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Pseudoholomorphic punctured spheres in R�.S 1�S 2/:
Properties and existence

CLIFFORD HENRY TAUBES

This is the first of at least two articles that describe the moduli spaces of pseudo-
holomorphic, multiply punctured spheres in R� .S1 �S2/ as defined by a certain
natural pair of almost complex structure and symplectic form. This article proves
that all moduli space components are smooth manifolds. Necessary and sufficient
conditions are also given for a collection of closed curves in S1�S2 to appear as the
set of jsj !1 limits of the constant s 2 R slices of a pseudoholomorphic, multiply
punctured sphere.

53D30; 53C15, 53D05, 57R17

1 Introduction

This is the first of at least two articles that describe the moduli spaces of multiply
punctured, pseudoholomorphic spheres for a very natural symplectic form and com-
patible almost complex structure on R � .S1 � S2/. In this regard, the symplectic
form and attending almost complex structure arise when considering 4 dimensional,
compact Riemannian manifolds with an associated self-dual harmonic 2–form. To
elaborate, if the metric is suitably generic, then the zero locus of the harmonic form is
an embedded union of circles and the harmonic 2–form defines a symplectic structure
on the complement of this locus (see, for example, Honda [11] or Gay and Kirby
[3]). In addition, the complement of any given component of the zero locus is in an
open set that is diffeomorphic to .0;1/� .S1 �S2/. As explained in [17], the given
self-dual 2–form can be modified on the complement of its zero locus so as to give a
symplectic form on this complement that restricts to any of these .0;1/� .S1 �S2/

subsets as either the symplectic form from R� .S1 �S2/ considered here, or that of
its push-forward by a free, symplectic Z=2Z action.

With the preceding understood, remark next that there is some evidence (see [15]) that
pseudoholomorphic curves for certain almost complex structures, compatible with this
new symplectic form, code information about the smooth structure on the underlying 4
dimensional manifold. And, if such is the case, then a program to decipher this code
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786 Clifford Henry Taubes

will almost surely need knowledge of the multi-punctured sphere pseudoholomorphic
curve moduli spaces on the whole of R� .S1�S2/. For example, these moduli spaces
will arise in a definition of a smooth 4–manifold invariant that uses any sort of refined
version of the Eliashberg–Givental–Hofer symplectic field theory [2]. (Some refinement
would have to be made since the symplectic form that arises on R� .S1 �S2/ comes
from an overtwisted contact structure on S1 �S2 .)

This article provides an introduction to the multi-punctured sphere moduli spaces, a
description of some of their local properties, an introduction to techniques used in the
sequel article, and an existence proof for the various components. The afore-mentioned
sequel describes the components of the multi-punctured sphere moduli spaces in great
detail with the help of an explicit parametrization. The reader is also referred to a sort
of prequel to this series, this the article [18] that describes the pseudoholomorphic
disks, cylinders and certain of the 3–holed spheres in R� .S1 �S2/.

Acknowledgements Before turning to the details, there is a debt to acknowledge: In
hindsight, the approach in these articles most probably owes a great deal to the author’s
subconscious remembering of old conversations with both Helmut Hofer and Michael
Hutchings.

The author is supported in part by the National Science Foundation.

1.A The symplectic and contact geometry of R � .S 1 � S 2/

An introduction to the relevant geometry is in order. To start, introduce standard
coordinates .s; t; �; '/ for R�.S1�S2/ where s is the Euclidean coordinate for the R

factor, t 2 R=.2�Z/ is the coordinate for the S1 factor and .�; '/ 2 Œ0; ���R=.2�Z/

are standard spherical coordinates for the 2–sphere factor. The symplectic form that is
used here on R� .S1 �S2/ comes as the ‘symplectification’ of a contact 1–form on
S1 �S2 , this the 1–form

(1–1) ˛ ��
�
1� 3 cos2 �

�
dt �
p

6 cos � sin2 �d':

To be explicit, here is the symplectic form:

(1–2) ! D d
�
e�
p

6s˛
�
:

Note that the convention is that the s!1 end of R� .S1 �S2/ is the concave side
end and the s!�1 is the convex side end. (The concave side end is the half that
appears in the 4–manifold context.) It proves convenient at times to write the form !

as

(1–3) ! D dt ^ df C d' ^ dh;
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where

(1–4) f � e�
p

6s
�
1� 3 cos2 �

�
and h�

p
6e�
p

6s cos � sin2 �:

The almost complex structure that defines here the notion of a pseudoholomorphic
subvariety is specified by the relations

(1–5) J � @t D g@f and J � @' D sin2 �g@h;

where g D
p

6e�
p

6s.1C 3 cos4 �/. This almost complex structure is !–compatible.
In fact, the form g�1!.�;J.�// on the tangent bundle of R� .S1�S2/ is the standard
product metric, ds2Cdt2Cd�2Csin2 �d'2 . As remarked earlier, this almost complex
structure is not integrable.

Note that J is invariant under an R � .S1 � S1/ subgroup of the product metric’s
group of isometries, R�S1 �SO.3/. Here, the R factor in this subgroup acts as the
constant translations along the R factor in R� .S1 �S2/, the first S1 factor in the
subgroup acts to rotate the S1 factor of R� .S1 �S2/, while the second S1 factor
rotates the 2–sphere about the axis where � 2 f0; �g. Thus, the R action is generated
by the vector field @s and the two S1 actions are respectfully generated by the vector
fields @t and @' This particular S1 �S1 subgroup of the metric isometry group is
denoted below as T .

