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Representations of the quantum Teichmüller space
and invariants of surface diffeomorphisms

FRANCIS BONAHON

XIAOBO LIU

We investigate the representation theory of the polynomial core T q
S

of the quantum
Teichmüller space of a punctured surface S . This is a purely algebraic object, closely
related to the combinatorics of the simplicial complex of ideal cell decompositions
of S . Our main result is that irreducible finite-dimensional representations of T q

S

are classified, up to finitely many choices, by group homomorphisms from the
fundamental group �1.S/ to the isometry group of the hyperbolic 3–space H3 . We
exploit this connection between algebra and hyperbolic geometry to exhibit invariants
of diffeomorphisms of S .

57R56; 57M50, 20G42

This work finds its motivation in the emergence of various conjectural connections
between topological quantum field theory and hyperbolic geometry, such as the now
famous Volume Conjecture of Rinat Kashaev [22], and Hitochi Murakami and Jun
Murakami [28]. For a hyperbolic link L in the 3–sphere S3 , this conjectures relates
the hyperbolic volume of the complement S3�L to the asymptotic behavior of the
N –th colored Jones polynomial J N

L
.e2� i=N / of L, evaluated at the primitive N –th

root of unity e2� i=N . At this point, the heuristic evidence (Kashaev [22], Murakami,
Murakami, Okamoto, Takata and Yokota [29], and Yokota [43; 44]) for the Volume
Conjecture is based on the observation [22; 28] that the N –th Jones polynomial can be
computed using an explicit R-matrix whose asymptotic behavior is related to Euler’s
dilogarithm function, which is well-known to give the hyperbolic volume of an ideal
tetrahedron in H3 in terms of the cross-ratio of its vertices. We wanted to establish a
more conceptual connection between the two points of view, namely between quantum
algebra and 3–dimensional hyperbolic geometry.

We investigate such a relationship, provided by the quantization of the Teichmüller
space of a surface, as developed by Rinat Kashaev [23], Leonid Chekhov and Vladimir
Fock [12]. More precisely, we follow the exponential version of the Chekhov–Fock
approach. This enables us to formulate our discussion in terms of non-commutative
algebraic geometry and finite-dimensional representations of algebras, instead of Lie
algebras and self-adjoint operators of Hilbert spaces. This may be physically less
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relevant, but this point of view is better adapted to the problems that we have in mind.
The mathematical foundations of this non-commutative algebraic geometric point of
view are rigorously established by Liu in [25].

More precisely, let S be a surface of finite topological type, with genus g and with
p > 1 punctures. An ideal triangulation of S is a proper 1–dimensional submanifold
whose complementary regions are infinite triangles with vertices at infinity, namely at
the punctures. For an ideal triangulation � and a number q D e� i„ 2 C, the Chekhov–
Fock algebra T q

�
is the algebra over C defined by generators X˙1

1
, X˙1

2
, . . . , X˙1

n

associated to the components of � and by relations XiXj D q2�ij Xj Xi , where the
�ij are integers determined by the combinatorics of the ideal triangulation �. This
algebra has a well-defined fraction division algebra yT q

�
. In concrete terms, T q

�
consists

of the formal Laurent polynomials in variables Xi satisfying the skew-commutativity
relations XiXj D q2�ij Xj Xi , while its fraction algebra yT q

�
consists of formal rational

fractions in the Xi satisfying the same relations.

As one moves from one ideal triangulation � to another �0 , Chekhov and Fock [12; 15;
16] (see also [25]) introduce coordinate change isomorphisms ˆq

��0
W yT q

�0
! yT q

�
which

satisfy the natural property that ˆq

�00�0
ıˆ

q

�0�
D ˆ

q

�00�
for every ideal triangulations

�, �0 , �00 . In a triangulation independent way, this associates to the surface S the
algebra yT q

S
defined as the quotient of the family of all yT q

�
, with � ranging over ideal

triangulations of the surface S , by the equivalence relation that identifies yT q

�
and

yT q

�0
by the coordinate change isomorphism ˆ

q

��0
. By definition, yT q

S
is the quantum

Teichmüller space of the surface S .

This construction and definition are motivated by the case where q D 1, in which
case yT 1

�
is just the algebra C.X1;X2; : : : ;Xn/ of rational functions in n commuting

variables. Bill Thurston associated to each ideal triangulation a global coordinate
system for the Teichmüller space T .S/ consisting of all isotopy classes of complete
hyperbolic metrics on S . Given two ideal triangulations � and �0 , the corresponding
coordinate changes are rational, so that there is a well-defined notion of rational
functions on T .S/. For a given ideal triangulation �, Thurston’s shear coordinates
provide a canonical isomorphism between the algebra of rational functions on T .S/ and
C.X1;X2; : : : ;Xn/Š yT 1

�
. It turns out that the ˆ1

��0
are just the corresponding coordi-

nate changes. Therefore, the quantum Teichmüller space yT q
S

is a (non-commutative)
deformation of the algebra of rational functions on the Teichmüller space T .S/.
Although the construction of yT q

S
was motivated by the geometry, a result of Hua Bai

[1] shows that it actually depends only on the combinatorics of ideal triangulations.
Indeed, once we fix the definition of the Chekhov–Fock algebras T q

�
, the coordinate

change isomorphisms ˆq

��0
W yT q

�0
! yT q

�
are uniquely determined if we require them to
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satisfy a certain number of natural conditions, a typical one being the locality condition:
if � and �0 share a component �i as well as any component of � that is adjacent to
�i , then ˆq

��0
must respect the corresponding generator Xi .

A standard method to move from abstract algebraic constructions to more concrete
applications is to consider finite-dimensional representations. In the case of algebras,
this means algebra homomorphisms valued in the algebra End.V / of endomorphisms
of a finite-dimensional vector space V over C. Elementary considerations show that
these can exist only when q is a root of unity.

Theorem 1 Suppose that q2 is a primitive N –th root of unity, and consider the
Chekhov–Fock algebra T q

�
associated to an ideal triangulation �. Every irreducible

finite-dimensional representation of T q

�
has dimension N 3gCp�3 if N is odd, and

N 3gCp�3=2g if N is even, where g is the genus of the surface S and where p is its
number of punctures. Up to isomorphism, such a representation is classified by:

(1) a non-zero complex number xi 2 C� associated to each edge of �;

(2) a choice of an N –th root for each of p explicit monomials in the numbers xi ;

(3) when N is even, a choice of square root for each of 2g explicit monomials in
the numbers xi .

Conversely, any such data can be realized by an irreducible finite-dimensional represen-
tation of T q

�
.

The numbers xi 2 C� appearing in the classification of a representation � W T q

�
!

End.V / are characterized by the property that �.X N
i /D xi IdV for the corresponding

generator Xi of T q

�
. Theorem 1 is proved in Section 4. The main step in the proof,

which has a strong topological component, is to determine the algebraic structure of
the algebra T q

�
and is completed in Section 3 after preliminary work in Section 2.

Another important feature of Theorem 1 is the way it is stated, which closely ties the
classification to the combinatorics of the ideal triangulation � in S and counterbalances
the fact that the structure results for T q

�
are not very explicit.

Theorem 1 shows that the Chekhov–Fock algebra has a rich representation theory.
Unfortunately, for dimension reasons, its fraction algebra yT q

�
and, consequently, the

quantum Teichmüller space yT q
S

cannot have any finite-dimensional representation.
This leads us to introduce the polynomial core T q

S
of the quantum Teichmüller space

yT q
S

, defined as the family fT q

�
g�2ƒ.S/ of all Chekhov–Fock algebras T q

�
, considered

as subalgebras of yT q
S

, as � ranges over the set ƒ.S/ of all isotopy classes of ideal
triangulations of the surface S . In Section 6, we introduce and analyze the consistency
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of a notion of representation of the polynomial core, consisting of the data of repre-
sentations �� W T

q

�
! End.V / for all � 2ƒ.S/ that behave well under the coordinate

changes ˆq

��0
.

We now jump from the purely algebraic representation theory of the polynomial core
T q

S
to 3–dimensional hyperbolic geometry. Theorem 1 says that, up to a finite number

of choices, an irreducible representation of T q

�
is classified by certain numbers xi 2C�

associated to the edges of the ideal triangulation � of S . There is a classical geometric
object which is also associated to � with the same edge weights xi . Namely, we can
consider in the hyperbolic 3–space H3 the pleated surface that has pleating locus �,
that has shear parameter along the i –th edge of � equal to the real part of log xi , and
that has bending angle along this edge equal to the imaginary part of log xi . In turn,
this pleated surface has a monodromy representation, namely a group homomorphism
from the fundamental group �1.S/ to the group IsomC.H3/ŠPSL2.C/ of orientation-
preserving isometries of H3 . This construction associates to a representation of the
Chekhov–Fock algebra T q

�
a group homomorphism r W �1.S/ ! PSL2.C/, well-

defined up to conjugation by an element of PSL2.C/.

It turns out that, for a suitable choice of q , this construction is well-behaved under
coordinate changes. The fact that q2 is a primitive N –th root of unity implies that
qN D˙1, but the following result requires that qN D .�1/NC1 . This is automatically
satisfied if N is even.

Theorem 2 Let q be a primitive N –th root of .�1/NC1 , for instance q D �e� i=N .
If �D f�� W T

q

�
! End.V /g�2ƒ.S/ is a finite-dimensional irreducible representation

of the polynomial core T q
S

of the quantum Teichmüller space yT q
S

, the representations
�� induce the same monodromy homomorphism r� W �1.S/! PSL2.C/.

Theorem 2 is essentially equivalent to the property that, for the choice of q indicated,
the pleated surfaces respectively associated to the representations �� W T

q

�
! End.V /

and �� ıˆ
q

��0
W T q

�0
! End.V / have (different pleating loci but) the same monodromy

representation r� W �1.S/!PSL2.C/. Its proof splits into two parts: a purely algebraic
computation in Section 7, which is based on the quantum binomial formula and is
borrowed from a remark in Chekhov and Fock [16], relates the quantum case to the
non-quantum case where q D 1; a more geometric part in Section 8 is completely
centered on the non-quantum situation and uses pleated surfaces in hyperbolic 3–space.

The homomorphism r� is the hyperbolic shadow of the representation � . Not every
homomorphism r W �1.S/! PSL2.C/ is the hyperbolic shadow of a representation of
the polynomial core, but many of them are:
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Theorem 3 An injective homomorphism r W �1.S/ ! PSL2.C/ is the hyperbolic
shadow of a finite number of irreducible finite-dimensional representations of the
polynomial core T q

S
, up to isomorphism. More precisely, this number of representations

is equal to 2lN p if N is odd, and 22gClN p if N is even, where g is the genus of S ,
p is its number of punctures, and l is the number of ends of S whose image under r is
loxodromic.

As an application of this machinery, we construct new and still mysterious invariants
of (isotopy classes of) surface diffeomorphisms, by using Theorems 2 and 3 to go back
and forth between hyperbolic geometry and representations of the polynomial core T q

S
.

Let ' be a diffeomorphism of the surface S . Suppose in addition that ' is homotopi-
cally aperiodic (also called homotopically pseudo-Anosov), so that its (3–dimensional)
mapping torus M' admits a complete hyperbolic metric. The hyperbolic metric of
M' gives an injective homomorphism r' W �1.S/! PSL2.C/ such that r' ı '

� is
conjugate to r' , where '� is the isomorphism of �1.S/ induced by ' .

The diffeomorphism ' also acts on the quantum Teichmüller space and on its polyno-
mial core T q

S
. In particular, it acts on the set of representations of T q

S
and, because

r' ı '
� is conjugate to r' , it sends a representation with hyperbolic shadow r' to

another representation with shadow r' . Actually, when N is odd, there is a pre-
ferred representation �' of T q

S
which is fixed by the action of ' , up to isomorphism.

This statement means that, for every ideal triangulation �, we have a representation
�� W T

q

�
! End.V / of dimension N 3gCp�3 and an isomorphism L

q
' of V such that

�'.�/ ıˆ'.�/�.X /DLq
' � ��.X / � .L

q
'/
�1

in End.V / for every X 2 T q

�
, for a suitable interpretation of the left hand side of the

equation.

Theorem 4 Let N be odd. Up to conjugation and up to multiplication by a constant,
the isomorphism L

q
' depends only on the homotopically aperiodic diffeomorphism

' W S ! S and on the primitive N –th root q of 1.

Note that L
q
' is an isomorphism of a vector space of very large dimension N 3gCp�3 ,

and consequently encodes a lot of information. Extracting invariants from L
q
' provides

simpler invariants of ' , such as the projectivized spectrum of L
q
' . We can also

normalize L' so that it has determinant 1, in which case its trace gives an invariant of
' defined up to multiplication by a root of unity.

Explicit computations of these invariants in certain examples are provided in [26].
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As is often the case with invariants from Topological Quantum Field Theory, the invari-
ants extracted from L

q
' are by themselves unlikely to have many practical applications.

What is more interesting is their connections with other combinatorial and geometric
objects.

As this work was being developed, the type of functions occurring in explicit com-
putations hinted at a connection between the invariant of Theorem 4, the Kashaev
6j –symbols developed in [21], and the link invariants introduced by Kashaev [21;
22], Baseilhac and Benedetti [4; 5; 6; 7]; see also Murakami-Murakami [28]. This
connection has now been elucidated by the authors and Hua Bai [2; 3]. Whereas the
current article focuses on irreducible representations, [3] investigates another type of
representations of the quantum Teichmüller space, called local representations, which
are somewhat simpler to analyze and more closely connected to the combinatorics
of ideal triangulations. The classification of these local representations follows the
same lines as the classification of irreducible representations, in terms of complex
edge weights for ideal triangulations. An analogue of Theorem 4 then associates to a
homotopically aperiodic diffeomorphism ' W S ! S a large matrix K

q
' , well-defined

up to conjugation and multiplication by a root of unity. If one decomposes a local
representation into its irreducible components, the invariant L

q
' of Theorem 4 and its

generalizations discussed in Section 9 occur as building blocks of this K
q
' . It can then

be shown that the trace of K
q
' coincides with the invariant that, following the original

insights of Kashaev, Baseilhac and Benedetti [6] associate to the hyperbolic metric
of the mapping torus M' . A crucial step [2] is an explicit identification between the
intertwining operator that a local representation associates to a diagonal exchange, and
the 6j –symbols that Kashaev defines using the representation theory of the Weyl Hopf
algebra.

