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Quasi-isometric rigidity of higher rank S –arithmetic lattices

KEVIN WORTMAN

We show that S –arithmetic lattices in semisimple Lie groups with no rank one factors
are quasi-isometrically rigid.

20F65, 20G30, 22E40

1 Introduction

Cocompact lattices in semisimple Lie groups over local fields with no rank one factors
are quasi-isometrically rigid. This was shown by Kleiner–Leeb [17] in general, and
Eskin–Farb [13] later gave a different proof in the case of real Lie groups.

Eskin then applied the “quasiflats with holes” theorem for symmetric spaces of Eskin–
Farb [13] to prove that any quasi-isometry of a non-cocompact irreducible lattice
in a real semisimple Lie group with no rank one factors is a finite distance from a
commensurator (Eskin [12]). As a consequence, any such lattice is quasi-isometrically
rigid. Basic examples of such lattices include SLn.Z/ for n � 3. Druţu has given
another proof of Eskin’s theorem [11] using asymptotic cones and the results of [17].

Eskin’s theorem has a place in a larger body of work of Schwartz, Farb–Schwartz,
and Eskin. In particular, it has been shown that any quasi-isometry of an irreducible
non-cocompact lattice in a semisimple real Lie group, which is not locally isomorphic to
SL2.R/, is a finite distance from a commensurator (Schwartz [26; 27], Farb–Schwartz
[15] and Eskin [12]); see Farb [14] for a full account.

While the theorem of Kleiner–Leeb applied to cocompact S –arithmetic lattices in
semisimple Lie groups with no rank one factors, the question of quasi-isometric rigidity
for non-cocompact S –arithmetic lattices remained unexplored for a few years. The
first account of quasi-isometric rigidity for non-cocompact S –arithmetic lattices (and
the only account aside from this paper) was given by Taback [28]. Taback’s theorem
states that any quasi-isometry of SL2.ZŒ1=p�/ is a finite distance in the sup-norm from
a commensurator. Thus, Taback’s theorem provided evidence that quasi-isometries
of S –arithmetic lattices could be characterized in the same way as their arithmetic
counterparts.
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Following the work of Eskin, we apply the quasiflats with holes theorem of Wortman
[32] for products of symmetric spaces and Euclidean (affine) buildings to show that
non-cocompact S –arithmetic lattices in semisimple Lie groups with no rank one
factors are quasi-isometrically rigid. Examples of such lattices include SLn.ZŒ1=p�/

and SLn.Fq Œt �/ for n� 3, where Fq Œt � is a polynomial ring with indeterminate t and
coefficients in the finite field Fq . (See Section 5 for more examples.)

As a special case of our results, we show that any finitely generated group quasi-
isometric to SLn.ZŒ1=p�/, is in fact isomorphic to SLn.ZŒ1=p�/ “up to finite groups”
as long as n� 3.

Our proof also shows that cocompact lattices in semisimple Lie groups with no rank
one factors are quasi-isometrically rigid, thus providing a unified proof of the theorems
of Kleiner–Leeb, Eskin–Farb, and Eskin. In particular, we give a proof of the theorem
of Kleiner–Leeb—a proof which does not use the theory of asymptotic cones.

Summary of definitions to come

In order to state our results, we briefly provide some definitions. We will expand on
these definitions in Section 2.

For any topological group H , we let Aut.H / be the group of topological group
automorphisms of H .

For any valuation v of a global field K , let Kv be the completion of K with respect
to v . If S is a set of valuations of K , then we let OS �K be the ring of S –integers.

We call an algebraic K–group G placewise not rank one with respect to S if Kv �

rank.G/¤ 1 for all v 2 S . We denote the adjoint representation by Ad, and we let
G be the direct product of the groups Ad.G/.Kv/ over all v 2 S for which G is
Kv–isotropic.

Last, we let QI.G.OS // be the quasi-isometry group of G.OS /, and Comm.G.OS //

be the commensurator group of G.OS /. We warn the reader here that our definition of
Comm.G.OS // is slightly atypical (see Section 2).

Quasi-isometries of S –arithmetic groups

Our main result is the following Theorem.

Theorem 1.1 Let K be a global field and S a finite nonempty set of inequivalent
valuations containing all of the archimedean ones. Suppose G is a connected simple
K–group that is placewise not rank one with respect to S .
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(i) If G is K–isotropic and K is a number field, then there is an isomorphism:

QI
�

G.OS /
�
Š Comm.G.OS //:

(ii) If G is K–isotropic and K is a function field, then there exists an inclusion:

Comm.G.OS // ,!QI
�

G.OS /
�
,! Aut.G/:

Furthermore, the image of QI.G.OS // in Aut.G/ has measure zero.

(iii) If G is K–anisotropic, then there is an isomorphism:

QI
�

G.OS /
�
Š Aut.G/:

As an example of Theorem 1.1(i), we have

QI.SL3.ZŒ1=p�//Š PGL3.Q/Ì Z=2Z;

where the topology on the right side of the isomorphism is induced by the topology of
Q as the diagonal subspace of R�Qp . This example is described in more detail in
Section 5, where we also present five other examples.

We note that the theorem above leaves room for improvement, as the K–isotropic case
for function fields is not completely determined. However, results in this case are still
slightly stronger than they are for the fully resolved K–anisotropic case.

Quasi-isometric rigidity

From Theorem 1.1 we can deduce the following Corollary.

Corollary 1.2 Suppose K , S , and G are as in Theorem 1.1, and suppose that G is of
adjoint type. Let ƒ be a finitely generated group, and assume there is a quasi-isometry

�W ƒ!G.OS /:

(i) If G is K–isotropic and K is a number field, then there exists a finite index
subgroup ƒS of ƒ and a homomorphism 'W ƒS !G.OS / with a finite kernel
and finite co-image such that

sup
�2ƒS

d
�
'.�/; �.�/

�
<1:

(ii) If G is K–isotropic and K is a function field, then there exists a finite group F

and an exact sequence

1! F !ƒ! �! 1;

such that � is a non-cocompact lattice in Aut.G/.
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(iii) If G is K–anisotropic, then there exists a finite group F and an exact sequence

1! F !ƒ! �! 1;

such that � is a cocompact lattice in Aut.G/.

Bibliographic note

We will present a proof of Theorem 1.1 that covers all of the cases above, some of
which are well known.

Part (iii) of Theorem 1.1 and Corollary 1.2 was shown by Kleiner–Leeb [17]. Part
(iii) was also shown when K is a number field and S equals the set of archimedean
valuations by Eskin–Farb [13]. (Note that the theorems in [17] and [13] are stated in
equivalent terms of isometries of Euclidean buildings and/or symmetric spaces.)

Part (i) of Theorem 1.1 and Corollary 1.2 was shown by Eskin [12] with the additional
assumption that S equals the set of archimedean valuations. Druţu has also given a
proof of (i) assuming S is the set of archimedean valuations [11]. The proof in [11]
uses results from [17].

Corollary 1.2 follows directly from Theorem 1.1 and, for part (i), Margulis’ superrigidity
theorem. The proof of this corollary using Theorem 1.1 is routine. See, for example,
[12, Section 9].

Similarities and differences between our proof and Eskin’s

The proof of Eskin’s theorem involves studying the large-scale geometry of symmetric
spaces on which higher rank real semisimple Lie groups act. Our proof of Theorem
1.1 applies the “quasiflats with holes” theorem from [32] (which itself is an extension
of the quasiflats with holes theorem of Eskin–Farb [13]) to extend Eskin’s proof by
allowing for the presence Euclidean buildings. (Recall that Euclidean buildings are the
natural spaces acted on by semisimple Lie groups over nonarchimedean local fields.)
We rely on many of Eskin’s arguments in using large-scale geometry to construct a
boundary function defined almost everywhere.

Where our proof differs substantially from Eskin’s, is in the way we complete the
boundary function. We are forced to confront this problem with different methods, since
the proof in [12] relies on the fact that the Furstenberg boundary of a real semisimple
Lie group is a Euclidean manifold. This is not the case in general, as the Furstenberg
boundary of a semisimple Lie group over a nonarchimedean local field is a Cantor set.
Being unable to rely as heavily on topological arguments, we turn to algebraic methods
to find a completion. (See Section 4 for an expanded outline of our proof.)
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Strong rigidity

Our main result can be viewed as a strengthening of strong rigidity.

Recall that the strong rigidity theorems—first proved by Mostow and later expanded on
greatly by Prasad, Margulis, and Venkataramana—state that any isomorphism between
irreducible lattices in semisimple Lie groups, which are not locally isomorphic to
SL2.R/, extends to an isomorphism of the ambient semisimple group. Thus, the
ambient semisimple group is completely determined by the isomorphism class of a
lattice (Mostow [20], Prasad [22; 24], Margulis[19] and Venkataramana [31]).

Our result states that the quasi-isometry class alone of an S –arithmetic lattice meeting
the conditions of Theorem 1.1 is enough to determine the ambient semisimple group.

We note that the proofs of strong rigidity in cases (i) and (ii) of our main theorem (given
by Margulis and Venkataramana respectively) are rooted in ergodic theory. Our unified
proof of cases (i), (ii), and (iii) is based on the large-scale geometry of symmetric
spaces and Euclidean buildings. As such, we return to Mostow’s original ideas and
present a proof that is of a more geometric nature than the ergodic theoretical proofs of
strong rigidity.

Number fields versus function fields

Although our results are not complete in the function field case, we point out that this
is only due to the absence of a characterization of commensurators which does not
exist in the function field case (see Proposition 7.2).

Throughout the portion of the proof dealing with large-scale geometry, the function
field case allows for significant simplifications. The simplifications stem from the fact
that two Weyl chambers in a Euclidean building are Hausdorff equivalent if and only
if their intersection contains a Weyl chamber. Of course this is false for symmetric
spaces.
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2 Definitions

We will take some time now to be precise with our definitions.

Quasi-isometries

For constants � � 1 and C � 0, a .�;C / quasi-isometric embedding of a metric space
X into a metric space Y is a function �W X ! Y such that for any x1;x2 2X :

1

�
d
�
x1;x2

�
�C � d

�
�.x1/; �.x2/

�
� �d

�
x1;x2

�
CC:

We call � a .�;C / quasi-isometry if � is a .�;C / quasi-isometric embedding and
there is a number D � 0 such that every point in Y is within distance D of some point
in the image of X .

Quasi-isometry groups

For a metric space X , we define the relation � on the set of functions X ! X by
� �  if

sup
x2X

d
�
�.x/;  .x/

�
<1:

We form the set of all self-quasi-isometries of X , and denote the quotient space modulo
� by QI.X /. We call QI.X / the quasi-isometry group of X as it has a natural group
structure arising from function composition. Note that if X and Y are quasi-isometric
metric spaces, then there is a natural isomorphism QI.X /ŠQI.Y /.

Word metrics

A finitely generated group � is naturally equipped with a proper left-invariant word
metric. This is the metric obtained by setting the distance between  2 � and 1 2 � to
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be the infimum of the length of all words written in a fixed finite generating set that
represent  .

The word metric depends on the choice of finite generating set, but only up to quasi-
isometry. Hence, the group QI.�/ is independent of the choice of a finite generating
set for � .

S –integers

Recall that finite algebraic extensions of either Q or the field Fp.t/ of rational functions
with indeterminate t and coefficients in a finite field Fp , are called global fields. If K

is a global field then we denote the set of all inequivalent valuations on K by VK , and
we denote the set of all inequivalent archimedean valuations of K by V1

K
.

For any valuation v 2 VK , let Kv be the topological completion of K with respect
to v . The field Kv is a locally compact nondiscrete field. Any field satisfying these
topological properties is called a local field.

For a finite nonempty set of valuations S � VK containing V1
K

, we define the ring of
S –integers in K to be

OS D fx 2K j 1� jxjv for all v 2 VK �Sg:

Rank

If a simple algebraic group G is defined over a field L, we say it is an L–group. An L–
group G is called L–isotropic if L�rank.G/> 0, and called L–anisotropic otherwise.
(Recall that L� rank.G/ is the maximum dimension of an algebraic subgroup of G
which is diagonalizable over L.)

For a global field K and a simple K–group G, let V
G;a

K
�VK be the set of valuations v

for which G is Kv –anisotropic. Recall that v2V
G;a

K
is equivalent to the condition that

G.Kv/ is compact.

We define G to be placewise not rank one with respect to a chosen finite set of valuations
S , if Kv � rank.G/¤ 1 for all v 2 S .

S –arithmetic groups

A group is called S –arithmetic if it is isomorphic to G.OS / for some K–group G
and for some finite nonempty set S � VK containing V1

K
.

