general the set of torsion elements (in the usual sense) of a module over an arbitrary
ring is not a submodule; but over an Ore domain it is a submodule. Note that the solvable
groups An and Bn are Z–torsion free since the successive quotients of the torsion-free
derived series are torsion free modules. Thus ZAn and ZBn are right Ore domains [19,
Proposition 2.1] and consequently they admit (and embed into) classical right rings of
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quotients (which are division rings) K.An/ and K.Bn/, respectively [27, p 591–592,
p 611]. Moreover our inductive hypothesis is that � induces a monomorphism An!Bn

and hence a ring monomorphism ZAn! ZBn . Thus � induces a monomorphism
K.An/!K.Bn/, which endows K.Bn/ with a K.An/�K.Bn/ bimodule structure.
Recall that any module over a division ring is free (a vector space). Thus any module
M over an Ore Domain R has a well-defined rank which is defined to be the rank of
the vector space M ˝R K.R/ [10, p 48]. Alternatively the rank can be defined to be
the maximal integer m such that M contains a submodule isomorphic to Rm . We
also recall that for any Ore domain R, its quotient field K.R/ is a flat R–module [31,
Proposition 3.5].

In summary we have the following homological interpretation of the torsion-free derived
series.

Proposition 2.5 ([6, Proposition 2.12])

(1) A.n/

H =A.nC1/

H is equal to H1.AIZŒA=A
.n/

H �/ modulo its ZŒA=A.n/

H �–torsion submod-
ule.

(2) A.nC1/

H is the kernel of the composition:

A.n/

H

�n
��!

A.n/

H

ŒA.n/

H ;A.n/

H �
DH1.AIZŒA=A

.n/

H
�/!H1.AIZŒA=A

.n/

H
�/˝

ZŒA=A.n/

H
�
K.A=A.n/

H
/:

Proof Property (1) follows directly from Remark 2.4 and the definition of A.nC1/

H .
For Property (2), note that tensoring with the quotient field K.A=A.n/

H / kills precisely
the ZŒA=A.n/

H �–torsion submodule [31, Corollary.II.3.3].

Proof of Corollary 2.3 Consider the following commutative diagram

A
.n/

H

ŒA
.n/

H
;A

.n/

H
�

Š
����! H1.AIZAn/??yid˝�

??yid˝�

A
.n/

H

ŒA
.n/

H
;A

.n/

H
�
˝ZAn

ZBn
Š
����! H1.AIZBn/

i�
����! H1.AIQBn/??y�˝id

??y�� ??y��
B

.n/

H

ŒB
.n/

H
;B

.n/

H
�

Š
����! H1.BIZBn/

i�
����! H1.BIQBn/

where the horizontal isomorphisms follow from Remark 2.4 and from the fact that
since An! Bn is a group monomorphism, ZBn is a free, hence flat, ZAn module.
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We now consider the central vertical composition above  D �� ı .id˝�/. Let
xa D .id˝�/.Œa�/. Suppose that  .Œa�/ is ZBn –torsion. Then there is a nonzero
ı 2ZBn such that ��.i�.xa/ı//D 0 in H1.BIQBn/. By Proposition 2.6 below (proof
postponed), applied with B0 DB.n/

H and � DB=B.n/

H DBn , i�.xa/ı is QBn –torsion
in H1.AIQBn/.

Proposition 2.6 Suppose � W A ! B induces a monomorphism H1.AIQ/ �
H1.BIQ/ and H2.BIQ/ is generated by the images of

��W H2.AIQ/ �!H2.BIQ/ and incl�W H2.B0IQ/ �!H2.BIQ/;

where B0 is a normal subgroup of B such that B=B0 is PTFA. If A is finitely generated,
B is finitely related and � D B=B0 , the kernel of H1.A;Q�/! H1.B;Q�/ is a
Q� –torsion module. If H1.A;Q/! H1.B;Q/ is surjective, then the cokernel of
H1.A;Q�/ �!H1.B;Q�/ is a Q� –torsion module.

Hence i�.xa/ is QBn –torsion. So in fact (after multiplying by an integer) there is a
nonzero element 
 0 2 ZBn such that i�.xa/


0 D i�.xa

0/D 0 in H1.AIQBn/. Since

the kernel of i� is Z–torsion, xa
 0 is Z–torsion and so xa is ZBn –torsion [31, Corol-
lary.II.3.3]. Let �2ZBn be a nonzero element that annihilates xa. By hypothesis, An is
(isomorphic to) a subgroup of Bn . This implies that ZBn , viewed as a ZAn –module,
is a free module—say with basis T �Bn and 12T —and that ZAn may be considered
a direct summand of ZBn and that H1.AIZAn/ can be viewed as a direct summand
of H1.AIZBn/. Express � as a linear combination

P
t2T �t � t . For some t , �t ¤ 0.

Right multiply by t�1 and use that every right multiple of � by an element of Bn also
annihilates xa to conclude that xa is annihilated by some

P
t2T �

0
t � t wherein with �0

1

is a nonzero element of ZAn . Thus

0D Œa� ��01C
X
t¤1

Œa��0t � t:

Since each component must vanish, 0D Œa� ��0
1

, showing that Œa� is ZAn –torsion. This
concludes the proof of Corollary 2.3.

This finishes the inductive step of the proof of the first part of Theorem 2.1, modulo
the proof of Proposition 2.6.

The second claim of Theorem 2.1 follows in an identical fashion as in [6, Proof of
Theorem 4.1]. For assume that � induces an isomorphism on H1.�IQ/. We must show
that A.n/

H =A.nC1/

H ! B.n/

H =B.nC1/

H is a monomorphism between modules of the same
rank. The fact that this is a monomorphism follows from the first part of the theorem.
Since A.n/

H =A.nC1/

H and A.n/

H =ŒA.n/

H ;A.n/

H � differ only by ZAn –torsion, they have the
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same rank, rA , as ZAn –modules. For the same reason, A.n/

H =A.nC1/

H ˝ZAn
K.Bn/ and

A.n/

H =ŒA.n/

H ;A.n/

H �˝ZAn
K.Bn/ are isomorphic. By [6, Lemma 4.2], the former has

K.Bn/–rank equal to rA and hence so does the latter, which we have identified with
H1.AIK.Bn//. If � induces an isomorphism on H1.�IQ/ then note that B must
be finitely generated. Hence Proposition 2.6 applies to show that H1.AIK.Bn// Š

H1.BIK.Bn//. Thus the latter has K.Bn/–rank equal to rA . But by applying the
same reasoning as above, we see that it has K.Bn/–rank equal to rB , the ZBn –rank
of B.n/

H =B.nC1/

H .

Thus the entire proof of Theorem 2.1 is reduced to the proof of the Proposition 2.6.

Instead of giving a “topological proof” of Proposition 2.6 along the lines of [6], we
will give a “group homology” proof suggested by the referee. Our original proof of
Proposition 2.6 can be viewed in the old versions of the paper on the xxx arXiv. Along
the way it seems valuable to reprove, in this new manner, the corresponding crucial
result of [6]. We are grateful to the referee for suggesting this proof.