1.B The pseudoholomorphic subvarieties

Following the lead of Hofer [4; 5; 6] and Hofer–Wysocki–Zehnder [8; 7; 10], a
pseudoholomorphic subvariety in R� .S1 �S2/ is defined here as follows:

Definition 1.1 A pseudoholomorphic subvariety C � R� .S1 �S2/ is a non-empty,
closed subset with the following properties:

� The complement in C of a countable, nowhere accumulating subset is a 2–
dimensional submanifold whose tangent space is J –invariant.

�
R

C\K ! <1 when K � R� .S1 �S2/ is an open set with compact closure.

�
R

C d˛ <1.

A pseudoholomorphic subvariety is said to be ‘reducible’ if the removal of a finite set
of points makes a set with more than one connected component.

Note that [18] uses the term ‘HWZ variety’ for what is defined here to be a pseudo-
holomorphic subvariety.
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If C � R� .S1�S2/ is an irreducible pseudoholomorphic subvariety, then C defines
a canonical ‘model curve’, this a complex curve C0 that comes with a proper, pseu-
doholomorphic map to R� .S1 �S2/ that is almost everywhere 1–1 and has image
C . A multi-punctured, pseudoholomorphic sphere is, by definition, an irreducible,
pseudoholomorphic subvariety whose model curve is a multiply punctured sphere.

1.C The ends of pseudoholomorphic subvarieties

The set of pseudoholomorphic subvarieties comes with a natural topology whose
description occupies the next subsection. This subsection constitutes a digression of
sorts to introduce various facts about the large jsj portions of pseudoholomorphic
subvarieties that are used both to define this topology and to characterize the resulting
space of subvarieties. This digression has three parts.

Part 1 Pseudoholomorphic subvarieties are quite well behaved at large jsj. In par-
ticular, as demonstrated in [18, Section 2], any given irreducible pseudoholomorphic
subvariety C has the following property:

(1–6) There exists R > 1 such that the jsj � R portion of C is a finite disjoint
union of embedded cylinders to which the function s restricts as an unbounded
function without critical points. Moreover, the constant jsj slices of any such
cylinder converge in S1 �S2 as jsj !1 to a closed orbit of the Reeb vector
field

y̨ �
�
1� 3 cos2 �

�
@t C
p

6 cos �@' :

In addition, this convergence is such that any constant jsj slice defines a closed
braid in a tubular neighborhood of the limit closed orbit.

The notion of convergence used here can be characterized as follows: The diameter of
a tubular neighborhood of the limit closed orbit that contains any given jsj � R slice
can be taken to be a function of jsj that decreases to zero at an exponential rate as jsj
diverges.

The closed orbits of y̨ are called Reeb orbits. As noted in [18], they can all be listed;
and here is the full list:

� The � D 0 and � D � loci.

� The others are labeled by data ..p;p0/; �/ where � 2 R=.2�Z/ and where p and
p0 are relatively prime integers that are subject to the following constraints:
(a) At least one is non-zero.
(b) jp

0

p
j>
p

3
p

2
when p < 0.
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The Reeb orbit that is labeled by this data is the locus where p0t �p' D � and
where � is the unique point in .0; �/ for which

(1–7) p0
�
1� 3 cos2 �

�
�p
p

6 cos � D 0 and p0 cos � � 0:

The convention in (1–7) takes a pair of integers to be relatively prime when they have
no common, positive integer divisor save for the number 1. For example, .0;�1/

and .0; 1/ are deemed to be relatively prime, as is .�1;�1/. In this regard, any pair
P D .p;p0/ that obeys the constraints in the second point above defines, via (1–7), a
unique angle between 0 and � .

The pair p and p0 can be alternatively defined as the respective integrals over the Reeb
orbit of the 1–forms 1

2�
dt and 1

2�
d' using the orientation from y̨ .

Note that all � 2 .0; �/ Reeb orbits come in smooth, 1–parameter families. In this
regard, a .p;p0/ Reeb orbit is fixed by the subgroup of T generated by p@t Cp0@'
while its corresponding family is obtained from its translates by the action of T .
Meanwhile, the Reeb orbits where � D 0 and � D � are T –invariant.

Part 2 Granted the preceding, it then follows that any end of C whose associated
limit Reeb orbit lies where � 2 .0; �/ determines a triple ."; .p;p0//, where "2 fC;�g
and where .p;p0/ are a pair of integers. To elaborate, " is C for a concave side end
and � for a convex side one. Meanwhile, the pair .p;p0/ is a positive, integer multiple
of the relatively prime pair of integers that classifies the end’s limiting Reeb orbit.
In particular, they are the respective integrals of the 1–forms 1

2�
dt and 1

2�
d' over

any constant jsj slice of the end with the latter oriented so its homology class in a
tubular neighborhood of the limit Reeb orbit is a positive multiple of the class of the
Reeb orbit. For example, if  � S1 � S2 is a .p;p0/ Reeb orbit, then R �  is a
pseudoholomorphic cylinder and in this case the integer pair that is associated to either
end is .p;p0/.

