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The Seiberg–Witten equations and the Weinstein conjecture

CLIFFORD HENRY TAUBES

Let M denote a compact, oriented 3–dimensional manifold and let a denote a contact
1–form on M ; thus a^da is nowhere zero. This article proves that the vector field
that generates the kernel of da has a closed integral curve.

57R17; 57R57

1 Introduction

Let M denote a compact, orientable 3–manifold and let a denote a smooth 1–form
on M such that a^ da is nowhere zero. Such a 1–form is called a contact form. The
associated Reeb vector field is the section, v , of TM that generates the kernel of da

and pairs with a to give 1. The generalized Weinstein conjecture in dimension three
asserts that v has at least one closed integral curve (see Weinstein [30]). The purpose
of this article is to prove this conjecture and somewhat more. To state the result, remark
that the kernel of the 1–form a defines an oriented 2–plane subbundle K�1 � TM .
Since an oriented 3–manifold is spin, the first Chern class of this two-plane bundle is
divisible by 2.

Theorem 1.1 Fix an element e 2 H 2.M IZ/ that differs from half the first Chern
class of K by a torsion element. There is a nonempty set of closed integral curves of
the Reeb vector field and a positive integer weight assigned to each curve in this set
such that the resulting formal weighted sum of loops represents the Poincaré dual of e

in H1.M IZ/.

Note that various special cases of the Weinstein conjecture have already been established.
For example Hofer [9] proved the Weinstein conjecture in the case where M D S3 ,
where �2.M /¤ 0, or where the associated contact plane field, ker.a/, is over twisted.
The most recent results known to the author are those of Etnyre and Gay [8], Colin and
Honda [6] and Abbas, Cielebak and Hofer [1]. See Hofer [10; 11; 12] and Honda [13]
for references to older papers about the Weinstein conjecture in dimension 3.

The proof of Theorem 1.1 invokes a version of the Seiberg–Witten Floer homology
described by Peter Kronheimer and Tom Mrowka [17]. In so doing, it borrows a
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strategy of the author [26; 28] that is used to identify the Seiberg–Witten and Gromov
invariants of a compact, 4–dimensional symplectic manifold. This said, note that a
sequel to this article is planned to connect the story told here with the 4–dimensional
story that is told in [26] (see Taubes [29]). This planned sequel will identify a version
of the Seiberg–Witten Floer homology for a given compact, oriented 3–manifold with
a variant of the Eliashberg–Givental–Hofer contact homology [7], a variant along the
lines of Hutchings’ embedded contact homology (see Hutchings and Sullivan [14]).
The equivalence of the Seiberg–Witten invariants and Gromov invariants was used by
Chen [4] to prove some special cases of Theorem 1.1. However, the approach taken
here is along very different lines than that taken by Chen.

As remarked above, the proof of Theorem 1.1 uses ideas from [26] and [28] to identify
the Seiberg–Witten and Gromov invariants of a compact, symplectic 4–manifold.
However, there is one crucial new ingredient to the story told here with no analog in
the 4–dimensional story, and this involves the notion of spectral flow. In particular, a
proof is given in what follows of an apparently novel estimate for the spectral flow of a
family of Dirac operators on a 3–manifold. This spectral flow result, Proposition 5.5,
has generalizations that may be of independent interest [25].

Before turning to the details, there is an acknowledgement due: A immense debt is
owed to Tom Mrowka and Peter Kronheimer for generously sharing their encyclopedic
knowledge of Seiberg–Witten Floer homology and the like. As should be evident, this
article owes much to their work. Moreover, the approach taken here was sparked by
some comments of Tom Mrowka. A great debt is also owed to Michael Hutchings for
his many sage comments, suggestions and support.

The author is supported in part by the National Science Foundation.

1.1 An outline of the proof

Section 2–Section 5 supply various parts of the proof; Section 6 and Section 7 tie up
loose ends from Section 2 and Section 3; and Section 8 puts the parts from Section
2–Section 5 together to complete the story. What follows outlines how the parts from
Section 2–Section 5 are used to prove Theorem 1.1.

The Seiberg–Witten equations on M are a system of equations for a connection on
a complex line bundle and a section of a related C2 bundle of spinors over M . The
spinor solves the Dirac equation with covariant derivative defined by the connection and
a conveniently chosen Riemannian metric. Meanwhile, the curvature of the connection
must equal a 2–form that is a quadratic function of the spinor. The strategy taken from
[28] is as follows: Deform the Seiberg–Witten equations on the 3–manifold M by
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adding a constant multiple of �ida to the curvature equation. The multiplying factor is
denoted by r . Consider a sequence of values of r that limit to 1 and a corresponding
sequence of solutions to the resulting equations. Under optimal circumstances, the
spinor component of a solution to a large r version of the equations is nearly zero only
on a set that closely approximates a closed integral curve of the Reeb vector field. As
r !1 along the sequence, a subsequence of such sets limits to the desired closed
integral curve. A precise definition of “optimal circumstances” and the corresponding
existence theorem for a closed integral curve is stated in Theorem 2.1. The rest of
Section 2 provides a quick introduction to the Seiberg–Witten equations.

Theorem 2.1 is, of course, useless without a proof that all large r versions of the
equations have solutions. This is where the Seiberg–Witten Floer homology enters.
Kronheimer and Mrowka [17] describe Z–graded versions of this theory with nonzero
homology in an infinite set of degrees, a set that is unbounded from below. The
chains for this homology theory are the solutions to various allowed deformations
of the Seiberg–Witten equations. In particular, the deformations just described are
allowed. Since the homology is nonzero, there are solutions to the deformed equations
for all values of r that represent any given fixed, but sufficiently negative degree in
the Seiberg–Witten Floer homology. Note that the particular classes from H1.M IZ/

that appear in Theorem 1.1 arise, in part, from the use here of a Z–graded version of
Seiberg–Witten Floer homology. A sequel to this article will explain how the Z=pZ

graded Seiberg–Witten Floer homologies in [17] can be used to find other homology
classes that are generated by integral curves of v . Salient features of the Z–graded
Seiberg–Witten Floer homology from [17] are presented in Section 3.

Even granted solutions of the deformed equations for all values of r , nothing of
consequence can be said if these solutions do not meet the “optimal circumstances”
requirements that are demanded by Theorem 2.1. The problematic requirement involves
a certain functional on the space of connections. This function associates to a connection
the integral over M of the wedge product of the curvature 2–form with ia, where a

is the contact 1–form. This function is denoted by E . Given the unbounded sequence
of r values and the corresponding sequence of solutions, consider the sequence of
numbers whose n–th element is the value of E on the connection for the n–th solution.
This sequence of numbers must be bounded to obtain a closed integral curve limit.
Thus, an argument is needed that gives such a bound. Here, things get subtle, for
Michael Hutchings has convincingly argued that there are sequences that can represent
a Seiberg–Witten Floer homology class of fixed degree for which the corresponding
sequence of E values diverges.

The argument given here that guarantees sequences with uniformly bounded E values
requires the introduction of another function on the space of connections, this the
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Chern–Simons functional. This function is denoted here by cs. Up to a factor of �1,
the Chern–Simons functional realizes the goal of defining a number from a connection
by integrating over M the wedge of the connection 1–form with its curvature 2–form.
A precise definition is given in Section 3.

To see how cs enters the story, fix attention on a nonzero Seiberg–Witten Floer homology
class. Consider an unbounded sequence of r values and a corresponding sequence of
solutions to the deformed Seiberg–Witten equations where each solution is a generator
that appears in a cycle representative of the given homology class. Let C denote the set
of all such pairs of sequences for the fixed homology class. For each sequence of pairs
from C , define another sequence of numbers as follows: The n–th number in this new
sequence is the value of cs on the connection from the n–th pair in the given sequence
of pairs. Now suppose that the attending sequence of E values diverges for any choice
of a sequence of pairs from C . As explained in Section 4, this can happen only if there
exists a sequence of pairs from C whose associated sequence of cs values diverges as
O.r2/ as r !1.

The argument for this uses a third functional, this a perturbation of 1
2
.cs� r E/. This

perturbed function is denoted by a. Section 4 describes a “min-max” procedure that
assigns a value of a to any large r and any Seiberg–Witten homology class. With the
homology class fixed, the resulting function of r is continuous and piecewise differ-
entiable. Properties of its derivative where it is differentiable follow from properties
of solutions to the deformed Seiberg–Witten equations. In particular, these properties
imply the assertion about the divergence as O.r2/ of an associated sequence of cs

values.

A digression is need to explain the shift of focus to the sequence of cs values. To
start the digression, note that the degree of a given Seiberg–Witten cycle as defined
by a deformed version of the equations is determined by the spectral flow for a path
of self-adjoint operators. This path starts at the Dirac operator defined by a fiducial
connection and ends at the operator that gives the formal linearization of the Seiberg–
Witten equations at any solution that appears as a generator in the given cycle. If the
cycle has degree k , then this spectral flow is �k . This understood, here is how cs

comes in: Section 5 proves that this spectral flow differs from 1
4�2 cs by o.r2/. Thus,

if cs is O.r2/, then the degree of the cycle is very large.

With the preceding understood, here is how the proof of Theorem 1.1 ends: Fix a
nontrivial Seiberg–Witten Floer homology class. Use this class to define the set C
of sequence pairs. Suppose that the attending sequence of E values diverges for all
sequence pairs that come from C . If this is the case, then there exists a sequence pair
from C whose associated sequence of cs values diverges as O.r2/. As a consequence,
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the degree of the representative cycle for the given homology class must be O.r2/˙

o.r2/ and thus the degree is increasing with r . But this is nonsense because the degree
is fixed since the homology class is fixed. To avoid this nonsense, there exists a sequence
pair from C where the attending sequence of E values is bounded. Theorem 2.1 uses
this sequence to find the desired closed Reeb orbit.

2 The Seiberg–Witten equations

Let M here denote a compact, oriented Riemannian 3–manifold. Fix a SpinC.3/

structure on M . The latter constitutes an equivalence class of lifts of the orthonormal
frame bundle, Fr ! M , to a principle, U.2/ bundle, F ! M . The set of such
liftings can be placed in a 1-1 correspondence with H 2.M IZ/. With a lift chosen, let
SD F �U.2/ C2 .

The bundle S inherits from C2 a canonical hermitian inner product. Choose a hermitian
connection on det.S/DF �U.2/C and the latter with the Levi-Civita connection on Fr
give S a connection that respects the inner product. The associated covariant derivative
is denoted here by r ; it sends C1.M IS/ to C1.M IS˝ T �M /. There is also a
canonical anti-hermitian action of T �M on S, this being Clifford multiplication. The
map from T �M to End.S/ is denoted in what follows by cl.

Granted the preceding, the Seiberg–Witten equations on M are equations for a pair
consisting of a connection on det.S/ and a section,  , of S. The simplest version of
these equations read

(2–1) �F D  |� and yc.r /D 0;

where the notation is as follows: First, �F denotes the Hodge dual of the curvature
2–form of the chosen connection, and  |� denotes the section of iT �M that is the
metric dual to the homomorphism  | cl.�/ W T �M! iR . Meanwhile, ycW S˝T �M!

S denotes the endomorphism that is induced by cl.

2.1 Variants of the Seiberg–Witten equations

Certain variants of (2–1) play central roles in the discussions that follow. To say more,
suppose that a is a smooth, nowhere vanishing vector field on M . In what follows, a is
going to be a contact form, but there is no need yet to restrict a^da. As a is nowhere
zero, it induces the splitting SDE˚E0 into eigenbundles for cl.a/. Convention taken
here is that cl.a/ acts as i jaj on the first factor and as �i jaj on the second. There
is a canonical SpinC.3/ structure determined by a, that where the bundle E is the
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trivial bundle. Use SI to denote the canonical SpinC structure’s version of S. The
splitting for SI is written as IC˚K�1 where IC!M denotes the trivial C–bundle.
The bundle K is called the canonical line bundle. The bundle K�1 is isomorphic to
the 2–plane subbundle in TM whose vectors are annihilated by the 1–form M . Note
that the specification of a canonical SpinC –structure allows one to write the bundle S

for any other SpinC –structure as

(2–2) SDE˚K�1E;

where E !M is a complex line bundle. Thus, det.S/ D K�1E2 in general. By
the way, assigning E ’s first Chern class to the given SpinC structure provides a 1-1
correspondence between the set of SpinC structures and H 2.M IZ/. Note that the first
Chern class of det.S/ is a torsion class if and only if E2 differs from K by a torsion
class.

Let 1C denote a unit normed, trivializing section of IC . There is a unique connection
on det.SI /DK�1 with the property that the section  D .1C; 0/ of SI is annihilated
by the associated Dirac operator. This connection is called the canonical connection.
When necessary, this connection is denoted by 
 . Note that with S as in (2–1), any
given connection on det.S/ can be written as 
 C 2A where A is a connection on
E . The Dirac operator on C1.S/ that is defined by a given connection A on E is
denoted below by DA .

Now let a denote a contact form on an orientable 3–manifold M . Orient M so that
a^ da is a positive 3–form. Fix a Riemannian metric on M so that a has unit length
and so that daD 2� a. Use a to define the canonical SpinC structure, the canonical
bundle K , and the canonical connection, 
 , on K . Let E denote a given complex line
bundle over M .

The model for the variants of the Seiberg–Witten equations that are of concern in what
follows is a system of equations for a pair .A;  / of connection on E and section  
of SDE˚K�1E . These equations require the specification of a constant, r 2 Œ0;1/.
With r chosen, the equations read:

BA D r. |� � ia/C i$K ;

DA D 0:
(2–3)

Here, BA denotes the metric Hodge dual of the curvature 2–form of the connection
A, and $K is the harmonic 1–form on M with the property that the Hodge dual of
�

1
�
�$K represents the image in H 2.M IQ/ of the first Chern class of K .

The other variants are perturbations of (2–3). To describe the latter, introduce Conn.E/
to denote the space of connections on E . The generic sort of perturbed equation is
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defined with the help of a smooth, gauge invariant function gW Conn.E/�C1.S/!R .
The adjective “gauge invariant” means that g.A�u�1du;u /Dg.A;  / for any choice
of pair .A;  /2Conn.E/�C1.S/ and any smooth map uW M !S1 . The function g

is chosen so that its gradient defines a smooth section of C1.M I iT �M ˚S/. This is
to say that there is a smooth map, .T;S/W Conn.E/�C1.S/!C1.M I iT �M˚S/,
which is such that

d

dt
g.AC tb;  C t�/

ˇ̌̌
tD0
D

Z
M

.b ^�T�
1

2
.�|SCS|�//

for any pair .A;  / in Conn.E/�C1.M IS/ and any .b; �/ 2 C1.M I iT �M ˚S/.
Here, � denotes the metric’s Hodge dual. The allowed functions g are of the sort that
are introduced in [17, Chapter 11]. In particular, they are tame in the sense used by
[17]. The most general perturbation also requires the choice of a harmonic 1–form.
This is denoted below by $ .

With g and $ given, the corresponding perturbed equations are:

BA D r. |� � ia/CT.A;  /C i$;

DA DS.A;  /:
(2–4)

The terms T, S and $ are deemed the perturbation terms. Except in this subsection,
the next subsection and Section 6, the form $ is taken to be the form $K that appears
in (2–3).

Note that the equations in (2–4) are gauge invariant. This means the following: Suppose
that .A;  /2Conn.E/�C1.M IS/ is a solution to (2–4) and u is a smooth map from
M to S1 . Then .A� u�1du;u / is also a solution to (2–4). A solution .A;  / to
(2–4) with  not identically zero is called irreducible. The stabilizer in C1.M IS1/

of an irreducible solution is the constant map to 1 2 S1 . That of a solution .A;  D 0/

consists of the circle of constant maps to S1 .

Note for reference below that there is a special solution to (2–4) when $ D 0 and
g is chosen appropriately. To describe the solution, take E D IC and so the SpinC

structure is canonical. Let AI denote the connection on IC for which the section 1C is
covariantly constant. Define the section  I of S by writing it as .1C; 0/ with respect
to the splitting SI D IC˚K�1 . Then .AI ;  I / is a solution to (2–4) if g is chosen
so that T and S vanishes on any .A;  / that is gauge equivalent to .AI ;  I /.

A solution to (2–4) is deemed to be reducible if  is identically zero. Reducible
solutions to (2–4) arise when �.iBAC$/ is zero in H 2.M IR/. For example, in the
case of (2–5) below where det.S/ has torsion first Chern class, the reducible solutions
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have  D 0 and ADAE�
1
2
i raC� where AE is a connection on E whose curvature

2–form is �i$K .

What follows explains how solutions to certain versions of (2–4) can lead to closed
integral curves of the vector field v .

Theorem 2.1 Fix a complex line bundle E so as to define a SpinC –structure on
M with spinor bundle S given by (2–2). Let frngnD1;2;::: denote an increasing,
unbounded sequence of positive real numbers and for each n, let �n denote a co-exact
1–form on M and let $n denote a harmonic 1–form. For each n, let .An;  n/ 2

Conn.E/�C1.M IS/ denote a solution to the r D rn version of (2–4) as defined using
the perturbation defined by $n and the pair .Tn D�d�n;Sn D 0/. Suppose that there
is an n–independent bound for the C 3 norm of �n and L2 norm of $n . In addition,
suppose that there exists an index n independent upper bound for i

R
M a^�BAn

and
a strictly positive, n independent lower bound for supM .1� j nj/. Then there exists
a nonempty set of closed, integral curves of the Reeb vector field. Moreover, there
exists a positive, integer weight assigned to each of these integral curves such that the
corresponding formal, integer weighted sum of loops in M gives the class in H1.M IZ/

that is Poincaré dual to the first Chern class of the bundle E .

This theorem can be proved using results from [28]. However, most of the heavy
analysis in [28] is not required here given that this theorem concerns dimension 3, not
dimension 4. This being the case, an independent proof of Theorem 2.1 is given in
Section 6.

Most of this article uses a version of (2–4) with a very simple perturbation term:

BA D r. |� � ia/C i.�d�/C$K /;

DA D 0:
(2–5)

Here, � is a co-closed 1–form that is L2 –orthogonal to all harmonic 1–forms. In
what follows, a 1–form � is said to be co-exact when d ��D 0 and � is orthogonal
to all harmonic 1–forms.

2.2 Apriori bounds

The proof of Theorem 2.1 and much of the facts about solutions to (2–4) exploit just
two fundamental apriori bounds for solutions to the large r versions of (2–4). To state
these bounds, use the splitting in (2–2) to write a given section  of S as  D .˛; ˇ/
where ˛ is a section of E and where ˇ is a section of K�1E .

The next lemma supplies the fundamental estimates.
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Lemma 2.2 Given c> 0, there is a constant �� 1 with the following significance: Let
� denote a co-exact 1–form and let $ denote a harmonic 1–form. Assume that both
the C 3 norm of � and the L2 norm of $ bounded by c . Fix r � 1 and suppose that
.A;  D .˛; ˇ// is a solution to the version of (2–4) given by r and the perturbation
data (TD �d�;SD 0/ and $ . Then

j˛j � 1C �r�1;

jˇj2 � �r�1.j1� j˛j2jC r�1/:

This lemma is proved in Section 6.1.

The bounds in Lemma 2.2 have various implications that are used in later arguments.
The first concerns the derivatives of ˛ and ˇ . To state the latter, suppose that A is a
given connection on E . Introduce r to denote the associated covariant derivative. The
covariant derivative on K�1E that is defined by A and the canonical connection, 
 ,
is denoted in what follows by r 0 .

Lemma 2.3 For each integer q � 1 and constant c > 0, there is a constant � � 1

with the following significance: Let � denote a co-exact 1–form and let $ denote a
harmonic 1–form. Assume that both the C 3Cq norm of � and the L2 norm of $ are
bounded by c . Fix r � 1 and suppose that .A;  D .˛; ˇ// is a solution to the version
of (2–4) defined by r and the perturbation data .TD �d�;SD 0/ and $ . Then

jr
q˛j � �.rq=2

C 1/;

jr
0qˇj � �.r .q�1/=2

C 1/:

This lemma is proved in Section 6.2.

There is one more apriori estimate that plays a prominent role in what follows, this
an estimate for the connection A itself. To this end, introduce the functional E on
Conn(E) that sends any given connection A to

(2–6) E.A/D i

Z
M

a^�BA:

It is an immediate consequence of Lemma 2.2 and (2–5) that if .A;  / is a solution to
(2–5), then

(2–7) �c � E � r vol.M /C c;

where an upper bound for c depends only on the C 3 norm of � and the L2 norm of
$ .
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Lemma 2.4 Fix a connection AE on E and c > 0. There exists a constant � � 1

with the following significance: Let � denote a co-exact 1–form and let $ denote
a harmonic 1–form. Assume that both the C 3 norm of � and the L2 norm of $
bounded by c . Fix r � 0 and suppose that .A;  D .˛; ˇ// is a solution to the
version of (2–4) defined by r and the perturbation data .T D �d�;S D 0/ and $ .
Then there exists a smooth map uW M ! S1 such that yaD A� u�1du�AE obeys
jyaj � �.r2=3E1=3C 1/.

This lemma is proved in Section 6.3.

2.3 Instantons

Assume now that the bundle det.S/ has torsion first Chern class. This means that the
respective images in H 2.M IQ/ of the first Chern class of E and the form � 1

�
�$K

are equal. In what follows here and in all other sections but Section 6, the 2–form
$ that appears in (2–4) is the 2–form $K . This choice for $ is assumed implicitly
where not stated explicitly in what follows.

Two other functionals are used in the search for sequences that satisfy Theorem 2.1’s
conditions. The first is also a functional on Conn(E), this the Chern Simons functional.
The definition of the latter requires a preliminary choice of a fiducial connection, AE ,
on E . In this regard, choose AE so that its curvature 2–form is �i$K . The choice of
AE identifies Conn(E) with C1.M I iT �M /. Use this identification to write a given
connection A as AE Cya. Then

(2–8) cs.A/D�

Z
M

ya^ dya:

Note that cs is gauge invariant in the sense that cs.A� iu�1du/D cs.A/ when u is a
smooth map from M to S1 .

The second of the required functionals is denoted by a. To define a, introduce the
function gW Conn.E/�C1.M IS/! R that defines the perturbation terms T and S

that appear in (2–4). With g given, the function a is defined on Conn.E/�C1.M IS/

and it sends any given pair cD .A;  / to

(2–9) a.c/D 1
2
.cs.A/C 2g� r E.A//C r

Z
M

 |DA :

Note that if g is independent of the section of S, thus gD g.A/, then

(2–10) aD 1
2
.csC 2g� r E/
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if c D .A;  / is a solution to (2–4). In particular, (2–10) holds in the case where g

leads to the equations in (2–5). In any event, a pair .A;  / is a critical point of a if
and only if the pair satisfies (2–4).

The “gradient flow” lines of the functional a in Conn.E/ � C1.M IS/ also play
a role in this story. Such a gradient flow line is called an instanton when it has an
s ! 1 limit and an s ! �1 limit, and both limits are solutions to (2–4). By
definition, a gradient flow line of a is a smooth map, s! .A.s; �/;  .s; �//, from R

into Conn.E/�C1.M IS/ that obeys the equation

@

@s
AD�BAC r. |� � ia/CT.A;  /C i$K ;

@

@s
 D�DA CS.A;  p/:

(2–11)

The latter equations can be written as @
@s
.A;  /D�raj.A; / , where the gradient of

a is defined using the L2 inner product on C1.M I iT �M ˚S/. This is to say that
rajc is the section of iT �M ˚S with the property that d

dt
a.cC tb/jtD0 D hra; biL2

for all sections b of iT �M ˚S. Here, h; iL2 denotes the L2 inner product.

Of interest in what follows are the instanton solutions to (2–11). For those new to
(2–11), note that if .A;  / is a solution, then so is .A � u�1du;u / if u is any
smooth map from M to S1 . Solutions that differ in this way are deemed to be gauge
equivalent.

2.4 A Banach space of perturbations

Kronheimer and Mrowka introduce the notion of a large, separable Banach space of
tame perturbations for use in (2–4). This notion is made precise in their Definition
11.6.3. Such a Banach space is denoted here by P . In particular, functions in P are,
in a suitable sense, dense in the space of functions on Conn.E/�C1.M IS/. What
follows summarizes some other features of P that are used here. To set the stage
for this summary, note that a smooth 1–form, �, on M defines the gauge invariant
function e�W Conn.E/! R by the rule

(2–12) e�.A/D i

Z
M

�^�BA:

View e� as a function on the product Conn.E/�C1.M IS/ with no dependence on
the C1.M IS/ factor. To complete the stage setting, let �0 denote the vector space
of finite linear combinations of the eigenvectors of operator �d on C1.M I iT �M /

whose eigenvalue is nonzero. All forms in �0 are co-exact, and �0 is dense in the
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space of co-exact 1–forms on M . In the proposition that follows, k � k2 denotes the
L2 norm of the indicated section of C1.M I iT �M ˚S/ and k � kP denotes the norm
on the indicated element in P .

