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Euler characteristics of Teichmüller curves in genus two

MATT BAINBRIDGE

We calculate the Euler characteristics of all of the Teichmüller curves in the moduli
space of genus two Riemann surfaces which are generated by holomorphic one-forms
with a single double zero. These curves are naturally embedded in Hilbert modular
surfaces and our main result is that the Euler characteristic of a Teichmüller curve
is proportional to the Euler characteristic of the Hilbert modular surface on which it
lies.

The idea is to use techniques from algebraic geometry to calculate the fundamental
classes of these Teichmüller curves in certain compactifications of the Hilbert modular
surfaces. This is done by defining meromorphic sections of line bundles over Hilbert
modular surfaces which vanish along these Teichmüller curves.

We apply these results to calculate the Siegel–Veech constants for counting closed
billiards paths in certain L-shaped polygons. We also calculate the Lyapunov expo-
nents of the Kontsevich–Zorich cocycle for any ergodic, SL2.R/–invariant measure
on the moduli space of Abelian differentials in genus two (previously calculated in
unpublished work of Kontsevich and Zorich).

32G15, 37D50; 11F41, 30F30

1 Introduction

Let M2 be the moduli space of genus two Riemann surfaces. Given any D > 0 with
D � 0 or 1 .mod 4/, let W 0

D
�M2 be the locus of Riemann surfaces X such that:

� The Jacobian Jac.X / has real multiplication by OD , the unique real quadratic
order of discriminant D .

� There is an Abelian differential ! on X which is an eigenform for real multipli-
cation and has a double zero.

Let WD be the normalization of W 0
D

, a possibly disconnected curve.

The Hilbert modular surface,

XD D H�H=SL.OD ˚O_D /;
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is the moduli space for Abelian surfaces with real multiplication by OD . In XD ,
let PD be the Shimura curve consisting of those Abelian surfaces in XD which are
polarized products of elliptic curves. There is a commutative diagram,

WD
� � //

$$J
JJJJJJJJ
XD nPD

��
M2

where the top map is an embedding, and the vertical map is a two-to-one map sending
an Abelian surface A to the unique Riemann surface X 2M2 such that Jac.X /ŠA.

The curve WD is not a Shimura curve on XD ; however, it is a Teichmüller curve, a
curve which is isometrically immersed in the moduli space M2 with respect to the
Teichmüller metric. In fact, the curves WD with D nonsquare are all but one of the
primitive Teichmüller curves in M2 , where a Teichmüller curve is said to be primitive
if it does not arise from a Teichmüller curve of lower genus by a certain branched
covering construction. The curves WD arise from the study of billiards in certain
L–shaped polygons, and the study of these curves has applications to the dynamics of
billiards in these polygons.

Euler characteristics The main object of this paper is to calculate the Euler charac-
teristics of the curves WD . The idea is to relate �.WD/ to �.XD/ and �.PD/. It
turns out that these Euler characteristics are all proportional if D is not square. The
following is our main result.

Theorem 1.1 If D is not square, then

(1–1) �.WD/D�
9
2
�.XD/:

Remark Zagier conjectured formula (1–1) from numerical evidence. In [73], Siegel
calculated the volume of XD when D is a fundamental discriminant (that is, D is
not of the form D D f 2E for some E � 0 or 1 .mod 4/ and f > 1). This yields
formulas for �.XD/ for all D . For D ¤ 1 a fundamental discriminant, we obtain

�.Wf 2D/D�9�
Q.
p

D/
.�1/f 3

X
r jf

�
D

r

�
�.r/

r2
;

where � is the Möbius function, and
�

D
r

�
is the Kronecker symbol. When f D 1, this

reduces to
�.WD/D�9�

Q.
p

D/
.�1/:
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The Euler characteristics �.WD/ when D is not square are given by the Fourier
coefficients of a modular form. More precisely, there is a function H.2;D/ such that
for D ¤ 1 a fundamental discriminant and f 2 N,X

r jf

�.Wr2D/D
3
4
H.2; f 2D/

and
X

D�0;1 .4/
D�0

H.2;D/qD

is a modular form which was studied by Cohen in [19]. See Section 2.3 for more about
this form.

When D D d2 , Eskin, Masur, and Schmoll calculated �.Wd2/ in [22]. Our methods
give a new proof of their formula. In this case, it is no longer true that �.Wd2/ is
proportional to �.Xd2/.

Theorem 1.2 For any d > 1,

(1–2) �.Wd2/D� 1
16

d2.d � 2/
X
r jd

�.r/

r2
:

Connected components of WD McMullen showed that when D ¤ 9 and D �

1 .mod 8/, WD has two connected components, W 0
D

and W 1
D

; otherwise WD is
connected [54].

We will also show that when D is not square, the connected components of WD have
the same Euler characteristic. It should be true that these components are actually
homeomorphic, but we have not proved this. It is not true that the connected components
of WD are isomorphic as curves over C.

Theorem 1.3 If D � 1 .mod 8/ is not square, then

�.W 0
D/D �.W

1
D/:

There is a canonical involution � W XD ! XD which is covered by the involution
.z; w/ 7! .w; z/ of H�H. This involution replaces an Abelian surface A together
with a choice of real multiplication,

�W OD ! End A;
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with the Galois conjugate real multiplication �0 obtained by precomposing � with the
Galois automorphism of OD . It is not true that � permutes the connected components
of WD (otherwise Theorem 1.3 would be trivial). In fact, WD is not even invariant
under � by [52, Theorem 10.1].

We also calculate �.W �
d2/, but it is no longer true in the square discriminant case that

the connected components of Wd2 have the same Euler characteristic.

Theorem 1.4 If d > 0 and d2 � 1 .mod 8/, then

�.W 0
d2/D�

1
32

d2.d � 1/
X
r jd

�.r/

r2
;

�.W 1
d2/D�

1
32

d2.d � 3/
X
r jd

�.r/

r2
:and

Remark These formulas were established independently by Lelièvre and Royer [47].

Siegel–Veech constants Given a positive, nonsquare integer D � 0 or 1 .mod 4/,
let P .D/ be the L-shaped polygon as in Figure 1, where the side lengths are given by

aD b D
1C
p

D

2

if D is odd and by

aD

p
D

2
and b D 1C

p
D

2

if D is even. By a standard unfolding construction, an L–shaped polygon determines
a genus two Riemann surface equipped with an Abelian differential, and the surface
determined by P .D/ lies on WD .

A billiards path on P .D/ is a path which is geodesic on the interior of P .D/ and
bounces off the walls as a physical billiards ball would (angle of incidence equals angle
of reflection). We allow billiards paths to pass through the corners of angle �=2 but
not through the one of angle 3�=2. Closed billiards paths occur in parallel families
which are bounded by two paths which each start and end at the corner of angle 3�=2.
Let

N.P .D/;L/D #ffamilies of simple closed billiards paths on P .D/

of length at most Lg:

Geometry & Topology, Volume 11 (2007)
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b

a

1

1

Figure 1: P .D/

Note that we do not count paths which go around a single closed path several times,
and we are counting unoriented paths. Since the unfolding lies on a Teichmüller curve,
we have by [77]

N.P .D/;L/� c.D/
1

8� Area.P .D//
L2;

for some constants c.D/ called Siegel–Veech constants. Evaluating the constants c.D/

amounts to calculating the Euler characteristics of the WD together with the volumes of
certain neighborhoods of the cusps of WD . In Section 14, we calculate these constants.
For example, we obtain:

Theorem 1.5 For D � 29, the Siegel–Veech constants c.D/ are as given in Table 1.

D 5 8 12 13 17 20 21 24 28 29

c.D/
25

3
28
3

26
3

91
9

221
24
C

1
8

p
17 31

3
133
15

148
15

82
9

377
35

Table 1: Siegel–Veech constants for P .D/

Note that there are other L-shaped polygons, classified in [52], whose unfoldings lie
on the Teichmüller curves WD and our results apply equally well to those because the
Siegel–Veech constants only depend on the connected component of WD on which
the unfolding lies. We also show in Section 14:

Theorem 1.6 If WD has two connected components, then the associated Siegel–Veech
constants are Galois-conjugate elements of Q.

p
D/. If WD is connected, then the

Siegel–Veech constants are rational.
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The Kontsevich–Zorich cocycle There is a well-known action of SL2R on �Mg ,
the moduli space of genus–g Riemann surfaces equipped with an Abelian differential,
which preserves the subspace �1Mg of Abelian differentials .X; !/ of unit norm
with respect to the norm

k!k D

�Z
X

j!j2
�1=2

:

The diagonal subgroup A � SL2R induces a flow gt on �Mg , the Teichmüller
geodesic flow. Kontsevich [42] and Zorich [84] introduced a linear cocycle over this
flow which is closely related to the dynamics of flows on surfaces. There is a bundle
H1.R/ ! �1Mg whose fiber over an Abelian differential .X; !/ is the quotient
H1.X IR/=Aut.X; !/. This bundle has a natural flat connection, the Gauss–Manin
connection. By coupling the geodesic flow gt with the Gauss–Manin connection, we
get a flow zgt , the Kontsevich–Zorich cocycle, on H1.R/ which is linear on the fibers
and covers the flow gt on �1Mg .

Consider the closure S � �1M2 of an SL2R orbit. By results of [57], S is a
suborbifold of �1M2 which comes equipped with a unique SL2R–invariant, ergodic,
absolutely continuous, probability measure, the period measure. In the case of the
Teichmüller curves, period measure is just the normalized hyperbolic area measure
(because Haar measure is unique).

Associated to any ergodic, gt –invariant measure � are the 2g Lyapunov exponents,

1D �1.�/ > � � �> �g.�/ > ��g.�/ > � � �> ��1.�/D�1:

Kontsevich [42] gave a formula for
P
�i.�/ as a certain integral over moduli space

when � is SL2R invariant. The same methods which we use to calculate �.WD/ allow
us to evaluate these integrals and to calculate �2.�/ for all ergodic, SL2R–invariant
measures on �1M2 . Let �1M2.2/ ��1M2 be the locus of forms with a double
zero.

Theorem 1.7 If � is any finite, ergodic, SL2R–invariant measure on �1M2 , then

�2.�/D

(
1=3; if � is supported on �1M2.2/I

1=2; if � is not supported on �1M2.2/.

Remark Theorem 1.7 is an unpublished result of Kontsevich and Zorich, mentioned
in [85].
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Outline of proof of Theorem 1.1 The strategy for computing the Euler characteristic
of WD is to study the relationship between WD and the Hilbert modular surface XD

on which it lies. More precisely, we will define a compactification YD of XD and
compute the fundamental class of SWD in YD by expressing it as the zero locus of a
meromorphic section of a line bundle over YD .

Here is a sketch of the calculation of the Euler characteristic �.WD/ in the case when
D is nonsquare. When D is a square, the calculation is more complicated because
there are some extra curves in Yd2 nXd2 which have to be taken into account.

(1) Given a nonsquare D 2 N with D � 0 or 1 .mod 4/, let

OD D ZŒT �=.T 2
C bT C c/

for integers b and c such that b2�4cDD . The discriminant D determines OD

up to isomorphism, and OD is naturally embedded in its field of fractions KD ,
which is isomorphic to Q.

p
D/. Let O_

D
�KD be the inverse different of OD ,

and let SL.OD ˚O_D /� SL2KD be the subgroup which preserves OD ˚O_D .
There are two closed two-forms !i on

XD D H�H=SL.OD ˚O_D /

covered by the forms
1

2�

dxi ^ dyi

y2
i

on H�H. The inverse image of WD in H�H is the union of the graphs of
countably many holomorphic functions H!H. It follows that the restriction of
!1 to WD is 1=2� times the hyperbolic volume form on WD . Gauss–Bonnet
then tells us that

�.WD/D�

Z
WD

!1:

(2) There is a Shimura curve PD � XD which parameterizes Abelian surfaces
which are polarized products of elliptic curves. It is covered in zXD by a union
of graphs of Möbius transformations H! H. We introduce these curves in
Section 2.3 and show that

(1–3) �.PD/D�
5

2
�.XD/:

(3) The bundle �M2 over M2 whose fiber over a Riemann surface X is the space
�.X / n f0g of nonzero Abelian differentials on X extends to a bundle � SM2

over the Deligne–Mumford compactification which we discuss in Section 5. In
Section 7 and Section 8, we construct a compactification YD of XD , a complex
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projective orbifold which is obtained by taking the normalization of the closure
of the image of an embedding XD ! P� SM2 . We call this the geometric
compactification of XD . The complement @XD D YD nXD consists of finitely
many rational curves, each labeled by a discrete invariant which we call a YD –
prototype. We discuss these invariants in Section 3. For each YD –prototype P ,
there is one rational curve CP � @XD .

(4) Associated to each point p 2 YD , there is a stable Riemann surface X 2 SM2

together with an action of OD on Jac.X / by real multiplication. This determines
a splitting of the space �.X / of stable Abelian differentials on X into two one-
dimensional eigenspaces for real multiplication:

�.X /D�1.X /˚�2.X /:

(See Section 5 for information about stable Riemann surfaces and stable Abelian
differentials.) A choice of an embedding OD ! R determines one of these two
eigenspaces, so the point p 2 YD determines an eigenform in �.X / up to scale
if we fix such an embedding. There is a holomorphic line bundle �YD whose
fiber over p 2 YD is the eigenspace �1.X /.
In Section 9, we study a holomorphic foliation AD of YD along whose leaves
the absolute periods of eigenforms in �YD are locally constant. Each rational
curve CP � @XD is a leaf of AD , and AD has isolated singularities at the
intersection of two such curves. A leaf of AD can be locally parameterized
away from WD and PD by the relative periods of the forms which it represents
(a relative period of a one-form ! is an integral along a path joining the two
zeros ! ). Following [58], we use this parameterization to define a quadratic
differential on each leaf of AD . These quadratic differentials can be pieced
together to define a meromorphic section q of the line bundle

LD .�YD/
�2
˝ .T �AD/

2

over YD . This section q vanishes along SWD , has a simple pole along xPD , and
is elsewhere finite and nonzero. This gives a relation between the fundamental
classes of SWD and xPD and the Chern class of L in H 2.YD IQ/:

(1–4) Œ SWD �D Œ xPD �C c1.L/:

We derive this formula in Section 10. This is the main idea of the calculation of
�.WD/, and the reader who only wants the gist of the argument might find it
useful to skip directly to this section.

(5) In Section 9, we calculate c1.L/. We define a Hermitian metric h on �YD

which is singular along @XD . We show that h is a good metric in the sense
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of Mumford [63]. This implies that the Chern form c1.�YD ; h/D !1=2 is a
closed current on YD , and

(1–5) c1.�YD/D
1
2
Œ!1�

in H 2.YD IQ/.
The canonical involution � of XD extends to an involution of YD , which we
continue to call � . We also show that

��.�YD/
2
D T �AD ;

which implies

(1–6) c1.T
�AD/D Œ!2�:

Putting together (1–5) and (1–6), we obtain

(1–7) c1.L/D�Œ!1�C 2Œ!2�:

(6) Combining (1–4) and (1–7), we obtain

(1–8) Œ SWD �D Œ xPD �� Œ!1�C 2Œ!2�:

By pairing �Œ!1� with both sides and applying the Gauss–Bonnet Theorem, we
obtain

(1–9) �.WD/D �.PD/� 2�.XD/:

Putting (1–3) in (1–9), we obtain (1–1).

The proof of Theorem 1.1 uses very little about the compactification YD . Equation
(1–8) is true, when interpreted as an equation of cohomology classes of closed currents
on XD ; however, we are not allowed to pair !1 with this equation because !1 is not
compactly supported. Working in the compactification YD allows us to justify this
paring. The proof of Theorem 1.3 uses the compactification YD in a more essential
way.

When D D d2 , there are some extra curves S1
d2 and S2

d2 in Yd2 n Xd2 , which
complicates the calculation of �.Wd2/. One difference in the square case is that the
section q of L has a pole along xS2

d2 as well as xPd2 . Also, (1–6) becomes

c1.T
�AD/D Œ!2�� Œ xS

2
d2 �:

Instead of (1–9), we get

�.Wd2/D �.Pd2/� 2�.Xd2/��.S2
d2/:

In this case, �.Pd2/ and �.S2
d2/ are not proportional to �.Xd2/, so neither is �.Wd2/.
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Outline of proof of Theorem 1.3 The idea of the proof of Theorem 1.3 is to find as
many equations as we can involving the fundamental classes Œ SW 0

D
� and Œ SW 1

D
�. Once

we have enough equations, we are able to solve for the pairing Œ!1� � Œ SW
�

D
�D��.W �

D
/.

(1) In Section 7 and Section 8, we will prove the following properties of YD :
(a) The closures SWD and xPD are disjoint suborbifolds of YD .
(b) Each rational curve CP � YD nXD meets SWD and xPD transversely and

meets each in the same number of points.
(c) The canonical involution � of YD has the property that for each rational

curve CP � @XD ,

SW 0
D �CP D

SW 1
D � �.CP /:

(d) The rational cohomology of YD is an orthogonal direct sum:

H 2.YD IQ/Š B˚hŒ!1�; Œ!2�i˚J;

where B is the subspace generated by the rational curves C � @XD , and
J is the orthogonal complement of the other two terms. J contains all of
H 2;0.YD IQ/ and H 0;2.YD IQ/ and most of H 1;1.YD IQ/.

(2) There is a well-known formula relating the first Chern class of the bundle � SM2

over SM2 to the fundamental classes of divisors in SM2 nM2 . Pulling back this
formula by the natural map YD!

SM2 , we obtain a formula for the fundamental
class of Œ xPD �:

Œ xPD �D
5
2
Œ!1�C

5
2
Œ!2�C�B Œ xPD �;

where �B is the orthogonal projection of H 2.YD IQ/ to B . Combining this
with (1–8), we obtain

Œ SWD �D
3
2
Œ!1�C

9
2
Œ!2�C�B Œ SWD �:

It follows from (1–8) that �B Œ xPD � D �B Œ SWD �. We derive these formulas in
Section 11.

(3) In Section 12, we study the normal bundles of SWD and xPD in YD . The
restriction of �YD to SW �

D
is a line bundle � SW �

D
. The degree of the normal

bundle N. SW �
D
/ can be calculated in terms of � SW �

D
. We obtain the following

formula for the self intersection number of SW �
D

:

(1–10) Œ SW �
D �

2
D deg N. SW �

D/D�
2
3

deg� SW �
D D

1
3
�.W �

D/:

The proof of the middle equality involves defining a three-to-one map from a
tubular neighborhood SW �

D
to .� SW �

D
/�2 via an operation called “collapsing a
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saddle connection,” which we introduce in Section 4.1. This operation replaces
an Abelian differential together with a saddle connection joining a pair of simple
zeros with an Abelian differential with a double zero.
Since SW �

D
is transverse to the foliation AD of YD , we also have the relation,

N. SW �
D/Š TAD ;

which together with (1–6) implies

Œ SW �
D �

2
D

Z
W �

D

!2:

From this equation and (1–10), we obtain

(1–11)
Z

W �
D

!2 D
1
3

Z
W �

D

!1:

(4) We show in Section 13 that the fundamental classes Œ SW �
D
� are given by

(1–12) Œ SW �
D �D

3
4
Œ!1�C

9
4
Œ!2�C�B ŒW

�
D �˙ j ;

for some j 2 J . The plan is to leave the coefficient of Œ!1� as an unknown a

and then to use our knowledge of YD to write down equations involving the
class Œ SW �

D
� that allow us to solve for a. The following equations follow from

Properties (b) and (c) of YD :

Œ SW 0
D � � Œ
xPD �D 0;

Œ SW 0
D � � Œ
SW 0

D �D Œ
SW 1

D � � Œ
SW 1

D �:

These together with (1–11) give us enough equations to solve for a. Theorem
1.3 follows from (1–12) by pairing �Œ!1� with both sides as in the proof of
Theorem 1.1.

Notes and references The orbits of the SL2R action on �1Mg project to immersions
H!Mg of the hyperbolic plane into Mg which are isometric and totally geodesic
with respect to the Teichmüller metric on Mg . A totally geodesic immersion H!Mg

is called a Teichmüller disk. It sometimes happens that a Teichmüller disk covers an
algebraic curve C in Mg . In that case, the normalization of C is called a Teichmüller
curve. The curves WD are examples of Teichmüller curves in genus two. This action of
SL2R is also closely related to the study of billiards in rational angled polygons, as well
as the study of interval exchange maps. For information about Teichmüller curves, the
action of SL2R on �Mg , and its relation with rational billiards and interval exchange
maps, see for example Kerckhoff, Masur and Smillie [40], Masur [49], Masur and
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Tabachnikov [51], Veech [76; 77; 78; 79], Kontsevich [42], Zorich [84], Möller [60],
or Bouw and Möller [16].

By analogy with the work of Ratner [67] on the dynamics of actions of groups generated
by unipotent elements on homogeneous spaces, it is conjectured that the closure of
every Teichmüller disk in Mg is an algebraic suborbifold of Mg . McMullen’s work
establishes this conjecture in genus two for Teichmüller disks generated by Abelian
differentials. McMullen analyzed the dynamics of SL2R on �1M2 in the series of
papers [52; 53; 54; 55; 56; 57]. In these papers, he classified the closures of SL2R

orbits in �1M2 and classified Teichmüller curves in genus two. He also introduced the
curves WD in these papers and showed that they are all of the Teichmüller curves which
are generated by an Abelian differential with a double zero. According to [52], the
Teichmüller curve WD is primitive exactly when D is nonsquare. The form generated
by identifying opposite sides of a regular decagon has two simple zeros and generates
a primitive Teichmüller curve D10 in M2 . In [56], McMullen showed that D10 and
the WD for D nonsquare are in fact all of the primitive Teichmüller curves in M2

generated by an Abelian differential.

Teichmüller curves in genus two were also studied by Calta in [17], using the Kenyon–
Smillie invariant introduced in [39].

Associated to every known SL2R orbit closure S in �1Mg is a canonical finite,
ergodic measure �. The volume of � is an interesting quantity, which according
to Veech [80] and Eskin and Masur [21] gives information about the dynamics of
the geodesic flow of a generic Abelian differential .X; !/ 2 S with respect to the
canonical flat metric on X determined by ! . Volumes of orbit closures and their
applications to dynamics are studied in Eskin and Okounkov [24], Eskin, Okounkov
and Pandharipandhe [25], Eskin, Masur and Schmoll [22], Eskin, Masur and Zorich
[23], Hubert and Lelièvre [35], Lelièvre and Royer [47], and Lelièvre [46].

A closed SL2R–orbit lies over a Teichmüller curve C . In this case, the measure
� descends to a multiple of the hyperbolic area measure on C . These means that
calculating the volume of � is equivalent to calculating �.C /. In genus two, the
Euler characteristics of the Teichmüller curves Wd2 (as well as the volume of a
related SL2R–invariant measure on Xd2 ) were studied in [22]. They established (1–2)
by counting certain special Abelian differentials, called square-tiled surfaces. The
connected components of WD were classified in [35] when D is the square of a prime,
and in [54] for arbitrary D . Theorem 1.4 calculating �.W �

d2/ was established in [35]
when d is prime and was conjectured for arbitrary d . In [47] Lelièvre and Royer
established Theorem 1.4 independently by counting square-tiled surfaces using the
theory of quasimodular forms.
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With the calculation of �.WD/, we now know the Euler characteristics of all of the
Teichmüller curves in M2 which are generated by Abelian differentials with a double
zero. The number of cusps of WD was calculated by McMullen in [54]. We can also
calculate the number of elliptic points of WD using known formulas for the numbers
of elliptic points of XD and PD . Thus we can calculate the genus of WD for any D .
At this point we don’t know the number of elliptic points on the components W �

D
, so

we can’t calculate the genus of these components, but we would conjecture that the two
components have the same number of elliptic points and genera if D is not square. The
curve WD is defined over Q, so the Galois automorphism � of Q.

p
D/ acts on the

SQ points of WD . An alternative approach to showing that �.W 0
D
/D �.W 1

D
/, as well

as showing that the components have the same number of elliptic points and genera,
would be to show that � permutes the two components of WD .
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2 Abelian surfaces and real multiplication

We discuss in this section the necessary preliminaries involving Abelian surfaces.
In Section 2.1, we discuss the Siegel modular varieties which parameterize Abelian
varieties. In Section 2.2, we introduce real multiplication, and in Section 2.3, we discuss
Hilbert modular surfaces.

2.1 Abelian surfaces

Abelian varieties A complex torus is a quotient AD V =ƒ, where ƒ is a lattice in
a finite dimensional complex vector space V . A principal polarization on A is a
Hermitian form H on V such that Im H takes integral values on ƒ �ƒ, and the
pairing

Im H W ƒ�ƒ! Z

is unimodular. A principally polarized Abelian variety is a complex torus equipped
with a principal polarization.

Siegel modular varieties The Siegel upper half space is

Hg D fZ 2Mg.C/ WZ
t
DZ; Im Z > 0g;
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an open subset in the g.gC1/=2 dimensional space of symmetric matrices in Mg.C/.
The group Sp2gR acts on Hg as a group of biholomorphic transformations by�

˛ ˇ

 ı

�
�Z D .˛ZCˇ/.ZC ı/�1:

Equip ƒD Z2g with the usual symplectic form defined by the matrix

(2–1)
�

0 I

�I 0

�
:

Following [13], we define for each Z 2Hg a principally polarized Abelian surface
XZ together with a symplectic isomorphism ƒ!H1.XZ IZ/. For Z 2Hg , let

ƒZ D .Z; I/ƒ;

a lattice in Cg . Let XZ D Cg=ƒZ , and give XZ the polarization coming from the
Hermitian form on Cg defined by the matrix

.Im Z/�1:

It can be shown that two given points Z;Z0 2Hg , the polarized Abelian surfaces XZ

and XZ 0 are isomorphic if and only if Z and Z0 are equivalent under the action of
Sp2gZ.

The Siegel modular variety is Ag D Hg=Sp2gZ. From the previous paragraph, we
obtain:

Theorem 2.1 The normal analytic space Ag is the moduli space of principally polar-
ized Abelian varieties of dimension g .

Satake compactification Following [75], we briefly describe the Satake compactifi-
cation �Ag of Ag , introduced by Satake in [69].

The transformation,
Z 7! .1C iZ/.1� iZ/�1;

maps Hg biholomorphically onto the bounded symmetric domain

Dg D fZ 2Mg.C/ WZ DZt ; 1g �Z xZ > 0g:

For r � g , we map Dr into SDg by

Z 7!

�
Z 0

0 1g�r

�
;
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and let D�g D
[

0�r�g

[
h2Sp2gQ

hDr :

Satake defined a natural topology on D�g for which the action of Sp2gQ extends
continuously to an action on D�g . With this topology, the Satake showed that the
quotient �AgDD�g=Sp2gZ is a compact, normal complex analytic space which contains
one copy of Ar for each r � g . Baily showed in [4] that �Ag has the structure of a
normal projective variety.

2.2 Real multiplication

Quadratic orders Let K be a quadratic field or Q˚Q. A quadratic order is a
subring O of K such that 1 2O and O˝QDK . Any quadratic order is isomorphic
to one of

OD D ZŒT �=.T 2
C bT C c/;

where b; c 2 Z and b2� 4c DD . The isomorphism class of OD only depends on D ,
so this defines a unique quadratic order for every nonzero integer D� 0 or 1 .mod 4/.
This integer D is called the discriminant of OD , and D is a fundamental discriminant
if D is not of the form f 2E for some integers f and E with E � 0 or 1 .mod 4/

and f > 1.

If D is not square, then OD is a subring of Q.
p

D/, and OD is the ring of integers of
Q.
p

D/ if and only if D is a fundamental discriminant. Otherwise OD is a subring of
the ring of integers. If D is square, then OD is a subring of Q˚Q. In that case,

(2–2) Od2 D f.x;y/ 2 Z�Z W x � y .mod d/g:

We will regard Q˚Q as an extension of Q by the diagonal map Q!Q˚Q. The
Galois automorphism of Q˚Q is .x;y/0D .y;x/, and we can use this to define norm
and trace on Q˚Q as for a field.

For the rest of this paper, fix two nonzero homomorphisms �i W OD ! R. If D is not
square, then �i is an embedding, and if D is square, then �i is induced by one of the
two projections Z˚Z!Z. We will often abuse terminology and call �i an embedding
even when D is square. We will also use the notation �.i/ D �i.�/.

Inverse different Given a quadratic order OD , the inverse different is the fractional
ideal

O_D D fx 2KD W Tr.xy/ 2 Z; for all y 2ODg:

More concretely,

O_D D
1
p

D
OD ;
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where if D D d2 , we interpret
p

D to be .d;�d/.

We equip OD ˚O_D with the unimodular symplectic pairing

h.x1;y1/; .x2;y2/i D Tr.x1y2�x2y1/:

Real multiplication Consider an Abelian surface A D V =ƒ. Real multiplication
by OD on A is a monomorphism �W OD ! End.A/ (where End.A/ is the ring of
holomorphic endomorphisms of A) with the following properties:

� For each � 2 OD , the lift z�.�/W V ! V is self-adjoint with respect to the
Hermitian form on V given by the polarization of A.

� � is proper in the sense that it doesn’t extend to a monomorphism

�0W OE! End.A/

for some OE �OD – that is, for some OE with E D f 2D for some f > 1.

Let �.A/Š V � be the space of holomorphic one-forms on A. Since the real multipli-
cation is self-adjoint, there is an eigenspace decomposition

�.A/D�1.A/˚�2.A/:

We order the eigenspaces so that �.�/ �!D�.i/! for ! 2�i.A/. We call an eigenform
in �i.A/ an i -eigenform.

2.3 Hilbert modular surfaces

For any quadratic discriminant D , let KD DOD ˝Q, which is Q.
p

D/ if D is not
square and is Q˚Q if D is square. Define the group

SL.OD ˚O_D /D
��

a b

c d

�
2 SL2KD W a 2OD ; b 2 .O_D/

�1; c 2O_D ; d 2OD

�
:

SL.OD˚O_D / has two embeddings in SL2R induced by the two embeddings �i W KD!

R.

Definition The Hilbert modular surface of discriminant D is the quotient,

XD D H�H=SL.OD ˚O_D /;

where SL.OD ˚O_D / acts on H�H by�
a b

c d

�
� .z1; z2/D

 
a.1/z1C b.1/

c.1/z1C d .1/
;

a.2/z2C b.2/

c.2/z2C d .2/

!
:
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There is an isomorphism SL.OD ˚O_D /! SL2OD defined by�
a b

c d

�
7!

 
a 1p

D
b

p
Dc d

!
;

and the map T W H�H! H� .�H/ which is the product of the identity on the first
factor and complex conjugation on the second factor induces an isomorphism

XD Š H� .�H/=SL2OD :

Theorem 2.2 The Hilbert modular surface XD is the moduli space of all pairs .A; �/,
where A is a principally polarized Abelian surface, and �W OD ! End.A/ is a choice
of real multiplication on A.

Sketch of proof (following Mcmullen [58]) Given � D .�1; �2/ 2 H�H, let

�� W OD ˚O_D ! C2

be the embedding

�� .x;y/D .x
.1/
Cy.1/�1;x

.2/
Cy.2/�2/:

Let A� DC2=�� .OD˚O_D/ with the principal polarization induced by the symplectic
pairing on OD ˚O_D . This polarization is also given by the Hermitian form

(2–3) H� .z; w/D
1

Im �1

z1 xw1C
1

Im �2

z2 xw2:

Define real multiplication on A� by

� � .z1; z2/D .�
.1/z1; �

.2/z2/:

We thus get a map from H�H to the set of all triples .A; �; �/, where .A; �/ is a
principally polarized Abelian surface with real multiplication by OD , and � is a choice
of an OD –linear, symplectic isomorphism �W OD ˚O_D !H1.AIZ/.

Given g D

�
a b

c d

�
2 SL2KD ;

let g� D

�
a �b

�c d

�
;

and define

(2–4) �.g; �/D

�
.c.1/�1C d .1//�1 0

0 .c.2/�2C d .2//�1

�
:
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We have the following commutative diagram.

OD ˚O_D
�� //

g�

��

C2

�.g;�/

��
OD ˚O_D �g��

//
C2

Thus �.g; �/ induces an isomorphism between A� and Ag�� which preserves the
polarizations and commutes with the action of real multiplication. We then get a map
from XD to the set of all principally polarized Abelian surfaces with a choice of real
multiplication, which can be shown to be a bijection.

Replacing each pair .A; �/ with .A; �0/, where �0 is the composition of � with the
Galois automorphism of OD , induces an involution � of XD . The lift of � to the
universal cover H�H of XD is given by z�.z1; z2/D .z2; z1/.

There is a natural map j W XD !A2 which forgets the choice of real multiplication.
This map j is generically two to one and is equivariant with respect to � .

Baily–Borel compactification We can regard the boundary @H�P1.C/ as P1.R/Š

R[f1g. Given a real quadratic field K � R, define an embedding P1.K/! P.R/2

by
Œx W y� 7! .Œx W y�; Œx0 W y0�/:

When D is not square, define via this embedding

.H�H/D D .H�H/[P1.KD/:

When D is square, define

.H�H/D D .H[P1.Q//� .H[P1.Q//:

We give H [ P1.Q/ the usual topology where if r 2 P1.Q/, then a basis of open
neighborhoods of r is given by sets of the form U [ frg, where U � H is an open
horoball resting on r . We then give .H�H/d2 the product topology. When D is not
square, there is a similar natural topology on .H�H/D , which is described in [75].

The action of SL.OD˚O_D / on H�H extends continuously to .H�H/D . The quotient,

yXD D .H�H/D=SL.OD ˚O_D /;

is compact and Hausdorff. The space yXD is the Baily–Borel compactification of XD .

Geometry & Topology, Volume 11 (2007)



Euler characteristics of Teichmüller curves in genus two 1905

Theorem 2.3 (Baily [4]) The compactification yXD is a normal, projective, algebraic
variety.

When D is not square, yXD nXD consists of finitely many points, which we will call
the cusps of XD . When D D d2 , the image of P1.Q/�P1.Q/ in yXd2 also consists
of finitely many points which we will call the cusps of yXd2 . In yXd2 , let

R1
d2 D �

 [
r2P1.Q/

H� frg

!
;

and let R2
d2 D �

 [
r2P1.Q/

frg �H

!
;

where � W .H�H/D! yXD is the natural quotient map. Then we have a disjoint union

yXd2 DXd2qR1
d2qR2

d2qC;

where C is the set of cusps of yXd2 .

For d 2 N, define

�1.d/D

��
a b

c e

�
2 SL2Z W a� e � 1 .mod d/; and c � 0 .mod d/

�
:

Proposition 2.4 The curve Ri
d2 is irreducible, and

Ri
d2 Š H=�1.d/:

Proof By (2–2), we can regard SL2Od2 as

(2–5) f.A;B/ 2 .SL2Z/2 WA� B .mod d/g:

Since SL2Z acts transitively on P1.Q/, we have

R1
d2 D H� f1g=StabH�f1g :

The matrices A in the pair .A;B/ 2 StabH�f1g are exactly the matrices which are
congruent to an upper triangular matrix mod d . Thus R1

d2 is as claimed.

When D is not square, the cusps of yXD are complicated singularities; however, when
D is square, they are just orbifold singularities.
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Proposition 2.5 The Baily–Borel compactification yXd2 is a compact, complex orb-
ifold with singularities at the elliptic points of Xd2 , the elliptic points of Ri

d2 , and
possibly the cusps of yXd2 .

Proof Consider the principal congruence subgroup

�.d/D fA 2 SL2Z WA� I .mod d/g:

The product,
�.d/��.d/� SL2Od2 ;

is a finite index, normal subgroup. We have

.H�H/d2=.�.d/��.d//D H=�.d/�H=�.d/;

which is a manifold, so

yXd2 D .H=�.d/�H=�.d//=G;

where G D SL2Od2=.�.d/� �.d//, a finite group. Thus yXd2 is compact orbifold
with singularities at the fixed points of G .

The involution .z1; z2/ 7! .z2; z1/ of H�H extends continuously to .H�H/D , so the
involution � extends to an involution � of yXD , which preserves the cusps of yXD . If
D D d2 , then we also have �.R1

d2/DR2
d2 .

Theorem 2.6 The natural map j W XD !A2 extends to a finite morphism j W yXD !�A2 which sends the cusps of yXD to the point A0 2A2 and sends the curves Ri
D

to
A1 .

This allows us to define yXD alternatively in terms of the image of XD in �A2 . Recall
the notion of the normalization of a variety in a finite algebraic extension of its function
field discussed in Appendix A.

Corollary 2.7 The Baily–Borel compactification yXD is the normalization of the
closure of j .XD/ in �A2 in the field K.XD/, the function field of XD .

Line bundles on XD We now discuss some bundles on XD , which will be used in
Section 9. For i D 1 or 2, define an action of SL.OD ˚O_D / on .H�H/�C by�

a b

c d

�
� .z1; z2; w/D

 
a.1/z1C b.1/

c.1/z1C d .1/
;

a.2/z2C b.2/

c.2/z2C d .2/
; .c.i/zi C d .i//2w

!
:

The quotient is a line bundle over XD , which we call Li .
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We define a Hermitian metric zhi on .H�H/�C by defining on the fiber over .z1; z2/,

zhi.w;w/D y2
i jwj

2:

The metric zhi is SL.OD ˚O_D /–invariant, so it descends to a Hermitian metric hi on
Li . The Chern form of zhi is,

c1.Li ; hi/D�
i

�
@x@ log.yi/

D
1

2�

dxi ^ dyi

y2
i

;(2–6)

so the Chern form of hi is c1.Li ; hi/D !i , where !i is the 2–form on XD covered
by the form (2–6) on H�H.

Define line bundles

�iXD D f.A; !/ WA 2XD and ! 2�i.A/g

and QiXD D .�
iXD/

˝2;

for i D 1 or 2. We will mostly use these bundles when i D 1, so we will write �XD

or QXD for �1XD or Q1XD .

For A 2 XD , the polarization defines a Hermitian metric on �.A/, which restricts to
a Hermitian metric on �i.A/. Put this Hermitian metric on each �i.A/ to define a
Hermitian metric hi

�
on �iXD . Let hi

Q
be the induced metric on QiXD .

Proposition 2.8 There is an isomorphism Li!QiXD which preserves the Hermitian
metrics on these bundles. Thus,

c1.Q
iXD ; h

i
Q/D !i :

Proof Define a map f W .H�H/�C!QiXD by

.�; w/ 7! .A� ; w dz2
i /;

where A� D C2=�� .OD ˚O_D/ is as in the proof of Theorem 2.2. With �.g; �/ as in
(2–4), we have

�.g; �/�dz2
i D .c

.i/�i C d .i//2dz2
i :

This means that f descends to an isomorphism Li!QiXD as claimed. The fact that
this isomorphism preserves the Hermitian metrics follows directly from the formula
(2–3) for the polarization.
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The product foliation of H �H with leaves of the form fcg �H is invariant under
SL.OD ˚O_D /. Let AD be the induced foliation of XD , and let

T �AD !XD

be the line bundle whose fiber over a point p is the cotangent bundle to the leaf of AD

through p . We give the leaves of AD their hyperbolic metric, and give T �AD the
induced Hermitian metric hAD

. The following is easy to check.

Proposition 2.9 There is an isomorphism L2 ! T �AD preserving the Hermitian
metrics. Thus,

c1.T
�AD ; hAD

/D !2:

The following relation between �XD and T �AD will be used in Section 10.

Proposition 2.10 For any p 2XD , there is a neighborhood U of p in the leaf L of
AD through p and a section ! of �XD over U such that the periods of the forms
!.z/ are constant over U .

Proof Let
.�1; �2/ 2 zXD D H�H

lie over p in the universal cover of XD . Define a section s of � zXD by

s.�1; �2/D dz1 2�
1.A.�1;�2//;

with A� as in the proof of Theorem 2.2. By the definition of A� , the periods of
s.�1; �2/ only depend on �1 , so are constant along AD .

Euler characteristic of XD We now discuss the Euler characteristic �.XD/, which
by the generalized Gauss–Bonnet theorem is given by the volume,

�.XD/D

Z
XD

!1 ^!2;

where !i are the 2–forms on XD defined by (2–6). The volume of XD was calculated
by Siegel when D is a fundamental discriminant.

For any number field K , the Dedekind zeta-function of K is defined by

�K .s/D
X

a

1

N K
Q
.a/s

;
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where the sum is over all nonzero ideals a in ring of integers in K . If KDQ, then �K
is just the Riemann zeta-function. The definition of �K also makes sense if KDQ˚Q.
In that case,

�Q˚Q.s/D �Q.s/
2:

�K can be analytically continued to a meromorphic function on C which has a simple
pole at s D 1.

Theorem 2.11 (Siegel [73]) When D is a fundamental discriminant, and D ¤ 1,

�.XD/D 2�KD
.�1/:

We will also want to know �.XD/ when D is not a fundamental discriminant. For
integers a and b with b > 0, let �a

b

�
be the Kronecker symbol, defined in Miyake [59, p 82].

Theorem 2.12 If D is a fundamental discriminant, and f 2 N, then

�.Xf 2D/D

(
1=36 if D D f D 1;

1=6 if D D 1 and f D 2.

Otherwise,

(2–7) �.Xf 2D/D 2f 3�KD
.�1/

X
r jf

�
D

r

�
�.r/

r2
:

Remark When D D 1, (2–7) reduces to

�.Xd2/D 1
72

d3
X
r jd

�.r/

r2
:

We will derive Theorem 2.12 from Theorem 2.11 in a sequence of lemmas.

Lemma 2.13 We have

ŒPSL2Z�PSL2Z W PSL2O4�D 6;

ŒPSL2Z�PSL2Z W PSL2Od2 �D 1
2
d3
X
r jd

�.r/

r2
if d > 2.and
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Proof We will regard SL2Od2 as the subgroup of SL2Z�SL2Z given in (2–5). The
natural map,

SL2Z! SL2.Z=d/;

is surjective by [59, Theorem 4.2.1] and has kernel the principal congruence subgroup
�.d/, so we have the exact sequence

0! �.d/��.d/! SL2Od2 ! SL2.Z=d/! 0:

ŒSL2Od2 W �.d/��.d/�D jSL2.Z=d/j;Thus,

ŒSL2Z�SL2Z W SL2Od2 �D
ŒSL2Z�SL2Z W �.d/��.d/�

ŒSL2Od2 W �.d/��.d/�
(2–8)

D jSL2.Z=d/j:

By [59, Theorem 4.2.4],

jSL2.Z=d/j D d3
X
r jd

�.r/

r2
:

The kernel of SL2Z�SL2Z! PSL2Z�PSL2Z has order 4. The kernel of SL2Od2!

PSL2Od2 has order 4 if d D 2 and order 2 if d > 2. The desired formulas follow
from this and (2–8).

Lemma 2.14 For any fundamental discriminant D ¤ 1, we have

ŒPSL2OD W PSL2Of 2D �D f
3
Y
pjf

�
1�

�
D

p

�
p�2

�

D f 3
X
r jf

�
D

r

�
�.r/

r2
:

Proof Since the map SL2Of 2D ! PSL2Of 2D has kernel ˙I , we have

ŒPSL2OD W PSL2Of 2D �D ŒSL2OD W SL2Of 2D �:

The natural map,

SL2OD=SL2Of 2D !

Y
pjf

p prime

SL2.OD=p/=SL2.Z=p/;

is a bijection. Thus, we need only to show that

ŒSL2.OD=p/ W SL2.Z=p/�D p3
�

�
D

p

�
p
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for every prime pjf .

First, suppose that .D=p/D�1: This means that p remains prime in OD , so OD=pŠ

Fp2 , where we write Fq for the unique finite field of order q . It is easy to show that

jSL2Fqj D q3
� q;

for any q . Thus
ŒSL2Fp2 W SL2Fp �D p3

Cp

as desired.