2.1 Another proof of Proposition 4.3 of [6]

First we need several basic homological results. We could suppose more generally for
the results below that � is a locally indicable group, R is a subring of the rationals,
Z�R�Q, and that R� is an Ore domain (hence admitting a classical skew field of
quotients K). The most common situation under which these hypotheses are satisfied
is when � is a poly-(torsion-free-abelian) group (PTFA group), that is when � has a
finite normal series �i wherein the successive quotients are torsion-free abelian groups;
see Strebel [32, p 305] and Cochran, Orr and Teichner [7, Section 2]. Note that, for
any group B , the quotient B=B.n/

H
is a PTFA group, since the quotients B.i/

H
=B.iC1/

H

are Z–torsion-free.

Recall the following modest generalization due to the authors, of a result of R Strebel [32,
p 305].

Lemma 2.7 [6, Lemma 4.4] Suppose f W M ! N is a homomorphism of right
R� –modules with N projective. Let xf D f ˝ id be the induced homomorphism of
R–modules M ˝R� R!N ˝R� R. Then rankR�.imagef /� rankQ.image xf /.

Corollary 2.8 Suppose C� is a projective right R� chain complex with Cp finitely
generated. Then

rankR� Hp.C�/� rankQ Hp.C�˝R� R/:

Remark 2.9 This Corollary is false if Cp is not finitely generated.
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Proof of Corollary 2.8 Let rp D rankR� Cp . Since Cp is finitely generated, rp is
finite. Let f xC�g D f xCp; x@pg D fCp ˝R� R; @p ˝ idg. We claim that rp D rankQ

xCp .
This is clear if Cp is free. If Cp is merely projective it requires a short argument that
we leave to the reader. Now observe

rankR� Hp.C�/D rankR�.ker @p/� rankR�.image @pC1/

D rp � rankR�.image @p/� rankR�.image @pC1/

� rp � rankQ.image x@p/� rankQ.image x@pC1/

D rankQ.ker x@p/� rankQ.image x@pC1/

D rankQ Hp. xC�/;

where the inequality follows from two applications of Lemma 2.7 above.

Proposition 2.10 [6, Proposition 4.3] Suppose �W A!B induces a monomorphism
H1.A;Q/� H1.B;Q/ and an epimorphism H2.A;Q/!H2.B;Q/. If A is finitely
generated, B is finitely related and � DB=B0 is PTFA, the kernel of H1.A;Q�/�!
H1.B;Q�/ is a Q� –torsion module. If, in addition, H1.A;Q/�H1.B;Q/ is surjec-
tive, then the cokernel of H1.A;Q�/�!H1.B;Q�/ is a Q� –torsion module. (Since
K� is flat, the conclusions are the same as saying that H1.A;K�/!H1.B;K�/ is a
monomorphism (respectively an isomorphism)).

Proof of Proposition 2.10 Choose a ZA–free resolution X� � Z and a ZB–free
resolution Y� � Z with X1 and X0 finitely generated over ZA and Y2 finitely
generated over ZB . Use �W A!B to turn right ZB –modules into right ZA–modules
and lift the identity 1Z to a chain map �� W X� ! Y� of ZA–modules. Next pass
from the ZA complex X� to the ZB–complex zX� D X�˝ZA ZB ; then form the
mapping cone Z� [2, p 6]. The chain group in dimension i of this complex is the free
ZB–module Zi D

zXi�1˚Yi . For every left ZB–module M the homology groups
of the mapping cone Z� fit into the exact sequence [2, Proposition 0.6]

: : : �!H2.A;M / �!H2.B;M / �!H2.Z�˝ZB M / �!

�!H1.A;M / �!H1.B;M / �!H1.Z�˝ZB M / �!
(2–1)

The hypotheses imply that H�.Z�˝ZB Q/ vanishes in dimension 2, respectively in
dimensions 2 and 1. Applying Corollary 2.8 to the complex Z�˝ZB Q� in dimension
2, respectively in dimensions 2 and 1, we conclude that H�.Z�˝ZB Q�/ has Q� –
rank zero, which is to say, is Q� –torsion in these same dimensions. To apply Corollary
2.8 we need to know that Y1 and hence Z1 is finitely generated. But note that if
�� is an isomorphism on H1.�IQ/, then since A is finitely generated, H1.BIQ/ is
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finite-dimensional. Since B is finitely related this can only happen if B is finitely
presented. Therefore in this case we can assume both Y1 and Y2 are finitely generated.
Then the sequence (2–1) implies Proposition 2.10.

We note in passing that this same type of analysis of (2–1) shows that the cokernel part
of Proposition 2.10 is true without any hypothesis on H2 , as long as either �� is an
isomorphism on H1.�IQ/, or �� is an epimorphism on H1.�IQ/ and B is finitely
presented [7, Proposition 2.10].

2.2 Proof of Proposition 2.6

In the remainder of this proof all tensor products are over ZB unless specified oth-
erwise. The strategy of the proof is similar to that of Proposition 2.10, but there
is an new difficulty: the hypotheses no longer imply that H2.Z� ˝Q/ D 0 in the
exact sequence (2–1) and so the desired conclusion does not follow directly from
Corollary 2.8. However, if H1.A;Q/� H1.B;Q/ is surjective, then the cokernel of
H1.A;Q�/ �!H1.B;Q�/ is a Q� –torsion module, since this part of the proof of
Proposition 2.10 was not dependent on the H2 condition. Thus the cokernel part of
Proposition 2.6 holds.

Here is a sketch of the proof. The kernel of H1.AIQ�/!H1.BIQ�/ is a torsion
module precisely when the cokernel of H2.BIQ�/! H2.B;AIQ�/ is a torsion
module, so we shall establish the latter. We observe that H2.B0IQ/ can be canonically
identified with H2.BIQŒB=B0�/. With this in mind, our hypotheses ensure that
H2.BIQ/!H2.B;AIQ/ is surjective and moreover that any class in H2.B;AIQ/
lies in the image of a class in H2.BIQ/ that “lifts” to H2.B0IQ/ D H2.BIQ�/.
Then we show that these lifted classes span a submodule of full rank in H2.B;AIQ�/,
ie one whose Q� –rank equals that of H2.B;AIQ�/. Corollary 2.8 is used to ensure
that the rank of H2.B;AIQ�/ is controlled by that of H2.B;AIQ/, and Lemma
2.7 is used to show that the lifted classes span modules of the same Q� –rank as the
Q–rank of the span of their images in H2.B;AIQ/. The following makes these ideas
precise.

In other words our goal is to prove that the cokernel of H2.Y�˝Q�/!H2.Z�˝Q�/
is a torsion module. Consider the inclusion i2W Y2 ! Z2 and the boundary map
@3W Z3!Z2 and use them to define two homomorphisms:

.@3˝ 1Q�/˚ .i2˝ 1Q�/W .Z3˝Q�/˚ .Y2˝Q�/ �!Z2˝Q�;

.@3˝ 1Q/˚ .i2˝ 1Q/W .Z3˝Q/˚ .Y2˝Q/ �!Z2˝Q:
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By restricting in domain and range we arrive at

gW .Z3˝Q�/˚ ker.@Y
2 ˝ 1Q�/ �! ker.@Z

2 ˝ 1Q�/;(2–2)

xgW Z3˝Q˚ ker.@Y
2 ˝ 1Q/ �! ker.@Z

2 ˝ 1Q/:(2–3)

By hypothesis H1.X�˝Q/�H1.Y�˝Q/ is injective so H2.Y�˝Q/!H2.Z�˝Q/
is surjective. It follows that the map xg is surjective. Since Z2 is finitely gener-
ated, ker.@Z