The results of this paper are very reminiscent of a well-known principle in quantum
algebra, which is that the representations of a quantum group are in correspondence
with representations of the original non-quantum Lie group or algebra. It would also
be conceptually helpful to establish a connection with the quantum group constructions
of Bullock, Frohman and Kania-Bartoszyńska [10], and Frohman, Gelca and Lofaro
[18; 19], or with the skein theory of Przytycki and Sikora [34; 35], and Turaev [42].
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1 The Chekhov–Fock algebra

Let S be an oriented punctured surface of finite topological type, obtained by removing
a finite set fv1; v2; : : : ; vpg from the closed oriented surface xS . Let � be an ideal
triangulation of S , namely the intersection with S of the 1–skeleton of a triangulation
of xS whose vertex set is equal to fv1; v2; : : : ; vpg. In other words, � consists of
finitely many disjoint simple arcs �1 , �2 , . . . , �n going from puncture to puncture
and decomposing S into finitely many triangles with vertices at infinity. Note that
n D �3�.S/ D 6gC 3p � 6, where �.S/ is the Euler characteristic of S , g is the
genus of xS and p is the number of punctures of S . In particular, we will require that
p > 3 when g D 0 to guarantee the existence of such ideal triangulations.

The complement S � � has 2n spikes converging towards the punctures, and each
spike is delimited by one �i on one side and one �j on the other side, with possibly
i D j . For i , j 2 f1; : : : ; ng, let aij denote the number of spikes of S �� which are
delimited on the left by �i and on the right by �j as one moves towards the end of the
spike, and set

�ij D aij � aji :

Note that �ij can only belong to the set f�2;�1; 0;C1;C2g, and that �ji D��ij .

In the shear coordinates for Teichmüller space associated to the ideal triangulation
�, the antisymmetric bilinear form with matrix .�ij / is closely related to the Weil–
Petersson closed 2–form on Teichmüller space T .S/. Compare Papadopoulos and
Penner [31; 33] or Bonahon and Sözen [8; 36], according to the type of Teichmüller
space considered.

The Chekhov–Fock algebra associated to the ideal triangulation � is the algebra T q

�

defined by the generators X˙1
i , with i D 1, 2, . . . , n, and by the skew-commutativity

relations
XiXj D q2�ij Xj Xi

for every i , j (in addition to the relations XiX
�1
i DX�1

i Xi D 1).

In particular, the Chekhov–Fock algebra T q

�
is an iterated skew-polynomial algebra

(see Cohn [13]) as well as a special type of multiparameter quantum torus (see Brown
and Goodearl [9, Chapter I.2]). What is really important here is that its algebraic
structure is tied to the combinatorics of the ideal triangulation � of the surface S .

We first analyze the algebraic structure of T q

�
.
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2 The structure of the Weil–Petersson form

The skew-commutativity coefficients �ij form an antisymmetric matrix †, which
defines an antisymmetric bilinear form � W Zn �Zn! Z. The key technical step to
understanding the algebraic structure of T q

�
is to classify the bilinear form � over

the integers. Recall that two bilinear forms on Zn , with respective matrices † and
†0 , are equivalent over Z if there exists a base change matrix A 2 GLn.Z/ such that
†0 DA†At .

Proposition 5 The antisymmetric bilinear form � W Zn�Zn! Z is equivalent over Z

to the block diagonal form consisting of g blocks
�

0 �2

2 0

�
, k blocks

�
0 �1

1 0

�
and p

blocks
�
0
�

on the diagonal, where g is the genus of S , p is its number of punctures,
and k D 2gCp� 3.

Proof Let � �S be the graph dual to the ideal triangulation �. Note that every vertex
of � is trivalent, and that � is a deformation retract of S .

The coordinates of the Zn considered above correspond to the components of �. In a
more intrinsic way, we consequently have a natural isomorphism between this Zn and
the group H.�IZ/ of all assignments of integer weights to the components of � or,
equivalently, to the edges of � . In particular, � is now an antisymmetric bilinear form
on H.�IZ/.

We first give a homological interpretation of H.�IZ/ and � , as is now somewhat
standard when analyzing the Thurston intersection form on train tracks (see for instance
Bonahon [8]).

Let y� be the oriented graph obtained from � by keeping the same vertex set and by
replacing each edge of � by two oriented edges which have the same end points as the
original edge, but which have opposite orientations. In particular, every vertex of y�
now has valence 6. There is a natural projection p W y�! � which is one-to-one on the
vertex set of y� and two-to-one on the interior of the edges of y� .

There is a unique way to thicken y� to a surface yS such that:

(1) yS deformation retracts to y� ;

(2) as one goes around a vertex yv of y� in yS , the orientations of the edges of y�
adjacent to yv alternately point towards and away from yv ;

(3) the natural projection p W y�!� extends to a 2–fold branched covering yS!S ,
branched along the vertex set of y� .
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Indeed, the last two conditions completely determine the local model for the inclusion
of y� in yS near the vertices of y� .

Let � W yS ! yS be the covering involution of the branched covering p W yS ! S . Note
that � respects y� , and reverses the orientation of its edges.

Lemma 6 There is a natural identification between H.�IZ/Š Zn and the subgroup
of H1. yS/DH1. yS IZ/ consisting of those y̨ such that ��.y̨/D�y̨ .

Proof Every assignment ˛2H.�IZ/ of weights to the edges of � lifts to a � –invariant
edge weight assignment y̨ for y� . Because the edges of y� are oriented, y̨ actually
defines a 1–chain on y� , whose boundary is equal to 0 because each edge ye of y� is
paired with the edge �.ye/ which has the same y̨–weight but such that @�.ye/D�@ye .
Therefore, we can interpret y̨ as an element of H1.y�/. Note that ��.y̨/D�y̨ since �
reverses the orientation of the edges of y� .

Conversely, every y̨ 2 H1.y�/ associates an integer weight to each edge of y� , by
considering its algebraic intersection number with an arbitrary point in the interior of
the edge. If in addition ��.y̨/D�y̨ , this defines a � –invariant edge weight system on
y� , and therefore an element of H.�IZ/.

This identifies H.�IZ/ to the set of those y̨ 2H1.y�/DH1. yS/ such that ��.y̨/D�y̨ .

Lemma 7 If ˛ , ˇ 2 H.�IZ/ correspond to y̨ , y̌ 2 H1. yS/ as in Lemma 6, then
�.˛; ˇ/ is equal to the algebraic intersection number y̨ � y̌.

Proof It suffices to check this for each generator ˛i 2 H.�IZ/ assigning weight 1
to the edge ei of � dual to the component �i of �, and weight 0 to the other edges
of � . By definition, �.˛i ; j̨ / D �ij is equal to the number of times ei appears
to the immediate left (as seen from the vertex) of ej at a vertex of � , minus the
number of times ei appears to the immediate right of ej . The corresponding homology
class y̨i 2H1. yS/ is realized by the oriented closed curve ci that is the union of the
two oriented edges of y� lifting ei . In particular, ci and cj meet only at vertices of
y� corresponding to common end points of the edges ei and ej in � . When ei is
immediately to the left of ej at a vertex of � , it easily follows from our requirement that
edge orientations alternately point in and out at the vertices of y� that the corresponding
intersection between ci and cj has positive sign. Similarly, an end of ei which is
immediately to the right of an end of ej contributes a �1 to the algebraic intersection
number of ci with cj . It follows that �.˛i ; j̨ /D ci � cj D y̨i � y̨j .

Therefore, �.˛; ˇ/D y̨ � y̌ for every ˛ , ˇ 2H.�IZ/.
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We now analyze in more detail the branched covering p W yS ! S . We claim that the
covering is trivial near the punctures of S . Indeed, if yC is a simple closed curve
going around a puncture in yS , the collapsing of yS to y� sends yC to a curve which is
oriented by the orientation of the edges of � . This follows from our requirement that
the orientations alternately point in and out at each vertex of y� . Since the covering
involution � reverses the orientation of the edges of y� , we conclude that � respects no
puncture of yS . In other words, a puncture of S lifts to two distinct punctures of yS ,
and the covering is trivial on a neighborhood of this puncture.

The branched covering p W yS!S is classified by a homomorphism �1.S�V /!Z=2,
where V is the set of branch points of p , namely the vertex set of � . Since the covering
is trivial near the punctures of S , the corresponding class H 1.S �V IZ=2/ is dual to
the intersection with S�V of a 1–submanifold K�S with @KDV . One can arrange
by surgery that K consists only of arcs. Let D � S be a disk containing K , and let
yD be its preimage in yS . The main point here is that the restriction yS � yD! S �D

is now a trivial unbranched covering. In particular, yS is the union of yD and of two
copies yS1 and yS2 of S �D .

The restriction of p to yD!D is a 2–fold branched covering of a disk, with 4gC

2p � 4 branch points. It follows that yD is a surface of genus k D 2gCp � 3 with
two boundary components. In addition, the covering involution is conjugate to a
hyperelliptic involution of yD , so that the induced homomorphism �� acts on H1. yDIZ/

by multiplication by �1.

Let yD0 , yS0
1

and yS0
2

be the closed surfaces obtained by capping off the punctures and
boundary components of yD , yS1 and yS2 , respectively. In addition, for i D 1, 2, . . . , p ,
let Ci be a small curve going counterclockwise around the i –th puncture in S , and
let yCi1 and yCi2 be its respective lifts in yS1 and yS2 . Then H1. yS/ is isomorphic to
H1. yD

0/˚H1. yS
0
1
/˚H1. yS

0
2
/˚V , where V is the subgroup generated the yCi1 and

yCi2 . Note that the only relation between the homology classes of these 2p curves is
that they add up to 0, so that V Š Z2p�1 .

Lemma 6 identifies the space H.�IZ/ of edge weight assignments to the subspace fy̨ 2
H1. yS/I ��.y̨/D�y̨g. By construction, the isomorphism �� of H1. yS/ŠH1. yD

0/˚

H1. yS
0
1
/˚H1. yS

0
2
/˚ V acts by multiplication by �1 on H1. yD

0/, exchanges the
two factors H1. yS

0
1
/ Š H1. yS

0
2
/ Š H1. xS/, and acts on V by transposing each pair

f yCi1; yCi2g. (Recall that xS is the closed surface such that S D xS �fv1; v2; : : : ; vpg.) It
follows that H.�IZ/ consists of those .x;y;�y; z/ in H1. yS/ŠH1. yD

0/˚H1. xS/˚

H1. xS/˚V such that ��.z/D�z . This provides an isomorphism H.�IZ/ŠH1. yD0/˚

H1. xS/˚W , where W D fz 2 V I ��.z/D�zg Š Zp .
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By Lemma 7, the bilinear form � is the restriction to H.�IZ/ of the intersection
form of H1. yS/. We conclude that the three factors of the decomposition H.�IZ/Š
H1. yD0/˚H1. xS/˚W are orthogonal for � , that the restriction of � to H1. yD0/ is the
intersection form of yD0 , that its restriction to H1. xS/ is twice the intersection form of xS
(because y 2H1. xS/ lifts to .0;y;�y; 0/2H1. yS/ŠH1. yD0/˚H1. xS/˚H1. xS/˚V ),
and that � is 0 on W Š Zp .

Since yD0 and xS are closed surfaces of respective genus k and g , this concludes the
proof of Proposition 5.

A consequence of Proposition 5 is that the kernel of the bilinear form � , namely

Ker � D f˛ 2H.�IZ/I 8ˇ 2H.�IZ/; �.˛; ˇ/D 0g;

is isomorphic to Zp . We can precise this result as follows. Index the punctures of
S from 1 to p . For i D 1, . . . , p and j D 1, . . . , n, let kij 2 f0; 1; 2g denote the
number of ends of the component �j of � that converge to the i –th puncture. Note
that

Pp
iD1

.ki1; ki2; : : : ; kin/D .2; 2; : : : ; 2/ since each �j has two ends.

Lemma 8 In H.�IZ/ŠZn , the kernel Ker � is the abelian subgroup freely generated
by the p vectors .1; 1; : : : ; 1/ and .ki1; ki2; : : : ; kin/, for i D 1, . . . p� 1.

Proof Using the notation of the proof of Proposition 5, Ker � corresponds to the
subspace W of H.�IZ/ŠH1. yD0/˚H1. xS/˚W . We need to backtrack through the
definition of W .

Recall that, for each i D 1, . . . , p , we picked an oriented closed curve Ci going
counterclockwise around the i –th puncture of S , and that we lifted it to curves yCi1

and yCi2 in yS1 and yS2 , respectively. The only relation between the yCi1 and yCj2 is
that their sum is 0, so that they generate a subspace V Š Z2p�1 of H1. yS/. Then, W

consists of those z 2 V such that ��.z/D�z .

Since � exchanges yCi1 and yCi2 , it follows that W is the abelian subgroup freely
generated by the yCi1�

yCi2 , for i D 1, . . . , p�1, and by the element H D
Pp

iD1
yCi1D

�
Pp

iD1
yCi2 .

As we retract the surface yS to the graph y� , the curves yCi1 and yCi2 are sent to curves
in y� which, because of the alternating condition for the edge orientations at the vertices
of y� , either follow the orientation of the edges of y� or go against this orientation every-
where. In addition, because � reverses the orientation of y� , exactly one of these two
curves follow the orientation. It follows that, for the identifications H.�IZ/Š Zn and
H.�IZ/Š fy̨ 2H1. yS IZ/I ��.y̨/D �y̨g, the vector .ki1; ki2; : : : ; kin/ corresponds
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to "i. yCi1�
yCi2/ 2W �H1. yS IZ/, where "i DC1 when Ci1 is sent to an orientation

preserving curve of y� , and "i D�1 otherwise. Note that what determines "i is our
choice of the disk D � xS in the proof of Proposition 5.

Because each component �i of � has two ends,

.1; 1; : : : ; 1/D
1

2

pX
iD1

.ki1; ki2; : : : ; kin/;

and it follows that .1; 1; : : : ; 1/ 2 Zn corresponds to

1

2

pX
iD1

"i. yCi1�
yCi2/D "pH C

p�1X
iD1

ıi. yCi1�
yCi2/

with ıiD
"i�"p

2
D˙1. Since Ker �DW is freely generated by H and by the yCi1�

yCi2 ,
for i D 1, . . . , p� 1, it follows that it is also generated by those elements that, for the
identification H.�IZ/Š Zn , correspond to .1; 1; : : : ; 1/ and .ki1; ki2; : : : ; kin/, for
i D 1, . . . p� 1.

For a positive integer N , we will also need to consider the N –kernel of � , defined as

KerN � D f˛ 2H.�IZ/I 8ˇ 2H.�IZ/; �.˛; ˇ/ 2N Zg:

Note that KerN � contains H.�IN Z/. It therefore makes sense to consider its image
in H.�IZ/=H.�IN Z/DH.�IZN /, where ZN denotes the cyclic group Z=N Z.

