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Cohomological estimates for cat.X; �/

MICHAEL FARBER

DIRK SCHÜTZ

This paper studies the homotopy invariant cat.X; �/ introduced by the first author
in [6]. Given a finite cell-complex X , we study the function � 7! cat.X; �/ where �
varies in the cohomology space H 1.X IR/ . Note that cat.X; �/ turns into the classi-
cal Lusternik–Schnirelmann category cat.X / in the case � D 0 . Interest in cat.X; �/
is based on its applications in dynamics where it enters estimates of complexity of
the chain recurrent set of a flow admitting Lyapunov closed 1–forms, see [6; 7].

In this paper we significantly improve earlier cohomological lower bounds for
cat.X; �/ suggested in [6; 7]. The advantages of the current results (see Theorems 5,
6 and 7 below) are twofold: firstly, we allow cohomology classes � of arbitrary rank
(while in [6] the case of rank one classes was studied), and secondly, the theorems of
the present paper are based on a different principle and give slightly better estimates
even in the case of rank one classes. We introduce in this paper a new controlled
version of cat.X; �/ and find upper bounds for it (Theorems 11 and 16). We apply
these upper and lower bounds in a number of specific examples where we explicitly
compute cat.X; �/ as a function of the cohomology class � 2H 1.X IR/ .

58E05; 55N25, 55U99

1 Introduction

This paper studies the homotopy invariant cat.X; �/ originally introduced by the first
author in [6] and investigated further in [7]. It is a generalization of the classical
Lusternik–Schnirelman category, which appeared in connection with the problem of
estimating the number of zeros of closed one-forms lying in a prescribed nonzero
cohomology class. Assuming that the zeros are all Morse type the answer is provided
by Novikov theory [16]. If the zeros are arbitrary, there always exists a closed 1–form
with at most one zero [6; 9] and therefore one cannot expect to get meaningful lower
bounds on the number of zeros in homotopic terms. However, such lower bounds exist
if the gradient flow of the closed one form has no homoclinic cycles [6; 7]. More
generally, there is always an interesting relation, governed by cat.X; �/, between the
topology of the chain recurrent set of the flow admitting a Lyapunov 1–form and the
topology of the underlying manifold, see Farber and Kappeler [8], and Latour [14].
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Our goal in this paper is to find a cohomological lower bound for cat.X; �/ generalizing
the classical cup-length estimate for the usual category. Earlier cohomological lower
bounds for cat.X; �/ (see [6, Theorems 6.1 and 6.4]) were obtained only in the case of
rank one cohomology classes. The advantages of the current results (see Theorems 5,
6 and 7 below) are twofold: firstly, we allow cohomology classes � of arbitrary rank
and secondly, the theorems of the present paper are based on a different principle and
give slightly better estimates even in the case of rank one classes.

The main result of the paper is Theorem 7 which we will now describe. Let .X; �/ be
a pair consisting of a finite cell-complex and a cohomology class � 2H 1.X IR/. We
denote by Ker.�/ �H1.X IZ/ the subgroup consisting of homology classes z such
that h�; zi D 0. The factor group H D H1.X IZ/=Ker.�/ is a free abelian group of
rank r D rank.�/. We consider the set V� of all complex flat line bundles L over X

such that the monodromy of L is trivial along any homology class in Ker.�/. Clearly,
V�DHom.H IC�/D .C�/r has the structure of an algebraic variety. A bundle L2V� is
called transcendental if the monodromy homomorphism MonLW ZŒH �!C is injective.
In the case when rankH D 1, line bundles correspond to complex numbers (since
V� D C� ) and transcendental bundles correspond to numbers which are transcendental
in the usual sense1. One of our main results is given by the following theorem:

Theorem 1 Suppose that L2 V� is transcendental and there exist cohomology classes
v0 2H�.X IL/ and vi 2H di .X IC/ where i D 1; : : : ; k . If di > 0 for i D 1; : : : ; k

and the cup-product v0[ v1[ � � � [ vk 2H�.X IL/ is nonzero then cat.X; �/ > k:

Given a finite cell-complex X , we examine the function � 7! cat.X; �/ where � varies
in the cohomology space H 1.X IR/. We compute it explicitly in some examples and
investigate its behavioral patterns.

Another new result worth mentioning is the introduction of a new controlled version of
cat.X; �/ which we denote ccat.X; �/. It is a modification of the invariant cat.X; �/
which coincides with cat.X; �/ in all examples known to us. We find new upper bounds
for ccat.X; �/ (Theorems 11 and 16) and a product inequality generalizing the classical
product inequality for the usual category.

There are interesting connections between the invariant cat.X; �/ and its various modi-
fications and the Bieri–Neumann–Strebel invariant of discrete groups [2], see also [1].
We discuss some of these relations in Section 13. We show that the Bieri–Neumann–
Strebel invariant allows us to improve the upper bound for cat.X; �/ in the case of
manifolds. In particular we prove the following theorem (which is combination of
Theorems 11 and 14 in the text):

1Numbers which are not roots of polynomial equations with integral coefficients
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Theorem 2 Let M be a closed connected smooth manifold. Then for any nonzero
cohomology class � 2 H 1.M IR/ one has cat.M; �/ � n � 1 where n D dim M .
Moreover, if n� 5 and for some nonzero � 2H 1.M IR/ we have cat.M; �/D n� 1

then the fundamental group �1.M / contains a non-abelian free subgroup.

In the last section of the paper we discuss several open problems.

2 Abel–Jacobi maps and neighborhoods of infinity

For convenience of the reader we give in Sections 2 and 3 a brief summary of our result
[10] (see Theorem 3 below) which will play a crucial role in this paper.

Let X be a connected finite cell complex and pW zX ! X a regular covering having a
free abelian group of covering transformations H ' Zr . Denote HR DH ˝RI it is a
vector space of dimension r containing H as a lattice.

Proposition 2.1 There exists a canonical Abel–Jacobi map

AW zX !HR(1)

having the following properties:

(a) A is H –equivariant; here H acts on zX by covering transformations and it acts
on HR by translations.

(b) A is proper (ie, the preimage of a compact subset of HR is compact).

(c) A is determined uniquely up to replacing it by a map A0W zX !HR of the form
A0 DACF ıp where F W X !HR is a continuous map.

This fact is well-known; see for example [2; 10].

Let � 2H 1.X IR/ be a cohomology class with the property

p�.�/D 0 2H 1. zX IR/:

Such a class � can be viewed either as a homomorphism �W H ! R or as a linear
functional �RW HR! R.

Definition 2.2 A subset N � zX is called a neighborhood of infinity in zX with respect
to the cohomology class � if N contains the set

fx 2 zX I �R.A.x// > cg � N;(2)

for some real c 2 R. Here AW zX ! HR is an Abel–Jacobi map for the covering
pW zX !X .

Geometry & Topology, Volume 11 (2007)
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This term was introduced in [10]. However, the object itself is certainly not new. It
appeared earlier (with no name) in [2] and in other papers.

Neighborhoods of infinity N � zX with respect to � can be characterized as follows. Let

 W S1!X be a continuous map such that evaluation of class � on the homology class
Œ
 � 2H1.X IZ/ is positive, h�; Œ
 �i> 0. Consider a lift z
 W R! zX of the composition
R

exp
! S1



! zX ; see the commutative diagram:

(3) R

exp
��

z
 // zX

p

��
S1


 // X

Then for all sufficiently large t 2 R the point z
 .t/ lies in the neighborhood N � zX .

3 Homology classes movable to infinity

Let G be an abelian group (the coefficient system). We mainly have in mind the cases
G D Z or G D k is a field.

Definition 3.1 A homology class z 2 Hi. zX IG/ is said to be movable to infinity
of zX with respect to a nonzero cohomology class � 2 H 1.X IR/, p�.�/ D 0, if in
any neighborhood N of infinity with respect to � there exists a (singular) cycle with
coefficients in G representing z .

Equivalently, a homology class z 2Hi. zX IG/ is movable to infinity with respect to
� 2H 1.X IR/ if z lies in the intersection\

N

Im
h
Hi.N IG/!Hi. zX IG/

i
(4)

where N runs over all neighborhoods of infinity in zX with respect to � . This can also
be expressed by saying that z lies in the kernel of the natural homomorphism

Hi. zX IG/! lim
 

Hi. zX ;N IG/(5)

where in the inverse limit N runs over all neighborhoods of infinity in zX with respect
to � .

The following theorem, proven in [10], gives an explicit description of all movable
homology classes in the case when G D k is a field. It generalizes the result of [6,
Section 5] treating the simplest case of infinite cyclic covers qW zX !X .
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Theorem 3 Let X be a finite cell complex and qW zX ! X be a regular covering
having a free abelian group of covering transformations H 'Zr . Let � 2H 1.X IR/ be
a nonzero cohomology class of rank r satisfying q�.�/D 0. The following properties
(A), (B), (C) of a nonzero homology class z 2 Hi. zX Ik/ (where k is a field) are
equivalent:

(A) z is movable to infinity with respect to � .