2
˝ 1Q/ is a finite-dimensional vector space. We can choose a basis,

fxu0
1
; : : : ; xu0r ; xv

0
1
; : : : ; xv0sg, for this vector space where fxu0ig is a basis for the image of

@3 ˝ 1Q (say xu0i D .@3 ˝ 1Q/.xui/ for xui 2 Z3 ˝Q); and xv0i D .{2 ˝ 1Q/.xvi/ for
some xvi 2 ker.@Y

2
˝ 1Q/. Moreover we can choose the xvi more precisely. For, by the

hypothesis on H2.BIQ/, ker.@Y
2
˝ 1Q/ is generated by three types of classes:

(A) the image of @Y
3
˝ 1QW Y3˝Q! Y2˝Q,

(B) the image of (cycles) ��W X2˝Q! Y2˝Q, and

(C) the image (under inclusion) of the kernel of

@2˝ 1QW Y2˝ZB0
Q �! Y1˝ZB0

Q:

For type (C) we have used the fact that Y� can also be viewed as a free ZB0 –resolution
to compute H2.B0IQ/. We claim that we can choose our xvi to be of type (C). For
elements of type (B) vanish under {2˝ 1Q ; and since {�˝ 1Q is a chain map,

.{2˝ 1Q/.@
Y
3 ˝ 1Q/D .@

Z
3 ˝ 1Q/.{3˝ 1Q/;

so elements of type (A) are carried under {2˝ 1Q into the subspace spanned by fxu0ig.

Now we lift the set fxu1; : : : ; xur ; xv1; : : : ; xvsg to a set fu1; : : : ;ur ; v1; : : : ; vsg in the
domain of g as follows. The elements xui can be lifted to elements ui 2 Z3˝Q� .
Since Y� ˝ZB0

Q is canonically isomorphic to Y� ˝ZB Q� , the elements xvi can
likewise be lifted to elements vi in the kernel of

@Y
2 ˝ 1Q� W Y2˝Q�! Y1˝Q�:

These sets induce maps f and xf of free modules into the domains of g and xg
respectively as shown in the diagram:

hui ; vii .Q�/rCs domain.g/ ker.@Z
2 ˝ 1Q�/ Z2˝Q�

hxui ; xvii .Q/rCs domain.xg/ ker.@Z
2 ˝ 1Q/ Z2˝Q

-�

?
�

-f

?
�

-g -�

?
�

-� -
xf -xg -�
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Since fxu0
1
; : : : ; xu0r ; xv

0
1
; : : : ; xv0sg is a basis for ker.@Z

2
˝ 1Q/, the bottom composition is

a monomorphism. By Lemma 2.7 (actually Strebel’s original result suffices here [32,
p 305]), the top composition is also a monomorphism. Hence gıf is a monomorphism.
Thus the images of fui ; vig generate a rank (r+s) free Q� –submodule F of ker.@Z

2
˝

1Q�/, so the latter has rank at least r C s . On the other hand,

rankQ� ker.@Z
2 ˝ 1Q�/D rankQ�.Z2˝Q�/� rankQ� im.@Z

2 ˝ 1Q�/

which, by Lemma 2.7 is at most

rankQ�.Z2˝Q�/� rankQ im.@Z
2 ˝ 1Q/D rankQ.Z2˝Q/� rankQ im.@Z

2 ˝ 1Q/

D rankQ ker.@Z
2 ˝ 1Q/D r C s:

Thus the Q� –rank of ker.@Z
2
˝ 1Q�/ is exactly r C s . Since the first r elements of

the basis of F are in the image of Z3˝Q�!Z2˝Q� (ie are boundaries) and the
remaining ones are images of classes in the kernel of Y2˝Q�! Y1˝Q� , the image
of H2.Y�˝Q�/!H2.Z�˝Q�/ is a submodule of full rank. Thus the cokernel of
this map is a torsion module, which was what was to be proved. Therefore the kernel
of H1.A;Q�/!H1.B;Q�/ is a torsion module.

This completes the proof of Proposition 2.6 and hence the proof of Theorem 2.1.

The following slightly more general version of Proposition 2.6 is useful in the appli-
cations. It differs only in that the coefficient system  W B! � is not assumed to be
surjective.

Proposition 2.11 Suppose � W A! B induces a monomorphism (respectively an
isomorphism) on H1. IQ/ with A finitely generated and B finitely related. Consider
the coefficient system  W B ! � where � is PTFA. Let B0 D ker . Suppose
H2.BIQ/ is spanned by ��.H2.AIQ// together with a collection of B0 –surfaces.
Then � induces a monomorphism (respectively, an isomorphism)

��W H1.AIK�/ �!H1.BIK�/:

Proof of Proposition 2.11 Let � 0 D image.�/ŠB=B0 . Then � 0 � � is a subgroup
of a PTFA group, hence is a PTFA group. There is an induced monomorphism
i W K� 0!K� so K� is a free, hence flat K� 0–module (indeed every K� 0–module is
free). Thus we have the commutative diagram:

H1.AIK� 0/
i�
����! H1.AIK�/

Š
����! H1.AIK� 0/˝K� 0 K�??y�0� ??y�� ??y�0�˝1

H1.BIK� 0/
i�
����! H1.BIK�/

Š
����! H1.BIK� 0/˝K� 0 K�
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By Proposition 2.6, �0� is injective (respectively an isomorphism). Since K� is flat,
�0�˝ 1 is injective (respectively an isomorphism).

The following variation of Corollary 2.8 is often useful in applications. The seemingly
tiny technical results, Corollary 2.8 and Corollary 2.12, actually greatly generalize the
key homological results employed in recent work of Cochran–Orr–Teichner establishing
new techniques in knot theory. Their key homological results [7, Proposition 4.3] were
proven only in the context where the chain complexes were cellular chain complexes
for a 4–dimensional manifold, so it is somewhat surprising that in fact (as shown by
Corollary 2.8 and Corollary 2.12) those hypotheses turn out to be quite superfluous!

Corollary 2.12 Suppose C� is a projective chain complex of (right) R� –modules
with Cp finitely generated. Let xC� D C�˝R� R and �� W C� ! xC� be the obvious
chain map sending x to x˝ 1. Suppose fxs j s 2 Sg is a set of p–cycles of C� . Let
xxs D �.xs/ and suppose the Q-rank of Hp. xC�/=hŒxxs � j s 2 Si is at most k . Then the
K–rank of Hp.C�/=hŒxs � j s 2 Si is at most k .

Proof of Corollary 2.12 We shall define a projective chain complex D� D fDp; dpg

such that Hp.D�/ Š Hp.C�/=hŒxs � j s 2 Si, and then apply Corollary 2.8 to this
chain complex. Set DpC1 D .˚s2SR�/

L
CpC1 and otherwise set Di D Ci . Let

dpC1W DpC1!Dp be defined by dpC1.es;y/D xsC @pC1.y/ where fesg is a basis
of .R�/s and y 2 CpC1 , and dpC2W DpC2!DpC1 by dpC2.z/D .0; @pC2.z// for
z 2DpC2 D CpC2 . Then the p–cycles of D� are the same as those of C� while the
group of p–boundaries is larger (includes fxsg). Hence Hp.D�/ is isomorphic to
Hp.C�/=hŒxs � j s 2 Si as claimed.