Lemma 9 When N is odd, the N –kernel KerN � is equal to the preimage in H.�IZ/
of the ZN –submodule of H.�IZN / Š .ZN /

n freely generated by the p vectors
.1; 1; : : : ; 1/ and .ki1; ki2; : : : ; kin/, for i D 1, . . . p� 1.

Proof The image of the N –kernel KerN � is the kernel Ker x� of the form x� W
H.�IZN / �H.�IZN / ! ZN induced by � . Replacing the coefficient ring Z by
ZN , the proof of Proposition 5 provides an isomorphism H.�IZN /ŠH1. yD0IZN /˚

H1. xS IZN /˚WN , where WN is the image of the subspace W . The three factors
H1. yD0IZN /, H1. xS IZN / and WN are orthogonal for x� , and the restriction of x� to
each factor is the intersection form of yD0 , twice the intersection form of xS , and 0,
respectively.

Because N is odd, 2 is invertible in ZN . If follows that Ker x� DWN . The proof of
Lemma 8 now shows that WN is freely generated by .1; 1; : : : ; 1/ and by
.ki1; ki2; : : : ; kin/, for i D 1, . . . b� 1.
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When N is even, KerN � contains additional elements. Let ˛1 , ˛2 , . . . , ˛2g form a
basis for H1. xS IZ2/. We can represent ˛i by a family ai of curves immersed in the
graph � �S dual to � and passing at most once across each edge of � . Let lij 2 f0; 1g

be the number of times ai traverses the j -th edge of � .

Lemma 10 When N is even, the N –kernel KerN � is equal to the preimage in
H.�IZ/ of the direct sum A˚B � H.�IZN / of the ZN –submodule A Š .ZN /

g

freely generated by the vectors .1; 1; : : : ; 1/ and .ki1; ki2; : : : ; kin/ for i D 1, . . . p�1,
and of the submodule B Š .Z2/

2g generated by the .lj1
N
2
; lj2

N
2
; : : : ; ljn

N
2
/ with

j D 1, . . . 2g .

Proof The difference with Lemma 10 is that 2N
2
D 0 in ZN . Therefore, in H.�IZN /

ŠH1. yD0IZN /˚H1. xS IZN /˚WN , the kernel Ker x� is now the direct sum A˚B0

of ADWN and of the subspace B0 of H1. xS IZN / consisting of those elements which
are divisible by N

2
. As before ADWN Š .ZN /

g is freely generated by .1; 1; : : : ; 1/
and by .ki1; ki2; : : : ; kin/, for i D 1, . . . p� 1.

The factor B0 is also the image N
2

H1. xS IZ2/ of the group homomorphism H1. xS IZ2/

!H1. xS IZN / defined by multiplication by N
2

. To identify explicit generators for B0�

H.�IZN /, it is convenient to consider the transfer map T W H1.S IZ2/!H1. yS IZ2/,
which to a cycle in S associates its preimage in yS . Its image is contained in f˛ 2
H1. yS IZ2/I ��.˛/ D ˛g Š H.�IZ2/. If ˛0i 2 H1.S IZ2/ is represented by the above
family of curves ai , it is immediate from definitions that T .˛0i/ corresponds to the
vector .lj1; lj2; : : : ; ljn/ in H.�IZ2/Š .Z2/

n .

In the set-up of Proposition 5, the transfer map T can be geometrically realized by
representing a class ˛ 2H1.S IZ2/ by a curve a contained in S�D ; then T .˛/ is the
class of a1Ca2 , where a1 and a2 are copies of a in the two copies S1 and S2 of S�D

contained in yS . In particular, if we start with a class ˛2H1. xS IZ2/, lift it to a class ˛02
H1.S IZ2/ and consider its image T .˛0/2H.�IZ2/ŠH1. yD0IZ2/˚H1. xS IZ2/˚W2 ,
the projection of T .˛0/ to the factor H1. xS IZ2/ is exactly equal to x̨ . As a consequence,
H1. xS IZ2/˚W2 is isomorphic to B2˚W2 if B2 �H.�IZ2/ denotes the subspace
generated by the T .˛0i/.

Multiplying everything by N
2

we conclude that, in H.�IZN / Š H1. yD0IZN / ˚

H1. xS IZN /˚WN , the kernel Ker x� D 0˚N
2

H1. xS IZ2/˚WN is equal to 0˚B˚WN

where B D N
2

B2 is generated by the vectors .lj1
N
2
; lj2

N
2
; : : : ; ljn

N
2
/.
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3 The algebraic structure of the Chekhov–Fock algebra

Lemma 11 The monomials X
k1

1
X

k2

2
: : :X

kn
n , with k1 , k2 , . . . , kn 2 Z, form a basis

for T q

�
, considered as a vector space.

Proof This immediately follows from the fact that T q

�
is an iterated (Laurent) skew-

polynomial algebra, and can also be described as the vector space freely generated
by these monomials and endowed with the appropriate multiplication. See Cohn [13,
Section 2.1] or Kassel [24, Section 1.7].

Theorem 12 The Chekhov–Fock algebra T q

�
is isomorphic to the algebra Wq

g;k;p

defined by generators U˙1
i , V ˙1

i , with i D 1, . . . , gCk , and Z˙1
j with j D 1, . . . ,

p and by the following relations:

(1) each Ui commutes with all generators except V ˙1
i ;

(2) each Vi commutes with all generators except U˙1
i ;

(3) UiVi D q4ViUi for every i D 1, . . . , g ;

(4) UiVi D q2ViUi for every i D gC 1, . . . , gC k ;

(5) each Zj commutes with all generators.

Here g is the genus of the surface S , p is its number of punctures and k D 2gCp�3.
In addition, the isomorphism between T q

�
and Wq

g;k;p
can be chosen to send monomial

to monomial.

Proof Let Fn be the free group generated by the set fX1; : : : ;Xng. We can rephrase
the definition of T q

�
by saying that it is is the quotient of the group algebra CŒFn� by

the 2–sided ideal generated by all elements XiXj � q�ij Xj Xi .

Note that the abelianization of Fn is canonically isomorphic to Zn . In addition, if we
identify two words a, b 2Fn to their images in T q

�
and if xa and xb denote their images

in Zn , then baD q�.xa;
xb/ab in T q

�
.

Consider the base change isomorphism Zn! Zn provided by Proposition 5, under
which � becomes block diagonal. Lift this isomorphism to a group isomorphism Fn!

Fn , which itself induces an algebra isomorphism ˆ W CŒFn�! CŒFn�. If we denote
the generators of the first Fn by fU1;V1;U2;V2; : : : ;UgCk ;VgCk ;Z1;Z2; : : : ;Zpg,
it immediately follows from definitions that ˆ induces an isomorphism from Wq

g;k;p

to T q

�
. This isomorphism sends monomial to monomial since it comes from an

isomorphism of Fn .
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The monomials aX
i1

1
X

i2

2
: : :X

in
n , with ij 2 Z and a 2C, play a particularly important

rôle in the structure of T q

�
and of its representations. Let Mq

�
denote the set of all

such monomials that are different from 0. The multiplication law of T q

�
induces a

group law on Mq

�
.

The elements aX 0
1

X 0
2
: : :X 0

n form a subgroup of Mq

�
isomorphic to the multiplicative

group C�DC�f0g. There is also a natural group homomorphism Mq

�
!ZnDH.�IZ/

which to X D aX
i1

1
X

i2

2
: : :X

in
n associates the vector xX D .i1; i2; : : : ; in/. This defines

a central extension
1! C�!Mq

�
! Zn

! 1

whose algebraic structure is completely determined by the commutation property that
XY D q2�. xX ; xY /YX for every X , Y 2Mq

�
.

Let Zq

�
be the center of Mq

�
. An immediate consequence of Lemma 11 is that the

center of the algebra T q

�
consists of all sums of elements of Zq

�
. We now analyze the

structure of Zq

�
.

We first introduce preferred elements of Zq

�
. By Lemma 8, Zq

�
contains the element

X1X2 : : :Xn . However, it is better to introduce its scalar multiple

H D q�
P

i<i0 �i i0X1X2 : : :Xn:

Similarly, Lemma 8 shows that the center Zq

�
contains the element X

ki1

1
X

ki2

2
: : :X

kin
n 2

T q

�
associated to the i –th puncture of S , where kij 2 f0; 1; 2g denotes the number of

ends of the component �j of � that converge to this i –th puncture. Again, we consider

Pi D q�
P

j <j 0 kij kij 0�jj 0X
ki1

1
X

ki2

2
: : :X kin

n :

The q–factors in the definition of H and of the Pi are specially defined to guarantee
invariance under re-indexing of the Xj . This choice of scalar factors is classically
known as the Weyl quantum ordering.

Lemma 13 For every integer N :

H 2
D P1P2 : : :Pp

H N
D q�N 2

P
i<i0 �i i0X N

1 X N
2 : : :X N

n

PN
i D q�N 2

P
j <j 0 kij kij 0�jj 0X

N ki1

1
X

N ki2

2
: : :X N kin

n

Proof The Pi and H belong to the subset A� Zq

�
consisting of all elements of the

form
q
�
P

j <k �ij ik Xi1
Xi2

: : :Xim
:
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Note that the fact that the elements of A are central implies that
P

k �jik
D 0 for every

j . It immediately follows that, for every A and B 2 A, the product AB is also in
A. Also, an element of A is invariant under permutation of the Xij (and subsequent
adjustment of the q–factor).

The three equations of Lemma 13 immediately follow from these observations, using
for the first equation the fact that

P
i kij D 2 for every j .

Proposition 14 When q is not a root of unity, the center Zq

�
of the monomial group

Mq

�
is equal to the direct sum of C� and of the abelian subgroup freely generated (as

an abelian group) by the above elements H and Pi with i D 1, . . . , p� 1.

Proof This immediately follows from the algebraic structure of Mq

�
and from

Lemma 8.

When q2 is a primitive N –th root of unity, the center Zq

�
contains additional elements,

such as the X N
i . Lemma 13 provides relations between H N , the X N

i and the PN
j .

Proposition 15 If q2 is a primitive N –th root of unity with N odd, the center Zq

�
of

the monomial group Mq

�
is generated by the X N

i with i D 1, . . . , n, by the element
H , and by the Pj with j D 1, . . . , p� 1.

In addition, if W denotes the direct sum of C� and of the free abelian group generated
by the X N

i , H and Pj , with i D 1, . . . , n and j D 1, . . . , p�1, then Zq

�
is isomorphic

to the quotient of W by the relations:

H N
D q�N 2

P
i<i0 �i i0X N

1 X N
2 : : :X N

n

PN
j D q�N 2

P
k<k0 kj kkj k0�kk0 .X N

1 /
kj 1.X N

2 /
kj 2 : : : .X N

n /
kj n

Proof Again, this immediately follows from our analysis of Ker �N in Lemma 9,
together with the relations of Lemma 13.

It should be noted that, when q2 is an N –th root of unity, then qN D ˙1 so that
the q–factors in the relations of Proposition 15 are equal to ˙1. In later sections, we
will choose q so that these factors are actually equal to 1, making these relations less
intimidating.

When N is even, the structure of Ker �N is more complicated, and consequently so
is the structure of Zq

�
. Let ˛1 , ˛2 , . . . , ˛2g form a basis for H1. xS IZ2/. We can

represent ˛k by a family ak of curves immersed in the graph � � S dual to � and
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passing at most once across each edge of � . Let lki 2 f0; 1g be the number of times
ak traverses the i -th edge of � . Define

Ak D q�
N 2

4

P
i<i0 lki lki0�i i0X

N
2

lk1

1
X

N
2

lk2

2
: : :X

N
2

lkn

n 2 T q

�
:

As in Lemma 13,

A2
k D q�N 2

P
i<i0 lki lki0�i i0X

N lk1

1
X

N lk2

2
: : :X N lkn

n

DX
N lk1

1
X

N lk2

2
: : :X N lkn

n

since qN 2

D .˙1/N D 1 because N is even.

Proposition 16 If q2 is a primitive N –th root of unity with N even, the center Zq

�

of the monomial group Mq

�
is generated by C� , by the X N

i with i D 1, . . . , n, by the
element H , by the Pj with j D 1, . . . , p� 1, and by the Ak with k D 1, . . . , p� 1.

In addition, if W denotes the direct sum of C� and of the free abelian group generated
by the X N

i , H , Pj and Ak , with i D 1, . . . , n, j D 1, . . . , p� 1 and k D 1, . . . , 2g ,
then Zq

�
is isomorphic to the quotient of W by the relations:

H N
DX N

1 X N
2 : : :X N

n

PN
j D .X

N
1 /

kj 1.X N
2 /

kj 2 : : : .X N
n /

kj n

A2
k D .X

N
1 /

lk1.X N
2 /

lk2 : : : .X N
n /

lkn

Proof Again, this follows from Lemma 10, together with the relations of Lemma 13
and the fact that qN 2

D 1 when N is even.

4 Finite-dimensional representations of the Chekhov–Fock
algebra

This section is devoted to the classification of the finite-dimensional representations of
the algebra T q

�
, namely of the algebra homomorphisms � W T q

�
! End.V / from T q

�
to

the algebra of endomorphisms of a finite-dimensional vector space V over C. Recall
that two such representations � W T q

�
!End.V / and �0 W T q

�
!End.V 0/ are isomorphic

if there exists a linear isomorphism L W V ! V 0 such that �0.X /DL ��.X / �L�1 for
every X 2 T q

�
, where � denotes the composition of maps V 0! V ! V ! V 0 . Also,

� W T q

�
! End.V / is irreducible if it does not respect any proper subspace W � V .

Having determined the algebraic structure of T q

�
in Section 3, the classification of its

representations is an easy exercise (see Lemmas 17, 18 and 19). The main challenge is
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to state this classification in an intrinsic way which is tied to the topology of the ideal
triangulation �. This is done in Theorem 20 in a first step, and then in Theorems 21
and 22 in a more concrete way.

It is not hard to see that the Chekhov–Fock algebra T q

�
cannot admit any finite-

dimensional representation unless q is a root of unity. In this case, our results will
heavily depend on the number N such that q2 is a primitive N –th root of unity.

In addition to the structure theorems of Section 3, our analysis of the representations
of T q

�
is based on the following elementary (and classical) facts.

