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Automorphisms of 2–dimensional right-angled Artin groups

RUTH CHARNEY

JOHN CRISP

KAREN VOGTMANN

We study the outer automorphism group of a right-angled Artin group A� in the
case where the defining graph � is connected and triangle-free. We give an algebraic
description of Out.A�/ in terms of maximal join subgraphs in � and prove that the
Tits’ alternative holds for Out.A�/ . We construct an analogue of outer space for
Out.A�/ and prove that it is finite dimensional, contractible, and has a proper action
of Out.A�/ . We show that Out.A�/ has finite virtual cohomological dimension,
give upper and lower bounds on this dimension and construct a spine for outer space
realizing the most general upper bound.

20F36; 20F65, 20F28

1 Introduction

A right-angled Artin group is a group given by a finite presentation whose only relations
are commutators of the generators. These groups have nice algorithmic properties and
act naturally on CAT(0) cube complexes. Also known as graph groups, they occur in
many different mathematical contexts; for some particularly interesting examples we
refer to the work of Bestvina and Brady [3] on finiteness properties of groups, Croke
and Kleiner [10] on boundaries of CAT(0) spaces, and Abrams [1], Ghrist [12] and
Ghrist and Peterson [13] on configuration spaces in robotics. For a general survey of
right-angle Artin groups, see Charney [7].

A nice way to describe a right-angled Artin group is by means of a finite simplicial
graph � . If V is the vertex set of � , then the group A� is defined by the presentation

A� D hV j vw D wv if v and w are connected by an edge in � i:

At the two extremes of this construction are the case of a graph with n vertices and no
edges, in which case A� is a free group of rank n, and that of a complete graph on n

vertices, in which case A� is a free abelian group of rank n. In general, right-angled
Artin groups can be thought of as interpolating between these two extremes. Thus it
seems reasonable to consider automorphism groups of right-angled Artin groups as

Published: 14 November 2007 DOI: 10.2140/gt.2007.11.2227

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F36,(20F65, 20F28)
http://dx.doi.org/10.2140/gt.2007.11.2227


2228 Ruth Charney, John Crisp and Karen Vogtmann

interpolating between Aut.Fn/, the automorphism group of a free group, and GLn.Z/,
the automorphism group of a free abelian group. The automorphism groups of free
groups and of free abelian groups have been extensively studied but, beyond work of
Servatius [20] and Laurence [18] on generating sets, there seems to be little known
about the automorphism groups of general right-angled Artin groups.

In this paper we begin a systematic study of automorphism groups of right-angled Artin
groups. We restrict our attention to the case that the defining graph � is connected and
triangle-free or, equivalently, A� is freely indecomposable and contains no abelian
subgroup of rank greater than two. This class already contains many interesting Artin
groups. If � is a tree, then A� is the fundamental group of a graph manifold; if �
contains minimal cycles of length at least five, then A� contains hyperbolic surface
groups. For further discussion of these groups and their subgroups, see Behrstock and
Neumann [2] and Crisp, Sageev and Sapir [9].

A key example is when � is a complete bipartite graph, which we call a join since
� is the simplicial join of two disjoint sets of vertices. The associated Artin group
A� is a product of two free groups. If neither of the free groups is cyclic, then the
automorphism group of A� is just the product of the automorphism groups of the
two factors (or possibly index two in this product). If one of the free groups is cyclic,
however, the automorphism group is much larger, containing in addition an infinite
group generated by transvections from the cyclic factor to the other factor.

We will show that for any connected, triangle-free graph � , the maximal join subgraphs
of � play a key structural role in the automorphism group. We do this by proving that
the subgroups AJ generated by maximal joins J are preserved up to conjugacy (and up
to diagram symmetry) by automorphisms of A� . This gives rise to a homomorphism

Out0.A�/!
Y

Out.AJ /;

where Out0.A�/ is a finite index normal subgroup of Out.A�/ which avoids certain
diagram symmetries. We use algebraic arguments to prove that the kernel of this
homomorphism is a finitely generated free abelian group. Elements of this kernel
commute with certain transvections, called “leaf transvections,” and adding them forms
an even larger free abelian subgroup of Out.A�/. We show that this larger subgroup is
the kernel of a homomorphism into a product of outer automorphism groups of free
groups. We then derive the Tits alternative for Out.A�/ using the fact that the Tits
alternative is known for outer automorphism groups of free groups.

The second part of the paper takes a geometric turn. The group Out.Fn/ can be usefully
represented as symmetries of a topological space known as outer space. This space,
introduced by Culler and Vogtmann in [11], may be described as a space of actions
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of Fn on trees. Outer space has played a key role in the study of the groups Out.Fn/

(see for example, the survey article [23]). For GL.n;Z/ the analogous “outer space”
of actions of Zn on Rn is the classical homogeneous space SL.n;R/=SO.n;R/. In
Section 4 of this paper we construct an outer space O.A�/ for the right-angled Artin
group A� associated to any connected, triangle-free graph � . If � is a single join,
O.A�/ consists of actions of A� on products of trees T �T 0 . In general, a point in
outer space is a graph of such actions, parameterized by a collection of maximal joins
in � . We prove that the space O.A�/ is finite dimensional, contractible, and has a
proper action of Out0.A�/.

In the last section we give upper and lower bounds on the virtual cohomological
dimension of Out.A�/ and construct a spine for O.A�/, ie a simplicial equivariant
deformation retract of O.A�/, which realizes the most general upper bound. A lower
bound is given by the rank of any free abelian subgroup, such as the subgroup found in
the first part of the paper. We show that this subgroup can be expanded even further
to give a better lower bound. In some examples, the upper and lower bounds agree,
giving the precise virtual cohomological dimension of Out.A�/.

2 Preliminaries

2.1 Special subgroups

A simplicial graph is a graph which is a simplicial complex, ie a graph with no loops
or multiple edges. Vertices of valence one are called leaves, and all other vertices are
interior. To each finite simplicial graph � we associate the right-angled Artin group
A� as described in the introduction.

A special subgroup of A� is a subgroup generated by a subset of the vertices of � . If
‚ is the full subgraph of � spanned by this subset, the special subgroup is naturally
isomorphic to the Artin group A‚ . In the discussion which follows, we will need to
know the normalizers N.A‚/, the centralizers C.A‚/, and the centers Z.A‚/ of
special subgroups A‚ �A� . To describe them, the following notation is useful.

Definition 2.1 Let ‚ be a full subgraph of a simplicial graph � . Then ‚? is the
intersection of the (closed) stars of all the vertices in ‚:

‚? D
\
v2‚

st.v/

Identifying the vertices of � with generators of A� , one can also describe ‚? as the
subgraph of � spanned by the vertices which commute with every vertex in ‚. We
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remark that this notation differs from that of Godelle [14], who excludes points of ‚
from ‚? .

Proposition 2.2 For any graph � , and any special subgroups A‚ and Aƒ of A� :

(1) The normalizer, centralizer, and center of A‚ are given by

N.A‚/DA‚[‚? ; C.A‚/DA‚? and Z.A‚/DA‚\‚? :

(2) If gA‚g�1 � Aƒ , then ‚ � ƒ and g D g1g2 for some g1 2 N.Aƒ/, g2 2

N.A‚/:

Proof These statements are easily derived from work of Servatius and work of Godelle,
as follows. In [20], Servatius proves that the centralizer of a single vertex v is the special
subgroup generated by st.v/ and hence for a set of vertices ‚, the centralizer, C.A‚/,
is generated by the intersection of these stars, which is exactly ‚? . It follows that
the center of A‚ is A‚ \C.A‚/DA‚\‚? . In [14], Godelle considers normalizers
and centralizers of special subgroups in a larger class of Artin groups, Artin groups
of “FC type”. He defines the quasi-centralizer, QZ.A‚/, of a special subgroup to
be the group of elements g which conjugate the set ‚ to itself, and he proves that
N.A‚/DA‚ �QZ.A‚/. In the right-angled case, no two generators are conjugate,
hence QZ.A‚/D C.A‚/DA‚? and N.A‚/DA‚[‚? .

Godelle also describes the set of elements which conjugate one special subgroup A‚
into another Aƒ in terms of a category Ribb.V / whose objects are subsets of the
generating set V and whose morphisms conjugate one subset of V into another. In
the case of a right-angled Artin group, since no two generators are conjugate, there
are no morphisms between distinct objects of Ribb.V / and the group of morphisms
from an object ‚ to itself is precisely the centralizer C.A‚/ D A‚? . Proposition
3.2 of [14] asserts that gA‚g�1 �Aƒ if and only if g D g1g2 where g1 2Aƒ and
g2 is a morphism in a certain subcategory of Ribb.V /. In the right-angled case, it
is straightforward to verify that such a morphism exists if and only if ‚ � ƒ and
g22A‚? . (In Godelle’s notation, he decomposes ‚ into disjoint subsets ‚D‚s[‚as

where ‚s is the set of generators lying in the center of A‚ . His theorem states that
g2 must commute with ‚s and conjugate ‚as to a set R with R[‚s �ƒ. In the
right-angled case, this is possible only if RD‚as and g2 also commutes with ‚as .)
Thus g 2AƒA‚? �N.Aƒ/N.A‚/.

2.2 Cube complexes

Associated to each right-angled Artin group A� , there is a CAT(0) cube complex C�
on which A� acts, constructed as follows. The 1–skeleton of C� is the Cayley graph
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of A� with generators the vertices V of � . There is a cube of dimension k > 1 glued
in wherever possible, ie wherever the 1–skeleton of a cube exists in the Cayley graph.
In the quotient by the action there is a k –dimensional torus for each complete subgraph
of � with k vertices. The cube complex associated to a free group is simply the Cayley
graph of the free group, ie a tree on which the free group acts freely. The cube complex
associated to the complete graph on n vertices is the standard cubulation of Rn . The
cube complex associated to a join U �W is a product TU �TW , where TU (resp TW )
is a tree on which the free group FhU i (resp FhW i) acts freely with quotient a rose.

2.3 Generators for the automorphism group of a right-angled Artin group

A set of generators for Aut.A�/ was found by M Laurence [18], extending work of
H Servatius [20]. There are five classes of generators:

(1) Inner automorphisms

(2) Inversions

(3) Partial conjugations

(4) Transvections

(5) Symmetries

Inversions send a standard generator of A� to its inverse.