Now suppose that .D=p/D 1. This means that p splits in OD , so OD=p Š Fp˚ Fp .
Therefore,

ŒSL2.OD=p/ W SL2.Z=p/�D ŒSL2Fp �SL2Fp W SL2Fp �

D jSL2Fpj

D p3
�p:

Finally, suppose that .D=p/ D 0: This means that p ramifies in OD , so OD=p Š

Fp.�/=.�
2 ). We have �

aC a0� bC b0�

cC c0� d C d 0�

�
2 SL2.Fp.�/=.�

2//

if and only if

ad � bc D 1;(2–9)

da0C ad 0� cb0� bc0 D 0:(2–10)

For any .a; b; c; d/ satisfying (2–9), there are p3 solutions to (2–10). Thus,

ŒSL2.Fp.�/=.�
2// W SL2Fp �D p3:

Proof of Theorem 2.12 Since the natural map Xf 2D !XD is an orbifold covering
map, we have

�.Xf 2D/D �.XD/ŒPSL2OD W PSL2Of 2D �;

so the claim follows from Lemma 2.13, Lemma 2.14, and Theorem 2.11 together with

�.X1/D
1

36

because X1 Š H=SL2Z�H=SL2Z, and

�.H=SL2Z/D�1
6
:
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Modular forms For any fundamental discriminant D > 0, define

H.2; f 2D/D�12�KD
.�1/

X
r jf

�.r/

�
D

r

�
r�3

�
f

r

�
;

where �m.n/D
X
d jn

dm;

and we also adopt the convention that

�m.0/D
1
2
�Q.�m/;

and �m.n/D 0 if n< 0. Also define

H.2; 0/D �Q.�3/D 1
120
:

The function HW H! C;

H.�/D
X

D�0;1 .4/
D�0

H.2;D/qD ; .with q.�/D e2�i� /

D�
1

120
�

1
12

q� 7
12

q4
�

2
5
q5
� q8
�

25
12

q9
� 2q12

� 2q13
�

55
12

q16
� : : : ;

was shown by Cohen in [19], to be a modular form of weight 5=2 for the group �0.4/.
See the discussion in Chapter IX of [75] for more about this form and its relation to
XD .

It is an elementary argument using Möbius inversion to show that for any fundamental
discriminant D and f 2 N;

(2–11) H.2; f 2D/D�12
X
sjf

�
�KD

.�1/s3
X
r js

�
D

r

�
�.r/

r2

�
:

From this and Theorem 2.12, we obtain:

Theorem 2.15 If D ¤ 1 is a fundamental discriminant, thenX
r jf

�.Xr2D/D�
1
6
H.2; f 2D/:

Siegel and Cohen gave the following simple formula for H.2;D/.
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Theorem 2.16 [74; 19] If D is not square, then

H.2;D/D�1
5

X
e�D .2/

�1

�
D� e2

4

�
:

When D is square,

H.2;D/D�1
5

X
e�D .2/

�1

�
D� e2

4

�
�

D

10
:

We will obtain an alternative proof of these formulas in Section 11.

The product locus In XD , define the product locus PD to be the set of all A 2 XD

such that A is a polarized product of elliptic curves. The locus PD was studied in [54]
and [58]. The locus PD is also a union of modular curves, which were studied in [34]
and [75].

Let zPD � H � H be the inverse image of PD in XD . The locus PD is a linear
subvariety of XD in the following sense.

Proposition 2.17 [54] zPD is a countable union of graphs of Möbius transformations
H! H.

The goal of the rest of this section is to calculate �.PD/. We will work with an
auxiliary covering space QD of PD defined as follows.

Let �Q be the space of pairs of elliptic curves equipped with Abelian differentials;
that is,

(2–12) �QD�A1 ��A1 D GLC
2

R=SL2Z�GLC
2

R=SL2Z;

where GLC
2

R is the subgroup of GL2R consisting of matrices of positive determinant.
In �Q, let �QD be the locus of pairs ..E1; !1/; .E2; !2// such that the product

(2–13) .E1; !1/˚ .E2; !2/ WD .E1 �E2; !1C!2/

is an eigenform for real multiplication by OD . The projectivization,

QD D P�QD ;

is a union of curves.

We now describe the connected components of �QD following [54]. A prototype for
real multiplication by OD is a triple of integers .e; l;m/ such that

D D e2
C 4l2m; l;m> 0; and .e; l/D 1:
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To each such prototype, we associate a prototypical eigenform Q.e; l;m/ as follows.
Let � be the unique positive root of �2� e�� l2mD 0, and consider the lattices in C

ƒ1 D Z.�; 0/˚Z.0; �/;(2–14)

ƒ2 D Z.lm; 0/˚Z.0; l/:

Let Ei D C=ƒi , and equip Ei with the form !i covered by dz on C. Let

Q.e; l;m/D .E1; !1/˚ .E2; !2/:

From the description of �Q in (2–12), we obtain an action of GLC
2

R on �Q induced
by the diagonal action of GLC

2
R on GLC

2
R�GLC

2
R.

Theorem 2.18 [54, Theorem 2.1] The locus �QD is invariant under the action of
GLC

2
R. Each component is a GLC

2
R orbit which contains exactly one prototypical

eigenform Q.e; l;m/ and is isomorphic to GLC
2

R=�0.m/:

Remark Here �0.m/ is the congruence subgroup of SL2Z defined by

�0.m/D

��
a b

c d

�
2 SL2Z W c � 0 .mod m/

�
:

Theorem 2.19 For any nonsquare discriminant D , we have

(2–15) �.QD/D�5�.XD/:

If D D d2 with d � 2, then we have

(2–16) �.Qd2/D� 1
72

d2.5d � 6/
X
r jd

�.r/

r2
:

Proof We first claim that

(2–17)
X
sjf

�.Qs2D/D�
1
6

X
e�f 2D .2/

�f
p

D<e<f
p

D

�1

�
f 2D� e2

4

�

for any fundamental discriminant D and f 2 N. By Theorem 2.18, there is one
component of QD for each prototype .e; l;m/ which is isomorphic to H=�0.m/. By
[59, Theorem 4.2.5],

�.H=�0.m//D  .m/;

where  .m/D�1
6
m

Y
pjm

p prime

�
1C

1

p

�
:
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It is elementary to show that for any n 2 N,

�
1
6
�1.n/D

X
nDl2m
l;m2N

 .m/:

By Theorem 2.18,X
r jf

�.Qf 2D/D
X

f 2DDe2C4l2m
l;m>0

 .m/

D�
1
6

X
e�f 2D .2/

�f
p

D<e<f
p

D

�1

�
f 2D� e2

4

�
;

which proves (2–17).

If D ¤ 1 is a fundamental discriminant, then for any f 2 N, we haveX
r jf

�.Qr2D/D
5
6
H.2; f 2D/D�5

X
r jf

�.Xr2D/

by Theorem 2.16 and (2–17), from which (2–15) follows by Möbius inversion.

Now for any d 2 N, we have

(2–18) 1
72
C

X
r jd
r>1

�.Qr2/D 5
6
H.2; d2/C

d2

12

by Theorem 2.16 and (2–17), and using the convention that �1.0/ D �1=24. From
(2–11), we get for any d 2 N,

(2–19) H.2; d2/D
X
sjd

 
�

1
12

s3
X
r js

�.r/

r2

!
:

It follows from Möbius inversion that for any d 2 N,

(2–20) d2
D

X
sjd

 
s2
X
r js

�.r/

r2

!
:

Define f .d/D

(
1=72 if d D 1

�.Qd2/ if d > 1:
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Combining (2–18), (2–19), and (2–20), we obtainX
sjd

f .s/D
X
sjd

 �
�

5
72

s3
C

1
12

s2
�X

r js

�.r/

r2

!
;

which implies (2–16) by Möbius inversion.

There is an involution of �QD which interchanges the order of the two factors in
(2–12). This involution preserves �QD and so restricts to an involution � of �QD .
The involution � preserves the fibers of the bundle �QD ! QD , so it induces an
involution x� of QD .

Lemma 2.20 The involution x� fixes pointwise the component of QD containing the
prototypical eigenform Q.e; l;m/ if and only if

(2–21) x�Q.e; l;m/DQ.e; l;m/:

The only such component on which � is the identity is the one containing Q.0; 1; 1/.

Proof First, note that (2–21) holds if and only if ƒ1 Dƒ2 in (2–14), which is true if
and only if mD 1 and �D l . The only prototype for which this holds is .0; 1; 1/, so
(2–21) is true if and only if .e; l;m/D .0; 1; 1/.

Clearly, (2–21) must hold for x� to be the identity on the component containing
Q.e; l;m/. Conversely, if (2–21) does hold, then .e; l;m/D .0; 1; 1/, and

�.g �Q.0; 1; 1//D g �Q.0; 1; 1/

for any g 2 GLC
2

R because � commutes with the action of GLC
2

R on �QD . Thus �
fixes every point of the GLC

2
R–orbit of Q.0; 1; 1/, which is exactly the component of

�Q4 containing Q.0; 1; 1/.

There is natural map � W �QD !�PD defined by

(2–22) �..E1; !1/; .E2; !2//D .E1; !1/˚ .E2; !2/

which descends to a map x� W QD ! PD .

Lemma 2.21 The map x� W QD!PD factors through to an isomorphism of orbifolds,
z� W QD=x� ! PD .

Proof The map x� factors because the right hand side of (2–22) does not depend on
the order of the Ei . It is clearly onto. That x� is one-to-one follows from the following
fact about Abelian surfaces: a principally polarized Abelian surface can have at most
one representation as a polarized product of elliptic curves.
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Theorem 2.22 If D is not square, then

�.PD/D�
5
2
�.XD/:

If D D d2 , then

(2–23) �.Pd2/D� 1
144

d2.5d � 6/
X
r jd

�.r/

r2

when d > 2, and
�.P4/D�

1
6
:

Remark The formula (2–23) was proved previously by Kani [37; 38] and Schmoll
[70].

Proof By Theorem 2.18, Q4 consists of a single component containing Q.0; 1; 1/.
Thus by Lemma 2.20 and Lemma 2.21, P4 ŠQ4 , and QD is a twofold cover of PD

when D > 4. The claim then follows from Theorem 2.19.

3 Prototypes

3.1 PD , WD , and YD –prototypes

Curves in YD nXD will be classified by certain discrete numerical invariants which we
call YD –prototypes. They are almost (but not quite) the same as the splitting prototypes
introduced by McMullen in [54] to classify the cusps of WD .

Definition A YD –prototype of discriminant D is a quadruple .a; b; c; xq/ with a; b; c2

Z and xq 2 Z= gcd.a; b; c/ which satisfies the following six properties:

(1) b2� 4ac DD

(2) a> 0

(3) c � 0

(4) gcd.a; b; c; xq/D 1

(5) aC bC c � 0

(6) aC bC c and c are not both zero.
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Let YD be the set of YD –prototypes. Define a map �W YD ! KD by associating
to each prototype P D .a; b; c; xq/ of discriminant P the unique algebraic number
�.P / 2 KD such that a�.P /2 C b�.P /C c D 0 and �.1/ > 0. This makes sense
because if c < 0, then the two roots of ax2C bxC c D 0 have opposite signs, and if
c D 0, then the condition that aCb < 0 implies that the nonzero root of a�2Cb�D 0

is positive. It is easy to check that the last condition aC bC c � 0 is equivalent to
�.1/ � 1.

We say that a prototype is terminal if aC bC c D 0; it is initial if a� bC c D 0; and
it is degenerate if c D 0. Terminal, initial, and degenerate prototypes only arise if D

is square. We define the involution,

(3–1) .a; b; c; xq/ 7! .�c;�b;�a; xq/;

on the set of terminal prototypes. We consider two terminal prototypes to be the same
if they are related by this involution. Similarly, we consider two degenerate prototypes
to be the same if they are related by the involution,

(3–2) .a; b; 0; xq/ 7! .�b� a; b; 0; xq/;

on the set of degenerate prototypes.

Operations on YD –prototypes Given a nonterminal prototype P , define the next
prototype PC by

PC D

(
.a; 2aC b; aC bC c; xq/; if 4aC 2bC c � 0I

.�a� b� c;�2a� b;�a; xq/; if 4aC 2bC c � 0:

Given a nondegenerate prototype P , define the previous prototype P� by

P� D

(
.a;�2aC b; a� bC c; xq/; if a� bC c � 0I

.�c;�bC 2c;�aC b� c; xq/; if a� bC c � 0:

Its easy to check that PC and P� are actually prototypes of the same discriminant
and that

.PC/� D .P�/C D P

when these operations are defined.
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On the level of �.P /, we have

�.PC/D

(
�.P /� 1; if �.P /.1/� 1� 1I

1=.�.P /� 1/; if �.P /.1/� 1< 1I

�.P�/D

(
�.P /C 1; if N

KD

Q
.�.P /C 1/� 0I

.�.P /C 1/=�.P /; if N
KD

Q
.�.P /C 1/ > 0:

and

Define an involution t on the set of prototypes of discriminant D by

t.a; b; c; xq/D

(
.a;�b; c; xq/; if a� bC c � 0I

.�c; b;�a; xq/; if a� bC c � 0:

Define the multiplicity of a nondegenerate prototype P by

mult.P /D
gcd.a; c/

gcd.a; b; c/
:

PD and WD –prototypes In addition to the YD –prototypes, we will define similar
objects which we call PD and WD –prototypes. These will classify the cusps of the
curves PD and WD .

Definition A PD –prototype of discriminant D is a quadruple, .a; b; c; xq/ with
a; b; c 2 Z and xq 2 Z= gcd.a; c/ which satisfies the following five properties:

(1) b2� 4ac DD

(2) a> 0

(3) c < 0

(4) gcd.a; b; c; xq/D 1

(5) aC bC c � 0

Note that the only difference between YD and PD –prototypes are that for PD –
prototypes, xq ranges in a potentially larger group, and c is not allowed to be zero.

A WD –prototype of discriminant D is a quadruple, .a; b; c; xq/ with a; b; c 2 Z and
xq 2 Z= gcd.a; c/ which satisfies the same properties as above except that the last one
is replaced with

aC bC c < 0:

Let PD and WD be the sets of PD and WD –prototypes. Just as for the YD –prototypes,
we have natural maps �W WD ! KD and �W PD ! KD . By reducing xq modulo
gcd.a; b; c/, there are natural maps PD ! YD and WD ! YD .

We will see in Section 8.1 that these maps encode intersections of cusps of WD and
PD with curves in YD nXD .
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Relation with splitting prototypes In [54], McMullen defined a splitting prototype
to be a quadruple of integers .a; b; c; e/ satisfying certain properties. Splitting proto-
types correspond bijectively to our WD –prototypes by sending the splitting prototype
.a; b; c; e/ to the WD –prototype .c; e;�b; xa/.

3.2 Quasi-invertible OD –modules

In this section, we will study a class of OD –modules which arises naturally in the study
of our compactification of the Hilbert modular surface. We will also study a class of
bases of these modules whose combinatorics is closely related to the geometry of the
compactification. This material will only be used in Section 7.

Definition An OD –module M is quasi-invertible if M ŠZ˚Z as an Abelian group,
and M contains some element x such that Ann.x/D 0.

Examples If D is a fundamental discriminant, then every quasi-invertible OD –module
is actually invertible. Since OD is a Dedekind domain, the set of isomorphism classes
of such modules forms a group, the ideal class group of OD .

If D is not square, then a quasi-invertible OD –module is just an invertible OE –module
over some order OE containing OD . A quasi-invertible OD –module is invertible if and
only if it is primitive in the sense that it is not also a module over any OE containing
OD .

In this paper, quasi-invertible OD –modules will arise in the following way:

Proposition 3.1 If M �OD˚O_D is a Lagrangian OD –submodule which has Z–rank
two, then M is quasi-invertible.

Proof This is trivial if D is not square because then OD ˚O_D is torsion-free, so
suppose D D d2 . Let M �Od2 ˚O_

d2 be a rank two Lagrangian submodule which
is not quasi-invertible, and let fu1;u2g be a basis of M . We must then have either
.d; 0/ �ui D 0 for i D 1; 2, or .0; d/ �ui D 0 for i D 1; 2, or else there would be some
x 2M such that Ann.x/D 0. For concreteness, suppose we are in the second case.
Then we must have

ui D ..ai ; 0/; .bi ; 0//

for some a1; bi 2Q.

Since M is Lagrangian, we know that

0D hu1;u2i D TrQ˚Q
Q

ˇ̌̌̌
.a1; 0/ .a2; 0/

.b1; 0/ .b2; 0/

ˇ̌̌̌
D a1b2� a2b2;
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so u1 D ru2 for some r 2Q. This contradicts the fact that the ui are a basis.

Embeddings in KD A lattice in KD is a rank two Abelian subgroup. Given a lattice
M �KD , the set

fx 2KD W xM �M g

is called the coefficient ring of M . It is an order in KD .

Proposition 3.2 An OD –module M is quasi-invertible if and only if it is isomorphic
to some lattice M �KD whose coefficient ring contains OD .

If M is quasi-invertible, then the embedding M !KD is unique up to multiplication
by a non–zero divisor in KD .

Proof If D is not square, then it is clear that a lattice M �KD whose coefficient ring
contains OD is a quasi-invertible OD –module because M is automatically torsion-free.
If D D d2 , then M could have Ann.x/¤ 0 for every x 2M only if M �Q˚f0g

or M � f0g˚Q. This cannot happen because M has rank two.

Conversely, suppose M is a quasi-invertible OD –module with x 2 M such that
Ann.x/D0. Since M is torsion-free as an Abelian group, the natural map M!M˝Q

is injective. The tensor product M ˝Q is a KD –module and a two-dimensional vector
space over Q, so the map KD!M ˝Q defined by r 7! r �x is an isomorphism. The
inverse of this map embeds M as a lattice whose coefficient ring contains OD . Since
the image of x determined the embedding, it is unique up to constant multiple.

It is easy to identify the coefficient ring of a lattice in KD . Let M� be the lattice
generated by f1; �g. For � 2 KD , let ��.t/ be the minimal polynomial of �, the
unique polynomial ��.t/D at2C bt C c such that a; b; c 2 Z, a> 0, ��.�/D 0, and
gcd.a; b; c/D 1.

Proposition 3.3 [14, p 136] If � 2 KD n Q with � .t/ D at2 C bt C c , then
the coefficient ring of M� is the order ZŒa��, which is isomorphic to OD , where
D D b2� 4ac .

Admissible bases Since a quasi-invertible OD –module M can be embedded in KD

uniquely up to constant multiple, for any u, v 2M with Ann.v/¤ 0, the ratio u=v is
a well-defined element of KD .

Definition A basis fu; vg of a quasi-invertible OD –module M is admissible if
Ann.v/D 0 and N

KD

Q
.u=v/ < 0.
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We will consider two admissible bases of M to be equivalent if they are the same
as subsets of M=˙ 1. The following proposition gives a complete classification of
quasi-invertible OD –modules together with an admissible basis.

Proposition 3.4 Every pair .M; fu; vg/, where M is a quasi-invertible OD –module
together with an admissible basis fu; vg, is equivalent to one of the form .M�; f1; �g/,
where �.1/ � 1 and  .�/D 0, where

 .t/D at2
C bt C c

for some integers .a; b; c/ such that:

(1) b2� 4ac DD

(2) a> 0

(3) c < 0

(4) aC bC c � 0

(5) OD D ZŒa��

Pairs .M�; f1; �g/ and .M�; f1; �g/ of this form are equivalent if and only if �D��1 .

Proof If u.1/=v.1/ ¤ ˙1, then by Proposition 3.2, there is a unique embedding
M !KD which – after possibly switching u and v and changing their signs – sends
u to 1 and v to some � 2KD with �.1/ > 1. The coefficient ring of the image M� is
OE , where D D s2E for some quadratic discriminant E . Let ��.t/D a0t2C b0t C c0

be the minimal polynomial of �. By Proposition 3.3, we have b02 � 4a0c0 D E and
OE D ZŒa0��. We have c0 < 0 because N

KD

Q
.u=v/ < 0. Since �.1/ > 1, we know that

a0Cb0C c0 < 0. The integers .a; b; c/D s.a0; b0; c0/ then have the required properties.

If u.1/=v.1/D˙1, then there are two embeddings M !KD as above, one sending u

to 1 and v to �; the other sending u to ��1 and v to 1. As in the above paragraph,
both embeddings yield a presentation of .M; fu; vg/ in the desired form.

We can define a map from the set of nondegenerate YD –prototypes to the set of
isomorphism classes of admissible bases of quasi-invertible OD –modules by sending
P to .M�.P/; f1; �.P /g/. This proposition implies that this map is onto and that two
prototypes are sent to the same admissible basis if and only if their integers a, b , and
c are the same.
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Characterization of admissible bases We now describe a useful characterization
of admissible bases. Given two quasi-invertible OD –modules M and N , a perfect
pairing is a bilinear map

hW M �N ! Z

such that h.� �x;y/D h.x; � �y/

for each x 2M , y 2N , and �2OD , and such that the induced map M !Hom.N;Z/
is an isomorphism.

Given such a perfect pairing and a basis fu; vg of M , let fu�; v�g be a dual basis of
N , and define

sign.u; vI h/D sign.�M .u/�M .v/�N .u
�/�N .v

�//;

where �M and �N are �1 –linear, nonzero maps M ! R and N ! R. Note that
sign.u; vI h/ is invariant under changing the sign of u or v as well as independent of
the choice of �M and �N .

Theorem 3.5 Given a quasi-invertible OD –module M , a basis fu; vg is an admissible
basis if and only if sign.u; vI h/D 1 for some (or any) perfect pairing hW M �N ! Z.

Proof Assume that M is embedded in KD . If either u.1/ D 0 or v.1/ D 0, then
sign.u; vI h/D 0, and the basis is not admissible, so we are done. Since M is quasi-
invertible, it can’t happen that u.2/ D v.2/ D 0, so assume u.2/ ¤ 0.

Assume without loss of generality that uD 1. By possibly changing the sign of v , we
can suppose v.1/ > 0. Then v.2/ < 0 if and only if fu; vg is admissible. Since N and
the perfect pairing h are unique up to isomorphism, we can suppose without loss of
generality that N DM_ , the inverse different of M , and that h is the trace pairing
M �M_! Z.

u� D
�v0

v� v0
Define

v� D
1

v� v0
:

It is easy to check that fu�; v�g is dual to fu; vg with respect to the trace pairing. If
fu; vg is admissible, then v.2/<0, in which case .u�/.1/; .v�/.1/>0, so sign.u; vI h/>
0. If fu; vg is not admissible, then v.2/� 0. If v.2/> 0, then .u�/.1/ and .v�/.1/ have
opposite signs, so sign.u; vI h/D�1. If v.2/D 0, then .u�/.1/D 0, so sign.u; vI h/D
0.
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Admissible triples We are also interested in special triples of elements of quasi-
invertible OD –modules which will arise naturally in the study of compactifications of
Hilbert modular surfaces.

Definition An admissible triple in a quasi-invertible OD –module M is an unordered
triple of elements fa; b; cg �M=˙ 1 such that:

� ˙a˙ b˙ c D 0 for some choice of signs.

� Some pair of elements of the triple form an admissible basis of M .

Proposition 3.6 Every pair .M;T /, where M is a quasi-invertible OD –module with
an admissible triple T �M , is equivalent to one of the form

.M�; f1; �; �� 1g/;

where �.1/ � 1 and
a�2
C b�C c D 0

for some integers .a; b; c/ such that:

(1) b2� 4ac DD

(2) a> 0

(3) c � 0

(4) aC bC c � 0

(5) OD D ZŒa��

(6) aC bC c and c are not both zero.

Two such pairs .M�; f1; �; ��1g/ and .M�; f1; �; ��1g/ with �¤ � are equivalent
if and only if �.1/ D 1 and �D ��1 or if �.2/ D 0 and �D �=.�� 1/.

Proof Let fu; v; wg �M be an admissible triple and assume that M is embedded
in KD . This triple contains at least one admissible basis, so assume without loss of
generality that fu; vg is an admissible basis. There are now three cases to consider,
depending on whether Ann.w/D 0, w.1/ D 0, or w.2/ D 0.

First suppose that Ann.w/D 0. Then fu; v; wg contains exactly two admissible bases
because

N
KD

Q

�u

v

�
N

KD

Q

� v
w

�
N

KD

Q

�w
u

�
D 1:

Suppose without loss of generality that u is contained in both bases. Dividing everything
by u, we can assume uD 1. By possibly switching v and w and changing their signs,
we can put the triple uniquely in the form f1; �; �� 1g with �.1/ > 0. Let .a; b; c/ be
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as in Proposition 3.3 applied to M� . Since �.1/�.2/ < 0 and .�.1/� 1/.�.2/� 1/ < 0,
we must actually have �.1/ > 1, and it follows that aCbC c < 0. The other necessary
properties of a, b , and c follow from Proposition 3.3.

Now assume w.1/D 0. In this case, KD DQ˚Q, and there are two ways two put the
triple in the form, f1; �; �� 1g, where �D .1; s/ with s < 0: either divide fu; v; wg
by u, or divide by v and swap the first two elements. With .a; b; c/ as in Proposition
3.3 applied to M� , it follows that aC b C c D 0 and c < 0. The other necessary
properties are clear, and the two � which arise in this way are u=v and v=u, so they
are reciprocal.

Now assume w.2/ D 0. Dividing the triple by u and switching v and w puts it in the
form f1; �; �� 1g with �D .s; 0/. Since �� 1D .s� 1;�1/ has negative norm, we
must have s > 1. It follows that if .a; b; c/ are as in Proposition 3.3 applied to M� ,
we must have c D 0 and aC b < 0. Alternatively, we could have divided the triple
by v and rearranged the elements to put it in the form f1; �; �� 1g with �D .t; 0/.
Then t > 1 by the same argument, and t D s=.s� 1/.

The converse statement that triples of the given form are admissible is not hard and
will be left to the reader.

Just as for admissible pairs, we can define a map from the set of YD prototypes to the
set of isomorphism classes of quasi-invertible OD –modules with admissible triples,
sending .a; b; c; xq/ to .M�; f1; �; �� 1g/ as above. Since we identified two terminal
or degenerate prototypes if they are related by the involutions (3–1) and (3–2), two
prototypes have the same image if and only if they have the same a, b , and c .

4 Abelian differentials

In this section, we recall known material about Abelian differentials (holomorphic
one-forms) on compact Riemann surfaces. In Section 4.1, we discuss the flat geometry
associated to an Abelian differential. In Section 4.2, we discuss moduli spaces of
Abelian differentials and the action of SL2R on these spaces. In Section 4.3, we
discuss McMullen’s results on the dynamics of this action in genus two.

4.1 Flat geometry of Abelian differentials

A Riemann surface with a nonzero Abelian differential carries a canonical flat geometry,
which is closely related to the study of billiards in rational angled polygons, as well as
the study of flows on moduli space. In this paper, this geometry will be useful because
it will allow us to deform Abelian differentials using some concrete cut-and-paste
operations which we will describe in this section.
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Translation surfaces Let X be a Riemann surface with a nonzero Abelian differential
! , and let Z.!/ be the discrete set of zeros of ! . Every point of X which is not a zero
of ! has a neighborhood U and a conformal map �W U !C such that !jU D ��.dz/.
The conformal map � can be defined explicitly by

�.z/D

Z z

z0

!

for a choice of base point z0 . These coordinates � are unique up to translation by a
constant.

We can also put ! in a standard form in the neighborhood of a zero or a pole at z0 .
There is a neighborhood U of z0 and conformal map

�0W .U; z0/! .C; 0/

such that

(4–1) !jU D

(
��

0
.zndz/; if z0 is not a simple pole;

��
0
.a dz=z/; if z0 is a simple pole with nonzero residue a.

Since the local coordinates � away from the zeros of ! are unique up to translation
by a constant, any translation invariant geometric structure on C is inherited by X .
In particular, X inherits a flat metric and an oriented foliation Fh coming from the
foliation of the plane by horizontal lines. More generally, for slope s 2 P1.R/, the
surface X has an orientable foliation Fs coming from the foliation of C by lines of
slope s .

In terms of the Abelian differential ! , the flat metric is just j!j. A vector v is tangent
to Fh in the positive direction if !.v/ > 0.

The flat metric has singularities at the zeros. From the coordinates (4–1), we see that a
zero of order n has a neighborhood isometric to a cone with cone angle 2�.nC 1/,
and the foliation Fh has 2nC 2 leaves meeting at the zero. Zeros of orders one and
two together with the foliation Fh are pictured in Figure 2.

To summarize, we have associated to an Abelian differential .X; !/, a flat metric on
X nZ.!/ together with a horizontal foliation Fh which is parallel with respect to a
metric such that the points of Z.!/ are cone singularities of the metric. A surface
with such a structure is sometimes called a translation surface. A translation surface is
equivalent to a Riemann surface with a nonzero Abelian differential.

A geodesic on .X; !/ is called straight if it does not pass through any zeros of ! . A
straight geodesic which joins two zeros is called a saddle connection. Any straight,
closed geodesic is contained in a cylinder on X by taking nearby parallel geodesics. If
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Figure 2: Zeros of order one and two

the genus of X is greater than one, any cylinder can be extended until either end contains
a zero of ! and each boundary component is a finite union of saddle connections. Such
a cylinder is called a maximal cylinder.

Plumbing a cylinder Cylinders arise from simple poles: by (4–1), a simple pole of
an Abelian differential has a neighborhood which is isometric to a half-infinite cylinder.
Given a meromorphic Abelian differential .X; !/ with simple poles at p and q such
that

(4–2) Resp ! D�Resq !;

there is a simple surgery operation which allows us to replace the poles at p and q with
a cylinders. Cut X along two closed geodesics, one in each of the two half-infinite
cylinders around p and q , and then glue X along the resulting boundary components
by an isometry. The condition (4–2) means exactly that this gluing map is locally a
translation; therefore, we get a new Abelian differential with two fewer poles. Call
this operation plumbing a cylinder. It depends on two parameters: the height of the
resulting cylinder and the amount of twisting of the gluing map.

We can reverse this operation to replace a cylinder with two simple poles. Just cut
a cylinder along a closed geodesic, and then glue two half-infinite cylinders to the
resulting boundary components Call this operation unplumbing a cylinder. These
operations will be used in Section 6 to define polar coordinates around the boundary of
the Deligne–Mumford compactification of moduli space.

Connected sums Two Abelian differentials .X1; !1/ and .X2; !2/ can be combined
into one by taking a connected sum. This operation is studied in detail in [57].
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Let I be a line segment in the complex plane. Suppose I is embedded in each of the
surfaces .Xi ; !i/ by an isometric embedding �i W I ! Xi preserving the slope of I

as well as its length. Now cut each of the Xi along I , and glue the surfaces together
by gluing one boundary component along I on one of the surfaces to the opposite
boundary component on the other surface. The gluing maps are just translations in the
flat structures on the .Xi ; !i/, so the resulting surface has a flat structure as well away
from the ends of I . By the Riemann removable singularity theorem, the conformal
structure and Abelian differential can actually be extended to the ends of I . Thus we
obtain a new Abelian differential .X; !/. If the segments �i.I/�Xi are disjoint from
the zeros of ! , then the ! has a simple zero at each endpoint of the glued segment.

We call the resulting Abelian differential,

.X; !/D .X1; !1/#I .X2; !2/;

the connected sum of .X1; !1/ and .X2; !2/ along I .

This construction can be modified in the obvious way to perform a self connected
sum of an Abelian differential with itself, given two parallel embeddings of I in that
Abelian differential.

An Abelian differential .X; !/ resulting from a connected sum has two simple zeros
p and q and two oriented saddle connections I1 and I2 going from p to q such that

(4–3)
Z

I1

! D

Z
I2

!:

Given any Abelian differential .X; !/ with a pair of oriented, embedded saddle con-
nections I1 and I2 both beginning and ending at the same zeros and satisfying (4–3),
we can reverse the connected sum operation. To do this, cut X along I1 and I2 and
then reglue to get a new Abelian differential .X 0; !0/. Equation (4–3) implies that this
gluing can be done by a translation. This operation is called splitting along I1 and I2

and is inverse to the connected sum operation.

In this paper, there are two main cases where we will use these constructions. First,
suppose .X1; !1/ and .X2; !2/ are both genus one, and a segment I �C is embedded
in each by embeddings �i as above. Then we can form the connected sum along I ,
and the resulting Abelian differential has genus two with two simple zeros. Conversely,
splitting a genus two Abelian differential along a pair of saddle connections I1 and I2

such that I1[ I2 separates the surface yields a pair of genus one Abelian differentials.

Second, given an genus one Abelian differential with two embedded segments Ii

which are parallel and of the same length, we can form a self connected sum along
these segments. This again yields a genus two Abelian differential with two simple
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zeros. Conversely, splitting along a pair of saddle connections on a genus two Abelian
differential satisfying (4–3) which don’t separate the surface yields a single genus one
Abelian differential.

Splitting a double zero There is also a cut-and-paste operation which replaces a zero
of an Abelian differential with two zeros of lower order. This operation is explained
in detail in Kontsevich and Zorich [43] and Eskin, Masur and Zorich [23]. We will
describe this operation in the case of a double zero, the only case we need.

Let .X; !/ be an Abelian differential with a double zero at p , and choose a straight
geodesic segment I starting at p . The segment I is a leaf of the foliation F� of some
slope � . On X , draw an “X” composed of the segment I and three other geodesic
segments of the same length and slope as in Figure 3. (In this figure, leaves of F� are
represented by dotted or solid lines, with the orientation indicated by an arrow, and the
“X” is represented by solid lines. Two consecutive segments meeting at the zero form a
180ı angle.) Assume that I was chosen to be short enough so that each arm of the “X”
is an embedded straight geodesic on X not meeting any of the other arms.

I

A

A

B

B

C

C

D

D

A B C D

Figure 3: Splitting a double zero
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Now cut the surface along the “X” to obtain a surface with eight geodesic boundary
components, and then glue the boundary components pairwise so that the components
marked with the same letter in Figure 3 are glued together. The result is a new Abelian
differential with simple zeros at the two points where four leaves of F� meet in the
figure. We will denote this new Abelian differential by

.X; !/#I :

This operation can also be reversed in the obvious way. Given a saddle connection of
length l joining two distinct zeros, draw two more segments of length l=2 emanating
from the zeros with the same slopes as in the bottom of Figure 3. If these segments
can be drawn without intersecting each other or any other zero, then the process of
splitting a double zero can be reversed: cut along these three segments and then reglue,
following Figure 3 in reverse. This operation is called collapsing a saddle connection.

This operation, together with the connected sum operation, will be used in Section 12
to parameterize tubular neighborhoods of SWD and xPD in YD .

4.2 Moduli of Abelian differentials

In this subsection, we introduce the moduli space of Abelian differentials and discuss
its geometry.

Teichmüller space Let †g be a connected, closed, oriented, topological surface of
genus g , and let †g;n be a genus g topological surface with n marked points. A
marked Riemann surface is a Riemann surface X together with a homeomorphism
†g;n!X . Two marked Riemann .f;X / and .g;Y / marked by †g;n are considered
to be equivalent if g ı f �1 is homotopic to a conformal isomorphism by a homotopy
fixing the marked points.

Let the Teichmüller space T .†g;n/ be the space of all Riemann surfaces marked by
†g;n up to equivalence. It has a topology induced by the well-known Teichmüller
metric and is homeomorphic to CN , where

N D

8̂̂̂̂
<̂
ˆ̂̂:

1 if g D 1 and nD 0 or 1;

n� 1 if g D 1 and n> 1;

n� 3 if g D 0 and n> 2;

3g� 3C n if g > 1:

We will use the abbreviation Tg;n or Tg when we don’t need to emphasize the surface
†g .

Bers gave Tg;n a complex structure by defining an embedding BW Tg;n! CN which
is a homeomorphism onto its image, a bounded domain in CN .
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Moduli space The modular group Mod.†g/ is the group of all self homeomorphisms
of †g up to isotopy. Similarly, Mod.†g;n/ is the group of all self homeomorphisms
which preserve the marked points, up to isotopy preserving the marked points.

An element  2Mod.†g;n/ acts on T .†g;n/ by replacing a marking

f W †g;n!X

with f ı �1 . This defines a biholomorphic action of Mod.†g;n/ on T .†g;n/ which
is properly discontinuous. Let Z �†g;n be the set of marked points. The stabilizer of
a point .f;X / is isomorphic to the group Aut.X; f .Z// of conformal automorphisms
of X preserving the marked points. In genus two, every Riemann surface has an
order-two automorphism J , the hyperelliptic involution. This yields an element of
order two in Mod.†2/ which acts trivially on T .†2/.

The moduli space of genus g Riemann surfaces with n marked points is the quotient

Mg;n D T .†g;n/=Mod.†g;n/:

Mg;n is a complex orbifold.

Bundles of Abelian differentials Given a Riemann surface X , let �.X / be the space
of Abelian differentials on X , a rank g complex vector space. Let �Tg be the space
of all pairs .X; !/ with X 2 Tg and ! 2�.X / a nonzero Abelian differential. We can
give �Tg the structure of a trivial holomorphic punctured vector bundle as follows.

Over Tg , there is the universal curve CTg , defined by Bers in [10]. It is a complex
manifold and comes with a proper map � W CTg ! Tg whose fiber over a Riemann
surface X is isomorphic to X itself. The cotangent bundle to the fibers of � is a line
bundle L! CTg . The push-forward ��O.L/ of the sheaf of sections of L is a sheaf
on Tg . The following theorem follows from Bers [9].

Theorem 4.1 The sheaf ��O.L/ is the sheaf of sections of a trivial bundle over Tg

whose fiber over a Riemann surface X is �.X /.

The action of the mapping class group Modg on Tg extends to an action on �Tg .
The quotient is a rank g orbifold vector bundle �Mg over Mg whose fiber over a
Riemann surface X is the quotient �.X /=Aut.X /. This bundle is sometimes called
the Hodge bundle.

In general, when S is any sort of space of Riemann surfaces, �S will denote the
natural bundle of Abelian differentials over S .
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Strata The bundles �Tg have a natural stratification in terms of the types of zeros of
the Abelian differentials. Each nonzero Abelian differential on a nonsingular Riemann
surface has 2g�2 zeros, counting multiplicity. Given a sequence of integers nD .ni/

r
iD1

such that
P

ni D 2g� 2, let �Tg.n/ be the locus of all Abelian differentials which
have r zeros whose multiplicities are given by the ni . This locus is a locally closed
subset of �Tg , and by Veech [78] it is actually a complex submanifold. The quotient

�Mg.n/D�Tg.n/=Mod

is then a complex suborbifold of �Mg .

Period coordinates These strata have natural coordinates defined in terms of their
periods by Veech [78] and Masur [49] which give the stratum �Tg.n/ the structure of
an affine manifold.

There is a fiber bundle of homology groups

H1!�Tg.n/;

whose fiber over an Abelian differential .X; !/ is H1.X;Z.!/IZ/; where Z.!/ is the
set of zeros of ! . Given two Abelian differentials .X1; !1/, and .X2; !2/ 2�Tg.n/
with .X2; !2/ sufficiently close to .X1; !1/ there is a natural isomorphism

H1.X2;Z.!2//!H1.X1;Z.!1//:

This defines a flat connection on H1 , the Gauss–Manin connection.

Consider .X; !/2�Tg.n/ and a small neighborhood U of .X; !/. Any .X 0; !0/2U

defines an element of H 1.X 0;Z.!0/IC/ via the periods of !0 . Composing this with
the isomorphism

H 1.X 0;Z.!0/IC/!H 1.X;Z.!/IC/

from the Gauss–Manin connection, we get a map

�W U !H 1.X;Z.!/IC/;

the period coordinates. Veech [78] showed that these are in fact biholomorphic coordi-
nate charts.

A choice of basis of H1.X;Z.!/IZ/ defines an isomorphism

H 1.X;Z.!/IC/! C2gCn�1;

where n is the number of zeros of ! . We can suppose that the basis is of the form,

(4–4) fu1; : : : ;u2g; v1; : : : ; vn�1g;
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where fu1; : : : ;u2gg is a symplectic basis of H1.X IZ/. Two such bases are related
by a matrix in the group

G D

��
A B

0 C

�
WA 2 Sp2gZ; B 2M2g;n.Z/; C 2 GLnZ

�
:

Changing the basis by a matrix in G changes the period coordinates by the transpose
of this matrix. This gives �Tg.n/ the structure of an .G;C2gCn�1/–manifold, and
�Mg.n/ inherits the structure of a .G;C2gCn�1/–orbifold.

Measures Since the action of GLnZ on Cn preserves Lebesgue measure, we can
pull back this measure by the period coordinates to get the period measure �.n/ on
�Mg.n/.

The flat metric defined by an Abelian differential has area given by

Area.!/D
i

2

Z
X

! ^ x!:

Let ��1Mg.n/ be the locus of Abelian differentials with Area.!/�1, and �1Mg.n/
the locus of Abelian differentials with Area.!/D 1 (we will use the prefixes ��1 and
�1 to denote the analogous subsets of any space of Abelian differentials). We can
define a measure �0.n/ on �1Mg.n/ by restricting �.n/ to �� 1Mg.n/ and then
projecting by the natural map ��1Mg.n/!�1Mg.n/.

The following theorem was proved by Veech and Masur:

Theorem 4.2 [49; 78] The measures �0.n/ have finite total volume.

Action of SL2R Given a nonzero Abelian differential .X; !/ 2 �Tg , we can as
in Section 4.1 choose an atlas of coordinate charts �i W Ui ! C, which cover the
complement in X of the zeros of ! , such that �i pulls back the form dz on C to the
form ! on X . These coordinate charts differ by translations on their overlap. Now,
given an element A 2 SL2R, define new coordinate charts �0i DA ı�i by composing
with the usual action of A on the complex plane. The new coordinates still differ
by translations and so define a new translation surface. This defines a new Abelian
differential A � .X; !/ 2�Tg which has a different complex structure than X unless
A happens to be a rotation in SO2R. If .X 0; !0/DA � .X; !/, then there is a natural
real-affine map hAW .X; !/! .X 0; !0/ which takes zeros to zeros. The periods satisfy
the relation,

(4–5) !0..hA/�. //DA �!. /;

for any  2H1.X;Z.!// with Z.!/ the set of zeros of ! .
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This construction defines an action of SL2R on �Tg . This action commutes with the
action of Mod and so defines an action of SL2R on �Mg which preserves the locus
�1Mg of Abelian differentials with area one.

Equation (4–5) can be used to show that the measure �.n/ is SL2R invariant, as is
�0.n/.

This action is closely related to the Teichmüller geodesic flow: the projection �Mg!

Mg sends SL2R orbits to copies of the hyperbolic plane in Mg which are isometrically
embedded with respect to the Teichmüller metric, and the restriction of the action to
the one parameter subgroup of diagonal matrices is the Teichmüller geodesic flow.

The strata �Mg.n/ and �1Mg.n/ are invariant under the action of SL2R. The
measures � and �0 defined in Section 5.2 are invariant measures by (4–5).

The natural projection �1Mg! P�Mg sends SL2R orbits to immersed copies of
the hyperbolic plane, giving a foliation FMg of P�Mg by immersed hyperbolic
planes. It is possible for a leaf of FMg to be a closed subset of P�Mg . In that case
it is called a Teichmüller curve because it is an algebraic curve whose projection to Mg

is isometrically immersed with respect to the Teichmüller metric. It is an important
unsolved problem to classify Teichmüller curves in P�Mg or more generally to
classify orbit closures or invariant measures.

4.3 SL2R orbits in genus two

In genus two, McMullen has completely classified the orbit closures for the action of
SL2R on �1M2 and the ergodic, invariant measures in the series of papers [52; 57;
54; 56]. In this subsection, we will discuss the subsets of �1M2 which appear in this
classification and which will be the focus of this paper.

A SL2R–invariant subset S of �1M2 corresponds to a subset PS of P�M2 which
is saturated in the sense that leaves of the foliation FM2 are either contained in
or disjoint from PS . Invariant measures on �1M2 correspond by a disintegration
construction to holonomy invariant measures transverse to FM2 . In this paper, we
will adopt this point of view and focus on leaves of this foliation rather than on SL2R

orbits in �1M2 .

Eigenform loci A form .X; Œ!�/ 2 P�M2 is an eigenform for real multiplication by
OD if the Jacobian of X has real multiplication by OD with ! a nonzero eigenform.
Let the eigenform locus ED be the locus of all such pairs. The following proposition
follows from [57, Corollary 5.7].