Throughout the remainder, G is connected, simple, and placewise not rank one with
respect to S . Under these conditions it is well known that G.OS / is a finitely generated
group, so it admits a proper word metric.
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Lattices

A locally compact group H supports a Haar measure �. A discrete subgroup � <H is
called a lattice if H=� has finite volume with respect to �. This is necessarily the case
if H=� is compact. Such lattices are called cocompact; they are called non-cocompact
otherwise.

We write Ad.G/ for the image of G under the adjoint representation of G. The adjoint
representation has a finite kernel which equals the center of G.

Define
G D

Y
v2S�V

G;a

K

Ad.G/.Kv/:

The diagonal homomorphism of G.OS / into G has a finite kernel. We write the image
of the diagonal homomorphism as G.OS /

� . The reduction theory of Borel, Behr, and
Harder established that G.OS /

� is a lattice in G and that G.OS /
� is cocompact if

and only if G is K–anisotropic.

We point out here that G.OS /
� is clearly irreducible as a lattice in G . Recall that a

lattice � <G is reducible if � contains a finite index subgroup of the form �1 ��2

where
�i D � \

Y
Ti

Ad.G/.Kv/;

and T1 and T2 nontrivially partition S �V
G;a

K
. Otherwise, � is irreducible.

Let Aut.G/ be the group of all topological group automorphisms of G . Since G

has a trivial center, it embeds into Aut.G/ via inner automorphisms. Furthermore, G

is a closed cocompact subgroup of Aut.G/, so G.OS /
� is also a lattice in Aut.G/.

Furthermore, G.OS /
� is cocompact in Aut.G/ if and only if it is cocompact in G .

Commensurators

An automorphism  2 Aut.G/ commensurates G.OS /
� if  .G.OS /

�/\G.OS /
�

is a finite index subgroup of both  .G.OS /
�/ and G.OS /

� .

Define Comm.G.OS // < Aut.G/ as the group of automorphisms that commensurate
G.OS /

� . Notice that Comm.G.OS // is different from the standard definition of the
commensurator group of G.OS / in two ways: we project G.OS / into G , and we do
not restrict ourselves to inner automorphisms.

Let Aut.K/ be the group of field automorphisms of K . There is an action of Aut.K/
on the set of affine K–varieties. Indeed, if W is an affine K–variety, then we let � W
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be the variety obtained by applying � to the coefficients of the polynomials that define
W. We define Aut.K/G to be the group of automorphisms � 2 Aut.K/ such that � G
is K–group isomorphic to G.

Since valuations are obtained by embedding K into various local fields, there is an
obvious action of Aut.K/ on the set of valuations VK . We let Aut.K/G;S be the
subgroup of Aut.K/G consisting of those � 2 Aut.K/G such that �

�
S � V

G;a
K

�
D

S �V
G;a

K
.

The group Aut.K/ is finite when K is a global field, so both Aut.K/G and Aut.K/G;S
are finite also.

We will see in Section 7 that Comm.G.OS // is an extension

1! Aut.Ad.G//.K/! Comm.G.OS //! Aut.K/G;S ! 1;

where Aut.Ad.G// is the K–group of algebraic group automorphisms of Ad.G/.

If G is defined over a subfield of K that is fixed pointwise by Aut.K/G;S , then the
above extension splits. Furthermore, if G is K–split, then there is a split extension

1! Ad.G/.K/! Aut.Ad.G//.K/!Out.Ad.G//.K/! 1;

where Out.Ad.G// is the K–group of outer automorphisms of Ad.G/ (or alternatively
the K–group of automorphisms of the Dynkin diagram of Ad.G/).

Combining the two remarks above, we have that if G is K–split and defined over a
subfield of K that is fixed pointwise by Aut.K/G;S , then

Comm.G.OS //Š
�

Ad.G/.K/Ì Out.Ad.G//.K/
�

Ì Aut.K/G;S :

Regardless of whether the extensions defining Comm.G.OS // split, Comm.G.OS //

contains Ad.G/.K/ as a finite index subgroup since the outer automorphism group of a
simple algebraic group is finite. Therefore, we can define a topology on Comm.G.OS //

by assigning the topology on Ad.G/.K/ to be the subspace topology resulting from
the diagonal embedding

Ad.G/.K/ �!
Y

v2S�V
G;a

K

Ad.G/.Kv/:

Examples

A reader not familiar with S –arithmetic groups is encouraged at this point to skip
ahead to Section 5 where a series of examples is presented.

Geometry & Topology, Volume 11 (2007)



1004 Kevin Wortman

3 Notes

Now that our definitions are in place, we revisit Theorem 1.1.

Remarks on Theorem 1.1(i)

In the K–isotropic case for number fields in Theorem 1.1, the group of K–rational
points of Ad.G/ is a finite index subgroup of QI.G.OS //. Hence the group operation
on QI.G.OS // recovers K and a finite quotient of G. These are two of the three
ingredients used to create G.OS /. The third ingredient, S , cannot in general be
recovered from the quasi-isometry group, but it can be identified up to an element of
the finite group Aut.K/G .

Let’s briefly make the paragraph above more precise.

Theorem 1.1 states that QI.G.OS // is determined up to a topological group isomor-
phism as Comm.G.OS //. By a theorem of Borel–Tits [8, Corollary 6.7], Ad.G/.K/C

is the minimal finite index subgroup of QI.G.OS // where Ad.G/.K/C is the sub-
group of Ad.G/.K/ generated by the K–points of the unipotent radicals of the K–
parabolic subgroups of Ad.G/. Therefore, any topological group isomorphism of
QI.G.OS // induces a topological group isomorphism

f W Ad.G/.K/C �! Ad.G/.K/C;

where we assume the domain of f has the topology derived from S .

Another well known theorem of Borel–Tits [8, Theorem A] states that f D ˇ ı �0

where � 2 Aut.K/G , and

�0
W Ad.G/.K/ �! �Ad.G/.K/

is the homomorphism defined by applying � to the matrix entries of Ad.G/.K/, and

ˇW �Ad.G/ �! Ad.G/

is a K–isomorphism of algebraic groups.

Since f is a homeomorphism, � is a homeomorphism as well. Therefore, the topology
on the image of � W K!K is given by the set �S , since S determines the topology
of the domain of � .

Note that if � 2 Aut.K/G and ˇW �Ad.G/! Ad.G/ is a K–isomorphism of topo-
logical groups, then �0 restricts to an isomorphism Ad.G/.OS / Š

�Ad.G/.O�S /

and ˇ. �Ad.G/.O�S // is commensurable with Ad.G/.O�S / (see eg [19, I.3.1.1.iv]).
Hence, recovering S up to an element of Aut.K/G provides us with enough information
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to reconstruct G.OS / up to finite groups. In light of this, we could not hope for quasi-
isometries to pinpoint S any more than up to an element of Aut.K/G .

For clarity, we observe that

SLn

�
ZŒi; 1=.2C i/�

�
Š SLn

�
ZŒ�i; 1=.2� i/�

�
is an example of how the set of valuations can fail to be identified completely by quasi-
isometries since, in this example, the set cannot even be distinguished by isomorphisms
of groups.

Remarks on Theorem 1.1(iii)

In the K–anisotropic case, the simple group Ad.G/ is encoded in the quasi-isometry
group, but the global field K is not.

For example, examine the quadratic form

ˆD

5X
iD1

x2
i :

Let SO be the special orthogonal group of ˆ, so that SO is Q–anisotropic and
Q.
p

11/–anisotropic.

There are exactly two elements of V1
Q.
p

11/
– which we name v1

1
and v1

2
– and

Q.
p

11/v1
i
ŠR for i D 1; 2. If we choose the valuation v

.4C
p

11/
2 V

Q.
p

11/
defined

by the prime ideal .4C
p

11/� ZŒ
p

11�, then Q.
p

11/v
.4C
p

11/
is isomorphic to the

field of 5–adic numbers, Q5 .

Let S D fv1
1
; v1

2
; v
.4C
p

11/
g. By the theorem of Kleiner–Leeb,

QI
�

SO
�
OS

��
Š SO.Q5/:

(That SO is placewise not rank one with respect to S follows form the fact that i 2Q5 .)

Next, we take our global field to be Q. We let S 0 D fv1; v.5/g, where v1 is the
archimedian valuation on Q and v.5/ is the 5–adic valuation. Then Kleiner–Leeb’s
theorem also gives us

QI
�

SO
�
OS 0

��
Š SO.Q5/:

Hence, quasi-isometries could not distinguish between Q and Q.
p

11/ in these two
examples.
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Remarks on Theorem 1.1(ii)

My current level of knowledge for the general S –arithmetic group when K is a function
field and G is K–isotropic is at an intermediate level. In this setting we have stronger
results than in the K–anisotropic case, but less is known than in the number field case.

There is some evidence that we should be able to remove the assumption that K is
a number field from part (i) of Theorem 1.1. The number field case itself provides
evidence that part (i) should hold for the function field case, and it has been shown that
Theorem 1.1(i) holds for SLn.Fq Œt �/ when n� 3 (Wortman [33]).

The distinction between number fields and function fields in the K–isotropic case
exists because our proof for number fields takes advantage of Ratner’s theorem for
unipotent flows [25]. Ratner’s theorem is a powerful tool, and it appears to be unknown
in positive characteristic.

Note that, in contrast with lattices in semisimple Lie groups over p–adic number
fields, lattices in semisimple Lie groups over function fields can be non-cocompact. In
fact, Harder showed that if K is a global function field and G is a simple K–group,
then G can be K–anisotropic only if G is of type An [16]. Therefore, resolving the
K–isotropic case for function fields has heightened importance.

Remarks on Corollary 1.2

In the remarks on Theorem 1.1(i) it was pointed out that in the K–isotropic case
for a number field K , the quasi-isometry group of G.OS / carries the information
needed to reconstruct G.OS /. Hence, an arbitrary finitely generated group ƒ that is
quasi-isometric to G.OS / will also carry the information needed to reconstruct G.OS /

as ƒ and G.OS / will have the same quasi-isometry groups. This is the content of part
(i) of Corollary 1.2.

Note that (i) states that the only way to deform G.OS / in the space of all finitely
generated groups without moving it outside of its initial quasi-isometry class is through
algebraic methods.

If we knew that Theorem 1.1(i) held in the function field case, then Corollary 1.2(i)
would apply to the function field case as well. In particular, case (i) of the above
corollary holds when G.OS / is replaced by SLn.Fq Œt �/ for n� 3.

Rigidity for groups with poor finiteness properties

Any finitely generated group that was previously known to be quasi-isometrically rigid
contains a finite index subgroup that is simultaneously complex linear, torsion-free,
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of type F1 , and of finite cohomological dimension. Thus, the final comment in
the preceding paragraph displays the first quasi-isometric rigidity result for a finitely
generated group with poor finiteness properties.

Indeed, it is well known that SLn.Fq Œt �/ is not virtually torsion free. Hence, SLn.Fq Œt �/

is not complex linear, and any finite index subgroup has infinite cohomological dimen-
sion. In addition, SL3.Fq Œt �/ is known not to be finitely presentable (a result of Behr
[3]), and independent work of Abels and Abramenko shows that the class of groups of
the form SLn.Fq Œt �/ where n� 3 contains groups of type Fk , but not of type FkC1

for all k � 1 (see Abel [1] and Abramenko [2]). Recall that a group � is of type Fk if
there exists an Eilenberg–Mac Lane K.�; 1/ complex with finite k –skeleton, and � is
of type F1 if it is of type Fk for all k .

4 Outline

Our proof of Theorem 1.1 borrows heavily from [12].

We proceed by realizing any element of QI.G.OS // as a quasi-isometric embedding

�W N.�/ �!X;

where X is a product of a symmetric space and a Euclidean building, and N.�/�X is
a set (defined in Section 8) that both contains, and is contained in, a metric neighborhood
of a G.OS / orbit. The existence of such a quasi-isometric embedding follows from a
theorem of Lubotzky–Mozes–Raghunathan [18].

Our goal is to show that � is within a finite distance of an element of Isom.X / Š
Aut.G/.

Constructing a boundary function defined a.e.

In logical order, our proof begins with Section 8. Following Eskin, we apply basic
ergodic theory to show that the generic flat F �X has most of its volume contained
in N.�/. We denote this generic collection of flats by U, and we note that in general,
U is a proper subset of the set of all flats in X .

For any flat F 2 U, the quasi-isometric embedding � restricts to a quasi-isometric
embedding

�0F �!X;

where �0
F
� F \N.�/ is a suitably large subset of F . By precomposing with a

closest point projection, we have maps

�F W F �!X:
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We analyze the image of these maps using the quasiflats with holes theorem of [32],
and we use the asymptotic behavior of the images to construct a function

@�W U@! B.G/;

where B.G/ is the spherical Tits building for G and U@ � B.G/ is a subcomplex that
has full measure in the Furstenberg boundary.