Of course, an end E � C of the sort just described also determines an element,
�E 2 R=.2�Z/, this the angular parameter in (1–7) that helps to specify its associated
limit Reeb orbit. A convex side end also determines a real number, cE . This comes
about as follows: Let �E denote the jsj !1 limit of � on E . The arguments from
[18, Section 2] can be used to prove that the function � on any end of C can be written
as

(1–8) � D �E C cEe��jsjC o
�
e�.�C"/jsj

�
;

where cE is constant while � D
p

6 sin2 �E.1C 3 cos2 �E/=.1C 3 cos4 �E/, and " is
positive and also determined a priori by �E . In this regard, if cE D 0, then the leading
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order term in (1–8) is both above and below �E over the large and constant jsj slices
of E unless � is constant on E . In the latter case, E is part of some R�  with  a
Reeb orbit. Note that cE is always zero for a concave side end (see the proof of the
second point in [18, (4.21)]).

Part 3 As will now be explained, an end of C whose limit Reeb orbit has � D 0 or
� but does not coincide with the corresponding � D 0 or � D � cylinder can also be
assigned a discrete triple ."; .p;p0// as well as an angular parameter and a real number.
To begin the explanation, note first that " 2 fC;�g has the same meaning as before,
C when the end is on the convex side and � otherwise. Meanwhile p and p0 are the
respective integrals over any sufficiently large and constant jsj slice of the 1–forms
1

2�
dt and 1

2�
d' using the pull-back of �dt to define the orientation. In this regard,

the following fact from [18, Section 2] is used:

(1–9) Let C denote an irreducible pseudoholomorphic subvariety. If  � S1 �S2

is a Reeb orbit, and if C ¤ R �  , then C has at most a finite number of
intersections with R�  .

As can be proved using results from [18, Sections 2 and 3], any pair .p;p0/ that arises
in the manner just described from an end of C where the jsj !1 limit of � is 0 or
� is constrained by the following rules:

�(1–10) p < 0 in all cases.

�
p0

p
< �

p
3
p

2
for � D 0 concave side ends and p0

p
> �

p
3
p

2
for � D 0 convex

side ends.

�
p0

p
>
p

3
p

2
for � D � concave side ends and p0

p
<
p

3
p

2
for � D � convex

side ends.

To explain the angle and real number to assign an end E � C where the jsj ! 1
limit of � is 0, introduce the functions

(1–11) aD jhj1=2 cos' and b � jhj1=2 sin':

The analysis from [18, Section 3] can be used to prove that an end of the sort under
consideration can be parametrized in an orientation preserving fashion at large jsj by a
complex parameter z 2 C� 0 via a map that sets

(1–12) s� i t D p ln.z/ and a� i b D ycEz˙p.1C o.1//;

where the C sign is used when the jsj !1 limit of � on the end is 0 and the � sign
when this limit is � . Note that (1–12) is valid for a concave side end only where jzj� 1
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and only where jzj � 1 for a convex side one. In any case, the constant ycE 2 C� 0

while the term indicated by o.1/ and its derivatives limits to zero as j ln jzjj ! 1.
Granted the preceding, the real number, cE , and the angle, �E , assigned to E are the
respective real and imaginary parts of ln.ycE/.

An end E � C where the jsj ! 1 limit of � is � has an analogous orientation
preserving parametrization by z 2 C� 0 that is obtained from the preceding by using
the fact that the almost complex geometry is invariant under the involution of S1 �S2

that acts to send .t; .�; '//! .t C�; .� � �;�'//.

1.D The moduli spaces

Fix a finite set whose elements are of the following sort. Each element is a 4–tuple of
the form .ı; "; .p;p0// with ı 2 f�1; 0; 1g, " 2 fC;�g and .p;p0/ 2 Z�Z. A given
4–tuple is allowed to appear more than once in this set. Let yA denote the set that is
obtained by augmenting this chosen set of 4–tuples with a single pair, .cC; c�/, of
non-negative integers. Such data sets are used in what follows to label subsets of the
set of pseudoholomorphic subvarieties.

Given a non-negative integer, � , and a set yA as just described, let M yA;�
, denote the

set of irreducible pseudoholomorphic subvarieties in R.S1 �S1/ with the following
three properties: First, if C 2M yA;�

, then C ’s model curve has genus � . Second, there

is a 1� 1 correspondence between the 4–tuples in yA and the set of ends of C so that
when E is any given end of C , then its corresponding 4–tuple in yA is as follows: The
component ı is 1, 0 or �1 in the respective cases that the jsj!1 limit of � on E is
0, neither 0 nor � , or � . Meanwhile, the component " is C when E is a concave side
end and � otherwise. Finally, the pair .p;p0/ from the 4–tuple is the integral over any
sufficiently large jsj slice of E of the pair of 1–forms . 1

2�
dt; 1

2�
d'/. Said succinctly,

the 4–tuples from the set yA describe the discrete asymptotic data of the ends of any
subvariety in M yA;�

. Finally, C has intersection number cC with the � D 0 cylinder
and c� with the � D � cylinder.

The genus 0 subvarieties are the multiply punctured spheres. The � D 0 version of
M yA;�

, is denoted below as M yA
.

Give M yA;�
, the topology where a basis for the neighborhoods of a given C 2M yA;�

are the subsets that consist of those C 0 2M yA;�
with

(1–13) sup
z2C

dist.z;C 0/C sup
z2C 0

dist.C; z/ < k:

Here, k is some fixed positive real number. The topological space that results is a
‘moduli space’. In this regard, note that the definition of a moduli space given here
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differs from that in [18] in the case that yA has 4–tuples with first component equal to
˙1 since the definition in [18] does not constrain the p0 component of the 4–tuple.

In any event, with the data set yA fixed, the structure of the corresponding moduli space
M yA

of multi-punctured spheres is of prime interest in this article. In this regard, the
first significant result in this article is summarized by the following theorem:

Theorem 1.2 The multi-punctured sphere moduli space M yA
has the structure of a

finite dimensional, smooth manifold.