Proposition 4.3 ED is a closed, saturated subset of P�M2 .
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An embedding �i W OD ! R determines a map

ji W ED !XD

by sending an eigenform .X; !/ 2ED to the pair .Jac.X /; �/, where

�W OD ! End Jac.X /

is chosen so that
!.�.�/ �  /D �.i/!. /

for each  2 H1.X IZ/. Recall that in Section 2, we introduced the locus PD of
Abelian varieties in XD which are polarized products of elliptic curves. The following
follows from Proposition 5.4.

Proposition 4.4 The map ji is an isomorphism of ED onto XD nPD .

In this paper, we will implicitly identify ED with XD nPD by the isomorphism j1 .

Let FD be the foliation of ED by Riemann surfaces induced by the foliation FM2

of P�M2 . The foliation FD of ED extends to a foliation – which we will continue
to call FD – of XD defined by adding the connected components of PD as leaves of
FD . McMullen [58] proved that this is actually a foliation of XD .

Choice of real multiplication Given an eigenform .X; Œ!�/ 2 ED , there are two
choices of real multiplication �W OD ! Jac.X /. We always choose � so that ! is a
1–eigenform in the terminology of Section 2.2.

Elliptic differentials There is a useful alternative characterization of eigenforms
.X; !/ for real multiplication by Od2 .

A branched cover f W X !E from a Riemann surface to an elliptic curve is said to
be primitive if it does not factor through an isogeny of elliptic curves gW E0 ! E

of degree greater than one. Equivalently, f is primitive if the map on homology
f�W H1.X IZ/!H1.EIZ/ is surjective.

An Abelian differential .X; !/ is called an elliptic differential if it is the pullback of a
nonzero Abelian differential on an elliptic curve by a primitive branched cover. The
degree of an elliptic differential is the degree of the cover.

Proposition 4.5 [57, Theorem 4.10] The locus of degree d elliptic differentials in
�M2 is exactly �Ed2 .
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There is a special class of elliptic differentials called square-tiled surfaces. A square-
tiled surface is an Abelian differential which is pulled back from the square elliptic
curve .C=ZŒi �; dz/ by some (not necessarily primitive) cover branched only over 0.
Equivalently, an Abelian differential is square-tiled if and only if its absolute and
relative periods all lie in the Gaussian integers ZŒi �. All square-tiled surfaces lie on
Teichmüller curves.

Weierstrass curves A genus two Abelian differential is a Weierstrass form if it is an
eigenform for real multiplication by some quadratic order OD and if it has a double
zero. Its discriminant is the discriminant D of the order OD . The Weierstrass forms
are parameterized by the Weierstrass form bundle �WD , which is a line bundle over
the Weierstrass curve

WD WD P�WD �XD :

Theorem 4.6 [54] WD is a union of Teichmüller curves which is nonempty if and
only if D � 5. If D D 9 or if D 6� 1 mod 8, then WD is connected. Otherwise WD

has two connected components.

Remark When D D p2 for some prime p , this statement was first proved in [35].

When WD has two connected components, they are denoted by W 0
D

and W 1
D

. They
are distinguished by a topological invariant called the spin invariant. This is easy
to describe when D D d2 . In that case, an Abelian differential .X; !/ 2 �Wd2 is
branched over an elliptic curve .E; �/ by a d –fold branched cover f W X !E . Let p

be the unique zero of ! , one of the six Weierstrass points of X . Of the six Weierstrass
points, N of them have the same image in E as p , with either N D 1 or N D 3. If
N D 1, then .X; !/ lies in �W 0

D
, and if N D 3, then .X; !/ lies in �W 1

D
.

Let �WD be the inverse image of WD in the universal cover H�H of XD .

Proposition 4.7 [52] �WD is a countable union of graphs of transcendental holomor-
phic maps H! H.

Equivalently, WD is transverse to the absolute period foliation AD of XD introduced
in Section 2.3.

Period coordinates for �ED Let ED.1; 1/DED nWD , and let �ED.1; 1/ be the
bundle of nonzero eigenforms, that is, the line bundle over ED.1; 1/ whose fiber over
.X; Œ!�/ is the line spanned by ! . We can define period coordinates on �ED.1; 1/ in
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the same way as we defined period coordinates on the strata �Mg.n/. This material
will only be used in Section 15.

Let zED.1; 1/D H�H n �WD ;

the inverse image of ED.1; 1/ in the universal cover of XD , and let � zED.1; 1/ be
the (trivial) bundle of eigenforms. Given an .X; !/ 2 � zED.1; 1/, the homology
group H1.X;Z.!/IZ/ contains H1.X IZ/ as a subgroup which is equipped with an
isomorphism

OD ˚O_D !H1.X IZ/:

The condition that ! is an eigenform is equivalent to the period map

P! W H1.X IZ/! C

being OD –linear, with OD acting on C via the embedding �1 . Let

H 1
OD
.X;Z.!/IC/

be the subspace of H 1.X;Z.!/IC/ consisting of all linear maps

H1.X;Z.!/IZ/! C

that are OD –linear on H1.X IZ/.

Now consider .X; !/ 2 � zED.1; 1/. For a sufficiently small neighborhood U of
.X; !/, any .X 0; !0/ 2 U defines an element of H 1

OD
.X;Z.!/IC/ by composing the

period map P!0 with the isomorphism coming from the Gauss–Manin connection,

H1.X;Z.!/IZ/!H1.X
0;Z.!0/IZ/;

which is OD –linear on H1.X IZ/. This give biholomorphic period coordinates

�W U !H 1
OD
.X;Z.!/IC/:

Consider a triple .˛; ˇ;  /�H1.X;Z.!/IZ/ such that:

� .˛; ˇ/ is a basis of H1.X IZ/ over OD .

� H1.X IZ/˚h i DH1.X;Z.!/IZ/.

Such a triple determines an isomorphism

H 1
OD
.X;Z.!/IZ/! C3:

Two such triples are related by a matrix in the group

G D

��
A B

0 C

�
2 GL3KD WA 2 SL.OD ˚O_D /; B 2OD ˚O_D ; C D˙1

�
:

Geometry & Topology, Volume 11 (2007)



1938 Matt Bainbridge

Changing the triple by a matrix in G changes the period coordinates by the transpose
of this matrix. This gives � zED.1; 1/ the structure of an .G;C3/–manifold, and
�ED.1; 1/ inherits the structure of a .G;C3/–orbifold.

These period coordinates are compatible with the action of SL2R in the sense that
�W U !C3 commutes with the two SL2R actions, where SL2R acts on C coordinate-
wise by identifying each C factor with R2 .

By pulling back Lebesgue measure on C3 via these charts, we define a measure �D

on ED.1; 1/. We can use this measure to define a measure �0
D

on �1ED.1; 1/, using
the same trick we used to define the measures �0.n/ above Theorem 4.2.

Theorem 4.8 [57] The measures �0
D

are finite, ergodic, SL2R–invariant measures.

Cusps of WD We describe here McMullen’s classification of cusps of WD from [54],
which will play a crucial role in our calculation of �.W �

D
/.

Given an Abelian differential .X; !/ 2�1Mg and a slope s 2 P1.R/, the foliation
Fs of X is periodic if every leaf of the foliation is either a saddle connection joining
zeros of ! , or a closed loop on X . A periodic foliation divides X into finitely many
maximal cylinders Ci foliated by closed leaves of Fs . The complement of

S
Ci is a

union of saddle connections on X called the spine of .X; !/.

Two periodic foliations Fsi
of .Xi ; !i/ 2 �1Mg are equivalent if there is some

A 2 SL2R such that A � .X1; !1/D .X2; !2/ and A � s1 D s2 .

Now restrict to the case of Weierstrass forms .X; !/ 2WD . If D is not square, then a
periodic foliation decomposes X into two cylinders; if D is square, then a periodic
foliation decomposes X into either one or two cylinders (see Theorem 4.3 of [54]).

A Weierstrass form .X; !/ 2�1WD together with a periodic foliation Fs determines
a cusp of WD . Let N � SL2R be the upper-triangular subgroup consisting of all
matrices

Nt D

�
1 t

0 1

�
:

Let g2SL2R be some matrix taking s to 0 (so that the horizontal foliation of g �.X; !/

is periodic). The map
t 7! g�1Ntg

defines a path on �1WD , which happens to cover a closed horocycle h on WD .
Replacing .X; !; s/ with an equivalent periodic foliation gives a horocycle homotopic
to h. Homotopy classes of closed horocycles on a Riemann surfaces S correspond to
cusps of S , so this construction associates a cusp of WD to every equivalence class
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of periodic foliations. This correspondence is in fact a bijection; see, for example,
Theorem 4.1 of [54].

We say that a cusp of WD is a one-cylinder cusp or a two-cylinder cusp if the associated
periodic foliation has one cylinder or two cylinders respectively. One cylinder cusps
only arise on WD if D is square. An example of a foliation associated to a one-cylinder
cusp is given by gluing the edges of a three-by-one rectangle as in Figure 4 and taking
the horizontal foliation.

Figure 4: One cylinder cusp of W9

McMullen [54] classified the cusps of WD by identifying them with splitting prototypes.
We will describe his classification here using the equivalent WD –prototypes from
Section 3.

To the prototype P D .a; b; c; xq/, we associate the surface .XP ; !P / formed by gluing
a square in C with unit length sides to the parallelogram with sides 0, �D �.P /, r ,
and �C r , where � is the unique positive root of

a�2
C b�C c D 0;

and r D�
q

c
�� i

a

c
�;

and then gluing opposite sides of the resulting polygon (see Figure 5). This .XP ; !P /

is an eigenform for real multiplication by OD where D is the discriminant of P . The

0 �

�C rr

Figure 5: Cusp of WD

horizontal foliation of .XP ; !P / is periodic and so determines a cusp wP of WD .
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Theorem 4.9 [54, Theorem 4.1] The map P 7! wP described above determines a
bijection between the set of WD –prototypes and the set of two-cylinder cusps of WD .

We will also need to know which connected component of WD contains a given cusp
wP . Given an order OD , define the conductor of OD to be the positive integer f such
that D D f 2E with E a fundamental discriminant.

Theorem 4.10 [54, Theorem 5.3] The cusp wP of WD associated to the WD –
prototype P D .a; b; c; xq/ is contained in the component W

�.P/
D

, where

(4–6) �.P /�
b�f

2
C .aC 1/.qC cC qc/ .mod 2/;

and f is the conductor of OD .

Other Teichmüller curves When the discriminant D is square, there is an infinite
family of Teichmüller curves on Xd2 parameterizing Abelian differentials with two
simple zeros. Given .X; !/ 2 �Xd2 , let f W .X; !/! .E; �/ its associated degree
d torus cover. Define �Wd2 Œn� to be the locus of all differentials such that the two
branch points of f in E differ by torsion of degree exactly n in the group law on
E , and define Wd2 Œn��Xd2 be its projectivization. The locus Wd2 Œn� is a union of
Teichmüller curves. Note that Wd2 Œ0� contains Wd2 but is in general larger because
X can have distinct zeros which are branched over the same point of E .

There is one more example of a genus two Teichmüller curve which comes from an
infinite family discovered by Veech. For even n, consider the Abelian differential
obtained by gluing opposite sides of the regular n–gon. Veech [79] showed that the
SL2R orbit of this differential lies on a Teichmüller curve Dn . The Abelian differential
coming from the decagon is an genus two Abelian differential with two simple zeros.
Its orbit is a Teichmüller D10 curve lying on X5 .

Classification of SL2R orbit closures in genus two It happens that every SL2R

orbit-closure on �1M2 or ergodic, invariant measure is one of the ones just described.

Theorem 4.11 [57; 56] Every closure of an SL2R orbit in �1M2 is either all
of �1M2 , or one of the following submanifolds: �1M2.2/, �1ED , �1D10 , a
connected component of �1WD , or a component of �1Wd2 Œn�.

Furthermore each of these orbit closure carries a unique ergodic, absolutely continuous,
SL2R–invariant probability measure. These are all of the ergodic, SL2R–invariant
probability measures on �1M2 .

The only gap remaining in this classification is to describe the connected components
of Wd2 Œn�.
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5 Deligne–Mumford compactification of moduli space

5.1 Stable Riemann surfaces

A nodal Riemann surface is a connected, compact, one-dimensional, complex analytic
space with only nodes as singularities (a node is a transverse crossing of two nonsingular
branches). Equivalently, a nodal Riemann surface can be regarded as a finite type
Riemann surface with finitely many cusps which have been identified pairwise to form
nodes. A connected component of a nodal Riemann surface X with its nodes removed
is called a part of X , and the closure of a part of X is an irreducible component of X .
In this paper the genus of a nodal Riemann surface X will mean its arithmetic genus,

g D 1��.OX /;

where OX is the structure sheaf of X . In topological terms, the arithmetic genus of a
nodal Riemann surface X is the genus of the nonsingular Riemann surface obtained
by replacing each node of X with an annulus.

A stable Riemann surface is a connected nodal Riemann surface for which each part
has non-Abelian fundamental group (or equivalently negative Euler characteristic).

A nodal Riemann surface X has a normalization zX !X defined by separating the
two branches passing through each node of X .

Stable Abelian differentials A stable Abelian differential on a stable Riemann surface
X is a holomorphic 1–form on X minus its nodes such that:

� Its restriction to each part of X has at worst simple poles at the cusps.

� At two cusps which have been identified to form a node, the differential has
opposite residues.

These properties can be conveniently rephrased using the normalization. If ! is a
meromorphic Abelian differential on X , and f W zX !X is the normalization, then !
is stable if and only if f �! has at worst simple poles, and for every q 2X ,X

f .p/Dq

Resp.f �!/D 0:

A stable Riemann surface X has a dualizing sheaf !X . A stable Abelian differential
on a stable Riemann surface is just a global section of !X . This is discussed in Harris
and Morrison [31] and Hartshorne [32].
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The stable Abelian differentials on a genus g singular Riemann surface X form a
complex vector space which we will write as �.X /. The complex dimension of �.X /
is g :

h0.X; !X /D h1.X;OX /

D 1��.OX /

D g:

This fact also follows easily from the Riemann–Roch Theorem. It is also proved in
Serre [72, Theorem IV.2].

We will often use the term “Abelian differential” as shorthand for “Riemann surface
together with an Abelian differential”. We will call a node of a stable Abelian differential
.X; !/ a polar node if ! has a pole there and a holomorphic node otherwise.

Jacobians The classical notion of the Jacobian variety of a nonsingular Riemann
surface can be extended to singular Riemann surfaces.

If X is a possibly singular Riemann surface, let X0 be the set of nonsingular points
of X . Then there is a natural map H1.X0IZ/!��.X /, given by integrating forms
over homology classes. The Jacobian variety of X is the quotient

Jac.X /D��.X /=H1.X0IZ/:

In the case of a stable Riemann surface X , it is easy to describe the kernel of the map
H1.X0IZ/! ��.X /. It is the subgroup of H1.X0IZ/ generated by the relations
˛�ˇ when ˛ and ˇ are homology classes generated by curves going around the same
node of X in the “same direction” on opposite sides as in Figure 6.

˛ ˇ

Figure 6: Curves around a node

There is an exact sequence which relates the Jacobian of a nodal Riemann surface to the
Jacobian of its normalization. If zX !X is the normalization of X , then holomorphic
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Abelian differentials on zX restrict to stable Abelian differentials on X , so there is a
natural map Jac.X /! Jac. zX /. We get an exact sequence:

0! .C�/n! Jac.X /! Jac. zX /! 0;

where n is the difference of the genera of X and zX . This realizes Jac.X / as a
semi-Abelian variety.

For example, if X has genus two and one separating node, then zX is the disjoint union
of two elliptic curves. The Jacobian of X is then the product of these two elliptic
curves.

If X has genus two and one nonseparating node, then the normalization of X is an
elliptic curve E . The Jacobian of X is then an extension of E by C� . The original
stable Riemann surface X can be recovered from Jac.X /.

If X has genus two and two (or three) nonseparating nodes, then zX is P1 (or P1[P1

respectively), so Jac.X / Š C� � C� . This example shows that two distinct nodal
Riemann surfaces may have the same Jacobian.

The Jacobian of X can also be identified with Pic0.X /, the group of all line bundles
on X which have degree zero on each irreducible component of X [31, p 250].

5.2 Deligne–Mumford compactification

Marked stable Riemann surfaces Given a stable surface X of genus g , a collapse
of †g onto X is a continuous surjection f W †g!X with the following properties:
� The inverse image of each node of X is a Jordan curve on †g .
� Each component of † n f �1.N /, where N is the set of nodes of X , maps

homeomorphically, preserving the orientation, onto a part of X .

If X is nonsingular, a collapse is just a homeomorphism †g!X . These maps were
introduced by Bers; in his terminology a collapse is called a strong deformation.

A marked stable Riemann surface is a stable Riemann surface X , together with a
collapse †g!X . Two markings fi W †g!Xi are equivalent if there is a conformal
isomorphism gW X1!X2 such that the following diagram commutes up to homotopy.

†g
f1 //

f2   B
BB

BB
BB

B
X1

g

��
X2

We will sometimes denote by Œf W †g!X � the class of all marked surfaces equivalent
to f W †g!X .
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Augmented Teichmüller space The Teichmüller space T .†g/ is contained in the
augmented Teichmüller space T .†g/, the set of all marked stable genus g Riemann
surfaces up to equivalence. Let @T .†g/D T .†g/ n T .†g/.

We give T .†g/ a topology as follows. Given a closed curve  on †g , define a function
l W T .†g/!R[f1g: if  is not homotopic to a curve on X disjoint from the nodes,
let l .X /D1; if  is homotopic to a node of X , let l .X /D 0; otherwise let l .X /

be the length of the unique geodesic homotopic to  in the Poincarè metric on X

minus its nodes. Give T .†g/ the smallest topology such that l is continuous for
every closed curve  on †g . The induced subspace topology on T .†g/ agrees with
that defined by the Teichmüller metric on T .†g/.

Abikoff [1] showed that this topology is equivalent to other natural topologies on
T .†g/, such as those obtained by looking at quasiconformal maps or quasi-isometries
defined outside a neighborhood of the nodes.

Another useful topology which is equivalent to this one is the conformal topology which
is defined as follows. Let Œf W †g!X � 2 @T .†g/, and let U �X be a neighborhood
of the nodes of X . Let VU be the set of all ŒgW †g! Y � 2 T .†g/ for which f and
g can be adjusted by homotopies so that g ıf �1jX n xU is conformal. The set of all VU

as U runs over all neighborhoods of the nodes of X define a neighborhood basis of X

in T .†g/. Together with the open sets of T .†g/, this defines a topology on T .†g/.
It is well-known that this topology is equivalent to the one defined above; however, a
proof does not exist in the literature.

A curve system on †g is a collection of simple closed curves on †g , none of which
are isotopic to any other or to a point. For each curve system S , there is a subspace
T .†g;S/ � @T .†g/ consisting of marked stable Riemann surfaces Œf W †g ! X �

topologically equivalent to the collapse †g ! †g=S obtained by identifying each
curve in S to a point. For each connected component †i

g of †g nS , let Si be the
closed surface with marked points obtained by collapsing the boundary components of
†i

g to points and regarding the images of the boundary components as marked points.
There is a natural isomorphism

T .†g;S/Š
Y

i

T .Si/:

Deligne–Mumford compactification The action of Mod.†g/ of T .†g/ extends to
an action on T .†g/. The quotient,

SMg D T .†g/=Mod.†g/;
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is the Deligne–Mumford compactification of Mg . It is a compact orbifold whose
points naturally parameterize stable Riemann surfaces of genus g .

Given a curve system S �†g , let Mg.S/� SMg be the stratum of stable Riemann
surfaces homeomorphic to the topological stable surface †g=S . This is a locally closed
subset of SMg , and SMg is the disjoint union of all of the Mg.S/ as S ranges over
all isotopy classes of curve systems on †g up to the action of the modular group.

Dehn space Define for any curve system S on †2 ,

(5–1) T .†2;S/D T .†2/[
[

T�S

T .†2;T /;

where the union is over all curve systems T � S .

Given a curve system S on †g , let Tw.S/ be the group generated by Dehn twists
around the curves of S . It is an Abelian group isomorphic to Zh , where h is the
number of curves in S . Define the Dehn space D.†g;S/ to be

D.†g;S/D T .†2;S/=Tw.S/;

where the union is over all sub-curve-systems of S . We will sometimes use the notation
Dg.S/D D.†g;S/ when we don’t need to emphasize the surface †g . Bers called
D.†g;S/ the strong deformation space.

Let Stab.S/ be the subgroup of Mod.†g/ which maps S to an isotopic curve system.
Tw.S/ is a normal subgroup of Stab.S/, and the quotient,

Mod.†g;S/D Stab.S/=Tw.S/;

is the mapping class group of the topological stable surface obtained by collapsing
each curve in S to a point.

The group Mod.†g;S/ acts on D.†g;S/, and the natural map

� W D.†g;S/! SMg

is equivariant with respect to this action. Bers showed:

Proposition 5.1 [11, p 1221] If X 2D.†g;S/, and G �Mod.†g;S/ is the stabi-
lizer of X , then there is a neighborhood U �D.†g;S/ of X , stable under the action
of G , such that � factors through to a map, x� W U=G! SMg , which is homeomorphic
onto its image.
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Complex structure We now describe the complex structure on SMg , following Bers’
approach [12].

In [8], Bers defined an embedding BW T .†g/! Cn , where

nD

(
1 if g D 1I

3g� 3 if g > 1:

It is a homeomorphism onto a bounded domain, and T .†g/ inherits the complex
structure on Cn . Ahlfors [2] showed that this is the unique complex structure on
T .†g/ for which the periods of Abelian differentials vary holomorphically.

The modular group Mod.†g/ acts biholomorphically on T .†g/ with this complex
structure, so Mg inherits the structure of a complex orbifold.

Bers gives SMg a complex structure by first giving D.†g;S/ a complex structure for
each curve system S . First define a sheaf of rings O on D.†g;S/ to be the sheaf
consisting of all continuous functions D.†g;S/! C which are holomorphic on

D0.†g;S/D T .†g/=Tw.S/�D.†g;S/

with respect to the complex structure on D0.†g;S/ induced by the Bers embedding of
Teichmüller space. Given a domain, U �D.†g;S/, we consider a function f W U !C

to be holomorphic if it is in O . Bers showed that this defines an integrable complex
structure on D.†g;S/ by giving a biholomorphic isomorphism of D.†g;S/ with a
bounded domain in Cn parameterizing a certain family of Kleinian groups:

Proposition 5.2 [12] Let S D
S

Si be a curve system on †g . There is a biholomor-
phic map

BW D.†g;S/! Cn

onto a bounded domain in Cn . A curve Si is homotopic to a node on a marked stable
Riemann surface X 2D.†g;S/ if and only if

zi.B.X //D 0;

where the zi are the coordinates on Cn .

Similar embeddings of D.†g;S/ are constructed in Marden [48] and Kra [44].

Using Proposition 5.1, we give SMg the unique complex structure which makes all of
the maps D.†g;S/! SMg holomorphic.

Baily showed in [5; 6] that Mg also has the structure of a quasi-projective variety.
Wolpert [82] showed using the Weil–Petersson metric on Mg that SMg has the structure
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of a projective variety. Alternatively, Deligne–Mumford [20; 62] constructed SMg

algebraically and showed that it is a coarse moduli space for stable genus g curves,
and Knudsen–Mumford [41] showed that SMg is a projective variety.

Jacobians in genus two By associating a Riemann surface to its Jacobian, there is a
natural morphism JacWMg!Ag .

Theorem 5.3 [66] The morphism Jac extends to a morphism

JacW SMg!
�Ag;

which sends a Riemann surface X to the Jacobian of the normalization of X .

Determining the image of Jac map is in general very difficult; however, this is simple
in genus two. Let eM2 be the subvariety of SM2 consisting of nonsingular Riemann
surfaces together with pairs of elliptic curves joined at a single node. The following
proposition is well known.

Proposition 5.4 The image of JacWM2 ! A2 is exactly those Abelian varieties
which are not polarized products of elliptic curves. Furthermore, Jac extends to an
isomorphism eJacW eM2 !A2 .

Sketch of proof The image of Jac contains an open set because these varieties have
the same dimension, and Jac restricted to M2 is injective by the Torelli theorem.
Any map between complete irreducible varieties of the same dimension whose image
contains an open set is onto, so Jac is onto.

It’s easy to check that the Jacobian of a genus two Riemann surface X can’t be the
polarized product of two elliptic curves (for example this would give a degree one map
of X to an elliptic curve), so the image of M2 is exactly the complement of the locus
of polarized products.

The map eJac is also injective (since the Jacobian of a Riemann surface X formed from
two elliptic curves joined at a node is the product of those curves), so it is a bijection.
It follows that eJac is an isomorphism because it is a bijection between two normal
varieties.

Abelian differentials over SM2Œg� The bundle �T .†g/ extends to a trivial bundle
�T .†g/ over T .†g/. The quotient,

� SMg D�T .†g/=Mod.†g/;
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is the moduli space of stable Abelian differentials of genus g . It is an orbifold vector
bundle over SMg whose fiber over X is .�.X / n f0g/=Aut.X /.

Similarly, define the bundle �D.†g;S/ to be the restriction of

�T .†g;S/=Tw.S/

to D.†g;S/. This is a trivial bundle whose fiber over a marked, stable Abelian
differential .f;X / is �.X /. To see that it is trivial, choose a Lagrangian subspace
ƒ�H1.†gIZ/ which is orthogonal to the homology class of each of the curves in S .
Then ƒ is fixed pointwise by the action of Tw.S/, and

�D.†g;S/ŠD.†g;S/�Hom.ƒ;C/:

5.3 Degenerating Abelian differentials

We now study in more detail the geometry of Abelian differentials as they approach the
boundary of moduli space. For example, we will see that Abelian differentials close to a
stable Abelian differential .X; !/ with a polar node develop very long cylinders which
are pinched off to form a node in the limit. We will then use our understanding of this
geometry to study the behavior of Jacobians of Riemann surfaces near the boundary
of moduli space. Finally, we will give two applications concerning real multiplication
which will be used in Section 7.

Long cylinders The conformal topology on T .†g/ defined in Section 5.2 is compat-
ible with the topology on the trivial bundle �T .†g/ in the following sense. Consider
Œf W †g!X � 2 @T .†g/ with ! 2�.X / nonzero. Let U �X be a neighborhood of
the nodes of X , and let K> 1. Let VU;K be the set of all .ŒgW †g!Y �; �/2�T .†g/

for which f and g can be adjusted by homotopies so that g ı f �1jX n xU is conformal,
and

K�1 <

ˇ̌̌̌
.g ıf �1/��

!

ˇ̌̌̌
<K

on X n xU . It is an unpublished result that the VU;K are a neighborhood basis of
.Œf W †g!X �; !/ in �T .†g/.

We can use this description of the topology on �T .†g/ to prove the following theorem
which gives a more precise description of the shape of an Abelian differential close to
a stable Abelian differential .X; !/ with X 2 @M2 .

Theorem 5.5 Let .X; !/ 2 �T .†g/ with X 2 T .†g;S/, and let C � X be a
compact subset disjoint from the nodes. For any �; h > 0 and K > 1, there is a
neighborhood U of .X; !/ in �T .†g/ such that each .Y; �/ 2 U has the following
properties:

Geometry & Topology, Volume 11 (2007)



Euler characteristics of Teichmüller curves in genus two 1949

� The collapse Y ! X induced by the markings is homotopic to a collapse
f W Y !X which is conformal on C and satisfies

(5–2) K�1 <

ˇ̌̌̌
f �!

�

ˇ̌̌̌
<K

on C .
� Each curve in S which represents a polar node of .X; !/ is homotopic to a

cylinder on Y of height at least h.
� Suppose that  is a curve in S which represents a node n of X which is

nonseparating and such that ! does not vanish at either of the points identified
to form n. If

(5–3)
Z


�D 0;

then there are saddle connections I1 and I2 on .Y; �/ joining two distinct zeros
of � of length less than � such that  is homotopic to I1[ I2 and .Y; �/ can be
split along I1[ I2 .

Proof The first statement follows directly from the definition of the conformal topology
on �T .†g/ above.

Now let p be a polar node of .X; !/. By possibly enlarging the compact set C , we
can suppose that C contains a cylinder D of height 2h which is homotopic to a curve
going around p . If f W Y ! X is a collapse satisfying (5–2) with K < 2, then the
two boundary components of f �1.D/ are at least distance h apart. Furthermore, if
K is sufficiently small, then the boundary components of f �1.D/ both have winding
number zero, so f �1.D/ contains no zeros. Therefore f �1.D/ contains a cylinder of
height at least h, which proves the second statement.

Now suppose that p is a holomorphic node of .X; !/ and suppose that (5–3) holds. If
� is sufficiently small, then there is a neighborhood U of p isomorphic to two disks
of radius �=� joined at a point. By possibly enlarging the compact subset C �X , we
have @U � C . If .Œf W †2! Y �; �/ 2 VX nC;K with K < 2, then f �1.U / is bounded
by two curves ˇi of circumference less than 2� . Furthermore, if K is sufficiently
small, then the derivatives of f will be close to the identity, and we can assume that
the curves ˇi have winding number one and positive curvature. Since the ˇi have
winding number one, it follows from the Gauss–Bonnet Theorem that � has two zeros
in f �1.U /, counting multiplicity. Since the ˇi have positive curvature, there is a
shortest geodesic ı 2 f �1.U / generating �1.f

�1.U //. By (5–3), we have

(5–4)
Z
ı

�D 0;
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which implies that ı is not a straight geodesic, so it must be a union of saddle connec-
tions joining distinct zeros. As there are at most two zeros in f �1.U /, the curve ı
must be a union of two saddle connections I1 and I2 going from a zero q to a zero r

of �. By (5–4), we have

(5–5)
Z

I1

�D

Z
I2

�:

This means that we can split along I1 [ I2 by the discussion of splitting along a
union of saddle connections in Section 4.1. Finally, since ı is the shortest curve in its
homotopy class in f �1.U / and the length of ˇi is less than 2� , the length of Ii must
be less than � as claimed.

Semi-Abelian varieties We now introduce a topology on the space of semi-Abelian
varieties and show that the map which associates to a marked stable Riemann surface
its Jacobian is continuous.

A semi complex torus is a quotient A D V =ƒ, where V is a complex vector space
containing a discrete subgroup ƒ, such that there is an exact sequence,

0 �! .C�/n �!A
�
�! B �! 0;

where B D V 0=ƒ0 is a compact complex torus. A principal polarization h0 on B

induces a degenerate Hermitian form h on V by pulling back h0 by the lift z�W V !V 0 .
Such a Hermitian form on V is a principal polarization on A. S semi-Abelian variety
is a semi complex torus together with a principal polarization.

Equip Z2g with the usual symplectic form defined by (2–1). A marked semi-Abelian
variety is a triple .A; �; �/, where:

� A is a semi-Abelian variety.

� � �Z2g is a subgroup of Z2g on which the symplectic form vanishes and which
is saturated in the sense that if x 2 Z2g and mx 2 � for some m 2 Z, then
x 2 � .

� � is a symplectic isomorphism ıW �?!H1.AIZ/.

Let H|
g be the space of all marked semi-Abelian varieties. The subspace of H|

g

consisting of marked Abelian varieties is naturally isomorphic to the Siegel upper half
plane Hg by the discussion is Section 2.1.

We give H|
g a topology as follows. If

.An D Vn=ƒn; �n; �n/
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is a sequence in H|
g , then we say that this sequence converges to .AD V =ƒ; �; �/ if

eventually �n � � and there are linear isomorphisms  nW Vn! V with the following
properties:

� For all ˛ 2 �? ,
lim

n!1
 n ı�n.˛/D �.˛/:

� For all ˛ 2 Z2g n�? , the sequence  n ı�n.˛/ eventually leaves every compact
subset of V .

� If hn and h are the polarizations on An and A, then

lim
n!1

.�n/�.hn/D h

as Hermitian forms on V .

This defines a Hausdorff topology on H|
g .

Over H|
g is the trivial rank-two bundle �H|

g consisting of pairs .A; !/, where A2H|
g

and ! 2�.A/, the space of holomorphic one-forms on A.

A choice of a symplectic isomorphism H1.†2IZ/! Z4 defines natural maps

JacW T .†2/!H|
2

and � JacW �T .†2/!�H|
2
;

sending a marked stable Riemann surface to its Jacobian with the induced marking.

Theorem 5.6 The maps Jac and � Jac defined above are continuous.

We will sketch the proof of this theorem below.

Given any X 2 T .†2;S/, we can define a norm k � kX on H1.†2IR/, the Hodge
norm as follows. Let VS �H1.†2IR/ be the subspace generated by the curves in S .
If  … V ?

S
� H1.†2IR/, set kkX D1. On V ?

S
, let k � kX be the norm induced

by the Hermitian metric on �.X /� coming from the polarization via the embedding
V ?

S
!�.X /� . Alternatively, for  2 V ?

S
,

kkX D sup
!2�.X /
k!kD1

j!. /j;

where k!k D

�Z
X

j!j2
�1=2

:

Theorem 5.7 Let VS;Z �H1.†2IZ/ be the subgroup generated by the curves in S .
If fXng is a sequence in T .†2/ converging to X in T .†2;S/, then:
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� There exists a C > 0 such that kkXn
> C for all  2 V ?

S;Z
nVS IZ .

� For all D > 0, there exists N > 0 such that kkXn
>D for all  2H1.†2IZ/n

V ?
S;Z

if n>N .

The proof of these theorems will rely on the following lemma.

Lemma 5.8 Given any linear map RW VS ! R , there is a unique section X 7! !X of
�T .†2;S/ over T .†2;S/ (defined in (5–1)) such that:

� !X . /DR. / for all  2 VS .

� Im!X . /D 0 for all  2 V ?
S

.

Proof Let X 2 T .†2;S/. We have an exact sequence,

0 �!�. zX / �!�.X / �! Hom.VS ;C/ �! 0;

where zX is the normalization of X . Choose some � 2�.X / such that !. /DR. /

for each  2 VS . The form � defines a map,

S W V ?S =VS ! R;

by S. /D Im �. /. We have isomorphisms of real vector spaces,

H1. zX IR/! V ?S =VS ;

�. zX /! Hom.H1. zX IR/;R/;and

defined by ! 7! . 7! Im!. //. Let � 2 �. zX / induce the map S above. Then
!X D �� � is the desired form, giving the desired section over T .†2;S/.

Sketch of Proof of Theorem 5.6 Suppose we have a sequence fXng in T .†2/

converging to some X 2 T .†2;S/. To prove that Jac is continuous, we need to show:

� For every section Y 7! !Y of �T .†2;S/ and  2 V ?
S

, we have

!Xn
. /! !X . /:

� For every  2H1.†2IZ/nV ?
S

, there is a section Y 7! �Y of �T .†2;S/ such
that j�Xn

. /j !1.

We leave the proof that the polarizations converge to the reader.

If X 7! !X is a section of �T .†2;S/, then !Xn
converges uniformly to !X away

from the nodes of X as in Theorem 5.5. If  2 V ?
S

, then  is represented by a curve
on X which is disjoint from the nodes, so !Xn

. /! !. / by uniform convergence.
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Suppose  2 H1.†2IZ/ n V ?
S

. By Lemma 5.8, there is a section X 7! �X of
�T .†2;S/ such that

sign �.˛/D sign.˛ �  /

for every ˛ 2 H1.†2IZ/ representing a curve of S . If n is large, then each ˛ 2
H1.†2IZ/ representing a curve of S is homologous to a very tall cylinder C˛ on
.Xn; �Xn

/, and this cylinder contributes positively to Im �Xn
. /. If n is sufficiently

large, then the contributions from these cylinders will be much greater then that from
the rest of .Xn; �Xn

/, and we will have Im �Xn
. /!1.

Proof of Theorem 5.7 Let f�ig be a basis of �. zX / such that k�ik D 1. There is
some C 0 > 0 such that

sup
i

j�i. /j> C 0

for all  2 V ?
S;Z
=VS;Z . Let

C D 1
2

sup
i

Ci :

For each i , there is a sequence �i
n 2�.Xn/ such that

(5–6) �i
n! �i :

By Theorem 5.5, we have
k�i

nk! k�
i
k;

so we can normalize �i
n so that k�i

nk D 1 for all n, and (5–6) still holds. By the
uniform convergence statement of Theorem 5.5, we have for each i and  2 V ?

S;Z
,

j�i
n. /j>

1
2
j�i. /j

for n sufficiently large. The first claim of the Theorem follows.

Let ˛i 2H1.†2IZ/ be homology classes representing each nonseparating curve Si of
S . Choose a section Y 7! !Y of �T .†2IS/ as in Lemma 5.8 such that

!Y .˛i/ 2 R n f0g

for each i . We claim that for every C > 0 and  2H1.†2IZ/ nV ?
S;Z

such that

(5–7) sign˛ �  D sign!X .˛/;

there is some N for which we have

j!Xn
. /j

k!Xn
k
> C
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for all n>N . The second claim of the Theorem follows because we can choose finitely
many such sections so that for all  2H1.†2IZ/ nV ?

S;Z
, (5–7) holds for some section.

Let M �X be a compact subset which is a deformation retract of the complement of
the nodes. By Theorem 5.5, there are collapses gnW Xn!X such that

K�1
n <

ˇ̌̌̌
.gn/

�!X

!Xn

ˇ̌̌̌
<Kn

on Mn D g�1
n .M / with Kn � 1 and Kn ! 1. There are also cylinders Ci;n in

XnnMn which represent the homology classes ˛i such that if Hi;nD height Ci;n , then
limn!1Hi;n D1.

The class  is represented on each Xn by a closed curve n . On Xn , each cylinder
Ci;n contributes

j˛i �  jHi;n

to Im
R
 !Xn

. There are also segments of n which pass through Mn to get from one
cylinder to another. Let ˇ be such a segment. Since we chose !Xn

so that its periods
over V ?

S;Z
are all real, Im

R
ˇ !Xn

doesn’t depend on the path ˇ takes. If n is large,
then this integral will be uniformly bounded over each such path ˇ , say byˇ̌̌̌

Im
Z
ˇ

!Xn

ˇ̌̌̌
< c D diameter.M /C 1:

We have k!Xn
k D

�X
i

Hi;nCArea.M /

�1=2

�

�
r max

i
Hi;nCArea.M /

�1=2

;

where r is the number of curves in S . Also, we have

Im
Z
n

! �max
i

Hi;n� c:

Thus kkXn
�

ˇ̌̌R
n
!Xn

ˇ̌̌
k!Xn

k
�

Im
R
n
!Xn

k!Xn
k
�

maxi Hi;n� cp
r maxi Hi;nCArea.M /

!1

as n!1.

Real multiplication near @M2 We now use the two previous theorems to study
eigenforms for real multiplication near @M2 . As in the previous paragraph, we will
write VS;Z for the subgroup of H1.†2IZ/ generated by the curves in a curve system
S on †2 .
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We can define real multiplication on semi-Abelian varieties just as we did for Abelian
varieties in Section 2.2; however, we will not require real multiplication on a semi-
Abelian variety to be proper.

Theorem 5.9 Let X 2 T .†2;S/ be a stable Riemann surface whose Jacobian has
real multiplication by OD . There is a neighborhood U of X in T .†2/ such that for
each stable Riemann surface Y 2 U which has real multiplication by OD , the real
multiplication preserves the two subspaces VS;Z and V ?

S;Z
of H1.†2IZ/.

Proof Suppose fXng � T .†2/ is a sequence converging to X . If  2 VS;Z , then we
have kkX D 0, so kkXn

! 0 as n!1. Let �nW OD ! End Jac.Xn/ be a choice
of real multiplication, and let � 2OD be a generator of OD over Z. If the claim of the
Theorem is false, then taking a subsequence, we can assume that �n.�/ �  … VS;Z for
all n. We have

k�n.�/ � kXn
� sup

i

j�.i/j � kkXn
:

This is a contradiction because the right hand side of this equation goes to zero while
the left hand side is bounded below by Theorem 5.7.

The assertion that V ?
S;Z

is preserved is proved in the same way.

Recall that we have the subspace �ED ��M2 of eigenforms for real multiplication
by OD . Let �ED �� SM2 be the closure of �ED .

Theorem 5.10 Every stable Abelian differential .X; !/ 2�ED is a (not necessarily
proper) eigenform for real multiplication by OD .

Proof Suppose .Xn; !
1
n/ is a sequence in �T .†2/ is a sequence of 1–eigenforms

for real multiplication by OD converging to some .X; !1/ with X 2 T .†2;S/. Let
!2

n 2 �.Xn/ be a sequence of 2–eigenforms. Taking a subsequence and suitably
normalizing the !2

n , we can assume that !2
n ! !2 for some nonzero !2 2�.X /.

We claim that the !i span �.X /. Suppose not. Then !1 D c!2 for some c 2 C.
Choose some ˛ 2 V ?

S;Z
such that !1.˛/¤ 0, and let � 2OD nZ be a generator of OD

over Z. Then for n large,

�.1/!1.˛/� !1
n.�n.�/ �˛/� c!2

n.�n.�/ �˛/D c�.2/!2
n.˛/� �

.2/!1.˛/;

a contradiction because �.1/ ¤ �.2/ .
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Now via the dual bases to f!i
ng and f!ig, we can identify �.Xn/

� and �.X /� with
C2 . We then have natural embeddings

�nW H1.†2IZ/! C2;

�W V ?S;Z! C2and

Jac.Xn/Š C2= Im�n;such that

Jac.X /Š C2= Im�;and

and �n! � as n!1. The real multiplication on Jac.Xn/ lifts to

z�.z1; z2/D .�
.1/z1; �

.2/z2/

on C2 . Since �n! � , the map z� preserves Im� , so defines real multiplication on
Jac.X / with !1 an eigenform as desired.

6 Local coordinates for strata in � SM2

While the stratification of �M2 is very simple, consisting of only two strata, the natural
stratification of � SM2 is much more complicated. With the appropriate definition of a
stratum, there are seventeen different strata in � SM2 . It will be necessary for our study
of the compactification of XD to understand them. In particular, we will need to give
local coordinates on � SM2 around most of these strata. In Section 6.1, we will define
the stratification of � SM2 , give notation for the various strata, and list the seventeen
strata in � SM2 . In the rest of this section, we will then discuss each stratum in turn.

6.1 Strata in � SM2

Given two stable Abelian differentials .X1; !1/ and .X2; !2/ 2� SM2 , say that they
are in the same stratum of � SM2 if there is a homeomorphism f W X1!X2 with the
following properties:

� f takes zeros of !1 to zeros of !2 of the same order.

� f takes polar nodes of .X1; !1/ to polar nodes of .X2; !2/.

� f takes irreducible components of X1 on which !1 vanishes to irreducible
components of X2 on which !2 vanishes.
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Notation for strata We now introduce notation for the various strata in � SM2 . Let
S �†2 be a curve system, and define �T 0

2
.S/ to be the locus of all .X; !/ 2�T 2

such that:

� X 2 T2.S/.

� The form ! has poles at the nodes corresponding to nonseparating curves in S .

If T 2 S is a nonseparating curve, then define �T 0
2
.S;T / to be the locus of all

.X; !/ 2�T 2 such that:

� X 2 T2.S/.

� The form ! has poles at the nodes corresponding to nonseparating curves in
S nT .

� The form ! is holomorphic at the node corresponding to the curve T .

If n is either .2/ or .1; 1/, then let

�T 0
2 .S In/��T

0
2 .S/

be the locus of .X; !/ 2 �T 0
2
.S/ where in addition, ! has zeros whose orders are

given by n.

Let �M0
2
.S;T / and �M0

2
.S/ and �M0

2
.S In/ be the images in �M2.S/ of the

corresponding spaces defined above.

Let �D0
2
.S;T / be the locus of Abelian differentials .X; !/ 2 �D2.S/ such that

either
R

T ! D 0 or T represents a holomorphic node on .X; !/. This is a nonsingular
hypersurface in �D2.S/.

Let �D0
2
.S/ be the locus of Abelian differentials .X; !/ 2�D2.S/ such that each

nonseparating curve of S n T is represented by either a polar node of .X; !/ or a
cylinder on .X; !/. Given a curve T 2 S , let

�D0
2.S;T /��D

0
2.S;T /

be the locus of .X; !/ with the following properties:

� Each nonseparating curve of S n T is represented by either a polar node of
.X; !/ or a cylinder on .X; !/.