It now suffices to show that the K–rank of Hp.D�/ is at most k . Note that DpDCp is
finitely generated. Just as above we can create a chain complex xD� which agrees with
xC� except in dimension pC1 where xDpC1D .˚s2SR/

L
xC� with xdpC1W

xDpC1!
xDp

given by dpC1.xes; xy/ D xxs C
x@pC1.xy/ for fxesg a basis of Rs and xy 2 xCpC1 . Then

just as above:

Hp. xD�/ŠHp. xC�/=hŒxs � js 2 Si;

which has Q–rank at most k by assumption. Moreover the chain map � W C�! xC�
extends to z� W D� ! xD� by setting z�.es;y/ D .xes; �.y//, and one sees that xD� D
D�˝R� R. It follows immediately from Corollary 2.8 that the K–rank of Hp.D�/ is
at most k .
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3 A rational Dwyer’s theorem for the lower central series

For completeness, we prove the missing “rational” version of Dwyer’s theorem, that
is the correct generalization of Stallings’ Rational Theorem. This follows from the
Stallings’-Dwyer techniques but was not stated by Dwyer, nor by Bousfield [1].

Theorem 3.1 (Rational Dwyer’s Theorem) Let �W A! B be a homomorphism that
induces an isomorphism on H1.�IQ/. Then for any positive integer n the following
are equivalent:

(1) For each 1 � k � n, � induces a monomorphism A=Ar
kC1
� B=Br

kC1
, and

isomorphisms H�.A=A
r
kC1
IQ/ŠH�.B=B

r
kC1
IQ/; and an isomorphism

.Ar
k=A

r
kC1/˝QŠ .Br

k=B
r
kC1/˝Q:

(2) � induces an epimorphism H2.AIQ/=hˆ
r
n.A/i !H2.BIQ/=hˆ

r
n.B/i.

Proof First we prove that .1/) .2/. This is trivial if n D 1 so we assume n > 1.
Consider Stallings’ exact sequence [30, Section 7]:

����! H2.AIQ/
�A
����! H2.A=A

r
nIQ/

@A
����! .Ar

n=A
r
nC1

/˝Q ����! 0??y�� ??y.�n/�

??y�n

����! H2.BIQ/
�B
����! H2.B=B

r
n IQ/

@B
����! .Br

n=B
r
nC1

/˝Q ����! 0

By (1), both .�n/� and �n are isomorphisms. Noting that ker.@A/ D image.�A/ Š

H2.AIQ/= ker.�A/, it follows that � induces an isomorphism

��W H2.AIQ/= ker.�A/ŠH2.BIQ/= ker.�B/:

But ker.�A/Dhˆ
r
n.A/i, the subspace spanned by ˆr

n.A/ as may be seen by examining
the diagram below.

0 ����! ˆr
n.A/ ����! H2.AIZ/

�Z
A

����! H2.A=A
r
nIZ/??yi�

??yi�

??y.in/�

0 ����! ker.�A/ ����! H2.AIQ/
�A
����! H2.A=A

r
nIQ/

This completes the proof that .1/) .2/.

Now we show .2/) .1/. The proof follows the outline of Stallings’ proof of his Ratio-
nal Theorem ([30, Theorem 7.3]). We claim that the hypothesis H1.AIQ/ŠH1.BIQ/
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establishes (1) for k D 1. For note that H1.AIQ/Š .A=A
r
2
/˝Q. Furthermore, since

A=Ar
2

is a torsion-free abelian group,

H�.A=A
r
2IQ/ŠH�..A=A

r
2/˝QIQ/

by [30, Lemma 7.1]. Proceeding inductively, we assume that for some fixed k , 1� k <

n, � induces a monomorphism A=Ar
k
� B=Br

k
, an isomorphism H�.A=A

r
k
IQ/ Š

H�.B=B
r
k
IQ/, and an isomorphism .Ar

k�1
=Ar

k
/˝QŠ .Br

k�1
=Br

k
/˝Q (similarly

for all lesser values of k ). For the inductive step we first show that � induces an
isomorphism .Ar

k
=Ar

kC1
/˝Q Š .Br

k
=Br

kC1
/˝Q. For this we consider Stallings’

exact sequence [30, Section 7]:

����! H2.AIQ/
�k

A
����! H2.A=A

r
k
IQ/

@A
����! .Ar

k
=Ar

kC1
/˝Q ����! 0??y�� ??y.�k/�

??y�k

����! H2.BIQ/
�k

B
����! H2.B=B

r
k
IQ/

@B
����! .Br

k
=Br

kC1
/˝Q ����! 0

By the induction hypothesis, the middle map .�k/� is an isomorphism. It follows
immediately that �k is surjective. To establish injectivity of �k , a diagram chase
reveals that it suffices to show that � induces an epimorphism H2.AIQ/= ker.�k

A
/!

H2.BIQ/= ker.�k
B
/. By (2), � induces an epimorphism

H2.AIQ/=hˆ
r
n.A/i !H2.BIQ/=hˆ

r
n.B/i:

We claim that hˆr
n.A/iD ker.�n

A
/. For, if x 2ˆr

n.A/ then , by definition, x 2 ker.�n
Z/

below. Hence i�.x/ 2 ker.�n
Q/. Thus ˆr

n.A/� ker.�n
A
/. If y 2 ker.�n

Q/ below then
for some positive integer m, my D i�.x/ for some x 2 ker.�n

Z/ D ˆ
r
n.A/. Hence

y 2 hˆr
n.A/i. Thus hˆr

n.A/i D ker.�n
A
/.

H2.AIZ/
�n

Z
����! H2.A=A

r
nIZ/??yi�

??yi�

H2.AIQ/
�n

Q
����! H2.A=A

r
nIQ/

The desired result now follows from the commutative diagram below since both hori-
zontal maps � are surjective.

H2.AIQ/= ker.�n
A
/

�
����! H2.AIQ/= ker.�k

A
/??y�� ??y��

H2.BIQ/= ker.�n
B
/

�
����! H2.BIQ/= ker.�k

B
/
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This completes our verification of the first part of the inductive step, namely that
.Ar

k
=Ar

kC1
/˝QŠ .Br

k
=Br

kC1
/˝Q.

But this fact, together with the fact that the groups Ar
k
=Ar

kC1
and Br

k
=Br

kC1
are

torsion-free, implies that � induces an embedding Ar
k
=Ar

kC1
� Br

k
=Br

kC1
, which in

turn implies that � induces an embedding A=Ar
kC1
� B=Br

kC1
.

It only remains to show that H�.A=A
r
kC1
IQ/ŠH�.B=B

r
kC1
IQ/. By our inductive

assumption H�.A=A
r
k
IQ/ Š H�.B=B

r
k
IQ/. Moreover since .Ar

k
=Ar

kC1
/˝Q Š

.Br
k
=Br

kC1
/˝Q, and since Ar

k
=Ar

kC1
and Br

k
=Br

kC1
are torsion-free abelian groups,

H�.A
r
k=A

r
kC1IQ/ŠH�.A

r
k=A

r
kC1˝QIQ/

H�.B
r
k=B

r
kC1IQ/ŠH�.B

r
k=B

r
kC1˝QIQ/

by [30, Lemma 7.1]. Thus

H�.A
r
k=A

r
kC1IQ/ŠH�.B

r
k=B

r
kC1IQ/:

But the sequence

0 �!Ar
k=A

r
kC1 �!A=Ar

kC1 �!A=Ar
k �! 0

is a central extension so the result follows from [30, Lemma 7.2] (a Serre spectral
sequence argument). This completes the proof of .2/) .1/.