This theorem is proved in Section 2. This same section also describes various local
coordinate charts for M yA

. In particular some are obtained using the R=.2�Z/ and
real valued parameters that are defined from the jsj !1 limits on various ends.

As explained in Section 2, the dimension of M yA
is determined by the set yA. A

formula is given in Proposition 2.5. This proposition provides a formula for the ‘formal’
dimension for any given � > 0 version of M yA;�

, in terms of yA and � . To elaborate,
note first that Section 2 proves that any � > 0 version of M yA;�

, is a finite dimensional
variety in the sense that any given point has a neighborhood that is homeomorphic
to the zero locus near the origin of a smooth map between two Euclidean spaces.
The difference between the dimensions of the domain and range Euclidean spaces is
independent of the chosen point in M yA;�

. This difference is taken to be the formal
dimension of M yA;�

.

1.E When M yA is non-empty

This subsection provides necessary and sufficient conditions on yA so as to guarantee a
non-empty version of M yA

. In this regard, it follows from what has been said already
that M yA

D � unless the constraints listed next are obeyed. A set, yA, of the sort under
consideration that obeys these constraints is said here to be an asymptotic data set.

Here is the first asymptotic data set constraint: Each .ı; "; .p;p0// 2 yA must obey:

�(1–14) If ı D 0 and p < 0, then jp
0

p
j>
p

3
p

2
.

� If ıD 1, then p < 0. In addition, p0

p
<�

p
3
p

2
when "DC, and p0

p
>�

p
3
p

2

when " > �.

� If ı D�1, then p < 0. In addition, p0

p
>
p

3
p

2
when "DC, and p0

p
<
p

3
p

2

when " > �.
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Two more constraints come via Stokes’ theorem as applied to line integrals of dt and
d' :

(1–15)
X

.ı;";.p;p0//2 yA

"p D 0 and
X

.ı;";.p;p0//2 yA

"p0 D�
�
cC� c�

�
:

Here is the next asymptotic data set constraint:

(1–16) If yA has two 4–tuples and cC D c� D 0, then the 4–tuples have relatively
prime integer pairs.

To explain, note that when yA has cC D c� D 0 and two 4–tuples, then M yA
has only

cylinders. All such spaces are described in [18, Section 4], and all obey (1–16).

The final two asymptotic data set constraints involve the set ƒ yA � Œ0; �� that consists
of the angle 0 when cC > 0 or yA has a .1; : : :/ element, the angle � when c� > 0 or
yA has a .�1; : : :/ element, and the angles that are defined via (1–7) from the .0; : : :/

elements in yA. Granted this definition, here are the last two constraints:

�(1–17) If ƒ yA has one angle, then yA has cCD c�D 0 and two 4–tuples, .0;C;P /
and .0;�;P / with P relatively prime.

� If ƒ yA has more than one angle, then neither extremal angle arises via (1–7)
from an integer pair of any .0;C; : : :/ element in yA.

With regards to the first point here, note that any moduli space where the corresponding
ƒ yA has one angle contains only R invariant cylinders. The final point arises by virtue
of the fact noted previously that the constant cE in (1–8) is zero when E is a concave
side end of a subvariety where the s!1 limit of � is in .0; �/.

In all that follows, yA refers to an asymptotic data set where ƒ yA has more than one
angle. As it turns out, M yA

is nonempty if and only if the data from yA can be used to
construct a certain linear graph with labeled edges. The latter graph is denoted in what
follows by L yA . The following three part digression describes what is involved.

Part 1 To set the stage, introduce ƒ yA to denote the set in Œ0; �� that consists of the
distinct angles that come via (1–7) from the integer pairs of the .0; : : :/ elements in
yA together with the angle 0 when cC > 0 or when yA has a .1; : : :/ element, and the

angle � when c� > 0 or when yA has a .�1; : : :/ element.

Part 2 In the present context, a linear graph is viewed as a finite set of distinct points
in Œ0; �� with two or more elements. In particular, each graph has at least one edge.
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The points in the set are the vertices of the graph, and the intervals that connect adjacent
points are the edges. Thus, such a graph has two monovalent vertices and some number
of bivalent ones. As a point in Œ0; ��, each vertex has a canonical angle assignment.
These angles should coincide with the angles in ƒ yA .

Part 3 As noted at the outset, the edges of the graph L yA are labeled. In particular,
each edge is labeled by an ordered pair of integers subject to the set of six constraints
that appear in the upcoming list (1–18).

The notation used is as follows: When e designates an edge, then Qe or .qe; qe
0/ is

used to denote its corresponding ordered pair of integers. An edge is said to ‘start a
graph’ when its smallest angle is the smallest angle on its graph. By the same token,
and edge is said to ‘end a graph’ when its largest angle is the largest angle on its graph.

Here are the constraints:

�(1–18) If e ends the graph at an angle in .0; �/, then �Qe is the sum of the pairs
from each of the .0;�; : : :/ elements in yA that define this maximal angle
via (1–7).

� If � is the largest angle on e , then Qe is obtained using the following rule:
First, subtract the sum of the integer pairs from the .�1;�; : : :/ elements in
yA from the sum of those from the .�1;C; : : :/ elements, and then subtract
.0; c�/ from the result.

� If e starts the graph at an angle in .0; �/, then Qe is the sum of the pairs
from each of the .0;�; : : :/ elements in yA that define this minimal angle
via (1–7).