Proposition 2.5 There is a large, separable Banach space of tame perturbations with
the following properties:

� If � 2�0 , then e� 2 P .

� Let r � 1 and let fgngnD1;2;::: be a convergent sequence from P , and let g 2 P
denote the limit. For each n 2 f1; 2; : : :g, let cn denote a solution to the version
of (2–4) that is defined by gn . Then there is a subsequence of fcng and a
corresponding sequence of gauge transformations such that the result converges
in Conn.E/�C1.M IS/ to a solution to the .r; g/ version of (2–4).

� The functions in P are smooth with respect to the Sobolev L2
1

topology on
Conn.E/�C1.M IS/. In particular there exists �� > 0 such that if g 2 P and
cD .A;  / 2 Conn.E/�C1.S/ and b 2 C1.M I iT �M ˚S/, thenˇ̌̌ d

dt
g.cC tb/jtD0

ˇ̌̌
� ��kgkP.1Ck k2/kbk2:

Proof of Proposition 2.5 Kronheimer and Mrowka describe how to construct a large,
separable P in Section 11.5 of their book [17], and their constructions readily ac-
commodate the requirement in the first bullet. The second bullet follows from [17,
Propositions 10.7.2 and 11.6.4]. The third is from [17, Item (iv) of Theorem 11.6.1].

The perturbations that are used in what follows are assumed to come from the Banach
space P . Let � denote the closure of �0 using the norm on P . It is important to note
that all forms in � are smooth. In particular, a Cauchy sequence in � has a convergent
subsequence in C1.M I iT �M /. Keep in mind in what follows that a perturbation
term in (2–4) defined by a � 2� version of e� and $ D$K leads to the equations
that are depicted in (2–5).

3 The Seiberg–Witten Floer homology for a contact form

The purpose of this section is to explain what is meant here by Seiberg–Witten Floer
homology for a contact 1–form. It is defined here for a SpinC structure that arises
when the bundle det.S/ has torsion first Chern class. Assume now that E in (2–2) is
chosen so that this is the case. The resulting homology is denoted in what follows by
cSWF homology.

Geometry & Topology, Volume 11 (2007)



The Seiberg–Witten equations and the Weinstein conjecture 2129

Most of what follows summarizes material from Kronheimer and Mrowka’s elegant
exposition. This being the case, the reader is referred to [17] for the assertions that
are little more than restatements of aspects of their general theory for Seiberg–Witten
Floer homology.

3.1 The chains for the cSWF homology

The cSWF homology is defined by a differential on a Z–graded chain complex whose
chains are formal linear combinations of equivalence classes of irreducible solutions
to (2–4). In this regard, remember that $ D $K in all of what is said here. The
equivalence relation that defines the generators of the chain complex pairs .A;  / and
.A0;  0/ when A0 DA�u�1du and  0 D u with u a smooth map from M to S1 .

The set of these equivalence classes generate the Z–module of chains for the complex
if the solutions to (2–4) (and the instanton solutions to (2–11)) obey certain extra
conditions. A solution that obeys these conditions is said in what follows to be
nondegenerate. As it turns out, these conditions are present if the perturbation term
that appears in these equations is chosen in a suitably generic fashion. The condition
on the solutions to (2–4) are discussed momentarily.

The digression that follows is needed before more can be said. To start the digression, fix
.A;  / 2 Conn.E/�C1.M IS/. Use the latter to define a certain linear operator that
maps C1.M I iT �M ˚S˚ iIR/ to C1.M I iT �M ˚S˚ iIR/, where IR DM �R .
The operator L sends a triple .b; �; �/ to the triple whose respective iT �M;S and
iIR components are:

�db� d� � 2�1=2r1=2. |��C �|� /� t.A; /.b; �/;

DA�C 21=2r1=2.cl.b/ C� /� s.A; /.b; �/;(3–1)

� d � b� 2�1=2r1=2.�| � |�/;

where the pair .t.A; /; s.A; // denotes the operator on C1.M I iT �M˚S/ that sends
a given section .b; �/ to . d

dt
T.AC tb;  C t�/; d

dt
S.AC tb;  C t�//jtD0 . Denote

this operator by L. In the case of (2–5), the terms t and s are absent in (3–1).

In general, the operator L defines an unbounded, self-adjoint operator on the L2

closure of C1.M I iT �M ˚S˚ iIR/. The domain of this operator is the L2
1 closure

of C1.M I iT �M ˚ S˚ iIR/. The spectrum of the self-adjoint extension of L is
discrete, with no accumulation points. Moreover, the spectrum is unbounded in both
directions on R. See Kronheimer and Mrowka [17, Chapter 12.3.2].

A solution .A;  / to (2–4) with  not identically zero is said to be nondegenerate
when the kernel of L is trivial. In the case where  D 0, a solution is deemed to be
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nondegenerate when the kernel of L is spanned by .bD 0; �D 0; � D i/ and elements
of the form .b; �D 0; � D 0/ where b is a harmonic 1–form. One of the purposes of
introducing the perturbation data term in (2–4) is to ensure that all solutions to these
equations are nondegenerate. The proof of the next lemma is in Section 7.1.

Lemma 3.1 Given r � 1 there is a residual set of �2� such that all of the irreducible
solutions to the corresponding version of (2–5) are nondegenerate. There is an open
dense set of g 2 P such that all solutions to corresponding version of (2–4) are
nondegenerate.

The gauge equivalence class of a nondegenerate solution is isolated. It is also the case
that a nondegenerate solution persists when the equations are deformed. These notions
are made precise in the next lemma. The lemma reintroduces the functional e� on
Conn(E) that appears in (2–12).

Lemma 3.2 For a given r � 1 and � 2� and q 2 P , suppose that cD .A;  / is a
nondegenerate solution to the r and gD e�Cq version of (2–4). Then the following is
true:

� There exists " > 0 such that if .A0;  0/ is a solution to (2–4) that is not gauge
equivalent to .A;  /, then the L2

1
norm of .A�A0;  � 0/ is greater than ".

� There is a smooth map, c.�/, from the ball of radius " centered at the origin in P
to Conn.E/�C1.M IS/ such that c.0/D c and such that c.p/ solves the version
of (2–4) that is defined by r and the perturbation defined by gD e�C qC p.

Proof of Lemma 3.2 This is a corollary of [17, Lemmas 12.5.2 and 12.6.1].

Each nondegenerate, irreducible solution to (2–4) has a degree that is determined by
the spectral flow for the operator L. For those new to the notion of spectral flow, a
more detailed discussion is given in Section 5.1. Suffice it to say now that the spectral
flow for a continuous family s! Ls of self-adjoint, Fredholm operators parametrized
by s 2 Œ0; 1� is canonically defined if the kernels of L0 and L1 are trivial. In this case,
the spectral flow is the number of eigenvalues (counting multiplicity) that cross 0 2 R

from below as t increases minus the number that cross 0 from above as t increases. As
is explained below, in the case where K has torsion first Chern class and ED IC , each
nondegenerate, irreducible solution to (2–4) has a canonical degree. In other cases, the
degree defined below requires some auxiliary choices. In any case, there is a canonical
relative degree that can be assigned to any ordered pair of irreducible, nondegenerate
solutions to (2–4).

Geometry & Topology, Volume 11 (2007)



The Seiberg–Witten equations and the Weinstein conjecture 2131

The relative degree between an ordered pair, .c; c0/, of nondegenerate, irreducible
solutions to (2–4) is deemed to be minus the spectral flow for a suitable s 2 Œ0; 1�

parametrized family of self-adjoint Fredholm operators with the s D 0 operator equal
to c0s version of L and with the sD 1 operator equal to the version of L defined by c0 .
As the first Chern class of det.S/ is torsion, this notion of degree is gauge invariant.
In particular, the ordered pair cD .A;  / and c0 D .A� u�1du;u / have the same
relative degree for any given u 2 C1.M IS1/. Thus, the notion of a relative degree
descends to the chains that define the cSWF homology.

The definition of the absolute degree in the case E D IC requires the following lemma.

Lemma 3.3 Suppose that T;S, and $ in (2–4) are all zero and that E D IC . There
exists r�� 1 with the following significance: The solution .AI ; .1C; 0// to the resulting
version of (2–4) is nondegenerate for all r > r� .

This lemma follows from results about L that are discussed in Section 5. Its proof is
deferred to Section 5.5.

Granted Lemma 3.3, the spectral flow from any large r version of the operator L as
defined by .AI ; .1C; 0// with tD sD 0 in (3–1) endows each nondegenerate solution
to (2–4) with an absolute degree. These degree assignments descend to the chains that
define the cSWF complex and give this complex its canonical Z grading.

When E is not trivial (but det.S/ has torsion first Chern class), the absolute degree is
defined as follows: Let AE denote the connection on E that was chosen just prior to
(2–8) so as to identify Conn(E) with C1.M I iT �M /. Thus, the curvature of 2–form
of AE is �i$K . Choose a section  E of S and some perturbation data for which the
resulting r D 1 and tD sD 0 version of the operator L in (3–1) has trivial kernel. It is
not necessary that the pair (AE ;  E/ obey the Seiberg–Witten equations. The spectral
flow between this .AE ;  E/ version of L and that defined by any given nondegenerate
solution c to (2–4) for any given r and perturbation data from P is then well defined,
and minus this number is deemed to be the degree of c. Because det.S/ has torsion
first Chern class, these degree assignments descend to the cSWF chains and so give the
complex its Z–grading.

In the case when the equations are given by some � 2� version of (2–5), the version
of the operator L for any reducible .ADAE �

1
2
i r aC�; 0/ has a kernel. Even so,

upper and lower bounds are available for the spectral flow to any pair .A;  / near a
reducible solution of this type. These bounds are stated in the next proposition; they
play a central role in subsequent arguments.
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Proposition 3.4 Given c>0, there is a constant, � >0 with the following significance.
Fix r � 1 and a smooth 1–form, �, on M with C 3 norm less than c . Let AE denote a
connection on E whose curvature 2–form is �i$K . There exists an open neighborhood
in Conn.E/�C1.M IS/ of the pair .AE �

1
2
i r aC�; 0/ such that the degree of any

nondegenerate, irreducible solution in this neighborhood to the r and � version of
(2–5) differs from � 1

4�2 r2
R

M a^ da by at most �.r31=16C 1/.

This proposition is a corollary of Proposition 5.5.

As the set of solutions to (2–4) is compact modulo gauge equivalence, this last proposi-
tion and Lemma 3.2 have the following important consequence:

Proposition 3.5 Given an integer k , there exists rk�1 with the following significance.
Suppose that � 2� has C 3 –norm less than 1 and that r � rk .

� All solutions to the r and � version of (2–5) with degree k or greater are
irreducible.

In addition, there exists " > 0 such that if q 2 P has norm less than ", then:

� All solutions to the r and gD e�C q version of (2–4)) with degree k or greater
are also irreducible.

� There is a neighborhood of the set of reducible solutions to the r and g D

e� C q version of (2–4) such that the spectral flow from any of degree k or
greater solution of the r and gD e�C q version of (2–4) to any nondegenerate
configuration in this neighborhood is greater than 1

16�2 r2
R

M a^ da.

� If all solutions to the r and gD e�Cq version of (2–4) with degree k or greater
are nondegenerate, then there are only finitely many such solutions modulo gauge
equivalence.

� If all solutions to the r and � version of (2–4) with degree k or greater are
nondegenerate, then:
(a) There is a 1-1 correspondence between the set of solutions to the r and �

version of (2–5) with degree k or greater and the set of solutions to the r

and gD e�C q version of (2–4) with degree k or greater.
(b) In particular, if c is a solution to the r and � version of (2–5) with degree k

or greater, then there exists a smooth map, c.�/, from the radius " ball in P
into Conn.E/�C1.M IS/ such that c.q/ solves the r and e�C q version
of (2–4) and such that c.0/D c.

Proof of Proposition 3.5 Granted Proposition 3.4, this follows from Lemma 3.2 and
Proposition 2.5.
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This last proposition has the following consequence. Fix a line bundle E so that the
resulting version of det.S/ has torsion first Chern class. Suppose that r is large, that
� 2� has C 3 norm less than 1, and that all solutions of degree k or greater to the r

and � version of (2–5) are nondegenerate. If q 2 P has sufficiently small norm, then
the complex for the cSWF homology in degrees greater than or equal to k as defined
by the solutions to the r and gD e�C q version of (2–4) is finitely generated.

3.2 The differential in the cSWF homology

The differential in the cSWF homology is defined by counting the instantons with
appropriate algebraic weights. To make such a count, it is necessary that all instanton
solutions to (2–11) with these asymptotic conditions satisfy certain constraints. To
describe the relevant constraints, suppose that s ! c.s/ D .A.s; �/;  .s; �// is an
instanton solution to (2–11) as defined by some r � 0 and a given g 2 P . Such an
instanton is said to be nondegenerate when there are no not everywhere zero maps,
s! b.s/, from R to C1.M I iT �M ˚S˚ iIR/ that obey the equations

�
@

@s
bCLjc.s/bD 0;

lim
jsj!1

kb.s/k2! 0:
(3–2)

Here, the notation has Ljc.s/ denoting the version of (3–1) with A D A.s; �/ and
 D  .s; �/; and it uses k � k2 as before to denote the L2 norm on M .

Suppose that c and c0 are nondegenerate, irreducible solutions to some r � 0 and g 2P
version of (2–4). Let MDM.c; c0/ to denote the set of instantons with s!�1 limit
equal to c and s!C1 limit equal to uc0 for u2C1.M IS1/. As [17, Chapter 14.4]
explains, the set M has the local structure of the zero locus of a smooth map from
RnC� to Rn where � D degree.c/� degree.c0/. Because the equations in (2–11) are
invariant with respect to the constant translations of s , the space M has an R–action
that has a fixed point if and only if M is the equivalence class of the constant map
s! c with c a solution to (2–4).

If all instantons between c and c0 are nondegenerate, then M is a smooth manifold
of dimension � with a smooth R action. Furthermore if �� 1, then M=R is compact
and a smooth manifold of dimension �� 1 unless �D 0. In this case, the following
are true: First, there are no instantons from c to c0 if degree.c0/ > degree.c/. Second,
if the degrees are equal, then cD c0 and M consists of the equivalence class of the
constant instanton, this the map s! c. In the case where degree.c/D degree.c0/C 1,
each instanton with s!�1 limit c and s!1 limit uc0 for u 2 C1.M IS1/ is
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the translate via the R action of some representative of the finite set M=R. These
assertions restate a part of [17, Proposition 14.5.7].

Lemma 3.6 Given k 2 Z, there exists rk � 1 with the following significance: If
r � rk then there exists an open, dense set of � 2 � with C 3 norm less than 1 for
which the following is true:

� Each solution to the r and � version of (2–5) with degree greater than or equal
to k is irreducible and nondegenerate.

� Given � for which the preceding conclusions hold, there exists " > 0 and a
dense, open subset of the radius " ball in P such that if q is in this set, and if c

and c0 are solutions to the r and gD e�C q version of (2–4) with the degrees c

and c0 greater than or equal to k and �.c; c0/� 1, then each instanton in M.c; c0/

is nondegenerate.

Proof of Lemma 3.6 The first bullet follows from Lemma 3.1, Lemma 3.2 and
Proposition 3.5. The second with the “open dense” replaced by “residual” restates part
of [17, Theorem 15.1.1]. The fact that the set in question is open for the case �.c; c0/�
1 follows from [17, Theorem 16.1.3] given that there are only a finite many solutions
to the r and � version of (2–4).

A pair (�; q/ 2��P as described by Lemma 3.6 for a given integer k and r > rk is
called .r; k/–admissible.

Assume now that (�; q/ is .r; k/ admissible for given integer k and r � rk . Let c and
c0 be solutions to (2–5) with degree.c/ > k and degree.c0/ D degree.c/� 1. In this
case, each point in M.c; c0/=R has a well defined associated sign, either C1 or �1

[17, Chapter 22.1]. Let �.c; c0/ denote the sum of these plus and minus ones with the
understanding that � D 0 when M.c; c0/D¿.

Assuming that (�; q/ is .r; k/ admissible, what follows describes the differential on the
cSWF complex in degrees greater than k when the generators are the gauge equivalence
classes of solutions to the r and gD e�C q version of (2–4). The differential sends a
given generator, c, to

(3–3) ıcD
X
c0

�.c; c0/c0;

where the sum is over all irreducible generators with degree one less than that of c.
Thus, the differential decreases degree by 1.
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Proposition 3.7 Given k 2 Z there exists rk � 1 with the following significance: Fix
r > rk and an .r; k/–admissible pair .�; q/ to define the generators and differential
on the cSWF complex in degrees greater than k . Then ı2 D 0 on all chains of
degree greater than k . Moreover, given two .r; k/ admissible pairs, there exists an
isomorphism between the corresponding homology groups in degrees greater than k .
In addition, the homology so defined in degrees greater than k for different values of
r > rk are isomorphic.

Proof of Proposition 3.7 The result that ı2 D 0 is Proposition 22.1.4 of [17], given
Proposition 3.5. The invariance of the homology with respect to a change in the
perturbation term is Corollary 23.1.6 of [17], granted Proposition 3.5.

Some explicit isomorphisms between the cSWF homology groups for different values
of r and q are described in the next three subsections.

The next proposition is central to all that follows.

Proposition 3.8 Given k 2 Z, there exists k 0 < k such that the cSWF homology in
degree k 0 is nontrivial.

Proof of Proposition 3.8 Kronheimer and Mrowka introduce in Chapter 3 of their
book three Z–graded Seiberg–Witten Floer homology groups which are denoted here
by xH� ,

_

H� , and
^

H� . Chapter 35.1 of [17] says quite a bit about the groups xH� ,
_

H� and
^

H� . In particular, Corollary 35.1.4 of [17] finds that
^

H� is nonzero in an
infinite set of degrees, a set that is bounded from below, but unbounded from above.
Meanwhile

_

H� is nonzero in an infinite set of degrees, a set that is bounded from above
and unbounded from below. Since there are only a finite set of irreducible solutions, the
reducible solutions to (2–4) supply all but a finite set of classes to both

_

H� and
^

H� .
(Both

^

H� and
_

H� are a sort of equivariant homology; they appear by virtue of the
fact that the group S1 of constant maps from M to S1 does not act everywhere freely
on Conn.E/�C1.M IS/. As is indicated by Theorem 35.1.1 of [17], the group xH�
is mostly determined by the reducible solutions.)

These Seiberg–Witten Floer homology groups are defined using both the irreducible
solutions to (2–4) and the reducible solutions, with the corresponding instantons so-
lutions to (2–11). In this regard, the complex is defined using the gauge equivalence
classes of such solutions given that r and the perturbation g are such that all solutions
to (2–4) are nondegenerate, and all instantons with �� 1 are nondegenerate. Note that
there is residual set of such g for any given choice of r . In particular, for fixed k and r

> rk , there exist pairs .�; q/ that can be used to compute both the cSWF homology in
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degrees less than k and also the three Seiberg–Floer homology groups. Moreover, the
generators of the cSWF complex in degrees less than k are also generators in the larger
Seiberg–Witten Floer complexes for

_

H� and
^

H� , and the differential for the cSWF
homology gives a part of the respective differentials for these other two homology
theories. What is missing from the cSWF differential are the instantons that limit as
either s !1 or s!�1 to a reducible solution to (2–4).

With the preceding understood, note that if r > rk and the perturbation gD e�Cq has
very small norm, then it follows from Proposition 3.4 that the reducible solutions to
(2–4) have very negative degree. This means that the contribution from the reducibles
to

_

H� starts at a correspondingly negative degree. As a consequence, there must be a
correspondingly large set of negative degrees where the homology in

_

H� comes from
the irreducible solutions to (2–4). In particular, the cSWF homology can not be zero
in these degrees. As r increases, there are more and more such degrees since the set
of degrees where

_

H� ¤ 0 is unbounded from below. Proposition 3.8 follows directly
from this. This can be said differently as follows. Given k , there exists rk such that if
r > rk , then the cSWF homology is canonically isomorphic to

_

H� in degrees greater
than k .

3.3 Identifying homology defined for distinct r values: Part I

This and the subsequent two subsections describe some isomorphisms between the
different r versions of cSWF homology. To set the stage here, fix k 2 Z, suppose
that r > rk , and suppose that � 2� is such that all solutions to the r and � version
of (2–5) with degree k or greater are nondegenerate. As there are but a finite set
of gauge equivalence classes of such solutions, this condition holds for all r 0 in
some neighborhood of r . Moreover, the solutions vary smoothly as r 0 varies in this
neighborhood. This follows as a special case of Proposition 3.5. Here is a precise
statement:

Lemma 3.9 Fix k 2 Z, and r > rk . Suppose that � 2 � has C 3 norm less than 1,
and is such that all solutions to the r and � version of (2–5) with degree k or greater
are nondegenerate.

� There exists a maximal open set .r0; r1/ with rk � r0 < r < r1 � 1 such
that all solutions to the r and � version of (2–5) with degree k or greater are
nondegenerate.

� For each r 0 2 .r0; r1/ there is a 1-1 correspondence between the respective sets
of solutions with degree k or greater to the r 0 and � version of (2–5) and to the
r and � version.
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� In particular, if c is a solution to the r and � version of (2–5) with degree k

or greater, then there is a smooth map c.�/W .r0; r1/! Conn.E/�C1.M IS/

with c.r/D c, and such that c.r 0/ obeys the r 0 and � version of (2–5) for each
r 0 2 .r0; r1/:

Let k and � be as described in this last lemma. It may not be possible to define the
cSWF homology complex in degrees greater than k using a given r 0 2 .r1; r0/ and
� to define the perturbation term for use in (2–4) and (2–11). The point is that the
pair .�; 0/ need not be .r 0; k/–admissible. In fact, the pair .�; 0/ need not be .r 0; k/
admissible for any r 0 . However, there are q 2 P with positive norm, but as small as
desired, such that .�; q/ is .r 0; k/ admissible. Such a pair .�; q/ can be used to define
the cSWF complex in degrees greater than or equal to k at r D r 0 .

Granted this, note that if q’s norm is less than the constant " in Proposition 3.5, then
q is in the domain of the maps c.�/ from Proposition 3.5, and the latter identify the
generators of the cSWF complex in degrees k or greater as defined using the r 0 and
.�; q/ versions of (2–4) and (2–11) with the gauge equivalence classes of the degree k

or greater solutions to the r 0 and � version of (2–5).

The preceding motivates the definition that follows.

Definition 3.10 Suppose that k and � are as in Lemma 3.9. Let r 0 2 .r0; r1/ and
suppose that q 2 P has norm less than the constant " in Proposition 3.5. In addition,
assume that the pair .�; q/ is .r 0; k/ admissible. The identification just described is
used in what follows to label the generators for the cSWF homology complex in degrees
k and greater as defined by the solutions to the r 0 and gD e�C q version of (2–4) by
the elements of the set of gauge equivalence classes of solutions to the r and � version
of (2–5) with degree k or greater. This labeling is deemed the canonical labeling.

Where appropriate, and unless directed otherwise, the canonical labeling should be
assumed in the ensuing discussion.

It is not likely that any one � 2� will be such that for all r > rk , the r and � version
of (2–5) has only nondegenerate solutions in degrees k or greater. The next proposition
says, among other things, that the failure here can be assumed to occur for a discrete
set of r 2 .rk ;1/.

Proposition 3.11 Fix k 2 Z, and there is a residual subset in � with C 3 norm less
than 1 and with the following properties: Let � denote a form from this subset. There is
a locally finite set f�j g � .rk ;1/ with �1 < �2 < � � � such that if r > rk and r … f�j g,
then the following holds.
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(1) Each solution with degree k or greater to the r and � version of (2–5) is
nondegenerate.

(2) Define a using the r and gD e� version of (2–9). If c and c0 are solutions with
degree k or greater to the r and � version of (2–5) that are not gauge equivalent,
then a.c/¤ a.c0/.

This proposition is proved in Section 7.2.

Proposition 3.11 motivates the following terminology: Let k and � be as in this
proposition. Suppose that q 2 P has small norm. Say that .�; q/ is strongly .r; k/–
admissible for a given r … f�j g when .�; q/ is .r; k/–admissible, when q is in the
ball of radius " as described in Proposition 3.5, thus in the domain of the various maps
c.�/ from Proposition 3.5; and when the following is true: Let c and c0 denote solutions
to the r and � version of (2–5) with degree k or greater and such that a.c/ > a.c0/

when a is defined via (2–9) using r and gD e� . Then a.c/ > a.c0/ when a is defined
via (2–9) by gD e�C q.