(B) Any singular cycle c in zX realizing the class z bounds an infinite singular chain
c0 in zX containing only finitely many simplices lying outside every neighborhood
of infinity N � zX with respect to � .

(C) There exists a nonzero element x 2 kŒH � such that x � z D 0.

4 Obstructions to movability to infinity of homology classes

In this section we show that generic flat line bundles can be used to detect movability
to infinity of homology classes. This observation is used later in this paper when we
study cohomological lower bounds for cat.X; �/, see Section 5.

Let X be a finite polyhedron and � 2H 1.X IR/. Denote by Ker.�/ the kernel of the
homomorphism H1.X IZ/!R given by evaluation on � . Then HDH1.X IZ/=Ker.�/
is a free abelian group of finite rank r where r denotes the rank of � . Consider the cover
pW zX !X corresponding to Ker.�/. It has H as the group of covering translations.

Let V� D .C�/r D Hom.H;C�/ denote the variety of all complex flat line bundles L

over X such that the induced flat line bundle p�L on zX is trivial. If t1; : : : ; tr 2H is
a basis, then the monodromy of L 2 V� along ti is a nonzero complex number xi 2C�

and the numbers x1; : : : ;xr 2 C� form a coordinate system on V� . Given a flat line
bundle L 2 V� the monodromy representation of L is the ring homomorphism

MonLW CŒH �! C(6)

sending each ti 2H to xi 2C� . The dual bundle L� 2V� is such that L˝L� is trivial;
if x1; : : : ;xr 2 C� are coordinates of L then x�1

1
; : : : ;x�1

r 2 C� are coordinates of
L� .

Any nontrivial element p 2 CŒH � lying in the kernel of MonL can be viewed as a
(Laurent) polynomial equation between the variables x1; : : : ;xr . Alternatively, we
will consider algebraic subvarieties V � V� . Any such V is the set of all solutions of
a system of equations of the form

qi.x1; : : : ;xr ;x
�1
1 ; : : : ;x�1

r /D 0; i D 1; : : : ;m
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where qi is a Laurent polynomial with complex coefficients

pi 2 CŒx1; : : : ;xr ;x
�1
1 ; : : : ;x�1

r �:

This is equivalent to fixing an ideal J � QŒH � and studying the set of all flat line
bundles L 2 V� such that MonL.J /D 0:

We are chiefly interested in the subset A� V� consisting of all line flat bundles L 2 V�
satisfying the following property: for any homology class z 2 H�. zX IC/ which is
movable to infinity with respect to � one has p�.z/D 0 2H�.X IL/ where

(7) p�W H�. zX IC/!H�.X IL/

is the map induced by the projection p . Homomorphism (7) exists because the induced
flat line bundle p�.L/ over zX is trivial, p�.L/D C.

Lemma 4.1 The complement V DV��A is contained in a proper algebraic subvariety
of V� .

Proof Let Tq � Hq. zX IC/ denote the subset of CŒH �–torsion homology classes.
According to Theorem 3, Tq is exactly the set of homology classes in Hq. zX IC/ which
are movable to infinity with respect to � .

One has V D[Vq where L 2 Vq if and only if the composition

Tq!Hq. zX IC/!Hq.X IL/

is nontrivial.

Let L0 denote the fiber of L over the base point x0 2 X . It is a one-dimensional
complex vector space and the monodromy representation of L determines a structure of
a right ƒ–module on L0 ; here ƒDCŒH �. Homomorphism (7) equals the composition

Hq. zX IC/!Hq. zX IC/˝ƒL0!Hq.X IL/:

Hence we find that L 2 Vq implies Tq˝ƒL0 6D 0.

Let � � � ! F1
d
! F0! Tq ! 0 be a finitely generated free CŒH �–resolution of Tq .

We obtain: L 2 Vq implies that the linear map

F1˝ƒL0
d
! F0˝ƒL0(8)

is not onto.

Let M be the square matrix with entries in ƒ representing d W F1! F0 . Then Vq

lies in the subvariety V 0q of V� given by equating to zero all minors of M of size
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n0 D rankF0 . Each of these minors is a polynomial in variables x1; : : : ;xr with
complex coefficients.

Now we show that V 0D[V 0q �V� is proper. Since Tq is finitely generated and torsion
there exists a nonzero Laurent polynomial �q 2 CŒH � such that the multiplication by
�q annihilates Tq . Looking at the commutative diagram