� If 0 is the smallest angle on e , then Qe is obtained using the following rule:
First, subtract the sum of the integer pairs from the .1;C; : : :/ elements in
yA from the sum of those from the .1;�; : : :/ elements and then subtract
.0; cC/ from the result.

� Let o denote a bivalent vertex, let �0 denote its angle, and let e and e0

denote its incident edges with the convention that �0 is the largest angle on
e . Then Qe �Qe0 is obtained by subtracting the sum of the integer pairs
from the .0;�; : : :/ elements in yA that define �0 via (1–7) from the sum
of the integer pairs from the .0;C; : : :/ elements in yA that defined �0 via
(1–7).

� Let ye denote an edge. Then pqye
0 � p0qye > 0 in the case that .p;p0/ is

an integer pair that defines the angle of a bivalent vertex on ye . Moreover,
if qye

0 < 0 and if neither vertex on ye has angle 0 or � , and if the version
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of (1–7)’s integer p0 for one of the vertex angles is positive, then both
versions of p0 are positive.

A graph of the sort just described is deemed to be an ‘positive line graph’ for yA. The
next theorem explains its significance.

Theorem 1.3 Suppose that yA is an asymptotic data set. Then M yA
is non-empty if

and only if yA has a a positive line graph.

Note that Theorem 3.1 provides equivalent necessary and sufficient criteria for a non-
empty M yA

.

To explain something of the nature of Theorem 1.3, note that a graph much like LA can
be constructed from any subvariety in M yA

. As explained in the next section, the edges
of the latter graph are in 1�1 correspondence with the components of the complement
in the subvariety of the singular and/or non-compact constant � loci. Meanwhile, the
integer pair that is assigned to any given edge is obtained by integrating the pair 1

2�
dt

and 1
2�

d' about any constant � slice of the corresponding component. However, a
graph from a subvariety can differ from T in one fundamental aspect. Although the
graph as defined by the subvariety is contractible and connected, it might not be linear.

However, as is proved in the subsequent sections, if L yA obeys the constraints in (1–18),
then there exists either a subvariety in M yA

that supplies precisely this graph L yA , or
there is a sequence of subvarieties in M yA

whose graphs converge to L yA in a suitable
sense.

The conditions in (1–18) are more or less direct consequences of the manner in which
the graph L yA is designed to encodes aspect of the topology of the constant � slices
of a pseudoholomorphic subvariety. Indeed, the only subtle constraint is the final
one. The latter can be seen as necessary by considering intersections between the
given pseudoholomorphic subvariety and versions of R�  where  � S1 �S2 is an
open subset with compact closure in the integral curve of the Reeb vector field. Such
submanifolds are pseudoholomorphic, and the final constraint in (1–18) follows from
the fact that the local intersection numbers with such submanifolds are necessarily
positive. In this regard, keep in mind that local intersection numbers between any two
pseudoholomorphic subvarieties are positive (see, for example, McDuff [13].)

As indicated, subvarieties in M yA
can be constructed granted only the constraint in

(1–18). Observations by Michael Hutchings (see also Hutchings–Sullivan [12]) led the
author to think that the constraints in (1–18) are sufficient as well as necessary.
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1.F Outline of the remaining sections

The remainder of this article is organized as follows: Section 2 contains a proof of
Theorem 1.2. This section also describes some useful coordinate systems on M yA

,
in particular, some that are obtained using the topology of the constant � loci on the
pseudoholomorphic subvarieties. The latter play a prominent role in the later sections
and in the sequel to this article. The final subsection of this article explains how the
� –level sets are used to assign a contractible, connected graph to each subvariety in
M yA

.

Section 3 starts the proof of Theorem 1.3 with a result of the following sort: A
reasonably general class of immersed subvarieties with the large jsj asymptotics of a
subvariety from M yA

can be deformed to give a subvariety from M yA
. The latter result

with the constructions in Section 4 provide necessary and sufficient conditions for the
existence of subvarieties in M yA

that differ from those in Theorem 1.3. These alternative
conditions are stated as Theorem 3.1. Arguments, strategies and constructions from
Section 3 also play prominent roles in the sequel to this article, as does Theorem 3.1.

Section 4 completes the proof of Theorem 3.1 by exhibiting subvarieties to start the
deformations that are described in Section 3. The final section explains how Theorem
1.3 follows from Theorem 3.1.

2 Dimensions and regularity

As remarked in the opening section, the interest here is in the moduli space of pseu-
doholomorphic, multiply punctured spheres in R� .S1 �S2/. In this regard, a given
component is labeled by an asymptotic data set, yA, subject to the constraints in (1–
14)–(1–17). The added constraints on yA from Theorem 1.3 are not assumed in this
section.

As in the introduction, M yA
denotes the part of the moduli space that is labeled by yA.

Among other things, this subsection establishes that M yA
is a smooth manifold and

derives a formula in terms of the data from yA for its dimension. The final three parts
of the subsection describe various useful constructions that are subsequently used to
study M yA

. In particular, these include various local coordinate charts for M yA
that

can be constructed from the R=.2�Z/ and real valued parameters that are associated
to the ends of the subvarieties in M yA

.