Lemma 17 Let Wq be the algebra defined by the generators U˙1 , V ˙1 and by
the relation U V D q2V U . If q2 is a primitive N –th root of unity, every irreducible
representation of Wq has dimension N , and is isomorphic to a representation �uv

defined by

�uv.U /D u

0BBBBBBBBB@

1 0 0 : : : 0 0

0 q2 0 : : : 0 0

0 0 q4 : : : 0 0

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

0 0 0 : : : q2N�4 0

0 0 0 : : : 0 q2N�2

1CCCCCCCCCA
and

�uv.V /D v

0BBBBBBBBB@

0 0 0 : : : 0 1

1 0 0 : : : 0 0

0 1 0 : : : 0 0

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

0 0 0 : : : 0 0

0 0 0 : : : 1 0

1CCCCCCCCCA
for some u, v 2 C � f0g. In addition, two such representations �uv and �u0v0 are
isomorphic if and only if uN D .u0/N and vN D .v0/N .

Proof Note that U N and V N are central in Wq . If � is an irreducible representation,
it must consequently send U N to a homothety u1 Id and V N to a homothety v1 Id.
In addition, �.V / sends an eigenvector of �.U / corresponding to an eigenvalue ` to
another eigenvector of �.U / corresponding to the eigenvalue `q2 . It easily follows
that � is isomorphic to a representation �uv for some u, v such that uN D u1 and
vN D v1 .

Geometry & Topology, Volume 11 (2007)



Quantum Teichmüller space and surface diffeomorphisms 907

If the representations �uv and �u0v0 are isomorphic, then necessarily uN D .u0/N and
vN D .v0/N by consideration of the homotheties �uv.U

N /, �u0v0.U
N /, �uv.V

N /

and �u0v0.V
N /. Conversely, conjugating �uv by the isomorphism �uv.U / gives the

representation �u0v0 with u0D u and v0D vq2 ; it follows that the isomorphism class of
�uv depends only on u and vN . Similarly, the representation obtained by conjugating
�uv by the isomorphism �uv.V / is equal to the representation �u0v0 with u0 D uq2

and v0 D v . It follows that the isomorphism class of �uv depends only on uN and
vN .

Lemma 18 Let q2 be a primitive N –th root of unity, and let Wq be the algebra
defined by the generators U˙1 , V ˙1 and by the relation U V D q2V U . Let W be
any algebra. Any irreducible finite-dimensional representation of the tensor product
W ˝Wq is isomorphic to the tensor product �1˝ �2 W W ˝Wq ! End.W1˝W2/

of two irreducible representations �1 W W ! End.W1/ and �2 W Wq ! End.W2/.
Conversely, the tensor product of two such irreducible representations is irreducible.

Proof Consider an irreducible representation � W W ˝Wq ! End.W /, with W a
finite-dimensional vector space over C. Let W1 �W be an eigenspace of �.1˝U /,
corresponding to the eigenvalue u. Then �.1˝V i/ sends W1 to the eigenspace WiC1

of �.1˝U / corresponding to the eigenvalue uq2i . Also, W˝1 commutes with 1˝U ,
and �.W˝1/ consequently preserves each Wi . Noting that �.1˝V N / is a homothety
since 1˝V N is central, it follows that

LN
iD1 Wi is invariant under �.W˝Wq/ , and

is therefore equal to W by irreducibility of � .

If �.W˝ 1/ respected a proper subspace W 0
1

of W1 , then by the above remarks the
subspace

LN
iD1 �.1˝V i/.W 0

1
/ would be a proper subspace invariant under �.W˝

Wq/. By irreducibility of � , it follows that the representation �1 W W ! End.W1/

defined by restriction of �.W˝ 1/ to W1 is irreducible.

All the pieces are now here to conclude that the representation � of W ˝Wq over
W D

LN
iD1 Wi is isomorphic to the tensor product of �1 W W ! End.W1/ and of a

representation �2 W Wq! End.W2/ of the type described in Lemma 17.

Conversely, consider the tensor product � of two irreducible representations �1 W W!
End.W1/ and �2 W Wq ! End.W2/, where �2 is as in Lemma 17. Let Lu � W2

be the (1–dimensional) eigenspace of �2.U / corresponding to the eigenvalue u, so
that W1˝Lu is the eigenspace of �.1˝U / corresponding to the eigenvalue u. If
W 0�W1˝W2 is invariant under � , in particular it is invariant under �.1˝Wq/, and it
follows from Lemma 17 that W 0\ .W1˝Lu/ is non-trivial since �.1˝U N /D uN Id.
The subspace W 0\ .W1˝Lu/ is also invariant under �.W˝ 1/, and must therefore
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be equal to all of W1˝Lu by irreducibility of �1 . Therefore, W 0 contains W1˝Lu ,
from which it easily follows that W 0DW1˝W2 . This proves that � is irreducible.

Lemma 19 Let CŒZ˙1� be the algebra of Laurent polynomials in the variable Z ,
and let W be any algebra. Any irreducible finite-dimensional representation of the
tensor product W ˝ CŒZ˙1� is isomorphic to the tensor product �1 ˝ �2 W W ˝
CŒZ˙1� ! End.V1 ˝ V2/ of two irreducible representations �1 W W ! End.W1/

and �2 W CŒZ˙1�! End.W2/. Conversely, the tensor product of two such irreducible
representations is irreducible.

Proof This immediately follows from the fact that Z is central in W ˝ CŒZ˙1�,
and from the fact that every irreducible representation �2 W CŒZ˙1�! End.W2/ has
dimension 1 and is classified by the number z 2 C� such that �2.Z/D z IdW2

.

Recall that Zq

�
denotes the center of the group Mq

�
of non-zero monomials in the

Chekhov–Fock algebra T q

�
.

Let � W T q

�
! End.V / be a finite-dimensional irreducible representation of T q

�
. Every

X 2 Zq

�
is central in T q

�
, and its image �.X / consequently is a homothety, namely of

the form a IdV for a 2 C. We can therefore interpret the restriction of � to Zq

�
� T q

�

as a group homomorphism � W Zq

�
! C� . Note that � W Zq

�
! C� coincides with the

identity on C� � Zq

�
.

Theorem 20 Suppose that q2 is a primitive N –th root of unity. Every irreducible
finite-dimensional representation � W T q

�
! End.V / has dimension N 3gCp�3 if N is

odd, and N 3gCp�3=2g if N is even (where g is the genus of the surface S and p

is its number of punctures). Up to isomorphism, � is completely determined by its
restriction � W Zq

�
! C� to the center Zq

�
of the monomial group Mq

�
of T q

�
.

Conversely, every group homomorphism � W Zq

�
! C� coinciding with the identity on

C� �Zq

�
can be extended to an irreducible finite-dimensional representation � W T q

�
!

End.V /.

Proof By Theorem 12 and for k D 2gC p � 3, the Chekhov–Fock algebra T q

�
is

isomorphic to the algebra Wq

g;k;p
defined by generators U˙1

i , V ˙1
i , with i D 1, . . . ,

gC k , and Z˙1
j with j D 1, . . . , p and by the following relations:

(1) each Ui commutes with all generators except V ˙1
i ;

(2) each Vi commutes with all generators except U˙1
i ;

(3) UiVi D q4ViUi for every i D 1, . . . , g ;
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(4) UiVi D q2ViUi for every i D gC 1, . . . , gC k ;

(5) each Zj commutes with all generators.

In particular, T q

�
is isomorphic to the tensor product of g copies of the algebra Wq2

(defined by the generators U˙1 , V ˙1 and by the relation U V D q4V U ), k copies of
the algebra Wq , and p copies of the algebra CŒZ˙1�. In addition, the isomorphism
Wq

g;k;p
Š T q

�
can be chosen to send the monomial group of Wq

g;k;p
to the monomial

group Mq

�
of T q

�
.

By Lemmas 18 and 19, an irreducible finite-dimensional representation is therefore
isomorphic to a tensor product �1˝ �2˝ � � �˝ �gCkCp of irreducible representations
�i such that �i is a representation of Wq2

for 1 6 i 6 g , a representation of Wq if
gC 1 6 i 6 gC k , and a representation of CŒZ� if gC k C 1 6 i 6 gC k Cp . In
particular, for gCkC 1 6 i 6 gCkCp , the irreducible representation �i must have
dimension 1, and is determined by the complex number �i.Z/ 2 C� .

If N is odd, then q2 and q4 are both primitive N –th roots of unity. It follows
from Lemma 17 that, for 1 6 i 6 g C k , the representation �i has dimension N

and is completely determined by the two homotheties �i.U
N
i / and �i.V

N
i /. As a

consequence � has dimension N gCk DN 3gCp�3 , as announced, and is completely
determined by the homotheties that are the images of U N

i , V N
j and Zl . Since U N

i ,
V N

j and Zl belong to the center of the monomial group of Wq

g;k;p
Š T q

�
, this shows

that � is determined by the restriction of � to this center Zq

�
.

When N is even, then q2 is a primitive N –th root of unity, but q4 is a primitive N
2

–th
root of unity. Lemma 17 now implies that �i has dimension N

2
if i D 1, 2, . . . , g , and

has dimension N if gC 1 6 i 6 gC k . It follows that � has dimension .N
2
/gN k D

N 3gCp�3=2g , as announced. In addition, �i is determined by the homotheties �
�
U

N
2

i

�
and �

�
V

N
2

i

�
if i D 1, 2, . . . , g , and by �.U N

i / and �.V N
i / if gC 1 6 i 6 gC k .

Consequently, � is completely determined by the images of the U
N
2

i , V
N
2

i with
1 6 i 6 g , of the U N

i and V N
i with g C 1 6 i 6 g C k , and of the Zi with

g C k C 1 6 i 6 g C k C p . Since these elements all belong to the center of the
monomial group of Wq

g;k;p
Š T q

�
, this shows that � is determined by the restriction

of � to this center Zq

�
.

This concludes the proof of the first statement of Theorem 20.

We prove the second statement when N is even. The odd case is similar.

Geometry & Topology, Volume 11 (2007)



910 Francis Bonahon and Xiaobo Liu

Consider a group homomorphism � W Zq

�
! C� coinciding with the identity on C� .

Lemma 17 associates an irreducible representation �i of Wq2

to the numbers �.U
N
2

i /

and �.V
N
2

i / when 1 6 i 6 g , an irreducible representation �i of Wq to �.U N
i / and

�.V N
i / when g C 1 6 i 6 g C k . When g C k C 1 6 i 6 g C k C p , there is a

1–dimensional representation �i of CŒZ˙1� such that �i.Z/D �.Zi/. This defines a
representation �0 D �1˝ �2˝ � � � ˝ �gCkCp of Wq

g;k;p
Š T q

�
, which is irreducible

by Lemma 18. It remains to show that the group homomorphism �0 W Zq

�
! C�

induced by �0 coincides with the original group homomorphism � W Zq

�
! C� . But

this immediately follows from the fact that the center of the monomial group of

Wq

g;k;p
Š T q

�
is the product of C� and of the free abelian group generated by the U

N
2

i ,

V
N
2

i with 1 6 i 6 g , by the U N
i and V N

i with gC 1 6 i 6 gC k , and by the Zi

with gC kC 1 6 i 6 gC kCp .

This concludes the proof, when N is even, of the property that every � W Zq

�
! C�

coinciding with the identity on C� can be extended to an irreducible representation
�D �0 of T q

�
. As indicated above, the case where N is odd is almost identical.

To express Theorem 20 in a more concrete and geometric way, we now combine this
result with our analysis of the algebraic structure of the center Zq

�
in Propositions 15

and 16.

Recall that we associated the element

Pi D q�
P

j <j 0 kij kij 0�jj 0X
ki1

1
X

ki2

2
: : :X kin

n 2 T q

�

to the i -th puncture of S , where kij 2 f0; 1; 2g is the number of ends of the component
�j of � that converge to this i –th puncture. We also considered the element

H D q�
P

i<i0 �i i0X1X2 : : :Xn:

Theorem 21 If q2 is a primitive N –th root of unity with N odd, the irreducible
finite-dimensional representation � W T q

�
! End.V / is, up to isomorphism, completely

determined by:

(1) for i D 1, 2, . . . , n, the number xi 2 C� such that �.X N
i /D xi IdV ;

(2) for j D 1, 2, . . . , p � 1, the N –th root pj of "j x
kj 1

1
x

kj 2

2
: : :x

kj n

n such that
�.Pj /D pj IdV ;

(3) the N –th root h of "0x1x2 : : :xn such that �.H /D h IdV ;
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where "j D q�N 2
P

l<l 0 kj l kj l 0�l l 0 D˙1 and "0 D q�N 2
P

l<l 0 �l l 0 D˙1.

Conversely, every such data of numbers xi , pj and h 2 C� with

pN
j D "j x

kj 1

1
x

kj 2

2
: : :x

kj n

n and hN
D "0x1x2 : : :xn

can be realized by an irreducible finite-dimensional representation � W T q

�
! End.V /.

Proof Combine Theorem 20 and Proposition 15.

In the case where N is even, we had to use a basis ˛1 , ˛2 , . . . , ˛2g for H1. xS IZ2/.
After representing each ˛k by a family ak of curves immersed in the graph � � S

dual to � and passing lki 2 f0; 1g times across the i –th edge of � , we introduced the
monomial

Ak D q�
N 2

4

P
i<i0 lki lki0�i i0X

N
2

lk1

1
X

N
2

lk2

2
: : :X

N
2

lkn

n 2 T q

�
:

Theorem 22 If q2 is a primitive N –th root of unity with N even, the irreducible
finite-dimensional representation � W T q

�
! End.V / is, up to isomorphism, completely

determined by:

(1) for i D 1, 2, . . . , n, the number xi 2 C� such that �.X N
i /D xi IdV ;

(2) for j D 1, 2, . . . , p � 1, the N –th root pj of x
kj 1

1
x

kj 2

2
: : :x

kj n

n such that
�.Pj /D pj IdV ;

(3) the N –th root h of x1x2 : : :xn such that �.H /D h IdV ;

(4) for kD 1, 2, . . . , 2g , the square root ak of x
lk1

1
x

lk2

2
: : :x

lkn
n such that �.Ak/D

ak IdV .

Conversely, every such data of numbers xi , pj , h and ak 2 C� with

pN
j D x

kj 1

1
x

kj 2

2
: : :x

kj n

n ; hN
D x1x2 : : :xn and a2

k D x
lk1

1
x

lk2

2
: : :xlkn

n

can be realized by an irreducible finite-dimensional representation � W T q

�
! End.V /.

Proof Combine Theorem 20 and Proposition 16.
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5 The quantum Teichmüller space

As one moves from one ideal triangulation � of the surface S to another ideal triangula-
tion �0 , there is a canonical isomorphism ˆ

q

��0
W yT q

�0
! yT q

�
between the fraction algebras

of the Chekhov–Fock algebras respectively associated to two ideal triangulations �
and �0 .