For this task, we mostly defer to the proof in [12] which covers the case when X is a
symmetric space. Indeed, Eskin’s proof uses the geometry of symmetric spaces mostly
to establish a few foundational lemmas. These lemmas are used to analyze the behavior
at infinity of the quasiflats with holes. We supply the analogous foundational lemmas
for the general space X , and then Eskin’s proof applies to the more general setting.

Continuity of the boundary function on neighborhoods of faces

Section 9 is the final section of this paper. The first three lemmas of the section are
meant as replacements for foundational lemmas in [12], so that we can apply a proof
from [12] to derive a fourth lemma: the restriction of @� to the simplicial neighborhood
of a face of a maximal simplex in U@ is continuous.

Completing the boundary function

Our goal is to extend the domain of @� to all of B.G/. Then we can use Tits’ theorem
to show that @� corresponds to an element of Aut.G/. This step is the content of
Section 6. Despite the fact that this section is the third part of our proof if it were
presented in logical order, it is placed in the early portion of this paper as it is less
technical than material from Section 8 and Section 9, and as it contains material unlike
that found in [12].

Eskin’s approach to finding an extension of @� , for the case when K is a number field
and S D V1

K
, was to find a topological completion of @� . A restriction of @� to a

co-null subset of the Furstenberg boundary is shown to be bi-Hölder. Then @� can be
completed to a domain of B.G/.

Eskin’s argument relied on the fact that the Furstenberg boundary of a real semisimple
Lie group is an analytic manifold and a topological manifold. In contrast, the Fursten-
berg boundary of a semisimple Lie group over a nonarchimedean local field is a Cantor
set. Therefore, our approach is forced to deviate from Eskin’s at this point.

We complete @� algebraically, using the Borel–Tits classification of abstract homo-
morphisms between simple groups. We restrict @� to a collection of countably many
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chambers in U@ (a spherical building for G over global fields) and argue that the
restriction is induced by an injective homomorphism of rational points of algebraic
groups. The homomorphism is specified by pairs: isomorphisms of algebraic groups
and inclusions of global fields into local fields. We show the field inclusions are
continuous using the continuity of the boundary function on simplicial neighborhoods
of faces of maximal simplices. Then we extend the restriction to an automorphism
of G by completing the field inclusions. Finally, we show that the extension of the
restriction is also an extension of @� .

See also Druţu [11] in the case when K is a number field and S D V1
K

for a more
combinatorial approach to this problem.

To conclude Section 6, a result of [12] is applied to show that the automorphism of G

which corresponds to @� , stabilizes G.OS / up to Hausdorff equivalence. We denote
the group of all such automorphisms by AutHd.GIG.OS //. Therefore,

QI.G.OS //Š AutHd.GIG.OS //:

Automorphisms coarsely preserving lattices

If G is K–anisotropic, then G and G.OS / are Hausdorff equivalent so

AutHd.GIG.OS //D Aut.G/:

In Section 7 we show that AutHd.GIG.OS // is a null subset of Aut.G/ otherwise. We
also show that AutHd.GIG.OS //D Comm.G.OS // when G is K–isotropic and K

is a number field.

5 Examples

This section will be especially useful for geometric group theorists who are not special-
ists in S –arithmetic lattices.

In this section we present six examples illustrating various aspects of Theorem 1.1. To
focus on previously unknown results, the examples below will all be for the case that
G is K–isotropic and S ¤ V1

K
.

Example (A)

The basic global field is Q. It supports a countably infinite family of inequivalent
valuations (which we think of as metrics for the global field): an “infinite” valuation
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and an l –adic valuation for every prime number l . It is well known that these are the
only valuations supported on Q.

The infinite valuation v1W Q ! R is obtained by embedding Q into C and then
restricting the standard metric on C. Any valuation on a global field that is obtained
through an embedding into C is called archimedean. By completing Q metrically with
respect to v1 we obtain the real numbers. In the notation of Section 1, this is written
as Qv1 D R.

The only archimedean valuation on Q is v1 , but there are still the nonarchimedean
l –adic valuations v.l/ for prime numbers l . First, we define for any integer k , the
natural number degl.k/ as the exponent of l occurring in the prime factorization of k .
Then, we define v.l/W Q! R byˇ̌̌ n

m

ˇ̌̌
v.l/

D exp
�
degl.m/� degl.n/

�
:

Hence, the defining feature of the l –adic valuation is that it treats the size of powers of
l backwards from what our intuition is used to from the archimedean valuation. That
is jlnjv.l/

! 0 as n!1, and j1= lnjv.l/
!1 as n!1.

The l –adic valuation on Q is not complete. If we complete Q with respect to v.l/ , we
obtain the l –adic numbers Qv.l/

which is written simply as Ql . The l –adic numbers
are locally compact and totally disconnected.

If we fix a prime number p and let S D fv1; v.p/g, then

OS D fx 2Q j 1� jxjv.l/
for all primes p ¤ lg D ZŒ1=p�:

Because L� rank.SL3/ D 2 for all fields L, Theorem 1.1 applies to SL3.ZŒ1=p�/.
Since Q admits no nontrivial automorphisms, the image of SL3 under the adjoint
representation is PGL3 , and transpose-inverse is the only outer automorphism of
PGL3 , we have

QI.SL3.ZŒ1=p�//Š PGL3.Q/Ì Z=2Z:

Notice that as abstract groups,

QI.SL3.ZŒ1=p�//ŠQI.SL3.ZŒ1= l �//

for any primes p and l . However this isomorphism is not topological. Indeed,
QI.PGL3.ZŒ1=p�// is the quotient of a space of functions so it has a quotient topology
descending from the compact-open topology. This topology is equivalent to the subspace
topology on PGL3.Q/ inherited from the diagonal embedding

PGL3.Q/! PGL3.R/�PGL3.Qp/:
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With this natural topological structure, the sequence of quasi-isometry classes given by0@1 0 p�n

0 1 0

0 0 1

1A
for n 2 N is discrete in QI.PGL3.ZŒ1=p�//, but not in QI.PGL3.ZŒ1= l �//. In
particular, SL3.ZŒ1=p�/ and SL3.ZŒ1= l �/ are not quasi-isometric if p ¤ l .

Example (B)

Expanding on the previous example, we let P be any finite set of prime numbers. Then
for the finite set of valuations S D fv1g[ fv.p/gp2P , the ring OS is:

fx 2Q j 1� jxjv.l/
for all primes l … Pg D ZŒ1=mP �;

where mP D
Q

p2P p .

Expanding on the previous example in another direction, recall that for any field L,
the rank of SLn over L is n� 1. Hence, as long as n� 3 we have

QI.SLn.ZŒ1=mP �//Š PGLn.Q/Ì Z=2Z:

Again we note that QI.SLn.ZŒ1=mP �// has a natural topology equivalent to the
topology obtained via the diagonal embedding

PGLn.Q/! PGLn.R/�
Y

p2P

PGLn.Qp/:

Hence QI.SLn.ZŒ1=mP �// becomes “more discrete” as the finite set P grows.

Also notice that the semisimple Lie group

PGLn.R/�
Y

p2P

PGLn.Qp/

is an index two subgroup of the topological closure of QI.SLn.ZŒ1=mP �//. Hence,
the quasi-isometry class of SLn.ZŒ1=mP �/ identifies the ambient semisimple Lie group
that contains SLn.ZŒ1=mP �/ as a lattice.

Example (C)

Examine the quadratic form

ˆD x2
1 C 2x2

2 �
p

2x2
3 C

5X
iD4

.x2
i �x2

iC2/:
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As ˆ is defined over Q.
p

2/, the special orthogonal group SOˆ is a Q.
p

2/–group.

There are exactly two archimedean valuations supported on Q.
p

2/. They are obtained
from the embeddings aC

p
2b 7! aC

p
2b 2 C and aC

p
2b 7! a�

p
2b 2 C. Call

these valuations v1
1

and v1
2

respectively, and note that Q.
p

2/v1
1

and Q.
p

2/v1
2

are
each isomorphic to R as topological fields, but each in a different way.

We want to add a nonarchimedean valuation to our example. Since 3 does not split as
a product of two primes in ZŒ

p
2�, there is a unique extension of the 3–adic valuation

to Q.
p

2/ (written as v.3/ ), and Q.
p

2/v.3/
ŠQ3.

p
2/.

Let S D fv1
1
; v1

2
; v.3/g. Then OS D ZŒ

p
2; 1=3�. We can apply Theorem 1.1 since

the rank of SOˆ over both Q.
p

2/ and Q.
p

2/v1
2

is 2, and the rank of SOˆ over
both Q.

p
2/v1

1
and Q.

p
2/v.3/

is 3. (That Q.
p

2/v.3/
� rank.SOˆ/D 3 follows from

the fact that
p
�2 2Q3 .)

There is a nontrivial element of Aut.Q.
p

2//. Namely � where �.aCb
p

2/Da�b
p

2.
However, while �S D S , there is no Q.

p
2/–isomorphism between � SOˆ and SOˆ .

Indeed, � SOˆ and SOˆ are not even isomorphic over R as �ˆ has signature .5; 2/
and ˆ has signature .4; 3/. Hence, Aut.Q.

p
2//G;S is trivial (as is Out.SOˆ/) so

Theorem 1.1 yields

QI
�

SOˆ.ZŒ
p

2; 1=3�/
�
Š SOˆ.Q.

p
2//:

Example (D)

The symplectic group SP6 has rank 3 over any field. For the global field Q.i/, we
take the lone archimedean valuation v1 (given by restricting the standard metric on
C) along with the .2C i/–adic and the .2� i/–adic valuations to comprise the set S .
(Note that 2C i and 2� i are prime in ZŒi �.)

Obviously Q.i/v1ŠC, and because .2Ci/.2�i/D5, both Q.i/v.2Ci/
and Q.i/v.2�i/

are isomorphic to Q5 . Now

QI
�

SP6
�
Z
�
i; 1

2Ci
; 1

2�i

���
Š PSP6.Q.i//Ì Z=2Z;

where PSP6 is the adjoint group of SP6 . The nontrivial element of Z=2Z represents
the automorphism � of Q.i/ defined by �.i/ D �i . Complex conjugation clearly
stabilizes S , and �PSP6 D PSP6 since PSP6 is defined over Q.
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Example (E)

Let Fq be the finite field with q elements, and let Fq.t/ be the field of rational functions
with indeterminate t and coefficients in Fq . This is the primary example of a global
function field. All other global function fields are finite algebraic extensions of Fq.t/

in analogy with the role Q plays for number fields.

The characteristic of Fq.t/ is nonzero so there are no embeddings of this field into C

and, hence, no archimedean valuations.

Examine the valuation of Fq.t/ at infinity, v1 , defined on quotients of polynomials byˇ̌̌p.x/
q.x/

ˇ̌̌
v1
D exp

�
deg.p.t//� deg.q.t//

�
:

Note that v1 measures the degree of the pole of a rational function at 12 P1.SFq/,
where SFq is the algebraic closure of Fq .

We could define an analogous valuation, vp , for every point p 2 P1.SFq/. The ring of
functions f 2 Fq.t/ for which jf jvp

� 1 for all p 2P1.SFq/�f1g are precisely those
rational functions which have no poles in P1.SFq/�f1g. Equivalently, the ring above
is simply the ring of polynomials with indeterminate t . In the notation used in Section
1, we have OS D Fq Œt � for S D fv1g.

Completing Fq.t/ with respect to v1 produces the locally compact field of formal
Laurent series Fq..t

�1// with indeterminate t�1 . Hence, we have by Theorem 1.1 that

QI
�
SLn.Fq Œt �/

�
<
�

PGLn
�
Fq..t

�1//
�

Ì Z=2Z
�

Ì Aut
�
Fq..t

�1//
�

for all n� 3. We remark that Aut
�
Fq..t

�1//
�

is profinite and in particular is compact.

It will be shown in [33] however, that for this particular example the quasi-isometry
group is determined exactly as it is in the number field case. That is,

QI
�
SLn.Fq Œt �/

�
Š
�

PGLn
�
Fq.t/

�
Ì Z=2Z

�
Ì B;

where B is a finite solvable subgroup of PGL2.Fq/. Precisely, B is the group of
Fq –points of PGL2 Š Aut .P1/ that stabilize our distinguished point 12 P1.SFq/.

Example (F)

We give a final example involving function fields for which I do not at this time know
of a proof that the quasi-isometry group is exactly the subgroup of Aut.G/ consisting
commensurators.
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Examine the smooth elliptic curve C over F5 given by the equation y2 D t3� t . The
field of F5 –rational functions on C is F5.t;

p
t3� t/, and it is a separable extension

of F5.t/.

Note that .t D 2;y D 1/ and .t D 1;y D 0/ define points on C which we name p

and q respectively. We define valuations of F5.t;
p

t3� t/ with respect to the points
p and q as we did in the previous example, and we let S D fvp; vqg. Then OS is the
ring of regular functions on C �fp; qg.