The subsection starts by introducing a somewhat more general context for the subsequent
discussions.
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2.A Admissible almost complex structures

Arguments in the next section require facts about the moduli spaces of pseudoholomor-
phic subvarieties in R� .S1 �S2/ as defined by almost complex structures that differ
from J . The almost complex structures that arise are deemed here to be ‘admissible’,
and they are distinguished by three salient features: First, the almost complex structure
is ‘tamed’ by all sufficiently small, constant and positive r versions of the symplectic
form d.e�rs˛/. In this regard, the form d.e�rs˛/ � � tames an almost complex
structure, J 0 , when the quadratic function on T .R� .S1 �S2// that sends any given
vector v to �.v;J 0.v// is positive on the complement of the zero section. Second,
the almost complex structure sends @s to .1C 3 cos4 �/�1=2 y̨ , where y̨ is the Reeb
vector field in (1–6). Third, the given almost complex structure agrees with J on the
complement of some compact subset of R� .S1 �S2/. The almost complex structure
J is, of course, admissible as it is compatible with all r > 0 versions of d.e�rs˛/ and
thus tamed by all of them.

As defined, the set of admissible almost complex structures should be viewed as a
Frechêt space with the topology defined so that a given sequence, fJ˛g, of such
structures converges to a given admissible J 0 when there is C1 convergence on
compact sets and when there exists some fixed compact subset such that each J˛ D J

on its complement.

As it turns out, this space of admissible almost complex structures is contractible. To
see why, note first that if J 0 is admissible, and w 2 kernel.˛/ is tangent to a constant
s slice of R� .S1 �S2/, then J 0w must be of the form w0C a@sC b y̨ where a and
b can be any pair of real numbers and where w0 is also annihilated by ˛ and tangent
to S1 �S2 . In this regard, d˛.w;w0/ must be positive when w ¤ 0. Written in this
way, the space of admissible almost complex structures manifestly deformation retracts
onto the subspace of those that map the tangents to S1 � S2 in the kernel of ˛ to
themselves. Meanwhile, the latter subspace is contractible since SL.2IR/=SO.2/ is
contractible.

Consider now the following generalization of Definition 1.1:

Definition 2.1 Let J 0 denote an admissible almost complex structure. A non-empty
subset, C , in R� .S1 �S2/ is a J 0–pseudoholomorphic subvariety if it is closed and
has the following properties:

� The complement in C of a countable, nowhere accumulating subset is a 2–
dimensional submanifold whose tangent space is J 0–invariant.

� sC\K ! <1 when K � R� .S1 �S2/ is an open set with compact closure.
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� sC d˛ <1.

A subvariety is called ‘pseudoholomorphic’ below without reference to a particular
almost complex structure only in the case that J is the unnamed almost complex
structure. Unless stated to the contrary, a subvariety should be assumed irreducible.

Here is the simplest, yet very important example: Let  � S1 �S2 denote a closed
orbit of the vector field y̨ from (1–6). Let J 0 denote any admissible almost complex
structure. Then R�  � R� .S1 �S2/ is a J 0–pseudoholomorphic subvariety.

With Definition 2.1 understood, the next proposition summarizes results from [18,
Propositions 2.2 and 2.3] that are germane to the situation at hand.

Proposition 2.2 Suppose that J 0 is an admissible almost complex structure and that
C is a J 0–pseudoholomorphic subvariety. Then, there exists R > 1 such that the
jsj � R portion of C is a finite disjoint union of embedded cylinders to which the
function s restricts as an unbounded function without critical points. Moreover,

� The constant jsj slices of any such cylinder converge in S1 �S2 as jsj !1
to some closed orbit in S1 �S2 of the Reeb vector field y̨ from (1–6). In this
regard, there exists � > 0 such that the function of jsj that assigns the maximum
distance from the large jsj slices of E to the limit closed orbit of y̨ is bounded
by a constant multiple of e��jsj .

� This convergence is such that any sufficiently large and constant jsj slice defines
a closed braid in any given tubular neighborhood of the limit closed orbit. In
this regard, all sufficiently large jsj slices are disjoint from the limit Reeb orbit
unless the subvariety is the product of R with the Reeb orbit.

� The subvariety C is the image of a complex curve via a proper, J 0–pseudoholo-
morphic map into R� .S1�S2/ that is 1–1 on the complement of a finite set of
points.

With Proposition 2.2 understood, define an ‘end’ of a J 0–pseudoholomorphic subvariety
to be any of the cylinders that appear in Proposition 2.2. The ends of any given J 0–
pseudoholomorphic subvariety comprise a set with a natural 1–1 correspondence
to some ‘asymptotic data set’ as defined in the previous section. In this regard, the
correspondence is defined for the J 0–pseudoholomorphic subvariety in the same manner
as with a J –pseudoholomorphic one. Note as well that a J 0–pseudoholomorphic
subvariety, if irreducible, can be assigned a ‘genus’, the genus of its model curve.

Granted the preceding, suppose now that yA is an asymptotic data set and that & a
non-negative integer. Define the J 0 version of the moduli spaces M yA;&

as done for
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the J version in Subsection 1.D; this the set of irreducible, J 0–pseudoholomorphic
subvarieties with genus & whose set of ends are in 1–1 correspondence with the data
set yA. Use M yA;&;J 0 to denote this set. Give this set the topology where a basis for the
open neighborhoods of a given subvariety have the form in (1–13).

The following subsumes Theorem 1.2:

Theorem 2.3 Let J 0 denote an admissible almost complex structure and let yA denote
an asymptotic data set. Then the multipunctured sphere moduli space M yA;0;J 0 is a
smooth manifold.

The proof of this theorem occupies the next three parts of the subsection.