Let k and � be as in Proposition 3.11. As r varies in some .�j ; �jC1/, the generators
of the cSWF complex as defined for any strongly .r; k/ admissible .�; q/ in degrees
greater than or equal to k are labeled in an r and q–independent manner as follows:
Fix a degree n � k . The generators of the r and q version of the cSWF complex
are labeled as fc�g�D1;2;::: so that a.c�/ > a.c�C1/ where a can be either the r and
gD e�Cq version of (2–9) and c� is represented by a solution to the r and gD e�Cq

version of (2–4), or, equivalently, a is the r and g D e� version of (2–9) and c� is
represented by a solution to the r and � version of (2–5). If not stated to the contrary,
this labeling of a basis for the cSWF complex in degrees k and greater is implicit in
what follows. The basis labeled in this way is called the canonical basis.

Even with a canonical labeling of the generators, there may not be an r –independent
choice for the representatives of a given homology class as r varies in a given interval
.�j ; �jC1/. This is because the differential still requires the choice of an appropriate,
small normed element q 2 P for any given value of r so that .�; q/ is strongly .r; k/–
admissible. The next proposition describes how the representative of a given class can
change as r varies.

Proposition 3.12 Let k and � be as in Proposition 3.11. Fix �j 2 .rk ;1/ from the
set described in Proposition 3.11. There exists a possibly empty, but contiguous set
J.i/ � Z, and a corresponding sequence ftmgm2J.i/ 2 .�i ; �iC1/ with the following
properties:

� The sequence is increasing, and it has no accumulation points in the open interval.
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� For any given m 2 J.i/, there exists qm 2 P of small norm such that .�; qm/

is strongly .r; k/ admissible for all r 2 Œtm; tmC1�. As a consequence, the
differential of the cSWF complex in degrees greater than k can be assumed to be
independent of r as r varies in Œtm; tmC1�. This differential is denoted by ım .

� Let m 2 J.i/. In each degree greater than equal to k , there is an upper triangular,
integer valued matrix, A , with 1 on the diagonal such that ım D A�1ım�1A .
Here, both ım and ım�1 are written with respect to the canonical basis.

To orient the reader who is familiar with Morse/Cerf theory in finite dimensions, the
change induced by the matrix A is the analog of a handle slide. This proposition is
proved in Section 7.3.

Fix �i 2 f�j g, and let ftngn2J.i/ be as described by Proposition 3.12. Let tm 2 ftng.
According to Proposition 3.12, the cSWF complex in degrees greater than k have an
r –independent definition as long as r varies in Œtm; tmC1/. This definition is used,
often implicitly, in what follows when reference is made to the “cSWF complex” or to
a particular “cSWF homology class” as defined for r 2 Œtm; tmC1/. The isomorphisms
that are supplied by Proposition 3.12 for any given tm 2 ftng are used now to extend
these notions so as to be able to talk about a particular cSWF homology class for values
of r in .�i ; �iC1/. The following makes this precise:

Definition 3.13 Let k and � be as in Proposition 3.12. Suppose that �i 2 f�j g. A
class � in degree greater than k for the cSWF complex as defined for the interval
.�i ; �iC1/ is, first of all, represented in any given Œtm; tmC1/ for m 2 J.i/ by a ım
closed cycle. However, if this closed cycle for Œtm�1; tm/ has the form

P
� z�c� , then

it is represented in Œtm; tmC1/ by the cycle
P
�;�0 z�.A

�1/�;�0c�0 where A is the upper
triangular matrix that is supplied for tm by Proposition 3.12.

The identifications given in this definition are used, sometimes implicitly, to talk about
a cSWF homology class defined for the interval .�i ; �iC1/.

The next subsection provides what is necessary to describe an isomorphism between
the cSWF homologies in degrees greater than k as defined on intervals .�i�1; �i/ and
on .�i ; �iC1/. An actual isomorphism is described in Section 3.5.

3.4 Identifying homology for distinct values of r : Part II

Fix an integer k , and a form � as described in Proposition 3.11. Let f�j g � .rk ;1/

denote the set that is described in this proposition, and fix �i 2 f�j g. The purpose of
this subsection and the next is to relate the cSWF homology in degrees greater than k
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as r crosses �i . Here is a preview of what is in store: The strategy is to consider a
path of perturbations where the changes to the Floer differential occur at discrete times
along the path and such that each change is one of a handful of standard operations.
Each operation has its finite dimensional Cerf theory analogy, and the latter are as
follows:

(3–4)

� The disappearance or appearance of a pair of flow lines between a pair
of critical points that contribute with opposing signs to the differential.

� A handle slide.
� Two critical points on the same level set.
� The cancellation of a single pair of critical points.

To set the stage, fix r� 2 .�i�1; �i/ and rC 2 .�i ; �iC1/. Let m 2 J.i � 1/ be such
that r� 2 Œtm; tmC1/, and set q� D qm . Let m0 2 J.i/ be such that rC 2 Œtm0 ; tm0C1/

and set qC D qm0 . Given " > 0, and both r� and rC sufficiently close to �i , it can
be assumed that both q� and qC are in the radius " ball about 0 in P . The next task
is to choose a path r ! q.r/ in this ball with certain desired properties. The path is
parameterized by r 2 Œr�; rC�, it obeys q.r�/D q� and q.rC/D qC . If j�i � r�j and
j�i � rCj are sufficiently small, the path can be chosen to have the five properties listed
next. Section 7.4 describes how to find a path with these properties.

Property 1 Let g.r/ D e� C q.r/, and let ag.r/ denote the action functional as
depicted in (2–9) using the function g.r/. For any r 2 .r�; rC/, the value of ag.r/ on
any solution to the r and g.r/ version of (2–4) is within "2 of the value of the gD e�
version of a on some solution to the r D �i and � version of (2–5). Moreover, there
is a finite, increasing subset fyng � .r�; rC/ such that all solutions to the r and g.r/

version of (2–4) are nondegenerate when r … fyng and such that the values of ag.r/

distinguish the gauge equivalence classes of solutions to the r and g.r/ version of
(2–4).

Property 2 Let I � Œr�; rC�� fyng denote a component. There is a consecutively
labeled, increasing set, fwngn2K.I / , in the interior I that is finite or countable, but
with no accumulation points in I . For each m 2 K.I/, there exists a perturbation
pm 2 P of very small norm such that .�; q.r/C pm/ is .k; r/–admissible at each
r 2 Œwm; wmC1�. Also, pm is such that the gauge equivalence classes of solutions to
the r and g.r;m/D e�C q.r/C pm version of (2–4) with degree k or greater are in
1-1 correspondence with those of the r and g.r/ version of (2–4) with degree k or
greater for all r 2 Œtm; tmC1�. This equivalence is given by the maps in Lemma 3.2
and it is such that the value of ag.r;m/ on a given equivalence class of r and g.r;m/

solutions to (2–4) is very much closer to the value of ag.r/ on its partner equivalence
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class of r and g.r/ solutions to (2–4) then it is to the value of ag.r/ on any other r and
g.r/ equivalence class. In particular, the ordering of the r and g.r/ solutions given by
the values ag.r/ is the same as that defined by ag.r;m/ via the equivalence.

Fix I � Œr�; rC��fyng and m 2 K.I/. The cSWF homology in degrees greater than
k can be defined for r 2 Œwm; wmC1� by using the r and g.r;m/ versions of (2–4)
and (2–11). Note in this regard that the vector space of chains in a given degree can
be identified using Property 2 with a fixed vector space, this defined by the solutions
to the r and g.r/ version of (2–4) and the latter labeled by their ordering using ag.r/ .
Here, the convention is to label the basis so that the larger numbered generators having
smaller values of ag.r/ . This fixed, r –independent basis is called the I –canonical
basis.

Property 3 This next property is summarized by:

Lemma 3.14 Fix an interval I � Œr�; rC�� fyng and wm 2 K.I/. As r varies in
Œwm; wmC1�, the differentials as written for the I –canonical basis of the cSWF complex
in degrees greater than k , and as defined by the r and g.r;m/ version of (2–11)
are independent of r . Moreover, there exists an upper triangular, degree preserving
matrix, AD A.m/ with 1’s on the diagonal such that the differential, ım�1 defined on
Œwm�1; wm� and the differential ım defined on Œwm; wmC1� are related, when written
using the I –canonical basis, by the rule ım D A�1ımA .

This lemma is proved in Section 7.4. The behavior that is described here corresponds
to the first two items that appear in (3–4).

Property 4 This property addresses behavior of the solutions to the r and g.r/ version
of (2–4) at any given y 2 fyng. In this regard, one and only one of the following two
assertions is relevant:

(1) All solutions to the r Dy and g.y/ version of (2–4) with degree k or greater are
nondegenerate, and there is precisely one pair of distinct, gauge inequivalence
classes of solutions to the r D y and g.y/ version of (2–4) that are not distin-
guished by ag.y/ . In addition, if c is a solution to the r D y� and g.y�/ version
of (2–4), then there is a smooth map, c.�/ W Œy�;yC� ! Conn.E/ � C1.S/

such that c.y�/D c and c.r/ solves the r and g.r/ version of (2–4) for each
r 2 Œy�;yC�.

(2) The function ag.y/ distinguishes the gauge equivalence classes of solution to the
r D y and g.y/ version of (2–4). Meanwhile all but one gauge equivalent class
of solution with degree k or greater to the r D y and g.y/ version of (2–4) has
nondegenerate solutions. In addition:
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(a) The operator L for any solution in the one anomalous gauge equivalence
class has kernel dimension 1.

(b) The number of gauge equivalence classes of degree k or greater solutions
to the r and g.r/ version of (2–4) changes by two as r crosses y , and the
number of gauge equivalence classes of such solutions at r D y differs by 1
from the number on either side of y .

(c) Let I 2 fI�; ICg denote the component with the greater number of equiva-
lence classes. Then there are respective representatives, c.r/ and c0.r/, of
distinct equivalence classes of solutions to the r and g.r/ version of (2–4)
that vary smoothly with r 2 I and converge in Conn.E/�C1.S/ as r! y

to the one anomalous r D y equivalence class. Also, these classes are such
that �.c; c0/D 1.

(d) Let n denote a solution to the r D y and g.y/ version of (2–4) that is
not gauge equivalent to the one anomalous gauge equivalence class. Then
there is a smooth map n.�/W I�[fyg[ IC! Conn.E/�C1.S/ such that
n.y/D n, and such that n.r/ is a solution to the r and g.r/ version of (2–4)
for all r 2 I�[fyg[ IC .

Property 5 What follows describes how the generators of the cSWF homology in
degrees greater than k change as r crosses a given y 2 fyng. The story here is told
in three parts. To set the stage, let I� and IC denote the respective components of
Œr�; rC�� fyng that immediately precede and follow y . Fix y� 2 I� and yC 2 IC
and define the respective I� and IC versions of the cSWF complex and homology in
degrees greater than k using these two points. This is to say that y� is in some I�
version of Œwm; wmC1�, and use the corresponding r D y� and g.r;m/ to define the
cSWF cohomology in degrees greater than k using these points. Use the analogous
construction for yC .

Part 1 Assume here Property 4 (1) is relevant for y . Use the maps c.�/ to extend the
IC–canonical basis as defined at yC to give a new basis for the cSWF complex at y� .
Let c and c0 denote the two generators that are not distinguished by ag.y/ . If c and
c0 have different degrees, then this new basis at y� is the same as the I�–canonical
basis. If c and c0 have the same degree, make the convention that c.yC/ D c� and
c0.yC/ D c�C1 where c� and c�C1 are IC–canonical basis elements at yC . With
respect to the I�–canonical basis at y� , either c.y�/D c� and c0.y�/D c�C1 , or else
c.y�/D c�C1 and c0.y�/D c� . If the labelings do not change, then the respective I�
and IC canonical basis for the cSWF complexes as defined at y� and yC agree. If
these canonical basis agree, either for this reason, or because c and c0 have distinct
degrees, then the differential, ı� , at y� is related to the differential, ıC , defined at yC
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as follows: ıC D A�1ı�A , where A is a degree preserving, upper triangular matrix
with 1’s on the diagonal.

Suppose now that c and c0 have the same degree and the labelings change as r crosses
y . Let d denote the degree of c and c0 . In this case, the differentials are again related
by ıC D A�1ı�A , where A is a degree preserving matrix of the following sort: In
degrees not equal to d , the matrix A is upper triangular with 1’s on the diagonal. In
degree d ,

An;n D AnC1;nC1 D 0 and An;nC1 D AnC1;n D 1:

A�;� D 1 if � ¤ n or nC 1:

A�;�0 D 0 if � > �0 and .�; �0/¤ .nC 1; n/:

(3–5)

Part 2 Assume here that Property 4 (2) describes the situation and that I D I� . Let c

and c0 denote respective representatives of the two equivalence classes that are defined
at y� and do not extend across y ; and let dC1 and d denote their respective degrees.
The maps that are supplied by Property 4 (2)(d) are used in what follows to identify
the remaining generators for the I�–canonical basis at y� with the generators of the
IC–canonical basis at yC . This identifies the full I�–canonical basis at y� with the
full IC–canonical basis at yC in degrees different from d and d C 1, and does so as
the identity map. In degree d C 1, the canonical basis at yC is obtained from that at
y� by deleting the generator c; and in degree d , the change is deletion of the generator
c0 . Note that this identification preserves the ordering given by the value of ag.r/ . Let
VC denote the vector space of chains as defined for yC . What with the identifications
just made, the vector space of chains for y� is then Zc˚Zc0˚VC . Let ıC denote
the cSWF differential on VC and let ı� denote that on Zc˚Zc0˚VC .

Lemma 3.15 There is a degree preserving homomorphism, TW Zc˚Zc0˚VC! VC

with the following properties:

� Tı� D ıCT .

� T induces an isomorphism on homology.

� T maps VC to itself as an upper triangular matrix with 1’s on the diagonal.

� The value of ag.y/ on any generator that appears in Tc is less than ag.y/.c/.

� The value of ag.y/ on any generator that appears in Tc0 is less than ag.y/.c
0/.

This lemma is proved in Section 7.4. What follows states a key implication.
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Lemma 3.16 Let u2VC denote the class such that TuDTc and let v2VC denote the
class such that TvD Tc0 . Then there exists A 2 f˙1g such that ı�.c� u/DA.c0� v/.
As a consequence, there exists n 2 VC of degree d with ag.y/.�/ < ag.y/.c/ on the
generators that appear in n, and such that ı�cDAc0C n.

Proof of Lemma 3.16 Let v 2 VC be the class with degree d such that Tv D Tc0 .
Note that ag.y/.�/ < ag.y/.c

0/ on all generators that appear in v. The first three bullets
in Lemma 3.15 imply that ı�.c0�v/D 0. Since T.c0�v/D 0, the class c0�v must be
exact so as not to run afoul of the second bullet in the lemma. Thus, c0�vD ı�.wCkc/

with w 2 VC and k 2 Z. Now let u 2 VC denote the class in degree d C 1 with
TuD Tc. Note that a.�/� a.c/ on all generators that appear in u. The first bullet of
Lemma 3.14 demands that ıCT.wC kc/D 0 where w 2 VC and k 2 Z. The second
bullet of the lemma then requires that T.wC kc/ D ıCT.o/ with o a degree d C 2

class. Another appeal to the first bullet finds that ı�oDwC kcCA.u� c/ for some
A 2 Z. Thus, Aı�.c� u/D c0� v. Since c0 is a generator, jAj D 1; and thus this last
equation can be rewritten as ı�c D Ac0C n where n D ı�u�Av. The fact that ı�
decreases a implies that ag.y/.�/ < ag.y/.c/ on all generators that appear in n.

Part 3 Suppose that Property 4 (2) describes the situation, but assume now that
I D IC . Let c and c0 denote respective representatives of the two equivalence classes
that do not extend across y and let d C 1 and d denote their respective degrees. Use
the maps supplied by Property 4 (2)(d) to identify the remaining generators for the
IC–canonical basis at yC with the generators of the I�–canonical basis at y� . As
before, this identification preserves the ordering given by the value of ag.y/ . Let V�

denote the vector space of chains as defined at y� . With the preceding identification
understood, the vector space of chains at yC is Zc˚ Zc0˚V� . Let ı� denote the
cSWF differential on V� and let ıC denote cSWF differential on Zc˚Zc0˚V� .

The lemma that follows describes what can be said in this case.

Lemma 3.17 There is a degree preserving homomorphism TW V�! Zc˚Zc0˚V�

with the following properties:

� Tı� D ıCT .
� T induces an isomorphism on homology.
� T is upper triangular with ones on the diagonal in degrees different from d C 1

and d .
� If u has degree d C 1, then Tu D AuC kuc where AW VC! VC is an upper

triangular matrix with 1’s on the diagonal. Here, ku D 0 for a generator u if
ag.y/.u/ < ag.y/.c/.
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� If v has degree d , then Tv D Av C kvc
0 where AW VC ! VC is an upper

triangular matrix with 1’s on the diagonal. Here, kv D 0 for a generator v if
ag.y/.v/ < ag.y/.c/.

This lemma is also proved in Section 7.4.

3.5 Identifying homology for distinct values of r : Part III

Fix an integer k , and a form � as described in Proposition 3.11. Let f�j g � .rk ;1/

denote the set that is described in this proposition, and fix �i 2f�j g. The purpose of this
subsection is to complete the story started in the previous subsection by describing some
explicit isomorphisms that relate the respective cSWF homology groups in degrees k
or less for .�i�1; �i/ and .�i ; �iC1/.

For this purpose, pick " > 0 but very small, and then pick r� 2 .�i�1; �i/ and rC 2

.�i ; �iC1/, both very close to �i as described at the start of Section 3.4. Fix r ! q.r/

for r 2 Œr�; rC� to be the path in P as described in Section 3.4. Let fyng be as described
in Property 1 of Section 3.4. Lemma 3.14 identifies the various cSWF complexes and
their differentials as r varies in any given component of Œr�; rC� � fyng. Use the
constructions from Property 5 and Lemma 3.15 and Lemma 3.17 to identify the cSWF
homology in consecutive intervals of Œr�; rC��fyng. Compose these homomorphism
to obtain a homomorphism, U, between the cSWF homology defined for r� with that
defined for rC . Note that U depends on the choice of the path q.�/, and on the data
from Property 2 and Property 5 as well. A choice for U is described in the next section.

4 Max=min and estimates for a; E and cs

This section studies the r -dependence of the values taken by the functionals a, E and
cs on cycles that represent cSWF homology classes.

4.1 Continuity with respect to r of the functional a

As is indicated by Proposition 3.12 and Lemma 3.14, Lemma 3.15 and Lemma 3.17,
a given cSWF homology class may not admit r dependent choices for its cycle rep-
resentative that vary with r in a continuous fashion. Even so, it is possible to assign
to such a class a continuous function that is defined up to any given large value of r ,
and whose value at all but a discrete set of r is the value of a on some generator in
a representing cycle. Here and in the remainder of this section, the functional a is
defined using gD e� in (2–9). The definition that follows describes how this is done.
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Definition 4.1 Fix an integer k , and a form � as described in Proposition 3.11.
Let f�j g � .rk ;1/ be as described in this same proposition, and fix �i 2 f�j g. Let
ftngn2J.i/ be as described in Proposition 3.12. Fix tm 2 ftngn2J.i/ and introduce the
perturbation qm from Proposition 3.12. Given r 2 Œtm; tmC1/, use r and the perturbation
gD e�C qm to define the cSWF complex in degrees k and greater. Use the canonical
labeling from Definition 3.10 to identify the generators with the solutions to the r and
� version of (2–5). Let � denote a nonzero class with degree greater than k in the
resulting cSWF homology. Suppose that nD

P
� z�c� is a cycle defined for the given

value of r and � that represents the class � . Define ya.n; r/ to be the maximum value
of a on the set of gauge equivalence classes of solutions to the r and � version of
(2–5) that appear in the sum for n. Then define a� .r/ to be the minimum over all such
n of the values of ya.n; r/.

The r –dependence of a� has a crucial role in this story. The next proposition addresses
this issue.

Proposition 4.2 Fix k and � as in Definition 4.1. Let �i 2 f�j gj�1 . Use Definition
3.13 to identify the cSWF complexes as defined by Proposition 3.12’s perturbations
fqmgm2J.i/ on the components of .�i ; �iC1/ � ftngn2J.i/ . With this identification
understood, let � denote a cSWF homology class in degree greater than k . Then
the function r ! a� .r/ as described above for r 2 .�i ; �iC1/� ftngn2J.i/ defines a
continuous and piecewise differentiable function on .�i ; �iC1/. Moreover, for each
index i , there is an isomorphism between the respective cSWF homologies in degree
greater k as defined for .�i�1; �i/ and .�i ; �iC1/ such that with these isomorphisms
understood, the following is true: Fix a cSWF homology class � with degree greater
than k . Then the function r ! a� .r/ defines a continuous and piecewise differentiable
function on .rk ;1/.

Proof of Proposition 4.2 Consider first the behavior in an interval .tm; tmC1/ �

.�i ; �iC1/. The first point is that a� .�/ varies smoothly since the generators of the
cSWF complex and the differential do not change with r in such an interval. The second
point is that a� .�/ has a unique limit from above and also from below as r approaches
any given tm . This follows from Proposition 2.5. Consider next the behavior as r

crosses a given tm . Let nD
P
� z�c� represent � for r 2 .tm�1; tm/. Let A denote the

matrix supplied by Definition 3.13. The matrix A�1 acts so as to add to any given c�
only multiples of generators on which a has value less than a.c�/. As a consequence,
ya.A�1n; r/D ya.n; r/; and so a� is continuous at tm . This proves that a� extends as a
continuous and piecewise differentiable on the whole of any .�i ; �iC1/.

Consider now the behavior of a� when r crosses �i 2 f�j g. In this regard, note first
that a� .�/ has a unique limit from above and a unique limit from below as r approaches
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�i . Again, this follows from Proposition 2.5. Granted that such is the case, the next
task is to identify the respective cSWF homologies for r just less than �i and for r just
greater than �i . For this purpose, return to the milieu of Section 3.4 and its notation.
Fix " > 0 but very small, and pick r� 2 .�i�1; �i/ and rC 2 .�i ; �iC1/, both very
close to �i as described at the start of Section 3.4. Fix r ! q.r/ for r 2 Œr�; rC� to be
a path in P as described in Section 3.4. Fix a component I � Œr�; rC��fymg, and let
fwngm2K.I / � I be as described in Property 2 of Section 3.4. For r 2 Œwm; wmC1/,
use g.r/D e�C q.r/C pm to define the cSWF complex in degrees k and greater. As
indicated in Lemma 3.14, the respective cSWF complexes and differentials as defined
for different values of r in any given fixed interval of I�fwng do not vary with r when
the canonical basis is used. Meanwhile, Parts 1, 2, and 3 from Property 5 of Section 3.4
with (3–5) and Lemma 3.15 and Lemma 3.17 provide homomorphisms between the
cSWF complexes that are defined in contiguous components of Œr�; rC��fymg, and
that descend as isomorphisms to the respective homology groups. The composition of
consecutive isomorphisms gives an isomorphism between the cSWF homology defined
for any component of Œr�; rC��fymg, These isomorphisms are used implicitly in what
follows.

With the preceding understood, for each component I 2 Œr�; rC��fymg and then each
r 2 I �fwng, define the function r ! ag.r/;� using the prescription in Definition 4.1
with ag.r/ replacing a. As is explained next, Proposition 4.2 follows from the next
lemma.

Lemma 4.3 If " > 0 is small, then the function r ! ag.r/;� defines a continuous,
piecewise differentiable function on Œr�; rC�. Moreover, its total change between r�
and rC is less than ".

To see why this lemma implies the proposition, choose three sequences: a decreasing
sequence f"pgpD1;2;::: with limp!1 "pD0, an increasing sequence frp�g� .�i�1; �i/

with limit �i , and a decreasing sequence frpCg � .�i ; �iC1/ with limit �i for use in
Section 3.4. For each p , let Up denote the resulting isomorphism from the rp� version
of the cSWF homology in a given degree greater than k to its analog at rpC as described
in Section 3.5. Compose the latter with the isomorphisms given by Proposition 3.12 for
the intervals Œr1�; rp�� and ŒrpC; r1C� to obtain an isomorphism, Wp , from the cSWF
homology as defined at r1� to that defined at r1C . As

(4–1)
ˇ̌
a� .rp�/� aUp� .rpC/

ˇ̌
� "p;

the proposition’s claims about continuity as r crosses �i follow provided that the
sequence fWpg can be suitably modified so as to have a limit as p !1. To see
that such is the case, define a partial ordering on the cSWF classes as defined for
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r 2 .�i ; �iC1/ as follows: Say that � � � 0 when the r ! �i limit of the function a� .�/

is no less than that of a� 0.�/. It follows from (4–1) that if p and p0 are both sufficiently
large, then Up D AUp0 where A is an isomorphism that preserves this ordering. Note
that isomorphisms with this property form a subgroup of the group of degree preserving
isomorphisms of the cSWF homology. This understood, the sequence fUpg can be
modified by composing with such isomorphisms so as to be constant for p sufficiently
large. After this modification, the resulting, now modified version of the sequence
fWpg converges, and it has the properties claimed by Proposition 4.2.