Since ŒF5.t;
p

t3� t/ W F5.t/�D 2, and since the point of C given by .t D 2;y D 4/

and the point p each lie above 2 2 P1.F5/, we know by the so-called fundamental
identity of valuation theory that F5.t;

p
t3� t/vp

Š F5..t � 2//.

As the point q 2 C is the only point on C with t D 1 (ie q is a point of ramification)
p

t3� t … F5.t/w1
where w1 denotes the valuation of F5.t/ at the point 1 2 P1.SF5/.

Hence, F5.t;
p

t3� t/vq
Š F5..t � 1//.

p
t3� t/.

Now we are set to apply Theorem 1.1 which states in this case that

QI
�

SP6.OS /
�

is contained as a measure zero subgroup of the direct product of

PSP6
�
F5..t � 2//

�
Ì Aut

�
F5..t � 2//

�
with

PSP6
�
F5..t � 1//.

p
t3� t/

�
Ì Aut

�
F5..t � 1//.

p
t3� t/

�
:

This is a stronger result than the one that is known to hold in the K–anisotropic case,
but it is an incomplete result. There is evidence to suggest that there should be an
isomorphism

QI
�

SP6.OS /
�
Š PSP6

�
F5.t;

p
t3� t/

�
:

Note that it can be shown that Aut.F5.t;
p

t3� t//G;S is trivial since there are no
nontrivial automorphisms of C which fix the point p and the point q .

Corollary 1.2(i) would hold for SP6.OS / if the above isomorphism existed.

6 Completing the boundary function

Let G.OS / be as in Theorem 1.1. Since G.OS / and Ad.G/.OS / are commensurable
up to finite kernels (see eg [19, I.3.1.1.iv]),

QI.G.OS //ŠQI.Ad.G/.OS //:
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Thus we may, and will, assume throughout the remainder that G is of adjoint type.

Let
G D

Y
v2S�V

G;a

K

G.Kv/:

Let X be the natural product of nonpositively curved symmetric spaces and Euclidean
buildings on which G acts by isometries and such that Isom.X /=G is compact. In
this case Isom.X /Š Aut.G/.

Throughout we let n equal the rank of X . (Recall the rank of X is the maximal
dimension of a flat in X .)

Two boundaries

For any point e 2 X , there is a natural topology on the space of directions from e

which forms a simplicial complex B.G/, called the spherical Tits building for G .
The spherical building is .n�1/–dimensional, and it is the same as the spherical
building for G that is produced using the standard BN pair construction. Hence, group
automorphisms of G induce simplicial automorphisms of B.G/.

A subset L � X is called a wall if it is a codimension 1 affine subspace of a flat
that is contained in at least two distinct flats. A Weyl chamber in X is the closure
of a connected component of a flat F �X less all the walls containing a fixed point
x 2 F . Most of the time we will not care about the point x which was used to create a
Weyl chamber. In those cases when the distinction is important, we say any such Weyl
chamber is based at x . (This is different terminology than was used in [32]. See the
word of caution following the discussion of the Furstenberg metric.)

The Furstenberg boundary of X is the compact space of maximal simplices in B.G/.
We denote it by �X . It can be defined equivalently as the space of Weyl chambers in X

modulo the relation that two Weyl chambers are equivalent if they are a finite Hausdorff
distance from each other.

If X D X1 �Xp , where X1 is a symmetric space and Xp and a Euclidean building,
then �X D �X1 � �Xp .

Furstenberg metric

There are metrics on �X1 and �Xp that are invariant under a fixed isotropy subgroup of
Isom.X1/ and Isom.Xp/ respectively. The metric on �X1 is well-known.
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To define the metric on �Xp , we begin by choosing a point x 2Xp and a representative
Weyl chamber S�Xp for every equivalence class in �Xp such that S is based at x .
Thus, we regard �Xp as the space of all Weyl chambers based at x .

For any Weyl chamber based at x , say S, let SW Œ0;1/! S be the geodesic ray
such that S.0/D x and such that S.1/ is the center of mass of the boundary at
infinity of S with its usual spherical metric.

We endow �Xp with the metric ydp where

ydp.Y;Z/D

(
�; if Y\ Z D fxg;

exp
�
� jY\ Zj

�
; otherwise.

In the above, jY\ Zj is the length of the geodesic segment Y\ Z .

Note that ydp is invariant under the action of the stabilizer of x and is a complete
ultrametric on �Xp . That ydp is an ultrametric means that it is a metric and

ydp.Y;Z/�maxf ydp.Y;X/; ydp.X;Z/g for any Y;Z;X 2 �Xp:

We endow �X with the metric yd Dmaxf yd1; ydpg.

Caution

In [32], Weyl chambers in buildings are called sectors, and the metric ydp is given a
different form. In [32], we made arguments by projecting onto the factors of X , and
most of the paper analyzed the geometry of Euclidean buildings. Thus, our proof was
geared towards terminology and tools more common for buildings. In this paper, we
favor terminology and metrics for buildings which are more compatible with their
better established symmetric space counterparts.

A boundary function defined a.e.

In Section 8, we will define a group � that acts on X and is isomorphic to G.OS /

up to finite groups (� is a lattice in the simply connected cover of G ). We will also
define a � –invariant set N.�/ � X such that �nN.�/ is compact. A theorem of
Lubotzky–Mozes–Raghunathan [18] states that � is quasi-isometric to any metric
neighborhood of an orbit of � in X . Hence, if we are given a quasi-isometry of
G.OS /, we may replace it with an equivalent quasi-isometric embedding

�W N.�/ �!N.�/�X:
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Every direction in X (ie every geodesic ray) is contained in a flat. In Section 8 we will
show that enough flats in X have enough of their volume contained in N.�/ to enable
us to construct a boundary function

@�W U@! B.G/;

where U@ is a subcomplex of B.G/ that has full measure in �X . The function @� is a
simplicial isomorphism of U@ onto its image.

We state below a lemma on a topological property of @� that is proved in Section
9. First, we define N .f / as the simplicial neighborhood in B.G/ of a fixed .n�2/–
dimensional simplex f � B.G/. That is, N .f / is the set of all chambers in B.G/
containing f . We define NU .f / to be the simplicial neighborhood of f in U@ , or
N .f /\U@ .

Lemma 9.4 If f �U@ is a simplex of dimension n�2, then @�jNU .f / is continuous
in the Furstenberg metric.

Our goal is to show that @� is the restriction of an automorphism of B.G/ which is
continuous on �X . Then by Tits’ Theorem, @� is induced by an element of Aut.G/Š
Isom.X /. Knowing this would enable us to apply an argument of Eskin’s to show
further that @� corresponds to an isometry of X which is a finite distance in the sup
norm from � .

Embeddings of spherical buildings

An embedding of spherical buildings B1 into B2 is a function f W B1!B2 that restricts
to a simplicial isomorphism between B1 and f .B1/.

We wish to describe a particularly nice class of embeddings that play a key role in our
proof. These are embeddings which arise from extremely well behaved homomorphisms
of rational points of simple groups. We begin by describing the latter.

Let k be an arbitrary field and H a simple k –group. If k 0 is an extension of k , then
there are injective group homomorphisms of H.k/ into H.k 0/ of the form ˇ ı 0 ,
where  W k! k 0 is an injective homomorphism of fields and ˇW  H!H is a k 0–
isomorphism of algebraic groups. Any such homomorphism will be called standard.

Now let B.H.k// and B.H.k 0// be the spherical buildings for H.k/ and H.k 0/ respec-
tively. A standard homomorphism induces an embedding f W B.H.k//! B.H.k 0//.
We call any such embedding standard as well.

Implicit in theorems of Tits and Borel–Tits, is the following Proposition.
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Proposition 6.1 Let H be a simple connected k –group of adjoint type and assume k

is infinite. If k 0 is an extension of k with k � rank.H/D k 0� rank.H/� 2, then any
embedding �W B.H.k//! B.H.k 0// is standard.

Proof Let H.k/C be the subgroup of H.k/ generated by the k –points of the unipotent
radicals of k –parabolic subgroups of H. In [30, Chapter 5], Tits shows how to construct
an injective group homomorphism ��W H.k/C!H.k 0/ which is induced by � . We
have used the equal rank condition here.

We would like to be able to apply the well known theorem of Borel–Tits that classifies
certain abstract homomorphisms between rational points of simple groups as being
standard [8, Theorem A].

By construction, �� has a nontrivial image. Hence, our assumptions on H and k

satisfy all of the hypotheses on �� needed to apply the theorem of Borel-Tits except,
possibly, for the condition that the image of �� is Zariski dense in H. If we let M be
the the Zariski closure of the image of �� , then our goal is to show that MDH.

By [8, Corollary 6.7], we know that H.k/C has no proper finite index subgroup.
Hence, M must be connected. Also note that M modulo its radical, R.M/, has positive
dimension since H.k/C is not solvable. In particular there exists a connected simple
factor L of positive dimension of M=R.M/.

We postcompose �� with the natural sequence of homomorphisms,

M!M=R.M/! L! Ad.L/;

to obtain a homomorphism H.k/C!Ad(L).k 0/ with a nontrivial, Zariski dense image.
Now we can apply [8, Theorem A] to conclude that there exists a field homomorphism
 W k! k 0 and an isogeny  H! Ad.L/. Therefore,

dim.H/D dim. H/D dim.Ad.L//� dim.M=R.M//� dim.M/:

Because H is connected and M � H, we conclude that M D H as desired. We are
then able to apply [8, Theorem A] to our original homomorphism �� and arrive at our
desired conclusion.

A global sub-building

We would like to be able to apply Proposition 6.1 to an algebraically defined sub-
building of B.G/. We will need to begin by finding an extension of K , for each
v 2 S �V

G;a
K

, that is contained in Kv and that satisfies the hypothesis of Proposition
6.1. This is the purpose of the following Lemma.
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Lemma 6.2 For each v 2 S , there is a finite algebraic extension Lv of K such that
Lv is contained in Kv and Lv � rank.G/DKv � rank.G/.

Proof Given a maximal Kv–torus T < G, there is a group element g 2 G.Kv/

such that gT is defined over K , where gT denotes the conjugate of T by g . See
Platonov–Rapinchuk [21, Section 7.1 Corollary 3] for a proof of this fact. It is assumed
that K is a number field throughout most of [21], but the proof of this fact does not
make an essential use of the number field assumption, aside from the proof of the
K–rationality of the maximal toric variety of G. For a proof of this last fact over
arbitrary fields K , see Borel–Springer [7].

Assume that T and g are as above and that Kv � rank.T/DKv � rank.G/. It is well
known that there is a finite separable extension Fv of K over which gT splits (see eg
Borel [6, 8.11]). Hence, if X. gT/L is the group of characters of gT defined over an
extension L of K , we have

X. gT/Kv
D X. gT/Fv

\X. gT/Kv
D X. gT/Fv\Kv

:

(Recall that a torus splits over a field L if and only if all of its characters are defined
over L.)

Therefore, we let Lv D Fv \Kv so that

Kv � rank.T/DKv � rank. gT/DLv � rank. gT/:

Hence,

Kv � rank.G/�Lv � rank.G/:

Since Lv <Kv , the inequality is an equality.

We define the group

GR D

Y
v2S�V

G;a

K

G.Lv/:

Let B.GR/ be the spherical building for GR . By our choice of Lv , the building
B.GR/ has countably many chambers, the dimensions of B.GR/ and B.G/ are equal,
and B.G/ naturally contains B.GR/ as a subcomplex.

By conjugating G.OS /, we can assume that B.GR/� U@ . Indeed, since B.GR/ has
countably many chambers, we can appeal to Lemma 8.9 below.
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Extending the global embedding

Define @�R as the restriction of @� to B.GR/. The induced group homomorphism

@�R�W

Y
v2S�V

G;a

K

G.Lv/C �!G

has a nontrivial image in each factor of G by construction. Also, Tits proved that each
G.Lv/C is an abstract simple group [29, Main Theorem]. It follows that @�R� , and
hence @�R , preserves factors up to permutation.

Therefore we can apply Proposition 6.1 to conclude that @�R is induced by a family
of standard homomorphisms. Precisely, there is a permutation � of S �V

G;a
K

, and for
each v 2 S �V

G;a
K

there exists an injective field homomorphism

 vW L
v
!K�.v/

and a K�.v/–isomorphism of algebraic groups

ˇvW
 v G!G

such that @�R� is the product of the homomorphisms

ˇv ı 
0
v W G.Lv/C!G.K�.v//:

Now extending @�R amounts to extending each  v . This is the technique of the
proposition below. Before we continue though, we require an extra piece of notation.

Let f � B.GR/ be an .n�2/–dimensional simplex. We denote the simplicial neigh-
borhood of f in B.GR/, or N .f /\B.GR/, by NR.f /.

We continue with the following Proposition.