// F1
d //

�q

��

F0

g
~~~~

~~
~~

~~
�q

��

// Tq

0
��

// 0

// F1
d

// F0
// Tq

// 0

we find that there exists a ƒ–morphism gW F0!F1 such that d ıg coincides with the
multiplication by �q . It is easy to see that L … V 0q assuming that �q.x1; : : : ;xr / 6D

0 2 C. Hence V 0 is a proper subset of V� .

Definition 4.2 The set V� � A is called the support of .X; �/. It is denoted by
Supp.X; �/.

As follows from the proof of the previous lemma, a flat line bundle L 2 V� lies in
Supp.X; �/ if and only if there exists a CŒH �–torsion homology class z 2Hq. zX ;C/

with p�.z/ 6D 0 2 Hq.X IL/. Here pW zX ! X is the free abelian covering corre-
sponding Ker.�/. By Lemma 4.1, Supp.X; �/� V� is contained in a proper algebraic
subvariety.

Example 4.3 In the case when � has rank one, r D 1, the variety V� coincides with
C� D C� f0g and the support Supp.X; �/ � C� is a finite set. In this special case
Definition 4.2 coincides with the definition given on [7, page 182].

Remark 4.4 Assume that the class � 6D 0 in nonzero and the polyhedron X is
connected. Then the trivial line bundle C 2 V� belongs to the support Supp.X; �/.
Indeed, the class 1 2H0. zX IC/ is torsion and p�.1/D 1 2H0.X IC/.

As a corollary of Lemma 4.1 we obtain the following statement:

Theorem 4 Let L be a flat line bundle L 2 V� which does not lie in the support
Supp.X; �/. Suppose that hv;p�.z/i 6D 0 where v 2 H q.X IL/, z 2 Hq. zX IC/ and
p�.z/ 2Hq.X IL

�/. Here L� 2 V� denotes the flat line bundle dual to L. Then z is
not movable to infinity of zX with respect to � .

This theorem will be used in the next section in the proof of Theorem 5.
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5 A cohomological lower bound for cat.X; �/

Let X be a finite simplicial polyhedron and let � 2 H 1.X IR/ be a cohomology
class. Our goal is to estimate from below the number cat.X; �/ introduced in [6]. For
convenience of the reader we recall the definition of cat.X; �/.

Let ! be a closed 1–form on X representing � ; we use the formalism of closed
1–forms on topological spaces suggested in [6]; see also [7].

Definition 5.1 A subset A� X is N –movable with respect to ! (where N 2 Z is
an integer) if there exists a continuous homotopy ht W A! X; t 2 Œ0; 1�; such that
h0W A!X is the inclusion and for any point x 2A one has

(9)

xZ
h1.x/

! > N

where the integral is calculated along the path t 7! h1�t .x/ 2X , t 2 Œ0; 1�.

Intuitively, an N –movable subset can be continuously deformed inside X such that
each of its points is winding around yielding a large quantity (9) measured in terms of
the form ! .

It is easy to see that (assuming that � 6D 0 and the space X is connected) any subset
A�X such that the inclusion A!X is null-homotopic is N –movable for any N

with respect to any closed 1–form ! representing the class � .

Example 5.2 Assume that X D Y � S1 and � 2 H 1.X IR/ is such that �jS1 6D 0.
Then for any integer N the total space A D X is N –movable with respect to any
closed 1–form ! representing class � . A homotopy ht W X ! X as above can be
described as follows. Identify S1 � C with the set of complex numbers having norm
one. Then for y 2 Y and z 2 S1 one sets

ht .y; z/D .y; e
iMt
� z/; t 2 Œ0; 1�

with suitable real M .

Definition 5.3 Fix a closed 1–form ! representing � . The number cat.X; �/ is the
minimal integer k with the property that for any N > 0 there exists an open cover
F;F1; : : : ;Fk �X such that each inclusion Fj !X is null-homotopic and such that
F is N –movable with respect to ! .

Geometry & Topology, Volume 11 (2007)



Cohomological estimates for cat.X; �/ 1263

Example 5.4 Assume that X D Y � S1 and � 2 H 1.X IR/ is such that �jS1 6D 0.
Then cat.X; �/D 0; compare Example 5.2.

It is known that cat.X; �/ is homotopy invariant, see [7, Lemma 10.12]. In particular,
it is independent of the choice of ! , see [7, page 166].

The next result gives a lower bound for cat.X; �/ in terms of cohomological information.

Denote by pW zX !X the covering corresponding to Ker� .

Theorem 5 Suppose that L0;L1; : : : ;Lk 2 V� are complex flat vector bundles with
the following properties:

(1) L0 does not belong to the support Supp.X; �/.

(2) For a homology class z 2 Hd . zX IC/ and some cohomology classes vi 2

H di .X ILi/; i D 0; 1; : : : ; k; where

di > 0; for i D 1; : : : ; k(10)

the cup-product v0 [ v1 [ � � � [ vk 2 H d .X IL/ evaluates nontrivially on the
homology class p�.z/ 2Hd .X IL

�/ ie,

(11) hv0[ � � � [ vk ;p�.z/i 6D 0:

Here z 2Hd . zX IC/; d D

kX
iD0

di ; LDL0˝L1˝ � � �˝Lk

and L� is the dual of L.

Then

cat.X; �/ > k:(12)

Remark 5.5 Theorem 5 is meaningful for k D 0 as well; in this case it gives
cat.X; �/ > 0.

Remark 5.6 In the case � D 0 (ie, when one deals with functions) the statement
above turns into the usual cup-length estimate for the Lusternik–Schnirelmann category
cat.X /, see Section 8 below.

Proof of Theorem 5 Assume that (12) is false, ie, cat.X; �/ � k . Let ! be a
continuous closed 1–form on X representing � .
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Then for any N > 0 there exists an open cover F;F1; : : : ;Fk � X such that each
inclusion Fj ! X is null-homotopic and such that F is N –movable with respect
to ! .

Fix a singular cycle c in zX representing the class z 2 Hd . zX IC/. One may find a
compact polyhedron K � zX containing c .

Let us show that there exists a neighborhood of infinity U � zX with the following
property: any homology class in H�.KIC/, which is homologous in zX to a cycle
lying in U , is movable to infinity of zX with respect to � . Indeed, start with an arbitrary
neighborhood of infinity N satisfying [10, Lemma 3]. For a covering translation
gW zX ! zX the intersection

Vg D ImŒH�.gN /!H�. zX /�\ ImŒH�.K/!H�. zX /�

(we use homology with C coefficients) is a finite dimensional complex vector space.
Therefore one may find a covering translation g0W

zX ! zX such that for any covering
translation g one has Vg0

� Vg . Then clearly the neighborhood of infinity U D g0N

satisfies the above requirement.

One has p�! D df where f W zX ! R is a continuous function. Then f .K/� Œa; b�
and U � f �1.�1; c/ where c < a< b .

Pick a number N > b�c and apply Definition 5.3. We obtain an open cover F [F1[

� � � [Fk DX where F is N –movable with respect to ! and each inclusion Fj !X

is null-homotopic, j D 1; 2; : : : ; k .

Find subsets A0 � A � F and B0 � B � F1 [ F2 [ � � � [ Fk with the following
properties: (i) A0 and B0 are open and cover X , ie, A0[B0 DX ; (ii) A and B are
compact sub-polyhedra of X .

The restriction of the cup-product vD v1[� � �[vk on the set F1[� � �[Fk vanishes2

and so v can be realized by a singular cochain g vanishing on all singular simplices
lying entirely in B0 . The cochain g takes values in the local system L1˝ � � �˝Lk .

We may assume that the topology of X is given by a metric d . Let � > 0 be the
Lebesgue number of the open cover A0[B0 .

Subdivide the singular chain c representing z such that it is a linear combination of
finitely many singular simplices, each of diameter < � .

From (11) we have

hv0;p�.p
�.v/\ z/i 6D 0:(13)

z0 D p�.v/\ z 2H�. zX IC/The class

2Here we use (10) and the assumption that Fj !X is null-homotopic, j D 1; : : : k .
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is represented by the singular cycle p�.g/\ c (see Spanier [18, Chapter 5, Section
6]) having support in K . From the construction above, we see that the projected cycle
p�.p

�.g/\ c/ lies entirely in A0 . We obtain (because of our choice of N and U )
that the homology class z0 is movable to infinity of zX with respect to � . But this
contradicts Theorem 4 since hv0;p�.z0/i 6D 0 and the bundle L0 is assumed to be
generic, ie, L0 … Supp.X; �/.

6 Transcendental line bundles

In this section we improve Theorem 5 by showing that under certain conditions one
may avoid mentioning explicitly the homology class z 2H�. zX / in the statement.

First we recall our notations. Let � 2 H 1.X IR/ be a real cohomology where X is
a finite cell complex. � determines a homomorphism H1.X IZ/! R; we denote by
Ker.�/ its kernel. We set

H DH1.X IZ/=Ker.�/:

It is a free abelian group of finite rank r D rank� . Any flat line bundle L 2 V�
determines a monodromy homomorphism (6).

Definition 6.1 We say that a bundle L 2 V� is algebraic if the monodromy homomor-
phism MonLW ZŒH �! C has nontrivial kernel. We say that L is transcendental3 if
MonLW ZŒH �! C is injective.

If t1; : : : ; tr 2H is a basis and if ai 2 C denotes the monodromy of L along ti , ie,
ai D MonL.ti/, then L is algebraic iff there exist a nontrivial Laurent polynomial
equation with integral coefficients q.t1; : : : ; tr / such that q.a1; : : : ; ar /D 0.

There exist countably many nonzero Laurent polynomials q with integral coefficients
and for each such q the set of solutions q.a1; : : : ; ar / D 0 is nowhere dense in V� .
Since V� D .C�/r is homeomorphic to a complete metric space we obtain:

Lemma 6.2 The set of all transcendental bundles L 2 V� is of Baire category 2. In
particular, the set of transcendental L 2 V� is dense in the variety V� .

Lemma 6.3 The dimension of the vector space H q.X IL/ is constant on the set of
transcendental flat line bundles L 2 V� . In other words, for any two transcendental
L;L0 2 V� one has

dim H q.X IL/D dim H q.X IL0/:

3Perhaps it would be better to call such bundles � –algebraic and � –transcendental as both properties
depend on the class � (they actually depend only on Ker� ).
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Proof The monodromy homomorphism MonLW ZŒH � ! C defines a left ZŒH �–
module structure CL on C and by definition

H q.X IL/DH q.HomZŒH �.C�. zX /;CL//(14)

where C�. zX / is the cellular chain complex of the covering zX ! X corresponding to
Ker.�/. If L is transcendental then MonL gives a field extension Q.H /! C where
Q.H / is the field of fractions of ZŒH �. We obtain therefore (using finiteness of C�. zX /

over ZŒH � and (14)):

H q.X IL/'H q.HomZŒH �.C�. zX /IQ.H ///˝Q.H / CL

'H q.X IQ.H //˝Q.H / CL:

This implies that for any transcendental L one has

(15) dimC H q.X IL/ D dimQ.H /H q.X IQ.H //

and the right hand side4 is independent of L.

Proposition 6.4 Let X be a finite complex and � 2H 1.X IR/. If the flat line bundle
L 2 V� is transcendental then L … Supp.X; �/.

Proof If L is transcendental then the monodromy homomorphism MonL can be
decomposed into ZŒH � ! Q.H / ! C (where we use the notations introduced in
the proof of the previous lemma) and hence the homomorphism p�W Hq. zX IZ/!

Hq.X IL/ can be decomposed into Hq. zX IZ/!Q.H /˝ZŒH �Hq. zX IZ/!Hq.X IL/.
This shows that all ZŒH �–torsion classes z 2Hq. zX IZ/ satisfy p�.z/D 0.

Let Tq �Hq. zX IZ/ be the subgroup of all ZŒH �–torsion classes. We claim that CŒH �–
torsion of Hq. zX IC/ coincides with CŒH �˝ZŒH � Tq . Together with the remark of the
previous paragraph this would imply that for any CŒH �–torsion class z 2Hq. zX IC/

one has p�.z/D 0, ie, L … Supp.X; �/.

We have the exact sequence

0! CŒH �˝Tq! CŒH �˝Hq. zX IZ/! CŒH �˝M ! 0(16)

where M is Hq. zX IZ/=Tq and the tensor product is over ZŒH �. The sequence (16)
is exact since CŒH � is flat as a ZŒH �–module. Using [3, Exercise 20 from Chapter
1, Section 2 on page 46] we find that CŒH �˝ZŒH � M has no CŒH �–torsion. The
sequence (16) implies now that CŒH �˝ZŒH � Tq coincides with the CŒH �–torsion of
Hq. zX IC/D CŒH �˝ZŒH �Hq. zX IZ/.

4The common value dimC H q.X IL/ for L transcendental which appears in (15) equals the Novikov–
Betti number bq.�/ , see [16] and [7, Proposition 1.30].
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The authors wish to thank Holger Brenner for valuable comments leading to Proposition
6.4.

Proposition 6.5 Assume that L 2 V� is transcendental. Let v 2 H q.X IL/ be a
nonzero cohomology class. Then there exists a homology class z 2 Hq. zX IZ/ such
that hv;p�.z/i 6D 0. Here

p�W Hq. zX IZ/!Hq.X IL
�/(17)

denotes homomorphism similar to (7). Moreover, the kernel of (17) coincides with the
set of ZŒH �–torsion classes in Hq. zX IZ/.

Proof Obviously, if the cohomology class v is nonzero then there exists a homology
class z0 2Hq.X IL

�/ with hv; z0i 6D 0. Here L� 2 V� denotes the dual bundle to L.

If L is transcendental then the dual bundle L� is transcendental as well, ie, MonL� W

ZŒH �! C is injective. Let CL� denote the field of complex numbers C viewed as a
right ZŒH �–module via the ring homomorphism MonL� . We want to show that

Hq.X IL
�/' CL� ˝ZŒH �Hq. zX IZ/:(18)

Assuming (18) we would be able to argue that the class z0 can be represented as a
finite sum z0 D

P
cip�.zi/ where ci 2 C and zi 2Hq. zX IZ/. Since hv; z0i 6D 0 the

number hv;p�.zi/i is nonzero for some i which implies our statement.

Observe that ZŒH � is a Laurent polynomial ring. Denote by Q.H / its field of fractions.
The ring homomorphism MonL� W ZŒH �!CL� extends to a field embedding Q.H /!

CL� . Let C�. zX / be the cellular chain complex of zX with integral coefficients. The
homomorphism (17) is induced by the chain map

C�. zX /! CL� ˝ZŒH � C�. zX /:

The latter can be decomposed as

C�. zX /!Q.H /˝ZŒH � C�. zX /! CL� ˝ZŒH � C�. zX /(19)

D CL� ˝Q.H / .Q.H /˝ZŒH � C�. zX //:

The left map in (19) is a localization and hence it induces localization on homology

Hq. zX IZ/!Q.H /˝ZŒH �Hq. zX IZ/:

The right map in (19) is induced by a field extension Q.H /! CL� . Note that CL�

viewed as a ZŒH �–module is a direct sum of infinite number of copies of Q.H /. Hence
the right homomorphism in (19) induces

Q.H /˝ZŒH �Hq. zX IZ/! CL� ˝ZŒH �Hq. zX IZ/:
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Therefore (17) coincides with Hq. zX IZ/! CL� ˝ZŒH �Hq. zX IZ/ proving (18).

Next we state an improved version of Theorem 5 taking into account Proposition 6.5.

Theorem 6 Suppose that L0;L1; : : : ;Lk 2 V� are complex flat vector bundles with
the following properties:

(1) L0 does not belong to the support Supp.X; �/.

(2) For some cohomology classes vi 2H di .X ILi/, i D 0; 1; : : : ; k; where di > 0

for i D 1; : : : ; k the cup-product

v0[ v1[ � � � [ vk 6D 0 2H d .X IL/(20)

is nontrivial; here d D
Pk

iD0 di and LDL0˝L1˝ � � �˝Lk .

(3) L is transcendental, ie, the monodromy homomorphism MonLW ZŒH �! C is
injective.

Then

cat.X; �/ > k:(21)

Proof This follows by combining Theorem 5 with Proposition 6.5.

As a useful special case of Theorem 6 and Proposition 6.4 we mention the following
statement:

Theorem 7 Let X be a finite cell complex and � 2 H 1.X IR/. Let L 2 V� be
transcendental. Assume that there exist cohomology classes v0 2 H d0.X IL/ and
vi 2 H di .X IC/ where i D 1; : : : ; k such that di > 0 for i 2 f1; : : : ; kg and the
cup-product

v0[ v1[ � � � [ vk 6D 0 2H�.X IL/(22)

is nontrivial. Then cat.X; �/ > k .

Theorem 7, combining simplicity with remarkable efficiency, has a very satisfying
statement. We view this theorem as being the main result of the paper. In the following
sections we test this theorem in many specific examples. Besides, we compare theorems
of this section with cohomological lower bounds for cat.X; �/ obtained earlier in [7,
Theorem 6.1] and in [6, Theorem 10.23].
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7 The notion of cup-length cl.X; �/

In view of Theorem 7 we introduce the following notation.

Let X be a finite cell complex and � 2H 1.X IR/. We denote by cl.X; �/ the maximal
integer k � 0 such that Theorem 7 could be applied to .X; �/; if Theorem 7 is not
applicable (ie, if H�.X IL/D 0 for any transcendental L 2 V� , compare Lemma 6.3)
we set cl.X; �/D�1: Hence,

cl.X; �/ 2 f�1; 0; 1; : : : g:(23)

In other words, cl.X; �/�k where k�0 iff there exists a transcendental flat line bundle
L 2 V� and there exist cohomology classes v0 2 H d0.X IL/ and vi 2 H di .X IC/

where i D 1; : : : ; k and di > 0 for i 2 f1; : : : ; kg such that the cup-product

v0[ v1[ � � � [ vk 6D 0 2H�.X IL/(24)

is nontrivial.

Note that for � D 0 the number cl.X; �/ coincides with the usual cup-length cl.X /;
recall that the later is defined as the largest integer r such that there exist cohomology
classes ui 2 H di .X IC/ where i D 1; : : : ; r of positive degree such that their cup-
product u1 [ � � � [ uk 6D 0 2H�.X IL/ is nontrivial. Indeed, in the case � D 0 the
trivial bundle L D C is not in Supp.X; �/ and therefore one may take L D C and
v0 D 1 2H 0.X IC/.

One can restate Theorem 7 as follows:

Theorem 8 One has cat.X; �/� cl.X; �/C 1.