4 Applications

4.1 Algebraic applications

Suppose that A is the subgroup generated by a set fa1; : : : ; amg of elements of the
group B . When is A a free group of rank m? When is A free solvable? When is the
image of A in B=B.n/ isomorphic to the free solvable group F=F .n/ ?

Proposition 4.1 Suppose that B is a finitely related group and A is the subgroup
generated by AD fai ji 2 Ig � B . Suppose A is linearly independent in H1.BIQ/
and suppose that H2.BIQ/D hˆ

.n�1/.B/i. Then A=A.n/ is the free solvable group
of derived length n on A, that is, if F is the free group on A then the map F ! A

induces an isomorphism F=F .n/ŠA=A.n/ . In particular A maps onto the free solvable
group on A of derived length n and hence is not nilpotent if m> 1. Moreover A=A.n/

embeds in B=B.n/ .
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Proof By hypothesis H2.BIQ/=hˆ
.n�1/

H .B/iD0 and the map �W F.A/!B induces
a monomorphism on H1.�IQ/. Thus by Section 2, � induces a monomorphism
F=F .n/ Š B=B.n/ . This factors through the natural epimorphism F=F .n/!A=A.n/

which is consequently an isomorphism. The other statements follow immediately.

Examples of topological situations where the hypotheses of Proposition 4.1 are satisfied
are included in the next subsection.

4.2 Topological applications

As previously discussed, Stallings’ theorem has been instrumental in the study of
link concordance. Recently, several other weaker equivalence relations on knots and
links have been considered and found to be useful in understanding knot and link
concordance [7; 8; 13; 12; 9; 24; 19; 33]. These equivalence relations involved
replacing the annuli in the definition of concordance by surfaces equipped with some
extra structure. Below we show that our results generalize Stallings’ results on link
concordance to these more general equivalence relations. Moreover, recently, Harvey
defined a rich new family of real-valued concordance invariants, �k.L/, for a link
L [19]. She showed that these were actually invariants of some of these weaker
equivalence relations and deduced new information about the Cochran–Orr–Teichner
filtration of the classical disk-link concordance group. We are able to extend and refine
her results. Details follow.

Recall that Stallings showed that concordant links have exteriors whose fundamental
groups are isomorphic modulo any term of the lower central series. We can prove an
analogue for the derived series and moreover use our Dwyer-type theorem to generalize
his result to the following equivalence relation that is weaker than concordance.

Definition 4.2 Suppose that L0 and L1 are oriented, ordered, m–component links
of circles in S3 . We say they are .n/–cobordant if there exist compact oriented
surfaces †i ; 1 � i �m, properly and disjointly embedded in S3 � Œ0; 1�, restricting
to yield Lj on S3 �fj g, j D 0; 1, and such that, for each i , for some set of circles
faj ; bj g representing a symplectic basis of curves for †i , the image of each of the
loops faj ; bj g in �1..S

3� Œ0; 1�/�
`
†i/� �1.E/ is contained in �1.E/

.n/ (use the
unique “unlinked” normal vector field on †i to push off). L0 is null .n/–bordant if
there are disjoint surfaces in B4 as above whose boundaries form L0 .

Proposition 4.3 Suppose that the m–component links L0 and L1 are .n/–cobordant
via surfaces f

`
†ig as above. Let A, xA and B denote the fundamental groups of their

respective exteriors. Then both inclusion-induced maps A!B and xA!B satisfy the
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hypotheses of Theorem 2.1 for n�1. Consequently the rank of A.n�1/

H =A.n/

H is the same
as the rank of xA.n�1/

H = xA.n/

H . In addition the inclusion maps induce monomorphisms
A=A.n/

H ,! B=B.n/

H and xA= xA.n/

H ,! B=B.n/

H . If L0 is null .n/–cobordant then rank
of A.n�1/

H =A.n/

H is the same as that of the m–component trivial link, namely m � 1

(for n� 2/, and the set of meridians viewed as a subset of either A or B satisfies the
hypotheses of Proposition 4.1.

Proof We use the notation of Definition 4.2 and Proposition 4.3. By hypothesis, for
each 1� i �m there exist symplectic bases of circles faij ; bij g for †i whose pushoffs
faCij ; b

C
ij g into E lie in �1.E/

.n/ D B.n/ . The key observation is that H2.EIZ/ is
generated by the tori faCij�S1

i ; b
C
ij�S1

i g where S1
i is a fiber of the normal circle bundle

to †i , together with the m tori L0�S1
i that live in S3�L0 . Thus the cokernel of the

map H2.AIZ/!H2.BIZ/ is generated by the former collections. Since ŒaCij � 2B.n/ ,
aCij bounds a B.n�1/ –surface Sij mapped into E (that is �1.Sij /�B.n�1/ ). If we cut
open the torus aCij �S1

i along aCij and adjoin two oppositely oriented copies of Sij ,
we obtain a (mapped in) surface that is homologous to aCij �S1

i and is also a B.n�1/ –
surface. Similarly for the tori bCij �S1

i . Therefore A! B satisfies the hypotheses of
Theorem 2.1 for n� 1. Thus this map induces a monomorphism A=A.n/

H ,!B=B.n/

H

and the ranks of A.n�1/

H =A.n/

H and B.n�1/

H =B.n/

H over their respective rings are equal.
Symmetrically, the same is true for xA! B . The first part of the theorem follows
immediately.

If L0 is null–.n/–cobordant then xAD F the free group of rank m. It is known that
the rank of F .n�1/=F .n/ is m if nD 1 and m�1 if n� 2 [7, Lemma 2.12]. Moreover,
since the longitudes of the components of L0 co-bound the †i with the longitudes
of the trivial link, which are trivial, the longitudes of L0 map into B.nC1/ . By the
first part of the theorem, this implies they lie in A.n/ and hence bound (immersed)
A.n�1/ –surfaces Si in S3�L0 . On the other hand, H2.S

3�L0IZ/ is generated by
the m tori L0 �S1

i (the boundaries of the regular neighborhoods of the components
of L0 ). The Si can be used to surger these tori and thus showing that H2.AIZ/ is
generated by A.n�1/ –surfaces. Hence the meridional set in A satisfies the hypotheses
of Proposition 4.1. Above we saw that the cokernel of the map H2.AIZ/!H2.BIZ/
was generated by B.n�1/ –surfaces. Combining these two facts, we see that H2.BIZ/
is generated by B.n�1/ –surfaces. Hence the set of meridians of L0 viewed as a subset
of B satisfies the hypotheses of Proposition 4.1.