Proposition 6.3 The map @�RW B.GR/! B.G/ uniquely extends to an embedding
@�RW B.G/! B.G/ which is uniformly continuous on the Furstenberg boundary.

Proof Choose an apartment † � B.GR/ � B.G/ and a chamber c � †. For any
.n�2/–dimensional simplex f � c , there exists a root space Rf �† (as defined in
[30, 1.12]) such that f � @Rf .

By [30, Proposition 3.27], any chamber in NR.f / is contained in an apartment of
B.GR/ which contains Rf . Therefore, by [30, Proposition 5.6(i)], there exists a
valuation w.f / 2 S � V

G;a
K

and an Lw.f /–defined root subgroup Uw.f/ < G, such
that Uw.f/.L

w.f // acts faithfully and transitively on NR.f /�fcg.

Geometry & Topology, Volume 11 (2007)



Quasi-isometric rigidity of higher rank S –arithmetic lattices 1021

The valuation w.f / depends on a choice of f . However, for any valuation v 2 V
G;a

K
,

we can choose a face fv � c such that w.fv/D v . We assume we have chosen such a
face fv for all v 2 S �V

G;a
K

.

If bv 2NR.fv/�fcvg, then for any u 2 Uv.L
v/ we have ubv 2 B.GR/. Therefore,

@�.ubv/D @�R.ubv/D ˇ ı 
0
v .u/@�R.bv/:

Since NR.fv/�NU .f /, it follows from Lemma 9.4 that ˇ ı 0
v , and hence  v , is

continuous for all v 2 S �V
G;a

K
.

Using translation under addition, we see that  v is also uniformly continuous. There-
fore, we can complete  v to x vW SLv!K�.v/ . Each x v is injective since any field
homomorphism is injective.

Now let @�RW B.G/ ! B.G/ be the embedding induced by the homomorphisms
ˇv ı x 

0
v W G.SLv/!G.K�.v//. The map @�R is clearly continuous on the Furstenberg

boundary, and since the Furstenberg boundary is compact, @�R is uniformly continuous.

If K is a number field then @�R is an automorphism. In general though, it is not
necessarily the case that a self-embedding of a spherical building is an automorphism.
Take for example the spherical building for the standard flag complex of Pk.Fq..t///

which is both isomorphic to, and properly contains, the flag complex for Pk.Fq..t
2///.

The surjectivity of @�R will be shown in Lemma 6.8 and must wait until we can show
that @�R extends @� . Then we can use the fact that @� has a dense image.

Extending the a.e. defined boundary function

Our goal is to show that @� is extended by @�R .

Earlier we chose each global field Lv to be large in an algebraic sense with respect
to each Kv . We can also assume that each Lv is topologically large with respect to
each Kv by choosing Lv <Kv to be a dense subfield. Indeed, if Lv is not dense we
could replace Lv with a finite extension that is dense in Kv . This will ensure that
B.GR/ carries some of the topological information of B.G/. In particular we have the
following Lemma.

Lemma 6.4 For any .n�2/–dimensional simplex f � B.GR/, the set NR.f / is
dense in N .f /� B.G/ under the subspace topology of the Furstenberg topology.
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Proof Let †f � B.GR/ be an apartment containing f , and suppose cf � †f is a
chamber containing f .

As in the proof of the previous lemma, there is a valuation v 2 S �V
G;a

K
and an Lv–

defined root subgroup U<G, such that U.Lv/ <GR acts faithfully and transitively on
the set NR.f /�fcf g. It also follows from [30, Proposition 5.6(i)], that U.Kv/<G acts
faithfully and transitively on the set N .f /�fcf g. Therefore, U.Lv/ is homeomorphic
to NR.f /�fcf g, and U.Kv/ is homeomorphic to N .f /�fcf g.

Since Lv is dense in Kv , and because U is isomorphic as an Lv–variety to affine
space, we have that U.Lv/ is dense in U.Kv/. Therefore, we have the following series
of dense inclusions

NR.f /�fcf g �N .f /�fcf g �N .f /:

Thus the Lemma is proved.

Let FR be the set of .n�2/–dimensional simplices in B.GR/ and define

DR D

[
f 2FR

NU .f /

We use the topological properties of B.GR/, and of @�R , to deduce topological
properties of @�jDR

in the following Lemma.

Lemma 6.5 The function @�jDR
W DR! B.G/ is Furstenberg continuous.

Proof Let " > 0 and a chamber c1 � DR be given. By Proposition 6.3, there is a
ıR > 0 such that

yd
�
@�.w1/; @�.w2/

�
< "=3

for all chambers w1; w2 � B.GR/ with yd.w1; w2/ < ıR .

Suppose c2 �DR is a chamber with yd.c1; c2/ < ıR=3. By Lemma 6.4 and Lemma
9.4, there are chambers c0i �B.GR/ that intersect ci in an .n�2/–dimensional simplex,
and such that yd.ci ; c

0
i/ < ıR=3 and yd.@�.ci/; @�.c

0
i// < "=3. Hence

yd.@�.c1/; @�.c2//� yd.@�.c
0
1/; @�.c

0
2//C†

2
iD1
yd.@�.ci/; @�.c

0
i// < ":

Since @�jDR
and @�R are continuous we have the following Lemma.

Lemma 6.6 For any simplex q �DR , we have @�.q/D @�R.q/:

Geometry & Topology, Volume 11 (2007)



Quasi-isometric rigidity of higher rank S –arithmetic lattices 1023

Proof Both @�jDR
and @�RjDR

are continuous so they are uniquely determined by
@�R . Indeed, according to Lemma 6.4, B.GR/ is Furstenberg dense in DR .

In Section 8, a maximal Kv –split torus Av <G is chosen for each v 2 S �V
G;a

K
. The

tori are used to supply an ergodic theory argument that allows for the creation of the
boundary function @�W U@! B.G/.

Let †A � B.G/ be the apartment stabilized by the groupY
v2S�V

G;a

K

Av.Kv/ <G:

By conjugating G.OS /, we may assume that †A is an apartment in �.GR/. Let W

be the Weyl group with respect to †A , and denote a fixed chamber in †A by aC . Let
a� be the chamber in †A opposite of aC . For each w 2W we let Pw < G be the
stabilizer of waC .

In Section 8, we will see that there exists a co-null subset U �G such that U@ D UaC .
By Fubini’s theorem, we can conjugate G.OS / such that Pw \U is co-null in Pw for
all w 2W .

Define
Uw
@ D fgwa� 2 �X j g 2 Pw \Ug

and
Uw D fg 2 U j gwa� 2 Uw@ g:

Note that wa� is opposite of waC , so we have that Pwwa� is a full measure subset
of �X . Since Pw \ U is co-null in Pw , it follows that Uw

@
is a full measure subset

of �X . Hence, Uw � G is co-null for all w 2W . Consequently, \w2W Uw � G is
co-null.

We replace U with \w2W Uw . As a result, if c � U@ is a chamber, then there is an
apartment †c which is completely contained in U@ , and such that the chamber opposite
from c in †c is contained in †A . For any chamber c � U@ , we let

ıA.c/Dmin
†c

fd†c
.c; †A/g;

where the min is taken over all †c as above with respect to the Tits metric d†c
on

†c .

We can now improve upon Lemma 6.6.

Lemma 6.7 For any simplex q � U@ , we have @�.q/D @�R.q/:
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Proof For a chamber c � U@ , we prove that @�.c/D @�R.c/ by induction on ıA.c/.

If ıA.c/� 1, then the result follows from the previous lemma. Now suppose the result
is true for any chamber f � U@ with ıA.f / � k � 1, and let c � U@ be a chamber
with ıA.c/D k .

Let †c � U@ be an apartment containing c , and such that the chamber in †c opposite
of c is contained in †A . Choose a chamber f � †c such that d†c

.c; f / D 1 and
ıA.f / < k . If f op is the chamber in †c opposite of f , then ıA.f op/ � 1. By our
induction hypothesis, @�.f /D @�R.f / and @�.f op/D @�R.f

op/.

It will be shown in Lemma 8.8 that @� preserves apartments. Therefore, @�.†c/

is an apartment. In fact, @�.†c/ is the unique apartment containing @�R.f / and
@�R.f

op/. Note that @�R.†c/ is also the unique apartment containing @�R.f / and
@�R.f

op/.

We conclude our proof by observing that both @�.c/ and @�R.c/ must be the unique
chamber in @�.†c/ D @�R.†c/ that contains @�.c \ f / D @�R.c \ f /, but not
@�.f /D @�R.f /.

The extension is an automorphism

Now that we have shown that @�R extends @� , we have to prove that @�R is surjective,
and hence an automorphism of B.G/. Then it follows that @�R corresponds to an
automorphism of G , or alternatively, an isometry of X .

Lemma 6.8 The map @�R is an automorphism of B.G/.

Proof Let �� be a coarse inverse for � , and define U@� and @��
R

analogously to U@

and @�R .

Let †2U �
@

, and let F �X be the flat corresponding to †. Note that � ı�� preserves
the portion of F that lies near an orbit of G.OS / in X (see Section 8). Since F is
the only flat in X that is a finite Hausdorff distance from itself, it follows that

@�R ı @�
�
R
.†/D†:

Hence,
U �@ � @�R

�
B.G/

�
:

Note that the map @�R either has a closed null image or is surjective since K�.v/ is a
x v.SL

v/–vector space. The lemma follows since U �
@

is co-null in �X .
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Automorphisms that correspond to quasi-isometries

Let Hd denote the Hausdorff distance between closed subsets of G . We define the
group

AutHd.GIG.OS //D f' 2 Aut.G/ j Hd.'.G.OS //;G.OS // <1g:

Using Lemma 6.7 and Lemma 8.3(vii), Eskin’s proof that the automorphism @�R 2

Aut.G/Š Isom.X / corresponds to an isometry of X that is a finite distance from �

[12, Step 7] can be applied to show the following Proposition.

Proposition 6.9 There is an isomorphism

QI.G.OS //Š AutHd.GIG.OS //

The proof proceeds by identifying points in X as intersections of flats in X . Flats are
parameterized by apartments in B.G/, so @�R completely determines where points
in X are mapped to under the corresponding isometry of X . Any point in a G.OS /–
orbit is a bounded distance from the intersection of flats whose boundaries are in U@ .
Therefore, � maps points in a G.OS /–orbit to within a bounded distance of their
images under the isometry corresponding to @�R .

Eskin’s proof makes no mention of the topological nature of this isomorphism, but it
clearly follows. The fact that the isomorphism is topological is more interesting in
the S –arithmetic setting since merely the abstract group type of the quasi-isometry
group of an arithmetic lattice in a real semisimple Lie group determines the lattice up
to commensurability.

7 Automorphisms coarsely preserving lattices

We want to determine the group AutHd.GIG.OS // and complete our proof of Theorem
1.1.

The case of anisotropic groups

Notice that if G is K–anisotropic, then AutHd.GIG.OS // is isomorphic to Aut.G/.
Indeed, G.OS / is a cocompact lattice in G so Hd.G;G.OS // <1. Thus, our proof
of Theorem 1.1(iii) is complete (assuming the results from Section 8 and Section 9).
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The function field case for isotropic groups

The proof of Theorem 1.1(ii) concludes with Lemma 7.1 below. We include the proof
here to group it with similar results, but its proof uses notation and concepts defined in
Section 8. The reader may want to return to the proof of this small fact after having
read what will follow.

Lemma 7.1 If G is K–isotropic, then the group AutHd.GIG.OS // is a measure zero
subgroup of Aut.G/.

Proof For a given element of AutHd.GIG.OS //, we let gW X ! X be the corre-
sponding isometry. We choose a neighborhood N.�/g � X of the set N.�/ from
Lemma 8.3, such that N.�/� g.N.�/g/.

Define volF to be Lebesgue measure on F , and let " be as in Lemma 8.3. There is a
Weyl chamber C � X such that for any g 2 AutHd.GIG.OS //, for any flat F � X

that contains C up to Hausdorff equivalence, and for any point x 2 F , we have

lim
r!1

volF
��

F \N
�
�
�g�
\Bx.r/

�
volF

�
Bx.r/

� < 1� ":

Let F 0 �X be a flat containing g.C/ up to Hausdorff equivalence. Then, by replacing
F with g�1.F 0/ in the preceding inequality, it follows that for any point y 2 F 0 :

lim
r!1

volF 0
��

F 0\N
�
�
��
\By.r/

�
volF 0

�
By.r/

� < 1� ":

Therefore, F 0 … U. Hence, if c � B.G/ is the chamber representing the equivalence
class of C, then AutHd.GIG.OS // � c � B.G/�U@ .

The lemma follows from Fubini’s theorem since U@ is co-null in �X .

The number field case for isotropic groups

The proof of the following proposition was indicated to me by Nimish Shah, and it
completes the proof of Theorem 1.1(i).