The next useful Lemma suggests several different ways to characterize the number
cl.X; �/. This Lemma plays an important role in the sequel.

Lemma 7.1 Let X be a finite cell complex and � 2 H 1.X IR/. The following
statements regarding an integer k � 0 are equivalent:

(A) cl.X; �/� k

(B) There exists cohomology class v02H d0.X IL/ where L2V� is a transcendental
flat line bundle and there exist k integral cohomology classes vi 2H di .X IZ/

where i D 1; : : : ; k and di > 0 for i 2 f1; : : : ; kg, such that the cup-product (24)
is nontrivial.
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(C) Let H denote H1.X IZ/=Ker� ; it is a free abelian group of finite rank. Let
Q.H / denote the field of fractions of the group ring ZŒH �. Then there exist
cohomology classes w0 2 H d0.X IQ.H // (the latter denotes homology with
twisted coefficients) and vi 2H di .X IZ/ where di > 0 for i D 1; : : : ; k such
that the cup-product

w0[ v1[ � � � [ vk 6D 0 2H�.X IQ.H //

is nontrivial.

(D) For any transcendental flat line bundle L 2 V� there exists cohomology class
v0 2H d0.X IL/ such that the cup-product (24) is nontrivial for some integral
cohomology classes vi 2H di .X IZ/ with di > 0 for i 2 f1; : : : ; kg.

(E) For any transcendental flat line bundle L 2 V� there exist cohomology classes
v0 2 H d0.X IL/ and vi 2 H di .X IC/ where i D 1; : : : ; k and di > 0 for
i 2 f1; : : : ; kg such that the cup-product (24) is nontrivial.

Proof Let us show that (A) H) (B). Fix a transcendental bundle L 2 V� , and
v0 2 H�.X IL/ such that (24) is nontrivial for some vi 2 H di .X IC/ with di > 0.
Consider now the cup-products

v0[ v
0
1[ � � � [ v

0
k(25)

with arbitrary integral cohomology classes v0i 2H di .X IZ/; here the degrees di are
assumed to be fixed. (25) is a multi-linear function of the classes v0i . Since the integral
classes generate H di .X IC/ over C we obtain that (25) must be nonzero for some
choice of classes v0i , ie, (B) holds.

Now we show that (B) H) (C). Fix L 2 V� and the classes v0 2 H d0.X IL/ and
vi 2H di .X IZ/ satisfying conditions described in (B). The monodromy homomorphism
MonLW ZŒH �!C is an injective ring homomorphism, it extends to the field of fractions
Q.H /! C. The image of the induced homomorphism on cohomology

 W H d0.X IQ.H //!H d0.X IL/(26)

generates H d0.X IL/ over C and (26) is injective (for reasons mentioned in the proof
of Lemma 6.3). Fix cohomology classes vi 2H�.X IZ/ where i D 1; : : : ; k . For a
cohomology class w0 2H d0.X IQ.H // the function

 .w0/[ v1[ � � � [ vk D  .w0[ v1[ � � � [ vk/ 2 H�.X IL/(27)

extends to a C–linear function of v0 2H d0.X IL/

v0 7! v0[ v1[ � � � [ vk 2H�.X IL/:
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If this function is nonzero then it may not vanish on the image of  , ie, (C) holds.

The implication (C) H) (D) follows from injectivity of homomorphism (26) and from
(27).

Implications (D) H) (E) and (E) H) (A) are obvious. This completes the proof.

Remark 7.2 Finding a specific transcendental line bundle may represent a problem
in applications. In this respect we emphasize that condition (C) of Lemma 7.1 does not
involve such a choice.

Lemma 7.3 Assume that X and Y are path connected finite cell complexes and
� 2H 1.X �Y IR/. Then

cl.X �Y; �/� cl.X; �jX /C cl.Y; �jY /:(28)

Proof Denote cl.X; �jX / D k and cl.Y; �jY / D r . Any flat line bundle L over
X � Y has the form L1 � L2 (exterior tensor product) where L1 and L2 are flat
line bundles over X and Y respectively. Note that if L lies in the variety V� D
Hom.H1.X � Y IZ/=Ker.�/;C�/ then L1 and L2 are obtained by restrictions and
hence L1 2 V�jX and L2 2 V�jY . We will use equivalence between (A), (E) and (F) of
Lemma 7.1. Fix a transcendental bundle LDL1�L2 2V� over X �Y . Then both L1

and L2 are transcendental. Find classes v0 2 H�.X IL1/, v1; : : : ; vk 2 H�.X IC/,
u0 2 H�.Y IL2/, u1; : : : ;ur 2 H�.Y IC/ such that v0 [ v1 [ � � � [ vk 6D 0 and
u0[u1[ � � � [ur 6D 0. Now we have cohomology classes v0 �u0 2H�.X �Y IL/

and vi � 1; 1�uj 2H�.X �Y IC/ and the product

.v0 �u0/ [

kY
iD1

.vi � 1/ [

rY
jD1

.1�uj / 6D 0 2 H�.X �Y IL/

is nonzero. Here we use the Künneth formula which states

H�.X �Y IL1 � L2/'H�.X IL1/˝H�.Y IL2/:(29)

This proves (28).

8 First examples

In this section we test Theorem 7 in a number of simple examples.

8.1 First consider the case � D 0. We know that for � D 0 the number cat.X; �/
coincides with the classical LS category cat.X /; see [7, Example 10.8]. Let us examine
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what Theorem 7 gives in this case. The variety V� has only one point – the trivial
flat line bundle C over X . The support Supp.X; �/D∅ is always empty for � D 0.
We may therefore take v0 D 1 2H 0.X IC/ applying Theorem 7. Thus, we see that
Theorem 7 claims in the special case � D 0 that if there exist cohomology classes
v1; : : : ; vk 2H>0.X IC/ with v1 [ � � � [ vk 6D 0 then cat.X / > k . This claim is the
classical cup-length estimate for the LS category cat.X /.

8.2 Note that if � 6D 0 and X is connected then H 0.X IL/ D 0 for any nontrivial
L 2 V� . Note also that the trivial flat line bundle C 2 Vr always lies in the support
Supp.X; �/ for � 6D 0, see Remark 4.4, and it is never transcendental. Therefore the
degree of the class v0 (which appears in Theorem 5) in the case � 6D 0 must be positive.
Hence for � 6D 0 the number k in Theorem 6 satisfies k � dim X � 1. This explains
why Theorem 7 cannot give cat.X; �/� dim X C 1 for � 6D 0.

Inequality (10.8) in [7] yields

cat.X; �/� cat.X /� 1� dim X(30)

assuming that X is connected and � 6D 0. This is consistent with the remark of the
previous paragraph.

8.3 The following example shows that (30) can be satisfied as an equality ie, that
cat.X; �/D dim X is possible5. Consider the bouquet X D Y _S1 where Y is a finite
polyhedron, and assume that the class � 2H 1.X IR/ satisfies �jY D 0 and �jS1 6D 0:

We know that in this case

cat.X; �/D cat.Y /� 1;(31)

see [7, Example 10.11].

We are going to apply Theorem 7. The variety V� in this case coincides with the set
C�DC�f0g: The support Supp.X; �/ contains in this case only the trivial line bundle.
L 2 V� is transcendental if the monodromy along the circle S1 is a transcendental
complex number. For any L 2 V� the restriction LjY is trivial and the restriction
homomorphism H i.X IL/!H i.Y IC/ is onto.

Suppose that the cohomological cup-length of Y with C–coefficients equals `, ie,
there exist cohomology classes of positive degree u0;u1; : : : ;u`�1 2H>0.Y IC/ such
that the product u0[ � � � [u`�1 6D 0 is nonzero. By the above remark, for a nontrivial
L2V� we obtain cohomology classes v0 2H�.X IL/ and v1; : : : ; v`�1 2H>0.X IC/

such that vi jY D ui . Hence v0[ v1[ � � � [ v`�1 6D 0 2H�.X IL/. By Theorem 7 we

5Note that if X is a closed smooth manifold then cat.X; �/ < dim X , see Section 12.
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obtain cat.X; �/ > `� 1 which is equivalent (taking into account (31)) to cat.Y / > `.
The last inequality is the classical cup-length estimate for the usual category.

8.4 Comparing the previous example with [6, Example 6.6] we find that Theorem 5
and Theorem 7 are stronger than the cohomological lower bounds given in [6], even in
the case of rank one classes � . The reason for this is that in Theorem 5 we have only
one generic bundle (compared with two in [6, Theorem 6.1]) but non-vanishing of the
product v0[ � � � [ vk is understood in a stronger sense.

8.5 Let us now consider a very specific example: X D T 2 _ S1 . In this case
H 1.X IR/D R3 and we describe cat.X; �/ as function of � 2H 1.X IR/D R3 . We
denote by `�R3 the set of all classes � such that �jT 2 D 0. Clearly ` is a line through
the origin in R3 . We claim that:

cat.X; �/D

8<:
1; if � 2 R3� `;

2; if � 2 `�f0g;
3; if � D 0:

(32)

Indeed, consider first the case � … `, ie, �jT 2 6D 0. Let us show that cat.X; �/ � 1.
Denote pD T 2\S1 and let q 2 S1 be a point distinct from p . Set F DX �fqg and
F1DS1�fpg. Then F[F1DX is an open cover of X with F1!X null-homotopic
and with F being N –movable in X for any N (assuming that �jT 2 6D 0; this follows
from homotopy invariance of cat.X; �/ and from Examples 5.2 and 5.4.