� A curve  which is either T or a separating curve in S is either represented by
a holomorphic node of .X; !/ or is homotopic to a union I [J.I/ of a saddle
connection I with its image under the hyperelliptic involution J .
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By Theorem 5.5, �D0
2
.S;T / is a neighborhood of �T 0

2
.S;T / in �D0

0
.S;T /.

Also, let
�D0

2.S;n/��D
0
2.S/

be those .X; !/ 2�D0
2
.S/ such that ! has zeros whose orders are given by n.

Up to the action of the mapping class group, there are six curve systems in †2 , shown
in Figure 7. We will denote by Ti;j a curve system with i separating curves and j

nonseparating curves. Such a curve system is unique up to the action of the mapping
class group. We will write T k

i;j with k D 1; : : : n for the n individual curves of Ti;j ,
and we will always order the curves so that if Ti;j contains a separating curve, then it
is the last curve T n

i;j .

T0;1 T1;0 T2;0

T2;1 T3;0 T1;1

Figure 7: Six curve systems on †2

The seventeen strata Here is a list of the seventeen strata in � SM2 .

(1) �M2.1; 1/ is the stratum of nonsingular Abelian differentials with two simple
zeros.

(2) �M2.2/ is the stratum of nonsingular Abelian differentials with a double zero.

(3) �M0
2
.T0;1/ is the stratum of stable Abelian differentials consisting of two

nonzero genus one Abelian differentials joined at a node.

(4) �M0
2
.T1;0I 1; 1/ is the stratum of stable Abelian differentials with one nonsep-

arating polar node and two simple zeros.

(5) �M0
2
.T1;0I 2/ is the stratum of stable Abelian differentials with one nonsepa-

rating polar node and one double zero.
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(6) �M0
2
.T1;0;T

1
1;0/ is the stratum of stable Abelian differentials with one non-

separating holomorphic node. These can be regarded as genus one Abelian
differentials with two points joined to a node, and they have no zeros.

(7) �M0
2
.T2;0;T

2
2;0/ is the stratum of stable Abelian differentials with one non-

separating holomorphic node and one nonseparating polar node. These can be
regarded as the differential a dz=z on C� with the points 0 and 1 identified to
form a polar node, and with two points in C� identified to form a holomorphic
node.

(8) �M0
2
.T2;0I 1; 1/ is the stratum of stable Abelian differentials with two nonsep-

arating polar nodes and two simple zeros.

(9) �M0
2
.T2;0I 2/ is the stratum of stable Abelian differentials with two nonsepa-

rating polar nodes and a double zero.

(10) �M0
2
.T2;1/ is the stratum of stable Abelian differentials with two nonseparating

polar nodes and one separating holomorphic node. These can be regarded as two
infinite cylinders with the ends of the cylinders identified to form polar nodes
and one point from each cylinder identified to form a holomorphic node.

(11) �M0
2
.T3;0/ is the stratum of stable Abelian differentials .X; !/ with three

nonseparating polar nodes. These have two simple zeros, one in each irreducible
component of X .

(12) �M0
2
.T3;0;T

3
3;0/ is the stratum of stable Abelian differentials with two nonsep-

arating polar nodes and one nonseparating holomorphic node. These differentials
have no zeros.

(13) �M0
2
.T1;1/ is the stratum of stable Abelian differentials with one nonseparating

polar node and one separating holomorphic node.

(14–17) There are four other strata consisting of stable Abelian differentials .X; !/
which vanish on some irreducible component of X . There is one such stratum
corresponding to the curve system T0;1 , one corresponding to the curve system
T2;1 , and two corresponding to the curve system T1;1 .

We will now go down this list and discuss each of these strata. We will not discuss the
stratum �M2.1; 1/ because we don’t need to know anything more about it, and we
will not discuss the strata 13-17 on this list because they do not arise in this paper.

6.2 The strata �M2.2/ and �M2.T0;1/

The strata �M2.2/ and �M2.T0;1/ are suborbifolds of � SM2 . We will see this
explicitly by extending the period coordinates on these strata to period coordinates on
a neighborhood of these strata.
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Period coordinates for �M2.2/ The map PerW �T2!H 1.†2IC/ is a submersion
by the period coordinates from Section 4.2, so the fibers of this map are the leaves of a
foliation A of �T2 by Riemann surfaces along whose leaves the absolute periods of
Abelian differentials are constant. This foliation meets the stratum �T2.2/ transversely
because the restriction of Per to this stratum is locally biholomorphic.

We can locally parameterize the leaf L of A through some .X; !/ 2�T2.2/ using the
operation of splitting a double zero from Section 4.1 as follows. Choose � > 0 such
that every geodesic segment starting at the zero p of .X; !/ of length less than �3 is
embedded in X . Since p is a cone point of cone angle 6� , we can parameterize short
geodesic segments starting at p by the �–disk �� � C by associating continuously to
a point z 2�� a geodesic segment I.z/�X such that

(6–1)
Z

I.z/

! D z3:

The map �W ��!L defined by

�.z/D .X; !/#I.z/

is holomorphic and satisfies �.z/ D �.�z/ because the segments I.z/ and I.�z/

differ by an angle of 3� , and so these segments determine the same “X” in .X; !/ (see
Figure 3), along which we perform surgery to form �.z/. Furthermore, �.z/D �.w/
if and only if z D˙w , so � lifts to a map z� defined by

z�.z/D .X; !/#I.z1=2/;

which maps ��2 conformally onto a neighborhood of .X; !/ in L.

Now let U ��T2.2/ be a small neighborhood of .X; !/. We can parameterize the
above construction to define continuously for each .Y; �/ 2 U and z 2�� (possibly
making � smaller) a geodesic segment I.Y;�/.z/ on Y starting at the zero of � such
that Z

I.Y;�/.z/

�D z3:

Define ˆW U ���2 !�T2 by

ˆ..Y; �/; z/D .Y; �/#I.Y;�/.z1=2/:

ˆ gives a conformal isomorphism of f.Y; �/g ��� onto a neighborhood of .Y; �/
in the leaf of A through .Y; �/. Since A is transverse to �T2.2/, it follows that ˆ
is biholomorphic onto its image in �T2.2/ if U and � are sufficiently small. By
considering the inverse of ˆ, we obtain the following local coordinates around points
in �T2.2/.
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Proposition 6.1 Every .X; !/ 2�T .2/ has a neighborhood V such that:

� Each .Y; �/ 2 V has either a shortest saddle connection I connecting distinct
zeros or a double zero.

� The multi-valued function,

.Y; �/ 7!

�Z
I

�

�2=3

;

has a single-valued branch y .

� The product Per�yW V !H 1.†2IC/�C is biholomorphic onto its image.

Period coordinates for �M2.T0;1/ The stratum �M2.T0;1/ is a suborbifold of
� SM2 isomorphic to the symmetric square of �M1;1 . We give local coordinates for
this stratum just as for �M2.2/ using the connected sum construction. As above, let
PerW �D2.T0;1/!H 1.†2IC/ be the natural period map.

Each .X; !/ 2�T2.T0;1/ is a one point connected sum of two genus one differentials:

.X; !/D .X1; !1/#.X2; !2/:

Given a small open neighborhood U ��T2.T0;1/ of .X; !/ and a sufficiently small
� > 0, we define a holomorphic map ˆW U ���!�D2.T0;1/ by

ˆ..X; !/; z/D .X1; !1/#I.z1=2/.X2; !2/;

where I.z/� C is the segment joining 0 to � .

If .Y; �/ 2�D2.T0;1/ has a unique shortest saddle connection I , then define

y.Y; �/D

�Z
I

�

�2

:

By taking an inverse of ˆ, we obtain local coordinates around �T2.T0;1/ as above.

Proposition 6.2 Every .X; !/ 2 �T2.T0;1/ has a neighborhood V � �D2.T0;1/

such that:

� Each .Y; �/ 2 V has either a shortest saddle connection I connecting distinct
zeros (up to the hyperelliptic involution) or a separating node.

� The function Per�yW V !H 1.†2IC/�C is biholomorphic onto its image.
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6.3 The strata �M0
2
.T1;0I 1; 1/ and �M0

2
.T1;0I 2/

The locus �M0
2
.T1;0/ – the union of the strata �M0

2
.T1;0I 1; 1/ and �M0

2
.T1;0I 2/

– is a four dimensional orbifold. It can be naturally embedded in the bundle �0M1;2

consisting of meromorphic Abelian differentials .X; !/ on an elliptic curve X with
simple poles at two marked points p and q such that

Resp ! D�Resq !:

Its image is the complement of the sub-line-bundle where these residues are zero.
The stratum �M0

2
.T1;0I 1; 1/ is an open, dense suborbifold of �M0

2
.T1;0/, and

�M0
2
.T1;0I 2/ is a closed, three-dimensional suborbifold.

Local coordinates We now give local coordinates on neighborhoods of these strata.
Choose a symplectic basis f˛i ; ˇig

2
iD1

of H1.†2IZ/ such that ˛1 represents the single
curve in T1;0 .

Define functions on �D0
2
.T1;0/ as follows: given .Y; �/ 2�D0

2
.T1;0/, define

v D �.˛1/ w D �.˛2/

x D �.ˇ2/ z D e2�i�.ˇ1/=�.˛1/;

where we consider z.Y; �/ to be 0 if Y has a node. These are well-defined functions
because ˛1 , ˛2 , and ˇ2 give well-defined homology classes on Y via the marking,
and ˇ1 gives a homology class on Y which is well-defined up to adding a multiple
of ˛1 . These are all holomorphic functions on U . This follows from the fact that
these functions are all holomorphic on �D0

2
.T1;0/ n�T 0

2
.T1;0/ because periods vary

holomorphically, together with the fact that these functions are all continuous on U ,
which follows from Theorem 5.5. Functions which are continuous and holomorphic
on an open dense subset of their domain are holomorphic, so these functions v , w , x ,
and z are all holomorphic.

Now, let .X; !/ 2�T 0
2
.T1;0/, and let U ��D0

2
.T1;0/ be an open neighborhood of

.X; !/ with a continuous choice of a saddle connection I.Y;�/ on each .Y; �/ 2 U

joining distinct zeros. If .X; !/ has two simple zeros, then we can also continuously
orient these saddle connections, but this is not possible if .X; !/ has a double zero.
For .Y; �/ 2 U , define

y D

8<:
R

I.Y;�/
� if .X; !/ has two simple zeros;�R

I.Y;�/
�
�2=3

if .X; !/ has a double zero,
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If U is sufficiently small, then the functions .v; w;x;y/ are a system of holomor-
phic local coordinates on �T 0

2
.T1;0/\U by (a simple generalization of) the period

coordinates from [78] together with the argument of Proposition 6.1.

Recall that in Section 4.1, we defined the unplumbing operation which replaced an
Abelian differential with a choice of a cylinder with a new meromorphic Abelian
differential with two simple poles. Since these poles have opposite residues, we can
join them to a node and obtain a stable Abelian differential.

Define the unplumbing map to be the function,

 W �D0
2.T1;0/!�T 0

2 .T1;0/;

defined by sending .Y; �/ to the Abelian differential obtained by unplumbing the
cylinder on Y which is homotopic to the single curve in the curve system T1;0 (we
define � to be the identity on �T 0

2
.T1;0/. The function  is continuous and is

holomorphic on
�D0

2.T1;0/ n�T 0
2 .T1;0/;

as can easily be seen using period coordinates, so  is holomorphic on all of �D0
2
.T1;0/.

Let ‰ D  � z .

Proposition 6.3 The map ‰ is a biholomorphic map of �D0
2
.T1;0/ onto its image in

�T 0
2
.T1;0/�C.

It follows that if U is sufficiently small, the functions .v; w;x;y; z/ are a holomorphic
system of local coordinates on the neighborhood U of .X; !/.

Proof We can show that ‰ is biholomorphic onto its image by constructing a holomor-
phic inverse. Given .Y; �/ 2�T 0

2
.T1;0/ and u 2 C� , if juj is sufficiently small, then

we can uniquely plumb a cylinder into the node of .Y; �/ to form a new nonsingular
Abelian differential .Y 0; �0/ such that z.Y 0; �0/D u. The point is that the plumbing
construction is determined by two quantities: the height of the resulting cylinder, and
the twist of the gluing map; the height is determined by juj, and the twist is determined
by arg u.

Let V ��T 0
2
.T1;0/�C be the open neighborhood of �T 0

2
.T1;0/� f0g where this

operation is defined, and let ˆW V !�D0
2
.T1;0/ be the plumbing map. The map ˆ is

continuous and is holomorphic on V n .�T 0
2
.T1;0/� f0g/ by period coordinates, so it

is everywhere holomorphic. The maps ˆ and ‰ are inverse to each other, so both are
biholomorphic.

The last statement then follows from the fact that .v; w;x;y/ are a system of local
coordinates on a neighborhood of .X; !/ in �T 0

2
.T1;0/.
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Cylinder covers The stratum M2.T1;0/ �
SM2 of stable Riemann surfaces with

one nonseparating node is naturally isomorphic to the moduli space M1;2 of elliptic
curves with two marked points, and we will implicitly identify them. In M2.T1;0/,
let M2.T1;0/.d/ be the locus of all X such that the two marked points on X differ
by exactly d –torsion in the group law on the underlying elliptic curve. This locus
M2.T1;0/.d/ is isomorphic to modular curve H=�1.d/.

Given a marked elliptic curve X in M1;2 , call a meromorphic function f W X !P1 a
cylinder cover if all of the poles and zeros of f are located at the two marked points of
X . By Riemann–Hurwitz, such an f has two other branch points counting multiplicity.
We say that f is primitive if f is not of the form gr for some meromorphic function
g and r > 1. A meromorphic Abelian differential .X; !/ in �0M1;2 is a cylinder
covering differential if ! D df=f for some primitive cylinder cover (in which case
! D f �.dz=z/, the pullback of the form which makes C� a flat infinite cylinder). The
degree of ! is the degree of the primitive cover. In terms of stable Riemann surfaces,
a cylinder cover is a morphism f W X ! C , where X 2M2.T1;0/, the curve C is P1

with 0 and 1 identified to form a node, and the inverse image of the node of C is the
node of X .

Denote by �M0
2
.T1;0/.d/ the locus of degree d cylinder covering differentials in

�M0
2
.T1;0/.

Proposition 6.4 A stable Riemann surface X 2M2.T1;0/ has a degree d cylinder
covering differential if and only if X 2M2.T1;0/.d/, in which case it unique up to
constant multiple.

Proof To prove uniqueness, assume that f and g are two degree d cylinder covers.
This means that f and g have the same zeros and poles, so f D cg for some c 2 C.
Thus df=f D dg=g .

Recall that if E is an elliptic curve and Div0.E/ is the group of divisors of degree
0 on E , then there is a natural map �W Div0.E/!E; defined via the group law on
E . Abel’s Theorem says that a divisor D 2 Div0.E/ is the divisor of a meromorphic
function on E if and only if �.D/D 0 (see Griffiths and Harris [27, p 235]).

Now let X 2M2.T1;0/, which we’ll regard as an elliptic curve with two marked points
p and q . Choose an identity point 0 on X , fixing the group law. If X has a degree d

cylinder cover f W X !P1 , with its zeros at p and its poles at q , then .f /D d.p�q/

(where .f / denotes the divisor associated to f ), and by Abel’s Theorem, d.p�q/D 0

in the group law on E ; that is, p and q differ by d –torsion.

We need to show that there is no e < d with ejd and e.p� q/D 0. Suppose there is
such an e . Then by Abel’s Theorem again, there would be a meromorphic function h
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on X with .h/D e.p� q/, which implies that h is a degree e cylinder cover. By the
uniqueness statement, f D chd=e for some c 2 C, contradicting primitivity of f .

The proof of the converse of this proposition is also a straightforward application of
Abel’s Theorem and will be left to the reader.

Corollary 6.5 The suborbifold P�M0
2
.T1;0/.d/ of P�M0

2
.T1;0/ is isomorphic to

H=�1.d/:

6.4 The stratum �M0
2
.T1;0;T

1
1;0/

We now give local coordinates around the stratum �M0
2
.T1;0;T

1
1;0/. We will actually

only give local coordinates on a hypersurface containing this stratum, but this will be
sufficient for our purposes.

Let f˛i ; ˇig
2
iD1

be a symplectic basis of H1.†2IZ/ as in the previous section. Given
.Y; �/ 2�D0

2
.T1;0;T

1
1;0/, define

w D �.˛2/ x D �.ˇ2/

y D �.ˇ1/ z D

�Z
I

�

�2

;

where I is one of the two saddle connections on .Y; �/ such that I[J.I/ is homotopic
to the curve T 1

1;0 in T1;0 . These are holomorphic functions on �D0
2
.T1;0;T

1
1;0/. If

.Y; �/ 2 �T 0
2
.T1;0;T

1
1;0/ is regarded as a genus one differential with two marked

points, then y.Y; �/ is the integral of � along a path joining the marked points. The
functions .w;x;y/ are a system of holomorphic local coordinates on �T 0

2
.T1;0;T

1
1;0/.

Proposition 6.6 For any .X; !/ 2�T 0
2
.T1;0;T

1
1;0/, the functions .w;x;y; z/ define

a system of holomorphic local coordinates on a sufficiently small neighborhood of
.X; !/ in �D0

2
.T1;0;T

1
1;0/.

Sketch of proof The proof of this proposition is completely analogous to the proof
of Proposition 6.3. Let

 W �D0
2.T1;0;T

1
1;0/!�T 0

2 .T1;0;T
1
1;0/

be the map which sends an Abelian differential to the one obtained by splitting along
the union of saddle connections I [J.I/ homotopic to the curve T 1

1;0 . Let ‰D �z .
This is a holomorphic map

‰W �D0
2.T1;0;T

1
1;0/!�T 0

2 .T1;0;T
1
1;0/�C:
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Given any u 2 C, let I.u/ � C be the segment connecting 0 to u. For any .Y; �/ 2
�T 0

2
.T1;0;T

1
1;0/, regarded as a genus one differential with two marked points, if juj

is sufficiently small, then there are two parallel embeddings

�i W I.u
1=2/! .Y; �/;

each sending 0 to one of the marked points of .Y; �/. Let

V ��T 0
2 .T1;0;T

1
1;0/�C

be the neighborhood of �T 0
2
.T1;0;T

1
1;0/� f0g where these two embeddings �i exist,

and define
ˆW V !�D0

2.T1;0;T
1
1;0/

to be the map which replaces .Y; �/ with the self connected sum

.Y; �/#I.z1=2/:

ˆ is a holomorphic map, and since ˆ and ‰ are inverse to each other, both are
biholomorphic. Since .w;x;y/ give local coordinates on �T 0

2
.T1;0;T

1
1;0/ around

.X; !/, it then follows that .w;x;y; z/ give local coordinates on �D0
2
.T1;0;T

1
1;0/

around .X; !/.

The d–torsion locus Let

P�M0
2.T1;0;T

1
1;0/.d/� P�M0

2.T1;0;T
1
1;0/

be the locus of genus one differentials such that the two marked points differ by torsion of
degree exactly d . One can show using period coordinates that P�M0

2
.T1;0;T

1
1;0/.d/

is a suborbifold of P�M0
2
.T1;0;T

1
1;0/. We have the isomorphism

P�M0
2.T1;0;T

1
1;0/.d/ŠM2.T1;0/.d/Š H=�1.d/:

6.5 The stratum �M0
2
.T2 ;0;T

2
2 ;0/

We now consider the stratum �M0
2
.T2;0;T

2
2;0/, and define local coordinates on a hyper-

surface containing this stratum. Choose a symplectic basis f˛i ; ˇig
2
iD1

of H1.†2IZ/

such that ˛i represents the curve T i
2;0 in T2;0 . Given .Y; �/2�D0

2
.T2;0;T

2
2;0/, define

w D �.˛1/ x D �.ˇ2/

y D e2�i�.ˇ1/=�.˛1/ z D

�Z
I

�

�2

;
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where I is a saddle connection joining distinct zeros on .Y; �/ such that I [J.I/ is
homotopic to the curve T 2

2;0 . These are holomorphic functions on �D0
2
.T2;0;T

2
2;0/,

and the functions .w;x/ are holomorphic local coordinates on �T 0
2
.T2;0;T

2
2;0/.

Proposition 6.7 Given .X; !/ 2 �T 0
2
.T2;0;T

2
2;0/, the functions .w;x;y; z/ give a

system of holomorphic local coordinates on a sufficiently small neighborhood U of
.X; !/ in �D0

2
.T2;0;T

2
2;0/.

The proof is a straightforward combination of the proofs of Propositions 6.3 and 6.6, so
we will omit it as well of the proofs of further similar descriptions of local coordinates.

Points in P�M0
2
.T2 ;0;T

2
2 ;0/ Every Abelian differential in P�M0

2
.T2;0;T

2
2;0/ can

be obtained by the following construction: given r 2 C=Z, let fr be the Abelian
differential obtained from the cylinder .C=Z; dz/ by identifying the ends of the cylinder
to form a polar node and identifying the points 0 and r to form a holomorphic node.
Two Abelian differentials fr and fr 0 are the same if and only if r and r 0 are related
by the group G generated by the transformations z 7! zC 1 and z 7! �z . This gives
an isomorphism of P�M0

2
.T2;0;T

2
2;0/ with

.C nZ/=G Š .C n f0; 1g/=.z 7! z�1/:

In P�M0
2
.T2;0;T

2
2;0/, let

P�M0
2.T2;0;T

2
2;0/.d/D

[
q2ƒ

fq=d ;

where ƒD fq 2 Z W gcd.q; d/D 1g:

We can regard P�M0
2
.T2;0;T

2
2;0/.d/ as the locus of stable Abelian differentials

.X; Œ!�/2P�M0
2
.T2;0;T

2
2;0/ such that – if we regard .X; !/ as .C�; dz=z/ with two

marked points – the two marked points differ by exactly d –torsion in C� .

P�M0
2
.T2;0;T

2
2;0/.d/ contains N points, where

N D

(
1 if d D 2I
1
2
�.d/ if d > 2.

6.6 The strata �M0
2
.T2 ;0I 1; 1/, �M0

2
.T2 ;0I 2/, and �M0

2
.T2 ;1/

We now give local coordinates around the strata �M0
2
.T2;0I 1; 1/, �M0

2
.T2;0I 2/,

and �M0
2
.T2;1/. In each of these cases, let f˛i ; ˇig

2
iD1

be a symplectic basis of
H1.†2IZ/ such that the ˛i represent the nonseparating curves of the curve system.
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Fix an Abelian differential .X; !/ in �T 0
2
.T2;0I 1; 1/, �T 0

2
.T2;0I 2/, or �T 0

2
.T2;1/,

and choose a small neighborhood U of .X; !/ in �D0
2
.T2;0I 1; 1/, �D0

2
.T2;0/, or

�D0
2
.T2;1/ respectively. If U is sufficiently small, then we can continuously choose

for each .Y; �/ 2 U having distinct zeros a saddle connection I.Y;�/ connecting those
zeros. If .X; !/ has two distinct zeros, then we can also continuously choose an
orientation for these saddle connections, but this is not possible if it has a double zero
or a separating node. Given .Y; �/ 2 U , define

v D �.˛1/ w D �.˛2/

y D e2�i�.ˇ1/=�.˛1/ z D e2�i�.ˇ2/=�.˛2/

x D

8̂̂<̂
:̂
R

I � if .X; !/ 2�T 0
2
.T2;0I 1; 1/;�R

I �
�2=3 if .X; !/ 2�T 0

2
.T2;0I 2/;�R

I �
�2 if .X; !/ 2�T 0

2
.T2;1/.

These are holomorphic functions on U , and .v; w;x/ give a holomorphic system
of local coordinates on �T 0

2
.T2;0/ in the first two cases. In the last case where

.X; !/ 2�T 0
2
.T2;1/, the .v; w;x/ give a system of local coordinates near .X; !/ on

the subspace of �D0
2
.T2;1/ where the nonseparating curves of T2;1 remain nodes.

Proposition 6.8 The functions .v; w;x;y; z/ give a system of holomorphic local
coordinates on a neighborhood U of .X; !/ in �D0

2
.T2;0I 1; 1/, �D0

2
.T2;0I 2/, or

�D0
2
.T2;1/.

Curves in P� SM2 We now discuss some curves in P� SM2 which will play a promi-
nent role in the rest of this paper. Given � 2 C� , let C� be the locus of points
.X; Œ!�/ 2 P� SM2 having two nonseparating nodes and possibly a separating node
such that the ratio of the residues of ! at the two nonseparating nodes of X is ˙�˙1 .
Two such curves C� and C�0 coincide if and only if �0D˙�˙1 . Also, let c� 2P� SM2

be the Abelian differential with three nonseparating nodes and residues 1, �, and ��1

as in Figure 8.

Proposition 6.9 The curve C� � P� SM2 is a twice-punctured sphere. If � D ˙1,
then it is an orbifold locus of order two; otherwise it contains no orbifold points of
P� SM2 . The punctures of C� are the two points c� and c�C1 . The curve C� contains
exactly one point of P�M0

2
.T2;1/.

Proof Let C 0
�
� C� be the subset of differentials with no separating node. We

claim that C 0
�

is a thrice-punctured sphere. The natural map C 0
�
!M2.T2;0/ is an
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1

�1

��

�

�� 1

1��

Figure 8: The point c� 2 P� SM2

isomorphism. Let Mnum
0;4

be the moduli space of four numbered points on P1 . There is
a natural map � WMnum

0;4
!M2.T2;0/ which sends the point .p1;p2;p3;p4/2Mnum

0;4

to the stable Riemann surface obtained by identifying .p1;p2/ and .p3;p4/ to nodes.
There are four ways to renumber the points pi to get the same stable Riemann surface,
so a fiber of � potentially contains four points; however, the automorphism group of
the pi contains a Klein four-group whose action on the pi realizes any renumbering
of the pi which preserves the decomposition into the two sets fp1;p2g and fp3;p4g.
Therefore � is an isomorphism. There is thus an isomorphism z� WMnum

0;4
!C 0

�
, defined

by sending the point QD .p1;p2;p3;p4/ 2Mnum
0;4

to .X; !/, where X D �.Q/, and
! is induced by the unique meromorphic Abelian differential � on P1 having a simple
pole at each pi with residue given by

Resp1
�D 1 Resp2

�D�1

Resp3
�D � Resp4

�D��:

It is well known that Mnum
0;4

is a thrice-punctured sphere, so C 0
�

is as well.

Cusps of Mnum
0;4

correspond to isotopy classes of simple closed curves in P1 n fpig
4
iD1

up to the action of the modular group Modnum
0;4 of self-homeomorphisms of P1 fixing

each of the pi up to isotopy fixing the pi . There are three such isotopy classes of
curve. These are shown in Figure 9 with the corresponding limiting Abelian differential
in P� SM2 . Thus we see that C� contains one point in P�M0

2
.T2;1/, and the two

cusps of C� are as claimed.

To obtain the statement about orbifold points, note that for each .X; Œ!�/ 2 C� , the
automorphism group of X is the Klein four group. If �D˙1, then all of these auto-
morphisms stabilize the projective class of ! , while if �¤˙1, only the hyperelliptic
involution stabilizes Œ!�.
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� ��

1
�1

1

�1

�

��

� ��

1
�1

� ��

1
�1

1

�1

�

��

�1��

1C�

1

�1

��

�

�� 1

1��

Figure 9: Three curves determining cusps of C 0
�

Proposition 6.10 If � ¤ ˙1, then P�M0
2
.T2;0I 2/ meets C� in exactly one point.

Otherwise they are disjoint.

Proof Define an isomorphism � W C n f0; 1g! C 0
�

by p.w/D .Xw; !w/, where Xw
is the stable Riemann surface obtained by identifying the points f0; 1g and fw;1g to
nodes, and !w is induced by the meromorphic Abelian differential on P1 .,

!0w D

�
1

z
�

1

z� 1
C

�

z�w

�
dz

D
�z2C .�1��/zCw

z.z� 1/.z�w/
dz;
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The differential !0w has a double zero if and only if

�z2
C .�1��/zCw

has a double zero in C n f0; 1; wg, which happens if and only if the discriminant,

�w D .1C�/
2
� 4�w;

vanishes for some w 2 C n f0; 1g. This happens if and only if �¤˙1, in which case,
there is a unique w such that �wD 0. Thus there is a unique Abelian differential in C�
with a double zero if �¤˙1, and there is no such Abelian differential if �D˙1.

For � ¤ 0 or ˙1, let w� 2 C� be the unique point representing a stable Abelian
differential with a double zero. Also, for � ¤ 0, let p� 2 C� be the unique point
representing a stable Abelian differential with a nonseparating node.

6.7 The stratum �M0
2
.T3;0/

We now give local coordinates around points in �M0
2
.T3;0/, the stratum of stable

Abelian differentials with three nonseparating polar nodes. There is a unique stable
Riemann surface X 2M2.T3;0/ consisting of two thrice-punctured spheres with the
cusps joined together to form three separating nodes.

Choose two points p; q 2†2 nT3;0 . Let ˛i 2H1.†2 n fp; qgIZ/ be a homology class
representing the curve T i

3;0 2 T3;0 . Let i 2H1.†2; fp; qgIZ/ be homology classes
such that ˛i � j D ıij (see Figure 10).

˛1 ˛2 ˛3

p

q

1
3

2

Figure 10: Homology classes in H1.†2; fp; qgIZ/
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Any marked stable Abelian differential .f; .Y; �// 2�D0
2
.T3;0/ has three cylinders

Ci homotopic to the curves T i
3;0 of T3;0 and two simple zeros, one in each component

of the complement of the cylinders. We can change f to a marking f1 by an isotopy
so that f1 takes each curve T i

3;0 into the cylinder Ci and takes the points p and q

to zeros of �. Two such markings f1 and f2 which are isotopic to f are isotopic
to each other by an isotopy sending for all time the points p and q to zeros of �
and sending the curve T i

3;0 into the cylinder Ci . This means that we can regard the
classes ˛i as homology classes in H1.Y nZ.�/IZ/ and the i as homology classes in
H1.Y;Z.�/IZ/, well-defined up to adding a multiple of ˛i (because the marking f
was only defined up to Dehn twist around the curves of T3;0 ).

Given .Y; �/ 2�D0
2
.T3;0/, define:

v D �.˛1/ w D �.˛2/

x D e2�i�.1/=�.˛1/ y D e2� i�.2/=�.˛2/

z D e2�i�.3/=�.˛3/

These are well-defined holomorphic functions on �D0
2
.T3;0/, and the coordinates

.v; w/ define a map �T 0
2
.T3;0/! C2 which is biholomorphic onto its image.

Proposition 6.11 The functions .v; w;x;y; z/ define a map �D0
2
.T3;0/!C5 which

is biholomorphic onto its image.

6.8 The stratum �M0
2
.T3;0;T

3
3;0/

Finally, consider the stratum �M0
2
.T3;0;T

3
3;0/. An Abelian differential in this stratum

can be regarded as a pair of infinite cylinders with an end of each cylinder identified
with an end of the other cylinder to form two polar nodes, and with a point from each
cylinder identified to form a holomorphic node. The stratum �M0

2
.T3;0;T

3
3;0/ is

isomorphic to C�=˙ 1, with the isomorphism sending .X; !/ to the residue of ! at
one of the polar nodes. The whole stratum is an orbifold locus of order two in � SM2 ,
because each .X; !/ in this stratum has an involution which switches the irreducible
components of X and preserves ! .

Choose a symplectic basis f˛i ; ˇig
2
iD1

of H1.†2IZ/ such that ˛i represents the
curve T i

3;0 , and let ˛3 2 H1.†2IZ/ be a class representing T 3
3;0 . Given a marked

stable Abelian differential .Y; �/ 2�D0
2
.T3;0;T

3
3;0/, the class ˇi determines a class in

H1.Y IZ/ which is well defined up to adding multiples of ˛i and ˛3 . This means that

e2�i�.ˇi /=�.˛i /
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is a well defined complex number because �.˛3/D 0.

Given .Y; �/ 2�D0
2
.T3;0;T

3
3;0/, define

w D �.˛1/ x D e2�i�.ˇ1/=�.˛1/

y D e2�i�.ˇ2/=�.˛2/ z D

�Z
I

�

�2

;

where I is a saddle connection on .Y; �/ such that I [J.I/ is homotopic to the curve
T 3

3;0 . The coordinate w defines an isomorphism �T 0
2
.T3;0;T

3
3;0/! C.

Proposition 6.12 The coordinates .w;x;y; z/ give a biholomorphic isomorphism of
�D0

2
.T3;0;T

3
3;0/ onto its image in C4 .

7 Limits of eigenforms

7.1 Introduction

We now begin the study of the compactification of XD . Recall that we have the
locus ED � P� SM2 of eigenforms for real multiplication by OD , and there is the
isomorphism j1W ED ! XD nPD from Proposition 4.4. The inverse of j1 extends to
an embedding k1W XD ! P� SM2 . In this section we will study the closure of XD in
P� SM2 , which we denote by xXD . Our goal is to classify exactly which stable Abelian
differentials lie in xXD nXD and to understand the local structure of xXD and its strata
around these points. More precisely, for each .X; Œ!�/ 2 xXD we will:

� Choose a neighborhood of .X; Œ!�/ in P� SM2 of the form U=Aut.X; Œ!�/,
where U is a neighborhood of .X; Œ!�/ in an appropriate Dehn space.

� Give local coordinates on U as in Section 6.

� Give explicit equations for the inverse image ��1. xXD/ in U .

This procedure will be slightly modified when .X; Œ!�/ has a nonseparating holomorphic
node. In that case, we will only give local coordinates on a hypersurface V in U which
we will show contains the inverse image ��1. xXD/ in U .

We will see that xXD in general has non-normal singularities along curves in xXD nXD .
To get a less singular compactification, we will pass to the normalization YD of xXD ,
which we will study in Section 8 using the results of this section.
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Stratification of xXD The stratification of � SM2 which we discussed in Section 6
induces a stratification of xXD . Given a stratum �M0

2
.S;T In/, let XD.S;T;n/

denote the stratum,

XD.S;T;n/D xXD \P�M0
2.S;T;n/;

with the analogous notation if T or n is omitted. Here is a list of all of these strata
with a summary of what we will prove about each one:

(1) XD.1; 1/ is the stratum of nonsingular eigenforms with two simple zeros. We
called this locus ED.1; 1/ in Section 4.3. It is an open, dense subset of XD .

(2) XD.2/ is the stratum of nonsingular eigenforms with a double zero, otherwise
known as WD .

(3) XD.T0;1/ is the stratum of eigenforms consisting of two genus one differentials
joined at a node. This is the curve PD , which we studied in Section 2.3.

(4–5) XD.T1;0/ is the locus of limiting eigenforms with one nonseparating polar node,
containing the stratum XD.T1;0I 1; 1/ as an open dense set and the stratum
XD.T1;0I 2/ as a finite subset. We will show in Section 7.2 that XD.T1;0/ is
empty unless D is square. We will show in Section 7.3 that xXd2 is an orbifold
around Xd2.T1;0/, and Xd2.T1;0/ is a suborbifold isomorphic to H=�1.d/.
We will also show that

Xd2.T1;0/D P�M0
2.T1;0/.d/

as subsets of P� SM2 , where P�M0
2
.T1;0;T

1
1;0/.d/ is the locus of degree d

cylinder covering differentials discussed in Section 6.3. We will show that
Xd2.T1;0I 2/ consists of the intersection points of SWd2 with Xd2.T1;0/ and that
these intersections are transverse if d > 3.

(6) XD.T1;0;T
1
1;0/ is the stratum of limiting eigenforms with one nonseparating

holomorphic node. We will show in Section 7.2 that this stratum is empty
unless D is square. We will show in Section 7.4 that xXd2 is an orbifold around
Xd2.T1;0;T

1
1;0/, and Xd2.T1;0;T

1
1;0/ is a suborbifold isomorphic to H=�1.d/.

We will also show that

Xd2.T1;0;T
1
1;0/D P�M0

2.T1;0;T
1
1;0/.d/

as subsets of P� SM2 , where P�M0
2
.T1;0;T

1
1;0/.d/ is the d –torsion locus

introduced in Section 6.4.

(7) XD.T2;0;T
2
2;0/ is the stratum of limiting eigenforms with one nonseparating

holomorphic node and one nonseparating polar node. We will show in Section 7.2
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that this stratum is empty unless D is square. In Section 7.5 we will show that
when D D d2 , this stratum is the finite set,

Xd2.T2;0;T
2
2;0/D P�M0

2.T2;0;T
2
2;0/.d/;

introduced in Section 6.5. We will also show that xXd2 is nonsingular at these
points and that each of these points is a transverse intersection point of the
closures of the strata Xd2.T1;0/ and Xd2.T1;0;T

1
1;0/.

(8–10) The strata XD.T2;0I 1; 1/, XD.T2;0I 2/, and XD.T2;1/ together consist of the
limiting eigenforms with two nonseparating polar nodes, possibly with a sep-
arating node. We will show in Section 7.6 that the union of these strata is the
union of the curves C�.P/ , where P is a nondegenerate YD –prototype. We will
see that xXD is in general singular along these curves and can even have several
branches passing through them. We will assign a YD –prototypes to each of
these branches, and we will give explicit equations for these branches in local
coordinates.

(11–12) The strata XD.T3;0/ and XD.T3;0;T
3
3;0/ together consist of the limiting eigen-

forms with three nonseparating nodes. We will show in Section 7.7 that XD.T3;0/

is the union of the points c�.P/ over all nonterminal YD –prototypes P , and
XD.T3;0;T

3
3;0/ is the union of the points c�.P/ over all terminal YD –prototypes

P . We will see that xXD is in general singular at these points. We will assign
YD –prototypes to the branches of xXD through each c�.P/ , and we will give
equations for these branches in local coordinates.

(13–17) We will show in Section 7.2 that the stratum XD.T1;1/ as well as the four strata
consisting of stable Abelian differentials .X; !/ where ! vanishes on some
irreducible component of X are all empty.

Bundles Over any of the bundles of projective spaces P� SM2 , P�T2 , or P�D2.S/,
there is a canonical line bundle O.�1/, whose fiber over a projective class of Abelian
differentials, .X; Œ!�/ is the space of constant multiples of Œ!�. Define a Hermitian
metric on each of these bundles by defining on the fiber over .X; !/

h.�; �/D

Z
X

j�j2:

This metric is singular over the .X; Œ!�/ which have infinite area. For use in Section 9,
we will give sections for O.�1/ around points in xXD and calculate the norms of these
sections.
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7.2 Empty strata

Proposition 7.1 If D is not square, and .X; Œ!�/ 2 xXD nXD , then Jac.X /Š .C�/2 ,
and the period map Per! W H1.Jac.X /IZ/! C is injective.

Proof If .X; Œ!�/2 xXD , then .X; !/2�XD is a nonzero eigenform for real multipli-
cation by OD by Theorem 5.10, so M DH1.Jac.X /IZ/ is a torsion-free OD –module.
If D is not square, this implies that the Z–rank of M is even because M ˝Q is
a KD –vector space. This means that either Jac.X / is compact, or Jac.X /Š .C�/2 .
Since for any X 2 xXD n XD , the Jacobian Jac.X / is noncompact, we must have
Jac.X /Š .C�/2 .

Since ! is an eigenform, Per! W M ! C is OD –linear, so K D Ker.Per!/ is an OD –
submodule of M . If K ¤ 0, then K must be a submodule of M of Z–rank two,
so M=K would be a finite Abelian group. If K ¤M , then this contradicts the fact
that Per! embeds M=K into C; if K DM , then this contradicts the fact that ! is
nonzero.

Corollary 7.2 If D is not square, then all of the strata in xXD n XD except for
XD.T2;0I 1; 1/, XD.T2;0I 2/, XD.T2;1/, and XD.T3;0/ are empty.

Proposition 7.3 The stratum Xd2.T1;1/ as well as the four strata of xXd2 consisting of
stable Abelian differentials .X; !/ where ! vanishes on some irreducible component
of X are all empty.

Proof We know that each .X; !/ 2Xd2 is a degree d branched cover of a genus one
Abelian differential by Proposition 4.5. For any stable Abelian differential .X; !/ 2
xXd2 , we can take a limit of these branched covers to get a branched covering of

degree at most d from .X; !/ to a genus one stable Abelian differential .Y; �/. If
.X; !/ 2 Xd2.T1;1/, then it consists of a one point connected sum of a genus one
nonsingular Abelian differential (having finite area) with an infinite cylinder (having
infinite area). This is impossible because the same .Y; �/ cannot be finitely covered by
both an Abelian differential with infinite area and one with finite area.

The proofs that the other four strata are empty are all similar, so for concreteness we
will show that there is no stable Abelian differential .X; !/ 2 xXd2 which is the one
point connected sum,

.X1; !1/#.X2; 0/;

where Xi are elliptic curves with !1 nonzero. Suppose .X; !/D lim.Xn; !n/ with
.Xn; !n/2Xd2 . We have a degree d branched covering fnW .Xn; !n/! .Fn; �n/ over

Geometry & Topology, Volume 11 (2007)



Euler characteristics of Teichmüller curves in genus two 1977

some genus one form .Fn; �n/. Taking a subsequence, .Fn; �n/ converges to some
genus one form .F; �/ which is nonsingular because otherwise E1

n would converge
to a Riemann surface with a node which would contradict the assumption that X has
only one node. The injectivity radii of the .Fn; �n/ must be uniformly bounded below
or else .F; �/ would have a node. By Theorem 5.5, for sufficiently large n there is
a subsurface Tn of .Xn; !n/ which is homeomorphic to a once-punctured torus and
has diameter less that the injectivity radius of .Fn; �n/. Thus fn is homotopic to the
identity on Tn .

We now claim that there is no nonconstant branched cover f W X !E of a genus two
curve over an elliptic curve which sends a closed subsurface T �X homeomorphic
to a once punctured torus to a contractible subset of E , from which the claim will
follow. Suppose f W X !E is such a branched cover. Let  �E be a simple closed
curve, bounding a disk �, which contains f .T /, and let  0 be the component of
f �1. / which bounds the component T 0 of f �1.�/ containing T . The subsurface
T 0 is also a once punctured torus. By the Riemann–Hurwitz formula applied to the
branched cover X nT 0!E n�, the restriction of f to  0 is degree one. Then by the
Riemann–Hurwitz formula applied to T 0!�, there must be 2d branch points of f
contained in T 0 , counted with multiplicity, where d is the degree of the restriction of f
to T 0 . We must have d > 1 because the restriction of f to T 0 is not a homeomorphism.
This is a contradiction because f has only 2 branch points.

7.3 The strata XD.T1;0I 1; 1/ and XD.T1;0; 2/

In this section, we will study the strata XD.T1;0I 1; 1/ and XD.T1;0; 2/, whose union
is the locus XD.T1;0/, consisting of Abelian differentials with one polar node. Since
these are empty when D is not square, we will restrict to the case D D d2 . The goal
of the rest of this section is to prove the following description of these strata.

Theorem 7.4 The locus Xd2.T1;0/ is exactly the locus P�M0
2
.T1;0/.d/ of degree d

cylinder covering differentials discussed in Section 6.3. The variety xXd2 is an orbifold
around Xd2.T1;0/ with Xd2.T1;0/ a suborbifold isomorphic to H=�1.d/. The stratum
Xd2.T1;0I 2/�Xd2.T1;0/ is a finite subset equal to

SWd2 \Xd2.T1;0/:

These intersections are transverse if d > 3.

Local coordinates Let .X; Œ!�/2P�M0
2
.T1;0/, and choose some marking f W †2!

X , so that we can regard .X; Œ!�/ as a point in P�T 0
2
.T1;0/. Take a symplectic basis

f˛i ; ˇig of H1.†2IZ/ as in Section 6.3. On a small neighborhood U of .X; Œ!�/ in
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P�D0
2
.T1;0/, we can normalize each projective class .Y; Œ��/ 2 U so that �.˛1/D 1.

This allows us to identify U with the hypersurface U1 ��D0
2
.T1;0/ consisting of all

.Y; �/ with �.˛1/ D 1. The restriction of the local coordinates .v; w;x;y; z/ from
Section 6.3 to U1 then gives a system of local coordinates .w;x;y; z/ on U .