Proposition 7.2 If K is a number field and G is K–isotropic, then

AutHd
�
GIG.OS /

�
D Comm

�
G.OS /

�
:
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Proof Let ' 2 AutHd.G;G.OS //. We have to show that ' 2 Comm.G.OS //.

To simplify notation we let ƒDG.OS / and ƒ' D '.G.OS //. By replacing ƒ with
a finite index subgroup, we can assume that ƒ and ƒ' are contained in the group

GC D
Y
v2S

G.Kv/
C:

By Ratner’s theorem on unipotent flows [25, Theorem 6.4], the orbit of the point
.ƒ;ƒ'/ in GC=ƒ�GC=ƒ' under the diagonal action of GC is homogeneous. If
we denote the diagonal embedding of GC into GC �GC by �GC , then the previous
sentence says that

�GC.ƒ;ƒ'/DL.ƒ;ƒ'/;

where L is a closed subgroup of GC �GC which contains �GC .

We claim that either LD�GC or there is some v 2 S such that

1�G.Kv/
C
� .1�GC/\L:

Indeed, if �GC<L, then there are group elements g1;g22GC such that .g1;g2/2L

and g1 ¤ g2 . Hence, there is some g 2 GC with g ¤ 1 and .1;g/ 2 L. That is to
say, .1�GC/\L is nontrivial. Note that if .1; h/ 2 L, then for any g 2 GC , we
have .1;ghg�1/D .g;g/.1; h/.g�1;g�1/ 2L since �GC <L. Thus, .1�GC/\L

is a normal subgroup of 1�GC . Now a theorem of Tits’ [29, Main Theorem] tells
us that that each group G.Kv/

C is simple since G has a trivial center. Therefore,
1�G.Kv/

C �L for some v 2 S , since .1�GC/\L is a nontrivial normal subgroup
of 1�GC . Thus, our claim is proved.

If it is the case that 1�G.Kv/
C � L, then �GC.ƒ;ƒ'/ contains fƒg �GC=ƒ' ,

as ƒ' is irreducible. Hence, for any g 2 GC , there is a sequence fgkg � GC such
that �gk.ƒ;ƒ

'/! .ƒ;gƒ'/: Since gkƒ!ƒ, it follows that there are sequences
fhkg �GC and f�kg 2ƒ, such that gk D hk�k and hk! 1. Therefore, h�1

k
gk 2ƒ

and h�1
k

gkƒ
' ! gƒ' which proves that ƒƒ' D GC=ƒ' . Note that our assumption

that ' 2 AutHd.GIƒ/ implies that ƒƒ' is bounded. Thus, this case is precluded.

We are left to consider the case when �GC DL. We will show that ƒƒ' �GC=ƒ'

is a closed set. To this end, suppose there is a sequence f�kg �ƒ and a group element
g 2 GC with �kƒ

' ! gƒ' . Then ��k.ƒ;ƒ
'/! .ƒ;gƒ'/. Since �GC.ƒ;ƒ'/

is closed, .ƒ;gƒ'/D�h.ƒ;ƒ'/ for some h 2GC . Therefore, gƒ' D hƒ' . Since
hƒDƒ, we have h 2ƒ which shows that ƒƒ' is closed.

Since ƒƒ' is bounded, it must be compact which would require it to be finite or perfect.
As perfect sets are known to be uncountable, ƒƒ' is finite. That is ' 2Comm.G.OS //

as desired.
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Assuming the material from Section 8 and Section 9, the proof of Theorem 1.1 is
complete. It is the absence of the counterpart to Proposition 7.2 for function fields that
leads to the discrepancy between (i) and (ii) of Theorem 1.1 and Corollary 1.2.

The commensurator group

We close this section with a lemma that provides a concrete description of the group
Comm.G.OS //.

Lemma 7.3 The group Comm.G.OS // is an extension of Aut.G/.K/ by Aut.K/G;S .
If G is K–split and defined over a subfield of K that is fixed pointwise by Aut.K/G;S ,
then

Comm.G.OS //Š
�

G.K/Ì Out.G/.K/
�

Ì Aut.K/G;S :

Proof Recall that G.OS / is embedded diagonally in G with respect to the simple
factors of G . Hence, any group element in Comm.G.OS //\G would have to take
a finite index diagonal subgroup of G.OS / into the diagonal of G . It follows from
the Borel density theorem that any finite index subgroup of G.OS / is a Zariski dense
subset in each simple factor of G . Therefore, Comm.G.OS //\G is also contained
in the diagonal of G .

We have shown that, as an abstract group, Comm.G.OS //\G is a subgroup of the
group L of inner automorphisms of G.Kv/ which commensurate G.OS / <G.Kv/;
the choice of v 2 S �V

G;a
K

is arbitrary.

Borel’s well known determination of inner commensurators for arithmetic groups
[5, Theorem 2] essentially contains a proof that L D G.K/ < G.Kv/. Therefore,
Comm.G.OS //\G is the diagonal subgroup �G.K/ <G .

If ' 2 Comm.G.OS //, then G.OS / and '.G.OS // are commensurable. Hence, an
inner automorphism of G commensurates G.OS / if and only if it commensurates
'.G.OS //. Therefore, '.�G.K//D�G.K/.

Conversely, suppose ' is an automorphism of G with '.�G.K//D�G.K/. Then
'.G.OS // is a lattice contained in �G.K/, so '.G.OS // is commensurable to
G.OS / by the proof of the Margulis–Venkataramana arithmeticity theorem (see [19,
pages 307–311]). Therefore, ' 2 Comm.G.OS //.

Hence, finding Comm.G.OS // amounts to finding the subgroup of Aut.G/ that stabi-
lizes �G.K/. This is what we shall do.
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Suppose  2 Aut.G/ and that  .�G.K// D �G.K/. By [8, Theorem A],  2
Aut.G/ can be uniquely written in the formY

v2S�V
G;a

K

ˇv ı˛
ı
v

for some permutation � of S �V
G;a

K
, a collection of field isomorphisms ˛vW Kv!

K�.v/ , and a collection ˇvW ˛v G! G of K�.v/–isomorphisms of algebraic groups.
Since  is a homeomorphism, each field isomorphism ˛v is a homeomorphism as
well.

Since �G.K/ is stabilized by  ,

ˇv ı˛
ı
vjG.K / D ˇw ı˛

ı
wjG.K /

for all v;w 2 S �V
G;a

K
. Again by [8, Theorem A], there exists a unique � 2 Aut.K/

and a unique K–isomorphism of algebraic groups ıW �G! G, such that ı ı �0 is
extended by all ˇv ı˛ıv .

Because each ˛v is a homeomorphism, � W K!K is a homeomorphism between K

with the v–topology and K with the �.v/–topology. Therefore, �.v/D � � v for all
v 2 S �V

G;a
K

. That is, � 2 Aut.K/G;S .

We have identified an inclusion of Comm.G.OS // into the group of pairs .ı; �/, where
� 2 Aut.K/G;S and ıW �G!G is a K–isomorphism. To see that the inclusion is an
isomorphism, let .ı; �/ be a given pair as above. For any v 2S�V

G;a
K

, let �vW K!K

be defined by �v.x/D �.x/. We assume that the domain of �v has the v–topology
and that the image of �v has the � � v–topology. Hence, �v is continuous, and it may
be completed topologically to obtain an isomorphism S�vW Kv!K� �v . Then we define
a homomorphism G.Kv/!G.K� �v/ by ı ıS�ıv . The product mapY

v2S�V
G;a

K

ı ıS�ıv

is then an automorphism of G that stabilizes �G.K/. Hence, the group of pairs .ı; �/
as above is isomorphic to Comm.G.OS //.

Notice that the group operation on Comm.G.OS // is given by .ı; �/.ı0; � 0/ D .ı ı
�ı0; �� 0/, where �ı0W ��

0 G! � G is the K–isomorphism obtained by applying �
to the coefficients of the polynomials defining ı0 . This is the group structure of an
extension:

1! Aut.G/.K/! Comm.G.OS //! Aut.K/G;S ! 1:
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The above extension splits if G is defined over a subfield of K that is fixed pointwise
by Aut.K/G;S . Indeed, if G is defined over such a field, then for any � 2 Aut.K/
we have � GD G. It follows that if idGW G! G is the identity map, then the pairs
.idG; �/ exist in Comm.G.OS //. Hence, the extension splits.

For the statement that G being K–split implies

Aut.G/.K/ŠG.K/Ì Out.G/.K/;

see, for example, the discussion in [30, 5.7.2]. (Recall that we identify Out.G/ with
the automorphism group of the Dynkin diagram of G.)

8 Constructing a boundary function defined a.e.

Section 6 and Section 7 show the conclusion of the proof for Theorem 1.1 once the
boundary function @�W U@!B.G/ is created. In Section 8, we outline the construction
of @� . We will refer to [12] for most of the details of the construction.

Replacing the word metric

Let eG be the algebraic simply connected cover of G. We define

H D
Y

v2S�V
G;a

K

eG .Kv/ and � D eG .OS/:
Note that � and G.OS / are commensurable up to finite kernels (see eg [19, I.3.1.1.iv]).

Let K be a maximal compact subgroup of H , and let "0 > 0 be given. Let � be the
probability measure on �nH which is derived from Haar measure on H . We choose
a compact set D � �nH which contains the coset � , and such that �.D/� 1� "0 .

We denote by N.�/ı �H=K the set of all cosets with a representative in H that maps
into D under the quotient map H ! �nH . In symbols,

N.�/0 D fhK 2H=K j �h 2Dg:

Since K is the isotropy group of a point in X , we can identify H=K as a subset of X .
For each hK 2H=K, we let P .hK/ be the set of points in X that are at least as close
to hK 2X as to any other point of H=K�X . Precisely:

P .hK/D fx 2X j d.x; hK/� d.x;gK/ for all g 2H g:

Let
N.�/D

[
hK2N.�/ı

P .hK/:
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Notice that N.�/ � X contains the orbit �K. Since �nN.�/ı D D and P .K/ are
compact, �nN.�/ D �nŒN.�/ıP .K/� is compact. Thus, � is quasi-isometric to
N.�/�X with the path metric.

The geometry of N.�/�X with the path metric is more convenient to work with than
the word metric on � . More convenient still, would be working with the geometry of
N.�/ under the restricted metric from X .

In general, a lattice is not quasi-isometric to its orbit with the restricted metric, but with
our standing assumption that eG is placewise not rank one, we can apply the theorem
below from [18]

Theorem 8.1 (Lubotzky–Mozes–Raghunathan) The word metric on � is quasi-
isometric to N.�/�X with the restricted metric.

Using Theorem 8.1, the fact that � and G.OS / are commensurable up to finite kernels,
and the fact that the inclusion of N.�/ with the restricted metric into X is isometric,
we can realize a given quasi-isometry

�W G.OS /!G.OS /

by a quasi isometric embedding

N.�/!X:

The resulting embedding is a finite distance in the sup norm from � , so we will also
denote it by � . We will assume that

�W N.�/!X

is a .�;C / quasi-isometric embedding.

Ergodic actions of abelian groups

For each v 2 S � V
G;a

K
, let Av be a maximal Kv–split torus in eG . We define the

group
AD

Y
v2S�V

G;a

K

Av.Kv/ <H:

We denote the flat corresponding to A by A�X . We may assume that K 2A.

We introduce a pseudometric dA on A by setting dA.a1; a2/ to be equal to d.a1K; a2K/

for a1K; a2K 2X .
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There is also a Haar measure on A which we denote by da. We denote Lebesgue
measure on A by volA . Then, after a normalization, we have for any measurable set
Y �A:

da
�
A\

� [
a2Y

aKa�1
��
D volA

�
A\

� [
a2Y

aP .K/
��
:

The Birkhoff ergodic theorem is usually stated for an ergodic action of Z. However, a
careful reading of the proof of the Birkhoff ergodic theorem shows that it applies to
ergodic actions of our pseudometric group A as well (see eg [4, Theorem 3.2]). That
is, if we let BA

1
.r/�A be the ball of radius r centered at the identity element of A,

then we have the following Proposition.

Proposition 8.2 (Birkhoff ergodic theorem) If Y is a finite volume right ergodic
A–space and f 2L1.Y /, then for a.e. y 2 Y :

lim
r!1

1

da.BA
1
.r//

Z
BA

1
.r/

f .ya/daD

Z
Y

f:

Prasad’s proof of the strong approximation theorem for simply connected semisimple
Lie groups contains a proof of the ergodicity of the A–action on �nH (see Prasad [23,
Lemma 2.9]). Hence, we can apply the Birkhoff ergodic theorem to the action of A on
�nH .

Generic flats have most of their volume near �

Following Eskin, we are now prepared to show that a generic flat in X has most of its
volume contained in N.�/�X .