Since cat.X; �/D 0 would imply �.X /D 0, by Theorem 10 stated below we obtain
that cat.X; �/ > 0 for any � (as �.X /D�1 6D 0). This proves the first line of (32).

If � 2 ` � f0g we apply the result of [6, Example 3.5] which gives cat.X; �/ D
cat.T 2/� 1D 2.

For � D 0 we easily find cat.X; �/D cat.X /D 3.

9 A controlled version of cat.X; �/

In this section we introduce a new controlled version of cat.X; �/ which has some
advantages, for example it behaves better under products.

Let ! be a continuous closed 1–form on a finite cell complex X . Let � D Œ!� 2

H 1.X IR/ be the cohomology class represented by ! . We refer to [6] for the formalism
of closed 1–forms on topological spaces.
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Definition 9.1 Let N and C be two real numbers. A subset A�X is N –movable
with respect to ! with control C if there exists a continuous homotopy ht W A!X;

t 2 Œ0; 1�; such that

(1) h0W A!X is the inclusion;

(2) for any point x 2A one has

h1.x/Z
x

! < �N(33)

where the integral is calculated along the path t 7! ht .x/ 2X , t 2 Œ0; 1� and

(3) for any point x 2A and for any t 2 Œ0; 1� one has

ht .x/Z
x

! � C:(34)

Geometrically, an N –movable subset with control C can be continuously deformed
inside X such that each of its points is winding around yielding a small quantity (33)
measured in terms of the form ! and such that for all times t the integral (34) remains
controlled, ie, it is smaller than a fixed quantity C .

Example 9.2 Let X be a closed smooth manifold and let ! be a smooth closed
1–form on X having no zeroes. Find a vector field v on X such that !.v/ < 0. Then
the whole space X is N –movable with control C D 0 for any N > 0. The homotopy
ht W X ! X as in Definition 9.1 can be easily constructed using the flow generated
by v .

Example 9.3 Assume that X is a path connected polyhedron and the cohomology
class of ! is nonzero � D Œ!� 6D 0 2H 1.X IR/. For any subset F � X such that the
inclusion F!X is homotopic to a constant map F!X there exists a constant C > 0

so that for any N > 0 the set F is N –movable with respect to ! with control C .
Indeed, find a closed loop 
 in X such that h�; Œ
 �i D

R

 ! < 0: Define the homotopy

ht W F!X as concatenation of contraction of F to a point in X , then moving this point
towards the loop 
 and finally traversing 
 many times. The integral (33) becomes
smaller when one increases the number of turns around 
 . However the estimate (34)
will hold independently of the number of turns, ie, independently of N .

Definition 9.4 Fix a closed 1–form ! representing � . The number

ccat.X; �/(35)
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is the minimal integer k with the property that there exists C > 0 such that for any
N > 0 there exists an open cover F;F1; : : : ;Fk � X with the property that each
inclusion Fj !X is null-homotopic and such that F is N –movable with control C

with respect to ! .

Example 9.5 Assume that X D Y � S1 and � 2 H 1.X IR/ is such that �jS1 6D 0.
Then ccat.X; �/D 0, compare Example 5.2.

Lemma 9.6 If � 6D 0 and X is connected then ccat.X; �/� cat.X /� 1.

This follows from the remark of Example 9.3

Lemma 9.7 If � D 0 then ccat.X; �/D cat.X; �/D cat.X /.

The proof of Lemma 9.7 is identical to the argument of [7, Example 10.8].

Next we state the homotopy invariance property of ccat.X; �/.

Lemma 9.8 Let �W X1 ! X2 be a homotopy equivalence, �2 2 H 1.X2IR/, and
�1 D �

�.�2/ 2H 1.X1IR/. Then

ccat.X1; �1/D ccat.X2; �2/:(36)

The proof repeats the arguments of [7, Lemma 10.12].

It is obvious that in general

ccat.X; �/� cat.X; �/:(37)

In all examples known to us we have that (37) is an equality.

Remark 9.9 Note that the potentially larger quantity ccat.X; �/ can replace cat.X; �/
in the applications to dynamics described in [6; 7; 14; 17]. This gives an additional
incentive to be interested in the new invariant ccat.X; �/. All homotopies ht W F !X

which appear in applications to dynamics are induced by gradient flows of closed
1–forms and hence they satisfy conditions of Definition 9.1 with the control constant
C D 0.

Example 9.10 Examining Example 8.5 we easily find that for X D T 2 _S1 one has:

cat.X; �/ D ccat.X; �/ D

8<:
1; if � 2 R3� `;

2; if � 2 `�f0g;
3; if � D 0

(38)

(as all homotopies described in Example 8.5 are in fact with control). Here `� R3 D

H 1.X IR/ denotes the set of all classes � 2H 1.X IR/ such that �jT 2 D 0.
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10 Product inequality

The classical product inequality for the Lusternik–Schnirelmann category states that

cat.X �Y /� cat.X /C cat.Y /� 1;

see [4, Theorem 1.37]. In this section we show that a similar inequality holds for
ccat.X; �/.

Theorem 9 Let X and Y be finite cell complexes and let �X 2 H 1.X IR/ and
�Y 2H 1.Y IR/ be real cohomology classes. Assume that

ccat.X; �X / > 0 or ccat.Y; �Y / > 0:(39)

Then

ccat.X �Y; �/� ccat.X; �X /C ccat.Y; �Y /� 1;(40)

where

� D �X � 1 C 1� �Y :(41)

The C –control assumption which appears in Definitions 9.1 and 9.4 is used in an
essential way in the proof. Theorem 9 is the main motivation for introducing ccat.X; �/
as an alternative to cat.X; �/.

We will start with some auxiliary statements.

Lemma 10.1 Let ! be a continuous closed 1–form on a finite cell complex X . Let
F � X be an open subset which is N –movable with respect to ! with control C

(see Definition 9.1). Given a closed subset A � F there exists an open set F 0 such
that A � F 0 � F and a homotopy Ht W X ! X , t 2 Œ0; 1� satisfying the following
properties:

(1) H0.x/D x for all x 2X ;

(2) for any point x 2 F 0 one hasZ H1.x/

x

! < �N;(42)

and

(3) for any x 2X and for any t 2 Œ0; 1� the following holdsZ Ht .x/

x

! < C C 1:(43)
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The statement of the Lemma can be rephrased as follows: the homotopy which appears
in Definition 5.1 can be extended to the whole space X such that the control condition
(ie, inequality (34)) will hold for all x 2X and the main inequality (33) will hold on a
slightly smaller set.

Proof of Lemma 10.1 Let ht W F !X , t 2 Œ0; 1� be a homotopy given by Definition
9.1. Since X is an ANR and A�X is a closed subset, the homotopy ht jAW A!X

can be extended to a homotopy h0t W X ! X , t 2 Œ0; 1�, see [18, Chapter 1, Exercise
D2]. We have h0

0
.x/D x for all x 2X and h0t .x/D ht .x/ for all x 2A and t 2 Œ0; 1�.

Using continuity, we may find a neighborhood F 00 � F of A such that (42) holds for
all x 2 F 00 and such that (43) holds for all x 2 F 00 and for any t 2 Œ0; 1�.

Now we want to change the homotopy h0t such that (43) holds for all. Find an open
set F 0 with A � F 0 � F 0 � F 00 . Find a continuous function �W X ! Œ0; 1� such
that �.x/ D 1 for x 2 F 0 and �.x/ D 0 for x 2 .X � F 00/. Define h00t W X ! X

by h00t .x/D h0
�.x/t

.x/, where x 2 X and t 2 Œ0; 1�. Now it is quite obvious that the
obtained homotopy h00t satisfies all required conditions.

Proof of Theorem 9 Let !X (correspondingly, !Y ) be a continuous closed 1–form
on X (correspondingly, Y ) representing �X (correspondingly �Y ). Then !D!XC!Y

represents � . More precisely, if U �X and V � Y are simply connected open subsets
and if �X jU D dfU , �Y jV D dgV then !jU�V D dfU CfdV , see [7, Section 10.2].

Denote ccat.X; �X /D r and ccat.Y; �Y /D s . There exists C > 0 such that for any
N > 0 there exist an open cover FX [FX

1
[� � �[FX

r DX with the set FX �X being
.N CC C 1/–movable with respect to !X with control C and with each inclusion
FX

j ! X null-homotopic. Let FY [FY
1
[ � � � [FY

s D Y be a cover of Y having
similar properties.

Denote AX D X � .FX
1
[ � � � [ FX

r /. It is a closed subset of FX . We denote by
H X

t W X !X the homotopy given by Lemma 10.1 applied to AX � FX .

Similarly, consider the set AY D Y � .FY
1
[ � � � [FY

s / and denote by H X
t W X !X

the homotopy given by Lemma 10.1 applied to AY � FY .

We obtain that the homotopy Ht W X �Y !X �Y given by

Ht .x;y/D .H
X
t .x/;H

Y
t .y//; x 2X;y 2 Y

restricted to a neighborhood F �X�Y of the set AX �Y [X�AY satisfies conditions
of Definition 9.1.
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Now the set F together with FX
i �FY

j where i D 1; : : : r and j D 1; : : : ; s cover