Assume that U is small enough that the natural map U=Aut.X; Œ!�/! P� SM2 is
an isomorphism onto its image, so that we can regard U as an orbifold coordinate
chart around .X; Œ!�/. By the definition of P�D0

2
.T1;0/, for each .Y; �/ 2 U , the

curve T 1
1;0 is represented by a maximal cylinder C on .Y; �/. Using Theorem 5.5, by

possibly shrinking U , we can assume that:

� j�.˛2/j<
1

dC1
height.C /

� j�.ˇ2/j<
1

dC1
height.C /

� Im �.ˇ1/ > 0

Xd 2.T1;0/ in local coordinates We now turn to the question of when our .X; Œ!�/
lies in the union of strata Xd2.T1;0/ and what these strata look like in coordinates
around .X; Œ!�/. We will continue to work in the fixed neighborhood U of some
.X; Œ!�/ 2 P�M0

2
.T1;0/ which we chose above.

For any .Y; �/ in U , we have a marking f W †2! Y , which is defined up to Dehn
twist around T1;0 . Choosing a particular marking, we regard the symplectic basis
f˛i ; ˇig

2
iD1

of H1.†2IZ/ also as a symplectic basis of H1.Y IZ/.

Lemma 7.5 Let .Y; �/2U\Xd2 , and let gW .Y; �/! .E; �/ be a primitive, degree d ,
branched cover of a genus one differential E . Then there is a basis fa; bg of H1.EIZ/

and integers p; q , and r such that gcd.d;p; q/D 1; and

g�.˛1/D da g�.ˇ1/D raC b

g�.˛2/D pa g�.ˇ2/D qa:

Proof There is some primitive a 2H1.EIZ/ such that g�.˛1/D na for some n 2N.
Since �.˛1/ D 1, we must have �.a/ > 0. It follows that we can choose some
b 2H1.EIZ/ such that Im �.b/ > 0, and such that fa; bg form a basis of H1.EIZ/.
The cohomology classes a and b are represented by some closed geodesics A and B

on E .

We claim that
Im �.b/ >

1

d C 1
height.C /;

where C is the maximal cylinder on Y homotopic to the single curve of T1;0 . To see
this, consider S Dg�1.A/\C . The set S consists of r parallel closed curves fSig

r
iD1
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on C . Since each point of B has d preimages under g , we must have r � d . Two
consecutive curves Si and SiC1 bound a cylinder Ci which has the same height as
the cylinder obtained by cutting E along A, so height.Ci/D Im �.b/. There are also
two more cylinders, C0 and Cr bounded by S1 and Sr respectively and the boundary
curves of C . These cylinders have height less than Im �.b/ since they are mapped
injectively into E by g . Together, these cylinders fill out C , so

height.C /D
rX

iD0

height.Ci/ < .r C 1/ Im �.b/� .d C 1/ Im �.b/;

which proves the claim.

It follows from this claim that g�.˛2/D pa for some p 2 Z. To see this, assume that
g�.˛2/D paC sb with s ¤ 0, then

1

d C 1
height.C / > j�.˛2/j (by the definition of U )

D j�.g�.˛2//j

� jsj Im �.b/ (because �.a/ is real)

>
1

d C 1
height.C /;

a contradiction. Similarly g�.ˇ2/D qa for some q 2 Z.

The map g�W H1.Y IZ/!H1.EIZ/ is onto because gW Y ! E is primitive. Since
we’ve shown that each basis element of H1.Y IZ/ except ˇ1 maps to a multiple of
a, we must have g�.ˇ1/ D ra˙ b for some r 2 Z, and because Im �.ˇ1/ > 0 and
Im �.b/ > 0, we actually have g�.ˇ1/D raC b . It follows that

g�.˛1/ �g�.ˇ1/D .na/ � .raC b/D n;

and similarly g�.˛2/ �g�.ˇ2/D 0. It follows easily from the fact that g is degree d

that
g�.˛1/ �g�.ˇ1/Cg�.˛2/ �g�.ˇ2/D d:

so nD d . Because g is primitive, we must have gcd.d;p; q/D 1.

Let  W U ! P�T 0
2
.T1;0/ be the unplumbing map defined in Section 6.3, which

sends .Y; �/ 2 U to the Abelian differential obtained by unplumbing the cylinder on
.Y; �/ homotopic to the curve T 1

1;0 . In our local coordinates,  is the projection
 .w;x;y; z/ D .w;x;y; 0/. In P�T 0

2
.T1;0/, let P�T 0

2
.T1;0/.d/ be the inverse

image of P�M0
2
.T1;0/.d/, the locus of degree d cylinder covering differentials,

under the natural projection.
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Theorem 7.6 An Abelian differential .Y; �/ 2U nP�T 0
2
.T1;0/ is in Xd2 if and only

if  .Y; �/ 2 P�T 0
2
.T1;0/.d/.

Proof Let .Y; �/ 2 U , and let C be the maximal closed cylinder on Y containing a
closed geodesic A homotopic to the curve of T1;0 . Let .Z; �/ be the stable Abelian
differential obtained by cutting Y along A to obtain a surface .Y 0; �0/ with geodesic
boundaries A1 and A2 , and then gluing in an infinite cylinder to each resulting boundary
component of Y 0 . The surface Y 0 naturally lies in both Y and Z , and .Z; �/ is the
unplumbing of .Y; �/ along C .

We need to show that .Y; �/ is a degree d elliptic differential if and only if .Z; �/ is a
degree d cylinder covering differential.

First, assume that .Z; �/ is a degree d cylinder covering differential. Let gW .Z; �/!

.D; �/ be a map to a cylinder .D; �/D .C=Z; dz/ realizing Z as a degree d cylinder
covering differential. The map g sends the horizontal geodesics A1 and A2 to hori-
zontal geodesics B1 and B2 on C , and by the Open Mapping Theorem, B1 and B2

must be distinct (or else the point p 2 Y 0 for which g.p/ has largest imaginary part
would lie in the interior of Y 0 , which contradicts the Open Mapping Theorem). The
geodesics B1 and B2 bound a subcylinder D0 of D , and g maps Y 0 onto D0 with
degree d . The induced map in homology, g�W H1.Y

0IZ/!H1.D
0IZ/ is onto because

g�W H1.ZIZ/!H1.DIZ/ is onto by primitivity of g . Now, we can recover Y by
gluing together A1 and A2 by an appropriate gluing map. By gluing D0 along B1

and B2 in a way compatible with the map g , we get an elliptic curve E with Abelian
differential � and a primitive degree d map hW .Y; �/! .E; �/; realizing .Y; �/ as a
elliptic differential.

Now assume that .Y; �/ is a degree d elliptic differential. Let gW .Y; �/! .E; �/ be a
map realizing .Y; �/ as an elliptic differential. Take a basis fa; bg of H1.EIZ/ as in
Lemma 7.5. Let B D g.A/, a horizontal closed geodesic on E . The geodesics A and
B are homologous to ˛1 , and a respectively. Since g�.˛1/D da by Lemma 7.5, the
restriction gjAW A! B is degree d , so g�1.B/DA.

Cut E along B , and call the resulting cylinder with boundary .D0; � 0/. Let .D; �/
be the infinite cylinder obtained by gluing half-infinite cylinders to each bound-
ary component of .D0; � 0/. Since g�1.B/ D A, there is a natural degree d map
h0W .Y 0; �0/! .D0; � 0/ and thus a degree d map hW .Z; �/! .D; �/.

To show that .Z; �/ is a degree d cylinder covering differential, it just remains to
show that h is primitive, and it is enough to show that h0�W H1.Y

0IZ/!H1.D
0IZ/ is

onto. This follows easily from Lemma 7.5. Since the homology classes ˛i and ˇ2 can
be represented by closed curves disjoint from A, they naturally define classes on Y 0 .
Then the fact that gcd.d;p; q/D 1 from Lemma 7.5, implies that h0� is onto.
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Corollary 7.7 We have

(7–1) Xd2.T1;0/D P�M0
2.T1;0/.d/:

Given .X; Œ!�/ 2 Xd2.T1;0/ contained in a sufficiently small neighborhood U �

P�M0
2
.T1;0/ with coordinates on U as defined above, xXd2 \ U is cut out by the

equations,

w D !.˛2/=!.˛1/(7–2)

x D !.ˇ2/=!.˛1/;

and Xd2.T1;0/ is cut out by the additional equation zD 0. If ! has a double zero, then
SWd2 is cut out by the equations (7–2) together with the additional equation y D 0.

In these coordinates, the foliation Ad2 of Xd2 has leaves given by z D const.

Proof It follows immediately from Theorem 7.6 that .w;x;y; z/ 2 U is in Xd2 if
and only if .w;x;y; 0/ 2 P�T 0

2
.T1;0/.d/ and z ¤ 0, and (7–1) follows by taking the

closure.

If .w;x;y; 0/ 2 P�T 0
2
.T1;0/.d/, then .w;x;y0; 0/ 2 P�T 0

2
.T1;0/.d/ for any y0

because being a cylinder covering differential only depends on absolute periods. Fur-
thermore, we must have w;x 2 1

d
Z by Lemma 7.5, so the coordinates w and x are

locally constant along P�T 0
2
.T1;0/.d/. It follows that if .X; Œ!�/ D .w;x;y; 0/ 2

P�T 0
2
.T1;0/.d/, then around this point, P�T 0

2
.T1;0/.d/ is cut out by the equations

(7–2) together with z D 0, and Xd2 is cut out by the equations (7–2).

The equations for Xd2.T1;0/ and SWd2 are clear from the definitions of the coordinates.
The leaves of the foliation Ad2 are determined by the condition that the absolute
periods are locally constant along the leaves, which means in these coordinates that
v , w , x , and z are all constant. Since we’re in U1 , we have v D 1, and w and x are
locally constant by (7–2). Thus the foliation is given by z D const.

Theorem 7.4 follows directly from this corollary. Note that the statement in Theorem 7.4
that the intersections of SWd2 and Xd2.T1;0/ are transverse if d > 3 follows from the
coordinates above together with the fact that �1.d/ is torsion-free if d > 3.

A section of O.�1/ Recall that we normalized each projective class .Y; Œ��/ in
P�D0

2
.T1;0/ so that each �.˛1/ D 1. We can regard this as defining a section s

of the canonical line bundle O.�1/ over P�D0
2
.T1;0/.

Proposition 7.8 The norm of this section s of O.�1/ is given by

(7–3) h.s; s/D� 1
2�

log jzjCwx:
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Proof For any genus two Riemann surface X with a symplectic basis f˛i ; ˇig of
H1.X IZ/, it is well known that for any ! 2�.X /,

(7–4)
Z

X

j!j2 D Im.!.˛1/!.ˇ1/C!.˛2/!.ˇ2//:

Equation (7–3) follows from this formula using the fact that w and x are real on xXd2

in these coordinates.

7.4 The stratum XD.T1;0;T
1

1;0
/

We now study the stratum XD.T1;0;T
1
1;0/ of Abelian differentials in xXD with one

nonseparating holomorphic node. Since this stratum is empty if D is not square, we
will restrict to the case D D d2 .

Recall that the d –torsion locus P�M0
2
.T1;0;T

1
1;0/.d/ is the locus of .X; Œ!�/ 2

P�M0
2
.T1;0;T

1
1;0/ such that, if we regard .X; Œ!�/ as a genus one differential with

two marked points, then the marked points differ by exactly d –torsion on X . The goal
of this section is to prove the following theorem.

Theorem 7.9 xXd2 is an orbifold around the stratum Xd2.T1;0;T
1
1;0/, which is a

suborbifold equal to

P�M0
2.T1;0;T

1
1;0/.d/Š H=�1.d/:

Vanishing of periods We now prove that for Abelian differentials .X; Œ!�/ 2 Xd2

close to some .X0; Œ!0�/ 2 xXd2 which has a holomorphic node, periods along curves
of .X; Œ!�/ which are close to a holomorphic node of .X0; Œ!0�/ must vanish.

Proposition 7.10 Let S be a curve system on †2 , let � W P�D2.S/!P� SM2 be the
natural projection, and let .X0; Œ!0�/ 2 P�D2.S/\�

�1. xXd2/ have a nonseparating
holomorphic node represented by a homology class ˛2H1.†2IZ/. Then for .X; Œ!�/2
P�D2.S/ sufficiently close to .X0; Œ!0�/, we must have !.˛/D 0.

Proof Choose a representative !0 of the projective class Œ!0�, and suppose there is
a sequence .Xn; !n/! .X0; !0/ with .Xn; !n/ 2 �

�1.Xd2/ and !n.˛/¤ 0 for all
n. There are degree d branched covers fnW .Xn; !n/! .En; �n/ over elliptic curves.
Taking a subsequence, we can assume that .En; �n/! .E; �/, with E either a cylinder
or an elliptic curve and that fn converges to a branched cover f W .X0; !0/! .E; �/

of degree at most d . We must then have �¤ 0.
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The injectivity radius I.En; �n/ of .En; �n/ is bounded by the absolute value of any
nonzero period of �n . Since �n..fn/�˛/D !n.˛/, and !n.˛/! 0, this means that
I.En; �n/! 0. This is a contradiction because injectivity radius is continuous, and
.E; �/ has nonzero injectivity radius.

Local coordinates Choose some .X; Œ!�/ 2 P�M0
2
.T1;0;T

1
1;0/. By choosing a

marking f W †2! X , we can regard .X; Œ!�/ as a point in P�T 0
2
.T1;0;T

1
1;0/. Let

f˛i ; ˇig
2
iD1

be a symplectic basis of H1.†2IZ/ such that ˛1 represents the curve T 1
1;0 ,

as in Section 6.4.

Let U �P�D0
2
.T1;0;T

1
1;0/ be a neighborhood of .X; Œ!�/ small enough that the natural

map U=Aut.X; Œ!�/! P� SM2 is an isomorphism onto its image, and �.˛2/ ¤ 0

for every .Y; Œ��/ 2 U . By normalizing each .Y; Œ��/ 2 U so that �.˛2/ D 1, we
can identify U with an open set U1 in the hypersurface in �D0

2
.T1;0;T

1
1;0/ of those

Abelian differentials .Z; �/ such that �.˛2/D 1. The coordinates .w;x;y; z/ from
Proposition 6.6 then restrict to local coordinates .x;y; z/ on U .

Xd 2.T1;0;T
1
1;0/ in local coordinates The set U is not a neighborhood of .X; Œ!�/

in P�D0
2
.T1;0/, but rather it is a neighborhood of .X; Œ!�/ in the hypersurface

P�D0
2
.T1;0;T

1
1;0/. Proposition 7.10 implies that in a sufficiently small neighborhood

V of .X; Œ!�/ in P�D0
2
.T1;0/,

V \Xd2 � U:

This means that we can restrict to this hypersurface and still understand the local
structure of xXd2 around .X; Œ!�/.

Let  W U ! P�T 0
2
.T1;0;T

1
1;0/ be the projection (defined in the proof of Proposition

6.6) which splits each .X; Œ!�/2U along a union of saddle connections I[J.I/ which
is homotopic to ˛1 . In our local coordinates on U , this is the map �.x;y; z/D .x;y; 0/.

Let P�T 0
2
.T1;0;T

1
1;0/.d/ be the inverse image under the natural projection of the

d –torsion locus P�M0
2
.T1;0;T

1
1;0/.d/.

Theorem 7.11 A .Y; �/ 2 U nP�T 0
2
.T1;0;T

1
1;0/ is in Xd2 if and only if  .Y; �/ 2

P�T 0
2
.T1;0;T

1
1;0/.d/.

Proof Let .Y; �/ 2 U , with saddle connections I1 and I2 , which we split along to
form an elliptic curve .E; �/. Let p and q be the two zeros of �. Let J1 and J2 be
the two segments which are the images of the saddle connections Ii in E . The Ji

start at points pi and end at points qi such that upon taking the connected sum along
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p

q

I1
I2

q1
q2

p1
p2

J1 J2

Figure 11: Split along I1[ I2 and then reglue.

J1 and J2 , the pi are identified to form the zero p and the qi are identified to form
the zero q (see Figure 11).

We need to show that .Y; �/ is a degree d elliptic differential if and only if the points
pi differ by exactly d –torsion in the group law on E .

First, suppose that .Y; �/ is a degree d elliptic differential. Then .Y; �/ is branched
over an elliptic curve by some gW .Y; �/! .F; �/. The saddle connections Ii must
have as their image the same segment K in F because they have the same direction
and length, and they start at the same zero p . It follows that when we cut Y along I1

and I2 , points which are then glued together to form E map to the same point of F

under g . Thus g defines an isogeny g0W E! F of the same degree, sending p1 and
p2 to the same point. This implies that p1 and p2 differ by d –torsion on E .

Conversely, if p and q differ by d –torsion, there is a degree d –isogeny gW .E; �/!

.F; �/; it must send points of J1 and J2 which are glued together to form Y to the
same point of Y , so we get a branched cover .Y; �/! .F; �/ which realizes � as a
degree d elliptic differential.

Corollary 7.12 The stratum Xd2.T1;0;T
1
1;0/ is exactly P�M0

2
.T1;0;T

1
1;0/.d/. If

we have .X; Œ!�/ 2Xd2.T1;0;T
1
1;0/, then in the .x;y; z/ coordinates defined above on

the neighborhood U of .X; Œ!�/ in P�D0
2
.T1;0;T

1
1;0/, the variety xXd2 is cut out by

the equation,

(7–5) dy D axC b;

for some relatively prime integers a and b .
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In these coordinates, the stratum Xd2.T1;0;T
1
1;0/ is cut out by the additional equation

z D 0, and leaves of the foliation Ad2 are determined by either of the equivalent
equations, x D const or y D const.

Proof It follows immediately from Theorem 7.11 that .x;y; z/ 2 U is in Xd2 if and
only if .x;y; 0/ 2 P�T 0

2
.T1;0;T

1
1;0/.d/ and z ¤ 0. Thus

U \ xXd2 D f.x;y; z/ 2 U W .x;y; 0/ 2 P�T 0
2 .T1;0;T

1
1;0/.d/g;

and Xd2.T1;0;T
1
1;0/D P�M0

2
.T1;0;T

1
1;0/.d/ as claimed.

It remains to show that if .X; Œ!�/2P�T 0
2
.T1;0;T

1
1;0/.d/, then near .X; Œ!�/, the locus

P�T 0
2
.T1;0;T

1
1;0/.d/ is cut out by Equation (7–5). This is because for some .Y; �/ 2

P�T 0
2
.T1;0;T

1
1;0/, a relative period joining the marked points is given by y D �.ˇ1/,

so the marked points differ by d –torsion if and only if d�.ˇ1/D a�.ˇ2/Cb�.˛2/ for
some relatively prime integers a and b , which is equivalent to (7–5).

The equation for Xd2.T1;0;T
1
1;0/ is clear from the definition of the coordinates, and

the equations for the leaves of Ad2 hold because either of these equations together
with (7–5) implies that the absolute periods are all constant.

Theorem 7.9 follows immediately from this corollary.

7.5 The stratum XD.T2 ;0;T
2

2 ;0
/

We now study the stratum XD.T2;0;T
2
2;0/ consisting of limits of eigenforms with one

nonseparating polar node and one nonseparating holomorphic node. The arguments in
this section are straightforward combinations of those in the previous two sections, so
we will omit some of the proofs. This stratum is empty when D is not square, so we
will restrict to the case D D d2 .

Recall that in Section 6.5 we defined the finite set P�M0
2
.T2;0;T

2
2;0/.d/, consisting

of the stable Abelian differentials fq=d 2 P�M0
2
.T2;0;T

2
2;0/, where q is an integer

relatively prime to d . The following is the main theorem of this section.

Theorem 7.13 The stratum Xd2.T2;0;T
2
2;0/ is the locus P�M0

2
.T2;0;T

2
2;0/.d/. The

variety xXd2 is nonsingular at these points, and each fq=d 2Xd2.T2;0;T
2
2;0/ is a trans-

verse intersection point of the closures of the strata Xd2.T1;0/ and Xd2.T1;0;T
1
1;0/.
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Local coordinates Choose some .X; Œ!�/ 2 P�M0
2
.T2;0;T

2
2;0/. By choosing a

marking f W †2! X , we can regard .X; Œ!�/ as a point in P�T 0
2
.T2;0;T

2
2;0/. Let

f˛i ; ˇig
2
iD1

be a symplectic basis of H1.†2IZ/ such that ˛i represents the curve T i
2;0

in T2;0 as in Section 6.5.

Let U �P�D0
2
.T2;0;T

2
2;0/ be a neighborhood of .X; Œ!�/ small enough that the natural

map U=Aut.X; Œ!�/! P� SM2 is an isomorphism onto its image. By normalizing
each .Y; Œ��/ 2 U so that �.˛1/D 1, we can identify U with an open set U1 in the
hypersurface in �D0

2
.T2;0;T

2
2;0/ consisting of those Abelian differentials .Z; �/ such

that �.˛1/ D 1. The coordinates .w;x;y; z/ from Proposition 6.7 then restrict to
coordinates .x;y; z/ on U .

Xd 2.T2 ;0;T
2
2 ;0/ in local coordinates Let  W U ! P�T 0

2
.T2;0;T

2
2;0/ be the pro-

jection which sends an Abelian differential .Y; �/ to the one obtained by unplumbing
the cylinder on .Y; �/ homotopic to the curve T 1

2;0 and splitting along the pair of
saddle connections I [ J.I/ homotopic to T 2

1;0 . In local coordinates,  .x;y; z/D
.x; 0; 0/. Let P�T 0

2
.T2;0;T

2
2;0/.d/ be the inverse image under the natural projection

to P�M0
2
.T2;0;T

2
2;0/.d/.

Theorem 7.14 If the neighborhood U of .X; Œ!�/ is sufficiently small, then a nonsin-
gular .Y; �/ 2 U is in Xd2 if and only if �.Y; �/ 2 P�T 0

2
.T2;0;T

2
2;0/.d/.

The proof of this theorem is a straightforward combination of the proofs of Theorem
7.6 and Theorem 7.11, so we will omit the proof. The idea is that fq=d is a primitive
degree d branched cover of a cylinder, and given a .Y; �/ such that  .Y; �/D fq=d ,
we can use this cover to exhibit .Y; �/ as a degree d torus cover.

Corollary 7.15 The stratum Xd2.T2;0;T
2
2;0/ is equal to P�M0

2
.T2;0;T

2
2;0/.d/. If

.X; Œ!�/ 2Xd2.T2;0;T
2
2;0/, then in a neighborhood V of .X; Œ!�/ in P�D0

2
.T2;0/,

V \ xXd2 � P�D0
2.T2;0;T

2
2;0/:

In the coordinates .x;y; z/ on a neighborhood U of .X; Œ!�/ in P�D0
2
.T2;0;T

2
2;0/,

the variety xXd2 is cut out by the equation,

(7–6) x D
q

d
;

for some integer q relatively prime to d .

The intersection of the closure of Xd2.T1;0/ with U is cut out by the additional
equation y D 0, and the intersection of the closure of Xd2.T1;0;T

1
1;0/ with U is cut

out by the additional equation z D 0. The leaves of the foliation Ad2 of Xd2 are given
by y D const.
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Proof Proposition 7.10 implies directly that in a neighborhood V of .X; Œ!�/ in
P�D0

2
.T2;0/,

V \ xXd2 � P�D0
2.T2;0;T

2
2;0/:

It follows immediately from Theorem 7.14 that .x;y; z/ 2 U is in Xd2 if and only if
.x; 0; 0/ 2 P�T 0

2
.T2;0;T

2
2;0/.d/ and y; z ¤ 0. Thus

U \ xXd2 D f.x;y; z/ 2 U W .x; 0; 0/ 2 P�T 0
2 .T2;0;T

2
2;0/.d/g;

and Xd2.T2;0;T
2
2;0/D P�M0

2
.T2;0;T

2
2;0/.d/ as claimed.

Suppose .X; !/ 2 P�T 0
2
.T2;0;T

2
2;0/.d/. The coordinate x D !.ˇ2/ measures a

relative period on .X; !/ joining the two marked points which are identified to form a
holomorphic node. Since !.˛1/D 1, we have x D !.ˇ2/D q=d for some integer q

relatively prime to d if and only if the marked points differ by d –torsion. Thus xXd2

is cut out by (7–6) as claimed.

The intersection of the closure of Xd2.T1;0/ with U is cut out by the additional
equation y D 0 because y.Y; �/D 0 exactly when .Y; �/ has a polar node, and the
intersection of the closure of Xd2.T1;0;T

1
1;0/ with U is cut out by the additional

equation z D 0 because z.Y; �/D 0 exactly when .Y; �/ has a holomorphic node.

The equation y D const defines the foliation Ad2 because this makes the period along
ˇ1 constant, and we have already seen that the other periods are locally constant along
Xd2 with our normalization for �.

Theorem 7.13 follows directly from this corollary.

A section of O.�1/ Recall that we normalized each projective class .Y; Œ��/ in
P�D0

2
.T2;0;T

2
2;0/ so that each �.˛1/D 1. We can regard this as defining a section s

of the canonical line bundle O.�1/ over P�D0
2
.T2;0;T

2
2;0/.

The following follows directly from (7–4) together with the definition of our coordinates.

Proposition 7.16 The norm of this section s of O.�1/ is given by

(7–7) h.s; s/D� 1
2�

log jzj:
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7.6 The strata XD.T2 ;0I 1; 1/, XD.T2 ;0I 2/, and XD.T2 ;1/

We now turn to the strata XD.T2;0I 1; 1/, XD.T2;0I 2/, and XD.T2;1/ which together
consist of those limiting eigenforms which have exactly two nonseparating polar nodes,
possibly with a separating node.

Recall the definitions from Section 6.6 of the curves C� and the points p� and w�
in P� SM2 . The following is the classification of points in the strata XD.T2;0I 1; 1/,
XD.T2;0I 2/, and XD.T2;1/, which we will prove over the course of this subsection.

Theorem 7.17 The union of the strata XD.T2;0I 1; 1/, XD.T2;0I 2/, and XD.T2;1/

is equal to the union,

(7–8)
[
�

C�;

where the union is over all � such that �D�.P / for some nondegenerate YD –prototype
P . The stratum XD.T2;0I 2/ is the finite set,[

�

w�;

where the union is over all � such that � D �.P / for some WD –prototype P . The
stratum XD.T2;1/ is the finite set, [

�

p�;

where the union is over all � such that � D �.P / for some PD –prototype P . The
stratum XD.T2;0I 1; 1/ is the complement of these finite sets in (7–8).

We will also see that in general xXD is singular along the curves C� , and we will give
equations for xXD in local coordinates around C� .

Local coordinates Choose an .X; Œ!�/ in P�M0
2
.T2;0I 1; 1/, P�M0

2
.T2;0I 2/ or

P�M0
2
.T2;1/. By choosing a marking f W †2!X , we can regard .X; Œ!�/ as a point

in P�T 0
2
.T2;0I 1; 1/, P�T 0

2
.T2;0I 2/, or P�T 0

2
.T2;1/.

Our first goal is to show that if .X; Œ!�/ 2 xXD , then .X; Œ!�/ lies in the union (7–8). If
.X; Œ!�/ 2 xXD , then ! is an eigenform for real multiplication of OD on Jac.X / by
Theorem 5.10, so assume that it is such an eigenform. It follows that the ratio of the
residues of the two poles of ! is real. Thus we can choose a representative ! of the
projective class Œ!� and choose homology classes ˛1 and ˛2 in H1.†2;Z/ such that
the following properties hold:
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� The ˛i represent the two nonseparating nodes of X .
� !.˛1/D 1.
� !.˛2/D � with �� 1.

If �> 1, then this choice of the ˛i and ! is uniquely determined up to the hyperelliptic
involution by these properties. If �D 1, then there are two possible choices for the ˛i

and ! up to the hyperelliptic involution, and we choose one arbitrarily (the other one
is then obtained by swapping the ˛i ).

Extend f˛1; ˛2g to a basis f˛i ; ˇig
2
iD1

of H1.†2IZ/ as follows:

� If .X; !/ 2 P�M0
2
.T2;0I 1; 1/, let ˇi be an arbitrary pair which is dual to the

˛i with respect to the intersection pairing.
� If .X; !/ 2 P�M0

2
.T2;1/, let ˇi be a pair dual to the ˛i such that each ˇi is

represented by a simple closed curve disjoint from the separating curve T 3
2;1 .

This determines each ˇi up to adding a multiple of ˛i .
� If .X; !/ 2 P�M0

2
.T2;0I 2/, then the horizontal foliation of .X; !/ consists

of two horizontal cylinders separated by a “figure-eight”; let F � †2 be the
inverse image of this figure-eight with p the singular point of F . In H1.†2IZ/,
let the ˇi be a pair which is dual to the ˛i such that ˇ1 is represented by a
simple closed curve which passes through p and is disjoint from F np , and ˇ2

is represented by a simple closed curve which is disjoint from F (see Figure 12).
These conditions determine each ˇi uniquely up to adding a multiple of ˛i .

˛1

ˇ1

˛2ˇ2

Figure 12: Symplectic basis for H1.†2IZ/

Let U be a small neighborhood of .X; !/ in P�D0
2
.T2;0/ or P�D0

2
.T2;1/ such that

the natural map U=Aut.X; !/! P� SM2 is an isomorphism onto its image. Also
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choose U small enough so that the conclusion of Theorem 5.9 holds. That is, if
.Y; �/ 2 U is an eigenform for real multiplication by OD , then the induced action of
OD on H1.†2IZ/ preserves the subgroup S spanned by the ˛i , giving S the structure
of an OD –module.

By normalizing each projective class .Y; Œ��/ 2 U so that �.˛1/D 1, we can identify
U with an open set U 0 in the hypersurface in �D0

2
.T2;0/ or �D0

2
.T2;1/ of those

Abelian differentials .Z; �/ such that �.˛1/D 1. For any � 2 R, let

U� D f.Y; �/ 2 U W �.˛1/D 1; and �.˛2/D �g;

a hypersurface in U . We then have .X; !/ 2 U� .

Proposition 7.18 If the neighborhood U of .X; !/ is taken sufficiently small, then
for each .Y; �/ 2 U \XD , the OD –submodule S of H1.†2IZ/ is a quasi-invertible
OD –module with f˛1; ˛2g an admissible basis; furthermore, U \XD � U� .

It follows that �D �.P / for some nondegenerate YD –prototype P .

Proof For an Abelian differential .Y; �/ 2 U which is sufficiently close to .X; !/,
the classes ˛i will be homologous to core curves of very tall horizontal cylinders on Y

by Theorem 5.5. Since ˛i �ˇi D 1, a curve representing ˇi passes vertically through
the cylinder, so the cylinder makes a large positive contribution to Im �.ˇi/. Thus, if
.Y; �/ 2 U with U sufficiently small, we must have Im �.ˇi/ > 0.

The intersection pairing is an unimodular pairing between the OD –modules S and
H1.†2IZ/=S , and the ˛i and ˇi represent bases of these modules dual with respect
to this pairing. The period maps associated to � and Im � are nonzero �1 –linear maps
of these modules to R (� is real-valued because �.˛1/D 1 and ˛2 D � �˛1 for some
� 2KD ) which send the ˛i and the ˇi respectively to positive reals. It then follows
from Theorem 3.5 that the ˛i form an admissible basis of S .

By Proposition 3.4, for any .Y; �/ 2 U \ XD there are integers a, b and c as in
the conclusion of that proposition with a�.˛2/

2C b�.˛2/C c D 0. Since there are
only finitely many such integers, and �.˛2/! � as .Y; �/! .X; !/, we must have
�.˛2/D � for .Y; �/ sufficiently close to .X; !/.

Finally, �D �.P / for any YD –prototype .a; b; c; xq/ with a; b , and c as above.

Corollary 7.19 The strata XD.T2;0I 1; 1/, XD.T2;0I 2/, and XD.T2;1/ are contained
in the union (7–8).
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In the coordinates .v; w;x;y; z/ on �D0
2
.T2;0/ or �D0

2
.T2;1/ from Section 6.6, the

subspace U� is cut out by the equations,

v D 1 and w D �;

so the .x;y; z/ restrict to give local coordinates on U� , which send .Y; �/ 2 U to

x D

8̂̂<̂
:̂
R

I � if .X; !/ 2�T 0
2
.T2;0I 1; 1/;�R

I �
�2=3 if .X; !/ 2�T 0

2
.T2;0I 2/;�R

I �
�2 if .X; !/ 2�T 0

2
.T2;1/,

y D e2� i�.ˇ1/;

z D e2� i�.ˇ2/=�;

where I is a saddle connection joining distinct zeros as in Section 6.6.

Prototypes Now assume that our .X; Œ!�/ 2 C� , where �D �.P / for some nonde-
generate YD –prototype P with a small neighborhood U of .X; Œ!�/ in the Dehn space
chosen as above. We will assign a prototype P .Y; �/ to each Abelian differential
.Y; �/ 2 U \XD . For now, fix such an .Y; �/.

Recall that we identify two terminal prototypes if they differ by the involution (3–1).
We temporarily don’t want to make this identification, so we will call a fine prototype a
prototype which is defined exactly as in Section 3.1, except without this identification.

The marking †2! Y is well-defined up to Dehn twist around the curves of T2;0 or
T2;1 . Choose a particular marking. This allows us to consider the symplectic basis
f˛i ; ˇig of H1.†2IZ/ as a basis of H1.Y IZ/ as well.

By Proposition 3.4 and Proposition 7.18, there is a unique � in KD so that � �˛1D ˛2 ,
using the real multiplication on Jac.Y /. Since � is an eigenform, we know that �.1/D�
because

�D �.˛2/D �.� �˛1/D �
.1/�.˛1/D �

.1/:

If D is not square, this means that � doesn’t depend on .Y; �/ 2 U because � is
determined by its first embedding. If D is square, however, there can be Abelian
differentials close to .X; !/ with different �.2/ .

Let a, b , and c be the integers given by Proposition 3.4. Since OD D ZŒa��, the
algebraic integer a� acts on H1.Y IZ/ by an integer matrix.
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Proposition 7.20 The matrix T of the action of a� on H1.Y IZ/ in the basis
f˛1; ˛2; ˇ1; ˇ2g is

(7–9) T D

0BB@
0 �c 0 q

a �b �q 0

0 0 0 a

0 0 �c �b

1CCA
with a, b , and c as above, and for some integer q .

Proof The matrix T is self-adjoint with respect to the intersection pairing on H1.Y IZ/,
which is equivalent to

T tJ D JT;

where J D

�
0 I

�I 0

�
:

This easily implies that

T D

�
A Q

0 At

�
with QD�Qt .

To calculate A, we know that

a� �˛1 D a˛2;

and a�˛2 D a�2˛1 D .�b�� c/˛1 D�c˛1� b˛2;

so AD

�
0 �c

a �b

�
:

Now let P .Y; �/D .a; b; c; xq/, where q is as in the above Proposition, and xq is the
residue class of q , taken modulo gcd.a; b; c/. Similarly, if .X; !/ has a double zero or
a separating node, let P 0.Y; �/D .a; b; c; xq/, where xq is the residue class of q , taken
modulo gcd.a; c/. Note that the definitions of P .Y; �/ and P 0.Y; �/ involved some
choices: there was a choice of which ˇi to take as a basis dual to the ˛i in H1.†2IZ/,
and there was a choice of a marking †2! Y to take up to Dehn twist around T2;0 or
T2;1 which we used to transport the basis of H1.†2IZ/ to H1.Y IZ/.

Theorem 7.21 The quadruple P .Y; �/ is a fine YD –prototype which does not depend
on the choice of the ˇi or the marking †2 ! Y . If .X; !/ has a double zero or a
separating node, then P 0.Y; �/ is a fine WD or PD –prototype which is also independent
of these choices.
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Proof We first show that P .Y; �/ satisfies the required properties of a prototype.
It follows directly from Proposition 3.4 that b2 � 4ac D D and a > 0. We know
N

KD

Q
.�/< 0 because f˛1; ˛2g is an admissible basis of the OD –module S Dh˛1; ˛2i,

so c < 0. Since ZŒa��DOD by Proposition 3.4, the matrix in (7–9) must be primitive
because the action of OD on Jac.Y / is proper; thus gcd.a; b; c; xq/ D 1. Finally,
aC bC c � 1 because �.1/ � 1.

Now we will show that P .Y; �/ is independent of the choices made. Replacing the ˇi

with a new pair which are dual to the ˛i or changing the marking †2! Y by Dehn
twists around T2;0 or T2;1 produces a new pair ˇ0i of the form,

ˇ01 D ˇ1C r˛1C s˛2(7–10)

ˇ02 D ˇ2C s˛1C t˛2

for integers r , s , and t .

The matrix sending the basis f˛1; ˛2; ˇ1; ˇ2g to f˛1; ˛2; ˇ
0
1
; ˇ0

2
g is

S D

0BB@
1 0 r s

0 1 s t

0 0 1 0

0 0 0 1

1CCA :
If T is the matrix of the endomorphism of H1.Y IZ/ given by multiplication by a� in
the old basis. and T 0 is the matrix of the same endomorphism in the new basis, then
T 0 is

T 0 D S �T �S�1;

which is

0BB@
0 �c 0 q0

a �b �q0 0

0 0 0 a

0 0 �c �b

1CCA ;
where

(7–11) q0 D qC ar � bsC ct:

It follows that q0 � q .mod gcd.a; b; c//; so the prototype is independent of the
choices.

Now suppose .X; !/ does have a separating node or a double zero. We must now show
that q is well-defined modulo gcd.a; c/. In this case, the choice of ˇi is uniquely
determined up to adding a multiple of ˛i because we imposed additional requirements
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on the ˇi . That means that different choices give a new pair fˇ0ig of the form (7–10)
with s D 0. Then from (7–11), we see that q0 � q .mod gcd.a; c//.

Finally, if .X; !/ has a double zero, then � > 1 by Proposition 6.10, so aCbC c < 0,
and P 0.Y; �/ is then a WD –prototype.

Remark If �D 1, then there were also two possible ways to choose the ˛i . In this
case, one can check that swapping the ˛i has the effect of applying the involution (3–1)
to the prototypes P .Y; �/ and P 0.Y; �/. Thus they are independent of this choice as
ordinary prototypes but not as fine prototypes.

Equations for xXD in local coordinates Given .X; Œ!�/ 2 C� and a small neighbor-
hood U of .X; Œ!�/ in the Dehn space as above, we now give equations for xXD in
U and show that .X; Œ!�/ is indeed in xXD . Since the prototype P .Y; �/ is locally
constant on U \XD , we can use these prototypes to label branches of U \XD . Given
a fine YD –prototype P , let VP � U be the closure in U of

f.Y; �/ 2 U \XD W P .Y; �/D Pg;

which in fact lies in U� by Proposition 7.18. If .X; !/ has a double zero or a separating
node, and P is a fine WD or PD –prototype (respectively), then let V 0

P
the analogous

locus where P 0.Y; �/DP . In this case, given a fine WD –prototype (or PD –prototype)
P ,

VP D

[
Q

V 0Q;

where the union is over all fine WD –prototypes (or PD –prototypes) which map to P .

Let .a0; b0; c0; xq0/D .a; b; c; xq/= gcd.a; b; c/;

and .a00; b00; c00; xq00/D .a; b; c; xq/= gcd.a; c/

(here we interpret xq0 and xq00 as elements of Q=Z).

Recall that we have coordinates .x;y; z/ on U� defined above.

Theorem 7.22 The locus VP is cut out by the equation,

(7–12) ya0
D e�2�iq0z�c0 ;

and C� is cut out by the equations y D z D 0.

If .X; !/ has a double zero or a separating node, then V 0
P

is cut out by the equation,

(7–13) ya00
D e�2�iq00z�c00 ;
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and SWD \VP or respectively xPD \VP is cut out by the additional equation x D 0.
The leaves of the foliation AD of XD are given in these coordinates by either of the
equivalent equations y D const or z D const.

Proof The proofs of (7–12) and (7–13) are essentially the same, so we will only give
the proof of (7–12).

Choose some .Y; �/ 2 VP with a symplectic basis f˛i ; ˇig and � 2 KD as before.
Equation (7–9) implies

a� �ˇ1 D�q˛2� cˇ2(7–14)

a� �ˇ2 D q˛1C aˇ1� bˇ2:(7–15)

Since � is an eigenform, integrating � over both sides gives

a��.ˇ1/D�q�� c�.ˇ2/(7–16)

a��.ˇ2/D qC a�.ˇ1/� b�.ˇ2/(7–17)

because �.1/ D �. Dividing (7–16) by � gcd.a; b; c/ and exponentiating yields (7–12).

Now consider .Y; �/ which lies in U� n V .y; z/ and in the locus defined by (7–12)
(using the notation V .�/ for the zero locus of the enclosed functions). We must show that
.Y; �/ is an eigenform for real multiplication by OD with prototype P D .a; b; c; xq/.

Taking a logarithm of (7–12), we get

a��.ˇ1/���xq� c�.ˇ2/ .mod � gcd.a; b; c//:

We can then choose some q�xq mod gcd.a; b; c/ so that (7–16) holds. It then follows
automatically from the relation a�2C b�C c D 0 that (7–17) holds. We can then
define real multiplication of OD on Jac.Y / by defining a� to act via the matrix T in
(7–9). Equations (7–16) and (7–17) then imply .Y; �/ is actually an eigenform for real
multiplication with prototype P .

The equations for SWD and xPD are obvious from the definition of the coordinates. The
leaves of AD are as claimed because with our normalization the periods �.˛i/ are
constant, and either y D const or zD const implies that both of the �.ˇi/ are constant
by (7–12).

This also completes the proof of Theorem 7.17 because we explicitly constructed eigen-
forms near any point of C�.P/ for any nondegenerate YD –prototype P in Theorem
7.22 and showed that these are the only possible limits in Corollary 7.19.
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Branches of xXD through C� Let p D .X; Œ!�/ 2 C� , and let q 2 P�D2.S/ (for
the appropriate curve system S ), with �.q/ D p . We have seen that around q , the
variety ��1. xXD/ is the union of the VP over all fine YD –prototypes P such that
�.P /D �.

To understand the local structure of xXD around p , we need only to understand how
Aut.X; Œ!�/ acts on this picture. If � > 1, then Aut.X; Œ!�/ consists only of the hyper-
elliptic involution which acts trivially on P�D2.S/. Thus � is a local isomorphism
around q . Note also that there is no distinction between fine and ordinary prototypes
when � > 1.

When �D 1, we have Aut.X; Œ!�/Š Z=2˚Z=2. It is generated by the hyperelliptic
involution together with an involution t which interchanges the two nonseparating nodes
of X and preserves ! . This involution t acts on P�D2.S/ by t.x;y; z/D .x; z;y/

in the coordinates around q defined above, so t identifies VP with Vi.P/ , where i

is the involution of (3–1). Thus VP and Vi.P/ have the same image in P� SM2 . We
will abuse notation and denote the image of VP in P� SM2 by VP as well, where now
P is an ordinary YD –prototype. This makes sense because it defines the same object
if P is replaced with i.P /. This VP is a union of branches of xXD through p . To
summarize, whether or not �D 1, the germ of xXD around P is the union of the VP ,
where P ranges over all ordinary YD –prototypes such that �.P /D �.

If p D .X; Œ!�/ has a double zero or a separating node, then in the same way – just
replacing VP with V 0

P
defined above – we define a branch V 0

P
of xXD through p ,

where now P is a WD or PD –prototype (respectively). This gives a finer classification
of branches then we obtain for generic p 2 C�

To summarize this discussion, we have the following Corollary of Theorem 7.22.

Corollary 7.23 For any p 2 C� , the germ of xXD through p is the union of germs,[
P2YD

�.P/D�

VP :

Each germ VP consists of mult.P / branches of xXD through P .

If p D w� or p D p� , then alternatively the germ of xXD through p is the union,[
P2WD

�.P/D�

V 0P ;

[
P2PD

�.P/D�

V 0P :or respectively,
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In these cases, each of these germs is actually an irreducible branch of xXD through p .

Proof The only parts that don’t follow directly from Theorem 7.22 and the discus-
sion above are the statements that VP consists of mult.P / branches and that V 0

P
is

irreducible. This will follow directly from Proposition 8.1 because

gcd.a0; c0/D
gcd.a; c/

gcd.a; b; c/
Dmult.P /;

and gcd.a00; c00/D 1.