A partial conjugation exists when removal of the (closed) star of some vertex v

disconnects the graph � . In this case one obtains an automorphism by conjugating all
of the generators in one of the components by v . (See example in Figure 1.)

v

w1

w2

Figure 1: Graph with a partial conjugation wi 7! v�1wiv

Transvections occur whenever there are vertices v and w such that st.v/� lk.w/; in
this case the transvection sends w 7! wv . There are two essentially different types of
transvections, depending on whether or not v and w commute:

(1) Type I transvections: v and w are not connected by an edge.

(2) Type II transvections: v and w are connected by an edge.
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v
vw w

Type I Type II

Figure 2: Graphs with transvections w 7! wv

(See examples in Figure 2.)

Finally, symmetries are induced by symmetries of the graph, and permute the generators.

We will be especially interested in the subgroup we obtain by leaving out the graph
symmetries:

Definition 2.3 The subgroup of Aut.A�/ generated by inner automorphisms, inver-
sions, partial conjugations and transvections is called the pure automorphism group
and is denoted Aut0.A�/. The image of Aut0.A�/ in Out.A�/ is the group of pure
outer automorphisms and is denoted Out0.A�/.

The subgroups Aut0.A�/ and Out0.A�/ are easily seen to be normal and of finite
index in Aut.A�/ and Out.A�/ respectively. We remark that if A� is a free group or
free abelian group, then Aut0.A�/D Aut.A�/.

3 Maximal joins

3.1 Restriction to connected, two-dimensional right-angled Artin groups

If � is disconnected, then A� is a free product of the groups associated to the compo-
nents of � . Guirardel and Levitt [16] have constructed a type of outer space for a free
product with at least one noncyclic factor, which can be used to reduce the problem of
understanding the outer automorphism group to understanding the outer automorphism
groups of the free factors. Therefore, in this paper we will consider only connected
graphs � .

We will further restrict ourselves to the case that � has no triangles. In this case,
the associated cube complex C� is 2–dimensional so we call these two-dimensional
right-angled Artin groups. To avoid technicalities, we also assume that � has at least 2
edges.

Type II transvections are severely limited in the two-dimensional case. Since v and w
are connected by an edge, the vertex w must actually be a terminal vertex, ie a leaf:
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if there were another vertex u¤ v connected to w , then the condition st.v/� lk.w/
would imply that u; v and w form a triangle in the graph (see Figure 2). For this
reason, we call Type II transvections leaf transvections.

If � is triangle-free and ‚ is a subgraph with at least one edge, then ‚? �‚, so by
Proposition 2.2,

N.A‚/DA‚ and C.A‚/DZ.A‚/DA‚? :

If ‚ contains two nonadjacent edges, then the latter groups are trivial.

Key example A join � DU �W , has no triangles. As we noted above, the associated
right-angled Artin group A� is FhU i �FhW i. It is easy to deduce the structure of
the automorphism group from Laurence’s generators. If U and W each contain at
least two elements then every automorphism preserves the two factors (or possibly
switches them if jU j D jW j). Thus Out.A�/ contains Out.FhU i/�Out.FhW i/ as a
subgroup of index at most 2. If U Dfug and jW j D `� 2, then A� DZ�FhW i with
the center Z generated by u, and the elements of W are all leaves. Any automorphism
of A� must preserve the center and hence induces an automorphism of FhW i, as
well as an automorphism of the center Z. The map Out.A�/!Out.Z/�Out.FhW i/
splits and its kernel is the group generated by leaf transvections. The leaf transvections
commute, so Out.A�/Š Z` Ì .Z=2�Out.FhW i//.

We assume for the rest of this paper that � is connected and triangle-free. In addition,
we assume that � contains at least two edges.

3.2 Restricting automorphisms to joins

A connected, triangle-free graph � can be covered by subgraphs which are joins. For
example, to each interior vertex v we can associate the join Jv D Lv �L?v , where
Lv D lk.v/. Note that L?v always contains v . If L?v D fvg, then Jv D st.v/; in this
case we say that v is a cyclic vertex since F.L?v /Š Z is cyclic.

Lemma 3.1 If v and w are interior vertices joined by an edge of � , then L?v �Lw ,
so we have:

Jv D Lv � L?v
[ \

Jw D L?w � Lw

In particular, Jw \Jv DL?w �L?v .
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We remark that the Jv is not properly contained in any other join subgraph of � , ie
Jv is a maximal join in � . The following proposition shows that the special subgroups
AJ associated to maximal join subgraphs J of � are preserved up to conjugacy by
pure automorphisms:

Proposition 3.2 Let � 2Aut0.A�/ be a pure automorphism of A� and let J DU �W

be a maximal join in � . Then � maps AJ D FhU i �FhW i to a conjugate of itself.
Moreover, if U contains no leaves, then � preserves the factor FhU i up to conjugacy.

Proof It suffices to verify the proposition for the generators of Aut0.A�/.

Inner automorphisms These obviously send each AJ to a conjugate of itself.

Inversions An inversion sends each AJ to itself and preserves the factors.

Partial conjugations If � is a partial conjugation by a vertex v , we claim that �
either fixes all of AJ or conjugates all of AJ by v . Suppose first that v is not in
U �W . The link of v cannot contain vertices of both U and W; since there would
then be a triangle in � . Furthermore, lk.v/ cannot contain all of U since then adding
it to W would make a larger join, contradicting maximality. Therefore the subgraph of
U �W spanned by vertices not in lk.v/ is still connected, so � has the same effect
(either trivial or conjugation by v ) on generators corresponding to all vertices in U �W:

Next, suppose that v is actually in U �W , say v 2U: The resulting partial conjugation
restricted to AU�W is an internal automorphism of AU�W which may conjugate some
generators of FhU i by v , but has no effect on generators of FhW i:

Transvections We claim that a transvection either fixes AJ or acts as an internal
automorphism of AJ . If � is a transvection sending s! sv , then � is the identity on
AU�W unless s 2U �W , say s 2U . If � is not a leaf transvection, then the condition
st.v/� lk.s/ and maximality imply that v is also in U , so the restriction of � is an
internal automorphism of AU�W preserving the factor FhU i and fixing FhW i. If �
is a leaf transvection, then W D fvg and AU�W D FhU i �Z. In this case, � fixes
the (central) Z factor and multiplies s by the generator of Z.

This proposition has two easy corollaries. First, let Sym.�/ denote the group of diagram
symmetries of � and Sym0.�/D Sym.�/\Aut0.�/. Clearly Aut.A�/=Aut0.A�/Š
Out.A�/=Out0.A�/Š Sym.�/=Sym0.�/. Denote this quotient group by Q.�/.

Corollary 3.3 The quotient maps from Aut.A�/, Out.A�/, and Sym.�/ to Q.�/

split.
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Proof It suffices to define a splitting of the projection Sym.�/!Q.�/. Composing
with the inclusion of Sym.�/ into Aut.A�/ or Out.A�/, gives a splitting in the other
two cases.

We first characterize elements of Sym0.�/ as those graph symmetries which only
permute vertices with the same link. Define an equivalence relation on the vertices of
� by v � w if lk.v/ D lk.w/. The elements of an equivalence class Œv� generate a
free subgroup, and any automorphism of this subgroup extends (via the identity) to an
automorphism of the whole Artin group A� . (These are the automorphisms generated
by inversions and transvections involving only elements of Œv�.) Since Aut0 D Aut
for a free group, any permutation of Œv� can be realized by an element of Sym0.�/

which is the identity outside Œv�. Composing these gives an automorphism in Sym0.�/

realizing any permutation of the elements of each equivalence class.

Conversely, if a graph symmetry � is in Sym0.�/ we claim that it acts by permuting
the elements of each equivalence class Œv�. To see this, note that for any nonleaf vertex
v , it follows from Proposition 3.2 that � preserves Jv and L?v , and hence it must
also preserve Lv . Since any graph symmetry takes links to links, � permutes Œv�.
Moreover, if Lv contains a leaf w , then � permutes Œw�, the set of all leaves in Lv .

Now choose an ordering on the vertices in each equivalence class. Then we can define
a splitting of Sym.�/!Q.�/ by mapping a coset to the unique element of the coset
which is order preserving on every equivalence class.

The second corollary of Proposition 3.2 will be crucial for our analysis.

Corollary 3.4 For every maximal join J � � , there is a restriction homomorphism
RJ W Out0.A�/! Out.AJ /.

Proof Fix J . Then for any element of Out0.A�/, there is a representative � 2
Aut0.A�/ which maps AJ to itself. Any two such representatives differ by conjugation
by an element of the normalizer of AJ . But the normalizer N.AJ / is equal to AJ , so
the restriction of � to AJ is a well-defined element of Out.AJ /.

Let M be the set of all maximal join subgraphs of � . We can put all of the homomor-
phisms RJ for J 2M together to obtain a homomorphism

RD
Y

J2M

RJ W Out0.A�/!
Y

J2M

Out.AJ /:

To understand Out0.A�/, then, we would like to understand the image and kernel of
this homomorphism. But, first we note that there is a lot of redundant information in

Geometry & Topology, Volume 11 (2007)



2236 Ruth Charney, John Crisp and Karen Vogtmann

the set of all maximal joins used to define R; for example, the maximal joins of the
form Jv already cover � .

Even the covering of � by the maximal joins Jv is inefficient. If v and w have the
same link, then Jv D Jw so we don’t need them both. With this in mind, we now
specify a subgraph �0 of � which will turn out to contain all of the information we
need. The key idea is that of vertex equivalence, which we already encountered in the
proof of Corollary 3.3.

Definition 3.5 Vertices v and w of � are called equivalent if they have the same
link, ie Lv DLw . Equivalence classes of vertices are partially ordered by the relation
Œv�� Œw� if Lv �Lw .

To define �0 , we choose a vertex in each maximal equivalence class and let �0 be
the full subgraph of � spanned by these vertices. In the special case that � is a
star fvg �W , set �0 D fvg. Up to isomorphism, �0 is independent of the choice of
representatives. We denote by V0 the set of vertices in �0 .

Examples 3.6 (i) If � is a tree then �0 is the subtree spanned by the vertices which
are not leaves.