X �Y . It is well known that the union of the sets FX

i �FY
j can be covered by rCs�1

open sets6 each null homotopic in X �Y , see [4; 12]. Hence we obtain (40).

11 Spaces of category zero

In this section we collect some simple observations about spaces with cat.X; �/D 0

for some � 2H 1.X IR/. More information can be found in [17, Section 3].

Lemma 11.1 Let X be a finite CW complex and � 2 H 1.X IR/. The following
properties are equivalent:

(1) cat.X; �/D 0

(2) ccat.X; �/D 0

(3) There exists a continuous closed 1–form ! on X representing � (in the sense of
[7, Section 10.2]) and a homotopy ht W X ! X , where t 2 Œ0; 1�, such that for
any point x 2X one has Z h1.x/

x

! < 0:(44)

In (44) the integral is calculated along the curve t 7! ht .x/, t 2 Œ0; 1�.

(4) For any continuous closed 1–form ! on X representing � there exists a homo-
topy ht W X !X , where t 2 Œ0; 1�, such that for any point x 2X inequality (44)
holds.

Proof By Definition 5.3, cat.X; �/D 0 means that the whole space X is N –movable
for any N > 0, ie, given N > 0, there exists a homotopy Ht W X !X , where t 2 Œ0; 1�,
such that H0.x/D x and Z H1.x/

x

! < �N(45)

for any x 2X . Hence, (1) implies (3).

Conversely, given property (3), using compactness of X we find � > 0 such that (44)
can be replaced by

R h1.x/
x ! < �� . Now, one may iterate this deformation as follows.

The k -th iteration is a homotopy H k
t W X ! X , where t 2 Œ0; 1�, defined as follows.

6Here we use our assumption (39).
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Denote by h
.i/
1
W X ! X the i –fold composition h

.i/
1
D h1 ı h1 ı � � � ı h1 (i times).

Then for t 2 Œi=k; .i C 1/=k� one has

H k
t .x/D hkt�i.h

.i/
1
.x//:(46)

If it is known that
R h1.x/

x ! < �� for any x 2 X then for the k -th iteration one hasR H k
1
.x/

x ! < �k� and (3) follows assuming that k > N=� . This shows equivalence
between (1) and (3).

(4) H) (3) is obvious. Now suppose that (3) holds for ! and let !1 be another
continuous closed one-form lying in the same cohomology class, ie, !1 D ! C df

where f W X ! R is continuous, see [7, Section 10.2]. Using compactness of X we
may find C such that for any path 
 W Œ0; 1�! X one has j

R

 df j < C . Fix N > C

and apply equivalence between (1) and (3) to find a homotopy ht W X ! X withR h1.x/
x ! < �N . Then one has

R h1.x/
x !1 < 0, ie, (4) holds.

It is obvious that (2) H) (1). Hence we are left to show that (1) implies (2). Given
(2) fix a deformation as described in (3). Let C > 0 be such that for any x 2X and for
any t 2 Œ0; 1� one has

R ht .x/
1 ! < C . Then for any iteration H k

t W X !X (see above)

one has
R H k

t .x/
x ! < C and the result follows.

In the case when X is a closed smooth manifold a deformation as appearing in (2) can
be constructed as the flow generated by a vector field v on X satisfying !.v/ < 0.

The remark of the previous paragraph explains why the following statement can be
viewed as an analogue of the classical Euler–Poincaré theorem:

Theorem 10 cat.X; �/D 0 implies �.X /D 0.

Proof Suppose that cat.X; �/D 0. Then � 6D 0, ie, the rank r of class � is positive.
By Lemma 6.2 there exists transcendental bundle L 2 V� D .C�/r . If H q.X IL/ 6D 0

for some q then one may apply Theorem 7 with k D 0 obtaining cat.X; �/ > 0 and
contradicting our hypothesis. Hence H q.X IL/D 0 for all q which implies

�.X /D
X

q

.�1/q dim H q.X IL/D 0:

Pairs .X; �/ with cat.X; �/D 0 form an “ideal” in the following sense:

Lemma 11.2 Let X1 and X2 be finite cell complexes and �1 2 H 1.X1IR/, �2 2
H 1.X2IR/. If cat.X1; �1/D 0 then cat.X1�X2; �/D 0 where � D �1� 1C 1� �2 2

H 1.X1 �X2IR/:

Proof The statement follows directly by applying the definitions.
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12 An upper bound for ccat.M; �/

If X is a connected cell complex and � 2H 1.X IR/ is nonzero then cat.X; �/� dim X

and we have seen examples when this inequality is sharp, ie, is an equality. However,
it can be improved assuming that X is a manifold.

Theorem 11 Let M be a closed connected smooth n–dimensional manifold and let
� 2H 1.M IR/ be nonzero. Then7

ccat.M; �/� n� 1:(47)

Proof Choose a closed 1–form ! representing � having Morse type zeros and having
no zeros of Morse index 0 or n; here we use our assumption that � 6D 0 and M is
connected; see [15].

Theorem 11 will be proven once we show that for any N > 0 there exist closed subsets
A1;A2; : : : ;An�1 � M such that each inclusion Aj ! M is null-homotopic and
such that the complement F DM �[n�1

jD1
Aj is N –movable with respect to ! . It

is well-known (see [4, Lemma 1.11]) that each such Aj can be enlarged to an open
subset Aj � Fj �M such that Fj !M is null-homotopic; thus one obtains an open
cover F [F1[ � � � [Fn�1 satisfying conditions of Definition 5.3.

Fix a gradient-like vector field v for ! . As usual, for a zero p 2M of ! we denote by
W s.p/ and W u.p/ its stable and unstable manifolds with respect to the flow x 7! x � t

generated by �v . The closed 1–form ! “locally decreases” along the flow. More
precisely, this means that Z x�t

x

! < 0

assuming that t > 0 and x not a fixed point of the flow; the integral is calculated along
the trajectory of the flow.

We will assume that the stable and unstable manifolds of zeros of ! intersect trans-
versely; in particular we will require that for any pair of distinct zeros p 6D q of the
same index ind.p/ D ind.q/ one has W s.p/\W u.q/ D ∅. Such v exists by the
Kupka–Smale theorem.

Given N > 0 and a zero p 2M we denote by AN .p/ the set of all points x 2W s.p/

such that Z p

x

! � �N:(48)

7It is curious to mention that inequality (47) becomes false if one replaces ccat.X; �/ by another
modification of cat.X; �/ which was introduced in [8], denoted cat1.X; �/ . We discuss these issues in
detail in [11]. Another related invariant, Cat.X; �/ , was introduced in [5].
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As above, the integral is calculated along the integral trajectory x � t where t 2 Œ0;1/

(or, equivalently, along an arbitrary curve lying in the stable manifold). Note that
AN .p/ is closed in the stable manifold W s.p/ but it may be not closed in M ; the
closure of AN .p/ in M may contain zeros of ! of index greater than ind p . Indeed,
suppose that there is an integral trajectory of the flow connecting a zero q with p where
ind q > ind p . Then all points of this trajectory except q lie in the stable manifold
W s.p/ and the set AN .p/ is not closed for

R p
q ! � �N .

For each zero p 2M choose a small compact disc BN .p/ containing p in its interior
such that (i) BN .p/\BN .p

0/D∅ for p 6D p0 ; and (ii) the set

CN .p/DAN .p/[BN .p/�M

is contractible; see Figure 1.

BN .p/

AN .p/

M

p

Figure 1

Now we claim:

(a) Small discs BN .p/ satisfying (i) and (ii) exist.

(b) The set
C 0N .p/D CN .p/�

[
ind.q/>j

IntBN .q/

is compact. Here j D indp .

For j D 1; 2; : : : ; n� 1 let Aj be the union of the sets C 0
N
.p/ where p runs over all

zeros of ! of index j . We see that each Aj is a closed subset which is null-homotopic
in M .
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Next we want to show that the complement

F DM �
[
!pD0

AN .p/

is N –movable with respect to ! . For any point x 2 F there exists Tx > 0 such thatZ x�Tx

x

! < �N:

Hence there is a neighborhood Vx � F of x such thatZ y�Tx

y

! < �N

for all y 2 Vx . Without loss of generality we may assume that for some sequence
of points xn 2 F the sets Vxn

form a locally finite cover of F . Then we may find
continuous functions �nW F ! Œ0; 1� such that the support of �n is contained in Vxn

and maxn �n.y/D 1 for any y 2 F . Then T D
P

n Txn
�n is a continuous function

on F and for any point y 2 F one hasZ yT .y/

y

! < �N:

Now a homotopy h� W F ! M as in Definition 9.1 (with constant C D 0) can be
defined by the formula h� .y/D y � .�T .y//, where � 2 Œ0; 1�.

13 Relations with the Bieri–Neumann–Strebel invariant

Bieri, Neumann and Strebel introduced in [2] a geometric invariant of discrete groups
G which captures information about the finite generation of kernels of abelian quotients
of G . In this section we describe a relation between this invariant and properties of