2.B The local structure of the moduli spaces

This section contains what is essentially a review of material from [18, Sections 2, 3
and 4]. Before starting the review, agree to fix an admissible almost complex structure
J 0 , an asymptotic data set yA subject to the constraints in (1–14)–(1–17), and fix a non-
negative integer & . Set M�M yA;&;J 0 . This subsection describes the local structure
around points in M.

The following three propositions summarize the story on the local structure of M about
any given subvariety. The proofs are straightforward and mostly cosmetic modifications
of arguments from [18, Sections 3 and 4]. An outline is given at the end of this
subsection but the details are left to the reader.

Proposition 2.4 There exists a positive integer yI that depends only on yA and & ; and
given C 2M, there is a positive integer, n, a smooth map, f , from an origin centered
ball in R

yICn to Rn that maps 0 to 0, and a homeomorphism from f �1.0/ onto a
neighborhood of C in M that maps the origin to C .

The integer yI that appears here is the ‘formal dimension’ of M. The formula for
yI given in the next proposition uses & and some of the data from yA. The data of
particular use in this regard are listed next. First on the list is the integer

(2–1) c yA � cCC c�:

In this regard, note that c yA � 0 as it counts the number of intersections, each weighted
with its multiplicity, between any given C 2M with the � D 0 and � D � cylinders.
To elaborate, let C0 denote the model curve for C and let �W C0! R� .S1 �S2/

denote its attending J 0–pseudoholomorphic map onto C . As the points in C0 where
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the pull-back of � is either 0 or � are isolated, the closure of a small disk about each
such point will intersect the � D 0 or � D � cylinder only at its origin. Thus, the
�–image of each such disk has a well defined intersection number with the � 2 f0; �g
locus. This number is positive because any two J 0–pseudoholomorphic subvarieties
have only positive local intersection numbers at their intersection points. The sum of
these local intersection numbers is the integer c yA in (2–1).

Second on the list are the integers N� and NC , these the respective number of elements
of the form .0;�; : : :/ and .0;C; : : :/ in yA. Finally, use yN to denote the number of
elements in yA whose first entry is 1 or �1. With this notation set, consider:

Proposition 2.5 The integer yI from Proposition 2.4 is given by the formula

(2–2) yI DNCC 2.N�C yN CC yAC & � 1/:

This proposition is also proved below

A point C 2M is called a regular point when the nD 0 case of Proposition 2.4 applies.
The next proposition concerns the subset of regular points in M.

Proposition 2.6 The set of regular points in M has the structure of a smooth manifold
of dimension yI . Moreover, if C 2 M is a regular point, then Proposition 2.4’s
homeomorphism between the yI –dimensional ball and a neighborhood of C in M
defines a smooth coordinate chart.

The remainder of this subsection sketches the argument for the preceding propositions.
To begin, fix a smooth Riemannian metric, g0 , on R � .S1 � S2/ for which J 0 is
orthogonal. In this regard, such a metric can and should be chosen so that @s and
y̨ have norm 1, and such that g0 agrees with ds2C dt2C d�2C sin2 �d'2 on the
complement of a compact subset of R� .S1 �S2/.

Now fix C 2M and let C0 again denote the model curve for C . For simplicity, assume
that the J 0–pseudoholomorphic map � from C0 is an immersion. The story when
C is not immersed is similar in most respects to that given below and is summarized
briefly in Subsection 2.D. The reader is referred to [18, Section 3] for a more detailed
account.

Granted that C is immersed, there exists a pull-back normal bundle, N ! C0 ; its
fiber at any given point is the g0–orthogonal complement in T .R� .S1 �S2//jC to
T C0 at the image point in C . This bundle inherits a complex, hermitian line bundle
structure from J 0 and the metric g0 . The latter structure endows N with the structure
of a holomorphic bundle over C0 . In addition, there is a disk bundle N1 � N of
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some fixed radius, r1 , together with an immersion, eW N1! R� .S1 �S2/, onto a
regular neighborhood of C that restricts to the zero section as the map from C0 . In
this regard, e is chosen so as to embed any given fiber of N1 as a pseudoholomorphic
disk. Also, the differential of e is uniformly bounded, and it defines along the zero
section a g0–isometric map from T C0˝N to the pull-back of TX .

Let � denote a smooth section of N1 . Then e.�/ is a pseudoholomorphic subvariety if
and only if � satisfies a certain differential equation, one with the schematic form

(2–3) x@�C ��C�x�CR0.�/CR1.�/ � @�D 0;

where the notation is as follows: First, � and � are bounded sections of T 0;1C0 and
N 2˝T 0;1C0 respectively. Second, R0 is a smooth (but not complex analytic), fiber
preserving map from N1˝N1 to N ˝T 0;1C0 . Meanwhile, R1 is a smooth (but not
complex analytic), fiber preserving map from N1 to Hom.T 1;0C0 , T 0;1C0/. These
two maps obey

(2–4) jR0.�/j � cj�j2 and jR1.�/j � cj�j:

where c is a constant.

The linear part of (2–3) defines the first order, operator DC , an R–linear map from the
space of sections of N to those of N ˝T 0;1C0 . Thus,

(2–5) DC�� x@�C ��C�x�:

The operator DC induces a bounded, Fredholm operator between various weighted,
Sobolev space completions of certain subspaces of sections of N and N ˝T 0;1C0 .
In particular, the completions of interest are defined as follows: Fix a positive, but very
small real number, � ; an upper bound can be deduced from the data in yA. Now, fix a
smooth non-negative function, r , on C0 with the following properties:
� r D��jsj on any end in C0 that provides an element in yA with first component

0.
� If E � C0 is an end that contributes an element of the form .˙1;˙; .p;p0//,

then

(2–6) r D

�
� �Cj

p0

p
j �

r
3

2

�
jsj on E:

With such a function chosen, define respective domain and range Hilbert spaces for
DC to be the completions of the spaces of smooth sections of N and N ˝T 0;1C0

for which the quadratic functionals

(2–7) �!