Here the fraction algebra yT q

�
is the division algebra consisting of all the formal fractions

PQ�1 with P , Q 2 T q

�
and Q 6D 0, subject to the ‘obvious’ manipulation rules. In

other words, yT q

�
is the division algebra of all the non-commutative rational fractions

in the variables Xi , subject to the relations XiXj D q2�ij Xj Xi . The existence of such
a fraction algebra is guaranteed by the fact that T q

�
� f0g satisfies the so-called Ore

condition in T q

�
; see for instance [13; 24].

The isomorphism ˆ
q

��0
W yT q

�0
! yT q

�
was introduced by Chekhov and Fock [16] as a

quantum deformation of the corresponding change of coordinates in Thurston’s shear
coordinates for Teichmüller space. See [25] for a version which is more detailed (in
particular with respect to non-embedded diagonal exchanges) and is better adapted to
the context of the current paper.

To describe the isomorphism ˆ
q

��0
, we need to be a little more careful with definitions.

We will henceforth agree that the data of an ideal triangulation � also includes an
indexing of the components �1 , �2 , . . . , �n of � by the set f1; 2; : : : ; ng. Let ƒ.S/
denote the set of isotopy classes of all such (indexed) ideal triangulations of S .

The set ƒ.S/ admits two natural operations. The first one is the re-indexing action
of the permutation group Sn , which to � 2ƒ.S/ and ˛ 2Sn associates the indexed
ideal triangulation ˛� whose i –th component is equal to �˛.i/ .

The second operation is the i –th diagonal exchange �i W ƒ.S/! ƒ.S/ defined as
follows. In general, the i –th component �i of the ideal triangulation � separates two
triangle components T1 and T2 of S ��. The union T1[T2[�i is an open square
Q with diagonal �i . Then the ideal triangulation �i.�/ 2ƒ.S/ is obtained from �

by replacing �i by the other diagonal of the square Q, as in Figure 1. This operation
is not defined when the two sides of �i are in the same component of S ��, which
occurs when �i is the only component of � converging to a certain puncture; in this
case, we decide that �i.�/D �.

It may very well happen that two distinct sides of the square Q correspond to the same
component �j of �. If, as in Figure 1, we list the components of � in the boundary of
Q counterclockwise as �j , �k , �l and �m , in such a way that the diagonal �i goes
from the �j�k corner to the �l�m corner, we can list all possibilities as follows, up to
symmetries of the square:
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�i

�j

�k

�l

�m

�0i

�0j

�0
k

�0
l

�0m

Figure 1

1 The four sides �j , �k , �l and �m of the square Q are all distinct; in this case,
we will say that the diagonal exchange is embedded.

2 �j D �l and �k 6D �m .

20 �k D �m and �j 6D �l ; note that a diagonal exchange of this type is the inverse
of a diagonal exchange of type 2.

3 �j D �k and �l 6D �m .

30 �j D �m and �k 6D �l ; note that a diagonal exchange of this type is the inverse
of a diagonal exchange of type 3.

4 �j D �l and �k D �m ; note that S is the once punctured torus in this case.

5 �j D �k and �l D �m ; note that S is the three-times punctured sphere in this
case.

50 �j D �m and �k D �l ; note that a diagonal exchange of this type is the inverse
of a diagonal exchange of type 5.

Observe that these different situations affect the structure of T q

�
and T q

�0
if �0D�i.�/.

For instance, in T q

�
, XiXj is equal to q2Xj Xi in Cases 1 and 20 , is equal to q4Xj Xi

in Cases 2 and 4, and is equal to Xj Xi in Cases 3, 30 , 5 and 50 . Similarly, in T q

�0
,

XiXj is equal to q�2Xj Xi in Cases 1 and 20 , is equal to q�4Xj Xi in Cases 2 and 4,
and is equal to Xj Xi in Cases 3, 30 , 5 and 50 .

Theorem 23 [16; 25] There is a unique family of isomorphisms ˆq

��0
W yT q

�0
! yT q

�
,

indexed by pairs of ideal triangulations �, �0 2ƒ.S/, such that:

(a) for any �, �0 and �00 2ƒ.S/, ˆq

��00
Dˆ

q

��0
ıˆ

q

�0�00
I

(b) if �0 D ˛� is obtained by re-indexing � 2 ƒ.S/ by the permutation ˛ 2 Sn ,
ˆ

q

��0
is defined by the property that ˆq

��0
.Xi/DX˛.i/ ;
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(c) if �0 D�i.�/ is obtained from � by an i –th diagonal exchange and if we list
all possible configurations as in Cases 1-5’ above, then ˆq

��0
is defined by the

property that ˆq

��0
.Xh/ D Xh for every h 62 fi; j ; k; l;mg, ˆq

��0
.Xi/ D X�1

i ,
and:

(i) in Case 1,

ˆ
q

��0
.Xj /D .1C qXi/Xj ; ˆ

q

��0
.Xk/D .1C qX�1

i /�1Xk ;

ˆ
q

��0
.Xl/D .1C qXi/Xl ; ˆ

q

��0
.Xm/D .1C qX�1

i /�1XmI

(ii) in Case 2,

ˆ
q

��0
.Xj /D .1C qXi/.1C q3Xi/Xj ;

ˆ
q

��0
.Xk/D .1C qX�1

i /�1Xk ; ˆ
q

��0
.Xm/D .1C qX�1

i /�1XmI

(iii) in Case 3,

ˆ
q

��0
.Xj /DXiXj ; ˆ

q

��0
.Xl/ D .1C qXi/Xl ;

ˆ
q

��0
.Xm/D .1C qX�1

i /�1XmI

(iv) in Case 4,

ˆ
q

��0
.Xj /D .1C qXi/.1C q3Xi/Xj ;

ˆ
q

��0
.Xk/D .1C qX�1

i /�1.1C q3X�1
i /�1Xk I

(v) in Case 5,

ˆ
q

��0
.Xj /DXiXj ; ˆ

q

��0
.Xl/DXiXl :

The uniqueness of ˆq

��0
in Theorem 23 immediately comes from the fact that any two

ideal triangulations � and �0 of S can be connected by a finite sequence of diagonal
moves and re-indexings (see for instance [32] for this property). The difficult part
is to show that the isomorphism ˆ

q

��0
so defined is independent of the choice of the

sequence of diagonal moves and re-indexings.

The isomorphisms ˆq

��0
W yT q

�0
! yT q

�
enable us to associate an algebraic object to the

surface S in a way which does not depend on the choice of an ideal triangulation �.
For this, consider the set of all pairs .X; �/ where � 2ƒ.S/ is an ideal triangulation
of S and where X 2 yT q

�
. Define the quantum Teichmüller space, as

yT q
S
D f.X; �/I� 2ƒ.S/;X 2 yT q

�
g=�
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where the equivalence relation � identifies .X; �/ to .X 0; �0/ when X Dˆ
q

��0
.X 0/.

The set yT S
�

inherits a natural division algebra structure from that of the yT q

�
. In fact,

for any ideal triangulation �, there is a natural isomorphism between yT q
S

and yT q

�
.

The terminology is motivated by the non-quantum (also called semi-classical) case
where qD 1 (see [16; 25], and compare Section 8). Consider the enhanced Teichmüller
space T .S/ of S , where each element consists of a complete hyperbolic metric
defined up to isotopy together with an orientation for each end of S that has infinite
area for the metric. Thurston’s shear coordinates for Teichmüller space (see for instance
[8; 16; 25], [39] for a dual version, and [17] for a generalization) associate to the
ideal triangulation � 2ƒ.S/ a diffeomorphism '� W T .S/! Rn . The corresponding
coordinate changes '�0 ı '�1

�
W Rn ! Rn are rational functions and, for the natural

identifications yT 1
�
Š yT 1

�0
Š C.X1;X2; : : : ;Xn/, it turns out that the isomorphism

C.X1;X2; : : : ;Xn/ ! C.X1;X2; : : : ;Xn/ induced by '�0 ı '
�1
�

exactly coincides
with ˆ1

��0
W yT 1
�0
! yT 1

�
. As a consequence, there is a natural notion of rational functions

on T .S/, and the algebra of these rational functions is naturally isomorphic to yT 1
S

.

For a general q , the division algebra yT q
S

can therefore be considered as a deformation
of the algebra yT 1

S
of all rational functions on the enhanced Teichmüller space T .S/.

See [25].

By analogy with the non-quantum situation, we can think of the natural isomorphism
yT q

�
! yT q

S
as a parametrization of yT q

S
by the explicit algebra yT q

�
associated to the ideal

triangulation �. Pursuing the analogy, we will call the isomorphism ˆ
q

��0
W yT q

�0
! yT q

�

the coordinate change isomorphisms associated to the ideal triangulations � and �0 .

Hua Bai [1] proved that the formulas of Theorem 23 are essentially the only ones
for which the property holds, once we require the ˆq

��0
to satisfy a small number of

natural conditions. In particular, the quantum Teichmüller space is a combinatorial
object naturally associated to the 2–skeleton of the Harer–Penner simplicial complex
[20; 32] of ideal cell decompositions of S .

For future reference, we note:

Lemma 24 [25] For any two ideal triangulations �, �0 , the coordinate change
isomorphism ˆ

q

��0
W yT q

�0
! yT q

�
sends the central elements H , P1 , P2 , . . . , Pp of yT q

�0

to the central elements H , P1 , P2 , . . . , Pp of yT q

�
, respectively.

As a consequence, H and the Pi give well-defined central elements of the quantum
Teichmüller space yT q

S
, as well as of its polynomial core T q

S
defined in the next section.
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6 The polynomial core of the quantum Teichmüller space

The division algebras yT q

�
and yT q

S
have a major drawback. They do not admit any

finite-dimensional representations. Indeed, if there was such a finite-dimensional
representation � W yT q

�
! End.V /, then �.Q/ 2 End.V / would be invertible for every

Q2 yT q

�
�f0g, by consideration of �.Q�1/. However, since T q

�
is infinite-dimensional

and End.V / is finite-dimensional, the restriction � W T q

�
! End.V / has a huge kernel,

which provides many Q for which �.Q/D 0 is non-invertible.

On the other hand, we saw in Section 4 that the Chekhov–Fock algebra T q

�
admits a

rich representation theory. This leads us to introduce the following definition.

Let the polynomial core T q
S

of the quantum Teichmüller space yT q
S

be the family
fT q

�
g�2ƒ.S/ of all Chekhov–Fock algebras T q

�
, considered as subalgebras of yT q

S
, as

� ranges over all ideal triangulations of the surface S .

Given two ideal triangulations � and �0 and two finite-dimensional representations
�� W T

q

�
! End.V / and ��0 W T

q

�0
! End.V / of the associated Chekhov–Fock algebras,

we would like to say that the two representations correspond to each other under the
coordinate change isomorphism ˆ

q

��0
, in the sense that ��0 D �� ıˆ

q

��0
. This does not

make sense as stated because ˆq

��0
is valued in the fraction algebra yT q

�
and not just

in T q

�
. A natural approach would be, for each X 2 T q

�0
, to write the rational fraction

ˆ
q

��0
.X / as the quotient PQ�1 of two polynomials P , Q 2 T q

�
and to require that

��0.X /D ��.P /��.Q/
�1 . This of course requires �.Q/ to be invertible in End.V /,

which creates many problems in making the definition consistent. Actually, for a
general isomorphism ˆ W yT q

�0
! yT q

�
and for a representation �� W T

q

�
! End.V /, it is

surprisingly difficult to determine under which conditions on ˆ and �� they define a
representation �� ıˆ W T

q

�0
! End.V / in the above sense. A lot of these problems can

be traced back to the fact that, when adding up fractions PQ�1 , the usual technique of
reduction to a common denominator is much more complicated in the non-commutative
context.

We will use an ad hoc definition which strongly uses the definition of ˆq

��0
. After

much work and provided we consider all ideal triangulations at the same time, it will
eventually turn out to be equivalent to the above definition.

Given two ideal triangulations � and �0 and two finite-dimensional representations
�� W T

q

�
! End.V / and ��0 W T

q

�0
! End.V / of the associated Chekhov–Fock algebras,

we say that ��0 is compatible with �� and we write ��0 D �� ıˆ
q

��0
if, for every

generator Xi 2 T q

�0
, we can write the rational fraction ˆq

��0
.Xi/ 2 yT q

�
as the quotient

PiQ
�1
i of two polynomials Pi , Qi 2 T q

�
in such a way that ��.Qi/ is invertible in
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End.V / and ��0.Xi/D ��.Pi/��.Qi/
�1 . Note that ��.Pi/ then is also invertible by

consideration of ��0.X�1
i /

At this point, it is not even clear that the relation “is compatible with” is symmetric
and transitive. A version of these properties is provided by the following lemma.

Lemma 25 Consider a sequence of ideal triangulations �1 , �2 , . . . , �m and finite-
dimensional representations ��k

W T q

�k
!End.V / such that each �kC1 is obtained from

�k by a re-indexing or a diagonal exchange. If in addition ��k
D ��kC1

ıˆ
q

�kC1�k
for

every k , then ��1
D ��m

ıˆ
q

�m�1
and ��m

D ��1
ıˆ

q

�1�m
.

Proof We will prove that ��1
D ��m

ıˆ�m�1
by induction on m. For this purpose,

assume the property true for m� 1. We need to show that, for every generator Xi of
T q

�1
, ˆ�m�1

.Xi/ can be written as a quotient PQ�1 where P , Q 2 T q

�1
are such that

��m
.P / and ��m

.Q/ are invertible and ��1
.Xi/D ��m

.P /��m
.Q/�1 .

If �m is obtained from �m�1 by re-indexing, then the property immediately follows
from the induction hypothesis after re-indexing of the Xi .

We can therefore restrict attention to the case where �m is obtained from �m�1 by one
diagonal exchange, along the i0 –th component of �m�1 , say.

The general strategy of the proof is fairly straightforward, but the non-commutative
context makes it hard to control which elements have an invertible image under ��m

;
this requires more care that one might have anticipated at first glance.

We need to be a little careful in our notation. Let CfZ˙1
1
;Z˙1

2
; : : : ;Z˙1

n g denote the
algebra of non-commutative polynomials in the 2n variables Z1 , Z2 , . . . , Zn , Z�1

1
,

Z�1
2

, . . . , Z�1
n . Given such a polynomial P 2CfZ˙1

1
;Z˙1

2
; : : : ;Z˙1

n g and invertible
elements A1 , A2 , . . . An of an algebra A, we will denote by P .A1;A2; : : : ;An/ the
element of A defined by replacing each Zi by the corresponding Ai and each Z�1

i

by A�1
i .