A section of O.�1/ We normalized each projective class .Y; Œ��/ 2 U� so that each
�.˛1/ D 1. We can regard this as defining a section s of the canonical line bundle
O.�1/ over U� .

The following follows directly from (7–4) together with the definition of our coordinates.

Proposition 7.24 The norm of this section s of O.�1/ over U� is given by

(7–18) h.s; s/D� 1
2�

log jyj �
�2

2�
log jzj:

7.7 The strata XD.T3;0/ and XD.T3;0;T
3

3;0
/

We now study Abelian differentials in xXD with three nonseparating nodes. These
consist of the union of the stratum XD.T3;0/, where all of the nodes are polar, and the
stratum XD.T3;0;T

3
3;0/, where one of the nodes is holomorphic. We will prove the

following classification of such differentials.

Theorem 7.25 The stratum XD.T3;0/ is the finite union of points,

XD.T3;0/D
[
P

c�.P/;

where the union is over all nonterminal YD prototypes P .

The stratum XD.T3;0;T
3
3;0/ is the finite union of points,

XD.T3;0;T
3
3;0/D

[
P

c�.P/;

where the union is over all terminal YD –prototypes.

If P is neither degenerate nor terminal, then c�.P/ lies in the intersection of the closures
of C�.P/ and C�.PC/ . If P is a degenerate prototype, then cP lies in the intersection
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of the closures of XD.T1;0/ and C�.PC/ . If P is a terminal prototype, then c�.P/ lies
in the intersection of the closures of C�.P/ and XD.T1;0;T

1
1;0/. None of the other

curves in @XD pass through c�.P/ .

Local coordinates Fix .X; Œ!�/ 2 P�M0
2
.T3;0/ or P�M0

2
.T3;0;T

3
3;0/, and choose

a marking †2 ! X so that we can regard .X; Œ!�/ as lying in P�T 0
2
.T3;0/ or

P�T 0
2
.T3;0;T

3
3;0/.

Our first goal is to show that if .X; Œ!�/ 2 xXD , then .X; Œ!�/ is one of the points c�.P/
as in the statement of Theorem 7.25. If .X; Œ!�/ 2 xXD , then ! is an eigenform for
real multiplication of OD on Jac.X / by Theorem 5.10, so assume that it is such an
eigenform. It follows that the ratios of the residues of any two poles of ! are real, so
we can normalize the projective class Œ!� so that all of these residues are real.

Suppose ! has no holomorphic node. In this case it also has two simple zeros;
let fp1;p2g 2 †2 be the inverse image of the zeros. Let ˛i 2 H1.†2 n fp; qg/ be
homology classes representing the three curves T i

3;0 such that !.˛i/� 0, and choose
i 2H1.†2; fp1;p2g/ so that ˛i � j D ıij as in Section 6.7. Then the classes,

ˇ1 D 1� 3(7–19)

ˇ2 D 2C 3;

in H1.†2IZ/ are dual to ˛1 and ˛2 .

If ! does have a holomorphic node, then let ˛i 2 H1.†2/ be homology classes
representing the three curves T i

3;0 such that !.˛i/ � 0, and let ˇi 2 H1.†2IZ/ be
dual to ˛1 and ˛2 .

Choose a small neighborhood U of .X; Œ!�/ in P�D0
2
.T3;0/ or P�D0

2
.T3;0;T

3
3;0/

such that the natural map U=Aut.X; Œ!�/ ! P� SM2 is an isomorphism onto its
image and such that for each .Y; Œ��/ 2 U \��1.XD/, the subgroup S D h˛1; ˛2i of
H1.†2IZ/ is preserved by the real multiplication, which is possible by Theorem 5.9.

For the rest of this section, we will adopt the convention that each projective class
.Y; Œ��/ 2U is normalized so that �.˛1/D 1, so we can regard U as an open subset of
a hypersurface in �D0

2
.T3;0/ or �D0

2
.T3;0;T

3
3;0/.

Proposition 7.26 If the neighborhood U of .X; Œ!�/ is taken sufficiently small, then
for each .Y; �/ 2 U \ ��1.XD/, the OD –submodule S of H1.†2;Z/ is a quasi-
invertible OD –module with f˛1; ˛2; ˛3g an admissible triple; furthermore, for .Y; �/ 2
U , the period maps P� and P! W S ! R are the same.
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Proof Since the curves of T3;0 bound a pair of pants, we get the relation

(7–20) ˙˛1˙˛2˙˛3 D 0:

To see that f˛1; ˛2; ˛3g is an admissible triple, it is enough to show that f˛1; ˛2g is
an admissible basis. Just as in the proof of Proposition 7.18, it is enough to show that
Im �.ˇi/ > 0 for .Y; �/ sufficiently close to .X; !/. This follows from Theorem 5.5,
using the fact that the ˇi pass through tall cylinders, and each cylinder that ˇi passes
through contributes positively to Im �.ˇi/ because j̨ �ˇi � 0 for each j .

Since there are only finitely many admissible triples up to isomorphism by Proposition
3.6, the period �.˛2/ must be constant on U if U is sufficiently small, and �.˛3/

must be constant by (7–20). Thus the period maps P! and P� are the same.

Now since f˛1; ˛2; ˛3g is an admissible triple, we can reorder them and replace ! by
a constant multiple so that

!.˛1/D 1; !.˛2/D �; and !.˛3/D �� 1;

with � � 1, and �D �.P / for some YD –prototype P by Proposition 3.6. If ! has
no holomorphic node, then there is a unique such choice of the ˛i and ! (up to the
hyperelliptic involution). Otherwise, there are two such choices because we can swap
˛1 and ˛2 . Also when .X; Œ!�/ has no holomorphic nodes, reorder and possibly change
the signs of the i so that we still have ˛i � j D ıij , and redefine the ˇi as in (7–19)
with the new i . When .X; Œ!�/ has a holomorphic node, reorder the ˇi so that they
are still dual to the ˛i .

Thus we see that if .X; Œ!�/ has three nonseparating nodes and .X; Œ!�/ 2 xXD , then
.X; Œ!�/D c�.P/ for some YD –prototype P as stated in Theorem 7.25. Also, Proposi-
tion 7.26 implies that if U is sufficiently small and if we define for � 2 R,

U� D f.Y; �/ 2 U W �.˛1/D 1 and �.˛2/D �g;

then U \��1. xXD/� U� , where �D !.˛2/, by Proposition 7.26.

Recall that in Section 6.7 we defined local coordinates .v; w;x;y; z/ on �D0
2
.T3;0/.

When � > 1, in these local coordinates, we can identify U� with the subspace defined
by v D 1 and w D �. Then on U� , the .x;y; z/ become

x D e2� i�.1/

y D e2� i�.2/=�

z D e2� i�.3/=.��1/;

and the .x;y; z/ are local coordinates on U� .
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In Section 6.8 we defined local coordinates .w;x;y; z/ on �D0
2
.T3;0;T

3
3;0/. In these

local coordinates, we can identify U1 with the subspace defined by w D 1. Then on
U1 , the .x;y; z/ become

x D e2�i�.ˇ1/

y D e2�i�.ˇ2/

z D

�Z
I

�

�2

;

and the .x;y; z/ are local coordinates on U1 .

Prototypes Now assume that our .X; Œ!�/ D c� , where � D �.P / for some YD –
prototype P with a small neighborhood U of .X; Œ!�/ in the Dehn space chosen as
above. We now assign a fine YD –prototype P .Y; Œ��/ to each .Y; Œ��/ 2U \��1.XD/

as in Section 7.6.

Let .Y; Œ��/ 2 U \ ��1.XD/. We have a marking †2 ! Y which is defined up to
Dehn twist around the curve system T3;0 . Choose a marking †2! Y and use this to
transport the symplectic basis f˛1; ˛2; ˇ1; ˇ2g to Y .

There is some � 2KD with �.1/ D � such that � �˛1 D ˛2 and

a�2
C b�C c D 0

for integers a, b , and c satisfying the properties of Proposition 3.6. The generator a�

of OD defines by its action on Jac.Y / an endomorphism T of H1.Y IZ/ which is given
by the matrix (7–9) for some integer q . Define the prototype P .Y; �/D .a; b; c; xq/,
where xq is the reduction of q modulo gcd.a; b; c/. By the same argument as in
Theorem 7.21, P .Y; Œ��/ is a well-defined fine YD –prototype.

Local coordinates for xXD Given .X; Œ!�/ D c� and a small neighborhood U of
.X; Œ!�/ in the Dehn space as above, we now give equations for ��1. xXD/ in U and
show that .X; Œ!�/ is indeed in xXD . For each fine YD –prototype P , let zVP � U be
the closure of

f.Y; �/ 2 U \��1.XD/ W P .Y; �/D Pg;

which actually lies in U� . The following theorem gives explicit equations for zVP in
the coordinates .x;y; z/ on U� .

Theorem 7.27 The locus zVP � U�.P/ is cut out by the equation

(7–21) xa0
D e�2�iq0y�c0z�a0�b0�c0 :
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If P is a nondegenerate and nonterminal YD –prototype, then the closure xC�.P/ is cut
out by the equations x D y D 0, and xC�.PC/ is cut out by the equations x D z D 0.

If P is a degenerate YD –prototype, then the additional equation y D 0 cuts out
U \XD.T1;0/, and the equations x D z D 0 cuts out xC�.PC/ .

If P is a terminal YD –prototype, then the additional equation z D 0 cuts out U \

XD.T1;0;T
1
1;0/, and the equation x D y D 0 cuts out xC�.P/ .

The leaves of the foliation AD of XD are given in these local coordinates by y�z��1D

const.

Proof If the prototype P is terminal, then (7–21) reduces to (7–12), and the proof
that zVP is given by this equation is the same as in Theorem 7.22.

Now assume that P is not terminal. Using the same symplectic basis f˛i ; ˇig and
� 2 KD such that � � ˛1 D ˛2 as above, Equation (7–9) again implies (7–14) and
(7–15). Integrating � over both sides yields (7–16) and (7–17), and substituting in
(7–19) gives

(7–22) a�.1/C
c

�
�.2/C

aC bC c

�� 1
�.3/D�q:

Dividing by gcd.a; b; c/ and exponentiating yields (7–21).

Conversely if .Y; �/ is in U� minus the coordinate axes and is in the locus defined by
(7–21), then (7–22) holds modulo gcd.a; b; c/, and by changing q modulo gcd.a; b; c/,
we can ensure that it holds exactly. It then follows that (7–16) and (7–17) hold, and so
.Y; �/ is an eigenform.

The equations for the C� and the other strata are straightforward.

The periods �.˛1/ and �.˛2/ are fixed because of our normalization for �, and the
periods �.ˇ1/ and �.ˇ2/ are related by the real multiplication, so if one is constant,
then the other is. Thus the leaves of the foliation AD in these coordinates are given by
�.ˇ2/D const, which is equivalent to y�z��1 D const.

Proof of Theorem 7.25 We saw as a consequence of Proposition 7.26 that each stable
Abelian differential in xXD with three nonseparating nodes is one of the c�.P/ for some
YD –prototype P , and it follows from Theorem 7.27 that these c�.P/ are in fact in xXD .
The other statements also follow directly from Theorem 7.27.
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Branches of xXD through c� The varieties cut out by (7–21) have a single branch
through the origin, as we will see in Proposition 8.3, so we obtain a bijective correspon-
dence between branches of ��1. xXD/ through ��1.c�/ and fine YD –prototypes P

such that �.P /D � given by P 7! zVP . Just as in Section 7.6, the action of Aut.X; Œ!�/
identifies branches corresponding to the same ordinary YD –prototype, so we obtain
the first statement of the following theorem.

Theorem 7.28 The germ of xXD through c� is the following union of irreducible
branches: [

P2YD

�.P/D�

zVP :

If P is a nondegenerate YD –prototype such that �.P /D�, then the branch zVP through
c� intersects C� in the germ VP of Corollary 7.23. If P is a nonterminal YD –prototype
such that �.P / D �, then the branch zVP through c� intersects C�.PC/ in the germ
VPC .

Proof Suppose that P D .a; b; c; xq/ is nonterminal. Let .Y; �/ 2 zVP be a nonsingular
Abelian differential close enough to a point p 2 C�.PC/ that it is contained in some
well-defined subgerm VP 0 of xXD through p . We need to show that P 0 D PC .

We will continue to use the notation that we used to define the local coordinates around
c� , so we have classes ˛1 , ˛2 , and ˛3 2H1.Y IZ/ representing the nodes of c� such
that �.˛1/D 1, �.˛2/D �, and �.˛3/D ��1; we have ˇ1 , and ˇ2 2H1.Y IZ/ such
that f˛1; ˛2; ˇ1; ˇ2g is a symplectic basis of H1.Y IZ/; and we have a � 2KD such
that � �˛1 D ˛2 and a�2C b�C c D 0.

To calculate the prototype P 0 , we must choose a symplectic basis f˛0
1
; ˛0

2
; ˇ0

1
; ˇ0

2
g of

H1.Y IZ/ such that the ˛0i are homologous to cylinders on Y representing the nodes
of p 2 C�.PC/ and such that if we set

z�D
�.˛0

2
/

�.˛0
1
/
;

then z�� 1 and z�0 < 0. Given such a basis, let z� 2KD be such that z� �˛0
1
D ˛0

2
. Let

a0 , b0 , and c0 be the unique integers such that

a0 z�2
C b0 z�C c0 D 0;

a0 > 0, and .b0/2 � 4a0c0 D D . For x 2 KD , set Tx and T 0x to be the matrices of
the action of x on H1.Y IZ/ in the bases f˛i ; ˇig and f˛0i ; ˇ

0
ig respectively. Then the
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prototype P 0 is P 0 D .a0; b0; c0; xq0/, where q0 is the entry in the upper right corner of
T 0

a0 z�
.

There are two cases to consider, depending on whether or not �� 2. First suppose that
�� 2, or equivalently 4aC2bC c � 0. Define the new symplectic basis of H1.Y IZ/:

˛01 D ˛1 ˇ01 D ˇ1Cˇ2

˛02 D ˛3 D ˛2�˛1 ˇ02 D ˇ2:

Then z�D �� 1, and z�D �� 1, which satisfies the required properties. We have

.a0; b0; c0/D .a; 2aC b; aC bC c/:

The matrix Ta� is given by (7–9), and an easy calculation shows that the new matrix is

T 0a0 z� D

0BB@
0 �a� b� c 0 q

a �2a� b �q 0

0 0 0 a

0 0 �a� b� c �2a� b

1CCA ;
so P 0 D PC is as claimed.

Now consider the case where � < 2, or equivalently 4aC 2bC c > 0. In this case,
define a new symplectic basis of H1.Y IZ/ by:

˛01 D ˛2�˛1 ˇ01 D ˇ2

˛02 D ˛1 ˇ02 D ˇ1Cˇ2:

Then z�D
1

�� 1
D
�a�� a� b

aC bC c
;

and z�D 1=.�� 1/ satisfies the required properties that z� � 1 and z�0 < 0, using the
fact that � > 1 because P is nonterminal. We have

.a0; b0; c0/D .�a� b� c;�2a� b;�a/;

and an easy calculation shows that the new matrix is

T 0a0 z� D T 0a�CaCb D

0BB@
0 a 0 q

�a� b� c 2aC b �q 0

0 0 0 �a� b� c

0 0 a 2aC b

1CCA :
Thus P 0 D PC as claimed.
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Calculating the prototype of the intersection of zVP with C� is much easier. Here we
can use the old basis f˛i ; ˇig of H1.Y IZ/ to calculate the prototype, and thus it is
just P .

A section of O.�1/ We normalized each projective class .Y; �/ 2 U� so that each
�.˛1/ D 1. We can regard this as defining a section s of the canonical line bundle
O.�1/ over U� .

The following follows directly from (7–4) together with the definition of our coordinates.

Proposition 7.29 The norm of this section s of O.�1/ over U� is given by

(7–23) h.s; s/D� 1
2�

log jxj �
�2

2�
log jyj �

.�� 1/2

2�
log jzj:

8 Geometric compactification of XD

We have compactified the Hilbert modular surface XD by taking its closure xXD

in P� SM2 ; however, this compactification is not suitable for out purposes. One
problem is that xXD has non-normal singularities, and another is that several cusps
of the curves WD and PD can come together to one point in xXD . It turns out that
taking the normalization of YD solves both of these problems and produces a useful
compactification which has only quotient singularities.

Definition The geometric compactification YD of the Hilbert modular surface XD is
the normalization of xXD .

This defines YD as a variety. We will also give YD the structure of a complex orbifold
and of a projective variety in Section 8.1.

In this section, we will study in detail the geometry of YD . In Section 8.1, we will
study curves in YD nXD , and their intersections with the curves SWD and xPD . We
show in Section 8.2 that YD maps to the Baily–Borel compactification yXD by a map
which is the identity on XD , and we draw conclusions about the cohomology of YD .
In Section 8.3, we study the extension of involution � of XD to YD . We will assume
that the reader is familiar with the operation of normalization. For a summary of the
results about normalization which we use in this section, see Appendix A.
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8.1 Geometry of YD

The goal of this subsection is to classify the curves of YD nXD and to understand the
ways in which these curves intersect each other and the curves SWD ; xPD � YD . This is
basically a straightforward translation of the results of Section 7 on the local structure
of xXD to the setting of the normalization.

Local normalization of xXD Normalization is a local operation: constructing the nor-
malization of xXD just amounts to replacing each small open set with its normalization
and then gluing together these normalizations. We saw in Section 7 that the singular
points of xXD are locally modeled on the varieties V .X p �Y q/ and V .X p �Y qZr /

in C3 , so we need to understand the normalizations of these varieties.

Let �m D e2�i=m . The proof of the following proposition is easy and will be left to
the reader.

Proposition 8.1 The normalization of the variety V DV .X p�Y q/�C3 is gcd.p; q/
copies of C2 which map to V by

fr .x;y/D .x
q; �r

gcd.p;q/x
p;y/

for 0� r < gcd.p; q/. It follows that V has gcd.p; q/ branches through each singular
point .0; 0;Z/.

Given p , q , and r 2 N relatively prime, let

mD
p

gcd.p; q/ gcd.p; r/
(8–1)

s �

�
r

gcd.p; r/

��1

mod
p

gcd.p; r/

nD
�q

gcd.p; q/
s;

and define Q.p; q; r/ to be the normal analytic space C2=G , where G is the order m

cyclic group generated by the transformation

.x;y/ 7! .�mx; �n
my/:

Lemma 8.2 If p q and r are relatively prime integers, then the map

f W Z=

�
p

gcd.p; q/

�
�Z=

�
p

gcd.p; r/

�
! Z=p

defined by f .˛; ˇ/D q˛C rˇ is surjective, and its kernel is a cyclic group of order m

which is generated by .gcd.p; r/;�qs/, where m and s are as defined in (8–1).
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Proof It follows from the fact that p , q , and r are relatively prime that f is surjective,
so the kernel K has order m. The element .gcd.p; r/;�qs/ clearly belongs to K and
has order at least m because gcd.p; r/ has order m in

Z

.� p

gcd.p; q/

�
:

Thus it is a generator of K .

Proposition 8.3 The normalization of the variety V D V .X p � Y qZr / � C3 is
pW Q.p; q; r/! V , where p is induced by the map zpW C2! V defined by

zp.x;y/D

0@xq= gcd.p;q/yr= gcd.q;r/

xp= gcd.p;q/

yp= gcd.p;r/

1A :
Proof For i D 1 or 2, let .xi ;yi/ be a point in C2 minus its coordinate axes. We
claim that

zp.x1;y1/D zp.x2;y2/;

if and only if the .xi ;yi/ are related by the action of G . It would then follow that
p is the normalization of V because p would be well-defined, finite-to-one, and
biholomorphic on the complement of the coordinate axes

It is easy to show that zp.x1;y1/D zp.x2;y2/ if the .xi ;yi/ are related by G . Con-
versely, suppose the .xi ;yi/ have the same image. Then we must have

.x2;y2/D
�
e2� i˛ gcd.p;q/=px1; e

2�iˇ gcd.p;r/=px2

�
for some pair .˛; ˇ/ 2 Z=

�
p

gcd.p; q/

�
�Z=

�
p

gcd.p; r/

�
;

such that q˛C rˇ � 0 mod p:

By Lemma 8.2 there is some k 2 Z such that

˛ � k gcd.p; r/ mod
p

gcd.p; q/

ˇ ��kqs mod
p

gcd.p; r/
;

and it follows that the .xi ;yi/ are related by an element of G .

Since the normalizations of Proposition 8.1 and Proposition 8.3 are either nonsingular
or quotient singularities, we can regard YD as a complex orbifold.
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One nonseparating polar node We now begin to study the curves which make up
YD nXD . Define S1

D
� YD by

S1
D D �

�1.XD.T1;0//:

By Proposition 7.1, S1
D

is empty unless D is square. By Corollary 7.7, points of S1
d2

correspond precisely to degree d cylinder covering differentials; S1
d2 is a suborbifold

of Yd2 by Theorem 7.4, and
S1

d2 Š H=�1.d/:

If d > 3, then S1
d2 is actually a submanifold of Yd2 because �1.d/ is torsion-free.

There are finitely many intersection points of SWd2 with S1
d2 , and these intersections

are transverse if d > 3 by Theorem 7.4. These intersection points are exactly the
one-cylinder cusps of Wd2 .

One nonseparating holomorphic node Define S2
D
� YD by

S2
D D �

�1.XD.T1;0;T
1
1;0//:

By Proposition 7.1, S2
D

is empty unless D is square. S2
d2 is a suborbifold of Yd2

isomorphic to H=�1.d/ by Theorem 7.9, and S2
d2 is a submanifold when d > 3. The

points of S2
d2 correspond to genus one differentials with two marked points which

differ by exactly d –torsion identified to form a node.

SL2R acts on S2
d2 with discrete stabilizer, so we can regard S2

d2 as a degenerate
Teichmüller curve. Just as for Wd2 , cusps of S2

d2 correspond to periodic directions on
a given .X; !/ 2 S2

d2 , and we can divide the cusps of S2
d2 into one and two-cylinder

cusps just as for Wd2 .

Given q 2 N such that 0< q � d=2 and gcd.q; d/D 1, let sq=d 2 Yd2 be the inverse
image of fq=d 2

xXd2 . By Theorem 7.13, these are transverse intersection points of
xS1

d2 and xS2
d2 , and these are all of their intersection points, because no other points in

our classification of points in xXd2 lie in this intersection. These points sq=d are also
exactly the one-cylinder cusps of S2

d2 .

Two or more nodes For each curve C� � xXD , we associated a nondegenerate YD –
prototype P to each branch of xXD through each point p 2 C� . This means that we
can associate a nondegenerate YD –prototype to each point in ��1.p/ by Theorem
A.8.

For any nondegenerate YD –prototype P , let C 0
P
� YD be set of points in ��1.C�.P//

associated to P . The projection C 0
P
! C�.P/ is surjective and mult.P /–to-one

Geometry & Topology, Volume 11 (2007)



2008 Matt Bainbridge

by Corollary 7.23. The union of the curves C 0
P

parameterizes those points in YD

representing differentials with two nonseparating nodes and possibly a separating node.

If � > 1, then C� contains exactly one point w� 2 SWD which represents an Abelian
differential with a double zero by Proposition 6.10. We associated a WD –prototype to
each branch of xXD through w� , and we saw in Corollary 7.23 that WD –prototypes P

such that �.P /D � correspond bijectively to such branches. Given any WD –prototype
P , let wP 2 YD be the point in ��1.w�.P// corresponding to the branch associated to
P . The point wP is a two-cylinder cusp of WD , and these are all of the two-cylinder
cusps. This correspondence between WD –prototypes and two-cylinder cusps of WD

is equivalent to the one described in [54]; more precisely, the point wP described here
is the cusp wP of Theorem 4.9.

Similarly, for any PD –prototype P , define pP 2 YD to be the unique point in
��1.p�.P// coming from the branch associated to P . These points pP are all of the
cusps of PD .

We know that WD and PD are disjoint since they are SL2R orbits. Their intersections
with YD nXD are also disjoint because we have accounted for all of these intersection
points above, so it follows that xPD \

SWD D∅ in YD .

Suppose P is a WD or a PD –prototype that maps to the YD –prototype Q. Then the
point wP or pP is contained in C 0

Q
. This means that if Q is a nonterminal prototype,

then CQ contains mult.P / points of SWD and the same number of points of xPD . If Q

is a terminal prototype, then CQ contains a single point of xPD (because mult.Q/D 1)
and no point of SWD because no WD –prototype maps to a terminal YD –prototype.

Proposition 8.4 The locus C 0
P

is a nonsingular curve in YD . The restriction � W C 0
P
!

C�.P/ is an unramified cover of degree mult.P /, and C 0
P

is a twice-punctured sphere.

Furthermore, SWD and xPD are smooth suborbifolds of YD which intersect C 0
P

trans-
versely.

Proof Let p 2 C 0
P

, and q D �.p/. By Theorem 7.22, the branch V of xXD through
q corresponding to p is isomorphic to the germ at the origin of the variety in C3 cut
out by

xa00
D �y�c00

for some root of unity � . In these coordinates, C 0
�.P/

is cut out by x D y D 0. If
q D w�.P/ or q D p�.P/ , then SWD or xPD is cut out by z D 0.

In coordinates .u; v/ on a neighborhood of p , the map � W YD !XD is given by

�.u; v/D .u�c00 ; � 0ua00 ; v/;
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for some root of unity � 0 . In these coordinates, CP is cut out by uD 0, and if p 2 SWD

or xPD , then SWD or xPD is cut out by v D 0. The smoothness and transversality
statements follow immediately.

Since every point in C 0
�.P/

has mult.P / preimages in CP , the projection is unramified
of that degree. Thus the locus C 0

P
is a twice-punctured sphere because it is an unramified

cover of one.

Finally, SWD and xPD are suborbifolds because the coordinates above show that SWD

and xPD are nonsingular where they cross the C 0
P

. These are the only points where
xPD and SWD meet YD nXD except for the intersections of SWD with S1

D
in the case

when D is square, and we have already seen that SWD is nonsingular there in Theorem
7.4.

Remark The curves C 0
P

contain no orbifold points of YD . This is clear when
�.P / > 1 because the image C�.P/ of C 0

P
in P� SM2 contains no orbifold points.

When �.P /D 1, the image C1 is an orbifold locus of order two, so a priori CP could
be also. This doesn’t happen because for any .X; Œ!�/ � C1 , the group Aut.X; Œ!�/
fixes none of the branches of the inverse image of xXD through the inverse image of
.X; Œ!�/ in P�D2.S/.

We now study the closure of C 0
P

, which we call CP . By Proposition 6.9, CP nC 0
P

consists of points representing differentials c� with three nonseparating nodes, defined
in Section 6.6.

By Theorem 7.25 and Theorem 7.28, for every YD –prototype P , there is a point
c�.P/ 2 xXD and a branch of xXD through c�.P/ labeled by P . Let cP 2 YD be the
point corresponding to the branch labeled with P . This gives a bijective correspondence
between the points of YD representing Abelian differentials with three nonseparating
nodes and YD –prototypes. Unless P is terminal, all three nodes of cP are polar.

Recall that for a prototype P D .a; b; c; xq/, we set

.a0; b0; c0/D .a; b; c/= gcd.a; b; c/:

The following proposition describes the structure of YD in a neighborhood of cP .

Proposition 8.5 A neighborhood of the point cP , where P D .a; b; c; xq/ is a nonde-
generate, nonterminal YD –prototype, is isomorphic to a neighborhood U=G of the
origin in the quotient singularity Q.a0;�c0;�a0� b0� c0/. In coordinates .u; v/ on U ,
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we have

V .uv/D .YD nXD/\U

V .u/D CP \U

V .v/D CPC \U:

If P is a degenerate prototype, then cP is a smooth point of YD . In a neighborhood
of cP , the complement YD nXD is contained in xS1

D
[CPC , and these curves meet

transversely at cP .

If P is a terminal prototype, then cP is also a smooth point of YD . In a neighborhood
of cP , the complement YD nXD is contained in xS2

D
[ CP , and these curves meet

transversely at cP .

Proof These statements all follow directly from Theorems 7.27 and 7.28, using
Proposition 8.3 to translate these theorems into local coordinates on YD .

It follows from this proposition that the order of the orbifold point cP is

mP D
a0

gcd.a0; c0/ gcd.a0; b0C c0/
D

a

gcd.a; c/ gcd.a; bC c/ gcd.a; b; c/
:

Proposition 8.6 The curve CP is a connected rational curve which meets the points
cP and cP� and no other point cQ . If CP is given the structure of an orbifold with
orbifold points of order mP at cP and mP� at cP� , then CP is a suborbifold of YD .

Proof The complement CP n C 0
P

is contained in the union of the points cQ , and
by Proposition 8.5 it consists of exactly the points cP and cP� . It follows from the
coordinates in Proposition 8.5 that CP is a suborbifold at these two points.

The curve CP is rational because it is the closure of a twice-punctured sphere.

When D is not square, the operations PC and P� are defined for all P , so the curves
CP are divided into finitely many closed chains of rational curves. When D D d2 , the
curves CP are divided into finitely many chains of rational curves joining xS1

d2 to xS2
d2 .

To summarize, we have established the following:

Theorem 8.7 YD has the following properties:

(1) YD is a compact, complex orbifold. Its orbifold points are located at the elliptic
points of XD , the elliptic points of S i

d2 Š H=�1.d/, and the points cP for
which mP > 1.
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(2) The curves CP , SWD , xPD , and xSi
D

are all suborbifolds of YD .

(3) The curves xS2
D

, SWD , and xPD are pairwise disjoint, and xS1
D

is disjoint from
xPD .

(4) The curves xS1
D

, xS2
D

, SWD , and xPD meet the curves CP transversely. These
intersections correspond to two cylinder cusps of S2

D
and WD . If D D d2 with

d > 3, then SWd2 intersects S1
d2 transversely.

(5) The point wP 2
SWD lies on the curve CQ , where Q is the YD –prototype

associated to P , and wP lies on no other curve Cq0 . This gives a bijective
correspondence between the intersection points of SWD with CQ and the set of
WD –prototypes associated to the YD –prototype Q. Similarly, the intersection
points of xPD with CP correspond bijectively in the same way to the set of
PD –prototypes associated to the YD –prototype P .
If P is neither initial nor terminal, then CP meets WD and PD in mult.P /
points.
If P is terminal, then CP meets xS2

d2 and xPD once each and is disjoint from
SWD .

If P is initial, then CP meets xS1
d2 , xPD , and SWD once each.

(6) The curves xS1
d2 and xS2

d2 meet transversely in the N points sq=d , where

N D

(
1; if d D 2I
1
2
�.d/; if d > 2

(here � is the Euler phi-function).

Corollary 8.8 If D is not square, then WD and PD have the same number of cusps.
The number of cusps of Pd2 is equal to the number of two-cylinder cusps of Wd2 plus
the number of two-cylinder cusps of S2

d2 .

Example: Y17 We will now illustrate these results in some specific cases. Most of
the prototypes which arise will have xq D 0, and we will abbreviate those prototypes by
omitting q .

There are five Y17 prototypes:

.1; 1;�4/; .2;�3;�1/; .2;�1;�2/; .1;�3;�2/; .1;�1;�4/:

They form one orbit under the operation P 7!PC , with each prototype being sent to the
next on the list. We have mult.2;�1;�2/D 2, so C.2;�1;�2/ meets SW17 in the points
w.2;�1;�2;0/ and w.2;�1;2;1/ and xP17 in the points p.2;�1;�2;0/ and p.2;�1;2;1/ . The
other prototypes have multiplicity one, so the other curves CP meet SW17 and xP17
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once each. Since mP D 1 for each P , none of the points cP are orbifold points, and
the CP meet each other transversely.

This configuration is shown in Figure 13. The curves CP form the pentagon and
are marked by their prototypes. The curves representing SW17 and xP17 in this figure
accurately represent the connected components of these curves and their intersections
with the CP .

Y17 nX17 P17

W17

.2;�1;�2/

.1;�3;�2/

.1;�1;�4/

.1; 1;�4/

.2;�3;�1/

Figure 13: Y17

Example: Y12 There are three Y12 prototypes:

.2;�2;�1/; .1;�2;�2/; .1; 0;�3/:
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They form one orbit under the operation P 7! PC . We have m.2;�2;�1/ D 2, so the
point c.2;�2;�1/ is an orbifold point of order two in the intersection of C.1;�2;�2/ and
C.2;�2;�1/ . The other two points cP are nonsingular. Each of these prototypes has
multiplicity one, so W12 and P12 each have three cusps and intersect each CP once.

Example: Y25 There are nine Y25 –prototypes, which are divided into two orbits
under P 7! PC :

.1;�5; 0/; .1;�3;�4/; .1;�1;�6/; .1; 1;�6/; .1; 3;�4/;

and .2;�5; 0/; .2;�1;�3/; .2;�3;�2/; .2; 1;�3/:

The prototypes after the first one on each list are nondegenerate and correspond to
seven curves CP in Y25 . Each of these prototypes has mP D 1, so none of the cP

are orbifold points. The curve W25 has six two-cylinder cusps; it meets C.2;�3;�2/

twice and the other four curves CP corresponding to nonterminal prototypes once each.
W25 also has two one-cylinder cusps (see Section 13, McMullen [54], or Lelièvre and
Royer [47] for formulas for the number of one-cylinder cusps) corresponding to two
intersections with S1

25
. The curve xP25 also meets C.2;�3;�2/ twice and each of the

other CP once each.

Each of the two-cylinder cusps of W25 can be represented by a square-tiled surface
with five squares having periodic horizontal direction. Figure 14 depicts the curves CP

and S i
25

in Y25 . A zero next to a node of a stable surface represents a holomorphic
node. Next to each CP are diagrams representing square tiled surfaces associated to
each cusp of W25 which meets CP .

Projective structure of YD So far, we have given YD the structure of an algebraic
variety and a complex orbifold. We can also give YD the structure of a projective
variety:

Proposition 8.9 YD is a projective variety.

Proof Let Z � SM2 be the closure of the image of the natural map XD !
SM2 . The

image of � W YD !
SM2 is contained in Z , so we have a finite surjective morphism

YD ! Z . This means that YD is the normalization of Z in K.YD/DK.XD/. By
Theorem A.3, YD is a projective variety because SM2 is projective.
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S1
25

S2
25

.1;�3;�4/
.1;�1;�6/ .1; 1;�6/ .1; 3;�4/

.2;�1;�3/ .2:� 3:� 2/ .2; 1;�3/

0

0

0

0

Figure 14: Y25
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8.2 YD maps to yXD

Recall that we introduced the Baily–Borel compactification yXD of XD in Section 2.
If D is not square, yXD consists of XD together with a finite set C of cusps. If
DD d2 , then yXd2 consists of XD together with the curves R1

d2 and R2
d2 isomorphic

to H=�1.d/ and the finite set C of cusps. Let i W XD ! YD be the natural inclusion.

Theorem 8.10 There is a unique morphism pW YD !
yXD such that p ı i D idXD

.
This map p has the following properties:

� p maps each curve CP onto a cusp of yXD , and this induces a bijection between
the connected components of

S
P CP and the set of cusps C � yXD .

� The restriction,
pW YD n

[
P

CP !XD nC;

is an isomorphism.
� p maps S i

d2 isomorphically onto Ri
d2 .

Proof Recall from Section 2 that there is the natural morphism j W yXD !
�A2 with

image Z such that j W yXD !Z is the normalization of Z in K.XD/.

The varieties YD and yXD both contain XD as an open dense set, so we can identify
both of their function fields with K.XD/. The morphism qW YD !

�A2 which is the
composition of the maps

YD !
SM2!

�A2

has image Z . By the universal property of normalization, Theorem A.2, there is a map
pW YD !

yXD such that p� is the identity on K.XD/ and j ıp D q . Since p� is the
identity on K.XD ), we must have p ı i D idXD

.

The locus of points in YD representing stable Riemann surfaces whose Jacobian is
.C�/2 is the union

S
CP . Thus q�1.A0/ D

S
CP . We have j�1.A0/ D C , so

p�1.C /D
S

CP . By Theorem A.4, Zariski’s Main Theorem, the fiber of p over each
point in C is connected, so p induces a bijection between the components of

S
CP

and the points of C .

For each point t 2 yXD nC , the image j .t/ represents either an Abelian surface in
A2 or an elliptic curve in A1 In the either case, there are only finitely many points in
YD which map to j .t/, so the fiber p�1.t/ is finite. This fiber is also connected by
Zariski’s Main Theorem, so it is a single point. This means that the restriction,

pW YD n

[
P

CP !XD nC;
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is a bijection, and it is thus an isomorphism because these are normal varieties.

The locus of points t in yXd2 such that j .t/ 2A1 is the union of R1
d2 and R2

d2 , and
the locus of points in Yd2 whose Jacobians are extensions of elliptic curves is the
union of S1

d2 and S2
d2 . This means that p must take the curves S i

d2 to Ri
d2 , and the

restriction of p to the S i
d2 is an isomorphism onto the Ri

d2 because S i
d2 is disjoint

from each CP .

Cohomology of YD We can use Theorem 8.10 to get information about the coho-
mology of YD . In H 2.YD IQ/, let B be the subspace generated by the fundamental
classes of the rational curves CP .

Theorem 8.11 The intersection form on B is negative definite.

Proof Consider the map qW Y 0
D
! YD obtained by resolving the singularities at the

points cP of YD . Define r W Y 0
D
! yXD by r D p ıq , and let E D r�1.C /. The locus

E is the union of irreducible curves Ei . By possibly taking some blow-ups of Y 0
D

, we
can assume that the curves Ei are nonsingular and transverse (actually, performing
these blow-ups is not necessary; see the remark below).

Let B0 �H 2.Y 0
D
IQ/ be the subspace spanned by the fundamental classes of the Ei .

By Theorem A.10, the intersection form on B0 is negative definite.

The map q�W B ! B0 preserves the intersection forms on B and B0 because q is
degree one. We claim that q�W B! B0 is injective. To see this, define a linear map
r W B0 ! B as follows. If Ei � E , and q.Ei/ is one of the curves CP , let r.ŒEi �/

be the fundamental class of that curve. Otherwise, q.Ei/ is a point; in this case let
r.ŒEi �/D 0. We have r ı q� D idB on B , so q� is injective on B .

Thus q� embeds B in B0 , preserving the intersection forms. Since the intersection
form on B0 is negative definite, the intersection form on B must be as well.

Remark We can actually describe the variety Y 0
D

above very explicitly. The excep-
tional fiber of a resolution of a cyclic quotient singularity consists of a chain of rational
curves fEig

n
iD1

with Ei having one transverse intersection with EiC1 if i � i � n�1.
This is described in [75].

Thus resolving each cP 2 YD which is singular replaces each chain of curves CP with
a longer chain of rational curves with transverse crossings.

Since YD is an orbifold, Poincaré duality holds for rational cohomology, as Satake
showed in [68]. This together with Theorem 8.11 means that we can define the
orthogonal projection �BW H

2.YD IQ/! B .
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Corollary 8.12 If D is not square, then

�B Œ xPD �D �B Œ SWD �

as classes in H 2.YD IQ/. If D D d2 , then

�B Œ xPd2 �D �B Œ SWd2 �C�B Œ xS
2
d2 �:

Proof For each curve CP , the number of intersection points of CP with xPD is equal
to the number of intersection points of CP with SWD and xS2

D
by Part 4 of Theorem 8.7

(using the convention that S2
D

is empty if D is not square). Since these intersection
points are transverse, this implies

ŒCP � � Œ xPD �D ŒCP � � .Œ SWD �C Œ xS
2
D �/:

The desired equations then follow because the intersection matrix of the CP is nonde-
generate.

8.3 Involution of YD

We now study the extension of the involution � of XD to YD . We then use this
involution to deduce information about the fundamental classes of the curves SW �

D
.

Lemma 8.13 Let � � XD �
SM2 be the graph of the natural map XD !

SM2 , and
let S� be the closure of � in yXD �

SM2 . Then there is a morphism qW YD !
S� which

is the normalization of S� .

Proof We have a map q D p�� W YD!
yXD �

SM2 by Theorem 8.10, and the image
of q is in S� . To show that qW YD !

S� is the normalization of S� , we need only to
show that q is finite and birational. The map q is birational because pW YD !

yXD

is birational, as is the projection S� ! yXD . The map q is finite because the map
� W YD !

SM2 is finite.

Theorem 8.14 The involution � of XD extends to an involution � of YD . This
involution satisfies

�.S1
D/D S2

D ;(8–2)

�.CP /D Ct.P/;(8–3)

where t is the involution on the set of nondegenerate YD –prototypes defined in
Section 3.1.
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Proof Let S� � yXD �
SM2 as in Lemma 8.13. The involution,

z� D � � id SM2
W yXD �

SM2!
yXD �

SM2;

restricts to an involution z� of S� . By the universal property, Theorem A.2, the composi-
tion z� ı qW YD !

S� lifts to a map � W YD ! YD which extends � on XD . Since �2 is
the identity on the open, dense subset XD of YD , the map � is an involution of YD .

The involution � of yXD sends R1
D

to R2
D

. Since the map pW YD !XD commutes
with the involutions, we must have �.S1

D
/D S2

D
by Theorem 8.10.

We are regarding XD�P� SM2 as the set of stable Abelian differentials .X; Œ!�/, where
X has a compact Jacobian, and Jac.X / has real multiplication �W OD! End.Jac.X //
with ! as an 1–eigenform defined up to constant multiple. In these terms, �.X; Œ!�/
is the pair .X; Œ!0�/, where !0 is an 2–eigenform for the same real multiplication on
Jac.X / (!0 is then an 1–eigenform for the Galois conjugate real multiplication �0 ).

Now suppose that .X; Œ!�/ 2XD is close to a point in the curve C 0
P

, and .X; Œ!0�/D
�.X; Œ!�/ is close to a point in C 0

P 0
. We must show that P 0 D t.P /.

Recall the definition of the prototype P from Section 7.6. On .X; !/, there are two tall
cylinders C1 and C2 . Let f˛i ; ˇig

2
iD1

be a symplectic basis of H1.X IZ/ such that ˛i

represents the cylinder Ci and !.˛2/=!.˛1/� 1. Let �2KD be such that � �˛1D˛2 ,
and let  .t/ D at2C bt C c be as in Proposition 3.4, in particular  .�/ D 0. For
� 2KD , let T� be the matrix of the action of � on H1.X IQ/ in the symplectic basis
f˛i ; ˇig. Then Ta� is as in (7–9). The prototype is then P D .a; b; c; xq/, where a,
b , and c are as above, and xq is the reduction of the upper right entry of Ta� modulo
gcd.a; b; c/.

There are two cases to consider. First suppose that �.2/ ��1, which is equivalent to
a� bC c � 0. Let f˛0i ; ˇ

0
ig

2
iD1

be the symplectic basis,

f˛01; ˛
0
2; ˇ
0
1; ˇ
0
2g D f˛1;�˛2; ˇ1;�ˇ2g;

of H1.X IZ/. Let z�D��, and normalize Œ!0� so that !0.˛0
1
/D 1. Then z� �˛0

1
D ˛0

2
,

and

!0.˛02/D !
0.z� �˛01/D z�

.2/!0.˛01/D��
.2/
� 1:

This means that we can use the symplectic basis f˛0i ; ˇ
0
ig to calculate P 0 . If  0.t/D

a0t2C b0t C c0 is the polynomial from Proposition 3.4 with  0.z�/D 0, then

 0.t/D  .�t/D at2
� bt C c;
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so .a0; b0; c0/ D .a;�b; c/. For � 2 KD , let T 0
�

be the matrix T� in the new basis
f˛i ; ˇig. Then a simple calculation shows

T 0a0 z� D T 0�a� D

0BB@
0 �c 0 q

a b �q 0

0 0 0 a

0 0 �c b

1CCA :
Thus P 0 D .a;�b; c; xq/D t.P /.