In [19], Harvey defined a new family of real-valued invariants, �k , k � 0, of closed
odd-dimensional manifolds using the torsion-free derived series and a higher-order
signature defect, the Cheeger–Gromov von Neumann �–invariant. Let ML be the
closed 3–manifold associated to .S3;L/ by performing 0–framed Dehn surgery on S3
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along the components of L [28]. Let G D �1.ML/. Harvey associates to L the pair
.ML; �k W G!G=G.kC1/

H / where G.kC1/

H is the .kC1/–st term of Harvey’s torsion-free
derived series. Then she defines �k.L/� �.ML; �k/ where the latter is the Cheeger–
Gromov von Neumann �–invariant [4]. Actually Harvey defines and establishes these
invariants independent of the work of Cheeger and Gromov, but observes that they
coincide with the invariants of Cheeger–Gromov. Harvey established that these link
invariants were concordance invariants by showing the manifold invariants were rational
homology cobordism invariants. In particular, all of these invariants vanish for links
concordant to the trivial link, called slice links, that is links whose components bound
disjoint embedded disks in the 4–ball. But she went on to show that the �k actually
respected some even weaker equivalence relations [19, Theorem 6.4]. In particular
she showed that �n.L/ vanishes for links in F.nC1/ , the set of .nC 1/–solvable links,
that is the .nC 1/–st term of the filtration of the link concordance group defined in
[7, Section 8] (these are reviewed herein). This class is much larger than that of slice
links. We improve on her result. Recall that an m–component link L is a finite E–link
if �1.S

3�L/ admits a homomorphism to a finite E–group of rank m under which
the longitudes map trivially (a finite E-group is one that is the fundamental group of a
finite 2–complex with H1 Š Zm and H2 Š 0). Boundary links, homology boundary
links, fusions of boundary links and sublinks of homology boundary links are all finite
E–links [5, p 641-644]. Conjecturally, the class of finite E–links is the same as the
class of links with vanishing Milnor’s x�–invariants. Our generalization is the following.

Theorem 4.4 �n.L/ vanishes for all finite E–links in FQ
.n:5/

, the set of all rationally
.n:5/–solvable links (see Cochran, Orr and Teichner [7, Section 4, Section 8]).

This theorem improves on Harvey’s [19, Theorem 6.4] in two ways. Firstly and
primarily, it improves the .nC 1/ in her result to what should be the optimal result
.n:5/ (although only for E–links). Being an E–link ensures an extra rank condition that
is hidden in Harvey’s proof since it is implied by .nC1/–solvability. Our Theorem then
allows for a corresponding sharpening of Harvey’s main application of the above [19,
Theorem 6.8].

Theorem 4.5 In the category of m–component ordered oriented string links (m> 1),
each of the quotients F.n/=FQ

.n:5/
contains a subgroup, consisting entirely of boundary

links, whose abelianization has infinite Q–rank.

We remark that Harvey’s additivity result for her �k for boundary string links should
hold for any additively closed subset of E–links, such as the set of homology boundary
links with a fixed “pattern” and so the word “boundary links” in the above theorem
should be able to be replaced by any such set.
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Secondly, our Theorem 4.4 improves on Harvey’s version by proving the theorem
for so-called “rational” solvability. The definition of the latter is reviewed below.
This may seem like a technical advance. However it points the way to certain further
improvements in other results in the literature that we will postpone to another paper.
Namely, there is a well-studied geometric notion that approximates n–solvability of
links that has to with generalizing the annuli in the definition of concordance to certain 2–
complexes called symmetric gropes. We shall not review these terms here, but in future
paper we will show that the torsion-free derived series suggests beautiful generalizations
of gropes, that we call rational homology gropes and these generalizations are the
proper geometric approximation to the algebraic notion of rational n-solvability.

We briefly review the definitions of the Cheeger–Gromov von Neumann �–invariant
(only in the cases that we need here) and .n/–solvability. More general definitions are
to be found in [4; 19, Section 3; 7, Section 5].

Definition 4.6 Suppose M is a closed, oriented 3–manifold and �W �1.M /! � is a
homomorphism to a poly-(torsion-free-abelian) group. Suppose also that � extends
to  W �1.W /! � where W is a compact, oriented 4–manifold whose boundary is
M . Then �.M; �/ is given by � .2/

�
.W /��.W /, where � .2/

�
.W / is the von Neumann

signature of the equivariant intersection form �� on H2.W IK�/ and �.W / is the
signature of the usual intersection form on H2.W IQ/.

Definition 4.7 (see [7, Section 4]) A connected, closed, oriented 3–manifold M is
rationally .n/–solvable if there exists a compact, connected, oriented 4–manifold W

such @.W /DM and the following conditions hold:

� The inclusion map induces an isomorphism j�W H1.M IQ/!H1.W IQ/.

� H2.W IQ/ admits a basis fŒLi �; ŒDi �I 1 � i � rg consisting of connected,
oriented, �1.W /.n/ –surfaces fLi ;Dig (that is �1.Li/ and �1.Di/ are con-
tained in �1.W /.n/ ), whose equivariant intersection numbers with coefficients
in QŒ�1.W /=�1.W /.n/� are as follows Li �Lj D 0 and Di �Dj D 0 if i ¤ j

and Li �Di D 1.

In this case the Li are said to generate an .n/–Lagrangian for W and the Di are said
to generate its .n/–duals. In this case we say that M is rationally .n/–solvable via W .
A 3–manifold M is rationally .n:5/–solvable if it satisfies the above and in addition:

� The Li are �1.W /.nC1/ –surfaces which are then said to constitute an .nC 1/–
Lagrangian for W .
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Definition 4.8 A link L in S3 is said to be rationally .n/–solvable (respectively
rationally .n:5/–solvable) if the zero-framed surgery ML is rationally .n/–solvable
(respectively rationally .n:5/–solvable) as above. The set of (concordance classes) of
such links is denoted FQ

.n/
(respectively FQ

.n:5/
).

In [7, Sections 4 and 8] these notions and also the notions of .n/–solvable and .n:5/–
solvable were defined. The latter are the same as the above except that Q is replaced
by Z, W is required to be spin and the equivariant self-intersection form is also
considered. Links satisfying these stronger conditions are said to lie in F.n/ and F.n:5/
respectively. Note that a link that is .n/–solvable is certainly rationally .n/–solvable,
and that rationally .n:5/–solvable links are certainly rationally .k/–solvable for any
integer or half-integer k � n:5. It is easy to see that any slice link is .n/–solvable for
all n and if two links are concordant then one is .n/–solvable if and only if the other
is also.

Note that a �1.W /.nC1/ –surface of W (sometimes called an .nC 1/–surface), lifts
to the regular � covering space of W corresponding to a map  W �1.W /! � as
long as � .nC1/ D 1 since then �1.W /.nC1/ � ker. /. Thus an .n:5/–Lagrangian L

lifts to generate a Z� –submodule of H2.W IZ�/. By definition the Z� –equivariant
intersection form (on H2.W IZ�/) is identically zero on this submodule. The same
holds true for H2.W IK�/. Thus if the intersection form is nonsingular and if this
submodule has one-half rank, the von Neumann signature of the equivariant intersection
form will be zero.

Theorem 4.4 and Theorem 4.5 are consequences of the more general theorem below
(and of Harvey’s previous work). This theorem is a basic and important result in its
own right. It generalizes [7, Theorem 4.1] where this precise theorem is stated under
the assumption that ˇ1.M /D 1. The proof in [7] does not apply to the general case.
It also generalizes [19, Theorem 6.4].

Theorem 4.9 Let � be a PTFA group such that � .nC1/ D 0. Let M be a closed, con-
nected, oriented 3–manifold equipped with a nontrivial coefficient system �W �1.M /!

� . Suppose rankZ�.H1.M IZ�//D ˇ1.M /� 1. If M is rationally .n:5/–solvable
via a 4–manifold W over which � extends, then �.M; �/D 0.

Moreover, if W is a rational .nC 1/–solution then the above rank condition is auto-
matically satisfied.

The following corollary generalizes [19, Theorem 6.4] where the hypothesis is that M

is .nC 1/–solvable. We weaken this hypothesis to .n:5/–solvability but require an
extra rank requirement.