Consider the generator Xi 2 T q

�1
. By induction hypothesis,

ˆ
q

�m�1�1
.Xi/D P .X1; : : : ;Xn/ Q.X1; : : : ;Xn/

�1

in yT q

�m�1
, for some non-commutative polynomials P and Q with

��m�1
.P .X1;X2; : : : ;Xn// and ��m�1

.Q.X1;X2; : : : ;Xn//

invertible in End.V /; beware that Xi represents a generator of T q

�1
in the left hand

side of the equation, and a generator of T q

�m�1
in the right hand side. In addition,

��1
.Xi/D ��m�1

.P .X1;X2; : : : ;Xn// ��m�1
.Q.X1;X2; : : : ;Xn//

�1:
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Then,

ˆ
q

�m�1
.Xi/Dˆ

q

�m�m�1
ıˆ

q

�m�1�1
.Xi/

Dˆ
q

�m�m�1
.P .X1; : : : ;Xn// ˆ

q

�m�m�1
.Q.X1; : : : ;Xn//

�1

D P .ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//

Q.ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//

�1:

We are now facing the problem of reducing these quantities to a common denominator,
while controlling the invertibility of the images of denominators under ��m

.

The ideal triangulation �m is obtained from �m�1 by a diagonal exchange along
its i0 –th component. By inspection in the formulas defining ˆ�m�m�1

, it follows
that P .ˆ

q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn// is a polynomial in the terms X˙1

j , .1C
qX˙1

i0
/�1 and possibly .1Cq3X˙1

i0
/�1 . In addition, whenever a factor .1CqX˙1

i0
/�1

or .1C q3X˙1
i0
/�1 appears, it is through a relation such as

ˆ�m�m�1
.X�1

j /DX�1
j .1C qXi0

/�1

or ˆ�m�m�1
.Xj /D .1C qX�1

i0
/�1.1C q3X�1

i0
/�1Xj

(there are two more possibilities), which respectively give

��m
.1C qXi0

/D ��m�1
.Xj /��m

.X�1
j /;

��m
.1C q3X�1

i0
/��m

.1C qX�1
i0
/D ��m

.Xj /��m�1
.X�1

j /;

or two more relations, using the property that ��m�1
D ��m

ı ˆ
q

�m�m�1
. Since

��m
.X˙1

j / and ��m�1
.X˙1

j / are invertible and since V is finite-dimensional we
conclude that, for every .1C qX˙1

i0
/�1 or .1C q3X˙1

i0
/�1 appearing in

P .ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//;

the corresponding element ��m
.1 C qX˙1

i0
/ or ��m

.1 C q3X˙1
i0
/ is invertible in

End.V /.

Now, using the skew-commutativity relations

.1C q2kC1X˙1
i0
/Xj DXj .1C q2k˙�i0jC1X˙1

i0
/;

we can push all the .1C q2kC1X˙1
i0
/�1 to the right in the expression of

P .ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//;
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leading to a relation

P .ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//D P 0.X1; : : : ;Xn/R.Xi0

/�1

where P 0.X1; : : : ;Xn/ is a Laurent polynomial in the Xj and where R.Xi0
/ is a 1–

variable Laurent polynomial product of terms .1C q2kC1X˙1
i0
/. In addition, applying

��m
to both sides of the above skew-commutativity relation, we see that ��m

.1C

q2kC1X˙1
i0
/ is invertible in End.V / whenever a term .1C q2kC1X˙1

i0
/�1 appears in

this process. Therefore, ��m
.R.Xi0

// is invertible.

We will now perform essentially the same computations in End.V /. Since ��m�1
D

��m
ıˆ

q

�m�m�1
,

��m�1
.P .X1; : : : ;Xn//D P .��m�1

.X1/; : : : ; ��m�1
.Xn//

D P .��m
ıˆ

q

�m�m�1
.X1/; : : : ; ��m

ıˆ
q

�m�m�1
.Xn//

The same manipulations as above, but replacing the Xj by the ��m
.Xj / 2 End.V /

(which satisfy the same relations), yield

��m�1
.P .X1; : : : ;Xn//D P .��m

ıˆ
q

�m�m�1
.X1/; : : : ; ��m

ıˆ
q

�m�m�1
.Xn//

D P 0.��m
.X1/; : : : ; ��m

.Xn//R.��m
.Xi0

//�1

D ��m
.P 0.X1; : : : ;Xn// ��m

.R.Xi0
//�1

In particular, since ��m�1
.P .X1;X2; : : : ;Xn// is invertible by definition of P

and Q and since ��m
.R.Xi0

// is invertible by construction, we conclude that
��m

.P 0.X1; : : : ;Xn// is invertible.

Similarly, we can write

Q.ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//DQ0.X1; : : : ;Xn/S.Xi0

/�1

for some Laurent polynomials Q0.X1; : : : ;Xn/ and S.Xi0
/, in such a way that

��m
.Qi.X1; : : : ;Xn// and ��m

.S.Xi0
// are invertible in End.V /, and

��m�1
.Q.X1; : : : ;Xn//D ��m

.Q0.X1; : : : ;Xn// ��m
.S.Xi0

//�1:

We are now ready to conclude. Indeed, we showed that

ˆ
q

�m�1
.Xi/D P .ˆ

q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//

Q.ˆ
q

�m�m�1
.X1/; : : : ; ˆ

q

�m�m�1
.Xn//

�1

D

�
P 0.X1; : : : ;Xn/R.Xi0

/�1
� �

Q0.X1; : : : ;Xn/S.Xi0
/�1

��1

D
�
P 0.X1; : : : ;Xn/S.Xi0

/
� �

Q0.X1; : : : ;Xn/R.Xi0
/
��1
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since R.Xi0
/ and S.Xi0

/ commute. Similarly,

��1
.Xi/D ��m�1

.P .X1;X2; : : : ;Xn//��m�1
.Q.X1;X2; : : : ;Xn//

�1

D

�
��m

.P 0.X1; : : : ;Xn// ��m
.R.Xi0

//�1
�

�
��m

.Q0.X1; : : : ;Xn// ��m
.S.Xi0

//�1
��1

D
�
��m

.P 0.X1; : : : ;Xn// ��m
.S.Xi0

//
�

�
��m

.Q0.X1; : : : ;Xn// ��m
.R.Xi0

//
��1

D ��m
.P 0.X1; : : : ;Xn/S.Xi0

// ��m
.Q0.X1; : : : ;Xn/R.Xi0

//�1

By definition, this means that ��1
D ��m

ıˆ�m�1
, as desired.

There remains to prove the second statement that ��m
D ��1

ıˆ
q

�1�m
. For this, note

that the property that ��k
D ��kC1

ıˆ
q

�kC1�k
implies that ��kC1

D ��k
ıˆ

q

�k�kC1

for every k , using the explicit form of ˆq

�kC1�k
and ˆq

�k�kC1
as well as arguments

which are similar to and much simpler than the ones we just used. The property that
��m
D ��1

ıˆ
q

�1�m
then immediately follows by symmetry.

A representation of the polynomial core T q
S

over the vector space V is a family of
representations �� W T

q

�
!End.V / defined for each ideal triangulation �2ƒ.S/, such

that any two ��0 and �� are compatible in the above sense. Lemma 25 shows that
it suffices to check this condition on pairs of ideal triangulations which are obtained
from each other by one re-indexing or one diagonal exchange. We will see in the next
sections that the polynomial core admits many representations.

Before closing this section, we indicate the following result, which shows that our
definition of compatibility coincides with the condition we had in mind at the beginning
of this section.

Lemma 26 Let �D f�� W T
q

�
! End.V /g�2ƒ.S/ be a finite-dimensional irreducible

representation of the polynomial core T q
S

of the quantum Teichmüller space yT q
S

.
Then, for every X 0 2 T q

�0
, its image ˆq

��0
.X 0/ 2 yT q

�
can be written as ˆq

��0
.X 0/ D

PQ�1 D .Q0/�1P 0 with P , Q 2 T q

�
and with ��.Q/ and ��.Q

0/ invertible in
End.V /. In addition, for any such decomposition of ˆq

��0
.X 0/, ��0.X 0/ is then equal

to ��.P /�.Q/�1 D �.Q0/�1��.P
0/.

Proof This is proved by arguments almost identical to the ones we used for Lemma
25, by induction on the number of diagonal exchanges needed to go from � to �0 .
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However, it is worth mentioning that the easy algebraic manipulation leading to the last
statement simultaneously uses the left and right decompositions PQ�1 and .Q0/�1P 0

of ˆq

��0
.X 0/.

7 The non-quantum shadow of a representation

By Theorems 21 and 22, an irreducible finite-dimensional representation �� W T
q

�
!

End.V / of the Chekhov–Fock algebra is classified, up to a finite number of choices of
certain roots, by numbers xi 2 C� associated to the components �i of �. By Theorem
21 or by inspection, the same numbers xi completely determine a representation
�1
�
W T 1
�
! End.C/ of the commutative algebra T 1

�
corresponding to the non-quantum

(also called semi-classical in the physics literature) case where q D 1. We will say that
�1
�

is the non-quantum shadow, or the semi-classical shadow, of the representation �� .

Interpreting the numbers xi 2 C� as a non-quantum representation �1
�
W T 1
�
! End.C/

may sound really pedantic at first. However, the remainder of this paper hinges on the
following computation which shows that, for a suitable choice of q , the map �� 7! �1

�

is well-behaved with respect to the coordinate changes ˆq

��0
and ˆ1

��0
.

Lemma 27 Let q be such that q2 is a primitive N –th root of unity and such that
qN D .�1/NC1 (for instance q D�e� i=N ). Suppose that the two ideal triangulations
� and �0 of the surface S are obtained from each other by a diagonal exchange
or by a re-indexing, and consider two irreducible finite-dimensional representations
�� W T

q

�
! End.V / and ��0 W T

q

�0
! End.V / such that ��0 D �� ıˆ

q

��0
in the sense

of Section 6. If �1
�
W T 1
�
! End.C/ and �1

�0
W T 1
�0
! End.C/ are the respective non-

quantum shadows of �� and ��0 , then �1
�0
D �1

�
ıˆ1

��0
.

Proof Recall that �1
�

is determined by the property that �1
�
.Xi/D xi 2C� � End.C/,

where xi is the number such that ��.X N
i /D xi IdV . Similarly, �1

�0
.Xi/D x0i where

x0i is such that ��0.X N
i / D �� ıˆ��0.X

N
i / D x0i IdV . In particular, the property is

immediate when �0 is obtained from � by a re-indexing of its components.

Suppose that �0 is obtained from � by an embedded i –th diagonal exchange. Label
the four sides of the square Q supporting the exchange counterclockwise as �j , �k ,
�l and �m , in such a way that the diagonal �i goes from the �j�k corner to the �l�m

corner, as in Figure 1.

By definition of ˆq

��0
, ˆq

��0
.X N

i /DX�N
i . Using Lemma 26, it follows that ��0.X N

i /

D ��.X
N
i /
�1 , so that x0i D x�1

i .
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Because Xj Xi D q2XiXj , the quantum binomial formula (see for instance [24, Section
IV.2]) shows that

ˆ
q

��0
.X N

j /Dˆ
q

��0
.Xj /

N
D .Xj C qXiXj /

N

DX N
j C .qXiXj /

N
DX N

j C qN qN.N�1/X N
i X N

j

DX N
j CX N

i X N
j :

Indeed, most of the quantum binomial coefficients are 0 since q2 is a primitive N –th
root of unity. Note that we also used our hypothesis that qN D .�1/NC1 for the last
equality. It follows that x0j D xj Cxixj D .1Cxi/xj .

To compute xk , it is easier to consider

ˆ
q

��0
.X�N

k /Dˆ
q

��0
.Xk/

�N
D .X�1

k C qX�1
k X�1

i /N

DX�N
k C .qX�1

k X�1
i /N DX�N

k C qN qN.N�1/X�N
k X�N

i

DX�N
k CX�N

k X�N
i :

Applying Lemma 26, we conclude that x0
k
D .x�1

k
Cx�1

k
x�1

i /�1 D .1Cx�1
i /�1xk .

Similar computations hold for x0
l

and x0m . We conclude that x0iDx�1
i , x0j D .1Cxi/xj ,

x0
k
D .1 C x�1

i /�1xk , x0
l
D .1 C xi/xl , x0m D .1 C x�1

i /�1xm and x0
h
D xh if

h 62 fi; j ; k; l;mg. By definition of ˆ1
��0

, this just means that �1
�0
D �1

�
ıˆ1

��0
.

This completes the proof for an embedded diagonal exchange.

We now consider non-embedded diagonal exchanges. Keeping the same labelling
conventions as before, suppose that we are in the case called Case 2 earlier, namely
where �j D �l and �k 6D �m . In this situation, Xj Xi D q4XiXj in T q

�
, which obliges

us to use different arguments according to the parity of N .

If N is odd, then q4 is still a primitive N –th root of unity, and the quantum binomial
formula again shows that

ˆ
q

��0
.X N

j /D
�
.1C qXi/.1C q3Xi/Xj

�N
D
�
U C qXiU

�N
D U N

C .qXiU /
N
D U N

C qN q2N.N�1/X N
i U N

D .1CX N
i /U

N

where U D .1C q3Xi/Xj ; note for this that UXi D q4XiU , and also use qN D

.�1/NC1 D 1. Another application of the quantum binomial formula gives

U N
D
�
Xj C q3XiXj

�N
DX N

j C .q
3XiXj /

N

DX N
j C q3N q2N.N�1/X N

i X N
j D .1CX N

i /X
N

j

Geometry & Topology, Volume 11 (2007)



Quantum Teichmüller space and surface diffeomorphisms 923

so that ˆ��0.X N
j / D .1 C X N

i /
2X N

j . This implies that x0j D .1 C xi/
2xj . The

same computations as in the embedded diagonal exchange case give x0i D x�1
i , x0

k
D

.1Cx�1
i /�1xk , x0mD .1Cx�1

i /�1xm and x0
h
Dxh if h 62 fi; j ; k; l;mg. By definition

of ˆ1
��0

, this implies that �0
1
D �1 ıˆ

1
��0

in this case as well.

When N is even, there is a new twist because q4 is now a primitive N
2

–th root of
unity. For U as above, the quantum binomial formula gives in this case

ˆ
q

��0

�
X

N
2

j

�
D
�
.1C qXi/.1C q3Xi/Xj

�N
2 D

�
U C qXiU

�N
2

D U
N
2 C .qXiU /

N
2 D U

N
2 C q

N
2 q

N.N�2/
2 X

N
2

i U
N
2

D
�
1C .�1/

N�2
2 q

N
2 X

N
2

i

�
U

N
2

and

U
N
2 D

�
Xj C q3XiXj

�N
2 DX

N
2

j C .q
3XiXj /

N
2

DX
N
2

j C q
3N

2 q
N.N�2/

2 X
N
2

i X
N
2

j D
�
1C .�1/

N
2 q

N
2 X

N
2

i

�
X

N
2

j ;

using the fact that qN D .�1/NC1D�1. It follows that ˆq

��0

�
X

N
2

j

�
D
�
1�qN X N

i

�
X

N
2

j

D
�
1CX N

i

�
X

N
2

j . Noting that X N
i and X

N
2

j commute, we conclude that ˆq

��0

�
X N

j

�
D

ˆ
q

��0

�
X

N
2

j

�2
D .1CX N

i /
2X N

j in this case as well. Therefore, x0j D .1C xi/
2xj ,

x0iDx�1
i , x0

k
D .1Cx�1

i /�1xk , x0mD .1Cx�1
i /�1xm and x0

h
Dxh if h 62 fi; j ; k; l;mg

as before. This again implies that �1
�0
D �1

�0
ıˆ1

��0
in this case.