Subsequent to the writing of this article, Michael Hutchings pointed the author to an
article by Matthias Schwarz [22] that considers something analogous to a� .�/ in the
context of Floer homology of symplectomorphisms and proves an analogous continuity
theorem. The author also recently learned of Oh’s article [20] which contains similar
constructions.

Proof of Lemma 4.3 Suppose that I is a component of Œr�; rC��fymg. As noted by
Lemma 3.14, when using the canonical basis, the following is true: As r varies in any
interval of I �fwng, neither the generators nor the differentials change for the version
of the cSWF complex in degrees k or greater as defined by r and the g.r/D e�Cq.r/

versions of (2–4) and (2–11). This being the case, ag.�/;� defines a smooth function on
any interval of I � fwng. Proposition 2.5 guarantees that this function has a unique
limit as r ! w 2 fwng from above, and also a unique limit as r ! w from below.

Consider now what happens as r crosses a given w from fwng. Lemma 3.14 guarantees
that ag.�/;� is continuous across w because an upper triangular isomorphism doesn’t
change the value of this function.

Consider next the behavior as r crosses a given y 2 fymg. Suppose that Property 4 (1)
is relevant at y . Since the isomorphism that is described in Part 1 of Property 5 of
Section 3.4 acts either as an upper triangular matrix, or a matrix that switches two
generators on which ag.�/ agree but is otherwise upper triangular, it follows that ag.�/;�

is continuous across y .

Finally, consider what happens in the case when Property 4 (2) is relevant for the given
y 2 fymg. Suppose first that the situation is that described in Part 2 of Section 3.4.
Return to the notation used in Part 2. If a class � has degree different from either d or
d C 1, then it follows from the fact that Lemma 3.15’s matrix T is upper triangular
that ag.�/;� is continuous across y .

Suppose that � has degree d , and is represented by for r just less than y by the cycle
� D Bc0Cw where w 2 VC and B 2 Z. If B D 0, then T acts on v as an upper
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triangular matrix and so the limiting value yag.r/.�; r/ on � as r! y from below is the
same as the limiting value as r ! y from above of this function on T� . In the case
where B ¤ 0, there are two cases to consider. Either the r < y version of yag.r/.�; r/

is greater than all generators in v or not. If not, then it follows from the third and fifth
bullets in Lemma 3.15 that the limiting value yag.r/. � ; r/ on � as r ! y from below
is the same as the limiting value as r ! y from above of this function on T� . If so,
then it follows from Lemma 3.16 that �0 D BvCw represents � also, and that the
r < y version of yag.r/. � ; r/ on � ’ is less than on � . This then implies that ag.�/;� is
continuous across y using the following two facts: First, �0 2 VC and T acts on VC

as an upper triangular matrix. Second, T� D T�0 .

Finally, suppose that � has degree d C 1 and is represented by � D BcCw where
w 2 VC . If B D 0, then � 2 VC and the continuity of ag.�/;� across y again follows
from the fact that T is upper triangular on VC . On the other hand, suppose that B ¤ 0.
It then follows from Lemma 3.16 that ı�wD�B.Ac0C n/, and since ı� decreases
the value of ag.r/ , it must be the case that the value of the r < y version of yag.r/. � ; r/

on � is that of ag.r/ on a generator in w, and hence in VC . This then implies the
continuity of ag.�/;� as r crosses y using the third and fourth bullets in Lemma 3.15.

Now consider the case where Property 4 (2) is relevant for y 2 fymg and the situation
is as described in Part 3 in Property 5 of Section 3.4. As before, there is no change
in ag.r/;� as r crosses y if the degree of � differs from either d or d C 1. This is
because T acts in these degrees as an upper triangular matrix. There is also no change
when � has degree d or d C 1 because in these degrees, T acts on a given generator
w 2 VC so as to give w C� , where � is a sum of generators of Zc˚Zc0˚VC on
which ag.r/ is less than ag.r/.w/.

The fact that the total change in ag.�/;� is bounded by " follows from the preceding
given Property 1 from Section 3.4.

The isomorphisms provided by Proposition 4.2 are used now implicitly in the discussion
that follows when reference is made to a particular cSWF homology class. This
understood, let � denote a cSWF homology class. The function a� is used next to
define three more functions.

Definition 4.4 Fix an integer k , and let � be as described by Proposition 3.11. Let
f�j g� .rk ;1/ be as described in this same proposition. Let � denote a nonzero cSWF
homology class of degree greater than k . Fix �i 2 f�j g and r 2 .�i ; �iC1/�ftngn2J.i/ .
Suppose that n D

P
� z�c� is a cycle defined for the given value of r and � that

represents the class � and is such that ya.n; r/D a� .r/. Let yE.r; n/ denote the infimum
of the values of E on the configurations c 2 fc�g that appear in the sum for n and have
a.c/D a� .r/. Then, define
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� yE.r/ to be the infimum of the set fyE.n; r/g over all such n,
� v.r/D 2a� .r/C r yE.r/,
� f.r/D�2r�1a� .r/D yE.r/� r�1v.r/.

Note that v.r/ is the value of cs.�/ C 2e�.�/ on some degree k generator c with
a.c/ D a� .r/ and E.c/ D yE.r/. Here, e� is defined as in (2–12). Although f is a
continuous function of r , neither v nor yE need be continuous.

The next definition is motivated directly by the appearance of the energy function E in
the statement of Theorem 2.1.

Definition 4.5 Fix an integer k and let � be as described by Proposition 3.11. Let
� denote a nontrivial, cSWF homology class in degree greater than k . The class �
is said to be a divergence class when the conditions that are stated next hold. Given
E > 0, there exists �E � 0 with the following significance: Use the form � to define
the function yE . Then yE.r/ > E when r > �E .

What follows is the key observation about divergence classes.

Proposition 4.6 Fix an integer k and let � be as described by Proposition 3.11.
Suppose that � is a divergence class of degree greater than k in the cSWF homology.
The class � determines positive constants c and r� with the following significance: Fix
r 0 > r� , and there exists r > r 0 such that v.r/ > 1

10
r yE.r/ and yE.r/ > cr .

The next subsection contains the proof of Proposition 4.6. Here is a key corollary:

Corollary 4.7 Fix an integer k and let � be as described by Proposition 3.11. Suppose
that � is a divergence class of degree greater than k in the cSWF homology. The class
� determines a constant, c > 0, with the following significance: Fix r 0 > r� , and there
exists r > r 0 and a solution, .A;  /, to the version of (2–5) determined by r and �
that has the same degree as � and is such that cs.A/ > 1

16
r E.A/ and E.A/ > cr .

Proof of Corollary 4.7 Let r be as in Proposition 4.6. By definition, there exists a
solution cD .A;  / to (2–5) with � ’s degree, and with a.c/D a� .r/ and E.A/D yE.r/.
Thus, v.r/D cs.A/C 2e�.A/. Meanwhile, je�.A/j � �E.A/ where � is independent
of r and �. This follows from Lemma 2.2, for this lemma implies that

(4–2)
Z

M

jBAj � �.E.A/C 1/;

where � is independent of r and �. As a consequence, cs.A/� 1
10
.r � �/E.A/� � .

Because � is a divergence class, this is larger than 1
16

r E.A/ if r� is not too small.
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4.2 Proof of Proposition 4.6

The proof starts with a digression to derive some preliminary facts. With k fixed and �
as in Proposition 3.11, let f�j g � .rk ;1/ denote the set specified by Proposition 3.11.
Fix j and let ftmgm2J � .�j ; �jC1/ be as described in Proposition 3.12. Let I denote
a given component of the complement in .�j ; �jC1/ of ftmgm2J . Let r ! c.r/ denote
a path of solutions to the r and � version of (2–5) defined for r 2 I as described in
Lemma 3.9. It then follows that

(4–3)
d

dr
ED r�1 d

dr
.csC 2e�/:

To see why (4–3) holds, view the tangent vector to this path at a given value of r as a
section of iT �M ˚S. Write this vector as .b; �/. Then

(4–4)
d

dr
csD�2

Z
M

b ^�BA;

and this is equal to

(4–5) �2r

Z
M

 | cl.b/ C 2ri

Z
M

b ^�a� 2

Z
M

b ^ d�:

Note next that the left most integral in (4–5) vanishes since  is L2 –orthogonal to the
image of DA while cl.b/ D�DA� . Meanwhile, the middle term on the right hand
side of (4–4) is r d

dr
E as can be seen with the help of an integration by parts and an

application of the identity daD 2� a. Finally, the right most term in �2 d
dr

e� .

Equations (4–3) and (2–10) imply that

(4–6)
d

dr
aD�1

2
E

at all points in I . What follows is a consequence of (4–6).

Lemma 4.8 Fix an integer k and let � be as described by Proposition 3.11. Suppose
that � is a divergence class of degree greater than k in the cSWF homology. There
exists r� > rk with following significance: The corresponding function a� is less than
�r and monotonically decreasing where r > r� .

Proof of Lemma 4.8 Fix E � 1 and let �E be as described in Definition 4.5. It
follows from (2–7) and Lemma 2.2 and Lemma 2.4 that there exists a constant cE that
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is independent of � and is such that a.c/ < cE for all solutions c to the r D �E and �
version of (2–5). Because a� is continuous, it follows from this last fact and (4–6) that

(4–7) a� .r/� �

rZ
�E

yE.s/ dsC cE � �r EC .cEC �EE/:

This last equation proves the first assertion. The second follows directly from (4–6)
given that a� is piecewise differentiable and yE.r/ is positive for r � �E .

Lemma 4.8 implies that the function f is positive and r f.r/ is increasing for r � r� .
Moreover, it follows from (4–3) and (2–10) that if Œx0;x�� Œrk C 1;1/, then

(4–8) f.x/D

xZ
x0

s�2v.s/ dsC f.x0/:

This equation ends the preliminary digression.

To get on with the proof of the proposition, note first that if v.r/ � 1
10

r yE.r/, then
yE.r/� cr where c is a constant that is independent of r and � if r � 1. To see why
suppose that .A;  / is a solution to (2–5) with r � 1 and E.A/� 1. It then follows
from Lemma 2.4 and (4–2) that

(4–9) cs.A/� �r2=3E.A/4=3;

where � is a constant that is independent of r , �, and the pair .A;  /. Now, suppose
that cs.A/C 2e�.A/ >

1
10

r E.A/. As noted in the proof of Corollary 4.7, the value
of � can be taken such that je�.A/j � �E.A/. As a consequence of these last two
inequalities, (4–9) implies that

(4–10) 1
10

r E.A/� �0r2=3E.A/4=3;

where �0 is also independent of r , � and .A;  /. This last inequality can hold only
when E.A/� .6�0/�3r .

Granted the point made in the previous paragraph, suppose that the assertion of the
proposition is false. If this is the case, then there exists r 0 such that v.r/� "r yE.r/ for
all r 2 Œr 0;1/ with "� 1

10
. In this case, the integrand for the integral in (4–8) is no

larger than 2"s�2.sf.s//. Indeed, this inequality holds where v.s/ < 0 since f.s/ is
positive. Meanwhile, where v.s/ is nonnegative, then v� "syE � 2".syE� v/ which is
just 2"sf.s/. Now, let xm D 2mr 0 . Since sf.s/ is an increasing function of s , (4–8)
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implies that

(4–11) f.xmC1/� 2"f.xmC1/xmC1

xmC1Z
xm

s�2 dsC f.xm/:

This then implies that f.xmC1/� .1� 2"/�1f.xm/. Iterating this finds

(4–12) f.xm/� .1� 2"/�mf.r 0/:

Save this for the moment.

Note next that (4–2) and (4–9) imply that there exists � � 1 that is independent of r

and � such that

(4–13) jv.r/j � �r2=3yE.r/4=3 � 16�r2=3f.r/4=3:

This with (4–8) implies that

(4–14) f.xmC1/� 16�

xmC1Z
xm

s�2
�
s

2=3
f.s/4=3

�
dsC f.xm/:

Using the fact that sf.s/ is an increasing function of s , this last inequality leads to

(4–15) f.xmC1/� �
0.f.xmC1/=xmC1/

1=3f.xmC1/C f.xm/;

where �0 is independent of r and �. What with (4–12), the preceding requires that

(4–16) f.xmC1/� �
0.f.r 0/=r 0/1=3.2.1� 2"//�m=3f.xmC1/Cf .xm/:

To proceed from here, note that � � 1
10

and so 2.1� 2"/ � 6
5

. Thus, (4–16) can be
written as

(4–17) f.xmC1/� z�mf.xmC1/C f.xm/;

where �D .5
6
/1=3 < 1 and where zD �0.f.r 0/=r 0/1=3 .

To finish the argument, note that there exists m.r 0/ such that z�m< 1 when m�m.r 0/.
As a consequence, (4–17) finds that

(4–18) f.xmC1/D
Y

m.r 0/�j�m

.1� z�j /�1f.xm.r 0//:

This then implies that there exists c.r 0/ such that

(4–19) f.xm/� c.r 0/ for all m:
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However, there can be no such uniform bound if � is a divergence class and if v.r/�
1

10
r yE.r/ for all r>r 0 . Indeed, the latter condition finds f.xm/DyE.xm/�xm

�1v.xm/�
1
2
yE.xm/; and the divergence class condition requires that yE.xm/ be very large when

xm is very large.

5 Spectral flow estimates

What follows is the principle result of this section:

Proposition 5.1 Given c > 0 there exists a constant � with the following significance:
Suppose that � has C 3 norm less than c . Suppose that r � 1 and that c D .A;  / is a
nondegenerate solution to the r and � version of (2–5). Then the degree of c differs
by less than �r31=16 from � 1

4�2 cs.A/.

Proof of Proposition 5.1 As explained in Section 3, the degree of this solution is
defined in terms of the spectral flow between two versions of (3–1)’s operator L. The
first version is written with the given value of r , the given form �, and the given
solution .A;  /; and the second is written using some other value of r , some other one
form, �0 , and some fiducial pair in Conn.E/�C1.S/. As the degree is defined by
the spectral flow, the proposition is proved by giving an estimate for the spectral flow.
This understood, Proposition 5.1 follows directly from Lemma 5.3 and Proposition 5.5.
The proofs of the latter occupy most of the remaining subsections of Section 5.

5.1 The definition of spectral flow

To define what is meant in this article by spectral flow, suppose that H is a separable
Hilbert space, that L is an unbounded, self-adjoint operator on H such that the operator
L2C 1 has compact inverse. Let s! qs denote a real analytic map from Œ0; 1� into
the space of self-adjoint, bounded operators on H. Let Ls D LC qs . Then each Ls is
self-adjoint. In addition, each Ls has purely discrete spectrum, all eigenvalues are real,
each has finite multiplicity, and there are no accumulation points in R.

The spectral flow for the family fLsgs2Œ0;1� is defined with the help of a certain stratified,
real-analytic set in R� Œ0; 1�. This set is denoted by E , and its stratification is depicted
by

(5–1) E D E1 � E2 � � � � ;

where Ek consists of the set of pairs .�; s/ such that � is an eigenvalue of Ls with
multiplicity k or greater. Each Ek is a closed set.
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It is a now standard result (see, for example, Kato [16, Chapter 7]) that Ek�DEk�EkC1

is an open, real analytic submanifold in R� Œ0; 1�. The collection fEk�g are called
the smooth strata of E . The aforementioned results from [16] imply that when the
1–dimensional smooth strata are oriented by the pullback from R� Œ0; 1� of the 1–form
ds , then the zero dimensional strata can be consistently oriented so that the formal,
weighted sum E� D E1�C 2E2�C � � � defines a locally closed cycle in R� Œ0; 1�. This
means the following: Let f denote a smooth function on R� .0; 1/ with compact
support. Then

(5–2)
X

kD1;2;:::

k

Z
Ek�

df D 0:

Sard’s theorem finds a dense, open set U � R with the property that the respective
maps from a point, �, to R� Œ0; 1� that send � to .�; 0/ and to .�; 1/ are transversal to
the smooth strata of E for all � 2 U. In this language, the spectral flow for the family
fLsgs2Œ0;1� is defined as follows: Fix �0 2 U with �0 > 0. By Sard’s theorem, there
exist smooth, oriented paths 
 � R� Œ0; 1� that start at .�0; 0/, end at .�0; 1/, and
are transversal to the smooth strata of E . Such a path has a well defined intersection
number with E , this being

(5–3) f�0
D

X
kD1;2;:::

X
p2
\Ek�

.�1/o.p/k;

where o.p/2f0; 1g. In the case where 
 is the graph of a smooth function from Œ0; 1� to
R , the sign .�1/o.p/ is obtained as follows: The pullback to a smooth, 1–dimensional
stratum of E of the 1–form d� from R� Œ0; 1� at a point .�; s/ can be written as �0ds

with

(5–4) �0 D
D
&;
� d

ds
qs

�
&
E
H
:

Here, the notation uses & to denote a unit length eigenvalue of Ls whose eigenvalue is
�, and h; iH denotes the inner product on H. The sign of �0 at an intersection point
with the image of a graph is the factor .�1/o.�/ that appears in (5–3).

The fact that qs varies with s in a real analytic fashion implies that f�0
is independent

of �0 if �0 is sufficiently close to 0. This is so when 0 is an eigenvalue of one or both
of L0 and L1 . This noted, the spectral flow for the family is defined to be

(5–5) f D lim
�0!0

f�0
:

This definition readily generalizes to the case where the family of operators has
a continuous and piecewise real analytic parametrization. This is to say that the
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parametrization has the form s! LC qs for values of s in a finite union of closed
intervals, Œ0; s1�[ Œs1; s2�[ � � � [ ŒsN�1; sN � where s! qs is real analytic and of the
form described above on each of these closed intervals.

5.2 Estimating spectral flow

What follows describes the strategy from [25] that is employed here to estimate the
spectral flow for a family fLs DLCqsgs2Œ0;1� . Take x either 1 or positive and finite,
and fix an orientation preserving diffeomorphism ˆW R! .�x;x/ that sends 0 to 0.
In the first application that follows, ˆ is the identity map from R to R. The second
application takes x <1 and thus ˆ more interesting. In any event, fix now T 2 .0;x/

and let S denote the circle that is obtained from the interval Œ�T;T � by identifying the
endpoints. This circle has a fiducial point, T� , that given by f˙T g, and an orientation
given by the orientation of .�T;T /.

Now let � D ˆ�1.T /. For each s 2 Œ0; 1�, let ns denote the maximal number of
linearly independent eigenvectors of Ls whose eigenvalue lies in Œ��; ��. Use n in
what follows to denote the maximum from the set fnsgs2Œ0;1� . An estimate for the
spectral flow for the family fLsgs2Œ0;1� is obtained by considering the trajectories of n

particles on S whose paths vary continuously and piecewise differentiably as functions
of s 2 Œ0; 1�.

To elaborate, introduce E� to denote the set f.�; s/ 2 E W j�j < �g, and for each k ,
use E�k� to denote Ek� \ E� . Each point .�; s/ 2 E�k� corresponds to k particles on
S all at the point ˆ.�/. If E�k� is 1–dimensional, then these k particles all move
together near s , and the common tangent vector to their trajectories is �0. d

d�
ˆ/j� with

�0 as in (5–4). The set of all such trajectories that limit to a given zero-dimensional
stratum, E�k0� as s limits to some s� can be joined at this stratum to obtain a set of k 0

continuous, piecewise smooth, trajectories that are defined for s near s� . This follows
from (5–2). There is no canonical way to do this joining, but any method will suffice.

At any given value of s , what was just described accounts for at most ns of the particles.
The remaining particles are at the point T� 2 S . Particles move off or onto the point
T� at values of s for which either of the points .��; s/ or .�; s/ are in the closure of
E� . The particles that move on or off T� and the direction in S that they move are
determined by which smooth strata of E� have .��; s/ or .�; s/ in their closure. The
rules for this are essentially the same as those given in the preceding paragraph.

Granted the preceding, let s! z.s/ 2 S denote the trajectory of a given particle. Let
�zD z.1/�z.0/, this is the net change in z as s increases from 0 to 1. The intersection
number with the point 02S of this trajectory is, at most, the least integer that is greater
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than 1
2T
�z , thus at most 1

2T
�zC 1. Meanwhile, this intersection number is at least

the greatest integer less than 1
2T
�z , thus at least 1

2T
�z � 1. As a consequence, the

spectral flow for the family fLsgs2Œ0;1� differs by at most n from the integral between
0 and 1 of the function

(5–6) }.s/D
1

2T

X
&

D
&;
� d

ds
qs

�
&
E
H

� d

d�
ˆ
�ˇ̌̌̌
�&

;

where the sum is over a basis of orthonormal eigenvectors of Ls whose eigenvalue
has absolute value no greater than � , and where the notation uses �& to denote the
eigenvalue of the indicated eigenvector.

The estimates derived below for the spectral flow are obtained by deriving suitable
estimates for the function s! }.s/ and upper bounds for the number n.

5.3 An upper bound on n

Considered here is a generic sort of operator, L, on C1.M I iT �M ˚S˚ iIR/ of the
form described next. Fix a connection, A 2 Conn.E/, and a hermitian endomorphism,
‚, of iT �M˚S˚iIR . Write the covariant derivative on iT �M˚S˚iIR as r . This
derivative is defined using the Riemannian connection and the connection A. Assume
that r � 1 and that

(5–7) jBAjC r1=2
j‚jC jr‚j � cr:

The operator L has the form LD LC‚, where L sends a given triple, .b; �; �/ to the
triple whose respective components in iT �M;S and iIR are

� db� d�;

DA�;(5–8)

� d � b:

With L understood, consider:

Proposition 5.2 Fix a constant c and there exists a constant � with the following
significance: Define L as above such that (5–7) holds. Given � � 0, let n.�/ denote the
number of linearly independent eigenvectors of L whose eigenvalue has absolute value
no greater than � . For any R� 0, the number n.Rr1=2/ is bounded by �r3=2.R3C1/.

Proof of Proposition 5.2 The proof that follows uses the heat equation for the operator
L2 . The idea follows a strategy introduced by Cheng and Li [5]. To start the story, let
j D .b; �; �/ 2 C1.M I iT �M ˚S˚ iIR/, and note that L2j has the form

(5–9) L2j Dr|
rj CR1rj CR0j ;

Geometry & Topology, Volume 11 (2007)



2158 Clifford Henry Taubes

where R1 and R0 are endomorphisms with r1=2jR1jC jR0j � cr . Introduce the heat
kernel for L2 ; for each t � 0, this is the bounded operator on L2.iT �M ˚S˚ iIR/

that is given by

(5–10) Et D

X
&

e��&
2t& ˝ &|;

where the sum is over an orthonormal basis of eigenvectors of L2 . It is well known that
Et is trace class for t > 0. Let Tr.Et / denote the trace of Et in L2.iT �M˚S˚iIR/.
Then

(5–11) Tr.Et /D
X
&

e��&
2t
� n.Rr1=2/e�R2rt :

This equation provides an upper bound to n.Rr1=2/.

Standard parametrix techniques (see, for example, Berger, Gauduchon and Mazet [2],
Berline, Getzler and Vergne [3] and Seeley [23]) prove that Et has an integral kernel
that is smooth for t > 0. The value of this kernel at a given .x;y/ 2 M �M is
denoted in what follows by Et .x;y/. In this regard, Et .x;y/ is a homomorphism
from .iT �M ˚S˚ iIR/jy to .iT �M ˚S˚ iIR/jx . With y fixed and .t;x/ allowed
to vary, this homomorphism obeys the equation

(5–12)
@

@t
Et D�L2Et :

with initial condition E0 D Iıy . Here, ıy denotes the delta function measure at y

and I denotes the identity automorphism of .iT �M ˚S˚ iIR/jy . Taking the inner
product of both sides of this with Et .�;y/ finds that the function, f , of t and x given
by f .�/D jEt .�;y/j obeys (in the weak sense) the inequality

(5–13)
@

@t
f � �d|df C crf:

As a consequence, the function hD fe�crt obeys the inequality

(5–14)
@

@t
h� �d|dh:

Note also that h!
p

6ıy as t! 0. A standard application of the comparison principle
for the heat equation (see Berger, Getzler and Mazet [2], Parker [21] and Molchanov
[18]) can now be applied to see that

(5–15) ht .x/� c�.t
�3=2
C 1/ec�t exp

�
� dist.x;y/2=4t

�
Geometry & Topology, Volume 11 (2007)



The Seiberg–Witten equations and the Weinstein conjecture 2159

for t � 1. Here, and below, c� denotes a constant that depends only on the Riemannian
metric. Its value will change from appearance to appearance. Granted (5–15), it follows
from what has been said that

(5–16) jEt .x;x/j � c�
�
t�3=2

C 1
�
ecrt :

Thus, Tr.Et / � c�
�
t�3=2C 1

�
ec�tecrt:

Taking t D .R�2C 1/r�1 in this equation and (5–11) gives the claim in Proposition
5.2.