(ii) If � is the graph in Figure 3, then �0 is the single edge spanned by v and w .

v w

Figure 3: �0 D Œv; w�

Whether we are working with vertices of � or �0 , the notation Lv will always refer to
the link of v in the original graph � . Likewise, a vertex is considered a leaf if it is a
leaf of the full graph � .

Recall that a vertex v of � is called a cyclic vertex if the associated maximal join Jv
is equal to st.v/. The following lemma specifies the properties of �0 which we will
need.

Lemma 3.7 Let �0 be defined as above.

(1) �0 is a connected subgraph of � .
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(2) The vertex set V0 of �0 contains every cyclic vertex and no leaves of � .

(3) Every vertex of � lies in Lw for at least one w 2 V0 and lies in L?w for at most
one w 2 V0 .

Proof (1) Let v;w be two vertices in �0 and let

v D v0; v1; : : : vk D w

be an edgepath in � connecting v to w . If v1 does not lie in �0 , then there is a vertex
v0

1
2 �0 with Lv1

� Lv0
1

. Replacing v1 by v0
1

gives another edgepath in � from v

to w whose first edge lies in �0 . The first statement of the lemma now follows by
induction on k .

(2) Note that Œv��L?v for any v , and Œv�DL?v if and only if Œv� is maximal. Equality
holds when v is cyclic, since in this case L?v D fvg. If v is a leaf then v is connected
to some interior vertex w by an edge (recall that we have assumed that the diameter of
� is at least two). If � D st.w/ we have defined �0Dfwg so v …V0: If � is not a star,
w must be connected to some other interior vertex u. It follows that Lv D fwg¨ Lu ,
hence v … V0 .

(3) Since � is connected, every vertex v lies in the link of some other vertex and
hence lies in the link of some maximal vertex. Since L?w D Œw� for every vertex w in
�0 , v lies in at most one such L?w .

3.3 The kernel of the restriction and projection homomorphisms

We are interested in determining the kernel of the map R constructed from the restriction
homomorphisms RJ W Out0.A�/ ! Out.AJ /. We first consider the kernel of the
analogous map R0 defined by looking only at the RJ for maximal joins J D Jv , for
v 2 V0 :

R0 D

Y
v2V0

RJv
W Out0.A�/!

Y
v2V0

Out.AJv
/

This kernel consists of outer automorphisms such that any representative in Aut0.A�/
acts by conjugation on each AJv

; for v 2 �0 .

For any � 2 Out0.A�/ and any interior vertex v , we can choose a representative
automorphism �v such that �v.AJv

/DAJv
. Since L?v contains no leaves, �v must

also preserve AL?v
by Proposition 3.2. If v and w are interior vertices connected by

an edge, then the representatives �v and �w are related as follows.
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Lemma 3.8 Suppose v;w are interior vertices connected by an edge in � , and
� 2 Out0.A�/ is represented by automorphisms �v and �w with �v.AJv

/DAJv
and

�w.AJw
/DAJw

. Then there exists gv 2AJv
and gw 2AJw

such that c.gv/ ı�v D

c.gw/ ı�w , where c.g/ denotes conjugation by g .

Proof Since �v and �w represent the same element in Out0.A�/, �wı��1
v Dc.g/ for

some g 2A� . Since �v preserves AL?v
, and AL?v

�AJw
, we have gAL?v

g�1�AJw
.

By Proposition 2.2 (2), we must then have g D g1g2 with g1 2N.AJw
/DAJw

and
g2 2N.AL?v

/DAJv
. Taking gw D g�1

1
and gv D g2 gives the desired formula.

A vertex v is a separating vertex if � � fvg is disconnected. It is easy to see that
separating vertices are cyclic. It is also easy to see that conjugating any component of
� �fvg gives an element of the kernel of R. We remark, however, that a component
of � �fvg may contain more than one component of � � st.v/, so not every partial
conjugation by v lies in this kernel. For example, in the graph in Figure 4, � � fvg
has two components while � � st.v/ has five, and the partial conjugation of u by v
restricts nontrivially in Out.AJw

/.

vw

u

Figure 4: � � st.v/ has more components than � �fvg .

In the rest of the paper, we will need to count several things associated to a vertex of
� , so we now establish some notation.

Notation Let v be a vertex of � and �0 the graph defined above.

(1) The valence, or degree, of v in � is denoted ı.v/.

(2) If v 2 �0 , the valence of v in �0 is denoted ı0.v/.

(3) The number of connected components of the complement � � fvg is denoted
ıC .v/.

(4) The number of leaves attached by an edge to v is denoted `.v/.

Proposition 3.9 The kernel K0 of the homomorphism R0 is a finitely generated,
free abelian group, generated by conjugations by separating vertices v on nonleaf
components of � � fvg. If � is a star, the kernel is trivial; otherwise it has rankP
v2V0

.ıC .v/� `.v/� 1/.
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Proof If � is the star of v then Jv D � and R0 is injective. So assume that � is not
a star. Note that in this case, A� has trivial center.

Let r.v/D ıC .v/� `.v/. We will prove the theorem by defining a homomorphism

�D
Y
v2V0

�vW K0!

Y
v2V0

Zr.v/=�Š
Y
v2V0

Zr.v/�1;

where � is the diagonal subgroup of Zr.v/ , and showing that � is an isomorphism.

Let � be an element of K0 . For each u 2 V0 choose a representative �u 2 Aut0.A�/
which acts as the identity on vertices of Ju . If v and w in �0 are connected by an
edge, then �v��1

w is the identity on vertices of Jv \Jw . Now �v�
�1
w is inner, so it is

conjugation by a (unique) element gv;w of the centralizer C.AJv\Jw
/. By Proposition

2.2 this centralizer is the special subgroup associated to .Jv \Jw/
? . Since � has no

triangles, .Jv \Jw/
? D .L?v �L?w/

? is either the edge spanned by v and w (if both
v and w are cyclic), the vertex v (if v is cyclic but w is not), the vertex w (if w is
cyclic but v is not), or empty (if neither v nor w is cyclic). Thus gv;w Dw

�mvn with
n (resp. m) equal zero if v (resp. w ) is not cyclic, and the equation of Lemma 3.8
reduces to

c.vn/ ı�v D c.wm/ ı�w:

We are now ready to define �vW K0 ! Zr.v/=�. Let C1; : : : ;Cr.v/ be the nonleaf
components of � �fvg. In each Ci , choose a vertex wi adjacent to v which is also in
�0 . We have c.vni /ı�v D c.w

mi

i /ı�wi
for unique integers ni and mi and we define

�v.�/D Œ.n1; : : : ; nr.v//�.

We have made several choices, and we must show that �v.�/ is independent of these
choices. The integers ni depend, a priori, on our choice of representatives �v and �wi

.
But �v is unique up to conjugation by an element of A� centralizing Jv , namely a
power of v , and similarly for �wi

. It follows that the choice of �wi
has no effect on ni

whereas the choice of a different representative for �v will change all of the integers
ni by the same amount. Therefore the class of .n1; : : : ; nr.v// modulo the diagonal �
is independent of �v and the �wi

.

We now show that �v.�/ is independent of the choice of the wi . Let w0i be a different
choice, and connect wi to w0i by a simple path in Ci , ie a path which goes through
each vertex at most once. In particular, each vertex on the path is an interior vertex.

We first claim that the restriction of � to Out.Ju/ is trivial for every interior vertex of
� , not just for those in �0 . Suppose u is an interior vertex of � ��0 . By Lemma 3.7,
u is adjacent to some w 2 �0 , so L?u �Lw . By definition of �0 , Lu �Lv for some
v 2 �0 , so Ju � Lv [Lw . Since v and w are in �0 and connected by an edge, we
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can find n and m with c.vn/ ı �v D c.wm/ ı �w . Setting �u D c.vn/ ı �v we have
that �u acts trivially on every vertex of Ju .

For any two interior vertices u;u0 of � , we define gu;u0 to be the (unique) element of
A� such that �u ı�

�1
u0 is conjugation by gu;u0 . If u and u0 are connected by an edge,

then in light of the previous paragraph, the same argument used for the case v;w 2 �0

applies to show that gu;u0 D u�n.u0/m for some integers m and n.

We now return to the simple path in Ci joining wi and w0i . For each edge Œu;u0� of
this path, gu;u0 is a word which does not involve v . Observe that gw;w0 is the product
of the gu;u0 , so that gw;w0 does not involve v . It follows that the powers of v in gv;wi

and gv;w0
i

are the same, showing that �.�/ is well-defined.

It is straightforward to verify that �v is a homomorphism.

To see that �v is surjective, take any r.v/–tuple of integers .n1; : : : ; nr /. The product
� of partial conjugations of Ci by vni

i satisfies �v.�/D .n1; : : : ; nr /.

Finally, we show that �D
Q
v 2 V0�v is injective. Suppose � lies in the kernel of �.

Then we can choose a representative �v such that for any w adjacent to v , gv;w is just
a power of w . The same reasoning applied to w implies that gw;v is just a power of
v . But gv;w D g�1

w;v so we must have gv;w D 1. It follows that for any adjacent pair
of vertices, �v D �w . Since � is connected, this gives a representative of � which
acts trivially on the join of every vertex; in other words, � is trivial in Out0.A�/.

Remark 3.10 Since the generators of K0 given by Proposition 3.9 restrict to inner
automorphisms on every join, it follows from the theorem that the homomorphism R,
which was defined over all maximal joins J instead of just the joins Jv with v 2 V0 ,
has the same kernel as R0 .

One advantage of restricting attention to the joins Jv for v 2 V0 is that we can further
define a projection homomorphism, as follows. Since vertices of V0 are interior, L?v
contains no leaves, hence by Proposition 3.2, every � 2Out0.A�/ has a representative
�v which preserves both AJv

and AL?v . Thus �v descends to an automorphism x�v of
ALv
DAJv

=AL?v . This gives rise to a homomorphism Pv WOut0.A�/!Out.FhLvi/.
Let P be the product homomorphism

P D
Y
v2V0

PvW Out0.A�/!
Y

Out.FhLvi/:

Recall that ıC .v/ denotes the number of connected components of � �fvg.

Geometry & Topology, Volume 11 (2007)



Automorphisms of 2–dimensional right-angled Artin groups 2241

Proposition 3.11 The kernel KP of P is a free abelian group, generated by K0 and
the set of leaf transvections. If � is a star fvg �W then KP has rank jW j; otherwise,
it has rank

P
v2V0

.ıC .v/� 1/.