cat.X; �/.

Let us recall the definition. We always assume that G is finitely presented as this is
sufficient for our purposes. Let S.G/ denote .Hom.G;R/�f0g/=RC where RC acts
on Hom.G;R/ by multiplication. Clearly S.G/ is a sphere of dimension n� 1 where
n is the rank of the abelianization of G . Denote by Œ�� the equivalence class of a
nonzero homomorphism �W G! R. The Bieri–Neumann–Strebel invariant associates
to G a subset †.G/� S.G/ defined as follows8. Let X be a finite cell complex with
�1.X /DG and let pW zX!X be the universal abelian cover of X . A homomorphism

8We rely on [2, Theorem 5.1] which states that the definition of †.G/ given above coincides in the
case of finitely presented G with the main definition of [2].
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� 2 Hom.G;R/ can be viewed as a cohomology class lying in H 1.X IR/. One has
� 2†.G/ if and only if the inclusion N ! zX induces an epimorphism �1.N;x0/!

�1. zX ;x0/ where N � zX is a connected neighborhood of infinity with respect to �,
see Section 2 and [2, Lemma 5.2].

The following result improves the estimate given by Theorem 11.

Theorem 12 Let M be a closed connected smooth manifold of dimension n� 5 and
G D �1.M /. If for a nonzero cohomology class � 2H 1.X IR/ either Œ�� 2†.G/ or
Œ��� 2†.G/ then

ccat.M; �/� n� 2:(49)

Proof By Latour [13, Propositions 5.8 and 4.2] the assumption Œ��� 2†.G/ implies
that � can be realized by a smooth Morse closed 1–form ! having no zeros of Morse
index 0; 1; n. Having such ! one repeats the argument of the proof of Theorem 11
(without modifications) which leads to (49).

In the case Œ�� 2†.G/ one applies the above argument to �� and obtains a smooth
Morse closed 1–form ! having no zeros of Morse index 0; n� 1; n. Then one applies
the argument of Theorem 11.

Theorem 13 Let M be a closed connected smooth manifold of dimension n� 5 such
that �1.M / has no non-abelian free subgroups. Then for any nonzero cohomology
class � 2H 1.X IR/ one has

ccat.M; �/� n� 2:(50)

Proof This follows from the previous statement and from Bieri, Neumann, Strebel [2,
Theorem C]. For convenience of the reader we recall that [2, Theorem C] claims that
†.G/[�†.G/D S.G/ assuming that G has no non-abelian free subgroups.

Here is another statement which is obviously equivalent to Theorem 13:

Theorem 14 Let M be a closed connected smooth manifold of dimension n � 5

such that for some nonzero � 2H 1.X IR/ one has ccat.M; �/D n� 1: Then �1.M /

contains a non-abelian free subgroup.

In this theorem one can replace ccat.M; �/ by cat.M; �/.

Examples of manifolds satisfying cat.M; �/ D dim M � 1 for some nonzero � 2

H 1.M IR/ are known, see [6, Example 6.5]. Here M is obtained from n–dimensional
torus by adding a handle of index one, i.e M D T n#.S1 �Sn�1/ and � is nonzero
restricted to the handle. In this case it is obvious that �1.M / contains a free subgroup
on two generators.
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Theorem 15 Let M be a closed connected smooth manifold of dimension n� 5 and
G D �1.M /. If for a nonzero class � 2H 1.X IR/ both Œ�� 2†.G/ and Œ��� 2†.G/
then

ccat.X; �/� n� 3:(51)

Proof The proof is similar to the proof of Theorem 12. Namely, using Latour [13,
Propositions 5.8 and 4.2] we see that the assumptions

Œ��; Œ��� 2†.G/

imply that � can be realized by a smooth closed 1–form ! having no zeros of Morse
index 0; 1; n � 1; n. Then one repeats the arguments of the proof of Theorem 11
obtaining (51).

Theorem 15 is similar to [17, Corollary 6.9]. It is worth mentioning that [17, Theorem
6.8] states that if M is a closed smooth manifold of dimension n�5 and � 2H 1.M IR/

is such that Œ��; Œ���2†.�1.M // then M admits a closed 1–form ! lying in the class
� which has at most n�3 zeros and such that the gradient flow of ! has no homoclinic
cycles.

14 Improved upper bound for products

Combining the product inequality and the upper bound of Theorem 11 we obtain:

Theorem 16 Let M1;M2; : : : ;Mk be closed connected smooth manifolds, dim Mi �

2. Then

ccat.M1 �M2 � � � � �Mk ; �/� 1 � 2k C

kX
iD1

dim Mi(52)

assuming that the cohomology class

� 2H 1.M1 � � � � �Mk IR/

is such that the restriction

�i D �jMi
2H 1.Mi IR/

is nonzero for every i D 1; : : : ; k .
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Proof First we consider the case when ccat.Mi ; �i/D 0 for some i D 1; : : : ; k . Then
the left hand side of (52) vanishes (see Lemma 11.2) and inequality (52) is true due to
our assumption dim Mi � 2.

In the case when ccat.Mi ; �i/ > 0 for all i D 1; : : : ; k , Theorems 9 and 11 applied
repeatedly imply the result by induction.

15 Calculation of cat.X; �/ for products of surfaces

Theorem 17 Let M 2k denote the product †1 �†2 � � � � �†k where each †i is a
closed orientable surface of genus gi > 1. Given a cohomology class � 2H 1.M 2k IR/,
one has

cat.M 2k ; �/D ccat.M 2k ; �/D 1C 2r(53)

where r is the number of indices i 2 f1; 2; : : : ; kg such that the cohomology class
�j†i
2H 1.†i ;R/ vanishes. In particular

cat.M 2k ; �/D ccat.M 2k ; �/D 1(54)

assuming that �j†i
6D 0 2H 1.†i IR/ for any i D 1; : : : ; k .

Proof If †i is a surface of genus gi > 1 and �i 2 H 1.†i IR/ is nonzero then
ccat.†i ; �/� 1 by Theorem 11 and ccat.†i ; �i/� 1 by Theorem 10 (since �.†i/D

2 � 2gi 6D 0). Hence we obtain ccat.†i ; �i/ D 1: Using Theorem 16 we find that
ccat.M 2k ; �/D 1 assuming that �j†i

6D 0 for all i D 1; : : : ; k .

Now assume that �i j†i
6D 0 for i D 1; : : : ; k�r and �i j†i

D 0 for i D k�rC1; : : : ; k .
Denote

M 0
D

k�rY
iD1

†i ; M 00
D

kY
iDk�rC1

†i ; � 0 D �jM 0 ; � 00 D �jM 00 D 0:

As in the previous paragraph we find ccat.M 0; � 0/D 1. Clearly,

ccat.M 00; � 00/D cat.M 00/D 2r C 1;

see Lemma 9.7. Using the product inequality (Theorem 9) we obtain

ccat.M; �/� ccat.M 0; � 0/C ccat.M 00; � 00/� 1D 2r C 1:
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To complete the proof we apply Lemma 7.3 to get a lower bound. We have (since the
genus of †i is greater than 1)

cl.†i ; �i/D

8<:
0; if �i 6D 0 2H 1.†i IR/;

2; if �i D 0 2H 1.†i IR/:

(55)

By Lemma 7.3 we obtain cl.M 2k ; �/� 2r where r . Hence cat.M 2k ; �/� 2r C 1 by
Theorem 8.

This completes the proof.

16 Another example

Let X denote T 2 _ S1 as in Example 8.5. Formula (38) expresses ccat.X; �/ D
cat.X; �/ as function of � 2H 1.X IR/D R3 .

Consider the product X k DX �� � ��X of k –copies of X . For any index i D 1; : : : ; k

denote by pi W X !X k the inclusion x 7! .x0; : : : ;x0;x;x0; : : : ;x0/ where x stands
on the place number i and on other places is the base point x0 2X . Let qi W T

2!X k

be the composition of the inclusion T 2!X and of pi W X !X k .

Theorem 18 For any � 2H 1.X k IR/ one has

cat.X k ; �/D ccat.X k ; �/D 1C a.�/C 2b.�/(56)

where a.�/ denotes the number of indexes i 2 f1; : : : ; kg such that p�i .�/ 6D 0 and
q�i .�/ D 0, and b.�/ denotes the the number of indexes i 2 f1; : : : ; kg such that
p�i .�/D 0.

Proof Denote by Xi the i -th factor X in the product X k D X � � � � � X . Let
�i 2 H 1.Xi IR/ denote p�i .�/. Finally we denote by `i � H 1.Xi IR/ the set of
cohomology classes such that their restriction onto the torus T 2 �Xi vanishes. We
have

cat.Xi ; �i/ D ccat.Xi ; �i/ D

8<:
1; if �i … `i ;

2; if �i 2 `i �f0g;

3; if �i D 0I

(57)

see (38). It is easy to check directly using the definitions that

cl.Xi ; �i/ D

8<:
0; if �i … `i ;

1; if �i 2 `i �f0g;

2; if �i D 0:

(58)
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Applying Theorem 9 we find

cat.X 2k ; �/� ccat.X 2k ; �/� 1C a.�/C 2b.�/:

Applying Theorem 8 and Lemma 7.3 inductively we obtain the inverse inequality

cat.X 2k ; �/� 1C a.�/C 2b.�/:

This completes the proof.

17 Questions

Finally we raise two challenging questions which are inspired by problems discussed
in this article.

Question 1 Is it always true that ccat.X; �/D cat.X; �/?

In all examples discussed in this paper the function � 7! cat.X; �/ was upper semi-
continuous, ie, the sets of the form f� 2H 1.X IR/I cat.X; �/� rg were closed.

Question 2 Is it true in general that the functions H 1.X IR/! R given by

� 7! cat.X; �/; � 7! ccat.X; �/

are upper semi-continuous?
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