Geometry & Topology, Volume 12 (2008)



224 Tim D Cochran and Shelly Harvey

Corollary 4.10 If M is rationally .n:5/–solvable and

rank
ZŒ�=�.nC1/

H
�

� .nC1/

H

� .nC2/

H

D ˇ1.M /� 1

where � D �1.M / then �n.M /D 0:

Proof that Corollary 4.10 implies Theorem 4.4 Suppose L is a finite E–link that
is rationally .n:5/–solvable. Then, by definition, ML is rationally .n:5/–solvable.
Taking M DML and applying Corollary 4.10, to conclude that �n.L/ vanishes we
need only verify that for an E–link L, ML satisfies the rank hypothesis of Corollary
4.10. Let � D �1.ML/. By the definition of an E–link, there is a map �W � ! E

that is an isomorphism on H1.�IZ/ and an epimorphism on H2.�IZ/. Then, by
[6, Theorem 4.1], for any n,

rank
ZŒ�=�.nC1/

H
�

� .nC1/

H

� .nC2/

H

D rank
ZŒE=E.nC1/

H
�

E.nC1/

H

E.nC2/

H

:

By Proposition 2.5, the latter expression is the same as rank(H1.E;ZŒE=E
.nC1/

H �). But
by [7, Lemma 2.12] the latter rank is precisely ˇ1.E/�1D ˇ1.ML/�1 except in the
degenerate case that E D E.nC1/

H . This case cannot occur here since the meridional
map F ! � ! E is also homologically 2–connected and so F=F .nC1/ embeds in
E=E.nC1/

H by [6, Theorem 4.1, Proposition 2.4].

Proof of Theorem 4.5 For any n Harvey produced in [19, Theorem 6.8] an infinite set
of .n/–solvable boundary string links whose set of �n (real numbers) was Q–linearly
independent. She also proved that �n was additive on the subgroup of boundary string
links [19, Corollary 6.7]. If any linear combination of these links were .n:5/–solvable,
it would contradict our Theorem 4.4.

The Proposition below was proved by Harvey under the slightly stronger hypothesis
of .n/–solvability [19, Theorem 6.4] (as opposed to rational .n/–solvability). The
interesting thing about our proof of the result below is that does not use the hypothesis
that M and W are manifolds and it does not use anything about the intersection form.
Rather it just uses the fact that H2.W IQ/ has a basis of .n/–surfaces (and the main
theorem of the current paper).

Proposition 4.11 If M is rationally .n/–solvable via W then, letting � D �1.M /

and B D �1.W /, the inclusion j W M !W induces a monomorphism

jnC1W
�

� .nC1/

H

,!
B

B.nC1/

H

:
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and if n> 0,

rank
ZŒ�=.�/.n/

H
�

.�/.n/

H

.�/.nC1/

H

D ˇ1.M /� 1:

More generally, if  W �1.W /DB! � is any nontrivial PTFA coefficient system with
� .n/ D 1, then

rankZ�H1.M IZ�/D ˇ1.M /� 1:

Corollary 4.12 (compare [19, Theorem 6.4]) If M is rationally .nC 1/–solvable
and � D �1.M / then

� rank
ZŒ�=�.nC1/

H
�

�
.nC1/

H

�
.nC2/

H

D ˇ1.M /� 1 and

� �n.M /D 0:

Proof of Proposition 4.11 We apply our main theorem (Theorem 2.1). Since W is a
rational n–solution for M , H2.W IQ/ has a basis of B.n/ –surfaces so it certainly has
a basis of B.n/

H –surfaces since B.n/ �B.n/

H . The first statement of the Proposition then
follows immediately.

For the second part, consider the meridional map F ! � ! B and observe that
Theorem 2.1 applies to it also. It follows that

rank
ZŒ�=.�/.n/

H
�

.�/.n/

H

.�/.nC1/

H

Š rank
ZŒB=B.n/

H
�

B.n/

H

B.nC1/

H

and rank
ZŒF=F .n/

H
�

F .n/

H

F .nC1/

H

Š rank
ZŒB=B.n/

H
�

B.n/

H

B.nC1/

H

:

But F .n/

H D F .n/ by [19, Proposition 2.3] and the rank of F .n/=F .nC1/ (n > 0) is
ˇ1.M /� 1 by an easy Euler characteristic argument [7, Lemma 2.12].

For the last claim, consider F ! � ! B
 
! � and observe that Proposition 2.11

applies to F!B and �!B , since H2.W IQ/ has a basis of ker. /–surfaces since
B.n/ � ker. /. Thus

H1.F IK�/ŠH1.M IK�/ŠH1.BIK�/:

As above, the rank of the first of these three is known to be ˇ1.M /� 1 [7, Lemma
2.12].
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Proof that Theorem 4.9 and Proposition 4.11 imply Corollary 4.10 If M is ratio-
nally .n:5/–solvable via W then it is rationally .n/–solvable via W . Thus Proposition
4.11 applies. Let � D �1.M / and B D �1.W /. Since jnC1 is injective,

�n.M; � W �! �=� .nC1/

H
//D �.M; jnC1 ı�/

by the � –induction property of von Neumann �–invariants. Letting  be the canonical
map B!B=B.nC1/

H and letting �D jnC1ı� D ıj , we see that �n.M /D �.M; �/.
Since � extends over W by  , we may apply Theorem 4.9 with � DB=B.nC1/

H and
note that � .nC1/ D feg since B.nC1/ � �1.W /.nC1/

H ). We need only verify that the
rank hypothesis of Corollary 4.10 implies the rank hypothesis of Theorem 4.9. Let
� 0 D �1.M /=�1.M /.nC1/

H . Then, by Proposition 2.5, the rank hypothesis of Corollary
4.10 is equivalent to the fact that K� 0–rank of H1.�1.M /IK� 0/ is ˇ1.M /�1. Since
jnC1W �

0! � is a monomorphism, by [6, Lemma 4.2], this rank is the same as the
K� –rank of H1.�1.M /IK�/ associated to the coefficient system � . But this is
precisely the rank hypothesis of Theorem 4.9 in the case that � D B=B.nC1/

H .

Proof of Theorem 4.9 Note that the final claim of the theorem was already established
by the last part of Proposition 4.11 applied to the .nC 1/–solution W .

Suppose M is rationally .n:5/–solvable via W such that the coefficient system extends
to  W �1.W /! � . Then �.M; �/ is given by � .2/

�
.W /� �.W /, where � .2/

�
.W / by

Definition 4.6. Let zI denote the image of the map

H2.@W IK�/
j�
�!H2.W IK�/:

Since the sequence

0 �! zI �!H2.W IK�/ �!H2.W IK�/=zI �! 0

is split exact (since all K� –modules are free) it follows that

H2.W IK�/Š zI ˚ .H2.W IK�/=zI/:

Since the intersection form

�W H2.W IK�/! Hom.H2.W IK�/;K�/

is the composition of �� (below)

H2.@W IK�/
j�
�!H2.W IK�/

��
�!H2.W; @W IK�/

followed by the Poincaré Duality and the Kronecker map (both of the latter are isomor-
phisms) the kernel of � is the kernel of �� which is precisely zI . Hence � induces a
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nonsingular intersection form

z�W H2.W IK�/=zI ! Hom..H2.W IK�/=zI/;K�/

and, with respect to the direct sum decomposition above, � is the direct sum of z� and
the zero form on zI . Hence

� .2/

�
.W /D � .2/

�
.�/D � .2/

�
.z�/:

Therefore, since z� is nonsingular, we need to show that there is a one-half rank
summand of H2.W IK�/=zI on which z� vanishes.