Proof Let ` be the number of leaves in � . It is clear that leaf transvections are
contained in KP and that they generate a free abelian group of rank `. It is also easy
to see that leaf transvections commute with the generators of K0 since if u 7! uv is a
leaf transvection, then u and v are connected by an edge and hence belong to the same
component of � �fwg for any w 2 �0 . Together with K0 , the leaf transvections thus
generate a free abelian subgroup of the specified rank, by Proposition 3.9.

It remains only to show that this subgroup is all of KP . Consider an element � in
KP . For v 2 V0 , let �v denote a representative automorphism which preserves AJv

and hence also AL?v . Then for w 2Lv , we have �v.w/Dwg for some g 2AL?v (up
to conjugation by an element of AJv

). Since w , and hence �v.w/, commutes with
AL?v , g must lie in the center of AL?v . If v is not cyclic, the center is trivial, so gD 1.
If v is cyclic, then g D vk . Any automorphism preserve centralizers, so if k ¤ 0,
�v.C.w//D C.wvk/D hw; vi, so C.w/ is free abelian of rank 2. This implies that
w is a leaf. We conclude that �v acts as the identity on nonleaf elements of Lv and
as leaf transvections on leaf elements. It follows that there exists a product of leaf
transvections � such that � ı � lies in K0 .

We conclude this section with an easy consequence of Proposition 3.11. We say
that a group G satisfies the Tits alternative if every subgroup of G either contains a
nonabelian free group or is virtually solvable. Tits [22] proved that all finitely generated
linear groups satisfy the Tits alternative and Bestvina, Feighn and Handel [4; 5] proved
that Out.Fn/ does likewise.

Theorem 3.12 If � is connected and triangle-free, then Out.A�/ satisfies the Tits
alternative.

Proof It is an easy exercise to check that the property that a group satisfies the Tits
alternative is preserved under direct products and abelian extensions. Since Out.FhLvi/
satisfies the Tits alternative by Bestvina–Feign–Handel, it follows that the image of P

also does. Since the kernel of P is abelian, we conclude that Out0.A�/, and hence
also Out.A�/, satisfies the Tits alternative.

Remark 3.13 Many of the results in this section generalize to higher dimensional
right-angled Artin groups. The details will appear in a subsequent paper.
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4 Outer space

In this section we introduce “outer space” for a right-angled Artin group A� . We
continue to assume that � is a connected, triangle-free graph and has diameter � 2.

Let O.F / denote the unreduced, unprojectivized version of Culler and Vogtmann’s
outer space for a free group F [11]. This space can be described as the space of
minimal, free, isometric actions of F on simplicial trees. (The terms “unreduced”
and “unprojectivized” specify that quotient graphs may have separating edges, and
that we are not considering homothetic actions to be equal.) Our initial approach to
constructing outer space for A� was to consider minimal, free, isometric actions of
A� on CAT(0) 2–complexes. In the case of a single join, these turn out to be products
of trees. More generally, (under mild hypotheses) such a 2–complex is a union of
geodesic subspaces which are products of trees. However, the interaction between these
subspaces proved difficult to control and we ultimately found that it was easier to work
directly with the tree-products.

4.1 Outer space for a join

Let us examine more closely the case when � D U �W is a single join. Suppose
that A� D FhU i �FhW i acts freely and cocompactly by isometries on a piecewise
Euclidean CAT(0) 2–complex X with no proper invariant subspace.

If neither U nor W is a singleton, then A� D FhU i � FhW i has trivial center,
so the splitting theorem for CAT(0) spaces [6, Theorem 6.21] says that X splits
as a product of two one-dimensional CAT(0) complexes (ie trees) TU � TW , and
the action of A� is orthogonal, ie it is the product of the actions of FhU i on TU

and FhW i on TW . Twisting an action by an element of Out.A�/, which contains
Out.FhU i/�Out.FhW i/ as a subgroup of index at most two, preserves the product
structure. Thus it makes sense to take as our outer space the product of the Culler–
Vogtmann outer spaces O.FhU i/�O.FhW i/.

If U D fvg is a single vertex then A� D Z�FhW i where Z is generated by v . In
this case, X is equal to the min set for v , so that X splits as a product ˛v � TW ,
where ˛v is an axis for v and TW is a tree [6, Theorem 6.8]. We identify the axis
˛v with a real affine line, with v acting by translation in the positive direction by
an amount tv > 0. The tree TW has a free FhW i–action induced by the projection
A� ! FhW i, but the action of A� on X need not be an orthogonal action. Recall
that Out.A�/Š Z` Ì .Z=2�Out.FhW i/ where `D jW j and Z` is generated by leaf
transvections. Twisting an orthogonal action by a leaf transvection w 7! wv results
in an action which is no longer orthogonal. Instead, w now acts as translation in a
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diagonal direction on the plane in ˛v �TW spanned by ˛v and the axis for w in TW ,
ie the translation vector has a nontrivial ˛v–component. More generally, for any free
minimal action of A� on a CAT(0) 2–complex X D ˛v �TW , the generator v acts
only in the ˛v–direction,

v � .r;x/D .r C tv;x/;

while an element wi 2W has a “skewing constant” �.wi/, ie wi acts by

wi � .r;x/D .r C�.wi/; wi �x/:

A free action of A� on X is thus determined by an FhW i–tree TW , the translation
length tv and an `–tuple of real numbers .�.w1/; : : : ; �.w`//. So it is reasonable in
this case, to take for outer space the product O.FhW i/�R>0 �R` .

4.2 Tree spaces

Our analysis of the join case motivates the following definition.

Let J DU �W be a join in � . An admissible tree-space XJ for J is a product of two
simplicial, metric trees, TU and TW with free, minimal, isometric actions of FhU i

and FhW i respectively, and an action of AJ D FhU i �FhW i on XJ D TU �TW

of the following type.

(1) If J contains no leaves, then the action is the product of the given actions,

.g1;g2/ � .x1;x2/D .g1 �x1;g2 �x2/:

(2) Suppose J contains leaf vertices, say in W . This forces U D fvg, so AJ D

hvi �FhW i, TU D R and v acts on TU as translation by some positive real
number tv . Then there exists a homomorphism �W FhW i!R which is zero on
nonleaf vertices of W , such that

.vn;g/ � .r;x/D .r C ntvC�.g/; g �x/:

We remark that the definition of admissible depends not only on the join J , but on the
graph � as well since � determines which vertices are considered as leaves. Since �
is fixed throughout, this should not cause any confusion.

A point in outer space for A� will be a collection of admissible tree-spaces satisfying
certain compatibility conditions. Recall that to each interior vertex of � we have
associated a maximal join Jv D Lv �L?v . If e is an edge from v to w , set Je D

Jv \Jw DL?v �L?w . If e lies in �0 , then Je contains no leaves.

Definition 4.1 A graph of tree-spaces X D fXv;Xe; ie;vg for A� consists of the
following data:
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(1) for each vertex v 2 �0 , an admissible tree-space Xv for Jv

(2) for each edge e 2 �0 with vertices v and w , an admissible tree space Xe for
Je and a pair of AJe

–equivariant isometric embeddings:

Xv
ie;v

 �Xe

ie;w

�!Xw

We define outer space for A� to be the set

O.A�/D fX j X is a graph of tree-spaces for A� g=�

where � is the equivalence relation induced by replacing any Xv (respectively Xe ) with
an equivariantly isometric space X 0v (respectively X 0e ), and composing the associated
connecting maps ie;v , by the equivariant isometry. A natural topology for O.A�/ will
be described in Section 4.4.

Since Je contains no leaves, the group AJe
D FhL?v i �FhL?wi acts orthogonally on

Xe and the maps ie;v and ie;w split as products. Write Xv D Tv �T?v , where Tv is
an FhLvi–tree, and T?v is an FhL?v i–tree. Then, up to equivariant isometry, we may
assume that Xe D T?v �T?w , and that ie;v D .i1; i2/ is the identity on the first factor
while ie;wD .j1; j2/ is the identity on the second. Denote the embedding i2W T

?
w !Tv

by i.w; v/. The image of i.w; v/ is uniquely determined, namely it is the minimal
FhL?wi–invariant subtree of Tv . However, the map i.w; v/ is not necessarily unique.
It is unique if w is not cyclic, since in this case T?w has no nontrivial equivariant
isometries. But if w is cyclic then T?w is a real line and the possible equivariant
inclusions i2 are parameterized by R.

4.3 Basepoints

To keep track of the inclusions i.w; v/, it will be convenient to introduce basepoints.
These will also play a crucial role in the proof of the contractibility of O.A�/.

Basepoints for free actions of free groups Let FhSi be a finitely generated free
group with a specified basis S of cardinality at least 2, and let T be a metric tree with
a minimal, free, isometric action of FhSi. Each generator s 2 S preserves a unique
line ˛.s/ in T called the axis for s . Orient the axis so that s acts as translation in the
positive direction. We choose a base point b.s/ on ˛.s/ as follows.

For each generator t ¤ s , the set of points on ˛.s/ of minimal distance from ˛.t/ is
a closed connected interval (possibly a single point). Define the projection p.t; s/ of
˛.t/ on ˛.s/ to be the initial point of this interval, and the basepoint b.s/ to be the
minimum of these projections, with respect to the ordering given by the orientation of
˛.s/. (See Figure 5). The basepoints b.s/ will be called the unrestricted basepoints of
the action.
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˛.t/

˛.s/

˛.t 0/
˛.t 00/

p.t; s/p.t 0; s/p.t 00; s/D b.s/

Figure 5: Projections and basepoint on the axis ˛.s/

Basepoints in X Suppose now that we have a graph X of tree-spaces for A� . Assume
� is not a star, so �0 contains at least two vertices. If L?w contains at least two vertices,
then for each u 2L?w we let b.u/ be the unrestricted basepoint on the axis ˛.u/ for
the action of FhL?wi on T?w .

If w is cyclic the axis ˛.w/ is the entire tree T?w , in which case we cannot use this
method to choose a basepoint. If v is adjacent to w in �0 , we have an equivariant
isometry i.w; v/W T?w ! Tv . In Tv , the element w has an axis ˛v.w/ with an
unrestricted basepoint bv.w/. We can use i.w; v/ to pull this back to a point cv.w/

on ˛.w/.