Now suppose that �1<�.2/< 0, which is equivalent to a�bCc > 0. Let f˛0i ; ˇ
0
ig

2
iD1

be the symplectic basis,

f˛01; ˛
0
2; ˇ
0
1; ˇ
0
2g D f˛2;�˛1; ˇ2;�ˇ1g;

of H1.X IZ/, let z�D�1=�, and normalize !0 so that !0.˛0
1
/D 1. Then z� �˛0

1
D ˛0

2
,

and
!0.˛02/D��

.2/ > 1

as before. If  0.t/ D a0t2 C b0t C c0 is the polynomial from Proposition 3.4 with
 0.z�/D 0, then

 0.t/D�t2 .�1=t/D�ct2
C bt � a;

so .a0; b0; c0/D .�c; b;�a/. For � 2KD , let T 0
�

be the matrix T� in the new basis
f˛i ; ˇig. Then,

Ta0 z� D Tc=� D ac.Ta�/
�1
D

0BB@
�b c 0 q

�a 0 �q 0

0 0 �b �a

0 0 c 0

1CCA ;
and in the new basis,

T 0a0 z� D

0BB@
0 a 0 q

�c �b �q 0

0 0 0 �c

0 0 a �b

1CCA :
Thus P 0 D .�c; b;�a; xq/D t.P /.

It is not true that �.W 0
D
/DW 1

D
, but we will prove that something like this is true on

the level of cusps.

Theorem 8.15 Suppose D � 1 .mod 8/. If D is not square, then for any nondegen-
erate YD –prototype,

(8–4) #. SW 1
D \CP /D #. SW 0

D \ �.CP //:

Geometry & Topology, Volume 11 (2007)



2020 Matt Bainbridge

If D D d2 , then

(8–5) #. SW 1
d2 \CP /C #. xS2

d2 \CP /D #. SW 0
d2 \ �.CP //:

Proof Suppose P is a nondegenerate, nonterminal, noninitial YD –prototype. Re-
call that the cusps of WD lying on CP , where P D .a; b; c; xq/, are the points
wQ , where Q D .a; b; c; xr/ is a WD –prototype with xr 2 Z= gcd.a; c/, and xr � q

.mod gcd.a; b; c//. The cusp wQ lies on W
�.Q/

D
, where �.Q/ is given by (4–6).

There are two cases to consider, depending on whether or not a� bC c � 0. First
suppose a� bC c � 0. In this case,

�.t.Q//� �.Q/C b � �.Q/C 1 .mod 2/

for any WD –prototype Q associated to P , using the fact that b is odd because
b2� 4ac DD � 1 .mod 8/. It follows that CP has as many cusps of W 1

D
as Ct.P/

has cusps of W 0
D

.

Now suppose that a� bC c > 0. Here there are four cases to consider, depending
on the parity of a and c . First suppose a� 1 .mod 2/, and c � 0 .mod 2/. In this
case, for any WD –prototype Q associated to P , we have �.Q/ � 0 .mod 2/ and
�.t.Q//� 1 .mod 2/. Thus, every cusp of WD on CP is in W 0

D
, and Ct.P/ has the

same number of cusps, all in W 1
D

.

Suppose a� 0 .mod 2/, and c � 1 .mod 2/. In this case, for any WD –prototype Q

associated to P , we have �.Q/� 1 .mod 2/ and �.t.Q//� 0 .mod 2/. Thus, every
cusp of WD on CP is in W 1

D
, and Ct.P/ has the same number of cusps, all in W 0

D
.

Suppose a � c � 0 .mod 2/. In this case, for any WD –prototype Q D .a; b; c; xr/

associated to P , we have �.Q/� �.t.Q//xr .mod 2/. Since gcd.a; b; c/� 1 .mod 2/,
this means that exactly half of the cusps of WD on CP are on W 1

D
, and the same is

true for Ct.P/ .

The last case, a� c� 1 .mod 2/ doesn’t occur because b2�4ac� 1 .mod 8/. Thus
we have shown (8–4).

It remains to prove (8–5) when P is an initial or terminal prototype. We claim that if
P is an initial Yd2 –prototype, then CP intersects SW 0

d2 once and is disjoint from SW 1
d2 .

Let P D .a; b; c; xq/ be an initial prototype. Since a� bC c D 0,

gcd.a; c/D gcd.a; b; c/;
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so mult.P /D 1, and SWd2 intersects CP once. We have

b D aC c

) .aC c/2� 4ac D d2

) a� c D d

) a� cC 1 .mod 2/;

and furthermore f D d . It follows that �.P /D 0, thus the intersection point of CP

with SWd2 is in SW 0
d2 .

We saw in Theorem 8.7 that if P is a terminal YD –prototype, then CP intersects xS2
d2

once and is disjoint from SWd2 . Thus if P is a terminal prototype, then both sides of
(8–5) are one, and if P is an initial prototype, then both sides of (8–5) are zero.

Corollary 8.16 If D is not square, then

(8–6) ���B Œ SW
0

D �D �B Œ SW
1

D �

in H 2.YD IQ/. If D D d2 , then

(8–7) ���B Œ SW
0

d2 �D �B Œ SW
1

d2 �C�B Œ xS
2
d2 �

in H 2.Yd2 IQ/.

Proof Since the intersection pairing on B�H 2.YD IQ/ is nondegenerate by Theorem
8.11, it suffices to show that

ŒCP � � .���B Œ SW
0

D �/D ŒCP � ��B Œ SW
1

D �;

ŒCP � � .���B Œ SW
0

d2 �/D ŒCP � � .�B Œ SW
1

d2 �C�B Œ xS
2
d2 �/and

for each CP . Since the intersections of SWD and xS2
d2 with each CP are transverse,

this follows directly from Theorem 8.15.

9 Line bundles over YD

In this section, we will define extensions of some line bundles over XD to YD , and
we will calculate their Chern classes. In Section 9.1, we discuss background material
on vector bundles over orbifolds. In Section 9.2, we recall Mumford’s notion of a
good Hermitian metric, which allows one to express the Chern classes of a vector
bundle in terms of curvatures of singular Hermitian metrics. In Section 9.3, we discuss
the extension of �XD to YD , and we discuss the extension of T �AD to YD in
Section 9.4.
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9.1 Orbifold vector bundles

Most of the theory of vector bundles over manifolds works for vector bundles over
orbifolds. Here following Chen and Ruan [18] we discuss the facts that we need and
refer the reader to the Appendix to [18] for details.

Let X be a complex orbifold with an atlas fU˛=G˛!X g, where U˛ �Cn , and G˛ is
a finite automorphism group of U˛ (we allow G˛ to have elements which act trivially
on U˛ , and X is said to be reduced if no such element exists). A rank r holomorphic
orbifold bundle over X is an orbifold E with a map � W E!X such that for each ˛ ,

��1.U˛/Š .U˛ �Cr /=G˛;

where G˛ acts on U˛ �Cr by

g � .z; v/D .g � z; �.z;g/.v//

for some �W U˛�G˛!GLr C which is a homomorphism if we fix z and is holomorphic
if we fix g .

Nonreduced orbifold structures occur naturally. For example, M2 has a nonreduced
orbifold structure, where the local group G at a point X is Aut.X /. This is nonreduced
because the hyperelliptic involution J acts trivially. The associated reduced orbifold
structure has local group GDAut.X /=J at X . With this definition of an orbifold vector
bundle, �M2 is only an orbifold vector bundle if we take the nonreduced orbifold
structure on M2 . When necessary, we will implicitly use this orbifold structure.
Similarly, XD has a nonreduced orbifold structure with local group G D Aut.A; �/ at
.A; �/.

We want to be able to pull back bundles along maps between orbifolds. The operation
of pulling back a bundle is much more complicated in the category of orbifolds than in
the category of topological spaces. In particular, given a map f W X ! Y of orbifolds,
it is not always possible to pull back a bundle over Y by f ; however, this is possible
if f is what is called a good map. We will informally discuss pullbacks of orbifold
bundles without actually defining a good map.

Given a map f W X ! Y of orbifolds and charts V =H � Y and U=G �X such that
f .U=G/ � V =H , there is a lift zf W U ! V such that for each g 2 G there is some
h 2H such that

zf .g � z/D h � zf .z/:

Note that there may not be a group homomorphism � W G!H such that

zf .g � z/D �.g/ zf .z/:
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If f is good in the sense of [18], then such a homomorphism does exist. The actual
definition of a good map is some complicated global condition which locally amounts
to the existence of such a homomorphism; we will not get into this here.

In the notation of the previous paragraph, suppose that f W U=G! V =H is good and
we have over V =H a vector bundle E D .V �Cr /=H ! V =H , with H acting on
V �Cr by �W V �H ! GLr C. We define f �E over U by

(9–1) f �E D .U �Cr /=G;

where G acts on U �Cr by g � .z; v/D .g � z; �.z;g/.v//, with

�.z;g/D �. zf .z/; �.g//:

Globally, the pullback of a bundle E ! Y along a map f W X ! Y is an orbifold
vector bundle f �E which locally satisfies (9–1).

Given an orbifold X , write Xreg for the set of p points of X such that for a chart
U=G 3p , no element of G fixes p . The following theorem follows from Lemmas 4.4.3
and 4.4.11 of [18].

Theorem 9.1 Let f W X ! Y be a map of orbifolds such that f �1.Yreg/ is an open,
dense, and connected subset of X . Then f is a good map of orbifolds, and for any
orbifold vector bundle E! Y , there is a well-defined pullback bundle f �E! X .
The pullback bundle satisfies the naturality property

c1.f
�E/D f �c1.E/:

Remark Chern classes for orbifold vector bundles are defined using the Chern–Weil
construction, which associates a de Rham cohomology class to a metric on an orbifold
bundle. This theory is worked out in [18].

9.2 Good metrics

It is well known that the Chern classes of a complex vector bundle can be given in terms
of the curvature of a Hermitian metric. In [63], Mumford showed that for a Hermitian
metric with certain mild singularities, called a good metric, the Chern classes of the
vector bundle can still be given in terms of the curvature of the metric. Mumford’s
results are in terms of nonsingular complex projective varieties, but his results and
proofs work just as well in the setting of complex orbifolds. In this section, following
[63], we will summarize what we need about good metrics, translating to the setting of
orbifolds.
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Let X � xX be complex n–dimensional orbifolds with D D xX �X a divisor and xX
compact. Suppose that we can cover D with coordinate charts �n=G , where �n�Cn

is a polydisk, and G is a finite group of automorphisms of �n such that:

� Each transformation g 2G is of the form,

g.z1; : : : ; zn/D .�1z1; : : : ; �nzn/;

for some roots of unity �i .
� D\� is a union of the coordinate axes z1 D 0; : : : ; zr D 0 for 1� r � n.

In such a neighborhood �n=G , we have �n\X D .��/r ��n�r . We give �n\X

a metric by putting the Poincaré metric,

ds2
D

jdzj2

jzj2.log jzj/2
;

on the �� factors and putting the Euclidean metric jdzj2 on the � factors. Call the
product metric ! . This metric is G –invariant, so it is a metric on �n=G in the orbifold
sense.

Definition A p–form � on X has Poincaré growth if there is a cover of xX nX by
polycylinders �n

˛=G˛ as above such that in each �n
˛ we have some constant C˛ such

that for any p vectors ti at any point x 2�n
˛ \X ,

(9–2) j�.t1; : : : ; tp/j
2 < C˛!˛.t1; t1/ � � �!˛.tp; tp/;

where !˛ is the metric on �n
˛=G˛ defined above.

In this paper, given a differential form �, we will write h�i for the current defined by
�, and Œ�� for the de Rham cohomology class defined by �.

Proposition 9.2 A p–form � with Poincaré growth satisfiesZ
X

j�^ �j<1

for any smooth form � on xX of complementary dimension. Thus, � defines a p–current
h�i.

Definition A p–form � in X is good if � and d� both have Poincaré growth.

Proposition 9.3 If � is a good p–form, then

dh�i D hd�i:
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Note that it if � is a closed good form, it is not necessarily true that �D d� for a good
form � ; however, this will be the case if � is the Chern form of a good Hermitian
metric.

Let xL be a holomorphic orbifold line bundle over xX with L the restriction to X , and
let H be a Hermitian metric on E .

Definition H is a good metric if for every point x 2D , and every polycylindrical
neighborhood �n=G as described above with D given by

kY
iD1

zi ;

and for every holomorphic section e of xE over �n=G , setting hDH.e; e/, we have
the following:

� For some C > 0 and m> 1,

jhj; jhj�1 < C

� kX
iD1

log jzi j

�2m

:

� The 1–forms .@h/=h are good on �n=G \X .

Theorem 9.4 If H is a good metric, then the Chern form c1.E;H / is good and the
current hc1.E;H /i represents the Chern class c1. xE/ in H 2. xX IQ/. Furthermore,

c1.E;H /� d�

is a smooth 2–form on xX for some good 1–form �.

The last statement follows from the proof of Theorem 1.4 in [63].

We now show that Chern forms of good metrics behave as they should with respect to
the cup product pairing and integrating over curves.

Proposition 9.5 Suppose dimC
xX D 2. If ! and � are Chern forms of two good

metrics, then

(9–3) hŒ!�; Œ��i D

Z
X

! ^ �:
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Proof By Theorem 9.4, we can write

! D !0C d!00

�D �0C d�00;

where !0 and �0 are smooth, closed 2–forms on xX , and !00 and �00 are good 1–forms.
We have

hŒ!�; Œ��i D

Z
xX

!0 ^ �0

D

Z
X

.! ^ ��! ^ d�00� d!00 ^ �C d!00 ^ d�00/

D

Z
X

.! ^ �C d.! ^ �00/� d.!00 ^ �/C d.!00 ^ d�00//:(9–4)

We claim that
R
X d˛ D 0 for any good 3–form ˛ . The last three terms in (9–4) are of

this form, so (9–3) follows from this claim. By Proposition 9.3,

(9–5)
Z

X

d˛ D hd˛i.1/D dh˛i.1/D�h˛i.d1/D 0;

so the claim follows.

Proposition 9.6 Suppose C � xX is a curve with no irreducible component contained
in D , and suppose ! is the Chern form of a good Hermitian metric. Then

hŒC �; Œ!�i D

Z
C

!:

Sketch of proof Let ! D !0C d!00 with !0 a smooth 2–form on xX and !00 a good
1–form. We have

hŒC �; Œ!�i D

Z
C

!0 D

Z
C

! �

Z
C

d!00:

We need to show that the following two conditions hold:Z
C

j!j<1(9–6) Z
C

d!00 D 0:(9–7)

Let C0 D C nC \D: We can speak of Poincaré growth for forms on C0 using the
compactification of C0 obtained by adding a point to each cusp of C0 . It follows from
the Schwartz Lemma that any good p–form on X restricts to a good p–form on C0 ,
so !jC0

and !00jC0
are good. Then (9–6) follows from Proposition 9.2, and (9–7)

follows from (9–5).
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9.3 Extension of the bundle �XD to YD

Extension of �XD Recall that we have the map � W YD ! P� SM2 . Let

�1W P� SM2!
SM2

be the natural projection, and let

�2 D �1 ı� W YD !
SM2:

Let �0YD D ��
2
.� SM2/. It does not follow directly from Theorem 9.1 that this

pullback is well defined because we must take the nonreduced orbifold structure on
SM2 for � SM2 to be a bundle, and then ��1

2
. SM2/regD YD . Instead, first pull back the

square .� SM2/
˝2 . This is a bundle over SM2 with the usual reduced orbifold structure,

so ��1
2
. SM2/reg consists of the elliptic points of XD together with the elliptic points

of S i
d2 and the curves CP . This is an open, dense, and connected subset of YD , thus

the pullback of the square is well defined by Theorem 9.1. Then define �0YD to be
the quotient of this pullback by ˙1.

Given p 2 YD with �2.p/ D X 2 SM2 , the fiber of �0YD over p is isomorphic
to �.X /=Gp for some finite group Gp . If p is not an orbifold point of YD , then
G D f˙1g. If p is an elliptic point of XD or S i

D
, then Gp D Aut.X /. If p D cP

with P a nondegenerate, nonterminal YD –prototype, then a priori Gp could be bigger
than f˙1g because cP is a singular point of YD . In fact, �.cP / is a nonsingular point
of P� SM2 because the residues at the nodes of �.cP / are all different, so by (9–1),
Gp Š f˙1g. Thus we have shown that the fiber of �0YD over p is �.X /=f˙1g

unless p is an elliptic point of XD or S i
D

.

Over P� SM2 , there is the canonical orbifold line bundle O.�1/! P� SM2 whose
fiber over .X; Œ!�/ is the subspace of �.X / spanned by ! . Define

�1YD D �
�O.�1/

�2YD D �
��1YD :

Since O.1/ � ��
1
� SM2 as a sub line bundle, �1YD is a sub line bundle of �0YD .

The involution � lifts to an involution of �0YD , so we can also regard �2YD as a sub
line bundle of �0YD . Given p 2 YD with �2.p/DX , the Jacobian Jac.X / comes
with a choice of real multiplication by OD , and we can regard the fiber of �iYD over
p as �i.X /, the space of i –eigenforms. Since

�.X /D�1.X /˚�2.X /;
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we obtain

(9–8) �0YD D�
1YD ˚�

2YD :

Define QiYD D .�
iYD/

2;

which parameterizes quadratic differentials which are squares of i –eigenforms. In
what follows, we will sometimes abbreviate �1YD and Q1YD by �YD and QYD .

Proposition 9.7 The restriction of QYD to each curve CP � YD is trivial.

Sketch of proof Define a global nonzero section of QYD over CP as follows. If
X 2 C 0

P
, then let qX 2Q.X / be the unique quadratic differential which is the square

of the Abelian differential !X 2 �.X / which has residue 1 at both nonseparating
nodes of X . Otherwise, X has three nonseparating nodes. In this case, define qX

in the same way, using the two nodes of X which are limits of nodes of surfaces in
C 0

P
.

Chern class of �YD In Section 2.3, we gave �XD a Hermitian metric h� . In terms
of Riemann surfaces, the metric is given on the fiber over X by

h�.!; !/D

Z
X

j!j2:

The induced metric hQ on QXD is given in the fiber over X by

hQ.q; q/D

�Z
X

jqj

�2

:

On YD , these metrics become singular along the curves CP and xS1
D

because stable
Abelian differentials representing points on these curves have infinite area.

Theorem 9.8 The metric hQ on QYD is a good metric.

Lemma 9.9 Let H be a singular Hermitian metric on the trivial bundle LD�n �C

over the polydisk �n 2 Cn , and let s be a holomorphic, nonzero section with

H.s; s/D

� rX
iD1

ci log jzi jC c

�2

;

for some r � n and constants ci and c with ci < 0. Then H is a good metric on L.
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Proof Let hDH.s; s/. Clearly,

h; h�1 <O

� rX
iD1

log jzi j

�2

;

so it remains to show that ˛ D @h=h is a good 1–form.

We have ˛ D

P
i

ci dzi

ziP
i ci log jzi jC c

;

ˇ̌̌̌
˛

�
@

@zj

�ˇ̌̌̌
D

cj

jzj j
ˇ̌P

i ci log jzi jC c
ˇ̌so

�
1

jzj j log jzj j

D !

�
@

@zj
;
@

@zj

�1=2

:

Thus ˛ has Poincaré growth. We have

d˛ D
1

2

P
ij cicj

dzi^dxzj
zixzj

.
P

ci log jzi jC c/
2
;

ˇ̌̌̌
d˛

�
@

@zk

;
@

@xzl

�ˇ̌̌̌
D

1

2

ckcl

jzkzl j
�P

i ci log jzi jC c
�2so

�
1

4

1

jzk j log jzk j

1

jzl j log jzl j

D
1

4
!

�
@

@zk

;
@

@zk

�1=2

!

�
@

@xzl

;
@

@xzl

�1=2

:

Thus, d˛ also has Poincaré growth, so ˛ is a good 1–form, and H is a good metric.

Proof of Theorem 9.8 We need to give holomorphic sections of QYD around every
point of xS1

D
and CP and show that the norms of these sections satisfy the required

bounds.

If p 2 xS1
d2 , then we saw in Section 7.3 and Section 7.5 that xXd2 is normal around

p , so we can work in xXd2 . We gave a section s of O.�1/ around p whose norm is
given by (7–3) or (7–7). The norm of s2 as a section of O.�2/ is the square of the
norm of s , and s2 can be regarded as a section of QYD around p . Thus hQ is good
around each p 2 xS1

d2 by Lemma 9.9.
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If p 2 C 0
P

, then we can consider �.p/ as a point in P�D0
2
.T2;0/ or P�D0

2
.T2;1/.

As we saw in Section 7.6, �.p/ is contained in a hypersurface U� with coordinates
.x;y; z/ on U� . The variety xXD is contained in U� near �.p/ and is cut out by the
equation, (7–12). In a neighborhood of p in YD , there are coordinates .u; v/ with

x D u; y D vq; and z D �vr ;

for some p; q 2N and root of unity � by Proposition 8.1. We defined a section s of
O.�1/ over U� with norm given by (7–18). The pullback of s2 to YD gives a section
t of QYD with norm,

hQ.t; t/D .c1 log jvjC c/2;

for some constants c1 and c with c1 < 0. Thus by Lemma 9.9, hQ is good around
every p 2 C 0

P
.

Now suppose p D cP for some prototype P . We can consider �.p/ as a point in
P�D0

2
.T3;0/ or P�D0

2
.T 3

3;0/. As we saw in Section 7.7, �.p/ is contained in a
hypersurface U� with are coordinates .x;y; z/ on U� . The variety xXD is contained
in U� near �.p/ and is cut out by the equation, (7–21). In a neighborhood of p in
YD , there are coordinates .u; v/ with

x D upvq; y D ur ; and z D vs;

for some p; q; r; s 2 N by Proposition 8.3. We defined a section s of O.�1/ over U�
with norm given by (7–23). The pullback of s2 to YD gives a section t of QYD with
norm,

hQ.t; t/D .c1 log jujC c2 log jvj/2;

for some negative constants c1 and c2 . Thus by Lemma 9.9, hQ is good around every
cP .

Corollary 9.10 The first Chern class of QiYD is

(9–9) c1.Q
iYD/D Œ!i �:

Proof Since hQ is a good metric, c1.QYD ; hQ/ represents c1.QYD/ by Theorem 9.4.
We showed in Proposition 2.8 that c1.QYD ; hQ/D !1 . This shows that c1.Q

1YD/D

Œ!1�. Also,
c1.Q

2YD/D c1.�
�Q1YD/D �

�c1.Q
1YD/D Œ!2�:

Corollary 9.11 For i D 1; 2, and for any nondegenerate YD –prototype,

Œ!i � � ŒCP �D 0:

Proof This pairing is equal to the degree of QYD restricted to CP . Since this
restriction is trivial by Proposition 9.7, the degree is zero.
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9.4 Extension of the foliation AD to YD

Proposition 9.12 The foliation AD of XD extends to a foliation (which we will
continue to call AD ) of

YD n

[
P

cP ;

where the union is over all nonterminal YD –prototypes. The curves C 0
P

and S1
D

are
leaves of AD , and AD is transverse to xS2

D
.

Proof It follows directly from the equations for AD given in Corollaries 7.7 and
7.12 that AD extends over S1

D
and S2

D
to a foliation which contains S1

D
as a leaf

and is transverse to S2
D

. The equations for AD in Corollary 7.15 show that AD

extends over the intersection points of S1
D

and S2
D

and is transverse to S2
D

there. For
p 2 C 0

P
, equations for AD near �.p/ 2 xXD are given in Theorem 7.22. There are

local coordinates .u; v/ in a neighborhood of p in YD such that x D u, y D vp , and
z D �vq for some p; q 2 N and root of unity q . In these coordinates, CP is cut out
by v D 0, and AD is given by v D const. Thus AD extends over C 0

P
to a foliation

which contains C 0
P

as a leaf.

We will now study T �AD , the cotangent bundle to the leaves of AD . Since every
orbifold line bundle on a complex orbifold minus a subvariety of codimension at least
two extends to an orbifold line bundle over the entire orbifold, we can regard T �AD

as an orbifold bundle over all of YD , even though the foliation is singular at the points
cP . The holomorphic sections of AD over an open set U are exactly the holomorphic
sections over U minus the singular points of AD .

Proposition 9.13 The only singular fibers (that is, fibers which are nontrivial quotients
C=G ) of T �AD are over the elliptic points of XD and the elliptic points of S i

d2 .
For each nonterminal YD –prototype P , the restriction of T �AD to the curve CP is
trivial. For each terminal YD –prototype, the restriction of T �AD to the curve CP is
isomorphic to T �CP .cP�/.

Proof Besides the elliptic points, the only points over which T �AD could have
singular fibers are the singular points cP of AD . Every section of an orbifold line
bundle vanishes on a singular fiber, so to show that the fiber over cP is nonsingular, it
suffices to show that T �AD has a nonzero section over cP .

Let .x;y; z/ be the coordinates on in a neighborhood of �.cP / in the hypersurface U��

P�D2.T3;0/ as in Section 7.7. By Theorem 7.27 and Proposition 8.3, a neighborhood
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of cP in YD is of the form �2=G , where �2 is a polydisk with coordinates .u; v/
such that

x D upvq; y D ur ; z D vs

for some p; q; r; s 2 N, and G is a cyclic group whose action on �2 is generated by

.u; v/D .�u; �nv/

for some root of unity � . By the equation,

y�z��1
D const;

for the foliation AD from Theorem 7.27, AD is given on �2 by the equation,

uavb
D const;

for some a; b � 0. If P is nonterminal, then � > 1, and a; b > 0. Otherwise �D 1,
and b D 0, so the foliation is nonsingular at cP . Define a vector field X on �2 by

X D bu
@

@u
� av

@

@v
:

X is tangent to AD and is invariant under G , so it gives a nonzero section of T �AD

in a neighborhood of cP . Thus the fiber of T �AD over cP is not singular.

The restriction of X to CP is a vector field on CP in a neighborhood of cP which
vanishes at cP . That means that a vector field Y on CP defines a nonzero section of
T �AD jCP

if and only if Y vanishes at cP . If P is nonterminal, then CP has two
points cP and cP� which pass through singular points of AD . A holomorphic vector
field on CP which has a zero at each of these points and no other zeros determines a
nonzero holomorphic section of T �AD jCP

. Thus this restriction is trivial.

If P is terminal, then cP is a nonsingular point of AD . Thus, the only singular point
of AD which CP intersects is cP� , so

T �AD jCP
Š T �CP .cP�/:

Corollary 9.14 The pairings of c1.T
�AD/ with the fundamental classes ŒCP � are

c1.T
�AD/ � ŒCP �D

(
0 if P is not terminal;

�1 if P is terminal.

Proof The pairing c1.T
�AD/ � ŒCP � is equal to the degree of the restriction of T �AD

to CP . If P is nonterminal, then this restriction is trivial, so the pairing is zero. If P

is terminal, then this restriction has degree �1 by Proposition 9.13.
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Chern class of T �AD when D is not square We now calculate the first Chern class
of T �AD by relating it to the bundle Q2YD .

Lemma 9.15 If D is not square, and L ! YD is an orbifold line bundle with a
nonzero holomorphic section s 2�.XD ;L/ defined over XD , then s is a meromorphic
section of L over YD .

Proof Let O.L/ be the sheaf of sections of L. By [71], O.L/ is a coherent algebraic
sheaf on YD . We claim that s is defined algebraically over X . The lemma would follow
from this because every algebraic section of a line bundle over a dense, Zariski-open
subset is meromorphic by [33, Lemma II.5.3].

The direct image ��O.L/ is a coherent algebraic sheaf on yXD . Given an open set
U � yXD and t 2�.U; ��O.L//, let r D t=s , a holomorphic function on U nC , where
C D yXD nXD is the set of cusps of XD . By Koecher’s principle (see van der Geer
[75]), r extends uniquely to a holomorphic function zr on U . This defines an injective
analytic map of sheaves,

i W ��O.L/!O yXD
;

with i.t/D zr . By [71], i is actually defined algebraically. Since i.s/D 1, and 1 is
algebraic, it follows that s is an algebraic section of L over XD .

Theorem 9.16 When D is not square,

Q2YD Š T �AD :

Proof Define
LDQ2YD ˝ .T

�AD/
�1:

By Proposition 2.8 and Proposition 2.9,

Q2YD jXD
ŠL2 Š T �AD jXD

;

so there is a nonzero, holomorphic section s of L over XD , which is a meromorphic
section of L over YD by Lemma 9.15.

The divisor of s is
.s/D

X
P

eP CP

for some integers eP , so
c1.L/D

X
P

eP ŒCP �:
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We need to show that the eP are all zero, for then s would be nonzero and holomorphic,
so L would be trivial. By Proposition 9.7 and Proposition 9.13, the restriction of L to
each CP is trivial, so

ŒCQ� �
X

eP ŒCP �D ŒCQ� � c1.L/D 0;

for each YD –prototype Q. It then follows from Theorem 8.11 that eP D 0 for each
P .

Corollary 9.17 If D is not square, then the first Chern class of T �AD is

(9–10) c1.T
�AD/D Œ!2�:

Chern class of T �Ad 2 The foliation Ad2 of Xd2 extends to a foliation �Ad2 of the
orbifold yXd2 . Give T �Ad2 the metric � induced by the hyperbolic metric along the
leaves of AD . This metric is singular along xR2

d2 .

Theorem 9.18 The metric � is a good metric for T �Ad2.� xR2
d2/.

Proof Let G � SL2Od2 be the cyclic subgroup generated by��
1 0

0 1

�
;

�
1 d

0 1

��
:

We then have a map,
H�H=G Š H���!Xd2

(where �� is the punctured unit disk), which extends to an unramified map of orbifolds,

pW H��! yXd2 ;

sending H�f0g to R2
d2 , and sending leaves of the vertical foliation by disks to leaves

of �Ad2 . The vector field,

X D z2

@

@z2

;

on H��� locally defines a nonzero, holomorphic section of T �Ad2.� xR2
d2/ around

points in R2
d2 . The norm of this section is

�.X;X /D .log jz2j/
�2;

so by Lemma 9.9, � is good near points of R2
d2 (note that the exponent of the metric

in Lemma 9.9 is irrelevant because changing the exponent only changes @h=h by a
constant).

The proof that � is good near the cusps of yXD is the same, except these points are
covered by ���, rather then H��.
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Corollary 9.19 The first Chern class of T �Ad2 is

(9–11) c1.T
�Ad2/D Œ!2�� Œ xS

2
d2 �:

Proof By Theorem 9.18,

c1.T
� �Ad2/D Œ!2�� Œ xR

2
d2 �:

Since ��.T � �Ad2/ is isomorphic to T �Ad2 over Xd2 ,

��.T � �Ad2/D T �Ad2

�X
P

eP CP

�
for some integers eP , where the sum is over all nondegenerate YD –prototypes P .
Thus

(9–12)
X
P

eP ŒCP �D Œ!2�� Œ xS
2
d2 �� c1.T

�Ad2/

because ��Œ xR2
d2 �D Œ xS

2
d2 �.

The pairing of ŒCP � with the right hand side of (9–12) is trivial for all P by Corollary
9.14 together with the fact that from Theorem 8.7 that CP is disjoint from xS2

d2 if P

is nonterminal, and CP intersects xS2
d2 in one transverse intersection if P is terminal.

Theorem 8.11 then implies that the eP are all zero. Thus c1.T
�Ad2/ is as claimed.

10 Euler characteristic of WD

In this section, we calculate �.WD/. We construct a meromorphic section of a line
bundle over YD which vanishes along SWD and has simple poles along xPD and xS2

D
.

This allows us to relate �.WD/ to �.PD/, �.XD/, and �.S2
D
/.

In [58], McMullen defined a quadratic differential on the leaves of AD in XD , and
used this to construct a transverse measure for the foliation of XD by SL2R orbits.
This quadratic differential was also studied in [70] in the case when D is square. Here
we recall the construction of this quadratic differential from [58] and define it on all of
YD .

Theorem 10.1 On each leaf L of AD , there is locally a quadratic differential q

which has a simple zero on each point of SWD \L, has a simple pole on each point of
. xPD [

xS2
D
/\L, and is elsewhere holomorphic and nonzero.
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Proof For each z 2 L, let Xz be the corresponding Riemann surface with real
multiplication. Choose a basepoint z0 2L, and choose some eigenform !z0

2�1.Xz0
/.

There is a unique section z 7! !z of �YD over L such that the absolute periods of
the !z are locally constant. When L � XD , this follows from Proposition 2.10. If
LD CP , this is clear because the periods of !z are determined by the residues at the
nonseparating nodes of Xz , and along CP these residues have constant ratio, and if
LD S1

d2 , this is also clear because if .Xz; !z/ is a cylinder covering differential, then
the periods of !z are all rational multiples of the period around the node of Xz , so if
this period is constant along L, then all of the periods are constant.

If z 2L n . SWD [
xPD [

xS2
D
/, then .Xz; !z/ has two distinct simple zeros. Let

(10–1) f .z/D

Z


!z;

where  is some path joining the zeros of !z . This f .z/ is a multivalued holomorphic
function on L n . SWD [

xPD [
xS2

D
/ because the value of f .z/ depends on a choice of

an oriented path joining the zeros of !z . Define

q D .@f /2:

We claim that q is a well-defined quadratic differential on L. To see this, suppose we
replace an oriented path  joining the zeros p and q of !z with a new path  0 joining
p to q . Since  �  0 is a closed path, this changes f by an absolute period of !z .
Since the absolute periods of !z are constant along L, replacing  with  0 does not
change @f . If we replace  with � , the same path with the opposite orientation, this
changes f to �f , which does not affect q because of the exponent. Thus q is well
defined.

We now identify the zeros and poles of q . Since the absolute and relative periods give
a system of local coordinates on the strata in � SM2 , the relative periods give local
coordinates on L because the absolute periods are constant, so q is holomorphic and
nonzero on the complement of xPD , SWD , and xS2

D
.

Suppose z 2 L\ SWD . For z 2 C, let I.z/ 2 C be the segment joining 0 to z . For
w 2�� , where �� is some small �–ball around 0 in C, let

�.w/D .Xw; !w/#I.w3=2/;

(this is the operation of splitting a double zero defined in Section 4.1). As in Section 6.2,
� is a conformal isomorphism onto some neighborhood of z in C. In these coordinates,
we have f .w/D w3=2 , so

q D 9
4
w dw2:
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Thus q has a simple zero at z .

Now suppose z 2L\ xPD . Then

.Xz; !z/D .X1; !1/#.X2; !2/;

the one-point connected sum of two genus one differentials. Define a conformal
mapping �W ��!L by

�.w/D .X1; !1/#I.w1=2/.X2; !2/;

taking a connected sum along I.w1=2/. Similarly, if z 2L\ xS2
D

, then we can regard
.Xz; !z/ as an genus one differential with two points identified to a node. Define a
conformal mapping �W ��!L by

�.w/D .Xz; !z/#I.w1=2/;

taking a self-connected sum along I.w1=2/ as described in Section 4.1. In either case,
we have in these coordinates f .w/D w1=2 , so

q D 1
2
w�1dw2:

Thus q has a simple pole at z .

This construction locally defines meromorphic sections of .T �AD/
2 , but does not give

a global section. The problem is that the definition of the quadratic differential q on a
leaf L depended on a choice of !z0

2�.Xz0
/ for some basepoint z0 2L. There is no

obvious way to choose these quadratic differentials coherently to get a global section.
To get a global section of a bundle, we must twist by some power of �YD .

Theorem 10.2 There is a meromorphic section of the line bundle

LD .QYD/
�
˝ .T �AD/

2

on YD which has a simple zero along SWD , has a simple pole along xPD and xS2
D

(which
is empty if D is nonsquare), and is elsewhere nonzero and finite.

Proof The construction in the proof of Theorem 10.1 defined for each point,

z 2 YD n

[
cP ;

together with a choice of ! 2 �1.Xz/ a quadratic differential q on the leaf of AD

through z . Thus, we have a map hW �1.Xz/! .T �AD/
2jz . With f as in (10–1), if

we replace ! 2�1.Xz/ with a! , then f becomes af , and q becomes a2q . Thus h

satisfies
h.a!/D a2h.!/:

Geometry & Topology, Volume 11 (2007)



2038 Matt Bainbridge

We can thus regard h as a linear map

�1.Xz/
˝2
! .T �AD/jz :

This defines a meromorphic section s of L over YD n
S

cP which has the same zeros
and poles as the quadratic differentials on the leaves of AD . This section extends
holomorphically over the points cP to give a section over all of YD because any
holomorphic section of a line bundle defined on a neighborhood of a normal point
extends over that point.

Corollary 10.3 If D is not square, then the fundamental class Œ SWD � of SWD in
H 2.YD IQ/ is given by

(10–2) Œ SWD �D Œ xPD �� Œ!1�C 2Œ!2�:

The fundamental class Œ SWd2 � of SWd2 in H 2.Yd2 IQ/ is given by

(10–3) Œ SWd2 �D Œ xPd2 �� Œ xS2
d2 �� Œ!1�C 2Œ!2�:

Proof By [27, p 141], for any line bundle L over a compact, complex manifold M

with a meromorphic section s of L having divisor D ,

c1.L/D ŒD�:

This is proved for complex manifolds, but this is still true and the proof works just as
well for orbifolds.

In our situation, the section s of L from Theorem 10.2 implies

Œ SWD �� Œ xPD �� Œ xS
2
D �D c1.L/D�c1.QYD/C 2c1.T

�AD/:

This, together with (9–9), (9–10), and (9–11) yield the desired formulas.

Corollary 10.4 If D ¤ 1 is a fundamental discriminant, then

�.Wf 2D/D �.Pf 2D/� 2�.Xf 2D/(10–4)

D�9�KD
.�1/f 3

X
r jf

�
D

r

�
�.r/

r2
:(10–5)

If D D d2 , then

�.Wd2/D �.Pd2/��.S2
d2/� 2�.Xd2/(10–6)

D�
1

16
d2.d � 2/

X
r jd

�.r/

r2
:(10–7)
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Proof If we pair �Œ!1� with both sides of (10–2) and (10–3), then by Proposition 9.5
and Proposition 9.6, we get

�

Z
WD

!1 D�

Z
PD

!1� 2

Z
XD

!1 ^!2(10–8)

�

Z
W

d2

!1 D�

Z
P

d2

!1� 2

Z
X

d2

!1 ^!2C

Z
S2

d2

!1:(10–9)

Since WD , PD , and S2
d2 are transverse to AD , the form �!1 restricts to the Chern

form of the hyperbolic metric on these Riemann surfaces. Thus by the Gauss–Bonnet
theorem we get (10–4) and (10–6). We calculated �.XD/ and �.PD/ in Theorem 2.12
and Theorem 2.22. We will calculate �.S2

d2/ in the following proposition. Putting all
of this together yields (10–5) and (10–7).

Proposition 10.5 When d > 2, we have

�.S i
4/D�

1
2

(10–10)

�.S i
d2/D�

1
12

d2
X
r jd

�.r/

r2
:(10–11)

Proof We know that

S i
d2 Š H=�1.d/:

It follows from [59, Theorem 4.2.5] that

�.H=�1.d//D

8<:�
1
2

if d D 2;

�
1

12
�.d/d

Q
pjd

�
1C 1

p

�
when d > 2,

where � is the Euler �–function, and the product is over all primes dividing d . By
[36, Proposition 2.2.5],

�.d/D d
Y
pjd

�
1�

1

p

�
;

so when d > 2,

�.H=�1.d//D�
1

12
d2
Y
pjd

�
1�

1

p2

�
D�

0
12

d2
X
r jd

�.r/

r2
;

as claimed.
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11 Fundamental class of SWD

In this section, we will calculate the fundamental class of SWD . By Corollary 10.3, we
just need to know the fundamental classes of xSi

D
and xPD . Recall that we defined �B

to be the orthogonal projection of H 2.YD IQ/ onto the subspace B generated by the
curves CP .

Theorem 11.1 The fundamental class of xSi
d2 in H 2.Yd2 IQ/ is

(11–1) Œ xSi
d2 �D

6

d
Œ!i �C�B Œ xS

i
d2 �:

Proof From Theorem 8.10, we have a map pW Yd2! yXd2 which collapses the curves
CP to cusps of yXd2 . Let

qW yXd2 ! H=SL2ZD SM1;1

be the map induced by the projection of H�H, the universal cover of Xd2 , onto its
second factor. Let r D q ıp , and let 12 SM1;1 by the single point added to H=SL2Z.
Then

r�1.1/D S1
d2 [

[
P

CP :

Let f be a holomorphic function defined on a neighborhood of 1 in SM1;1 which
has a simple zero at 1. We claim that f ı r vanishes to order d along S1

d2 .

It is enough to show that f ı q vanishes to order d along R1
d2 . Let G � SL2Od2 be

the cyclic group generated by ��
1 0

0 1

�
;

�
1 d

0 1

��
;

and let N � SL2Z be the subgroup of upper-triangular matrices. We have the following
commutative diagram:

H�H=G //

��

H=N

��
H��

t
//

i
��

�

j
��

yXd2 q
// SM1;1

where �� C is the unit disk. The two topmost vertical maps are isomorphisms onto
H��� and �� respectively, where �� is the punctured disk. The maps i and j are
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unramified maps of orbifolds satisfying i�1.R1
d2/DH�f0g and j�1.1/D f0g. The

map t is given by t.z; w/D wd , and it follows that f ı q vanishes to order d along
R1

d2 as claimed because f ı j ı t vanishes to order d along H� f0g.

It follows from this claim that

(11–2) r�Œ1�D d Œ xS1
d2 �C

X
P

eP ŒCP �;

where eP is the order of vanishing of f ır along CP . Let � be the 2–form on H=SL2Z

induced by
1

2�

dx ^ dy

y2

on H. Since �.H=SL2Z/D�1=6, Z
SM1;1

�D 1
6
;

by the Gauss–Bonnet Theorem, so the cohomology class defined by the closed current
h�i on SM1;1 satisfies

6Œ��D Œ1�

in H 2. SM1;1IQ/. We have

r��D !1;

r�Œ1�D 6Œ!1�:so

This equation and Equation (11–2) imply (11–1) for i D 1. The case i D 2 follows
from the same argument or by applying �� to (11–1).

Theorem 11.2 If D is not square, then the fundamental class of xPD in H 2.YD IQ/

is

(11–3) Œ xPD �D
5
2
.Œ!1�C Œ!2�/C�B Œ xPD �:

The fundamental class of xPd2 in H 2.Yd2 IQ/ is

(11–4) Œ xPd2 �D
�

5
2
�

3
d

�
.Œ!1�C Œ!2�/C�B Œ xPd2 �

Proof In SM2 , let �0 be the divisor which is the closure of the locus of stable Riemann
surfaces with one nonseparating node, and let �1 be the divisor which is the closure
of the locus of stable Riemann surfaces with one separating node. Let ıi D Œ�i �, the
fundamental class of �i . Define

�1 D c1.� SM2/:
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These cohomology classes satisfy the well-known relation,

(11–5) ı1 D 5�1�
1
2
ı0;

proved in [64].

Since ��
2
.� SM2/ D �

1YD ˚�
2YD , where �2W YD !

SM2 is the natural map, by
Corollary 9.10, we have

(11–6) ��2 .�1/D
1
2
.Œ!1�C Œ!2�/:

We claim that

(11–7) ��2 .ı1/D Œ
xPD �:

Since ��1
2
.�1/D xPD , it suffices to show that �1 is generically transverse to �2.YD/.

In A2 , the divisor �1 corresponds to the surface X1 parameterizing products of
elliptic curves. In A2 , the intersection of X1 with XD is transverse because these are
both linear subspaces of A2 , so if their intersection was not transverse, one would be
contained in the other. Equation (11–7) follows.

We now claim that

(11–8) ��2 .ı0/D Œ
xS1

D �C Œ
xS2

D �C
X
P

eP ŒCP �

for some integers eP . Since

��1
2 .�0/D

2[
iD1

xSi
D [

[
P

CP ;

�2 ı � D �2 , and ��S1
D
D S2

D
, it suffices to show that �0 meets �2.YD/ transversely

along �2.S
1
D
/.