For any group element h 2 H , define volhA to be Lebesgue measure on the flat
hA�X . That is, for any measurable set Y � hA, we let

volhA.Y /D volA.h�1Y /:

Thus, the measure volhA is compatible da in a natural way.

We denote by BhA
x .r/� hA the metric ball centered at the point x 2 hA with radius

r > 0. Denote the characteristic functions of N.�/�X and D � �nN.�/ by �N.�/

and �D respectively.
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By Proposition 8.2, we have that for � a.e. �h 2 �nH :

lim
r!1

1

volhA.BhA
hK
.r//

Z
BhA

hK .r/

�N.�/ volhA

D lim
r!1

1

da.BA
1
.r//

Z
BA

1
.r/

�N.�/.haK/da

� lim
r!1

1

da.BA
1
.r//

Z
BA

1
.r/

�D.�ha/da

D

Z
�nH

�D

D �.D/

� 1� "0:

The inequality shows that for a.e. �h 2 �nH , any  2 � , and any point x 2 hA:

lim
r!1

volhA
��
hA\N

�
�
��
\B

hA
x .r/

�
volhA

�
B
hA
x .r/

� � 1� "0:

Hence, the generic flat has much of its volume contained in N.�/.

The above argument is the basic idea behind Lemma 8.3 below. Refining the argument
will yield more precise information about how much of a generic flat is contained in
N.�/. Then we will be in a position to apply the quasiflats with holes theorem from
[32] to begin constructing a map on B.G/.

More on the position of a generic flat with respect to �

Let h 2H . For a set W �X contained in the flat hA, we let

W.";�/ D
˚
x 2W j BhA

y

�
"d.x;y/

�
\W ¤∅ for all y 2 hA�BhA

x .�/
	
:

Hence, W.";�/ is the set of all points x 2W which can serve as an observation point
from which all points in hA (that are a sufficient distance from x ) have a distance
from W that is proportional to their distance from x .

We denote the metric r –neighborhood of a set Y �X by Nbhdr .Y /. We denote the
Hausdorff distance between two sets P;Q�X by Hd.P;Q/.

Recall the definition of a wall L�X as a codimension 1 affine subspace of a flat, that
is contained in at least two distinct flats.
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Lemma 8.3 below is an amalgam of Lemmas 2.2, 3.2, and 5.2 from [12]. We omit the
proof of the lemma as it is nearly identical to those in [12]. We note that the proof
follows the principle shown above using the Birkhoff ergodic theorem.

We will assume throughout that " > 0 is a sufficiently small number depending on �
and X .

Lemma 8.3 There are constants � > 0, and �0 > 0 depending on " and X ; constants
�0 > 1, �1 > 1, N 0 > 0, m > 0, and 1 > b > 0 depending on X ; and a � –invariant
co-null set U �H such that for any h 2 U there are sets

��hA ��hA ��
0
hA � hA\N.�/

which satisfy the following properties:

(i) For any point x 2 hA:

lim
r!1

volhA
��

hA\N
�
�
��
\BhA

x .r/
�

volhA
�
BhA

x .r/
� � 1� "=4:

(ii) �0
hA �

�
hA\N.�/

�
.";�/

and for any point x 2 hA:

lim
r!1

volhA
�
�0

hA\BhA
x .r/

�
volhA

�
BhA

x .r/
� � 1� "=2:

(iii) �hA � .�
0
hA/.";�0/ and for any point x 2 hA:

lim
r!1

volhA
�
�hA\BhA

x .r/
�

volhA
�
BhA

x .r/
� � 1� "=2:

(iv) For any point x 2 hA:

lim
r!1

volhA
�
��

hA\BhA
x .r/

�
volhA

�
BhA

x .r/
� � 1�m":

(v) If y 2 ��
hA and L � hA is a wall with d.y;L/ < N 0 then there is a group

element h0 2 U such that

h0A\ hA� Nbhd2N 0.L/

and
Hd

�
hA\Nbhdr .h

0A/;L
�
� �1r

for any r > �0 .
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(vi) For any wall L�A and any point x 2 hA:

lim
r!1

volhA
�
��

hA\BhA
x .r/\ hL

�
volhA

�
BhA

x .r/
� � b:

(vii) There is a � invariant set E � U such that �.�nE/ > 1� "=2, and hK 2�hA
for any h 2E .

Remarks

There are some differences in this lemma with Lemmas 2.2, 3.2, and 5.2 in [12]. In
particular, the transverse flats in part (v) do not necessarily intersect in a wall for the
general space X , as can be arranged if X is a symmetric space. Take for example a
regular trivalent tree which is the Euclidean building for SL2.Q2/. The walls in this
example are vertices; the flats are lines, and there is no pair of lines which intersect in
a single point.

Also, the constant b in part (vi) is shown in [12] to be nearly one. This discrepancy
is essentially due to the fact that if X is a Euclidean building, then the orbit of P .K/

under the action of the p–adic group that stabilizes a wall containing K may not contain
all of L. Take for example the building for SL3.Qp/. However, Eskin’s proof only
uses that the constant is greater than 0, and that is all we shall need as well.

A collection of useful flats

Lemma 8.3 provides us with a collection of flats in X that have most of their volume,
and a substantial portion of the volume of their walls, contained in N.�/. We denote
this collection of flats by U. That is,

UD fhAjh 2 Ug:

Since any flat F 2 U has most of its volume contained in N.�/, we can restrict
�W N.�/! X to F \N.�/ and begin to analyze the image using [32, Theorem 1.2].
We state this theorem below.

Theorem 8.4 (Quasiflats with holes) Let 'W �! X be a .�;C / quasi-isometric
embedding of a set � � En . There are constants M DM.�;X / and ı0 D ı0.�;X /
such that if ı < ı0 , then there exists flats F1;F2; : : : ;FM �X such that

'
�
�.ı;R/

�
� NbhdN

� M[
iD1

Fi

�
;

where N DN.�;C;R;X /.
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Theorem 8.4, and the fact that a generic flat F � X is contained in U, positions us
to begin constructing the function @�W U@! B.G/ where the set U@ � B.G/ has full
measure in �X .

Weyl chambers are mapped to Weyl chambers

For points x; z; w 2X and a number � � 0, we let

Dx.�I z; w/Dmaxf�; d.x; z/; d.x; w/g:

Define a function �W X ! Y to be a .�; �; "/ graded quasi-isometric embedding based
at x 2X , if for all z; w 2X :

1

�
d.z; w/� "Dx.�I z; w/� d.�.z/; �.w//� �d.z; w/C "Dx.�I z; w/:

If F 2 U we let pW F !�0
F

be a closest point projection and define

�F W F !X

by �F D � ıp .

If x 2 �F , then using Lemma 8.3(ii), �F is a .�; �; 2�"/ graded quasi-isometric
embedding based at x . Also note that by Theorem 8.4, �F .F / is contained in a
neighborhood of finitely many flats since

�0F �
�
F \N.�/

�
.";�/

:

We fix a Weyl chamber AC � A based at K 2 X . For any h 2H , let hAC.1/ be
the equivalence class of hAC in �X .

For two subsets A and C of X , any point x 2X , and a small number ı > 0, we write
A Ïı C if

Hd
�
A\Bx.r/;C \Bx.r/

�
� ır

for all sufficiently large numbers r > 0.

At this point in [12], a detailed argument is used to show the analogue of the lemma
below [12, Lemma 3.14] for the case when X is a symmetric space.

Lemma 8.5 Suppose hA 2 U for some h 2H . There exists a constant � depending
on � and X , and some k 2 K depending on h, such that

�hA
�
hAC

�
Ï� n
p
" kAC:
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Eskin’s proof proceeds by first showing that if L is a wall of a flat F 2 U, then �F

maps L into a “graded neighborhood” of a wall L0 �X . (For a definition of a graded
neighborhood see below, before the proof of Lemma 8.7.) This is shown using the
Eskin-Farb quasiflats with holes theorem and the characterization of walls of flats in
U as “coarse intersections” of flats in U (see Lemma 8.3(v)). A key ingredient for
this step is Eskin’s “no turns” lemma about quasi-isometries of Euclidean space which
respect a family of hyperplanes. (In this case the Euclidean spaces are our flats, and
the hyperplanes are the walls of the flats.)

Since Weyl chambers are defined by the set of walls that bound them, Eskin uses
the information about the images of walls to deduce the lemma above for symmetric
spaces.

Eskin’s proof of the symmetric space version of Lemma 8.5 uses the geometry of
symmetric spaces mostly to supply foundational tools for the main argument. We will
replace these tools with analogues that hold for products of symmetric spaces and
Euclidean buildings.

The first of the foundational tools needed is Lemma 8.3—even here Eskin’s proof
applied to the general case. The second tool is Theorem 8.4 which was proved in
[32]. The last two tools needed are Lemma 8.6 and Lemma 8.7 below. They are direct
analogues of [12, Lemmas B.1 and B.7] respectively. After proving Lemma 8.6 and
Lemma 8.7, the foundation to carry out Eskin’s proof for the general space X will be
in place. Then Eskin’s proof applies to establish Lemma 8.5.

Coarse intersections of convex polyhedra

Any wall, L, in a flat F � X , divides F into two components. The closure of
any such component is called a half-space. We define a convex polyhedron in X as
an intersection of a flat, F , with a (possibly empty) finite collection of half-spaces
contained in F . Note that flats are convex polyhedra, as are walls.

The following lemma is an analogue of [12, Lemma B.1]. It allows us to replace coarse
intersections of flats, walls, or convex polyhedra with a convex polyhedron.

Lemma 8.6 There are constants, �2 and �3 , such that if Q1 and Q2 are convex
polyhedra in X , and if r > �2.1C d.Q1;Q2//, then there is a convex polyhedron
P �Q1 such that

Hd
�
Q1\Nbhdr .Q2/;P

�
� �3r:
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Proof If Qk � X is a convex polyhedron in the flat Fk � X , and if Fk;1 � X1
and Fk;p �Xp are flats such that Fk D Fk;1 �Fk;p , then

Qk D Fk \

\
i

�
Hk;1;i �Fk;p

�
\

\
i

�
Fk;1 �Hk;p;i

�
;

where each Hk;1;i � Fk;1 and each Hk;p;i � Fk;p is a half-space.

Hence, if Qk;1 � Fk;1 is the convex polyhedron given by

Qk;1 D Fk;1\

\
i

Hk;1;i

and Qk;p � Fk;p is the convex polyhedron given by

Qk;p D Fk;p\

\
i

Hk;p;i ;

then Qk DQk;1 �Qk;p .

Note that�
Q1;1\Nbhd

r=
p

2
.Q2;1/

�
�
�
Q1;p\Nbhd

r=
p

2
.Q2;p/

�
�Q1\Nbhdr .Q2/

�
�
Q1;1\Nbhdr .Q2;1/

�
�
�
Q1;p\Nbhdr .Q2;p/

�
;

so we can reduce the proof of this lemma to the separate cases of X DX1 and X DXp .
The former case is [12, Lemma B.1]. We will prove the lemma for the latter case.

Let Q1 and Q2 be convex polyhedron in a Euclidean building Xp . Let F �Xp be an
apartment (flat) containing Q1 .

Define
Pd.Q1;Q2/ DQ1\Nbhdd.Q1;Q2/.Q2/:

Since Q2 is convex, Nbhdd.Q1;Q2/.Q2/ is convex as well (Bridson–Haefliger [9,
Corollary II.2.5(1)]). Therefore Pd.Q1;Q2/ is convex. In fact, Pd.Q1;Q2/ is a convex
polyhedron. Indeed, if c� F is a chamber, let

�F;cW Xp! F

be the retraction corresponding to F and c. Then d.x;y/D d.x; �F;c.y// for all x 2 c

and all y 2 Q2 . (For a good reference for retractions, and for buildings in general,
see [10].) Therefore, points in @Pd.Q1;Q2/ are determined by translating the region
�F;c.Q2/ a distance of d.Q1;Q2/. Hence, Pd.Q1;Q2/ is bounded by walls which are
translates of the walls bounding �F;c.Q2/. Since Pd.Q1;Q2/ is convex, and since there
are finitely many parallel families of walls in F , Pd.Q1;Q2/ is bounded by finitely
many walls.
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We let each Hi � F be a half-space such that

Pd.Q1;Q2/ D F \
\

i

Hi :

For any number r � 0, let H rC
i � F be the half-space that contains Hi , and with the

additional property that

Hd
�
Hi ;H

rC
i

�
D r C d.Q1;Q2/:

Define the convex polyhedron PCr by

PCr DQ1\

�\
i

H rC
i

�
:

We claim that if r � 0, then

Q1\Nbhdr .Q2/� PCr :

That is, we want to prove that

Q1\Nbhdr .Q2/�H rC
i

for all i . To this end, let ci � F be a chamber that is separated from Pd.Q1;Q2/ by
@H rC

i . Let
�F;ci
W Xp! F

be the retraction corresponding to ci and F . Since �F;ci
is distance nonincreasing, we

have that

d
�
�F;ci

.Pd.Q1;Q2//; �F;ci
.Q2/

�
� d

�
Pd.Q1;Q2/;Q2

�
D d

�
Q1;Q2/:

Therefore, if x 2Q2 :

d
�
@H rC

i ;x
�
� d

�
@H rC

i ; �F;ci
.x/
�

� d
�
@H rC

i ;Pd.Q1;Q2/

�
� d

�
Pd.Q1;Q2/; �F;ci

.x/
�

D r C d.Q1;Q2/� d
�
�F;ci

.Pd.Q1;Q2//; �F;ci
.x/
�

� r:

Hence,
Q1\Nbhdr .Q2/�H rC

i

as desired.