In this way, we get a point cv.w/ on ˛.w/ for each v adjacent to w in �0 . We take
the minimum b.w/ of these points as a basepoint for ˛.w/. (See Figure 6.)

4.4 Topology on outer space

We will define the topology on O.A�/ by embedding O.A�/ in a product of topological
spaces and giving it the resulting subspace topology.

In the case that � is a star fvg �W , we have seen that O.A�/ can be identified with
O.FhW i/�R>0 �R` , where `D jW j. We take this to be a homeomorphism.

For any graph � , recall that Vcyc denotes the set of cyclic vertices and ı0.v/ the
valence of v in �0 .

Proposition 4.2 Let � be a graph which is not a star. Let ` be the number of leaves
of � , and let k D

P
v2Vcyc

ı0.v/. Then there is an injective map

O.A�/ ,!
� Y
v2�0

O.FhLvi/
�
�Rk

�R`:

The image of this map is of the form Y � Q � R` , where Y is a subspace ofQ
v2V0

O.FhLvi/ and Q is a piecewise linear subspace of dimension
P
v2Vcyc

.ı0.v/�

1/.
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w

�

v
u

u0

Tv T ?w

Tu

Tu0

i.w; v/

i.w;u/

i.w;u0/

bv.w/

bu.w/

bu0.w/

˛v.w/ ˛.w/

˛u.w/

˛u0.w/
cv.w/

cu.w/

cu0.w/D b.w/

Figure 6: Basepoint on the axis for w in T ?w

Proof Let X be an element of O.A�/. The vertex spaces Xv are determined by free
group actions on two trees, T?v and Tv , together with a real number �.w/ for each
leaf vertex w 2 Lv . Since � is not a star and �0 is connected, there is at least one
vertex w of Lv which is also in �0 . The tree T?v is equivariantly isometric to the
minimal FhL?v i subtree of Tw for this w . Thus the adjacency relations of � , the
trees Tv for v 2 V0 and the real numbers �.w/ for w a leaf completely determine the
vertex spaces Xv . As noted above, the edge spaces are of the form Xe D T?u �T?v
with orthogonal action of FhL?u i �FhL?v i, so that they too are determined by the
actions on the trees Tv .

It remains to account for the connecting maps between edge spaces and vertex spaces.
If w is not cyclic, then for any vertex v 2Lw \�0 , there is a unique equivariant map
from T?w into Tv , so the connecting map Xe!Xv is uniquely determined. If w is
cyclic, then T?w is a copy of the real line, and an equivariant embedding of T?w ! Tv
is determined by the position of the image of b.w/ on ˛v.w/ ie by the difference
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�v.w/D cv.w/� b.w/, where the points cv.w/ and b.w/ are as defined in Section
4.3 and illustrated in Figure 6.

Associated to X we have a point Tv 2O.FhLvi/ for each v 2 V0 , a real number �.w/
for each leaf w , and a ı0.w/–tuple of real numbers .�v.w//, for each w 2 Vcyc . This
data completely determines X. Thus, we have an injective map

f W O� !
� Y
v2V0

O.FhLvi/
�
�Rk

�R`:

Now consider the image of f . There are no restrictions at all on the numbers �.w/;
given any X in O.A�/, arbitrarily changing �.w/ for any leaf w gives rise to another
valid graph of tree-spaces. As for the numbers �v.w/D cv.w/�b.w/, since b.w/ was
defined to be the infimum of the cv.w/, we must have �v.w/� 0 for all v 2Lw\V0 ,
and at least one of these must equal 0. There are no other restrictions; the points cv.w/

can be varied independently of each other by changing a single embedding i.w; v/.

Let Qw � Rı0.w/ be defined by

Qw D f.r1; : : : rı0.w// j ri � 0 for all i and rj D 0 for some j g:

In other words, Qw is the boundary of the positive orthant of Rı0.w/ . So the image of
f is of the form Y �

Q
w2Vcyc

Qw�R` where Y is a subspace of
Q
v2V0

O.FhLvi/.

Remark 4.3 For future reference, we remark that Qw can also be identified with
Rı0.w/=R (where R acts as diagonal translation) with coordinates given by the cv.w/’s.

Example 4.4 If � DU �W is a join with jU j; jW j ¤ 1, then �0 consists of a single
edge e joining a pair of vertices u 2 U and w 2W . In this case, Je D Ju D Jw D �

and a point in O.A�/ is determined by a single tree space for � (since there is a unique
equivariant isometry of such a tree-space). In this case, `D ı0.u/�1D ı0.w/�1D 0

and Y is all of O.FhU i/�O.FhW i/. Thus, the definition of outer space for a join
agrees with that proposed in Section 4.1.

From now on, O.A�/ will be viewed as a topological space with the subspace topology
induced by the embedding f described above. Each space O.F / is endowed with the
equivariant Gromov–Hausdorff topology. In this topology, a neighborhood basis of an
action of F on a tree T is given by the sets N.X;H; �/, where X D fx1; : : : ;xN g is
a finite set of points in T and H D fg1; : : : ;gM g is a finite set of elements of F . An
action of F on T 0 is in this neighborhood if there is a subset X 0 D fx0

1
; : : : ;x0

N
g of

T 0 such that for all i; j ; k ,

jdT .xi ;gj xk/� dT 0.x
0
i ;gj x0k/j< �:
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5 Contractibility

In this section we prove the following theorem:

Theorem 5.1 For any connected, triangle-free graph � , the space O.A�/ is con-
tractible.

The proof follows ideas of Skora [21] and Guirardel and Levitt [16; 15] on “unfolding”
trees. In their work, however, the unfolding of a tree was defined with respect to a
single basepoint. In our case we will need to preserve several basepoints.

We first consider a single action. Let FhSi be a free group with a preferred generating
set S and let T 2O.FhSi/ be an FhSi–tree.

Proposition 5.2 Let P D fp.t; s/g be any set of projections, with s; t 2 S . The
convex hull B.P;T / of P in T depends continuously on T .

Proof If T 0 is any other FhSi–tree, let P 0 D fp0.t; s/g be the corresponding projec-
tions in T 0 . We must show: given � > 0 and T 2O.FhSi/, there is a neighborhood
N of T such that B.P 0;T 0/ is �–close to B.P;T / for T 0 in N .

To show B.P 0;T 0/ is �–close to B.P;T / in the Gromov–Hausdorff topology, we
need to take an arbitrary finite set of points X in B.P;T / and find corresponding
points X 0 in B.P 0;T 0/ such that the distances between points in X 0 are within � of
the distances between the corresponding points in X .

For T 0 close to T in the equivariant Gromov–Hausdorff topology, we can find points
X 0 in T 0 with the required properties, but that is not good enough; we need the
points X 0 to be in B.P 0;T 0/. We can fix this by projecting each point x0 2X 0 onto
B.P 0;T 0/, but we need to be sure that this projection is sufficiently close to x0 .

Each projection p D p.t; s/ is uniquely determined by the following set of equations
[16]:

(1)

d.p; sp/D `.s/

d.p; tp/D `.t/C 2D

d.s�1p; t�1p/D `.s/C `.t/C 2D

d.s�1p; tp/D `.s/C `.t/C 2D

where D is the distance from ˛.s/ to ˛.t/. If T 0 is in the N.fpg; fs; t; st�1; stg; �/–
neighborhood of T , then we can find q0 in T 0 satisfying equations (1) up to � . By
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Paulin [19], the corresponding lengths `0.s/; `0.t/ and D0 are within � of `.s/; `.t/
and D , so that q0 satisfies the analogous equations (1) 0 up to 4� . The projection
p0 D p0.t; s/ in T 0 satisfies the equations (1) 0 exactly. It is an easy exercise to verify
that this implies that d.p0; q0/ < 3�=2.

Now let Y DX[P , and let H DS[S�1 . If T 0 is in the N.Y;H; �/–neighborhood of
T , then we can find q0.t; s/ and X 0 in T 0 with d.q0.t; s/;p0.t; s//<3�=2, jd.x0

1
;x0

2
/�

d.x1;x2/j<� for all x1;x2 2X , and jd.x;p.t; s//�d.x0; q0.t; s//j<� for all x 2X .
We claim that the projection of x0 onto B.P 0;T 0/ is within 9� of x0 for each x0 2X 0 .

Each point x of B.P;T / is determined by its distances to the points p.s; t/ (x is on
some straight arc between p1 D p.t1; s1/ and p2 D p.t2; s2/; both the fact that it lies
on this arc and its position on the arc are determined by its distances to p1 and p2 ).

If x is on Œp1;p2� then

d.p01;x
0/C d.x0;p02/� d.p01; q

0
1/C d.q01;x

0/C d.x0; q02/C d.q02;p
0
2/

� d.p1;x/C d.x;p2/C 3�=2C 3�=2C 2�

D d.p1;p2/C 5�

d.p01;p
0
2/� d.q01; q

0
2/� d.p01; q

0
1/� d.p02; q

0
2/and

� d.p1;p2/� �� 3�

D d.p1;p2/� 4�:

For any three points in a tree, we have d.a; Œb; c�/D 1
2
.d.b; a/Cd.a; c/�d.b; c//, so

d.x0; Œp01;p
0
2�/D

d.p0
1
;x0/C d.x0;p0

2
/� d.p0

1
;p0

2
/

2
�

9�

2
:

Since Œp0
1
;p0

2
��B.P 0;T 0/, the projection of x0 onto B.P 0;T 0/ is within 9�=2 of x0 ,

and we may replace x0 by this projection.

Now let P be a set of projections with at least one projection on each axis ˛.s/,
for s 2 S . We use the convex hull B.P;T / to define a new FhSi–tree T0.P;T / as
follows. For each s2S , let b.s/ be the minimum of the projections p.t; s/ in P (where
˛.s/ is oriented in the direction of translation by s .) Form a labeled graph R.P;T /

by attaching an oriented circle to b.s/ labeled s , whose length is the translation length
of s acting on T . We call R.P;T / a “stemmed rose.” The subgraph B.P;T / is the
“stem” and the circles are the “petals”. Note that for any point x 2 B.P;T /, there is
a canonical identification of �1.R;x/ with FhSi. Lifting to the universal cover of
R.P;T / defines an action T0.P;T / of FhSi on a tree.
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Lemma 5.3 The action T0.P;T / depends continuously on T .