5.4 Spectral flow when rescaling  

The spectral flow between the two versions of L as defined by different pairs in
Conn.E/�C1.S/, different values of r , and different small normed elements in P
is estimated in what follows using a continuous, but only piecewise real analytic family
of operators. This subsection considers this family on an interval where the factor
s 2 Œ0; 1� multiplies  in the r and � version of (3–1).

To this end, fix .A;  / 2 Conn.E/˚C1.M IS/ and r � 0. Consider the family of
operators on C1.M I iT �M ˚S˚ iIR/ that is parametrized by s 2 Œ0; 1� and whose
member at a given value of s sends .b; �; �/ to

� db� d� � s2�1=2r1=2. |��C �|� /;

DA�C s21=2r1=2.cl.b/ C� /;(5–17)

� d � b� s2�1=2r1=2.�| � |�/:

Let s ! Ls denote this family. The following lemma summarizes most of what is
needed about the spectral flow for fLsgs2Œ0;1� . The spectral flow for special choices of
.A;  / is considered in Section 5.5.

Lemma 5.3 Given c> 0, there exists a constant � with the following significance: Let
.A;  / 2 Conn.E/�C1.M IS/ be such that r�1jBAjC j jC r�1=2jr j � c . The
absolute value of the spectral flow for the family that is depicted in (5–17) is bounded
by �r3=2 .

Proof of Lemma 5.3 To apply the strategy from Section 5.2, take the range for ˆ to
be R and ˆ to be the identity. Take T D r1=2 . Suppose that s 2 Œ0; 1� and that .�; s/
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is in a smooth stratum of E . Let & denote an eigenvector of Ls with eigenvalue � and
with unit L2 norm. The number �0 given by (5–4) in this case is

(5–18) �0 D 21=2r1=2

Z
M

bk

�
�|�k C |�k�

�
:

Granted this, it follows from the assumptions of the lemma that

(5–19) j�0j � c0r1=2;

where c0 is a constant that depends only on the constant c . As a consequence, the
absolute value of the function }.s/ that is depicted in (5–6) is no greater than c0 times
an upper bound for maximal number of linearly independent eigenvectors of Ls whose
eigenvalue has absolute value less than r1=2 . This being the case, Proposition 5.2
implies that j}.s/j � 2c00r3=2 , where c00 also just depends on the constant c . This
bound for j}.s/j implies the assertion made by Lemma 5.3.

5.5 Spectral flow when .A;  / is close to .AI ; .1C; 0//

This subsection constitutes a digression that first proves Lemma 3.3 and then establishes
a somewhat stronger version of Lemma 3.3 that is used later. To start, fix a pair
.A;  / 2 Conn.E/˚ C1.M IS/ and some r � 1. Let L denote the operator that
is depicted in (3–1) with t D s D 0. The subsequent arguments in this subsection
require the Bochner–Weitzenboch formula for L2 . To state this formula, fix an element
j D .b; �; �/2C1.M I iT �M ˚S˚ iIR/. If DA D 0, then the respective iT �M;S

and iR components of L2j are

r
|
rbCRic.b/C 2r j j2bC 2�1=2r1=2.�|

r � .r /|�/;

DA
2�� r Œ.�| � |�/ C . |�k�C �|�k /�k �� 21=2r1=2b � r ;(5–20)

d|d�C 2r j j2�:

Here, Ric.b/ is obtained from b by viewing the Ricci curvature tensor of M as an
endomorphism of T �M and using the latter on b . Meanwhile, b � r denotes the
effect on b of the endomorphism from T �M to S that is defined using the metric and
r . If DA is not zero, then L2j is the sum of what is written in (5–20) and a term
that has the schematic form r1=2K.DA ; j /, where K.; / is fiberwise bilinear in its
two argument and is such that jK.�; j /j � cj�jjjj with c a constant that is of r and
.A;  /.
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Proof of Lemma 3.3 Consider (5–20) in the case where AD AI and  D .1C; 0/.
In this case, L2j is

r
|
rbCRic.b/C 2rbC r1=2.�|R�R|�/;

r
|
r�C

1

4
R�C 2r�� 2r1=2b �R;(5–21)

d|d�C 2r�:

Here, R denotes an endomorphism of S that depends only on the metric and the contact
form. Meanwhile R denotes the section r.1C; 0/ of S˝T �M . Note in particular that
jRj � c1 and jRj � c1 where c1 is independent of r . Contract both sides of (5–21)
with .b; �; �/ and to see that

(5–22)
Z

M

jLj j2 � .r � c2/

Z
M

jjj2:

Here, c2 is a constant that is independent of r and j. The statement made by Lemma 3.3
follows from this last equation.

Consider now the case where .A;  / is close to .AI ; .1C; 0//. To make this notion
precise, first fix r > 0 and " > 0. Let A 2 Conn.IC/ and  D .˛; ˇ/ 2 C1.M ISI /,
and suppose that this pair is such that the following hold at each point in M :

1� "� j˛j � 1C " and jˇj � r�1=2";

jr˛j � "r1=2 and jr
0ˇj � ";

jBAj � "r:

(5–23)

Lemma 5.4 There exist constants "0 > 0 and r0 � 1 with the following significance:
Suppose that r > r0 and that .A;  D .˛; ˇ//2Conn.IC/�C1.M ISI / obeys (5–23)
with " < "0 . Then the operator L as given in (3–1) with t D s D 0 has no kernel.
Moreover, if K has torsion first Chern class, then there is zero spectral flow between
the latter operator and the tD sD 0 version of (3–1) that is defined by .AI ; .1C; 0//.

Proof of Lemma 5.4 To see that L has no kernel, use (5–23) with the DA ¤ 0

version of the Weitzenboch formula in (5–20) to see that

(5–24)
Z

M

jLjj2 � .1� c1."C r�1/r

Z
M

jjj2:

Here c1 is a constant that is independent of .A;  /. The latter inequality proves that
the kernel of L is trivial when r is larger than some fixed r0 and "c1 <

1
4

.
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To see that there is no spectral flow in the case where K has torsion first Chern class,
note first that if u2C1.M IS1/, then there is zero spectral flow between the respective
versions of L that are defined by the two pairs .A;  / and .A� u�1du;u /. This
being the case, there exists a unique choice for u that makes ˛ D j˛j1C . What with
the preceding remarks, no generality is lost by assuming henceforth that ˛ D j˛j1C .

Now write ADAI Cya with ya a section of iT �M . It then follows from the bound in
(5–23) on jr˛j that

(5–25) jyaj � 2"r1=2:

Granted this, introduce, for each s 2 Œ0; 1�, the pair .As;  s/, where As D AI C sya

and where  s D .˛s; ˇs/ with ˛s D .1� s.1� j˛j//1C and ˇs D sˇ . Then .As;  s/

obey the conditions in (5–23) with 2" replacing ". Hence the .As;  s/ and tD sD 0

version of L obeys (5–24) with 2" replacing ". As a consequence, all of these versions
of L have trivial kernel, and so there is zero spectral flow between the .A;  / version
of L and the .AI ; .1C; 0// version of L.

5.6 Spectral flow for the Dirac operator

This subsection considers the Dirac operator on C1.M IS/ as defined by connections
on det.S/ and the spectral flow for a path of such operators. Note that the Dirac
operator here is viewed as a C–linear operator, and so eigenspaces are viewed as vector
spaces over C.

To put things into a slightly more general framework, make no assumption about a
contact 1–form on M or the first Chern class of det.S/. Assume only that M is a
compact, oriented Riemannian manifold with a chosen SpinC structure. Let S denote
the corresponding C2 bundle. Let A denote a given connection on det.S/, and suppose
that constants c � 1 and r � 1 have been given and that the following conditions hold:

jBAj � cr;

jrBAj � cr3=2:
(5–26)

Let A0 denote a fixed, fiducial connection on det.S/.

Proposition 5.5 Given c and the connection A0 on det.S/, there is a constant � with
the following significance: Suppose that r � 1 and that A is a connection on det.S/
that obeys the conditions in (5–26). Write ADA0CyaA . Then the spectral flow along
a path of Dirac operators that starts at that defined as in (2–1) by A0 and ends at that
defined as in (2–1) by A differs from � 1

32�2

R
M yaA ^ dyaA�

1
16�2

R
M yaA ^�BA0

by
at most �r15=8.ln r/3=2 .
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Note that the factor of 1
32�2 that appears here leads to the factor of 1

4�2 that appears
in Proposition 5.1 and Proposition 3.4. A factor of 4 appears because the connection in
Proposition 5.5 is defined on det.S/ while those in Proposition 5.1 and Proposition 3.4
are defined on E . The extra factor of 2 that appears is due to the fact that the spectral
flow in the cSWF context deals with operators that are R–linear rather than C–linear.

Proof of Proposition 5.5 The first point to make is that there exists a map uW M!S1

such that A�u�1du can be written as A0Cya where d � yaD 0 and

(5–27) jyaj � c0r and jryaj � c0r3=2:

Here, c0 depends only on the constant c and A0 . This is proved as follows: First, write
ADA0CyaA . Next, fix a smooth map, u1W M ! S1 with the property that integral of
the real valued 1–form i.yaA�u1

�1du1/ around each of fixed set of basis elements for
H1.M IZ/ lies in the interval Œ0; 2/. This guarantees that the L2 –orthogonal projection
of yaA�u1

�1du1 onto the space of harmonic 1–forms has norm bound that depends
only the metric. Granted that such is the case, then Hodge theory finds a unique, smooth
and homotopically trivial map, u2W S

1!M such that yaD yaA�u1
�1du1�u2

�1du2

is coclosed. Note that â and yaA � u1
�1du1 have the same orthogonal projection to

the space of harmonic 1–forms. The bounds in (5–27) follow by exploiting standard
estimates for the Green’s kernel for the operator �d on the vector space of co-closed
1–forms. (In fact, some care with the estimates finds jryaj � c0r ln.r C 1/.)

The change in the spectral flow between the respective Dirac operators defined by
connections A and A� u�1du is the same as the change in the respective A and
A�u�1du versions of

�
1

32�2

Z
M

ya.�/ ^ dya.�/�
1

16�2

Z
M

ya.�/ ^�BA0
:

Thus, it is sufficient to consider the case where ADA0Cya with â obeying the bounds
in (5–27).

For each s 2 Œ0; 1�, set As D A0 C sya. The spectral flow will be estimated for the
family fLsgs2Œ0;1� where Ls is the Dirac operator that is defined as in (2–1) by the
connection As . Thus, Ls D L0C s 1

2
cl.ya/. Note that the factor of 1

2
appears here

because the connection As now denotes a connection on det.S/.

This is a family of self-adjoint, unbounded operators on L2.M IS/ whose s D 0

member is the Dirac operator defined by (2–1) using A0 and whose s D 1 member is
that defined using A. The strategy that is described in Section 5.2 is used to estimate
the spectral flow for this family. To apply this strategy, fix t 2 .0; r�1/; a specific choice
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is made shortly. With t chosen, the range space for Section 5.2’s diffeomorphism ˆ is
the open interval .�. �

4t
/1=2; . �

4t
/1=2/; and ˆ itself is given by

(5–28) ˆ.�/D

�Z
0

e��
2td�:

Fix R� 1 and set T Dˆ.Rt�1=2/. A specific choice for R is also made below. Note
for reference later that

(5–29)
ˇ̌̌̌
t1=2T �

��
4

�1=2
ˇ̌̌̌
�

1

2R
e�R2

:

The function depicted in (5–6) for this set up is

(5–30) }.s/D
1

4T

X
&

 Z
M

&|cl.ya/&

!
e��

2
& t ;

where the sum in question is indexed by an orthonormal basis of eigenvectors of
Ls whose eigenvalue has absolute value no greater than Rt�1=2 . The strategy for
estimating } exploits the fact that sum on the right hand side of (5–30) looks much
like the trace on L2.M IS/ of the composition of the multiplication operator 1

4T
cl.ya/

with the heat kernel for L2
s , this the operator Et on L2.M IS/ that is given by the

expression in (5–10) with the sum indexed by an orthonormal basis of eigenvectors of
Ls

2 . To make something of this resemblance, introduce …�L2.M IS/ to denote the
span of the eigenvectors of Ls whose eigenvalue has absolute value no greater than
Rt�1=2 . With … understood, note that

(5–31)
X
&……

ˇ̌̌̌Z
M

&|cl.ya/&
ˇ̌̌̌
e��&

2t
� c0r

X
&……

e��&
2t ;

as can be seen with the help of (5–27). Here, the sum is over an orthonormal basis of
eigenvectors of Ls whose eigenvalue has absolute value greater than Rt�1=2 . Let n.�/

denote the function that is defined by Proposition 5.2 for LD Ls . It then follows that
the sum on the right hand side of (5–31) is no larger than

(5–32) rc0
X

mD1;2;:::

n.Rmt�1=2/e�m2R2

� c1c0r t�3=2e�R2=2:

Here, c1 is a constant that is independent of R; t; r and A. It follows from (5–30) and
(5–32) that

(5–33) }.s/D
1

4T
Tr
�
cl.ya/Et

�
C r;
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where Et again denotes the time t heat kernel for Ls , where Tr.�/ denotes the trace of
the indicated operator on L2.M IS/, and where

(5–34) jrj � 2c0c2t�1re�R2=2:

As with c1 , the constant c2 is also independent of r , t , R, and A.

The task now is to provide an estimate with controlled errors for Tr.cl.ya/Et /. This
is done by using a small t approximation for Et . The following lemma provides a
useable estimate.

Lemma 5.6 Let p 2M . Then

Et .p;p/D
� 1

4� t

�3=2
IC

1

2

� 1

4�

�3=2�1

t

�1=2�
cl .BAs /jpCw

�
;

where I denotes the identity endomorphism of S, and where jwj � c0cr.r t/1=2 . Here,
c0 is a constant that depends only on the metric and the connection A0 ; and c is the
constant in (5–27).

Proof of Lemma 5.6 Fix attention on a point, p 2M , and fix a Gaussian coordinate
chart centered at p . This is a diffeomorphism ' , from the ball U �R3 of some radius
� > 0 centered at the origin to M with '.0/ D p , and with the property that the
Euclidean distance in U from the origin is the same as that defined by the pullback
of the metric from M . In particular, if m denotes the latter and if it is viewed as a
symmetric, 3� 3 matrix valued function on U , then

(5–35) jm� Ij � c�jxj
2 and jdmj � c�jxj;

where I here denotes the identity 3 � 3 matrix. Here, and in what follows, c� � 1

denotes a constant that depends only on the Riemannian metric. It’s precise value is
allowed to change between successive appearances. The radius � is determined by the
metric and can be assumed to be independent of the point chosen in M . The Euclidean
coordinates on B are denoted by .x1;x2;x3/. To simplify notation, use ' to identify
B with '.B/.

Use parallel transport by the connection As to trivialize the bundle E over U , and use
this trivialization with the coordinate chart’s trivialization of the frame bundle of M

over U to trivialize S over U . With respect to this trivialization of E , the connection
As pulls back as an i –valued 1–form which appears when written with respect to the
basis of coordinate differentials fdx1; dx2; dx3g as � D �j dxj where here, and in
what follows, repeated indices from the set f1; 2; 3g are implicitly summed. Note in
particular that

(5–36) �j j0 D 0 and �j xj
D 0:
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With the trivialization of S implicit, the restriction to U �U of the integral kernel for
Et is a function, .x;y/!Et .x;y/, on U �U with values in End.C2/. As indicated
by (5–15), this function obeys

(5–37) jE� .x;y/j � c�

��1

t

�3=2
C 1

�
e�jx�yj2=4te.c�Ccr/t ;

where c� depends only on the Riemannian metric. Moreover, if jxj � 1
2

and if
q 2M �B , then the value of the heat kernel at time t on either .x; q/ 2 U �M or
.q;x/ 2M �U is bounded in absolute value by c�e

��2=2te.c�Ccr/t .

Let h denote the End.C2/ valued function on R � U given by h.t;x/ D Et .x; 0/.
This function obeys an equation of the form

(5–38)
@

@t
hD @j@jhC

1

2
cl.B/hCV h;

where �B D d� is the curvature 2–form for the connection As and

(5–39) V hD
�
ıijC
ij

��
2�i@jhC@i�jhC�i

�
�jC
j

�
hC2�i@jh

�
C
ij@i@jhC�0h:

Here, f
ij gi;jD1;2;3; f
j ; �j gjD1;2;3 and �0 are End.C2/ valued functions on U that
are determined by the Riemannian metric. Note in particular that 
j D �j j0 D 0

since both are linear combination of the metric’s Christoffel symbols. In addition
j
ij j � c0jxj2 with c0 depending only on the metric. As t ! 0, the function h.t;x/

converges as an End.C2/ valued measure to Iı0 , where I now denotes the identity
endomorphism of C2 and ı0 denotes the Dirac measure at 0 2 U .

As the author learned from an unpublished paper by Tom Parker [21] (see also [2; 3]),
there is a nice method of obtaining a controlled estimate for h at small t . To set the
stage, introduce the function on .0;1/� .U �U / that sends .t; .x;y// to

(5–40) Kt .x;y/D
� 1

4� t

�3=2
e�jx�yj2=4t :

Let �W Œ0;1/! Œ0; 1� denote a smooth, nonincreasing function that equals 1 on Œ0; 1
4
�

and vanishes on [ 1
2
;1/. Set �� to denote the function with compact support on U

whose value at a given point x is �.jxj=�/. Let h D ��h. This End.C2/ valued
function obeys the equation

(5–41)
@

@t
hD @j@j hC 1

2
cl.B/hC��V h� @j��@jh� @j@j��h:
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One then writes

(5–42) h.t;x/DKt .x; 0/IC
1
2

tZ
0

Z
U

Kt�� .x;y/cl.B/yh.�;y/ d3y d� CR.t;x/;

where the term

(5–43) R.t;x/D

tZ
0

Z
U

Kt�� .x;y/
�
��
 

V |
C 2

 

@ j@j��C @j@j��
�
y
h.�;y/d3yd�:

Here, the arrows over V | and @j indicates that derivatives acts on the term to their
left. Bounds on R are the next order of business. To this end, note that the terms with
derivatives of �� are supported where jyj � 1

4
� , and thus where

(5–44) jh.�/j � c�

�� 1

�

�3=2
C 1

�
e��

2=64�e.c�Ccrt/:

Indeed, this follows from (5–15). As a consequence, the terms in (5–43) that involve
derivatives of �� have norms that are no greater than

(5–45) c0e��
2=c�te.c�Ccr/t ;

where c is the constant from (5–26) and c0 here, and in what follows, depends only on
the Riemannian metric and the curvature of the connection A0 . Note that the different
appearances of c0 have distinct values. The remaining term can be bounded using
(5–15) to bound h.�;y/ and (5–36) to obtain bounds on � . As for the latter, the
equation d� D �B and (5–36) can be used to write � in terms of B and thus see that

(5–46) j�j � c0cr jxj; j@j�j j � c0cr3=2
jxj and j@i�j j � c0c.r C r3=2

jxj/;

where c is the constant in (5–26). Granted these last bounds, it then follows that the
term in (5–43) with ��

 

V | has norm no greater than

(5–47) c0c
�
t C r jxjt1=2

C .t r/3=2C r2t2
��1

t

�3=2
e�jxj

2=16t :

Turn next to the term in (5–42) with cl.B/. What with (5–26) and (5–15), the norm of
this term can be seen to be no greater then

(5–48) c0cr t
�1

t

�3=2
e�jxj

2=4t :
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An estimate for this term is needed as well as an upper bound on its norm. To obtain
such an estimate, write

(5–49) C
1
2

tZ
0

Z
U

Kt�� .x;y/cl.B/yK� .y; 0/ d3y d� CPt .x/;

where Pt .x/ is obtained from the left most term in (5–49) by replacing K� .y; 0/ with
the term h.�;y/�K� .y; 0/I. Of interest here is the value of the left most term at
x D 0. Since jBjy �Bj0j � c0cr3=2jyj, this left most term at x D 0 has the form

(5–50)
�

1
2

cl.B/0t C v
�� 1

4� t

�3=2
;

where jvj � c0.r t/3=2 . Meanwhile, the norm of the term Pt .x/ at x D 0 can be
bounded using (5–45), (5–47), and (5–48). In particular,

(5–51) jPt .0/j � c0c.r2t2/
�1

t

�3=2
:

The assertion of Lemma 5.6 follows directly from the estimate in (5–50) with the
bounds derived for the norms of Rt and Pt .

It follows directly from Lemma 5.6 with (5–33) and (5–34) that

(5–52) }.s/D�
1

16�2
� .ya^�BAs /C z;

where the following bound holds:

(5–53) jzj � c0cr2
�
r�2
C .r t/1=2C e�R2=2.t r/�1

�
:

Now take t D r�5=4 and R D 2.ln r/1=2 . According to Section 5.2, the spectral
flow in question differs from

R 1
0 }.s/ ds by no more than n D n.Rt�1=2/. Given

that Proposition 5.2 finds n.Rt�1=2/ � �R3t�3=2 , so n in this case is bounded by
8�r2..ln r/3=2r�1=8/. Meanwhile, the right hand side of (5–53) for this choice of t

and R is no greater than c0cr2r�1=8 . These bounds and (5–52) lead directly to the
assertion made by Proposition 5.5.

5.7 Spectral flow when A DAE �
i
2
ra

This last subsection adds something to the statement of Proposition 5.5 for the case
where the SpinC structure is such that SDE˚K�1E where the splitting is defined
using the contact 1–form a. There is no need to assume in this subsection that E has
torsion first Chern class. The following lemma is the focus of this subsection.
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Lemma 5.7 Given c , there is a constant � � 8 with the following significance:
Suppose that E!M is a complex line bundle and AE is a hermitian connection on
E whose curvature has norm bounded everywhere by c . Let S D E˚K�1E , and
define the family of Dirac operators fDr W C

1.M IS/! C1.M IS/gr2Œ0;1/ using
the connection AE �

i
2
ra. Suppose that r > � and that & is an eigenfunction of Dr

with eigenvalue � with absolute value less than .1
6
r/1=2 . Then

�
i

2

Z
M

&| cl.a/& � 1
2
.1� 8r�1/:

Thus, all eigenvalues that cross zero as r increases from � cross from below to above.

Proof of Lemma 5.7 The Weitzenboch formula for Dr
2 asserts that

(5–54) Dr
2�Dr|

r�C i r cl.a/�C cl.BAE
/�C 1

4
R�;

where R denotes an endomorphism whose norm has an r –independent bound. Now
suppose that & is an eigenvector of Dr with eigenvalue �, and write & D .&0; &1/

with respect to the splitting SE D E ˚K�1E . Take the L2 –inner product of the
expression in (5–54) first with .&0; 0/ and then with .0; &1/ and integrate by parts to
obtain

�2
k&0k2

2
Dkr&0k2

2
�rk&0k2

2
Ch&0;R0&0i2Ch&0;�&1i2Ch&0;�r

0&1i2;

�2
k&1k2

2
Dkr

0&1k2
2
Crk&1k2

2
Ch&1;R1&1i2Ch�&1;&0i2Ch�r

0&1;&0i2:
(5–55)

Here, h; i2 denotes the L2 inner product, and R0;R1; � , and � are homomorphisms
that are determined solely by the Riemannian metric and the curvature 2–form of AE .
In particular, it follows from the second line in (5–55) that there is a constant, c , that
depends solely on the metric and the curvature form of AE , and is such that

(5–56) kr
0&1k2

2
C
�

1
2
r ��2

�
k&1k2

2
� �k&0k2

2:

In particular that if �2 < 1
6
r and r > 12c , then this last equation implies that

(5–57) k&1k2
2
� 4r�1

k&0k2
2 and k&0k2

2
� 1� 4r�1:

To finish the story, note that

(5–58) �
i

2

Z
M

&| cl.a/& D 1
2

�
k&0k2

2
�k&1k2

2
�

and so if j�j2 < 1
6
r and r > 12c , then the expression on the right hand side of (5–58)

is no less than 1
2
.1� 8r�1/.
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The final assertion of the lemma follows from the fact that the number �0 that appears
in (5–6) for the family s !Ls with Ls DDrDs is given by the expression on the right
hand side of (5–58).

6 The behavior of solutions to the Seiberg–Witten equations

The purpose of this section is to tie up some loose ends with regards to the assertions
made in Section 2 about the behavior of solutions to certain versions of (2–4). In
particular, proofs are given here of Theorem 2.1 and Lemma 2.2–Lemma 2.4.