Let p 2 S1
d2 , and let .X; !/ 2 � SM2 be a corresponding eigenform. We claim that

�2.YD/ meets �0 transversely at �2.p/. Let f˛i ; ˇig be a symplectic basis for
H1.X IZ/ as in Section 6.3. Then we get coordinates .v; w;x;y; z/ on a neighborhood
U of .X; !/ in � SM2 as in Section 6.3. The subspace H of U defined by the
equations,

v D !.˛1/; w D !.˛2/;

maps locally biholomorphically to SM2 , so the coordinates .x;y; z/ on H induce
coordinates on SM2 on a neighborhood W of X . In these coordinates,

�0 D V .z/:
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By Corollary 7.7,
�2.YD/\W D V .x�!.ˇ2//:

Thus �2.YD/ and �0 meet transversely at p as claimed, and (11–8) follows.

Equations (11–3) and (11–4) then follow from (11–5), (11–6), (11–7), and (11–8).

Remark I am grateful to Gerard van der Geer for providing the idea of the proof of
this theorem.

Remark We can also use (11–3) and (11–4) to get a new proof of Theorem 2.22.
Since this proof doesn’t use Siegel’s formula, Theorem 2.16, this together with the
previous proof of Theorem 2.22 can be used to give a proof of Siegel’s formula.

Corollary 11.3 If D is not square, then the fundamental class of SWD in H 2.YD IQ/

is given by

(11–9) Œ SWD �D
3
2
Œ!1�C

9
2
Œ!2�C�B Œ SWD �:

The fundamental class of SWd2 in H 2.Yd2 IQ/ is given by

(11–10) Œ SWd2 �D 3
2

�
1� 2

d

�
Œ!1�C

9
2

�
1� 2

d

�
Œ!2�C�B Œ SWd2 �:

Proof This follows from plugging the formulas from Theorem 11.1 and Theorem
11.2 into the formulas from Corollary 10.3.

12 Normal bundles

We now study the normal bundles of the curves SWD , xPD , and xS2
D

with the goal of
calculating the self-intersection numbers of these curves. For any curve C � YD , we
will write N.C / for its normal bundle.

Proposition 12.1 For any connected component C of SWD , xPD , or xS2
D

,

(12–1) N.C /Š TAD jC

as holomorphic line bundles over C .

Proof We claim that the foliation AD is transverse to SWD , xPD , and xS2
D

. Equation
(12–1) follows directly from this claim.

The curves WD and PD are transverse to AD because the inverse images of these
curves in H�H are the unions of graphs of holomorphic functions H!H. The curve
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S2
D

is also transverse to AD by Proposition 9.12. The closures of these curves are then
transverse to AD because they intersect YD nXD in the curves CP , these intersections
are transverse by Theorem 8.7, and the curves CP are leaves of AD by Proposition
9.12.

Theorem 12.2 For any connected component C of PD or S2
D

,

Œ xC �2 D �.C /:

For any component C of WD ,

Œ xC �2 D 1
3
�.C /:

Proof Let C be a connected component of PD , S2
D

, or WD , and choose a tubular
neighborhood U �YD of xC which is small enough that each point in U n xC represents
a stable Abelian differential which has a unique shortest saddle connection joining
distinct zeros (up to the hyperelliptic involution). We wish to define a map,

ˆW U ! .Q1 xC /�;

where Q1 xC is the restriction of Q1YD to xC .

Consider p 2 U representing the projective class of a stable Abelian differential
.X; Œ!�/. Let I � X be the unique shortest saddle connection connecting distinct
zeros, and let .Y; �/ be the stable Abelian differential obtained by collapsing I as in
Section 4.1. The projective class .Y; Œ��/ then represents a point of xC . Since ! and �
are both eigenforms for real multiplication, we have an isomorphism,

T W �1.Y /!�1.X /;

defined by T .�/D ! . Define S 2Q1.Y /� D�1.Y /�2 by

S.�/D

�Z
I

T .
p
�/

�2

;

where the integral along I is with respect to some choice of orientation of I . It doesn’t
matter which orientation we take for I or which square root of � we take, so S is
well-defined. Now define ˆ by

ˆ.p/D ..Y; Œ��/;S/:

For p 2 xC , we define ˆ.p/ D .p; 0/. Note that ˆ takes leaves of AD to fibers of
.Q1 xC /� .

Suppose that C is a connected component of PD . We claim that in this case, ˆ
is injective. To see this, let q 2 .Q1 xC /� be represented by .Y; Œ��/ 2 P� SM2 and
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S 2 Q1.Y /� . This .Y; �/ is the one point union of two genus one differentials or
cylinders:

.Y; �/D .Y1; �1/#.Y2; �2/:

Normalize � so that S.�2/D 1. If ˆ.p/D q , then p is represented by the connected
sum

.X; !/D .Y1; �1/#I .Y2; �2/;

where I � C is the segment joining 0 to 1. Thus p is determined uniquely by q , so
ˆ is injective as claimed. When C D S2

D
, then ˆ is injective by the same argument,

using a self-connected sum in place of the connected sum operation above.

Recall that in Section 4.1, we defined the operation of splitting a double zero, which is
inverse to the operation of collapsing a saddle connection, and associates to a sufficiently
small segment I � .Y; �/ starting at the zero of � the Abelian differential .Y; �/#I .

Suppose now that C is a connected component of WD . We claim that in this case,
ˆ is branched of order three along xC . Again, let q 2 .Q1 xC /� be represented by
.Y; �/ 2 P� SM2 and S 2Q1.Y /� , and normalize � so that S.�2/D 1. This .Y; �/ is
a stable Abelian differential with a double zero z . If ˆ.p/D q , then p is represented
by

.X; !/D .Y; �/#I

for some oriented segment I starting at z such that

(12–2)
Z

I

�D 1:

There are at most three such segments because there are three positively oriented
horizontal directions at the zero of �; therefore, q has at most three preimages. If S

is small, then there is an embedded ball around z with large radius. This means that
there are three embedded segments starting at z satisfying (12–2), and we can split
along each of these segments. Thus any point in Q1 xC sufficiently close to the zero
section has exactly three preimages under ˆ, and the claim follows.

Now if C is a connected component of PD or S2
D

, then we have seen that U is
homeomorphic to a neighborhood of the zero section in Q1 xC . Since U is a tubular
neighborhood of xC , U is also homeomorphic to a neighborhood of the zero section in
N. xC /. Therefore,

Œ xC �2 D deg N. xC /D deg Q1 xC :

Since c1.Q
1YD/D Œ!1� by Corollary 9.10,

Œ xC �2 D deg Q1 xC D�

Z
C

!1 D �.C /;
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as claimed.

Now suppose C is a connected component of WD . Regard U as a neighborhood of the
zero section in N. xC /. By the above claim, we can choose U so that ˆW U ! .Q1 xC /�

preserves fibers and is exactly three-to-one onto its image. For any line bundle B! xC ,
let �B 2H 2.B;B n xC IR/ be its Thom class. The Thom class �.Q1 xC /� is represented
by a 2–form which is supported in ˆ.U / which satisfiesZ

F

�.Q1 xC /� D 1

for each fiber F of .Q1 xC /� . For each fiber F of N. xC /, we haveZ
F

ˆ��.Q1 xC /� D 3;

ˆ��.Q1 xC /� D 3�N. xC /:thus

It follows that
Œ xC �2 D �N. xC / � Œ

xC �

D
1
3
�.Q1 xC /� � Œ

xC �

D
1
3

deg.Q1 xC /�

D
1
3
�.C /:

Corollary 12.3 For any connected component C of WD , we haveZ
C

!2 D
1
3

Z
C

!1:

Proof By Proposition 12.1, we have

ŒC �2 D deg TAD jC D c1.TAD/ � ŒC �D�

Z
C

!2:

By Theorem 12.2,

ŒC �2 D�1
3

Z
C

!1;

and the claim follows.

13 Euler characteristic of W �
D

Cohomology of YD From Theorem 8.11, the intersection pairing on H 2.YD IQ/ is
negative definite on the subspace B generated by the fundamental classes of the curves

Geometry & Topology, Volume 11 (2007)



Euler characteristics of Teichmüller curves in genus two 2047

CP . By Corollary 9.11, the subspace hŒ!1�; Œ!2�i �H 2.YD IQ/ is orthogonal to B .
Thus, if we let J � H 2.YD IQ/ be the orthogonal complement to B ˚ hŒ!1�; Œ!2�i,
then we have the orthogonal direct sum

(13–1) H 2.YD IQ/D B˚hŒ!1�; Œ!2�i˚J:

Since B˚hŒ!1�; Œ!2�i �H 1;1.YD IQ/;

J contains all of H 2;0.YD IQ/ and H 0;2.YD IQ/.

�.W �
D
/ when D is not square We now calculate �.W �

D
/ when D is not square.

Until further notice, we will assume that D is not square.

According to Corollary 8.12,

�B Œ SWD �D �B Œ xPD �:

Let BD D �B Œ xPD �, and let B�
D
D �B Œ SW

�
D
� for � D 1; 2. Since

Œ SWD �D Œ SW
0

D �C Œ
SW 1

D �;

we have B0
D CB1

D D BD :

Lemma 13.1 For any nonsquare D , we have

(13–2) .BD/
2
D�15�.XD/:

Proof Since WD and PD are disjoint,

Œ SWD � � Œ xPD �D 0:

Equation (13–2) follows directly from this together with the equations (11–3) and
(11–9) for these fundamental classes.

Theorem 13.2 If D is not square, then the fundamental class of SW �
D

in H 2.YD IQ/

is

(13–3) Œ SW �
D �D

3
4
Œ!1�C

9
4
Œ!2�CB�D C j

for some j 2 J .

Proof Since W 0
D

and PD are disjoint, we have

(13–4) Œ SW 0
D � � ŒPD �D 0;
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and by (8–6), we have

(13–5) .B0
D/

2
D .B1

D/
2:

By (13–1) and Corollary 12.3, the fundamental classes of the SW �
D

are of the form,

Œ SW 0
D �D aŒ!1�C 3aŒ!2�CB0

D C j

Œ SW 1
D �D

�
3
2
� a

�
Œ!1�C

�
9
2
� 3a

�
Œ!2�CB1

D � j ;

for some a 2Q and j 2 J . In terms of a, (13–4) becomes

(13–6) 10a�.XD/C .B
0
D/

2
CB0

D �B
1
D D 0:

From (13–2) and (13–5), we obtain

(13–7) .B0
D/

2
CB0

D �B
1
D D

1
2
.B0

D CB1
D/

2
D

1
2
.BD/

2
D�

15
2
�.XD/:

Combining (13–6) and (13–7) yields

aD 3
4
;

as desired.

Remark It seems likely that j D 0, but we don’t know how to prove this.

Corollary 13.3 If D is not square, then

�.W 0
D/D �.W

1
D/:

�.W �
D
/ when D is square We now turn to the calculation of �.W �

d2/. The idea is
the same as the proof of Theorem 13.2, but the calculation is more complicated because
of the presence of the curves S i

d2 . We will restrict to the case d > 2 because W4 D∅.
We start by calculating the intersections of various classes in H 2.Yd2 IQ/.

Lemma 13.4 For any d > 2, we have the following intersection numbers:

Œ!1� � Œ!2�D
1

72
d3
X
r jd

�.r/

r2
(13–8)

�B Œ xS
i
d2 � ��B Œ xPd2 �D

�
�

5
24

d2
C

1
4
d
�X

r jd

�.r/

r2
(13–9)

.�B Œ xS
i
d2 �/

2
D�

1
12

d2
X
r jd

�.r/

r2
(13–10)
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�B Œ xS
1
d2 � ��B Œ xS

2
d2 �D�

1
2
d
X
r jd

�.r/

r2
C

1
2
�.d/(13–11)

�B Œ xS
2
d2 � ��B Œ SWd2 �D

�
�

1
8
d2
C

1
4
d
�X

r jd

�.r/

r2
(13–12)

.�B Œ SWd2 �/2 D
�
�

5
24

d3
C

19
24

d2
�

3
4
d
�X

r jd

�.r/

r2
(13–13)

.�B Œ xPd2 �/2 D
�
�

5
24

d3
C

11
24

d2
�

1
4
d
�X

r jd

�.r/

r2
(13–14)

�B Œ xS
1
d2 � ��B Œ SWd2 �D

�
�

5
24

d2
C

3
4
d
�X

r jd

�.r/

r2
�

1
2
�.d/(13–15)

Proof Equation (13–8) is �.Xd2/, which is given in Theorem 2.12.

By Theorem 8.7, xPd2 \ xSi
d2 D∅. Thus Œ xPd2 � � Œ xSi

d2 �D 0, from which (13–9) follows.

By Theorem 12.2 and (10–11),

Œ xSi
d2 �

2
D �.S i

d2/D�
1

12
d2
X
r jd

�.r/

r2
;

from which (13–10) follows.

By Theorem 8.7,
Œ xS1

d2 � � Œ xS
2
d2 �D�

1
2
�.d/:

Equation (13–11) follows.

By Theorem 8.7,
Œ xS2

d2 � � Œ SWd2 �D 0:

Equation (13–12) follows.

By Theorem 12.2 and (10–6),

Œ SWd2 �2 D 1
3
�.Wd2/D� 1

48
d2.d � 2/

X
r jd

�.r/

r2
;

from which (13–13) follows. Equation (13–14) is proved similarly.

By Corollary 8.12,

�B Œ xS
1
d2 � ��B Œ SWd2 �D �B Œ xS

1
d2 � ��B Œ xPd2 ���B Œ xS

1
d2 � ��B Œ xS

2
d2 �:

Then (13–15) follows from (13–9) and (13–11).
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Theorem 13.5 For any d > 2, the fundamental class of SW �
d2 in H 2.Yd2 IQ/ is given

by

Œ SW 0
d2 �D

3
4

�
1� 1

d

�
Œ!1�C

9
4

�
1� 1

d

�
Œ!2�C�B Œ SW

0
d2 �C j

Œ SW 1
d2 �D

3
4

�
1� 3

d

�
Œ!1�C

9
4

�
1� 3

d

�
Œ!2�C�B Œ SW

1
d2 �� j

for some j 2 J .

Proof By (13–1), Corollary 11.3, and Corollary 12.3, the fundamental classes of the
SW �

d2 are given by

Œ SW 0
d2 �D aŒ!1�C 3aŒ!2�C�B Œ SW

0
d2 �C j

Œ SW 1
d2 �D

�
3
2
�

3
d
� a

�
Œ!1�C

�
9
2
�

9
d
� 3a

�
Œ!2�C�B Œ SW

1
d2 �� j

for some a 2Q and j 2 J .

From Corollary 8.16, we have

.�B Œ SW
0

d2 �/
2
D .�B Œ SW

1
d2 �C�B Œ xS

2
d2 �/

2

D .�B Œ SWd2 ���B Œ SW
0

d2 �C�B Œ xS
2
d2 �/

2:

Using (13–10), (13–12), and (13–13), this simplifies to

(13–16) �B Œ SWd2 � ��B Œ SW
0

d2 �C�B Œ SW
0

d2 � ��B Œ xS
2
d2 �

D

�
�

5
48

d3
C

11
48

d2
�

1
8
d
�X

r jd

�.r/

r2
:

From Corollary 8.12, we have

(13–17) �B ŒWd2 �C�B ŒS
2
d2 �D �B ŒPd2 �:

Multiplying (13–17) by �B Œ SW
0

d2 � and subtracting the result from (13–16), we obtain

(13–18) �B Œ SW
0

d2 � ��B Œ xPd2 �D
�
�

5
48

d3
C

11
48

d2
�

1
8
d
�X

r jd

�.r/

r2
:

Since SW 0
d2 and xPd2 are disjoint, we have

Œ SW 0
d2 � � Œ xPd2 �D 0:
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Expanding, this becomes�
5

32
d3
�

1
6
d2
�

a
X
r jd

�.r/

r2
C�B Œ SW

0
d2 � ��B Œ xPd2 �D 0;

which with (13–18) yields
aD 3

4

�
1� 1

d

�
:

Corollary 13.6 For any d > 2 with d � 1 .mod 2/,

�.W 0
d2/D�

1
32

d2.d � 1/
X
r jd

�.r/

r2

�.W 1
d2/D�

1
32

d2.d � 3/
X
r jd

�.r/

r2
:

Once cylinder cusps As an application of the calculation of Œ SW �
d2 �, we give formulas

for the number of one-cylinder cusps of W �
d2 . These formulas were established

independently by Lelièvre and Royer in [47].

Theorem 13.7 For any d > 3, the number of one-cylinder cusps of Wd2 is

(13–19) 1
6
d2
X
r jd

�.r/

r2
�

1
2
�.d/;

the number of one-cylinder cusps of W 0
d2 is

(13–20) 1
24

d2
X
r jd

�.r/

r2
;

and the number of one-cylinder cusps of W 1
d2 is

(13–21) 1
8
d2
X
r jd

�.r/

r2
�

1
2
�.d/:

Proof The one-cylinder cusps of Wd2 are the points of the intersection,

S1
d2 \ SWd2 :

When d > 3 this intersection is transverse by Theorem 8.7, so Œ SWd2 � � Œ xS1
d2 � is equal

to the number of one-cylinder cusps of Wd2 . Similarly, Œ SW �
d2 � � Œ xS

1
d2 � is equal to the

number of one-cylinder cusps of W �
d2 .
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Using (13–15), we obtain

Œ SWd2 � � Œ xS1
d2 �D

1
6
d2
X
r jd

�.r/

r2
�

1
2
�.d/;

which implies (13–19).

Now let’s calculate Œ xS1
d2 � � Œ SW

0
d2 �. By Corollary 8.16, we have

�B Œ xS
1
d2 � ��B Œ SW

0
d2 �

D �� .�B Œ xS
1
d2 �/ � �

�
�
�B Œ SW

0
d2 �
�

D �B Œ xS
2
d2 � ��B Œ SW

1
d2 �C .�B Œ xS

2
d2 �/

2

D �B Œ xS
2
d2 � ��B Œ SWd2 ���B Œ xS

2
d2 � ��B Œ SW

0
d2 �C .�B Œ xS

2
d2 �/

2:(13–22)

Since SW 0
d2 and xS2

d2 are disjoint, we have Œ SW 0
d2 � � Œ xS

2
d2 �D 0, and it follows that

(13–23) �B Œ xS
2
d2 � ��B Œ SW

0
d2 �D

�
�

1
16

d2
C

1
16

d
�X

r jd

�.r/

r2
:

Substituting (13–10), (13–12), and (13–23) into (13–22), we obtain

(13–24) �B Œ xS
1
d2 � ��B Œ SW

0
d2 �D

�
�

7
48

d2
C

3
16

d
�X

r jd

�.r/

r2
:

Equation (13–24) yields

Œ xS1
d2 � � Œ SW

0
d2 �D

1
24

d2
X
r jd

�.r/

r2
;

which implies (13–20). Equation (13–21) follows from (13–19) and (13–20).

14 Siegel–Veech constants

As an application of our results, we calculate the Siegel–Veech constants for counting
cylinders on translation surfaces on the Teichmüller curves WD and W �

D
. This is

basically a matter of plugging in our results into known formulas for these constants.

Given a translation surface .X; !/, let

N..X; !/;L/D #fmaximal cylinders of length at most L on .X; !/g:
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If .X; !/ lies on a Teichmüller curve, then Veech [77] showed

(14–1) N..X; !/;L/�
c

� Area.X; !/
L2:

The constant c , known as a Siegel–Veech constant, only depends on the Teichmüller
curve on which .X; !/ lies. Let cD be and c�

D
be the Siegel–Veech constants associated

to WD and W �
D

respectively.

Given a WD –prototype P D .a; b; c; xq/, define

v.P /D
c

gcd.a; c/

�
1�

a

c
�2
��

1C
1

�2

�
;

where �D �.P /, the positive root of ax2C bxC c D 0.

Theorem 14.1 If D is not square, then

cD D

P
P2WD

v.P /

�2�.WD/
; and c�D D

P
P2W�

D
v.P /

�2�.W �
D
/
;

where W�
D

is the set of WD –prototypes of spin invariant � .

Sketch of proof To fix notation, assume WD is connected as the proof is the same
otherwise. Each cusp of WD corresponds to a WD –prototype P , and above Theorem
4.9, we associated to this cusp a surface .XP ; !P / on WD with a decomposition
into two cylinders C1 and C2 (say C1 is the short cylinder). The subgroup of the
Veech group of .XP ; !P / (the stabilizer of this surface in SL2R) which preserves the
horizontal direction is generated by

g D

�
1 t

0 1

�
;

where t D
c

gcd.a; c/
:

Let i.Ci/ be the order of the Dehn twist which g induces on Ci . We have

i.C1/D�
c

gcd.a; c/

i.C2/D
a

gcd.a; c/
:and

v.P /D Area.XP ; !P /
X

i

i.Ci/

Area.Ci/
:We have
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It follows from Theorem 6.5 of [30] that for any .X; !/ 2�1WD ,

N..X; !/;L/�

P
P2WD

v.P /

Area WD

L2;

as desired.

We list the Siegel–Veech constants for D < 100 in Table 2, using the convention
cD D c0

D
if D � 1 .mod 8/ (c1

D
is the Galois conjugate of c0

D
as we prove below).

From numerical calculations, as D !1, the constants appear to converge to 10,
which by [23] is the Siegel–Veech constant for counting cylinders on a generic surface
in �M2.2/. It would be interesting to find a closed formula for cD .

Arithmetic of Siegel–Veech constants According to [30], the Siegel–Veech constant
c in (14–1) lies in the trace field of the Veech group of .X; !/. We get more precise
information in the case of the WD :

Theorem 14.2 Suppose D is not square. If D 6� 1 .mod 8/, then cD 2Q. Otherwise,
c0
D

and c1
D

are Galois conjugate elements of Q.
p

D/.

Proof First assume D 6� 1 .mod 8/. We have the involution t on the set of WD –
prototypes, defined in Section 3. Actually, it was defined on YD –prototypes, but the
definition works just as well in this case. This involution satisfies

v.t.P //D v.P /0;

where the prime denotes Galois conjugation. It follows that c0
D
D cD as desired.

Now suppose D � 1 .mod 8/. If it were true that �.t.P //D �.P /C 1 – where � is
the spin invariant – then we would be done. This is not true, but we can modify t so
that it is. Define a bijection on the set of WD –prototypes:

s.P /D

(
P; if a� bC c < 0 or a 6� b .mod 2/I

P C .0; 0; 0; gcd.a; b; c//; otherwise:

Then t 0 D s ı t is also a bijection. One can check that it satisfies

�.t 0.P //D �.P /C 1

v.t 0.P //D v.P /0;and

from which the second claim follows.
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D cD D cD

5
25

3
53

228695

21021

8
28

3
56

1796

195

12
26

3
57 23693

2352
C

29
784

p
57

13
91

9
60

2158

231

17 221
24
C

1
8

p
17 61

194651

19305

20
31

3
65 52429

5376
C

113
1792

p
65

21
133

15
68

413

39

24
148

15
69

26611

2805

28
82

9
72

18868

1785

29
377

35
73 3285

352
C

23
864

p
73

32
190

21
76

2822

285

33 473
48
�

11
144

p
33 77

116699

12597

37
9139

945
80

12631

1254

40
1924

189
84

487

51

41 8897
960
�

23
320

p
41 85

336821

32319

44
7682

735
88

182236

18837

45
299

33
89 702833

68640
�

831
22880

p
89

48
325

33
92

204178

21945

52
1283

135
93

2823449

270963

Table 2: Siegel–Veech constants for WD

Applications to billiards Given a L-shaped polygon P (or more generally a rational
angled polygon), there is a construction called unfolding which produced a translation
surface from P . To construct the unfolding of P , join four copies of P to form a
cross and glue opposite sides as in Figure 15. This yields a genus two translation
surface .X; !/ with a single double zero. Closed billiards paths on P unfold to closed
geodesics on .X; !/, and each closed billiards path which is neither horizontal nor
vertical is the image of exactly two closed geodesics on U.P /. Thus we obtain a two-
to-one correspondence between closed paths of length L on P and on the unfolding.
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Recall that we defined in Section 1 a L-shaped polygon P .D/ for each real quadratic
discriminant D , and we defined N.P .D/;L/ to be the number of families of closed
billiards paths of length at least L. From the above discussion, we obtain

(14–2) N.U.P .D//;L/� 2N.P .D/;L/:

Figure 15: Unfolding a L-shaped polygon

Theorem 14.3 If D is not square, then

N.P .D/;L/� c.D/
1

8� Area.P .D//
L2;

where c.D/D cD , if D 6� 1 .mod 8/, and c.D/D c
.1Cf /=2
D

if D� 1 .mod 8/, where
f is the conductor of D .

Proof This follows directly from (14–1) and (14–2). There is an extra factor of 4 is
because the unfolding has 4 times the area. To see that the unfolding has discriminant
D and spin invariant � D .1C f /=2, note that the unfolding is GL2R–equivalent to
the surface .XP ; !P / associated to the WD –prototype,

P D

(�
1;�1; 1�D

4
; 0
�
I if D is oddI�

1; 0;�D
4
; 0
�
I if D is even;

defined above Theorem 4.9. The spin invariant is then given by Theorem 4.10.
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15 Lyapunov exponents

Consider the rank 2g bundle H1.R/!�1Mg whose fiber over the surface .X; !/
is H1.X IR/=Aut.X; !/. The action of the diagonal subgroup of SL2R lifts to a
linear action on H1.R/. This action is called the Kontsevich–Zorich cocycle. The 2g

Lyapunov exponents of the Kontsevich–Zorich cocycle with respect to a finite, ergodic,
SL2R–invariant measure � are of the form

1D �1.�/ > � � �> �g.�/ > 0> ��g.�/ > � � � ��1.�/D�1:

The goal of this section is to prove the following unpublished theorem of Kontsevich
and Zorich.

Theorem 15.1 If � is any finite, ergodic, SL2R–invariant measure on �1M2 , then

�2.�/D

(
1=3; if � is supported on �1M2.2/I

1=2; if � is supported on �1M2.1; 1/:

The proof of Theorem 15.1 is based on a formula due to Kontsevich [42] for the sums
of Lyapunov exponents in terms of some integrals over P�Mg . Kontsevich states his
formula for the Lyapunov exponents on the entire strata �1Mg.n/, but his formula is
equally valid for all ergodic, SL2R–invariant probability measures on �1M2 and we
will state it for these.

Let E be the rank-two vector bundle over P�M2 obtained by pulling back �M2 by
P�M2!M2 , and let L be the canonical sub-line-bundle whose fiber over .X; Œ!�/
is C! . Give E the Hodge metric,

h.!; �/D

Z
X

! ^ x�;

and define two-forms on P�M2;

1 D c1.E; h/ and 2 D c1.L; h/:

For any SL2R–invariant measure � on �1Mg , let ��� be the pushforward to P�Mg ,
and let P� be the disintegration of ��� with respect to the foliation F of P�Mg by
images of SL2R–orbits. That is, P� is the unique transverse invariant measure such
that the product of P� with the hyperbolic area measure on the leaves of F is ���.
See Bourbaki [15] for a discussion of disintegration.
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Theorem 15.2 [42] For any finite ergodic, SL2R–invariant measure � on �1M2 ,

(15–1) �1.�/C�2.�/D

R
P� 1R
P� 2

:

Uniform distribution In order to evaluate (15–1), we will need the following weak
uniform distribution result for Teichmüller curves. Given a space X with an SL2R–
action, let M.X / be the space of finite SL2R–invariant measures on X with the
weak� topology. Let C.n/�M.�1Mg.n// be the closed, convex cone spanned by
the measures defined by hyperbolic area on those Teichmüller curves in �1Mg.n/
which are generated by square-tiled surfaces. Similarly, let Cd2 � .�1Ed2.1; 1// be
the closed, convex cone spanned by those Teichmüller curves in �1Ed2.1; 1/ generated
by square-tiled surfaces.

Theorem 15.3 We have

�0.n/ 2 C.n/

�0
d2 2 Cd2 ;and

where the measures on the left are the period measures on these strata defined in
Section 4.

Let �m.n/ and �mŒd � be the measures on �Mg.n/ and �Ed2.1; 1/ defined by putting
ı–masses of equal weight on the square-tiled surfaces with at most m squares, nor-
malized to have the same volumes as �0.n/ and �0

d2 respectively, which are finite by
Theorem 4.2. Let �0m.n/ and �0mŒd � be the projections to �1Mg.n/ and �1Ed2.1; 1/.
The following lemma is well-known.

Lemma 15.4 We have

lim
m!1

�0m.n/D �
0.n/

lim
m!1

�0mŒd �D �
0

d2

in the weak� topology on measures.

Proof We will prove only the first statement for concreteness, the other having
essentially the same proof. Let �00.n/ be the restriction of �0.n/ to ��1Mg.n/, and
let

�00m.n/D .t1=pm/��m.n/;
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where tr is the multiplication-by-r map on �Mg . Since �00.n/ and �00m.n/ project to
�0.n/ and �0m.n/ respectively, it is enough to show that

lim
m!1

�00m.n/D �
00.n/:

This is easy to see in the period coordinates on �Mg.n/ (described in Section 4). In
period coordinates, the square-tiled surfaces are exactly the points on the integer lattice,
so �00m.n/ consists of ı–masses of uniform weight on points of norm less than one
on the Z=

p
m lattice. Since these lattices have mesh approaching zero, the measures

converge to the uniform measure which is just �00.n/ in period coordinates.

Proof of Theorem 15.3 The set of square-tiled surfaces is SL2Z–invariant, so the
measure �0m.n/ is also SL2Z–invariant. Thus we can define

�m.n/D
Z

SL2R=SL2Z

�0m.n/ d� 2M.�1Mg.n//;

where � is Haar measure on SL2R. The measure �m.n/ is SL2R–invariant and
supported on finitely many Teichmüller curves generated by square-tiled surfaces, so
�m.n/ lies in the cone C.n/.

Let � � SL2R be a fundamental domain for SL2Z. Given a compactly supported,
continuous function f on �1Mg.n/, we have

lim
m!1

Z
�1Mg.n/

f d�m.n/D lim
m!1

Z
A2�

Z
�1Mg.n/

f ıA d�0m.n/ d�

D

Z
A2�

�
lim

m!1

Z
�1Mg.n/

f ıA d�0m.n/
�

d�

D

Z
A2�

Z
�1Mg.n/

f ıA d�0.n/ d�

D

Z
A2�

Z
�1Mg.n/

f d�0.n/ d�

D vol.SL2R=SL2Z/

Z
�1Mg.n/

f d�0.n/;

where the second equality follows from the Dominated Convergence Theorem; the third
equality follows from Lemma 15.4; and the fourth equality uses the SL2R–invariance
of �0.n/. It follows that �0.n/ 2 C.n/.
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The Siegel–Veech transform Given any translation surface .X; !/ with an oriented
saddle connection I , we associate the complex number

(15–2) v.I/D

Z
I

!:

Let V .X; !/ be the collection of vectors in C associated with saddle connections on
.X; !/, and for each v 2 V .X; !/, let n.v/ be the number of saddle connections I

satisfying (15–2).

For any nonnegative measurable function f W C ! R, the Siegel–Veech transform
yf W �1Mg.n/! R is defined by

yf .X; !/D
X

v2V .X ;!/

n.v/f .v/:

Theorem 15.5 [80] Given any ergodic, SL2R–invariant measure � on �1Mg.n/,
we have

(15–3)
1

vol�

Z
�1Mg.n/

yf d�D csc.�/

Z
R2

f:

The Siegel–Veech constant csc.�/ depends only on the measure �.

If � is supported on a Teichmüller curve C , we will also write csc.C / for csc.�/. It
follows from [80] that for any .X; !/ on a Teichmüller curve C ,

Nsc..X; !/;L/� csc.C /
�

Area.X; !/
L2;

where Nsc is the counting function for saddle connections.

Bounded Siegel–Veech constants We now show that Siegel–Veech constants are
uniformly bounded over Teichmüller curves of a given genus.

Theorem 15.6 There is a uniform bound,

csc.C /�D;

where C ranges over all Teichmüller curves in �Mg , and D only depends on the
genus.

This follows easily from the following results.
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Theorem 15.7 [50; 21] Given any compact subset K��Mg.n/, there is a constant
c.K/ such that for any .X; !/ 2K ,

Nsc..X; !/;L/ < c.K/L2:

Theorem 15.8 Given any connected component S of a stratum �1Mg.n/, there is a
compact subset K � S which intersects each SL2R–orbit S .

Theorem 15.8 is a corollary of the main result in Athreya’s thesis [3].

Proof of Theorem 15.6 For each connected component S of a stratum, choose a K

as in Theorem 15.8. Then for every Teichmüller curve C �S , we have csc.C /� c.K/

by Theorem 15.7. Since there are only finitely many connected components of strata
in each genus by [43], we obtain a bound depending only on the genus.

Let K� ��1Mg.n/ be the locus of translation surfaces which have no saddle connec-
tion of length less than � , and let zK� be the complement of K� .

Corollary 15.9 For any Teichmüller curve C ��1Mg.n/, we have

vol.C \ zK�/

vol.C /
<D�2;

for some constant D depending only on the genus g .

Proof Let �� and � zK� be the indicator functions of the disk of radius � in C and
zK� ��1Mg.n/ respectively. We have

y�� � � zK�
:

Thus
vol.C \ zK�/

vol.C /
�

1

vol.C /

Z
C

y�� D csc.C /��
2
�D��2;

where D is the constant of Theorem 15.6.

Extension of FD to YD We equipped the foliation FD of XD by SL2R–orbits
with a transverse invariant measure P�0

D
, so we can integrate 2–forms over FD to

obtain a closed current hFDi on XD . The foliation FD does not extend to a foliation
of YD . In fact, FD has isolated singularities at the points cP as well as along the
one-dimensional loci in the curves CP consisting of forms whose horizontal foliation
has two cylinders. Nevertheless, the current hFDi extends to a closed current on YD .
We prove the following two theorems in [7].
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Theorem 15.10 The foliation FD defines a closed current hFDi on YD , defined by

hFDi.!/D

Z
FD

!

for each C1 2–form ! on YD .

Let ŒFD � be the cohomology class in H 2.YD IR/ defined by hFDi.

Theorem 15.11 For any component C of SWD , xPD , or xS2
D

, we have

ŒC � � ŒFD �D 0:

Remark In fact, we only prove the nonsquare discriminant cases of these theorems
in [7]. The square discriminant cases can be proved by the same methods, but they are
not needed here.

Proof of Theorem 15.1 Consider the pullbacks of the bundles E and L over P�M2

by � W XD ! P�M2 . We have

��E D�1XD ˚�
2XD

��LD�1XD :and

Proposition 2.8 implies

��1 D !1C!2

��2 D !1:and

Let � be an ergodic SL2R–invariant measure on �1M2 whose support is not one
of the strata �1M2.2/ or �1M2.1; 1/. By McMullen’s classification of ergodic,
invariant measures, each such � is supported on one of the eigenform loci �1ED .
Then P� is a transverse, invariant measure to the foliation FD of XD , and (15–1)
becomes

(15–4) �2.�/D

R
P� !2R
P� !1

:

If the ergodic, invariant measure � is supported on a connected component C of WD ,
then �2.�/D 1=3 by (15–4) and Corollary 12.3.

Now suppose � is supported on a Teichmüller curve C �P�M2.1; 1/, so C is either
the decagon curve D10 or a component of Wd2 Œn�. By Corollary 10.3, we have

(15–5) Œ SWD �� Œ xPD �C Œ xS
2
D �D�Œ!1�C 2Œ!2�:
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Since xC is disjoint from each of the three curves on the left, pairing Œ xC � with both
sides of (15–5) yields �2.�/D 1=2. If � is the period measure �0

D
on ED , thenZ

P�0
D

!i D ŒFD �.!i/

(see Theorem 8.7 of [7]). Then we obtain �2.�
0
D
/D 1=2 by pairing ŒFD � with both

sides of (15–5) and applying Theorem 15.11.

It remains to deal with the measures �0.n/ on the strata �1M2.n/. Given a point
p 2 P�M2 , let L be the leaf of F through p . Define

f .p/D
1jL

2jL
:

This is a well-defined real number because it is the ratio of top-degree forms.

Lemma 15.12 As a function on P�M2 , we have

1� f � 2:

Proof Since f is continuous, it suffices to prove this bound for every Teichmüller
curve C � P�M2 . The curve C lies on some Hilbert modular surface XD . Let

zC � H�H

be a connected component of the inverse image of C in the universal cover of XD , and
let �i W

zC ! H be the two projections. Since C is transverse to the vertical foliation
AD of XD , the first projection �1 is a conformal isomorphism of zC with H. By
the Schwartz lemma, the projection �2 is a contraction with respect to the hyperbolic
metrics. Since !i is the pullback of the hyperbolic area form on H by !i , we have

0�
!2jC

!1jC
� 1:

The claim follows, since

f jC D
!1jC C!2jC

!1jC
:

We need to show that

1

vol�0.n/

Z
�1M2.n/

f d�0.n/D

(
1=3I if nD .2/I
1=2I if nD .1; 1/;

where we regard f as a function on �1M2.n/ by pulling it back from the projec-
tivization. Let f�mg be a sequence of measures (provided by Theorem 15.3) supported
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on Teichmüller curves in �1M2.n/ and converging to �0.n/. Since the average of
f over any Teichmüller curve C is either 1=2 or 1=3, depending on the stratum in
which C lies, it is enough to show that

1

vol �m

Z
f d�m!

1

vol�0.n/

Z
f d�0.n/:

Recall that we defined K� to be the locus of translation surfaces with no saddle connec-
tion shorter than � . Since K� is compact (as is shown in [40]), vol�1M2.n/ <1,
and the K� exhaust �1M2.n/ as �! 0, we can choose for any ı > 0 an � small
enough that

(15–6)
�0.n/. zK�/

vol�0.n/
<
ı

2
:

By Corollary 15.9, we can also choose � small enough that

(15–7)
�m.n/. zK�/

vol �m.n/
<
ı

2
:

Let g� be a continuous, compactly supported function on �1M2.n/ such that g � 1

on K� , and 0� g � 1. We have

lim
m!1

ˇ̌̌̌
1

vol �m

Z
f d�m�

1

vol�0.n/

Z
f d�0.n/

ˇ̌̌̌
� lim

m!1

ˇ̌̌̌
1

vol �m

Z
g�f d�m�

1

vol�0.n/

Z
g�f d�0.n/

ˇ̌̌̌
C
�0.n/. zK�/

vol�0.n/
C
�m.n/. zK�/

vol ��.n/
� ı;

since the limit of the first term is zero by Theorem 15.3, and the other two terms are
bounded by (15–6) and (15–7).

This completes the proof of Theorem 15.1. Note that the last part of the proof applies
to the �1Ed2 , so we can prove Theorem 15.1 for these spaces without appealing to
Theorem 15.10 and Theorem 15.11.

Appendix A Normal varieties

In this section, we record standard facts about normality for algebraic varieties and
analytic spaces which we use in this paper. We will consider all of our algebraic
varieties to be over C.
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Normal algebraic varieties A point p on an algebraic variety X is said to be normal
if the local ring Op of X at p is an integral domain which is integrally closed in its
field of fractions. A variety X is normal if it is normal at each of its points.

A normalization of a variety X is a normal variety Y together with a finite surjective
morphism � W Y !X . More generally (following [65]), if X is an irreducible variety,
and if L is a finite algebraic extension of K.X /, then a normalization of X in L is
a normal variety Y with function field K.Y / D L, together with a finite surjective
morphism � W Y ! X such that ��W K.X /! K.Y / D L is the given inclusion of
K.X / in L. If LDK.X /, this is just the usual normalization of X .

Theorem A.1 [65, Theorem III:8.3] For any irreducible variety X and finite alge-
braic extension L of K.X /, there is a normalization of X in L, and any two such
normalizations are equivalent.

Normalization is also characterized by a universal property. In the case, where LD

K.X /, this is an exercise in [33, p 91].

Theorem A.2 The normalization � W Y ! X of X in LDK.Y / has the following
universal property. Let Z be a normal variety with a dominant morphism qW Z!X ,
and let r W K.Y /! K.Z/ be an isomorphism such that r ı �� D q� as inclusions
K.X /!K.Z/. Then there is a unique morphism sW Z! Y such that s� D r and
� ı s D q .

We will also have use for the following theorems:

Theorem A.3 [65, III:8.4] The normalization of a projective variety in a finite
algebraic extension is projective.

Theorem A.4 (Zariski’s Main Theorem [33]) Let f W X ! Y be a birational mor-
phism of projective varieties, and assume that Y is normal. Then for every y 2 Y , the
fiber f �1.y/ is connected.

Theorem A.5 (Zariski [83, Theorem VIII.32]) If X is a normal variety, p 2X , andbOp is the completion of Op , then bOp is an integrally closed integral domain.
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Normal analytic spaces A complex analytic space is a ringed space which is locally
modeled on analytic subvarieties of Cn . We start by recalling some basic notions about
complex analytic spaces. See Gunning and Rossi [29] and Gunning [28] for details.

Consider the set of pairs .U;X /, where U � Cn is a neighborhood of some point p ,
and X �U is an analytic subvariety of U . We consider two such pairs to be equivalent
if the varieties agree on some common neighborhood of p . An equivalence class of
such pairs is called a germ on an analytic variety at p . A germ is considered to be
irreducible if it contains no proper subgerms.

Theorem A.6 [28, p 11] Any germ of an analytic subvariety at p can be written
uniquely as the union of finitely many irreducible germs of analytic varieties at p .

Given a point p 2X , an analytic subvariety of an open subset of Cn , a branch of X

through p is an irreducible subgerm of the germ of X at p . Informally, a branch of
X through p is a connected component of U \ .X nXsing/, where U is a small and
sufficiently regular neighborhood of p , and Xsing is the singular set of X . Given a
point p in an analytic space X , let Op be the local ring of germs of holomorphic
functions on X at p . Just as for algebraic varieties, we say that p is a normal point of
X if Op is an integrally closed integral domain. We say that X is normal if each of
its points is normal.

There is also a geometric characterization of normality. Following [81], we say that a
function f on an open subset V of an analytic variety X is weakly holomorphic if
there is a subvariety V 0 � V with the following properties:

� V 0 is nowhere dense in V , and Vsing � V 0 .

� f is holomorphic in V nV 0 .

� f is locally bounded in V .

It follows from [81, Theorem 4.10I] that an analytic space X is weakly holomorphic
at p if and only if every germ of a weakly holomorphic function at p is in fact
holomorphic.

A normalization of an analytic space X is a normal analytic variety Y together with a
holomorphic map pW Y !X such that the following holds:

� pW Y !X is proper and has finite fibers.

� If Xsing is the singular set of X , and AD p�1.Xsing/, then Y nA is dense in
Y , and pW Y nA!X is biholomorphic onto X nXsing .
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Theorem A.7 [45, p 38] Every analytic space has a unique normalization.

Theorem A.8 [45, p 37] If � W Y ! X is the normalization of X , then for each
p 2X , the map � induces a bijective correspondence between the points of ��1.p/

and the branches of X through p .

Theorem A.9 If X is an algebraic variety, and � W Y !X is the normalization of X

as an algebraic variety then it is also the normalization of X as an analytic space.

Proof By the definition of the normalization of an analytic space, we need only to
show that Y is normal as an analytic space. For this proof, write Oan

p for the local ring
of germs of holomorphic functions on X at p , to differentiate from the local ring of
Op of algebraic functions at p . Let bOp be the completion of Op .

Let f in the quotient field K.Oan
p / be integral over Oan

p . Since Oan
p �

bOp , it follows
that f is integral over bOp . Since bOp is integrally closed by Theorem A.5, it follows
that f 2 bOp . Then f 2Oan

p because K.Oan
p /\

bOp DOan
p in K.bOp/.

A resolution of an analytic space X is a complex manifold Y together with a proper
analytic map � W Y !X such that � W Y n��1.Xsing/!X nXsing is biholomorphic
and such that ��1.X nXsing/ is dense in Y . The following was proved by Mumford
in [61], by Grauert in [26], and also by Laufer in [45, Theorem 4.4].

Theorem A.10 Let � W Y ! X be a resolution of X , and let p 2 X be an isolated
normal point. Suppose that AD ��1.p/ is the union of irreducible curves Ai which
are nonsingular and intersect transversely, with at most two branches of

S
i Ai passing

through any point. Then the intersection matrix

.Ai �Aj /

is negative definite.
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