Proof By Proposition 5.2 the subtree B.P;T / and basepoints b.s/ depend contin-
uously on T , and by [19] the lengths `.s/ for s 2 S depend continuously on T .
Together, this data completely determines T0.P;T /.

Now fix a copy of B.P;T / in T0.P;T /. Then there is a unique equivariant map
fT W T0.P;T /! T which is the identity on B.P;T /. This map is a “folding” in the
sense of Skora: for any segment Œx;y� on T0.P;T /, there exist a nontrivial initial
segment Œx; z�� Œx;y�, x ¤ z , such that fT restricted to Œx; z� is an isometry. We call
such a folding map a morphism. Following [16], we can use this morphism to define a
path from T to T0.P;T / in O.FhSi/ as follows. For r 2 Œ0;1/, let Tr .P;T / be
the quotient of T0.P;T / by the equivalence relation x �r y if fT .x/D fT .y/ and
fT Œx;y� is contained in the ball of radius r around fT .x/. Since fT is a morphism,
this gives T0.P;T / for r D 0. By [21], Tr .P;T / is a tree for all r , the action of
FhSi on T0.P;T / descends to an action on Tr .P;T / and for r sufficiently large,
Tr .P;T /D T . Furthermore, the path pT W Œ0; 1�!O.FhSi/ defined by pT .0/D T

and pT .r/D T.1�r/=r .P;T / for r > 0 is continuous.

Lemma 5.4 The paths pT define a deformation retraction of O.FhSi/ onto the
subspace consisting of universal covers of stemmed roses marked by the generators S ,
which is contractible.

Proof By Lemma 5.3, T0.P;T / depends continuously on T . This implies that
the morphisms fT W T0.P;T /! T depend continuously on T and then, by Skora’s
argument (see Proposition 3.4 of [16]), that the folding paths stay close, ie Tr .P;T / is
close to Tr .P

0;T 0/ for all r . Therefore these paths give a deformation retraction of all
of O.FhSi/ to the subspace of actions covering “stemmed roses” with petals marked
by the generators S . Contracting all stems to points defines a further deformation
onto actions covering the standard rose with lengths on its edges. Such an action is
determined by the lengths of the generators, so this space is a product of positive rays,
which is contractible.

We are now ready to produce a contraction of O.A�/.

By definition of the topology, O.A�/ is homeomorphic to the product Y �Q�R` from
Proposition 4.2. The space Q� Rk is clearly contractible, so it remains only to show
that Y � f0g is contractible where 0 is the origin in Q�R` � RkC` . A point .Tv/ inQ
v2V0

O.FhLvi/ lies in Y if and only if it satisfies certain compatibility conditions.
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Namely for each w 2 V0 , the minimal FhL?wi–trees in Tv must be equivariantly
isometric for all v 2Lw \V0 .

By Proposition 4.2, a point X in O.A�/ is determined by:

� for each v 2 �0 , a tree Tv with FhLvi–action and a tree T?v with FhL?v i–
action

� for each edge Œv; w� in �0 an FhL?wi–equivariant isometry i.w; v/ from T?w
into Tv

� for each leaf w of �0 , a real number �.w/

If w is cyclic, the isometry i.w; v/ is determined by a real number �v.w/. If w is
not cyclic, there is a unique equivariant isometry into Tv . We are assuming X is in
Y � f0g, so �v.w/D 0 for all v;w and �.w/D 0 for all leaves w .

Given a point X in Y � f0g, we want to produce a new point X0 in Y � f0g and
a morphism fXW X0 ! X. We will show fX depends continuously on X, and that
the resulting paths pX define a deformation retraction of Y � f0g to a contractible
subspace.

Definition of X0 Let v 2 V0 . We set .T0/v D T0.Pv;Tv/, where Pv is chosen
as follows. If u 2 Lv is equivalent to some noncyclic vertex w 2 �0 , include all
projections p.t;u/ for t 2 Œw�; t ¤ u. For all other u2Lv , take all projections p.t;u/,
for t 2Lv; t ¤ u.

If v is not cyclic, set .T0/
?
v D T0.P

?
v ;T

?
v /, where P?v consists of all projections

p.t;u/ for t;u 2 Œv�; t ¤ u. If v is cyclic then .T0/
?
v is a linear tree, and we fix a

basepoint b.v/ arbitrarily.

If Œv; w� is an edge of �0 , the image of T?v in Tw under i D i.v; w/ is the unique L?v –
invariant subtree of Tv . The image of each projection p.t;u/ in P?v is the analogous
projection in Tv , so the image of B.P?v ;T

?
v / is contained in B.Pw;Tw/, is isometric

to the intersection of B.Pv;Tv/ with i.T?v / and has the same basepoints. We can
therefore construct an isometric embedding i0.v; w/W T0.P

?
v ;T

?
v /! T0.Pw;Tw/. If

v is cyclic, we send the basepoint b.v/ of .T0/
?
v to the basepoint bw.v/ on ˛w.v/.

The actions .T0/v and .T0/
?
v and isometries i0.v; w/ form a compatible system, giving

a point X0 of O.A�/. The real numbers �w.v/ for this point are all zero, so in fact
X0 is in Y � f0g.
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Morphisms fX and paths pX For each v 2 V0 , we have morphisms

fvW T0.Pv;Tv/! Tv and f ?v W T0.P
?
v ;T

?
v /! T?v

as defined above, as well as folding paths pv from T0.Pv;Tv/ to Tv and p?v from
T0.P

?
v ;T

?
v / to T?v . All of these objects depend continuously on X by Lemma 5.3.

We next observe that if v and w are connected by an edge, the morphism f ?w is the
restriction of fv to T0.P

?
w ;T

?
w /. Thus points in T0.P

?
w ;T

?
w / are identified under f ?w

if and only if they are identified under fv . Since the image of T?w is a geodesic subspace
of Tv , the folding process produces equivariant isometries ir .w; v/W p

?
w.r/! pv.r/

for all r , with �v.w/D 0 for all cyclic vertices w .

Thus the paths pv and p?v form a compatible system pX of paths in Y � f0g and
give a deformation retraction of Y �f0g onto the subspace whose vertex actions are
of the form T0.Pv;Tv/, ie with quotient a stemmed rose whose petals are marked
by the generators Lv . Simultaneously contracting all stems to a point gives a further
deformation retraction onto the subspace Y0�f0g of Y �f0g whose trees are universal
covers of roses (without stems) marked by the generators Lv . These roses are uniquely
defined by the translation lengths of the generators, so Y0 �f0g is homeomorphic to a
product of positive real rays. It follows that Y � f0g is contractible. This completes
the proof of Theorem 5.1.

6 The action of the pure outer automorphism group

In this section we show that there is a proper (right) action of Out0.A�/ on O.A�/.
We continue to assume that � is connected, triangle-free, and contains more than one
edge.

Let � be an element of Out0.A�/. Recall from Lemma 3.8 that if v and w are
connected by an edge e in �0 and �v , �w are representatives of � 2 Out0.A�/
preserving AJv

and AJw
respectively, then there exists gv 2 AJv

and gw 2 AJw

such that c.gv/ ı �v D c.gw/ ı �w . Setting �e D c.gv/ ı �v D c.gw/ ı �w gives a
representative of � which preserves both AJv

and AJw
, and hence also AJe

. The
automorphism �e is unique up to conjugation by an element of AJe

.

Now let XD fXv;Xe; ie;vg be an element of O.A�/ where ie;v denotes the isometric
embedding Xe ! Xv . Let X

�v
v denote the space Xv with the AJv

action twisted
by �v . Notice that translation by gv is an equivariant isometry t.gv/W X

�v
v ! X

�e
v

(where the translation is taken with respect to the original action on Xv ). Hence

X�e
e

ie;v

��! X�e
v

t.gv/
�1

�����!X�v
v
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is an equivariant embedding. We define

X �� D fX�v
v ;X�e

e ; t.gv/
�1ie;vg:

It is straightforward to check that this is independent of the choices of �v and �e : any
other choice gives an equivariantly isometric graph of tree-spaces.

To see that this defines an action, we must verify that if � is another element of
Out0.A�/, then .X ��/ � �D X � .��/. Suppose

�e D c.gv/ ı�v D c.gw/ ı�w and �e D c.hv/ ı �v D c.hw/ ı �w:

Then .X��/��Df.X�v
v /�v ; .X

�e
e /�e ; t 0.hv/

�1t.gv/
�1ie;vg where t 0 denotes translation

with respect to the (twisted) action on X
�v
v .

To compute X � .��/, note that since �v and �v preserve AJv
, so does their composite,

so without loss of generality, we may choose .��/v D �v�v . Observe also that

�e�e D c.gv/�vc.hv/�v D c.gv�v.hv//�v�v D c.kv/.��/v

where kv D gv�v.hv/ and likewise

�e�e D c.gw/�wc.hw/�w D c.gw�v.hw//�w�w D c.kw/.��/w:

It follows that we can take .��/e D �e�e and that t.kv/
�1 D t 0.hv/

�1t.gv/
�1 which

completes the argument.

Theorem 6.1 The action of Out0.A�/ on O.A�/ defined above is proper.

Proof We must show that for any compact set C �O.A�/,

S.C /D f� 2 Out0.A�/ j C \C� ¤∅g

is finite. Consider first the case in which � is a single join � D U �W . If FhU i and
FhW i are both nonabelian, then O.A�/DO.FhU i/�O.FhW i/ and the action is
proper by [11]. If U Dfvg, then O.A�/ŠR`�R>0�O.FhW i/ where the R` keeps
track of the skewing homomorphism �W FhW i ! R and R>0 records the translation
length of v . Thus, we can specify an element of O.A�/ by a triple .�; tv;TW /.
The group Out.A�/ decomposes as a semi-direct product, Out.A�/ Š Zl Ì .Z=2�
Out.FhW i/. Denoting an element of Out.A�/ by a triple .z; �; �/ according to this
decomposition, the action of Out.A�/ on O.A�/ is given by

.�; tv;TW / � .z; �; �/D .�.�C tvz/; tv;T
�
W
/:
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In any compact set in O.A�/, the translation lengths tv are bounded away from zero.
Since the action of Out.FhW i/ on O.FhW i/ is proper, it is now easy to see that the
action of Out.A�/ on O.A�/ is proper.