The remaining types of non-embedded diagonal exchanges are treated in the same way,
using the above computations.

Note that the conditions that q2 is a primitive N –th root of unity and qN D .�1/NC1

are equivalent to the property that q is a primitive N –th root of .�1/NC1 , which is
shorter to state. The combination of Lemmas 27 and 25 immediately gives:

Theorem 28 Let q be a primitive N –th root of .�1/NC1 . If � D f�� W T
q

�
!

End.V /g�2ƒ.S/ is a finite-dimensional irreducible representation of the polynomial
core T q

S
of the quantum Teichmüller space yT q

S
, then the non-quantum shadows of

the �� form a representation �1 D f�1
�
W T 1
�
! End.C/g�2ƒ.S/ of the non-quantum

polynomial core T 1
S

.

We will say that the representation �1 of the polynomial core T 1
S

is the non-quantum
shadow of the representation � of the polynomial core T q

�
.
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We now show that every representation of the non-quantum polynomial core T 1
S

is the
shadow of several representations of the quantum polynomial core T q

S
.

Lemma 29 Let the ideal triangulation �0 be obtained from � by a re-indexing or
by a diagonal exchange. Consider an irreducible finite-dimensional representation
�� W T

q

�
! End.V /, with non-quantum shadow �1

�
W T 1
�
! End.C/. If there exists a

non-quantum representation �1
�0
W T 1
�0
! End.C/ D C� with �1

�0
D �1

�
ıˆ1

��0
, then

there exists a unique representation ��0 W T
q

�0
! End.V / with ��0 D �� ıˆ

q

��0
and with

shadow �1
�0

.

Proof The property is immediate for a re-indexing.

Suppose that �0 is obtained from � by an embedded diagonal exchange along the
component �i . Label the components of � bounding the square Q where the diagonal
exchange takes place as �j , �k , �l and �m , as in Figure 1. By inspection of the
formulas defining ˆq

��0
, ��0.X˙1

s /D �� ıˆ
q

��0
.X˙1

s / will be defined if ��.1C qXi/

and ��.1C qX�1
i / are invertible in End.V /. As in the proof of Lemma 27,

��
�
.1C qXi/Xj

�N
D .1C ��.X

N
i //��.X

N
j /

D .1C �1
�.Xi//�

1
�.Xj / IdV

D �1
�0.Xj / IdV :

Since �1
�0
.Xj / 6D 0, it follows that ��

�
.1C qXi/Xj

�
is invertible, and therefore so is

�� ..1C qXi//. A similar consideration of ��.X�1
k
.1C qX�1

i //N proves the invert-
ibility of ��.1C qX�1

i /.

This defines ��0 on the generators X˙1
s . By inspection, it is compatible with the

skew-commutativity relations XsXt D q2�st XtXs and consequently extends to an
algebra homomorphism ��0 W T

q

�0
! End.V /. Its non-quantum shadow is equal to �1

�0
.

The case of a non-embedded diagonal exchange is treated in the same way, applying
again the computations of the proof of Lemma 27.

Theorem 30 Let q be a primitive N –th root of .�1/NC1 . Up to isomorphism, every
representation �1 D f�1

�
W T 1
�
! End.C/g�2ƒ.S/ of the non-quantum polynomial core

T 1
S

is the non-quantum shadow of exactly N p if N is odd, and 22gN p is N is even,
irreducible finite-dimensional representations �D f�� W T

q

�
! End.V /g�2ƒ.S/ of the

polynomial core T q

�
, where p is the number of punctures of S and g is its genus.
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Proof Fix an ideal triangulation �. By Theorem 21 or 22, according to the parity
of N , there are N p or 22gN p isomorphism classes of irreducible finite-dimensional
representations �� W T

q

�
! End.V / with non-quantum shadow �1

�
. The combination

of Lemmas 25 and 29 shows that each such representation �� uniquely extends to a
representation of the polynomial core T q

S
.

8 Pleated surfaces and the hyperbolic shadow of a represen-
tation

We have just showed that the representation theory of the polynomial core T q
S

is, up to
finitely many ambiguities, controlled by the representation theory of the non-quantum
polynomial core T 1

S
. It is now time to remember that the non-quantum coordinate

changes ˆ1
��0

were specially designed to mimic the coordinate changes between shear
coordinates for the Teichmüller space of the surface S , or more precisely for the
enhanced Teichmüller space as defined in [25]. We are going to take advantage of this
geometric context.

However, when considering the weights associated to a non-quantum representation,
we subreptitiously moved from real to complex numbers. This leads us to consider
the complexification of the Teichmüller space, when considered as a real analytic
manifold. This complexification has a nice geometric interpretation, based on the fact
that the complexification of the orientation-preserving isometry group PSL2.R/ of
the hyperbolic plane H2 is the orientation-preserving isometry group PSL2.C/ of the
hyperbolic 3–space H3 . For this, we will use the technical tool of pleated surfaces,
which is now classical in 3–dimensional hyperbolic geometry [37; 11; 8].

Let � be an ideal triangulation of the surface S . A pleated surface with pleating locus �
is a pair

�
zf ; r
�
, where zf W zS!H3 is a map from the universal covering zS of S to the

hyperbolic 3–space H3 , and where r W �1.S/! PSL2.C/ is a group homomorphism
from the fundamental group of S to the group of orientation-preserving isometries of
H3 , such that:

(1) zf homeomorphically sends each component of the preimage z� of � to a com-
plete geodesic of H3 ;

(2) zf homeomorphically sends the closure of each component of zS �z� to an ideal
triangle in H3 , namely one whose three vertices are on the sphere at infinity
@1H3 of H3 ;

(3) zf is r –equivariant in the sense that zf . zx/D r. / zf .zx/ for every zx 2 zS and
 2 �1.S/.
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In classical examples arising from geometry, the homomorphism r has discrete image,
so that zf induces a map f W S!H3=r.�1.S// to the quotient orbifold H3=r.�1.S//.
The map f is totally geodesic on S � �, and is bent along a geodesic ridge at the
components of �.

The geometry of the pleated surface
�
zf ; r
�

is completely described by complex numbers
xi 2 C� associated to the components �i as follows. Consider the upper half-space
model for H3 , bounded by the Riemann sphere yCD C[ f1g. Arbitrarily orient �i

and lift it to an oriented component z�i of z�. Let Tl be the component of zS �z� that is
on the left of z�i , and let Tr be the component on the right, defined with respect to the
orientations of z�i and zS . Let zC and z� 2 yC be the positive and negative end points
of the oriented geodesic zf

�
z�i

�
of H3 , let zl be the vertex of the ideal triangle zf .Tl/

that is different from z˙ and, likewise, let zr be the third vertex of Tr . Then xi is
defined as the cross-ratio

xi D�
.zl� zC/.zr� z�/

.zl� z�/.zr� zC/
:

Note that xi is different from 0 and 1, because the vertex sets fzC; z�; zlg and
fzC; z�; zrg of the ideal triangles zf .Tl/ and zf .Tr/ each consist of three distinct points.
Also, reversing the orientation of �i exchanges zC and z� , but also exchanges zl and
zr so that xi is unchanged. Similarly, xi is independent of the choice of the lift z�i by
invariance of cross-ratios under hyperbolic isometries.

By definition, xi 2 C� is the exponential shear-bend parameter of the pleated surface�
zf ; r
�

along the component �i of �. Geometrically, the imaginary part of log xi

(defined modulo 2� i) is the external dihedral angle of the ridge formed by zf
�
zS
�

near
the preimage of �i . The real part of log xi is the oriented distance from z0l to z0r in the
oriented geodesic zf

�
z�i

�
, where z0l and z0r are the respective orthogonal projections of

zl and zr to zf
�
z�i

�
. See for instance [8].

Two pleated surfaces
�
zf ; r
�

and
�
zf 0; r 0

�
are isometric if there is a hyperbolic isometry

A 2 PSL2.C/ and a lift z' W zS ! zS of an isotopy of S such that zf 0 DA ı zf ı z' and
r 0. /DA r. /A�1 for every  2 �1.S/.

Proposition 31 For a given ideal triangulation, two pleated surfaces
�
zf ; r
�

and�
zf 0; r 0

�
with pleating locus � are isometric if and only if they have the same exponential

shear-bend factors xi 2 C� at the components �i of �. Conversely, any set of weights
xi 2 C� on the components �i of � can be realized as the exponential shear-bend
parameters of a pleated surface

�
zf ; r
�

with pleating locus �.
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Note that, for a pleated surface
�
zf ; r
�
, the homomorphism r W �1.S/ ! PSL2.C/

is completely determined by the map zf W zS ! H3 . The map zf adds more data to
r as follows. Let A � S be the union of small annulus neighborhoods of all the
punctures of S . There is a one-to-one correspondence between the components of the
preimage zA of A and the peripheral subgroups of �1.S/, namely of the images of
the homomorphisms �1.A/! �1.S/ defined by all possible choices of base points
and paths joining these base points. For a component zA� of zA corresponding to a
peripheral subgroup � ��1.S/, the images under zf of the triangles of zS�z� that meet
zA� all have a vertex z� in common in yCD @1H3 , and this vertex is fixed by r.�/.

Therefore, zf associates to each peripheral subgroup � of �1.S/ a point z� 2 @1H3

which is fixed under r.�/. In addition this assignment is r –equivariant in the sense
that z��1 D r. /z� for every  2 �1.S/.

By definition, an enhanced homomorphism .r; fz�g�2…/ of �1.S/ in PSL2.C/ con-
sists of a group homomorphism r W �1.S/! PSL2.C/ together with an r –equivariant
assignment of a fixed point z� 2 @1H3 to each peripheral subgroup � of �1.S/. Here
… denotes the set of peripheral subgroups of �1.S/. By abuse of notation, we will
often write r instead of .r; fz�g�2…/ of �1.S/.

In general, a homomorphism r W �1.S/! PSL2.C/ admits few possible enhancements.
Indeed, if the peripheral subgroup r.�/ is parabolic, it fixes only one point in @1H3

and z� is therefore uniquely determined by r . If r.�/ is loxodromic or elliptic, there
are exactly two possible choices for z� , namely the end points of the axis of r.�/;
choosing one of these points as z� therefore amounts to choosing an orientation for
the axis of r.�/. The only case where there are many possible choices for z� is when
r.�/ is the identity, which is highly non-generic.

When all the exponential shear-bend parameters xi 2 C� are positive real, there is no
bending and the associated pleated surface zf immerses zS in a hyperbolic plane in H3 .
In particular, the associated pleated surface

�
zf ; r
�

can be chosen so that the image of
r is contained in the isometry group PSL2.R/ of the hyperbolic plane H2 . It can be
shown that r W �1.S/! PSL2.R/ is injective and has discrete image, and that each
peripheral subgroup is either parabolic or loxodromic; see for instance [41, Section
3.4]. In particular, the enhanced homomorphism r defines an element of the enhanced
Teichmüller space of S , in the terminology of [25]. The positive real parameters xi

are by definition the exponential shear coordinates for the enhanced Teichmüller space
of S .

Given an ideal triangulation �, Proposition 31 and the above observations associate
to a non-quantum representation �1

�
W T 1
�
! End.C/ an enhanced homomorphism
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r� W �1.S/! PSL2.C/. This correspondence is particularly well-behaved as we move
from one ideal triangulation to another.

Lemma 32 Let the ideal triangulation �0 be obtained from � by a re-indexing or a
diagonal exchange, and consider two non-quantum representations �1

�
W T 1
�
! End.C/

and �1
�0
W T 1
�0
! End.C/ such that �1

�0
D �1

�
ıˆ1

��0
. Then the pleated surfaces

�
zf�; r�

�
and

�
zf�0 ; r�0

�
respectively associated to �1

�
and �1

�0
define the same enhanced homo-

morphism r� D r�0 W �1.S/! PSL2.C/, up to conjugation by an element of PSL2.C/.

Proof The property is immediate when �0 is obtained by re-indexing the components
of �. We can therefore suppose that �0 is obtained from � by a diagonal exchange
along the component �i .

For a component z�i of the preimage of �i , consider as before the left and right
components Tl and Tr of zS � z� that are adjacent to �i , the end points zC and z�
of zf�

�
z�i

�
, and the remaining vertices zl and zr of the triangles zf�.Tl/ and zf�.Tr/.

Let Q
�
z�i

�
� zS be the open square Tl[Tr[z�i ; it admits z�i as a diagonal, but also a

component z�0i of z�0 as another diagonal.

Because �1
�0
D �1

�
ıˆ1

��0
is well-defined, the exponential shear-bend parameter xi 2C�

of
�
zf�; r�

�
along �i is different from �1. This implies that the points zl and zr are

distinct. We can therefore modify zf� on Q
�
z�i

�
so that it sends the diagonal z�0i to

the geodesic of H3 joining zl to zr , and the square Q
�
z�i

�
to the union of the ideal

triangles with respective vertex sets fzl; zr; zCg and fzl; zr; z�g. As z�i ranges over
all the components of the preimage of �i in z�, the corresponding squares Q

�
z�i

�
are

pairwise disjoint, and we can therefore perform this operation equivariantly with respect
to r� . This gives a pleated surface

�
zf 0
�
; r�
�

with pleating locus �0 and with the same
holonomy r� W �1.S/! PSL2.C/ as the original pleated surface

�
zf�; r�

�
. Note that�

zf 0
�
; r�
�

even has the same associated enhanced homomorphism as
�
zf�; r�

�
.

It remains to show that the exponential shear-bend parameters of
�
zf 0
�
; r�
�

are the
numbers x0i 2C� associated to the non-quantum representation �1

�0
D�1

�
ıˆ1

��0
W T 1
�0
!