6.1 Proof of Lemma 2.2

Because DA D 0, so DA
2 D 0. The Bochner–Weitzenboch formula for DA

2 finds
that

(6–1) DA
2 D r|

r � r cl. |� � ia/ C 1
4
R � i cl.u/ D 0;

where uD �d�C$ denotes the perturbation term in (2–4) and R now denotes the
scalar curvature of the metric on M . Contract this equation with  to see that

(6–2) 1
2
d|d j j2Cjr j2C r j j2.j j2� 1� c�r

�1/� 0;

where c� depends only on the infimum of the scalar curvature and the maximum of juj.
Note that the latter has a bound that depends only on Lemma 2.2’s constant c . Granted
(6–2), the maximum principle requires that

(6–3) j j2 � 1C c�r
�1:

This last equation gives the assertion made by the first inequality of Lemma 2.2.

To continue, contract (6–1) first with .˛; 0/ and then with .0; ˇ/ to see that

1
2
d|d j˛j2Cjr˛j2� r.1� j˛j2� jˇj2/j˛j2C r0.˛; ˇ/

C r1.˛;r
0ˇ/C r2j˛j

2
D 0:

1
2
d|d jˇj2Cjr 0ˇj2C r.1Cj˛j2Cjˇj2/jˇj2C r00jˇj

2

C r01.ˇ;r˛/C r02.˛; ˇ/D 0:

(6–4)

Here, r0 , r1 , r2 and their primed counterparts depend solely on the Riemannian metric.
Introduce w D .1� j˛j2/. The top equation in (6–4) implies the following equation
for w :

(6–5) 1
2
d|dwCrw�jr˛j2�r.w2

Cjˇj2j˛j2/�r0.˛; ˇ/�r1.˛;r
0ˇ/�r2j˛j

2
D 0:
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Equation (6–3), the bottom equation in (6–4) and (6–5) have the following consequence:
There are constants c1 and c2 that depend solely on the Riemannian metric and the
constant c , and are such that

(6–6) d|d.jˇj2� c1r�1w� c2r2/C r.jˇj2� c1r�1w� c2r2/� 0:

An application of the maximum principle to this last equation gives the second inequality
of Lemma 2.2.

6.2 Proof of Lemma 2.3

No generality is lost by assuming r � 1. Fix a point p 2 M and fix a Gaussian
coordinate chart centered at p . Let � denote the radius of the ball in R3 on which the
coordinate map, ' , is defined, and use ' to identify this ball with its '–image in M .
Let .x1;x2;x3/ denote the coordinates for this ball. Let yk D r1=2xk for each k ,
and view .˛; ˇ/ as functions of y D .y1;y2;y3/. Likewise, view the connection A

using these coordinates. Use the coordinates y D .y1;y2;y3/ for R3 and let U � R3

denote the ball where jyj � 8. The equations in (2–4) on this ball, when written using
the y –coordinates read

BAk D . 
|�k � iak/C r�1iuk ;

�k
r
.y/

k D 0;
(6–7)

where BAk ; ak and uk are the respective components of their namesake 1–forms
when the latter are written as linear combinations of dy1 , dy2 , and dy3 . Meanwhile,
�k D cl.dyk/ and r.y/k is the covariant derivative with respect to yk . Here again,
uD �d�C$ .

Granted that j j has an r –independent upper bound, standard elliptic regularity argu-
ments (very much simpler versions of the sort found in [19, Chapter 6]) can be applied
to the equations in (6–7) on the ball where jyj � 4. These find, for each q , a constant,
cq that depends only on the Riemannian metric and the C qC2 norm of u, and is such
that j.r.y//q j � cq . When  is viewed as a function of the Gaussian coordinates
x , this last bound says jrq j � cqrq=2 . The assertion made by the first inequality of
Lemma 2.3 follows directly from the latter bound.

To obtain the assertion made by the second inequality of the lemma, again view ˛ and
ˇ as functions of y . Project the equation in (6–1) onto the E0 summand in S to obtain
the following equation:

(6–8) r 0.y/|r 0.y/ˇC
�
1Cj˛j2Cjˇj2

�
ˇCr�1r00ˇCr�1=2r01r

.y/˛Cr�1r02˛D 0:
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By virtue of the uniform bound for  and its y–covariant derivatives, there is a
trivialization for the bundles E0 and E over the ball where jyj � 3 so that the
connection, A, appears as an i –valued 1–form, � , that vanishes at y D 0, obeys
yj�j D 0, and has uniform C q bounds. Granted this, and the fact that jˇj � c�r

�1 , it
is a relatively straightforward task using the Green’s function 1=.4�jy � .�/j/ to bound
the q–th order derivatives of ˇ at y D 0 by r�1=2cq with cq depending only on the
metric and the C qC2 norm of u. The latter bounds imply the assertion in the second
inequality of Lemma 2.3.

6.3 Proof of Lemma 2.4

The argument starts by recapitulating the derivation of (5–27); thus fix a basis of
generators of H1.M IZ/. With the connection AE given, write AD AE C yaA . As
in the derivation of (5–27), fix a smooth map, u1W M ! S1 with the property that
the integral of the real valued 1–form i.yaA � u1

�1du1/ around each of the chosen
basis elements for H1.M IZ/ lies in the interval Œ0; 2/. As a consequence, the L2 –
orthogonal projection of yaA�u1

�1du1 onto the space of harmonic 1–forms has norm
bound that depends only the metric. Now use Hodge theory to find a unique, smooth
and homotopically trivial map, u2W S

1!M such that yaD yaA�u1
�1du1�u2

�1du2

is coclosed. The L2 –orthogonal projection of ya to the space of harmonic 1–forms is
the same as that of yaA�u1

�1du1 .

With ya understood, standard properties of the Green’s function for the operator �d
acting on co-closed 1–forms can be invoked to see that at any given x 2M , one has

(6–9) jyaj.x/� c�

 Z
M

1

dist.x; �/2
jBAjC 1

!
;

where c depends only on the Riemannian metric. With (6–9) understood, fix � > 0

and break the integral that appears in (6–9) into the part where the distance to x is
greater than � , and that where the distance is less than or equal to � . The integral over
the former is no greater than

(6–10) c��
�2r

Z
M

jia� |� jC c1;

where c1 is determined solely by the Riemannian metric and the given upper bound for
the C 0 norm of d� and the L2 norm of $ . According to Lemma 2.2, the expression
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in (6–10) is bounded by

(6–11) c��
�2

 
r

Z
M

j1�j˛j2jC 1

!
C c1;

where this incarnation of c� differs from that in (6–10), but it nonetheless depends only
on the metric. Likewise, this is a new incarnation of c1 , but its value is determined by
the metric and the given upper bound for the C 1 norm of d� and the L2 norm of $ .
Finally, Lemma 2.2 implies that the expression in (6–11) is no greater than

(6–12) c��
�2E.A/C c1;

where c� and c1 are different then their namesakes in (6–11), by have the stated
dependencies on the metric, � and $ .

Now consider the contribution to the integral in (6–9) from the portion of the integration
domain where the distance to x is no greater than � . As can be seen from (2–6) and
Lemma 2.2, this part is bounded by

(6–13) c�r�C c1;

where c� depends only on the metric and c1 on the metric and the given upper bound
for the C 1 norm of � and the L2 norm of $ . Given (6–12) and (6–13), the claim
made in Lemma 2.4 follows by taking �D r�1=3E.A/1=3 .

6.4 Proof of Theorem 2.1

The proof of Theorem 2.1 is broken into seven steps. The first five provide some
preliminary results that are then used in the final steps to establish the desired conclusion.

Step 1 Fix a point p 2M . This step introduces the notion of an adapted coordinate
chart map centered at p . Fix ı > 0 and set I D Œ�ı; ı��R . Let C �C denote the disk
of radius ı . An adapted, coordinate chart map centered at p is a smooth embedding,
'W C � I !M that sends the origin, 0, to p and has certain additional properties. To
state them, introduce z for the coordinate on I and write the complex coordinate on
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C as xC iy with x and y real. Use ' to identify C � I with '.C � I/. Then:

� daD Bdx ^ dy and the Reeb vector field is @z . Here, B is a positive,
z–independent function with value 1 at the origin.

� The metric pulls back as dx2
C dy2

C dz2
C h where h obeys:

.a/ h.@z; @z/D 0,

.b/ The restriction of hjzD0 to the span of f@x; @yg is m.dx2C dy2/

where m vanishes at the origin, and has absolute value bounded
by c'.x

2Cy2/.
.c/ The C 4 norm of h is bounded by ".

(6–14)

Here, c' is a constant. Such a coordinate chart map is constructed as follows: Use the
exponential map at p to embed a disk centered at p whose tangent plane at p spans
the kernel of the 1–form a. Fix coordinates .x;y/ on this disk so that the metric is
conformal to the Euclidean metric and differs from the latter by O.x2C y2/. If the
radius of this disk is sufficiently small, then it will be everywhere transversal to the
Reeb vector field. This understood, then there is a unique extension of these coordinates
to coordinates .x;y; z/ where @z is the Reeb vector field. These coordinates satisfy
the conditions in (6–14).

By taking ı small, there is an adapted coordinate chart map centered at each point in
M . In particular, there exists c� > 0 and ı > 0 with the following significance: For
each p 2M , there is map that obeys (6–14) with constant c' < c� . Such a map is
deemed to be an adapted coordinate chart map centered at p .

Step 2 This step introduces the vortex equations on C. The latter consist of equations
for a pair .A; �/ where A is an i –valued 1–form on C and where � is a complex
valued function on C. These equations read:

(6–15) �dAD�i.1� j� j2/; x@A� D 0 and j� j � 1:

Here, � denotes the Euclidean Hodge star operator on C D R2 and where x@A is
the d –bar operator for the trivial bundle C�C! C that is defined using A as the
connection 1–form. Note that these equations are gauge invariant in the following sense:
If .A; �/ is a solution and uW C! S1 is a smooth map, then so is .A�u�1du;u�/.
Two configurations that differ in this way are said to be gauge equivalent. Unless
stated explicitly, the discussion that follows won’t distinguish between gauge equivalent
solutions. Here are some basic facts about solutions to these equations (see Taubes [26,
Section 4a; 27, Section 2b] or Jaffe and Taubes [15]).
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Fact 1 If j� j D 1 at any point, then j� j is identically 1 and it is A–covariantly
constant. In this case, .A; �/ is gauge equivalent to .0; 1/.

Fact 2 There exists a constant c1 such that then jrA� j � c1 . Moreover, for each
positive integer q , there exists a constant cq such that j.rA/q� j � cq . Note that these
constants do not depend on the particular solution .A; �/.

Fact 3 The function j� j has no nonzero, local minima.

Fact 4 The zeros of � are isolated, and each zero has positive local degree.

Fact 5 If
R

C
.1�j� j2/ is finite, then this integral is equal to 2�k with k a nonnegative

integer. In this case, � has precisely k zeros counting multiplicity.

Fact 6 There is a constant c 2 .0; 1/ with the following significance: Let d W C!

Œ0;1/ denote the function that gives the distance to the set where j� j � 1
2

. If d > c�1 ,
then

(a) 1� j� j � e�cd ,

(b) jrA� j � c�1e�cd .

Moreover, this constant c does not depend on the particular solution .A; �/.

A solution .A; �/ to the vortex equations will be viewed at times as having domain of
definition C�R. In this case, there is no dependence on the R–factor.

Step 3 This step explains the relevance of the vortex equation to the version of (2–4)
under consideration. To this end, fix c> 0, fix r � 1 and fix an adapted coordinate chart
map, 'W C�I!M . Let Ir D Œ�r1=2ı; r1=2ı� and let Cr �C denote the disk of radius
r1=2ı . Define 'r W Cr � Ir !M so that 'r .x;y; z/ D '.r

�1=2x; r�1=2y; r�1=2z/.
Now, suppose that .A;  D .˛; ˇ// 2 Conn.E/�C1.M IS/. Pull back .A;  / by
'r and write this pullback as .A';r ; .˛';r ; ˇ';r //.

Lemma 6.1 Fix c > 0, R� 1 and " > 0; and there exists r� such that the following
is true: Suppose that r � r� and that .A;  = (˛ , ˇ// is such that

(6–16) BA D r. |� � ia/C iu and DA D 0;

where u is a co-closed 1–form on M with C 3 –norm less than c . Suppose that
'W C � I !M is an adapted, coordinate chart map. There exists a trivialization, u';r ,
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of 'r �E , and a solution .A' ; �'/ to the vortex equations, here viewed on C�R , such
that when written with respect to this trivialization,

j˛';r � �' j< ";

jrA';r
˛';r �rA'

�' j< " at all points .xC iy; z/ 2 C�R with x2
Cy2

C z2
�R2:

Proof of Lemma 6.1 There are trivializations of 'r �E and 'r �K�1 such that the
triple .A';r ; .˛';r ; ˇ';r // on its domain of definition in R3 D C�R obeys

j˛';r j< 1C r�1� and jˇ';r j � r�1=2�;

BA';r
D�i.1� j˛';r j

2/ dzC r�1q0;

jrA';r
˛';r j � �;(6–17)

.rA';r
/z˛';r D r�1qC;

x@A';r
˛';r D r�1q�;

where � and the three versions of q are bounded independent of r; ' , as are their
derivatives. Indeed, these bounds follow from Lemma 2.2 and Lemma 2.3 by rescaling.

Suppose that no such r� exists for some given " and R. One could then find sequences
consisting of adapted coordinate chart maps, values of r tending to infinity and corre-
sponding solutions to (6–16) where the conclusions of the lemma fail on each element
in the sequence for " and R. Even so, by virtue of (6–17), the resulting sequence of
triples .A';r ; .˛';r ; ˇ';r // has a subsequence that converges on compact domains in
C�R to some .A; .�; 0// where the pair .A; �/ solves the vortex equation. But such
convergence could happen only if the conclusions of the lemma held for each member
of this subsequence for the given " and R.

Step 4 This step starts out with the following lemma.

Lemma 6.2 Fix c � 0 and there exists � with the following significance: Fix a
co-closed 1–form u on M with C 3 –norm bounded by c . With r � 0 fixed, let the
pair .A;  = (˛ , ˇ// denote a solution to (6–16). Fix an adapted coordinate chart map
'W C � I !M . Then jrAz˛j � � .

Proof of Lemma 6.2 The Dirac equation sets rAz˛ equal to linear combinations of
the r 0 covariant derivatives of ˇ and products of ˇ with metric dependent terms. This
understood, then the assertion follows from Lemma 2.2 and Lemma 2.3.
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With Lemma 6.2 in hand, fix a smooth function, �W Œ0;1/! Œ0; 1� with compact support
that equals 1 on Œ0; 1

4
/ and 0 on Œ1

2
;1/. With r � 1 given, denote by �r W C ! Œ0; 1�

the function �.r1=2jx C iyj/. Fix c � 0, and let u denote a co-closed 1–form on
M whose C 3 –norm is bounded by c . Fix r � ı�1 and suppose that .A; .˛; ˇ// is a
solution to (6–16). Let 'W C � I !M denote an adapted, coordinate chart map that
sends '.0/ to a point where j˛j � 3

4
. Introduce the function on the interval I that

sends z to

(6–18) L.z/D r

Z
C�fzg

�r .1�j˛j
2/2:

It follows from Lemma 6.1 and Fact 1–Fact 6 that there exists �� 2 .0; 1/ which is
independent of r and c , and there exits r� > 0 which depends only on c such that if
r � r� , then

(6–19) L.0/� ��:

Meanwhile, Lemma 6.2 implies that r� and �� can be chosen so that

(6–20) j@zLj � ��
�1.E.A/C 1/:

It follows from (6–20) that

(6–21) L.z/� 1
2
�� provided that jzj � 1

2
��

2.E.A/C 1/�1:

To present a key consequence of this last assertion, fix E � E.A/. Introduce

(6–22) RE Dmin
�

1
2
�2.EC 1/�1; 1

2
ı; 1

64
c�1
�

�
;

where c� is a chosen constant that dominates (6–14)’s constant c' if ' is an adapted,
coordinate chart map. Let � � C denote the disk with center at 0 and radius r1=2 .
Note that if R�RE , then �� Œ�R;R�� C � I . Moreover, the Riemannian metric
on �� Œ�R;R� from its embedding via ' in M differs from the product metric that
comes by embedding � via ' as �� f0g � C � I by no more than c0ı with c0 a ı
and r independent constant.

Now suppose that R � RE and that 'W C � I !M is an adapted coordinate chart
map with j˛j � 3

4
at '.0/. Then (6–20) implies

(6–23) 1
4
��R� r

Z
��Œ�R;R�

j1�j˛j2j:

Step 5 This step establishes various consequences of (6–23). Here is the first.
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Lemma 6.3 Given c � 0 and E � 0, there is a constant � � 1 with the following
significance: Fix a co-closed 1–form u on M whose C 3 norm is bounded by c . With
r � � fixed, let .A;  D .˛; ˇ// denote a solution to (6–16) such that E.A/� E . Fix an
adapted coordinate chart map 'W C � I !M . Then there are no more than � disjoint
disks of radius 2r1=2 in C �f0g with distance 1

2
ı or less from the origin and such that

j˛j � 3
4

at the center point.

Proof of Lemma 6.3 This follows from (6–23) by taking RDRE . Indeed, Lemma
2.2 can be used to find a constant c1 that depends only on the constant c and is such
that

(6–24) r

Z
M

j1�j˛j2j � E.A/C c1:

Meanwhile, by virtue of (6–23), the integral on the left hand side is no less than 1
4
��RE

times the number of disks that obey the lemma’s stated conditions.

Lemma 6.3 has a the following corollary.

Lemma 6.4 Given c� 0; E� 0 and "> 0, there is a constant � � 1 with the following
significance: Fix a co-closed 1–form u on M whose C 3 norm is bounded by c . With
r � � fixed, let .A;  D .˛; ˇ// denote a solution to (6–16) such that E.A/� E . Fix
an adapted coordinate chart map 'W C � I !M . Let ƒ� C �f0g denote the set of
points where ˛ vanishes. There are at most � points in ƒ. Moreover, if p 2 C � f0g,
if jpj � 1

2
ı , and if dist.p; ƒ/ > �r�1=2 , then j˛jp > 1� "� �r�1 .

Proof of Lemma 6.4 Given Lemma 6.3, this follows from the Fact 3, Fact 4 and
Fact 6.

The next lemma provides a result that is closely related to that given in the previous
lemma.

Lemma 6.5 Fix c � 0 and E � 0. There is a constant, � > 1 with the following
significance: Fix a co-closed 1–form u on M whose C 3 norm is bounded by c . With
r � � fixed, let .A;  D .˛; ˇ// denote a solution to (6–16) such that E.A/� E . Let
'W C � I !M denote an adapted, coordinate chart map whose center is a zero of ˛ .
Let z 2 Œ���1; ��1�. Then ˛�1.0/ intersects C �fzg at a point with distance less than
�r�1=2 in C � fzg from the point .0; z/.

Proof of Lemma 6.5 This follows from (6–21) using Fact 3, Fact 4 and Fact 6.
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Here is a final consequence of (6–23).

Lemma 6.6 Given c � 0 and E � 0, there is a constant � � 1 with the following
significance: Fix a co-closed 1–form u on M whose C 3 norm is bounded by c . With
r � � fixed, let .A;  D .˛; ˇ// denote a solution to (6–16) such that E.A/ � E .
Suppose that R 2 .4r�1=2;RE/. Let U �M denote a ball of radius R with center
where ˛ D 0. Then r

R
U j1�j˛j

2j � ��1R. As a consequence, any set of disjoint balls
of radius R whose centers lie where ˛ is zero has at most �R�1.EC 1/ elements.

Proof of Lemma 6.6 The first claim just restates (6–23). To prove the second, let ‚
denote a maximal set of disjoint, radius R balls whose centers lie where ˛ is zero. Let
n denote the number of balls in this set. It follows from (6–23) and Lemma 2.2 that
each ball in ‚ contributes at least 1

4
��R� c�R

3 to the integral that computes E.A/.
Here, c� depends only on the C 3 norm � and the L2 norm of $ . Thus, the union of
the balls from ‚ contributes at least 1

4
n��� c� vol.M / to the integral for E.A/. As

a consequence, n can be no greater than 4��1
� R�1.EC c� vol.M //. This last bound

gives the second assertion of the lemma.

Step 6 Now consider a sequence .An;  n D .˛n; ˇn// as given in the statement of
Theorem 2.1. Fix E so that E.An/ � E for all n, and fix c so as to be greater than
the C 3 norms for �d�nC$n . No generality is lost by assuming that each rn is large
enough so that the conclusions of Lemma 6.1–Lemma 6.6 hold.

Let RE be as in (6–22). For each m 2 f1; 2; : : :g, let �m D .
1

32
/mRE . For each m

and for all n such that rn
�1 < 1

64
�m , choose a maximal set of disjoint balls of radius

�m with centers on ˛n
�1.0/. This set is nonempty for n large due to the fact that

supM j1� j njj is assumed to have an n–independent, positive lower bound. Indeed,
granted this bound, it follows from Fact 2, Fact 3 and Fact 6 that there are points in M

where ˛n is zero. Denote this maximal set of balls by ‚n;m . For each ball U 2‚n;m ,
let pU denote its center, and let U 0 denote the ball whose radius is 4�m and whose
center is pU . Note that the collection ‚0n;m D fU

0 W U 2‚n;mg has the property that
its members cover ˛n

�1.0/. Moreover, each ball from ‚0
n;mC1

is contained in some
ball from ‚n;m .

To continue, for each m, let Qm denote the upper bound given by Lemma 6.6 for the
case RD �m . Thus, each ‚n;m has at most Qm elements. Label the points in the set
fpU W U 2‚n;mg by consecutive integers starting from 1, and then add as many extra
copies of the first point as needed so as to define a point, �m;n 2 �Qm

M .

Choose a diagonal subsequence of f.An;  n/g so that for each m, the corresponding
subsequence f�m;ng converges in �Qm

M . For each such m, let �m denote the limit.

Geometry & Topology, Volume 11 (2007)



2180 Clifford Henry Taubes

Let ‚m denote the set of radius 4�m balls in M whose centers give the entries of �m .
Then each ball in ‚mC1 is contained in a ball from ‚m . This understood, use Zm to
denote the union of the balls that comprise ‚m . As ZmC1 �Zm , it makes sense to
define

(6–25) Z D
\

mD1;2;:::

Zm:

As is argued in the next step, Z is the desired union of closed integral curves of the
Reeb vector field.

Step 7 The story on Z starts with the following lemma.

Lemma 6.7 The set Z is a nonempty union of closed integral curves of the Reeb
vector field v .

Proof of Lemma 6.7 The fact that Z is nonempty follows by compactness. Fix an
adapted coordinate chart map 'W C � I !M that sends the origin to a point in Z . It
follows from Lemma 6.4 that the intersection of Z with C �f0g consists of at most �
points, where an upper bound for � is determined by the constants c and E . It then
follows from Lemma 6.5 that the intersection of Z with a neighborhood in C � I is
a union of at most � properly embedded, integral curves of the vector field v . This
bound on the number implies that Z is a union of a finite set of closed integral curves
of v .

To complete the argument for Theorem 2.1, it is necessary to explain how to assign
nonzero integer weights to the closed integral curves that comprise Z so that the
resulting formal, weighted sum of loops in M gives the Poincaré dual in H1.M IZ/ to
the first Chern class of the line bundle E . To this end, note that if ˛ is a section of E

with transversal zero locus, then ˛�1.0/ is Poincaré dual to the first Chern class of E .

To make use of this last observation, suppose that 
 �Z is a component. Select an
adapted coordinate chart map, ' , that sends the origin to a point on 
 . Let C 0 � C

denote a closed subdisk centered at the origin such that C 0 � f0g intersects Z only
at the origin. Let f.An;  n D .˛n; ˇn//g denote the diagonal subsequence that was
chosen in the previous step to define Z . Fix a trivialization of E over C 0 � f0g so as
to view ˛n as a map from C 0 �f0g to C. It then follows from Fact 6 that for each n
sufficiently large, ˛n has positive winding number around @C 0 . Note that this winding
number does not depend on the chosen trivialization. Let k
;n denote this winding
number. The Fact 5 provides an index n–independent upper bound to k
;n .
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Choose a subsequence of f.An;  n/g so the corresponding subsequence of fk
;ng
converges for each component 
 of Z . For each such component, let k
 denote the
limit. This is a positive integer, and is the weight that is assigned to the component 
 .
With this assignment understood, it follows that

P
k
 Œ
 � is the Poincaré dual to the

first Chern class of E .

7 Perturbations

The purpose of this final section is to tie up the loose ends from Section 3 by proving
Lemma 3.1, Proposition 3.11 and Proposition 3.12, and by justifying the assumptions
that are made in Property 1–Property 5 in Section 3.4.

7.1 Proof of Lemma 3.1

It proves useful to fix a fiducial connection, AE , on E so as to identify Conn.E/
with C1.M I iT �M /. Take the connection chosen just prior to (2–8). Let H3 and
H2 denote the respective Hilbert spaces of Sobolev class L2

3 and L2
2 sections of

iT �M �S.