Now let � be arbitrary, and let R0 be the restriction homomorphism from Proposition
3.9. We first show that the kernel K0 of R0 acts properly on O.A�/. An element
� 2K0 acting on X fixes all vertex spaces Xv and all edge spaces Xe and acts only on
the connecting maps ie;v , or equivalently on the factor Q in the product decomposition
of O.A�/. By Remark 4.3, QD

Q
w2Vcyc

Qw , where Qw can be identified with
Rı0.w/=R with coordinates given by the basepoints cv.w/ for v 2Lw \�0 . We claim
that the action of K0 on the Qw factor is given by the homomorphism �wW K0!

Zı0.w/=Z described in the proof of Proposition 3.9, with m 2 Z acting on cv.w/ as
translation by wm . The product � D

Q
�w is an isomorphism, so it follows easily

from the claim that the action of K0 is proper.

To prove the claim, recall from the proof of Proposition 3.9, that for � 2 K0 , and
v 2Lw \�0 , we can write c.vn/ ı�v D c.wm/ ı�w for some n;m. The v–factor of
�w.�/ is defined to be �m. Rewriting this equation as

c.w�m/ ı�v D c.v�n/ ı�w

we see that we can choose �e to be c.w�m/ ı�v . Then � takes the connecting map
ie;vW Xe!Xv to

t.wm/ ie;v D ie;v t.wm/W T?v �T?w ! T?v �Tv

and similarly for ie;w . Note that ie;v t.wm/ is the identity on the first factor (assuming
that was the case for ie;v ) and ie;wt.vn/ is the identity on the second. (This was the
reason for our particular choice of �e .) Thus, the basepoint cv.w/ in X �� is defined
to be the inverse image of the natural basepoint bv.w/ 2 Tv under this connecting map.
It is the w�m translate of the basepoint cv.w/ in X. This proves the claim.

To show that the whole group Out0.A�/ acts properly, note that since the action
of Out.AJv

/ on O.AJv
/ is proper for each Jv , for any compact C the image of

S.C / under R0 is finite. Thus S.C / is contained in a finite set of right cosets
K0�1; : : :K0�m . Let Ci D C [C��1

i . If � 2K0 is such that C��i \C ¤∅, then
Ci�\Ci ¤∅, so by the paragraph above, there are only finitely many such � for each
�i . We conclude that S.C / is finite.

7 Virtual cohomological dimension

Since Out.A�/ has torsion, its cohomological dimension is infinite. However, it follows
easily from our results that Out.A�/ has torsion-free subgroups of finite index, so that
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its virtual cohomological dimension (vcd) is defined and finite. In this section we find
upper and lower bounds on this vcd.

7.1 The projection homomorphism

We will use the projection homomorphism

P D
Y
v2V0

PvW Out0.A�/!
Y

Out.FhLvi/

defined in Section 3.3. Recall that KP denotes the kernel of P and let Im.P / be the
image.

Proposition 7.1 The outer automorphism group of a two-dimensional right-angled
Artin group has torsion-free subgroups of finite index.

Proof Since the outer automorphism group of a free group is virtually torsion-free, for
each v 2V0 , we may choose a torsion-free subgroup Hv of finite index in Out.FhLvi/.
By Proposition 3.11 the kernel KP of P is free abelian, so that the preimage H0 ofQ
v Hv in Out0.A�/ is also torsion-free of finite index. Since Out0.A�/ has finite

index in Out.A�/, this shows that Out.A�/ itself is virtually torsion-free.

An application of the Hochschild–Serre spectral sequence now gives an upper bound
for the virtual cohomological dimension of Out.A�/.

Theorem 7.2 The virtual cohomological dimension of Out.A�/ satisfies

vcd.Out.A�//� rank.KP /C vcd.Im.P //�
X
v2V0

.ıC .v/� 1/ C
X
v2V0

.2ı.v/� 3/:

Proof Consider the exact sequence

1!KP ! Out0.A�/! Im.P /! 1:

Restricting this exact sequence to a torsion-free, finite index subgroup of Out.A�/, it
follows that for any coefficient module, the E2

p;q –term of the associated Hochschild–
Serre spectral sequence is zero for p > vcd.Im.P // or q > rank.KP /. The rank
of KP is

P
v2V0

.ıC .v/ � 1/ by Proposition 3.11. Since Im.P / is a subgroup ofQ
Out.FhLvi/ and the vcd of Out.Fn/ is equal to 2n� 3 [11], the vcd of Im.P / is

at most
P
v2V0

.2ı.v/� 3/.
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If the graph �0 contains a vertex v which has no leaves attached and is contained
in no squares, then the only generators of Out0.A�/ which affect vertices in Lv
are inversions and partial conjugations...there are no transvections onto vertices in
Lv . Therefore the image of Out0.A�/ in Out.FhLvi/ is contained in the subgroup
P†.Lv/ generated by pure symmetric automorphisms, ie automorphisms which send
each generator to a conjugate of itself. By a result of Collins [8], the subgroup P†.Lv/

has vcd equal to ı.v/� 2. Thus we can improve the upper bound of Theorem 7.2 as
follows.

Corollary 7.3 Let W0 be the vertices of V0 which either have leaves attached or
are contained in a square with v . The virtual cohomological dimension of Out.A�/
satisfies

vcd.Out.A�//�
X
v2V0

.ıC .v/C ı.v/� 3/C
X
v2W0

.ı.v/� 1/:

In particular, if � has no leaves, triangles or squares, then the virtual cohomological
dimension of Out.A�/ satisfies

vcd.Out.A�//�
X
v2V0

.ı.v/C ıC .v/� 3/:

7.2 Free abelian subgroups

The rank of a free abelian subgroup of a group gives a lower bound on its virtual
cohomological dimension. We have already exhibited a free abelian subgroup KP

of Out.A�/, generated by leaf transvections and partial conjugations, but in general
this is not the largest one can find. In this section we exhibit a subgroup which often
properly contains KP . We begin by identifying three subgroups of Aut.A�/.

(1) The subgroup A: Recall that �0 is a subgraph of � with one vertex in each
maximal equivalence class of vertices, and that the partial order on vertices is
given by v � w if lk.v/� lk.w/. For each vertex v which is not in the vertex
set V0 of �0 , choose a vertex w 2 V0 with v �w , and let A be the free abelian
subgroup of Aut.A�/ generated by the left and right transvections �W v 7!wv

and �W v 7! vw . The rank of A is 2jV nV0j

(2) The subgroup L: Let L denote the free abelian subgroup of Aut.A�/ generated
by leaf transvections. Then L has rank `, the number of leaves of � .

(3) The subgroup C: Let C denote the subgroup of Aut.A�/ generated by partial
conjugations by a vertex v of one component of � � fvg. Since this is trivial
when a component has only one vertex (which is therefore a leaf), C has

P
v2V0

ıC .v/� `.v/ generators.
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The image of C in Out.A�/ is free abelian since any two generators have representa-
tives which act on disjoint subsets of the vertices of � , and hence commute. It is easy
to check that all generators of the subgroups A and L commute and generate a free
abelian subgroup of Aut.A�/, and that every generator of C also commutes with A

and L. We let G denote the (free abelian) image of the subgroup generated by A;L

and C in Out.A�/, and will now compute the rank of G . The image of L in G is
isomorphic to L and does not intersect the image of the subgroup generated by A and
C . The subgroups A and C , on the other hand may intersect nontrivially and may
contain inner automorphisms. We introduce the following terminology to keep track of
the possibilities:

Notation A component of � �fvg is a leaf component if it contains only one vertex.
It is a twig if it is not a leaf but is contained in the ball of radius 2 about v , and a branch
if it is neither a leaf nor a twig. Note that if � is a pentagon, the (unique) component
of ��fvg is a branch, since points on the interior of the edge opposite v have distance
more than 2 from v . The number of twigs at v will be denoted �.v/.

Theorem 7.4 If � is not a star, the subgroup G of Out.A�/ generated by the images
of A, L and C is free abelian of rank

2jV nV0jC

X
v2V0

.ıC .v/� �.v/� 1/

Proof The subgroup of Aut.A�/ generated by L and A has rank `C2jV nV0j, where
`D

P
v2V0

`.v/ is the total number of leaves in � . If v is a separating vertex (which
is necessarily in V0 ), then partial conjugation of a leaf component by v is trivial, and
partial conjugation of a twig by v is contained in A. Partial conjugation of a branch
by v is not contained in A. However, the subgroup generated by A and all partial
conjugations of branches at v contains the inner automorphism associated to v . Thus
when we pass to Out.A�/, partial conjugations at v contribute only ˇ.v/�1 generators
of G which are independent of A and L.

Theorem 7.4 and Corollary 7.3 are summarized in the following corollary.

Corollary 7.5 The virtual cohomological dimension of Out.A�/ satisfies

2jV jC
X
v2V0

.ıC .v/� �.v/� 3/� vcd.Out.A�//

�

X
v2V0

.ıC .v/C ı.v/� 3/C
X
v2W0

.ı.v/� 1/:
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7.3 Examples

Example 7.6 Consider the tree � in Figure 7 consisting of one interior edge with n

leaves attached at one vertex v and m leaves attached at the other vertex w . The subtree
�0 is the single interior edge. We have ıC .v/Dı.v/DnC1; and ıC .w/Dı.w/DmC1

and �.v/D �.w/D 1 so the left-hand side of the formula in Corollary 7.5 is

2.mC nC 2/C .m� 3/C .n� 3/D 3mC 3n� 2:

We have W0DV0 , so the right-hand side is .2m�1/C.2n�1/CmCnD 3mC3n�2:

Thus, in this example, the upper and lower bounds agree giving a precise computation,
vcd.Out.A�//D 3.nCm/� 2.

n leaves m leaves
v w

Figure 7

Example 7.7 More generally, suppose that � is an arbitrary tree. Then V0 is the
set of nonleaf vertices of � , ı.v/ D ıC .v/ for all v , and there is one twig for each
univalent vertex of �0 . Let e be the number of edges in � , ` the number of leaves and
`0 the number of leaves in �0 . A simple exercise shows that e�1D

P
v2V0

.ı.v/�1/;
using this, the formulas in Corollary 7.5 become:

e� 1C 2`� `0 � vcd.Out.A�//� eC `� 3C
X
v2W0

.ı.v/� 1/:

Example 7.8 Consider the case of a single join �DV �W with V Dfv1; : : : ; vng and
W D fw1; : : : wng, n;m� 2. Then �0 consists of a single edge from, say, v1 to w1 .
The subgroup KP is trivial, so Theorem 7.2 gives an upper bound of .2n�3/C.2m�3/

on the vcd. For the lower bound, we note ıC .v1/D ıC .w1/D �.v1/D �.w1/D 1, so
the lower bound is 2.mC n/� 6, matching the upper bound.