End.C/. The coordinate change isomorphism ˆ1
��0
W T 1
�0
! T 1

�
was specially designed

so that, when the xi are real positive and correspond to shear coordinates of the enhanced
Teichmüller space, it exactly reflects the corresponding change of shear coordinates for
the enhanced Teichmüller space; see for instance [25]. The corresponding combinatorics
of cross-ratios automatically extend to the complex case, and guarantees that the non-
quantum representation T 1

�0
! End.C/ defined by the x0i is exactly �1

�0
D �1

�
ıˆ1

��0
.

As a consequence,
�
zf 0
�
; r�
�

is isometric to
�
zf�0 ; r�0

�
, which concludes the proof.
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Proposition 33 Every representation �1 D f�1
�
W T 1
�
! End.C/g�2ƒ.S/ of the non-

quantum polynomial core T 1
S

uniquely determines an enhanced homomorphism r W

�1.S/! PSL2.C/ such that, for every ideal triangulation �2ƒ.S/, r is the enhanced
homomorphism associated to the pleated surface with bending locus � and with expo-
nential shear bend parameters �1

�
.Xi/ 2 C� , for i D 1, . . . , n. Conversely, two repre-

sentations of T 1
S

that induce the same enhanced homomorphism r W �1.S/! PSL2.C/

must be equal.

Proof The first statement is an immediate consequence of Lemma 32.

To prove the second statement, suppose that the two representations � and �0 of T 1
S

induce the same enhanced homomorphism, consisting of a homomorphism r W �1.S/!

PSL2.C/ and of an r –equivariant family of fixed points z� associated to the peripheral
subgroups � of �1.S/. Let

�
zf�; r�

�
and

�
zf 0
�
; r 0
�

�
be the two pleated surfaces with

bending locus � respectively associated to � and �0 . After isometries, we can arrange
that r� D r 0

�
D r .

Each end of a component z�i of the preimage z�� zS specifies two peripheral subgroups
� and � 0 of �1.S/. By construction zf� and zf 0

�
must both send z�i to the geodesic of

H3 joining the two points z� and z� 0 . After a �1.S/–equivariant isotopy of zS , one
can arrange that zf� and zf 0

�
coincide on z�, and eventually over all of zS by adjustment

on the triangle components of zS �z�. In particular, the two pleated surfaces zf� and zf 0
�

now coincide. Since these pleated surfaces now have the same exponential shear-bend
parameters, it follows that � and �0 coincide on T 1

�
, and therefore over all of T 1

S
.

By definition, the enhanced homomorphism r W �1.S/! PSL2.C/ provided by Propo-
sition 33 is the hyperbolic shadow of the non-quantum representation �1 . In the case
where �1 is the non-quantum shadow of a representation � of the polynomial core T q

S

of the quantum Teichmüller space (for a primitive N –th root q of .�1/NC1 ), we will
also say that r is the hyperbolic shadow of � .

Not every enhanced homomorphism from �1.S/ to PSL2.C/ is associated to a repre-
sentation of the polynomial core T 1

S
as above. However, many geometrically interesting

ones are.

Lemma 34 Consider an injective homomorphism r W �1.S/! PSL2.C/. Then, every
enhancement of r is the hyperbolic shadow of a representation �1 of the non-quantum
polynomial core T 1

S
.

Proof The key property is that the stabilizer of a point z 2 @1H3 in PSL2.C/ is solv-
able, whereas two distinct peripheral subgroups of �1.S/ generate a free subgroup of
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rank 2, which cannot be contained in a solvable group. It follows that any enhancement
of r associates distinct points z� and z� 0 to distinct peripheral subgroups � and � 0 .

Let � be an arbitrary ideal triangulation of S , with preimage z� in the universal covering
zS . The corners of each component T of zS � z� specify three distinct peripheral
subgroups �T

1
, �T

2
and �T

3
. We can then construct a pleated surface

�
zf�; r

�
with

pleating locus �, equivariant with respect to the given representation r , which sends
each component T of zS � z� to the ideal triangle of H3 with vertices z�T

1
, z�T

2
,

z�T
3
2 @1H3 . The pleated surface

�
zf�; r

�
defines a representation �1

�
W T 1
�
! End.C/

whose associated enhanced homomorphism consists of r and the z� .

As � ranges over all ideal triangulations, (the proof of) Lemma 32 shows that the �1
�

fit together to provide a representation �1 of the polynomial core T 1
S

whose associated
enhanced representation consists of r and the z� .

An injective homomorphism r W �1.S/! PSL2.C/ admits 2l enhancements, where l

is the number of ends of S whose image under r is loxodromic. Combining Theorem
30, Proposition 33 and Lemma 34 immediately gives:

Theorem 35 Let q be a primitive N –th root of .�1/NC1 . Up to isomorphism, an
injective homomorphism r W �1.S/! PSL2.C/ is the hyperbolic shadow of 2lN p if
N is odd, and 22gClN p if N is even, irreducible finite-dimensional representations
of the polynomial core T q

S
(where g is the genus of S , p is its number of punctures,

and l is the number of ends of S whose image under r is loxodromic).

9 Invariants of surface diffeomorphisms

Theorem 35 provides a finite-to-one correspondence between representations of the
polynomial core T q

S
and certain homomorphisms from �1.S/ to PSL2.C/. We will

take advantage of this correspondence to construct interesting representations of the
polynomial core by using hyperbolic geometry.

Let ' W S ! S be an orientation-preserving diffeomorphism of the surface S . If �
is an ideal triangulation of S , ' induces a natural isomorphism '

q

�
W T q

�
! T q

'.�/

which, to the i –th generator Xi of the Chekhov–Fock algebra T q

�
corresponding to the

component �i of �, associates the i –th generator X 0i of T q

'.�/
corresponding to the

component '.�i/ of '.�/. The existence of ' guarantees that the Xi and X 0i satisfy
the same relations, so that 'q

�
is a well-defined algebra isomorphism.

The isomorphism '
q

�
induces an isomorphism y'q

�
W yT q

�
! yT q

'.�/
between the correspond-

ing fraction algebras. As � ranges over all ideal triangulations, the y'q

�
commute with
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the coordinate change isomorphisms ˆq

��0
, in the sense that y'q

�
ıˆ

q

��0
Dˆ

q

'.�/'.�0/
ıy'

q

�0
.

The y'q

�
consequently define an isomorphism y'q

S
of the quantum Teichmüller space

yT q
S

. Note that y'q
S

sends the image of T q

�
in yT q

S
to T q

'.�/
, and therefore induces an

isomorphism '
q
S

of the polynomial core T q
S

.

In particular, ' now acts on the set Rq of irreducible finite-dimensional representations
of the polynomial cores T q

S
by associating to the representation � D f�� W T

q

�
!

End.V /g�2ƒ.S/ the representation � ı'q
S
D f�'.�/ ı'

q

�
W T q

�
! End.V /g�2ƒ.S/ .

Lemma 36 If � is an irreducible finite-dimensional representation of the polyno-
mial core T q

S
and if the enhanced homomorphism .r; fz�g�2…/ is its hyperbolic

shadow, then the hyperbolic shadow of the representation � ı '
q
S

is equal to .r ı

'�; fz'�.�/g�2…/, where '� W �1.S/ ! �1.S/ is the isomorphism induced by the
diffeomorphism ' W S ! S for an arbitrary choice of a path joining the base point of
S to its image under ' .

Note that, up to isometry of H3 , the enhanced representation .r ı'�; fz'�.�/g�2…/ is
independent of the choice of path involved in the definition of '� .

Proof of Lemma 36 Let z' W zS ! zS be an arbitrary lift of ' to the universal cover
zS . If � D f�� W T

q

�
! End.V /g�2ƒ.S/ and if

�
zf�; r�

�
is the pleated surface with

pleating locus � associated to �� , the pleated surface with pleating locus � associated
to �'.�/ı'

q

�
is isometric to

�
zf'.�/ı z'; r'.�/ı'

�
�
. The result then immediately follows

from definitions.

We are now ready to use geometric data to construct special representations of the
polynomial core. This construction will require the diffeomorphism ' to be homo-
topically aperiodic (or homotopically pseudo-Anosov) namely such that, for every
n > 0 and every non-trivial  2 �1.S/, 'n

�. / is not conjugate to  in �1.S/. The
Nielsen-Thurston classification of surface diffeomorphisms [40; 14] asserts that every
isotopy class of surface diffeomorphism can be uniquely decomposed into pieces that
are either periodic or homotopically aperiodic.

There is another characterization of homotopically aperiodic surface diffeomorphisms
in terms of the geometry of their mapping torus. The mapping torus M' of the
diffeomorphism ' W S ! S is the 3–dimensional manifold quotient of S � R by
the free action of Z defined by n � .x; t/ D .'n.x/; t C n/ for n 2 Z and .x; t/ 2
S � R. Thurston’s Hyperbolization Theorem [38] asserts that ' is homotopically
aperiodic if and only if the mapping torus M' admits a complete hyperbolic metric;
see [30] for a proof of this statement. When this hyperbolic metric exists, it is unique
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by Mostow’s Rigidity Theorem [27], and its holonomy associates to ' an injective
homomorphism r' W �1.M'/! PSL2.C/, uniquely defined up to conjugation by an
element of PSL2.C/, for which every peripheral subgroup is parabolic. Consider the
map f W S!M' composition of the natural identification S DS�f0g�S�R and of
the projection S�R!M'DS�R=Z. For a suitable choice of base points, this enables
us to specify a restriction r' W �1.S/! PSL2.C/ of the holonomy homomorphism of
M' .

The key property is now that f is homotopic to f ı ' in M' . This has the following
immediate consequence.

Lemma 37 The homomorphisms r' and r' ı'
� W �1.S/! PSL2.C/ are conjugate

by an element of PSL2.C/.

Since every peripheral subgroup of �1.S/ is parabolic for r' , the homomorphism
r' admits a unique enhancement. Let Rq

' �Rq be the set of (isomorphism classes)
of irreducible finite-dimensional representations of the polynomial core T q

S
whose

hyperbolic shadow is equal to r' . By Theorem 35, the set Rq
' is finite, and has N p

or 22gN p elements according to whether N is odd or even. By Lemmas 36 and 37,
the set Rq

' is invariant under the action of ' .

By finiteness of Rq
' , for every � D f�� W T

q

�
! End.V /g�2ƒ.S/ in Rq

' , there is a
smallest integer k > 1 such that � ı .'q

S
/k D � in Rq

' . This does not mean that the
representations � ı .'q

S
/k and � of the polynomial core T q

S
over V coincide, but that

there exists an automorphism L� of V such that

� ı .'
q
S
/k.X /DL� � �.X / �L

�1
�

in End.V / for every X 2 T q
S

, if we denote by � the composition in End.V / and by ı
any other composition of maps to avoid confusion.

Proposition 38 The automorphism L� of V depends uniquely on the orbit of � 2Rq
'

under 'q
S

, up to conjugation by an automorphism of V and scalar multiplication by a
non-zero complex number.

Proof By irreducibility of � , the isomorphism L� of V is completely determined
up to scalar multiplication by the property that � ı .'q

S
/k.X / D L� � ��.X / � L

�1
�

for every X 2 T q
S

. It is also immediate that we can take L�ı'q

S
D L� . Finally, one

needs to remember that the representation � was considered up to isomorphism of
representations. A representation isomorphism replaces L� by a conjugate.
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We consequently have associated to each orbit of the action of ' on Rq
' a square

matrix L� of rank N 3gCp�3 or N 3gCp�3=2g , according to wether N is odd or even,
which is well-defined up to conjugation and scalar multiplication. It is not too hard to
determine these orbits in terms of the action of ' on the punctures of S and, when N

is even, on H1.S IZ2/. However, this process can be cumbersome.

Fortunately, when N is odd, there is preferred fixed point for the action of ' on Rq
' .

This is based on the following geometric observation. Recall from Lemma 24 that
the central elements Pj associated to the punctures of S and the square root H of
P1P2 : : :Pp are well-defined elements of the polynomial core T q

S
.

Lemma 39 Let �1
' be the non-quantum representation of T 1

S
whose hyperbolic

shadow is equal to r' . Then �1
' sends the central elements H and Pj to the identity.

Proof Fix an ideal triangulation �, and let
�
zf ; r'

�
be the pleated surface with pleating

locus � associated to r' .

Consider the j –th puncture vj of S . Because the corresponding peripheral subgroup of
�1.S/ is parabolic for r' , the product of the exponential shear-bend coordinates xi 2C�

associated to the components �i converging towards vj (counted with multiplicity) is
equal to 1; see for instance [8]. By definition of Pj , this means that the representation
T 1
�
! End.C/ induced by �1

' sends Pj to the identity.

Since H 2DP1P2 : : :Pp , it follows that �1
' sends H to ˙1D˙IdC . By construction

[30], the homomorphism r' is in the same component as the fuchsian homomorphisms
in the space of injective homomorphisms r W �1.S/ ! PSL2.C/. For a fuchsian
homomorphism, all the xi are real positive, so that �1

r .H / D C1 D IdC for the
associated representation. By connectedness, it follows that �1

'.H /DC1D IdC .

When N is odd, we can paraphrase Theorem 21 by saying that a representation � of
the Chekhov–Fock algebra T q

�
is classified by its non-quantum shadow �1 W T 1

�
!

End.C/DC� and by the choice of an N –th root for �1.H / and for each of the �1.Pj /.
In the case when �1D �1

' , Lemma 39 provides an obvious choice for these N –th roots,
namely 1. Therefore, r' specifies a unique representation �' of the polynomial core
T q

S
over a vector space V of dimension N 3gCp�3 , for which �'.H /D�'.Pj /D IdV .

We can paraphrase this last condition by saying that �' induces a representation of the
quantum cusped Teichmüller space, as defined in [25].

Since the action of ' on the polynomial core T q
S

respects H and permutes the Pj , it
follows that the representation �' is fixed under the action of ' . As above, this means
that there exists an isomorphism L' of V such that

�' ı'
q
S
.X /DL' � �'.X / �L

�1
'
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in End.V / for every X 2 T q
S

.

Theorem 40 Let N be odd, and let q be a primitive N –th root of 1. The isomorphism
L' of V defined above depends uniquely on q and on the homotopically aperiodic
diffeomorphism ' W S ! S , up to conjugation and up to scalar multiplication.

In particular, any invariant of L' is an invariant of ' . For instance, we can consider
the spectrum of ' (consisting of 3gCp� 3 non-zero complex numbers) up to scalar
multiplication. Similarly, we can normalize the matrix L' so that its determinant is
equal to 1; its trace Tr.L'/ then is a weaker invariant well-defined up to a root of
unity. Another interesting invariant is Tr.L'/Tr.L�1

' /, which is the trace of the linear
automorphism of End.V / defined by conjugation by L' .

See [26] for explicit computations of L' for diffeomorphisms of the once-punctured
torus and of the 4–times punctured sphere.
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