Given r � 0, introduce the “universal” moduli space, N ; this the space of triples
..A;  /; �/ where � 2� and .ADAE C b;  / have the following properties: First,
.b;  / 2H3 . Second, .A;  / solves the r and � version of (2–5). Let H3irr �H3

denote the subset of pairs .A;  / with  not identically zero. Likewise, let Nirr �N
denote the subset of ..A;  /; �/ where  is not identically zero. The set Nirr is the
zero set of a certain section of a smooth vector bundle, V!H3irr ��. In this regard,
the fiber of V over any given point ..A;  /; �/ is the subspace in H2 of pairs .q; &/
that obey the equation

(7–1) �d � q� 2�1=2r1=2
�
&| � |&

�
D 0:

The section of V that defines Nirr sends a given element ..A;  /; �/ to the section
whose iT �M and S components are

BA� r. |� � ia/C i � d�;

2r1=2DA :
(7–2)

The section of V just defined is denoted in what follows by s. This is a smooth section
of V .

Because s is a smooth, the subspace Nirr �H3irr �� has the structure of a smooth
Hilbert manifold near any ..A;  /; �/ 2Nirr where the differential of s is surjective.

Geometry & Topology, Volume 11 (2007)



2182 Clifford Henry Taubes

As is explained next, the differential is surjective on the whole of Nirr . To this end,
note first that the restriction of the differential of s to the tangent vectors of the form
..b; �/; 0/ has respective iT �M and S components that are, up to a factor of �1, the
� D 0 and t D s D 0 versions of the top two equations in (3–1). This implies that
the cokernel of the restriction of ds to H3 is finite dimensional. Let .q; &/ denote an
element of this cokernel. This pair obeys the coupled equations

� dq� 2�1=2r1=2. |�& C &|� /D 0;

DA& C 21=2r1=2 cl.q/ D 0:

� d � q� 2�1=2r1=2.&| � |&/D 0:

(7–3)

If .q; &/ is not in the image of the differential of s as applied to vectors of the form
.0; �/ with � 2 �, then q must be L2 –orthogonal to all co-exact 1–forms on M .
Indeed, this follows from the fact that � is dense in C1.M I iT �M /. Thus, qDdf C�

with f a smooth, i –valued function on M and � an i –valued harmonic 1–form.

Granted this form for q , then the middle equation in (7–3) finds & D�r1=2f  C�

where � obeys the equation DA� D �r1=2 cl.�/ . Meanwhile, the top equation in
(7–3) asserts that r1=2. |��C�|� /D 0. This last equation requires that �Dm 

with m an i –valued function that is defined where  ¤ 0. This and the fact that
DA� D �r1=2 cl.�/ requires that � D dm where  ¤ 0. This then implies that
� D 0 and m is constant. Here is why. The unique continuation principle requires that
 can neither vanish on an open set, nor vanish so that its zero locus disconnects some
ball in M . As a consequence, any loop in M can be homotoped a small amount so
as to lie where  ¤ 0. This implies that � has zero pairing with H1.M IR/, and so
� D 0 and also m is constant. But with m constant and � D 0, then the third equality
in (7–3) demands that .q; &/D 0.

Let N� denote the quotient of Nirr by the action of C1.M IS1/. This is a smooth
Banach manifold. Moreover, the projection � W N�!� is a Fredholm map of index
zero. This understood, the Smale–Sard theorem [24] finds a residual subset of points
in � with small norm that are regular values for � . Any � from this residual set has
only nondegenerate solutions to its version of (2–5) that are irreducible.

To continue with the proof, recall that the space of reducible solutions to (2–5) consists
of pairs .A;  D 0/ where ADA��

1
2
i raC� where A� is a flat connection on E .

The corresponding version of L for a triple .b; �; �/ has components given by (5–8).
Thus, if M has positive first Betti number, there are no nondegenerate irreducible
solutions to (2–5). If the first Betti number is zero, then an argument much like the one
just given proves that there is residual set in � whose version of DA has trivial kernel.
This set is open and dense because a trivial kernel is preserved by small deformations.
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Granted this, it follows in the case where M has zero first Betti number that there is
an open dense set of � from � for which all solutions to (2–5) are nondegenerate.

In general, the assertion of the nondegeneracy of all solutions to (2–4) as defined
by r and g from an open dense set in P is a consequence of [17, Theorem 12.1.2
and Lemmas 12.5.2 and 12.6.1]. The subset is open since, as noted previously, the
nondegeneracy condition is stable under perturbations.

7.2 Proof of Proposition 3.11

The proof is given in two steps.

Step 1 This step finds a residual set of � and a locally finite set f�j g such that
Item (1) of the proposition holds when r … f�j g. Let �a � � denote the vector
subspace of forms that are L2 orthogonal to a. Let W denote the space of tuples
..ADAEC b;  /; r; �/ with the following properties: First, r 2 .0;1/ and � 2�a .
Second .b;  / 2H3 and  is not identically zero. Finally, the pair .A;  / solves the
r and � version of (2–5). This space is the zero locus of a section, s, of the vector
bundle V!H3 � .0;1/��

a whose fiber at ..A;  /; r; �/ consists of the subspace
of pairs .q; &/ 2 H2 that satisfy (7–1). The section s is given by (7–2). The space
W is a C1 Banach manifold if the differential of s is surjective along W D s�1.0/.
The argument given in the preceding subsection shows that such is the case. Let W�
denote the quotient of W by the space of maps from M to S1 . This is also a smooth
Banach manifold. (See, for example, Chapter 9.3 of [17].)

Let � W W� ! �a denote map that is induced by the projection. The map � is a
Fredholm map, now of index 1. Its fiber over any given � 2�a consists of the gauge
equivalence classes of triples ..A;  /; r/ such that .A;  / obey the r and � version of
(2–5). The Sard–Smale theorem finds a residual subset of �a that consists of regular
values of � . Suppose that � is in this set, and introduce W� to denote ��1.�/�W� .
This is a smooth, 1–dimensional manifold. Let �r W W�! .0;1/ denote the function
that assigns r to the gauge equivalence class of ..A;  /; r/. The map �r has an
open, dense set of regular values. A given r is a regular value of �r if and only if
operator L as defined by ..A;  /; r/ has trivial kernel. This follows from the fact that
� is a regular value of � and r is a regular value of �r . To elaborate, note that a
tangent vector to W at a given ..A;  /; r; �/ has the form vD ..b; �/; s; �/, where
.b; �/ 2 C1.M I iT �M ˚S/, where s 2 R, and where � 2�a . These are such that

� db� r. |��C �|� /� i.� � sa/D 0;

DA�C cl.b/ D 0:
(7–4)
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The form � is a regular value of � and r is a regular value of �r if and only if all
possible choices for � and s appear in (7–4). Such is the case if and only the kernel of
L is trivial.

It also follows from (7–4) that � is a regular value of � if and only if the kernel of L

at each point in W� has dimension 1 or less, and at points where its dimension is one,
the L2 –orthogonal projection of .ia; 0/ to the kernel spans the kernel.

To continue with the proof of the proposition, suppose that � is a regular value of � .
Then �r is a function on W� and so Sard’s theorem implies that it has an open and
dense set of regular values. Note in this regard that the level sets of �r are compact.
What follows explains why the critical values of �r form a locally finite set. For this
purpose, suppose that cD .A;  / and .c; r/ 2W� is a critical point of � . Let b span
the kernel of L at c. Note that b has the form .q0; &0; 0/ where .q D q0; & D &0/

obeys (7–1). Let V0 denote the set of solutions to (7–1) that are L2 –orthogonal to
.q0; &0/. As explained momentarily, standard perturbation theory (as pioneered by
Kuranishi) with the slice theorems from [17, Chapter 9] finds a real analytic function
f on a neighborhood of zero in R; a neighborhood, �, of the graph in R2 of the
function f ; and real analytic map, ˆW �! V0 ; all with the following properties:

� f and its first derivatives vanish at the origin.

� ˆ vanishes at the origin.

� For each z D .x;y/ 2�, let c.z/D .ACxb0,  Cx�0/Cˆ.z/.
Then the map from � into Conn.E/�C1.M IS/� .0;1/ that sends
z! .c.z/; r Cy/ maps the graph of f diffeomorphically
onto a neighborhood of .c; r/ in W�.

(7–5)

Note in this regard that f and ˆ are real analytic because the nonlinearities in (2–4)
are given locally by real analytic (quadratic) functions of the components of A and  .

What is given in (7–5) endows W� with a real analytic structure near .c; r/ that
identifies �r with a real analytic function. As such, the set of critical points of �r is a
real analytic set. Since �r is a proper map, this implies that the regular values of �r

form a locally finite set. Granted this last conclusion, then Item (1) of the proposition
holds for a given regular value, �, of � if f�j g includes the set of critical values of
the function �r on W� .

The fact that (7–5) holds can be seen as follows: Given a point .x;y/ near 0 in R2 , a
solution to the r Cy and � version of (2–5) near to .A;  / in Conn.E/�C1.S/ is
gauge equivalent to one that has the form .ACxb0;  Cx�0/Cˆ where ˆ 2 V0 . As
such, ˆ obeys a nonlinear equation that has the schematic form

(7–6) LˆD .�iya; 0/Cx2R0C 2xR1.ˆ/CR2.ˆ;ˆ/;
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where both sides are to be viewed as elements in V0 , and where L is obtained from the
first two lines in (3–1) by setting t, s and � equal to 0. Meanwhile, R0 , R1 , and R2

are elements in V that are, respectively, independent of ˆ, linear in the components of
ˆ and quadratic in the components of ˆ. Let …0 denote the projection of (7–6) onto
the span of .q0; &0/. If ˆ has small L2

2 norm, then it must be a fixed point of the
mapping from a small radius ball in V0 to V0 that sends a given ˆ0 to

(7–7) T .ˆ0/D L�1.1�…0/
�
.�iya; 0/C x2R0C 2xR1.ˆ

0/CR2.ˆ
0; ˆ0/

�
:

This is a contraction mapping on a small radius ball in V0 if x and y are small. As
a consequence, there is a unique solution for any such pair .x;y/. As the mapping
depends in a real-analytic fashion on x;y and the components of ˆ0 , so the fixed point
will vary with x and y in a real analytic fashion. Writing .x;y/D z , let z!ˆ.z/

denote the resulting map from a neighborhood of 0 in R2 to a neighborhood of 0 in
V0 .

Having solved most of (7–6), there remains yet the projection of (7–6) to the span of
.q0; &0/. As this vector is in the kernel of L, the vanishing of the projection of (7–6)
onto .q0; &0/ asserts that

(7–8) …0

�
.�iya; 0/Cx2R0C 2xR1.ˆ.z/

�
CR2.ˆ.z/; ˆ.z//D 0:

Now, as remarked previously, .ia; 0/ has nonzero inner product with .q0; �0/. Thus,
this equation can be rewritten to read

(7–9) yC h.x;y/D 0;

where h is a real-analytic function of x and y that vanishes with its first derivatives at
the origin. This being the case, the contraction mapping theorem can be used to find a
function y D f .x/ with f a real analytic function defined near zero in R such that
.y;x/ obeys (7–9) near 0 in R2 if and only if y D f .x/.

Step 2 This step finds a residual subset of � 2�a which are regular values of � , and
such that the assertions of Items 1) and 2) of the proposition hold. To start introduce
W˝W �W �W to denote the subset of pairs of the form ..c; r; �/; .c0; r; �// such
that c is not gauge equivalent to c0 and such that both the c and c0 versions of L have
trivial kernel. Note in particular that c and c0 obey the same version of (2–5).

This W˝W is a smooth submanifold of W �W . To see why, note first that the set
W0 �W of elements .c; r; �/ for which the kernel of L is trivial is an open (dense)
set. Thus, W0 �W0 is open in W �W . This understood, then W˝W is the inverse
image in �2..0;1/��

a/ of the diagonal via the projections ..�r ; �/; .�r ; �// from
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W0�W0 . Hence W˝W is a manifold if this map is transversal to the diagonal. Such
is the case for ..c; �/; .c0; �// when both the c and c0 versions of L have trivial cokernel.

Define the function

(7–10) hW W˝W �! R

so as to send ..c; �/; .c0; �// to hD a.c/� a.c0/. What follows explains why 0 is not a
critical value of h. To this end, consider that the derivative of a at .c; r; �/ 2W in the
direction of the tangent vector vD ..b; �/; s; �/ is

(7–11) @vaD�
1
2
sEC e� :

If the kernel of L is trivial, then any pair .s; �/ can appear in (7–11). As a consequence,
the differential of h at ..c; r; �/; .c0; r; �// is zero if and only if BA DBA0 . This last
condition requires that  |� D  0|� 0 . As a consequence,  0 D u with juj D 1

where  ¤ 0. Meanwhile, Hodge theory finds that A0 DA� i� where � is a closed
1–form. Because DA D 0 and DA0 

0 D 0, these last two conclusions demand that
i� D u�1du at points where  ¤ 0. As noted previously,  can not vanish on an
open set, nor can its zero locus disconnect any ball in M . Each class in H1.M IZ/ has
a generating loop that avoids the zero locus of  . It then follows that � has integral
periods around each such generator. This means that .A;  / and .A0;  0/ are gauge
equivalent, which is forbidden.

By virtue of what was just said, 0 is a regular value of h on W˝W and so h�1.0/�

W˝W is a smooth, codimension 1 submanifold. Let W�˝W� denote the quotient
of W ˝W by the action of C1.M IS1/�C1.M IS1/. This is a smooth Banach
manifold, and the projection from this manifold to �a is Fredholm with index 0. As
such, it has a residual set of regular values. If � is a regular value, then the fiber in
h�1.0/ over � is a zero dimensional manifold, thus a locally finite set of points.

Since the intersection of two residual sets is residual, there is a residual set of points in
�a that are simultaneously regular values for the projection on W� and the projection
on h�1.0/�W�˝W� . If � is a regular value for both projections, then the conclusions
of Items 1) and 2) hold for some locally finite set f�j g � .rk ;1/.

7.3 Proof of Proposition 3.12

The first point to make is one made before by Lemma 3.6: If r 2 .�i ; �iC1/ and q2P is
chosen so that .�; q/ is strongly .r; k/ admissible, then the pair .�; q/ will be strongly
.r 0; k/ admissible for all r 0 in some neighborhood of r .

The next point to make is that there is a smooth function, "0W .�i ; �iC1/! .0; 1/ with
limit 0 as r ! �i and as r ! �iC1 such that if r 2 .�i ; �iC1/ and if q 2 P has norm
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less than "0.r/, then the following is true: First, q lies in the radius "D ".r/ ball that
is described in Proposition 3.5. Thus, the solutions to the r and gD e�C q version
of (2–4) with degrees k or greater are nondegenerate, and their gauge equivalence
classes are in 1-1 correspondence via the map c.�/ from Proposition 3.5 with those of
the r and � version of (2–5). Second, this correspondence between gauge equivalence
classes is such that the ordering imposed on the gauge equivalence classes of solutions
to the r and gD e�C q version of (2–4) by this same r and g version of (2–9) is the
same as that imposed on the set of gauge equivalence classes of solutions to the r and
� version of (2–5) by the r and g D e� version of (2–9). Indeed, if "0.r/ is small,
then each solution to the r and gD e�C q version of (2–4) will be very close to the
gauge orbit of its corresponding solution to the r and � version of (2–5), in particular,
much closer to the latter then it is to any other such gauge orbit.

Lemma 7.1 Let "1.�/W .�i ; �iC1/! .0; 1/ denote a continuous function with limit 0
as r ! �i and as r ! �iC1 such that "1.�/ < "0.�/ at all r 2 .�i ; �iC1/. Then there
is a contiguous set J.i/ 2 Z, an increasing sequence ftngn2J.i/ � .�i ; �iC1/, and a
sequence fqngn2J.i/ � P . These are such that the following is true for each m 2 J.i/:
� .�; qm/ is strongly .r; k/–admissible for all r 2 Œtm; tmC1�.
� kqmkP < "1.r/ for all r 2 Œtm; tmC1�.

Proof of Lemma 7.1 Since the condition of being strongly .r; k/ admissible is an
open condition, the existence of this data follows from Lemma 3.6 and the fact that the
open interval .�i ; �iC1/ is locally compact.

A particular version of the function "1.�/ is needed when it is time to prove that the
cSWF homology changes in the required manner as r crosses a given tm 2 ftngn2J.i/ .

The rest of the proof of Proposition 3.12 has two parts.

Part 1 This part of the proof explains how to compare the cSWF complexes and their
homology as r crosses any given tm 2 ftngn2J.i/ . Suppose that " > 0 has been chosen,
that "1.r/ < " for r 2 Œtm�1; tm�, and that both qm�1 and qm lie in the radius " ball
about the origin in P . Let s! q.s/ denote a path in this ball, parametrized by s! R

such that q.s/D qm�1 where s <�1, such that q.s/D qm where s > 1, and such that
j

d
ds

qj< " for all s . At each s; g.r; s/D e�C q.s/ defines perturbation terms .Ts;Ss/

for use in (2–11). This s–dependent perturbation gives the following generalization of
(2–11):

@

@s
AD�BAC r. |� � ia/CTs.A;  /;

@

@s
 D�DA CSs.A;  /:

(7–12)
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Of interest here are solutions to (7–13) where lims!�1.A;  / is a solution to the
version of (2–4) that is defined by the given r and g D e� C qm�1 , and where
lims!1.A;  / is a solution to the version of (2–4) that is defined by the given r

and gD e�C qm . In particular, given solutions c� and cC to the respective r D tm
and gD e�C qm�1 and gD e�C qm versions of (2–4), let Mq.�/.c�; cC/ denote the
moduli space of solutions to (7–13) with s!�1 limit equal to c� and with s!1

limit equal to ucC with u a smooth map from M to S1 .

According to [17, Proposition 24.4.7], there are paths s! q.s/ as just described where
q.s/ is in the radius " ball in P for all s , and such that the following is true: If c� has
degree d� � k and cC has degree dC � k , then Mq.�/.c�; cC/ has the structure of a
smooth, manifold of dimension d�� dC . Fix such a path. Of interest in what follows
is the case where c� and cC have the same dimension. In this case, it follows from
[17, Theorem 24.6.2] that q.�/ can be found with the added feature that Mq.�/.c�; cC/

is compact.

As explained in [17, Chapter 25.2], each element in the each .c�; cC/ version of
Mq.�/.c�; cC/ can be given a sign, either C1 or �1. For a given such pair .c�; cC/, let
�.c�; cC/2Z denote the sum of these signs, with the understanding that �.c�; cC/D 0

if Mg.�/.c�; cC/D¿.

To explain the significance of this number, let c� denote a generator of the canonical
basis in degree k or greater. Use c�� to denote the corresponding gauge equivalence
class of solutions to the r and gD e�Cqm�1 version of (2–4); and use c�C denote the
corresponding gauge equivalence class of solutions to the r and gD e�Cqm version of
(2–4). Let V denote the vector space generated over Z by the canonical basis elements
in degrees k and greater. Define a linear map TW V! V by the rule

(7–13) Tc� D
X
�0

�.c��; c�0C/c�0 ;

where the sum is restricted to the generators that have the same degree as � . Now, let
ım�1 and ım denote the respective differentials of the cSWF complex in degrees k

and greater as defined by using r and g D e�C qm�1 , and by r and g D e�C qm .
Chapter 25.3 of [17] proves that T intertwines these differentials, thus Tım�1 D ımT ;
and that it induces an isomorphism between the respective ım�1 and ım homology
groups.

With the preceding understood, the task now is to prove that the function "1.�/ can
be chosen so as to guarantee that T is upper triangular with 1’s on the diagonal. The
Lemma 7.2 below implies that there exists such a function.
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Part 2 Fix " 2 .0; 1
2
"0.r//, and suppose that both q� and qC lie in the ball of radius

" about the origin in P , and both chosen so that .�; q˙/ is strongly .r D tm; k/

admissible. Let s! q.s/ denote a smooth map from R into P with q.s/D q� for
s � �1, with q.s/D qC for s � 1 and such that k d

ds
qkP < " for all s . As in Part 1,

use q.s/ to define the moduli spaces Mq.�/.c�; cC/ where c˙ are respective solutions
to the r D tm and gD e�C q� version of (2–4), and to the r D tm and gD e�C qC
version.

Lemma 7.2 There exists " > 0 such that if q�; qC and q.�/ lie in the ball of radius
" about the origin in P , then the q.s/ version of Mq.�/.c; c/ has precisely one nonde-
generate element. Moreover, Mq.�/.c�; cC/D¿ if a.cC/ > a.c�/ where a here is the
r D tm and gD e� version of (2–9).

Proof of Lemma 7.2 Define (2–11) using any given r and perturbation term g.
Let a denote the corresponding version of (2–9). The equations in (2–11) imply
that d

ds
aD�krak2

2 . As a consequence, the equations require that a decrease as s

increases unless the solution, s! c.s/ is constant.

Note that this last point implies that when M.c; c/ is defined by the solutions to any
r and g version of (2–11), then it has just one element, the constant map s! c. In
addition, if c is a nondegenerate, irreducible solution to the r and g version of (2–4),
then this constant instanton is a nondegenerate solution to (2–11)

Keeping the preceding points in mind, suppose that no such " exists. One would
then have a sequence, f."p; qp�; qpC; qp.�//gpD1;2;::: as described above such that
limp!1 "p D 0 and such that one or more of the following occurs: Either the qp.�/

version of Mq.�/.c0; c0/ has two or more elements for some fixed canonical basis
element c0 . Or, there exists a pair c�; cC such that a.cC/ > a.c�/ and such that
Mq.�/.c�; cC/D∅. Let cD cD c0 in the first instance, and let cD c� and c0 D cC in
the second. One could then use arguments from [17, Chapters 16 and 17] to obtain a
subsequence of elements indexed by p , each from the corresponding qp.�/ version of
Mg.�/.c; c

0/ that converged to what Kronheimer and Mrowka call a “broken trajectory”.
This consists, in part, of a set of solutions .d1; : : : ; dn/ of solutions to the r and gD e�
version of (2–11) such that each is an instanton, such that the s!�1 limit of d1 is
c, the s!C1 limit of dn is c0 , and such that for each j D 2; : : : ; n, the s!�1

limit of dj is the s!C1 limit of dj�1 . Here n> 1 and at least one of the dj can
not be R–invariant. Note that in the case cD c0 , the sequence can’t converge to the
constant instanton s! c as the latter is unobstructed as a solution to (2–11). In any
case, since a.c/� a.c0/� 0, the sum of the changes in a as s runs from �1 to C1
for the various dj must equal 0. At least one of these drops must be nontrivial since at
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least on dj is not constant. Thus, at least one of these drops must be positive, and this
is not possible.

7.4 Property 1–Property 5 from Section 3.4

Fix �i 2 f�j g and then r� and rC as described at the beginning of Section 3.4. The
purpose of what follows is to explain how to obtain a path r ! q.r/ with the five
properties that are listed in Section 3.4. The discussion has six parts after the stage
setting that follows.

Fix a smooth function, �W Œ0;1/! Œ0; 1� that equals zero on .0; r�� and ŒrC;1/, and
equals one on a neighborhood of �i . Let B � P denote the ball about the origin of
radius 1. Fix � 2 .0; 1/. Given p 2 B , use qp.�/ to denote the map from Œr�; rC� to B
that sends r to ��.r/. The map r ! q.r/ will have the form qp.r/ for a particular
choice of p 2 B and � > 0 very small.

To see how to choose p, it is convenient to introduce S� to denote the space of gauge
equivalence classes of tuples .r; p; c/2 .r�; rC/�B�.Conn.E/�C1.M IS// such that
c obeys the r and gD e�Cqp.r/ version of (2–4) and has degree k or greater. To keep
the notation under control, a given .r; p; c/2 .r�; rC/�B�.Conn.E/�C1.M IS// will
not be distinguished in what follows from its gauge equivalence class. Let � W S�! B
denote the projection, and let S�p denote the fiber of � over p 2 B . Take � so as
to satisfy the conditions of Proposition 3.11. In particular, take � from the residual
subsets in B that are described in Steps 1 and 2 of Section 7.2. By virtue of what is
proved in Section 7.2, the fiber S�0 over pD 0 is a smooth, 1–dimensional manifold,
a manifold that is embedded in the quotient of .r�; rC/� .Conn.E/�C1.M IS// by
the action of C1.M IS1/. Granted that this is the case, there exists "1 > 0 such that
when � < "1 , then � is a submersion over B . This understood, assume that � < "1 .
In this case, S� is fibered by � over B .

Under certain circumstances, it is permissable to use pD 0 and so take Section 3.4’s
map q.�/ to be the zero map. The circumstances are that one and only one of the
following holds:

� All solutions to the r = �i and � version of (2–5) with degree k or greater are
nondegenerate, and there is precisely one pair of distinct, gauge equivalence
classes of solutions to the rD�i and � version of (2–5) that are not distinguished
by the values of the r and gD e� version of (2–9).