We have shown that Q1\Nbhdr .Q2/ is contained in a convex polyhedron created by
pushing out the walls of Pd.Q1;Q2/ by a uniform distance that is linear in r . Next we
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observe that Q1\Nbhdr .Q2/ also contains a convex polyhedron created by pushing
out the walls of Pd.Q1;Q2/ by a uniform distance that is linear in r .

Indeed, since there are only finitely many walls in any flat F 0 up to translation, there
exists a positive constant ˇ < 1 depending only on X , such that if Q�F 0 is a convex
polyhedron, s � 0, and Q.s/� F 0 is the convex polyhedron obtained by pushing out
the walls that bound Q by a distance of ˇs , then

Q.s/� Nbhds.Q/\F 0:

Thus for any number r � d.Q1;Q2/, and for the set of half-spaces fHig that define
Pd.Q1;Q2/ , we let H r�

i � F be the half-space containing Hi and such that

Hd
�
Hi ;H

r�
i

�
D ˇ

�
r � d.Q1;Q2/

�
:

And we define the convex polyhedron P�r by

P�r DQ1\

�\
i

H r�
i

�
;

so that

P�r � Nbhd.r�d.Q1;Q2//.Pd.Q1;Q2//\F

�Q1\Nbhdr .Q2/:

In summary, we have shown that for r � d.Q1;Q2/

P�r �Q1\Nbhdr .Q2/� PCr

The lemma follows since there clearly exists a constant �0 depending only on Xp such
that

Hd
�
P�r ;P

C
r

�
< �0Œr C d.Q1;Q2/�ˇ.r � d.Q1;Q2//�

< �0Œr C 2d.Q1;Q2/�

� �0Œ3r �:

Thus the Lemma is proved.

Graded equivalence implies Hausdorff equivalence for Weyl chambers

Let A˛ �A be a wall containing K. For any collection of such walls fA˛g˛2� , let

AC� DAC\
\
˛2�

A˛:
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For any set A�X and any t > 0, we define the graded t –neighborhood of A as the
set

AŒt �D fx 2X j there is an a 2A with d.x; a/ < td.x;K/g:

The following lemma is a generalization of [12, Lemma B.7].

Lemma 8.7 Assume there are three group elements h; h1; h2 2H and that, outside
of some metric ball,

hAC� � h1ACŒ� n
p
"�\ h2ACŒ� n

p
"�:

If k1; k2 2 K satisfy the condition

Hd.hiAC; kiAC/ <1;

then

k1AC� D k2AC� :

Proof A Weyl chamber C�X is a product of Weyl chambers C1�X1 and Cp�Xp .
Note that C1 �Cp � .C

0
1 �C0p/Œt � implies that, outside of a ball, C1 � C01Œt

0� and
C1 � C01Œt

0� for t 0 > t . Hence, we only need to show the case of a building since
symmetric spaces are covered by [12, Lemma B.7].

We can replace hAC� by kAC� for some k 2 K such that Hd.hAC� ; kAC� / <1. Then

kAC� � k1ACŒ� n
p
"�\ k2ACŒ� n

p
"�

outside of a large ball.

For any r > 0, let ar 2 AC� be such that d.ar ;AC˛ / > r for all ˛ … � . By the
preceding inclusion, there exist points a1; a2 2AC such that d.kar ; kiai/ � �

n
p
"r

for all sufficiently large numbers r . Therefore, d.k1a1; k2a2/� 2� n
p
"r .

There is an apartment A0 �Xp such that, outside of a ball, kiAC� �A0 for i D 1; 2.
If k1AC� ¤ k2AC� , then for all sufficiently large r , we have kiai 2 A0 \ kiAC� and
d.k1a1; k2a2/>˛r for some constant ˛ depending only on Xp . This is a contradiction.

The proof of Lemma 8.5 only requires the case of Lemma 8.7 for � D∅. However,
the full form of Lemma 8.7 is needed for the construction of @� .
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The a.e. defined boundary function

Let N <H be the normalizer of A<H . Let B.G/ be the Tits building for X . We
define U@ as the simplicial subcomplex of B.G/ given by

U@ D
[
h2U

[
n2N

hnAC.1/:

We are prepared to define

@�W U@! B.G/

using Lemma 8.5. We let @�.hAC.1// D kAC.1/ where k 2 K is such that
�hA.hAC/Ï� n

p
" .kAC/.

That @� is well-defined, and restricts to an isomorphism of U@ onto its image, follows
from [12, Step 4] using our Lemma 8.7 in place of [12, Lemma B.7].

Flats are preserved

In Section 6, we complete @� to an automorphism of B.G/. In Lemma 6.7, we use
that apartments in B.G/ that are contained in U@ , are mapped to apartments by @� .
This is the content of the lemma below. The proof is from [12, Proposition 3.3], but
we include it here as it is brief.

Lemma 8.8 If F 2 U, then there is a flat F 0 �X such that �F .F /� NbhdN .F
0/.

Proof Corresponding to �F .F /�X there is a finite set L.�F /� �X of limit points
(see [32]). Intuitively L.�F / is a set of equivalence classes for finitely many Weyl
chambers C1; : : : ;Ck �X such that

Hd
�
�F .F /;[iCi

�
<1:

Choose x;y 2 L.�F / that are opposite chambers in B.G/. (That such chambers
exist is shown in [32].) Since @� preserves incidence relations, @� is Tits distance
nonincreasing. Therefore, @��1.x/ and @��1.y/ are opposite.

Any chamber c � F.1/ is contained in a minimal gallery between @��1.x/ and
@��1.y/. Hence, @�.c/ is contained in a minimal gallery from x to y . That is, @�.c/
is a chamber in the unique apartment containing x and y . Now let F 0 � X be the
unique flat such that F.1/ contains x and y .
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Countable subcomplexes

In Section 6 we use the following lemma to find a “global sub-building” of B.G/
contained in U@ .

Lemma 8.9 If V is a countable collection of chambers in U@ , then there is some
h 2H such that V � hU@ .

Proof For each number i 2N, we choose a chamber ci�B.G/ such that V Dfcig
1
iD1

.
Define the set

Ui D fg 2H j gci � U@g:

Note that Ui �H is co-null, so
T1

iD1 Ui is co-null. Hence, there exists some h�1 2T1
iD1 Ui , and h satisfies the lemma.

9 Continuity of the boundary function on neighborhoods of
faces

To complete @� to an automorphism of B.G/ in Section 6, we use that @� restricts
to a continuous map on simplicial neighborhoods of .n�2/–dimensional simplices.
Precisely, we use Lemma 9.4 below.

As with Lemma 8.5 in the previous section, our Lemma 9.4 follows from the proof of the
analogous [12, Lemma 5.3] once a few foundational lemmas are provided for products
of symmetric spaces and Euclidean buildings. What we require are replacements for
Lemmas B.4, B.6, and B.8 in [12]. Their analogues are listed below as Lemma 9.1,
Lemma 9.2, and Lemma 9.3 respectively.

Recall that we defined a metric on �X in the early portion of Section 6. We can assume
that the metric is invariant under the action of K. Equivalently, we assume that the
basepoint used to define the metric yd is the coset K 2H=K�X .

Lemma 9.1 There are constants �1 , �2 , and �3 depending on X , such that if ki 2 K,
zi 2 kiAC with d.z1; z2/� �1r , and d.zi ; ki@AC/� �2r where r is sufficiently large,
then

yd.k1AC.1/; k2AC.1//� exp.��3r/:

Proof The hypotheses imply the analogous hypotheses on each factor, X1 and Xp .
On the symmetric space factor the result is implied by [12, Lemma B.4], and since we
have endowed �X with the box metric, the result follows once we establish the lemma
for the case that X is a Euclidean building.
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Supposing Xp is a Euclidean building, we let �1 D 1=2 and �2 D 1. For the Weyl
chamber AC �X , we let ˛ > 1 be the constant such that the basepoints of the sectors
AC and AC�Nbhdr .@AC/ are at distance ˛r from each other for all r > 0. Clearly
˛ depends only on Xp . We let �3 D ˛=2.

We can assume, by repositioning the direction of the geodesic rays used to define yd ,
that AC contains the point that the sector AC �Nbhdr .@AC/ is based at. Indeed,
our choice that AC.1/ 2AC.1/ is the center of mass was completely arbitrary and
any point in the interior of AC.1/ would suffice.

Now we proceed by forcing a contradiction. That is we assume that

yd.k1AC.1/; k2AC.1// > exp.�˛r=2/:

Then k1AC \ k2AC is a geodesic segment with distinct endpoints K;x 2 Xp , that
satisfy the inequality d.K;x/ < ˛r=2.

Let Wx � k1A be a wall containing x and such that the closure of the component
of k1A�Wx containing K also contains k1AC \ k2AC . Note that the point z1 2

k1AC�Nbhdr .k1@AC/ is in the opposite component of k1A�Wx by our choice of
˛ . Also by our choice of ˛ ,

d.z1;Wx/ > r=2:

If c� k1AC is a chamber containing x , but not contained in k2AC , then the retraction

�k1A;cW Xp! k1A

corresponding to the apartment k1A and to the chamber c, maps z2 to the component
of k1A�Wx containing K.

Therefore, the geodesic segment from z1 to �k1A;c.z2/ passes through Wx . Hence,

d.z1; z2/� d.z1; �k1A;c.z2//

� d.z1;Wx/

> r=2:

This completes our contradiction.

Lemma 9.2 There is a constant �4 depending on X such that for sufficiently large
numbers Q and any k1; k2 2 K, there are zi 2 kiAC satisfying:

(i) d.z1; z2/�Q,

(ii) d.zi ; e/� �4

ˇ̌
log

�
yd.k1AC.1/; k2AC.1/

�ˇ̌
and

(iii) d.zi ; ki@AC/� �5

ˇ̌
log

�
yd.k1AC.1/; k2AC.1/

�ˇ̌
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for some constant �5 which depends on Q and on X .

Proof Again we prove the lemma for the case X D Xp . The case X D X1 is [12,
Lemma B.6], and the Lemma 9.2 follows from the lemmas for each case.

If Xp is a Euclidean building, and if k1AC \ k2AC does not contain a chamber of
Xp , then choose z1 2 k1AC and z2 2 k2AC to be distance 1 away from K. Then
the conclusion of the lemma is satisfied for all Q> 0 by �4 D 1 and some �5 which
depends only on the angle between AC and @AC .

If k1AC\k2AC does contain a chamber of X , then let z1 D z2 2 k1AC\k2AC be
the endpoint of k1AC \ k2AC . Now the lemma holds for any Q > 0, �4 D 1, and
some �5 that depends only on the angle between AC and @AC .

Lemma 9.3 Let x;y 2X . For any Weyl chamber Cx �X based at x , there is a Weyl
chamber Cy �X based at y such that

Hd.Cx;Cy/ < �
0d.x;y/

for some constant �0 .

Proof The lemma follows from [12, Lemma B.8], and from [32, Lemma 4.3].

Recall that n is the rank of X and that for any .n�2/–dimensional simplex f � U@ ,
we defined NU .f / as the set of all chambers in U@ that contain f .

We can apply the proof of [12, Lemma 5.3] by replacing Lemmas B.4, B.6, and B.8 of
[12] with the three lemmas above to show the following Lemma.

Lemma 9.4 If f �U@ is a simplex of dimension n�2, then @�jNU .f / is continuous
in the Furstenberg metric.

Note that [12, Lemma 5.3] claims that @�jNU .c/ is bi-Hölder. We only require @�jNU .c/

to be continuous as our method for completing @� is more algebraic, and less topolog-
ical, than Eskin’s.

The condition that chambers share a wall in the above lemma is needed so that two
Weyl chambers can be simultaneously slid along a common wall until they are based at
points in N.�/—the set our quasi-isometry is defined on. The sliding technique does
not change their Furstenberg distance.

Geometry & Topology, Volume 11 (2007)
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Math. J. .2/ 20 (1968) 443–497 MR0244259

[8] A Borel, J Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann.
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