Towards this end, first recall that

H1.M IQ/
j�
�!H1.W IQ/

is an isomorphism
H3.W IQ/ŠH 1.W;M IQ/D 0;

and H3.W;M IQ/ŠH 1.W IQ/ŠH 1.M IQ/ŠH2.M IQ/;

so H3.W;M IQ/
@�
�!H2.M IQ/

is a monomorphism between vector spaces of the same rank, hence an isomorphism. It
follows that

H2.W IQ/
��
�!H2.W;M IQ/

is an isomorphism. Therefore rankQ.H2.W IQ//D rankQ.H2.W;M IQ//D ˇ2.W /.
Let †1; : : : ; †r be �1.W /.nC1/ –surfaces of W representing a rational .nC 1/–la-
grangian for W . By hypothesis, †1; : : : ; †r is the basis of a one-half-rank Q–vector
space L in H2.W IQ/. Then rankQ.L/D rankQ.��.L//D .1=2/ˇ2.W /. Hence

rankQ.H2.W;M IQ/=��.L//D .1=2/ˇ2.W /:

Since � .nC1/ D 0,  factors through the quotient �1.W /=�1.W /.nC1/ so �1.†i/�

ker i . Using this let zL be the submodule generated by z†1; : : : ; z†r in H2.W IK�/=zI .
By naturality, the intersection form with K� coefficients, � vanishes on zL. Thus
zL is a free summand of H2.W IK�/=zI that is isomorphic to its image ��. zL/ in
H2.W;M IK�/. Therefore, to conclude that � .2/

�
.z�/D 0, it suffices to show that

rankK�. zL/� .1=2/.rankK�.H2.W IK�/=zI/:

Let bi.M /D rankK�.Hi.M IK�//, and bi.W /D rankK�.Hi.W IK�//. Note also
bi.W /D rank.H4�i.W;M IK�//. Since W is a topological 4–manifold with non-
empty boundary, it has the homotopy type of 3–dimensional CW complex. Since
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H3.W IQ/ Š H 1.W; @W IQ/ D 0, the boundary homomorphism @3W C3.W / !

C2.W / is injective. Let C�.W IQ�/ be the corresponding Q� chain complex free on
the cells of W . By Strebel’s [32, p 305], z@3W C3.W IQ�/! C2.W IQ�/ is injective
so H3.W IQ�/D 0. It follows that both H3.W IK�/D 0 and H1.W;M IK�/D 0

so b3 D 0 . Thus

H1.M IK�/
j�
�!H1.W IK�/;

is an epimorphism whose kernel, K , has rank b1.M /� b1.W /, and since

0 �!H2.W IK�/=zI
��
�!H2.W;M IK�/

@�
�!K �! 0

is exact, we have the equality

rankK�.H2.W IK�/=zI/D b2.W /C b1.W /� b1.M /:

Therefore our goal translates to showing that

rankK�. zL/� 1=2.b2.W /C b1.W /� b1.M //:

Towards this goal, apply Corollary 2.12 setting

C� D C�.W;M IQ�/; xC� D C�.W;M IQ/;

p D 2 and fxsg D f†1; : : : ; †r g to conclude that

rankK�.H2.W;M IK�/=��. zL//� rankQ.H2.W;M IQ/=��.L//;

and thus that

rankK�.H2.W;M IK�/=��. zL//� .1=2/ˇ2.W /:

We conclude that
rankK�. zL/� b2.W /� .1=2/ˇ2.W /:

Hence, we will have achieved our goal above if we can show that

b2� .1=2/ˇ2.W /� 1=2.b2.W /C b1.W /� b1.M //:

By our hypothesis, b1.M /Dˇ1.M /�1Dˇ1.W /�1 so the last inequality is equivalent
to

b2.W /� b1.W /� ˇ2.W /�ˇ1.W /C 1D �.W /:

But this is surely true since in fact the Euler characteristic of W can be computed using
K� –coefficients so �.W /D b2.W /� b1.W / since b4.W /D b3.W /D b0.W /D 0.
Actually for b0.W /D0 we need that ˇ1.W /Dˇ1.M /�1 to ensure that the coefficient
system  is nontrivial [7, Proposition 2.9]. In the case that ˇ1.W /Dˇ1.M /D 0, both
� and  are trivial since � is poly-(torsion-free-abelian). This case was excluded by

Geometry & Topology, Volume 12 (2008)



Homology and derived series of groups II: Dwyer’s Theorem 229

the hypotheses. However note that in this degenerate case, the von Neumann signature
and the ordinary signature are identical so �.M; �/D 0 automatically.

5 Homological localization

Recall that in [6] the authors constructed a rational homological localization, G! zG ,
called the torsion-free-solvable completion. This means that a rational homology
equivalence A ! B induces an isomorphism zA ! zB . In the context of rational
homological localization, it was suggested that this could be viewed as an analogue of
the Malcev completion, G˝Q, of a group G wherein one replaces the lower central
series by the torsion-free derived series. Recall that G˝Q is defined to be the inverse
limit of certain n–torsion-free-nilpotent groups G=Gn˝Q. Similarly zG was defined
to be the inverse limit of a certain tower of n–torsion-free-solvable groups zGn . Here
we can use our version of Dwyer’s theorem for the torsion-free derived series to prove
that zGn is functorially preserved by a larger class of maps (than rational homology
equivalences).

To state the result, we recall a few definitions. The reader is referred to [6] for more
detail.

Definition 5.1 A group A is n–torsion-free-solvable if A.n/

H D 0 .

Definition 5.2 (compare Bousfield [1, Section 12]) A collection of groups An , n� 0,
and group homomorphisms fn; �n , n� 0, as below

A
fn
�! An

�n
�! An�1

compatible in the sense that fn�1 D �n ı fn , is a torsion-free-solvable tower for A

if, for each n, An is n–torsion-free-solvable and the kernel of �n is contained in
.An/

.n�1/

H .

Definition 5.3 A torsion-free-solvable group A is a (uniquely) divisible torsion-free-
solvable group if, for each n, A.n/

H =A.nC1/

H is a (uniquely) divisible ZŒA=A.n/

H �–module.

Theorem 5.4 For any group G and any n � 0 there exist uniquely divisible m–
torsion-free-solvable groups, zGm , 0 � m � n, and a torsion-free-solvable tower,
f zGm; fmW G! zGm; �mW

zGm!
zGm�1g, 0�m� n such that:

(1) kerfm DG.m/

H
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(2) If A is finitely generated, B is finitely presented and �W A ! B induces
an isomorphism (respectively, monomorphism) on H1. IQ/ and induces an
epimorphism ��W H2.AIQ/! H2.BIQ/=hˆ

.n/

H .B/i (that is, the cokernel of
��W H2.AIQ/!H2.BIQ/ is spanned by B.n/

H –surfaces), then there is an iso-
morphism (respectively, monomorphism) z�nW

zAn!
zBn such that the following

commutes:

A
fA

n
�! zAn

�A
n
�! zAn�1

�

??y z�n

??y ??yz�n�1

B
f B

n
�! zBn

�B
n
�! zBn�1

The proof is identical to that in [6], with Proposition 2.11 used in place of the weaker
version used in [6].
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