� There is precisely one gauge equivalence class of solution to the r D �i and �
version of (2–5) with degree k or greater that is not nondegenerate. Let c denote
a representative of this one class where the corresponding version of L has a
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nontrivial kernel. The function h that appears in (7–9) is such that @
2h
@x2 ¤ 0 at

the origin in R2 . Also, the gauge equivalence classes of solutions to the r D �i

and � version of (2–5) are distinguished by the values of the r D �i and gD e�
version of (2–9).

If the two points above are satisfied, then Property 4 of Section 3.4 is satisfied by
taking q.�/D 0. As is explained below, arguments much like those from Section 7.3
can be used to establish the Properties 2, 3 and 5. Property 1 is satisfied automatically
given the choice of �. To put the two points above into a larger context, introduce the
projection �r W S�0! .r�; rC/. This �r is a function on S�0 . Its critical points are the
triples .r; 0; c/ where the c, r and � version of the operator L has a nontrivial kernel.
By construction, these critical points occur only at r D �i . Such a critical point is
nondegenerate (in the sense of Morse theory, not in the sense that c is a nondegenerate
solution to (2–5)) if and only if the corresponding function h from (7–9) obeys @2h

@x2 ¤ 0.

With the preceding understood, let p 2 B and let �r W S�p ! .r�; rC/ again denote
the projection. This is a function on S�p and its critical points consist of the triples
.r; p; c/ where the r; gD e�C ��p and c version of L has a nontrivial kernel. Note
that if � is sufficiently small, then these occur where �.r/D 1. Such a small value for
� is assumed in what follows.

If all the critical points are nondegenerate in the sense of Morse theory, and if they have
distinct critical values, then there are but a finite set of critical values for �r . More
over, if y is a critical value of �r on S�p , then Property 4 (2) describes the situation
at y , except that there may be more than one gauge equivalence class of solution with
the same value of ag.y/ . If y is not a critical value, then all solutions to the r D y

and g.y/D e�C��.y/p version of (2–4) are nondegenerate in the sense used in the
previous sections.

Given the preceding, the first step towards finding p so that qp.�/ is described by
Property 1–Property 5 in Section 3.4 finds p such that all critical points of �r on S�p
are nondegenerate in the Morse theory sense. Part 1 below contains this step. Having
found such p, note that �r on S�p0 will have nondegenerate critical values if p0 is
sufficiently close to p. This understood, Part 2 below finds some p0 near p where �r ’s
critical points have distinct critical values. Part 3 finds p00 near p0 where the values
of the corresponding of a in (2–9) distinguish all of the gauge equivalence classes of
solutions to the r and gD e�C ��.r/p

00 at the critical points of �r . Part 4 perturbs
p00 so that Property 4 (1) and (2) are satisfied. The remaining parts address Properties
1, 2, 3 and 5 in Section 3.4.
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Part 1 The space S� is fibered by � over B . As a consequence, it has a “vertical”
tangent bundle, this the kernel of the differential of � . The latter is a trivial, real line
bundle over S� . Fix a nowhere zero section, v, of this bundle. Thus, v restricts to
each S�q as a nonzero tangent vector to S�q .

Let �r W S�! .r�; rC/ denote the map induced by the projection to .r�; rC/, and then
introduce f 0W S�! R to denote the directional derivative of �r by the vector field
v. Thus, f 0 D 0 at some .r; p; c/ if and only if �r has a critical point .r; p; c/ when
viewed as a function on S�p . Let f 00W SC! R denote v.f /. Thus, f 00 D 0 at a zero
of f 0 if and only if the corresponding critical point of �r on the relevant fiber of � is
degenerate in the sense of Morse theory.

Lemma 7.3 There is a neighborhood, B0 � B , of the origin such that the zero locus of
the function of f 0 in ��1.B0/ is a smooth codimension 1 submanifold, and the zero
locus of .f 0; f 00/W ��1.B0/! R2 is a smooth, codimension 2 submanifold.

To see where this lemma leads, let Z1 � �
�1.B0/ denote the zero locus of f 0 and let

Z2 denote the zero locus of .f 0; f 00/. The projection � W Z1! B0 is a Fredholm map
of index 0, so there is a residual set of regular values. If p is such a regular value, then
f 0 has at most a finite set of zeros on S�p . Likewise, the projection � W Z2! B0 is
a Fredholm map of index �1. Thus, it too has residual set of regular values. If p is
a regular value for both of these projections, then �r on S�p has at most a finite set
of critical points, and all such points are nondegenerate critical points in the Morse
theoretic sense.

Proof of Lemma 7.3 It is enough to prove that the respective differentials of f 0 and
of .f 0; f 00/ are surjective maps to R and R2 at all points of S�0 where the relevant
map is zero. To carry out this task, remember that f 0 is zero on S�0 only at r D �i

and only at a gauge equivalence class of some solution c to the r D �i and � version
of (2–5) where the corresponding operator L has nontrivial kernel. Return now to
the notation used subsequent to (7–5) in Step 1 of Section 7.2. Write c D .A;  /.
Then a neighborhood of .�i ; 0; c/ in S� is parametrized by pairs .x; p/ where x is
near zero in R and where p is near zero in P . This parametrization has the form
.x; p/! .�i C y.x; p/; p; c.x; p// where the notation is as follows: First, c.x; p/ is
used here to denote .ACxb0;  Cx�0/Cˆ.x; p/ where ˆ2 V0 is a smooth function
of x and p. The latter obeys (7–6) with the term �.rp/c.x;p/ added on the right hand
side. Here, .rp/.�/ is defined so that hb;rpiL2 D . d

dt
p.� C tb//tD0 . With ˆ.x; p/

understood, the function y D y.x; p/ obeys (7–8) with the addition on the right side
of the term …0.�rpc.x;p//. This is to say that y is the solution to an equation that has
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the form

(7–14) yC h.x;y; p/D 0;

where h.x;y; 0/ is the function that is depicted in (7–9). Granted (7–14), the map
�r near .�i ; 0; c/ sends .x; p/ to y D y.x; p/. The map f 0 can be taken to be
.x; p/! @y

@x
j.x;p/ , and the map f 00 can be taken to be .x; p/! @2y

@x2 j.x;p/ . For fixed
p 2 B0 , let .x; t/! yp.x; t/ denote the function on a neighborhood of the origin in
R2 that given by y.x; tp/.

With the preceding understood, the lemma follows by proving the following:

� There exists p such that @
2yp

@x@t
j.0;0/ ¤ 0.

� There exists p such that @
2yp

@x@t
j.0;0/ D 0 and @3yp

@x2@t
j.0;0/ ¤ 0.

To satisfy the first bullet, it is sufficient to find, given " > 0, a perturbation p with the
following properties: For any b 2 C1.M I iT �M ˚S/ and � 2 R near zero,

(7–15) p.cC�b/D �2…0bCO."�2
C�3/:

To argue for the second bullet, it is sufficient to find, given " > 0, a perturbation p such
that

(7–16) p.cC�b/D �3…0bCO."�3
C�4/:

Note that with these choices, the section ˆ.x; tp/ that solves the version of (7–6) with
�rp is respectively O."tx/ and O."tx2/ for x and t near zero. The fact that such
p exist in P follows from the denseness conditions that are stated in [17, Definition
11.6.3].

Part 2 Choose p1 2 P very close to zero such that there are but a finite number of
critical points of �r on S�p , and so that all are nondegenerate. This part explains why
there are points p0 2 P in any given neighborhood of p1 such that the critical points of
�r on S�p0 are finite in number, nondegenerate, and have distinct critical values. To this
end, let f.r� ; p1; c� /g�D1;2;:::;N label the critical points of �r on S�p1

. Let .r;p1; c/

denote one of these points. A neighborhood of this point in S� is parametrized by a
map from a neighborhood of .0; 0/ in R�P just like the map introduced in Part 1. To
elaborate, this map sends .x; p/! .r C y.x; p/; p1C p; c.x; p// where the notation
is as follows: First, c.x; p/ D cC xb0 Cˆ.x; p/ where b0 spans the kernel of the
r; gD e�C �p1 , and c version of L, and where ˆ.x; p/ solves the version of (7–6)
that has �.rp1Crp/c.x;p/ added to its right hand side. Second, y D y.x; p/ now
solves (7–7) with the term �…0.rp1Crp/c.x;p/ added to the right hand side. This
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equation is equivalent to a version of (7–14) where h vanishes at the origin in R2 �P
as well as its first derivatives in x and y . Meanwhile, its second derivative in x is
nonzero at the origin in R2 �P .

Granted all of this, fix one of the indices � 2 f1; : : : ;N g that label the critical points
of �r on S�p1

. Suppose that � > 0; " > 0 and that p 2 P is such that

(7–17) p.c� C�b/D �…0�bCO."�/ and that p.c� 0 C�b/DO."�/ when � 0 ¤ �:

Suppose that p is as just depicted, and that " is very small. For all sufficiently small
t > 0, the critical points of �r on S�p1Ctp are in 1-1 correspondence with those of �r

on S�p1
, and vice versa. The difference between the critical values of the members of

each such pair is O.t"/ except for the pair with .r� ; p1; c� /. The difference here will
be O.t/ only. Thus, granted a version of (7–21) for each critical point of �r on S�p1

,
it then follows that there exists perturbations in any given neighborhood of p1 with the
property that �r on S�p2

has a finite set of critical points, all nondegenerate, and no
two with the same value of �r .

As before, the denseness conditions that are stated in [17, Definition 11.6.3] guarantee
that the required perturbations do indeed exist.

Part 3 Now choose p 2 P with very small norm so that there are finitely many
critical points of �r on S�p , all are nondegenerate, and such that the values of �r

distinguish these points. This part of the subsection explains how to choose p0 in any
given neighborhood of p so that the following is true:

At a critical value of �r , the values of the r and g.r/D e�C ��.r/p
0

version of (2–9) distinguish the points in �r
�1.r/� S�p0 :

(7–18)

Note that whether or not (7–18) is obeyed, it is still the case that for any p0 suffi-
ciently close to p, there are a finite number of critical points of �r on S�p0 , all are
nondegenerate, and they are distinguished by the values of �r .

To achieve (7–18), let r� denote a critical value of �r on S�p . Let .r�; p; c/ denote the
corresponding critical point. The denseness conditions that are stated in [17, Definition
11.6.3] guarantee the existence of an element q in any given neighborhood of 0 in
P such that q takes distinct values on �r

�1.r/� S�p Fix such an element q. For �
sufficiently small, the critical points of �r on S�pC�q are in 1-1 correspondence with
the critical points of �r on S�p . This correspondence is such as to pair critical points
that are very much closer to each other then to any other critical points. It then follows
that if � is sufficiently small, then the values of the r and g.r/ D e� C �.pC �q/

version of (2–9) distinguish the elements in �r
�1.r/� S�pC�q for values of r near

the value of �r on the critical point in S�pC�q that is paired with .r; p; c/.
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Part 4 Suppose now that p 2 P has very small norm, and is such that �r on S�p has
a finite set of critical points, all nondegenerate, all with distinct critical values and such
that (7–18) holds. This part explains how to find p0 in any given neighborhood of p so
that the following is true:

The r and g.r/D e�C ��.r/p
0 version of (2–9) distinguishes

the points in �r
�1.r/� S�p0 for all but finitely many values of r ,

and at the latter, at most one pair of points
is not distinguished by this same version of (2–9):

(7–19)

For this purpose, introduce S�˝S� � S� �S� to denote the subset that consists of
pairs ..r; p; c1/; .r; p; c2// with c1¤ c2 . Also, introduce S�˝S�˝S�� S��S��S�
to denote the subset of triples ..�; c1/; .�; c2/; .�; c3// where no two of the three are
the same. The first space is a manifold at points where both c1 are c2 nondegenerate
solutions to the r and g.r; p/ D e�C ��.r/p version of (2–4), and the second is a
manifold at points where all three are nondegenerate solution to this version of (2–4).
By virtue of the choice of p, it is only necessary to consider the parts of these spaces
where such is the case.

Let ag.r;p/ denote the version of (2–9) that is defined using r and g.r; p/. Now
consider the functions hW S�˝S�! R that assigns ag.r;p/.c1/� ag.r;p/.c2/ to given
..r;p; c1/; .r; p; c2//. Likewise, define h2W S� ˝ S� ˝ S� ! R2 by declaring that
its first component be h..�; c1/; .�; c2// and that its second be h..�; c1/; .�; c3//.
The first point to make is that both h and h2 are submersions at all points in h�1.0/

and h2
�1.0/, respectively. This again follows from the denseness conditions that are

stated in [17, Definition 11. 6.3]. The point is that one can find some q in any given
neighborhood of 0 in P that distinguishes any three elements in Conn.E/�C1.M IS/.
To continue, h�1.0/ is a smooth, codimension 1 submanifold of S� ˝ S� . The
projection, � W h�1.0/!B is a Fredholm map of index zero, and so it has a residual set
of regular values. If p0 is such a regular value, then there are at most a finite set of points
where h�1.0/ intersects S�p0˝S�p0 . Meanwhile, h2

�1.0/ is a smooth codimension 2
submanifold of S�˝S�˝S� and the restriction of � to h�1.0/ is a Fredholm map of
index �1. It too has a residual set of regular values. If p0 is in both of these residual
sets and close to p, then both (7–18) and (7–19) are satisfied.

Part 5 This part of the subsection addresses the claims in Part 1 of Property 5. Here,
the story is really no different than what has been done so far. To elaborate, let
fc�g�D1;2;::: label the IC–canonical basis for the cSWF complex at y D yC . Extend
this basis to y D y� using the maps in Property 4 (2)(b). If c and c0 have the same
degree, then the argument for Property 3 works in this case if it is understood that the
basis used at y� is the extension via the maps in Item (2) of the IC–canonical basis
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used at yC . The point here is that there are no instantons from c to c0 or vice versa
for values of r near y , and so whether their ordering changes or not in their guise as
I˙–canonical basis elements when r crosses y makes no difference to the differential
of the cSWF complex as long as it is understood that the basis used is not changed as
r crosses y . The assertion in Part 1 of Property 5 in this case follows directly from
this observation.

The argument for Property 3 also works with no change if the degrees of c and c0 do
not differ by 1. This understood, consider the case where degree.c/D degree.c0/C 1.
To start, note that there are no instantons from c to c0 at r D y since ag.y/ has the
same value on these two generators. This implies that there are no instantons between
c.r/ and c0.r/ for r near y as well. Indeed, were there such instantons for a sequence
frngnD1;2;::: converging to y , essentially the same argument used by [17] to prove
their Theorem 16.1.3 would find a broken trajectory limit of this sequence. In this
case, the broken trajectory consists of a sequence fd1; : : : ; dng of instanton solutions
to the r D y and g.y/ version of (2–11) such that the s!�1 limit of d1 is c, the
s!1 limit of dn is c0 , and such that for each j 2 f2; : : : ; ng, the s!�1 limit
of dj is the s!1 limit of dj�1 . Moreover, at least one dj in this sequence is not
constant as s varies in R . But this is impossible as the drop in the y and g.y/ version
of (2–9) along any nonconstant instanton is negative. Moreover, the sum of these
drop is ag.y/.c

0/� ag.y/.c/, and since this number is zero, there are no such broken
trajectories.

Granted that there are no instantons between c.r/ and c0.r/ for r near y , it then
follows that the differential in the cSWF complex is insensitive to the fact that ag.r/

takes equal values on c.r/ and c0.r/ at r D y .

Part 6 This last part of the subsection considers the assertions made in Part 2 and
Part 3 of Property 5. The task here is to prove Lemma 3.15 and Lemma 3.17. To start
this task, fix � > 0 such that yC � < yC and y � � > y� . Fix a smooth, increasing
function on R with derivative bounded by 1 that equals y�� where s <�1 and yC�

where s > 1. Denote this function by r. Fix p0 2 P with very small norm. There is a
residual set of choices for p0 such that at both r D yC � and r D y � � , all instanton
solutions to the r and g D e�C pC p0 version of (2–11) that limit as s !˙1 to
degree k or greater solutions to this r and g of (2–4) have nondegenerate moduli
spaces. Take p0 much closer to 0 then the version of pm supplied by Property 2 for the
interval in I� that contains r D y � � and also the version for the interval in IC that
contains yC � .
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Consider the equations for a map s! d.s/D .A.s/;  .s// given by

@

@s
AD�BAC r.s/. |� � ia/C ��.r.s//T.A;  /;

@

@s
 D�DA C ��.r.s//S.A;  /:

(7–20)

Here, T and S are the respective components of r.pC p0/ in C1.M I iT �M / and
C1.M IS/. Of particular interest are the instanton solutions, those that limit as
s!�1 to a solution of the r D y � � and gD e�C ��.y � �/.pC p0/ version of
(2–4), and limit as s!1 to a solution of the r DyC� and gD e�C��.yC�/.pCp0/

version of (2–4). Let c� denote a solution to the former version of (2–4) and let cC
denote a solution to the latter. Let My;� .c�; cC/ denote the space of solutions to
(7–20) with s!�1 limit c� and s!1 limit ucC where u can be any smooth map
from M to S1 . As with the case of (7–12), [17, Proposition 24.4.7] finds a residual set
of choices for p0 from the ball of radius 1 about the origin in P such that the following
is true: If c� has degree d� � k and cC has degree dC � k , then the moduli space
My;� .c�; cC/ has the structure of a smooth, manifold whose dimension is d��dC .
Assume that p0 is now from this residual set. In the case when d� D dC , it follows
from [17, Theorem 24.6.2] that My;� .c�; cC/ is compact.

Assume now that c� and cC have the same degree. Just as in Part 1 of the proof of
Proposition 3.12, each element in My;� .c�; cC/ has an associated sign, either C1 or
�1. This sign is explained in [17, Chapter 25.2]. Use �.c�; cC/ to denote the sum of
these signs with the understanding that �.c�; cC/D 0 when My;s.c�; cC/D¿.

Let cSWF� denote the cSWF complex in degrees k and greater as defined using the
r D y � � and g D e�C ��.y � �/.pC p0/ versions of (2–4) and (2–11) to obtain
the generators and differential. Likewise, define cSWFC using the r D y C � and
g D e� C ��.y C �/.pC p0/ versions of (2–4) and (2–11) to obtain the generators
and differential. Note that by virtue of the fact that p0 has very small norm, the I�–
canonical basis can be used for the cSWF� complex and the IC–canonical basis can
be used for the cSWFC complex. Note also that the ordering of the generators in the
canonical basis for cSWF� is the same as that given by the values of the r D y � �

and gD e�C ��.y � �/.pC p0/. The analogous statement holds for the ordering of
the generators in the canonical basis for the cSWFC complex.

These integer weights f�.c�; cC/g are used, as in (7–13), to define a degree preserving
homomorphism T� from cSWFC to cSWF� . Chapter 25.3 of [17] proves that T�

intertwines the differential on the cSWF� complex with that on the cSWFC complex,
and induces an isomorphism between the respective homology groups.
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Proof of Lemma 3.15 In the notation used by Lemma 3.15, the cSWF vectors spaces
in any given degree k or greater as defined at yC� is denoted by VC . The canonical
basis of VC in any given degree is denoted by fc�g. With this notation:

T� c� D
P
�0 �.c� ; c�0/c�0 in degrees not equal to d or d C 1.

T� c� D
P
�0 �.c� ; c�0/c�0 and T� cD

P
�0 �.c; c�0/c�0 in degree d C 1.

T� c� D
P
�0 �.c� ; c�0/c�0 and T� c

0
D
P
�0 �.c

0; c�0/c�0 in degree d .

Let AW VC!VC denote the restriction of T� to the VC summand in Zc˚Zc0˚VC . An
argument that differs only cosmetically from that used in the proof of Proposition 3.12
proves that if � is sufficiently small, then A is an upper triangular matrix with 1’s
on the diagonal. These arguments also prove that My;� .c; c�/ and My;� .c

0; c�/

are empty unless ag.y/.c�/ < ag.y/.c/ D ag.y/.c
0/. Here, ag.y/ is the r D y and

g.y/D e�C ��.y/p version of (2–9). Note in this regard that ag.y/.c/ is not equal
to any ag.y/.c�/. What has just been said implies that the matrix T� satisfies the
conditions stated for T by Lemma 3.15.

The matrix T is not necessarily equal to T� . However, as explained next, T is obtained
from T� by composing with an upper triangular matrix that has 1’s on the diagonal. If
this is the case, T also satisfies the conditions that are stated by Lemma 3.15.

To obtain T from T� , let m 2 K.I�/ be such that y � � 2 Œwm; wmC1/. The cSWF
homology in degrees greater than k is defined using gD e�C ��.y � �/.pC pm/ to
define the generators and differential. On the other hand, the cSWF� generators and
differential are defined using r D y � � and gD e�C ��.y � �/.pC p0/. However,
an argument just like that used to prove Proposition 3.12 finds an upper triangular
matrix with 1’s on the diagonal that maps the first version of the complex to the second,
intertwines their differentials, and induces an isomorphism on homology. There is a
completely analogous story to be told at r D yC � . Composing these matrices with
T� gives a new matrix, T�

0 , that relates the cSWF complex in degrees k and greater
at r D y � � to the cSWF complex at r D y C � , and that satisfies the conditions
stated by Lemma 3.15. The matrix T is obtained from T�

0 by composing with the
upper triangular matrices that are given in Lemma 3.14 to move from r D y�� to y�
and to move from r D yC � to yC . Granted that the matrices from Lemma 3.14 are
upper triangular with 1’s on the diagonal, Lemma 3.15 follows from what is said in the
preceding paragraph.

Proof of Lemma 3.17 The notation used here uses V� to denote the cSWF vector
spaces in any given degree k or greater as defined at y � � . The canonical basis of
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V� in any given degree is denoted by fc�g. With this notation:

T� c� D
P
�0 �.c� ; c�0/c�0 in degrees not equal to d C 1 or d .

T� c� D
P
�0 �.c� ; c�0/c�0 C �.c� ; c/c in degree d C 1.(7–21)

T� c� D
P
�0 �.c� ; c�0/c�0 C �.c� ; c

0/c0 in degree d .

Write AW V�!V� for the composition of T� with the projection from Zc˚Zc0˚V� to
V� . As in the preceding proof, arguments that differ only cosmetically from those used
to prove Proposition 3.12 prove that A is upper triangular with 1’s on the diagonal if �
is sufficiently small. These same arguments show that My;� .c� ; c/ and My;� .c� ; c

0/

are empty when ag.y/.c�/ < ag.y/.c/ D ag.y/.c
0/. As a consequence, the matrix T�

satisfies the conditions for T stated by Lemma 3.17.

As in the previous proof, the matrix T is obtained from T� by composing with upper
triangular matrices. Thus, T also satisfies the conditions stated by Lemma 3.17.

8 The proof of Theorem 1.1

The last section puts all of the pieces together and so completes the proof of Theorem 1.1.
To start, fix a complex line bundle E!M whose first Chern class differs by a torsion
class from half the first Chern class of K . Fix a co-exact 1–form � from the collection
supplied by Proposition 3.11. Fix k� 0 and use � to define the cSWF homology in
degrees greater than k . Fix a nonzero cSWF homology class, � , with degree k 0 > k

but with k 0 ¤ 0 when c1.E/D 0. These are supplied by Proposition 3.8. Section 4
explains how to define � for all r > rk save for a discrete set with no accumulation
points. It follows from Proposition 4.6 and Proposition 5.1 that � is not a divergence
class. As a consequence, there exists an unbounded sequence, f.rn; .An;  n//gnD1;2;:::

such that .An;  n/ satisfies the r D rn and � version of (2–5); and such that .An;  n/

is nondegenerate and has degree k 0 .

Write  n D .˛n; ˇn/ to correspond with the splitting in (2–2)). If E is not the trivial
bundle, 1C , then ˛n must vanish at some points in M , and so supM .1� j nj/D 1.
As a consequence, all of the conditions in Theorem 2.1 are met, and Theorem 2.1 thus
supplies the set of closed integral curves of the Reeb vector field for Theorem 1.1. Now
suppose that E D 1C . As is explained momentarily, there is in this case a constant
� > 0 such that supM .1� j nj/ > � . Granted this, Theorem 2.1 again supplies a set
of closed integral curves of the Reeb vector field for Theorem 1.1.

Suppose, for the sake of argument that no such � exists. The following is then a
consequence: Given " > 0, then for all n sufficiently large, the first set of inequalities
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and the last inequality in (5–23) are satisfied by .An;  n/. A repeat of the rescaling
argument used in Section 6.2 to prove Lemma 2.3 can be used to establish the second
set of inequalities in (5–23). This is because the rescaled sequence of solutions will
converge strongly in the ball where jyj � 4 to the solution with ˛ D 1 and ˇ D 0. If
" < "0 from Lemma 5.4, it then follows that the degree k 0 D 0. This is nonsense since
k 0 was chosen to be nonzero.
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