Example 7.9 Suppose � is the graph in Figure 8, with n> 1 vertices in V and m> 1

vertices in W . For v 2 V we have �.v/D 1, ı.v/Dm and ıC .v/D 1, while for each
w 2W we have �.w/D 0, ı.w/D nC1 and ıC .w/D 2. Thus the rank of G is equal
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� �0

V

v v

W W

Figure 8

to 2.nC 2m/C .�1/C .�m/D 2nC 3m� 3, giving a lower bound on the vcd, and
the upper bound on the vcd is equal to 2mnC 2m� 3 since W0 D V0 . So we obtain

3mC 2n� 3� vcd.Out.A�//� 2mnC 2m� 3:

Thus the gap between the upper and lower bounds grows rapidly with m and n.

Example 7.10 When the rank of G is equal to the vcd, as in Example 7.6 above, it
follows that G is a maximal rank abelian subgroup in Out.A�/. However, this is not
always the case. For example, suppose � contains a vertex v such that ��fvg includes
a unique leaf w and a large number of nonleaf components. Then the generating set for
G contains 3 transvections onto w (one leaf-transvection and two nonleaf transvections).
In place of these 3 transvections, one could take all of the partial conjugations by w
of a nonleaf component of � �fvg. This makes sense since the nonleaf components
of � �fvg are exactly the components of � � st.w/. One can check that these partial
conjugations by w commute with all of the other generators of G , giving a larger
rank abelian subgroup. It would be interesting to determine the maximal rank of an
abelian subgroup in Out.A�/ and whether that rank is always equal to the virtual
cohomological dimension.

7.4 A spine for outer space

The dimension of outer space O.A�/ is in general much larger than the virtual co-
homological dimension of Out.A�/. In the case of a free group F , the outer space
O.F / contains an equivariant deformation retract, called the spine, with dimension
equal to the vcd of Out.F /. In this section we produce a similar spine of O.A�/. The
dimension of this spine is at least as small as the upper bound on the vcd obtained in
Theorem 7.2, and in several of the examples given in the previous section its dimension
is equal to the exact vcd of Out.A�/.

We begin recalling the construction of the spine of outer space for a free group. Since
we have not projectivized O.F /, it decomposes as a union of open cubes in a cubical
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complex. To see this, we view points in O.F / as marked, metric graphs, ie metric
graphs with an isomorphism (determined up to conjugacy) from F to the fundamental
group of the graph. If T is a metric tree with an F –action, then the graph T=F has a
natural marking, and the open cube containing this point is parameterized by varying
the lengths of edges of this graph between 0 and infinity. Some faces of this cube lie
in outer space, others do not. In particular, if a face contains a graph with an edge of
infinite length, then that face does not lie in O.F /.

Remark 7.11 Though it plays no role in what follows, we note that the cube complex
obtained by including all faces of all cubes is topologically a cone, with cone point
the point at which all edges have length zero. The link of this cone point is the usual
simplicial closure of projectivized outer space.

Let xC denote the closure of the open cube C inside of O.F /. For two open cubes
C1;C2 in O.F /, say C1 < C2 if C1 is a face of xC2 . The spine of O.F /, denoted
Z.F /, is the simplicial complex whose vertices are labeled by the open cubes in O.F /
and whose simplices correspond to totally ordered sets of these cubes. Identifying
a vertex vC in Z.F / with the barycenter of the cube C , we can view Z.F / as a
subspace of O.F /. Each open cube C in O.F / deformation retracts onto the star of
vC in Z.F / and these retracts fit together to give a retraction of O.F / onto Z.F /.
Since the action of Out.F / on O.F / maps open cubes to open cubes and preserves
the partial order, there is an induced action of Z.F /.

Now let A� be an arbitrary right-angled Artin group. Recall from Proposition 4.2
that O.A�/ decomposes as a product R` �Q � Y where Y is a subspace of the
product

Q
v2V0

O.FhLvi/ of outer spaces for the free groups FhLvi. Since a product
of cubes is cube, this product of outer spaces is as a union of open cubes, where a cube
C D

Q
Cv corresponds to a specified marked graph for each FhLvi, and the edge

lengths give coordinates for the cubes.

Lemma 7.12 The intersection of each closed cube xC D
Q
xCv with Y is a convex

cell.

Proof A collection of trees fTvg lies in Y if and only if the minimal FhL?wi–subtrees
are equivariantly isometric in all Tv with v 2Lw . By [17], each of these subtrees is
uniquely determined by the translation lengths of a finite set of elements of FhL?wi.
For each Tv , these translation lengths are given by a linear combination of the edge
lengths of the graph Tv=FhLvi. Since the edge lengths give coordinates for the cube
xC , the intersection of Y with xC is given by a finite set of linear equalities.
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It follows from the proof above that if C1 is a face of xC2 and their intersection with Y

is nonempty, then Y \C1 is a face of Y \ xC2 .

Definition 7.13 We define the spine of Y to be the geometric realization of the poset
of cells Y \C partially ordered by the face relation. We denote this spine by Z.A�/.

Proposition 7.14 The action of Out0.A�/ on O.A�/ descends to a proper action of
Im.P / on Y: With respect to this action, Z.A�/ can be identified with a piecewise
linear Im.P /–invariant subspace of Y: This subspace is a deformation retract of Y

hence, in particular, Z.A�/ is contractible.

Proof Let XDfXv;Xe; ie;vg be a point in O.A�/ and X ��DfX
�v
v ;X

�e
e ; t.gv/

�1ie;vg

its translate by � . Recall that Xv is a product of trees Tv � T?v with an action of
FhLvi �F.L?v /. Though this action is not necessarily a product action, it projects to
an action of FhLvi on Tv . The projection of X on Y is given by the resulting set of
actions fTvg. The twisted tree-space X

�v
v is a product of the same two underlying

trees with the action twisted by �v . The new action of FhLvi on Tv depends only on
the projection of �v to Out.FhLvi/. The first statement of the lemma follows.

The action of Out.FhLvi/ on O.FhLvi/ is cellular and the stabilizer of any cell is
finite. Hence the same is true of the action of Im.P / on

Q
v2V0

O.FhLvi/. By the
discussion above, Im.P / preserves Y and hence it takes open cells C \ Y to open
cells and preserves the face relation.

Let p be a point of C \Y . The orbit of p intersects C \Y in a finite set of points.
Since C \Y is convex, the barycenter xp is a point of C \Y which is invariant under
the stabilizer of C \Y , and the entire orbit of xp intersects each cell C 0\Y in at most
point. It follows that we can chose one point xC of each cell C \ Y such that the
set of points fxC g is Im.P /–invariant. Now identify these points with the vertices of
Z.A�/ in the obvious way. Then for any simplex � of Z.A�/, the vertices of � lie
in the closure of a single cell C \Y and their linear span forms a simplex in Y . The
resulting simplicial complex is isomorphic to Z.A�/. As in the case of the spine for a
free group, retracting each cell C \Y linearly onto the star of the vertex xC gives a
deformation retraction of Y onto Z.A�/.

Proposition 7.15 The virtual cohomological dimension of Out.A�/ satisfies

vcd.Out.A�//� rank.KP /C dim Z.A�/

Proof It follows immediately from Proposition 7.14 that Im.P / has vcd bounded by
the dimension of Z.A�/. The result now follows from Theorem 7.2.
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Proposition 7.16 The dimension of Z.A�/ is at most
P
v 2ı.v/� 3.

Proof A cube C D
Q

Cv has dimension at least
P
v ı.v/ and at most

P
v 3ı.v/� 3

since each cube Cv has dimension at least ı.v/ and at most 3ı.v/� 3. Therefore the
longest possible chain of inclusions of cells Y \C is .

P
v 2ı.v/� 3/C 1, so that the

dimension of Z.�/ is at most
P
v 2ı.v/� 3.

In fact, Z.A�/ is naturally isomorphic to a subcomplex of a simplicial subdivision
of the product

Q
v Z.FhLvi/ of spines for the outer spaces associated to the vertices

v of �0 . If the links of vertices of �0 have large overlap, as in Example 7.9, Z.A�/

will be much smaller than the full product, though it can be shown in this example that
they have the same dimension.

On the other hand, in the case that � is a tree, we claim that Z.A�/D
Q

Z.FhLvi/.
To verify this claim, we must show that Y intersects every open cell in

Q
O.FhLvi/.

For � a tree, two links Lv and Lw intersect either in exactly one point (if v;w are
distance 2 apart) or not at all. If Lv \Lw D fug, we will say that Tv and Tw are
compatible if the translation lengths of u in Tv and Tw agree. A point in Y is a
V0 –tuple .Tv/ of compatible trees.

A cell in O.FhLvi/ is invariant under scaling, ie if Tv lies in an open cell Cv , then
so does the tree obtained by scaling the metric on Tv by any r > 0. Thus it suffices to
show that any V0 –tuple of trees .Tv/ can be made compatible by rescaling. To do this,
fix a pair of adjacent vertices v;u in �0 . Every vertex in �0 is even distance from
exactly one of these two vertices. If w is distance 2n from v , then there is a unique
sequence of vertices v D w0; w1; : : : wn D w such that the link of wi�1 intersects
the link of wi in a vertex. Starting with Tv , we can inductively scale each Twi

to be
compatible with the previous one. Similarly, for vertices at distance 2n from u. The
resulting collection of trees defines a point in Y .

Note that once the metrics on Tu and Tv are fixed, the scaling on the remaining trees is
uniquely determined. Thus, modulo scaling the two base trees, a point in Y corresponds
to a point in the product of the projectivized outer spaces SO.FhLvi/. Summarizing,
we have shown the following:

Corollary 7.17 If � is a tree, then

Y Š R2
�

Y
SO.FhLvi/ and Z.A�/Š

Y
Z.FhLvi/;

where the products are taken over the nonleaf vertices in � .
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