Z
C0

er .jr�j2Cj�j2/ and �!

Z
C0

er
j�j2;
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are finite. The respective functionals in (2–7) define the Hilbert space norms on the
domain and range. These are both denoted here as k � k.

[18, Lemma 3.3 in Section 3] asserts that the operator DC defines a Fredholm operator
from the domain Hilbert space to the range. The vector spaces kernel .DC / and
cokernel .DC / refer to the respective kernel and cokernel of this Fredholm operator.
Arguments from [18, Sections 3d and 4b,d] prove that the index of this Fredholm
operator is the integer yI .

Meanwhile, almost verbatim copies of the constructions from [18, Section 3c] allow
[18, Proposition 3.2] to construct a ball, B � kernel.DC / about the origin, a smooth
map, f W B! cokernel.DC /, and a smooth map F W B!C1.N1/ with the following
properties: First, kf .�/k � ck�k2 and jF.�/� �j C jr.F.�/� �j � ck�k2 . Second,
F composes with the exponential map eW N1! R� .S1 �S2/ so as to map f �1.0/

homeomorphically onto a neighborhood of C in M.

The conclusions of these last two paragraphs restate those of Propositions 2.4 and 2.5
The conclusions of Proposition 2.6 follow as a formal consequence of the role played by
the implicit function theorem in the construction of F . In this regard, keep in mind that
when C 2M is a regular point, then the use of the map F provides the identification

(2–8) TMjC D kernel.DC /:

It proves useful in subsequent arguments to write DC explicitly on the ends of C . For
this purpose, let E denote a given end. Constructions from [18, Section 2] parametrize
E by coordinates .�; �/ 2 Œ0;1/�R=.2�Z/ and trivialize N over E as E �R2 so
that DC becomes an operator of the form

(2–9) @�C

�
�& 0 �@�
@� �&

�
Cyo1Cyo2 � @�Cyo3 � @� ;

acting on 2–component column vectors. To elaborate, & is a positive constant for
concave side ends and negative for convex side ones. In all cases, the value of &
is determined by the element from yA that labels E . Meanwhile, & 0 D & when the
jsj ! 1 limit of � on E is 0 or � . Otherwise, & 0 D 0. Finally, yo1�3 are smooth,
2� 2 matrix valued functions whose components with their derivatives decay to zero
as �!1 faster than e��

0� with �0 a positive constant. Note that the coordinates
.�; �/ are such that the function jsj restricts to E as a multiple of � . Also, d�^ d�

orients E . Meanwhile, the trivialization chosen for N is such that when  � S1�S2

is a Reeb orbit where � 62 f0; �g and E � R�  , then the column vector with 0 in its
top entry and 1 in its lower entry is a positive multiple of the projection to  ’s normal
bundle of the vector field �@� . The column vector with 1 in its top entry and 0 in its
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lower entry defines a deformation of  along its orbit under the action of the group,
T , of isometries of R� .S1 �S2/ generated by the vector fields @t and @' .

2.C The moduli space for multi-punctured spheres near immersed vari-
eties

Restrict attention now to the genus zero case. Thus, MDM yA;0
contains only multi-

punctured spheres. Using the notation in Proposition 2.5, the model curve of each
C 2M has NCCN�C yN punctures. Here is the first key observation about M:

Proposition 2.7 The space M is a smooth manifold of dimension NC C 2.N� C
yN C c yA � 1/ on some neighborhood of any given subvariety with only immersion

singularities. In this regard, the operator DC has trivial cokernel for each immersed
subvariety in M and thus each such subvariety is a regular point of M.

To explain the terminology, a subvariety is said to have only immersion singularities
when the tautological map from its model curve is an immersion.

An analogous assertion for the non-immersed submanifolds is given in Subsection 2.D.

The proof of Proposition 2.7 requires a preliminary digression to introduce new pairings
between the fundamental class of a pseudoholomorphic subvariety and certain classes
from H 2.R� .S1 �S2/IZ/. In this regard, keep in mind that the fundamental class
of a non-compact subvariety does not canonically define a linear functional on this
second cohomology.

In this digression, C denotes any given J 0–pseudoholomorphic subvariety without
restriction on its genus or its singularities. To start, note that Subsection 3.a in [18]
defines an integer valued pairing between the fundamental class of an irreducible,
pseudoholomorphic subvariety and its Poincare’ dual. It also defines an integer valued
pairing between the fundamental class of such a subvariety and the first Chern class for
the given almost complex structure on R� .S1�S2/. With C denoting the subvariety
in question, these integer pairings are respectively denoted by he; ŒC �i and hc1; ŒC �i;
they enter both in [18, Proposition 3.1] to compute the Euler characteristic of C , and
in [18, Proposition 3.6].

To elaborate, he; ŒC �i is a ‘self-intersection’ number that is defined by pushing C off
of itself using a fiducial push-off on its ends. In this regard, the fiducial push-off used
to define he; ŒC �i pushes along any section of N over the large jsj part of C that is
homotopic there through nowhere zero sections to a particular standard section. To
obtain this standard section, note first that @� is not tangent to any Reeb orbit that
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is obtained as the jsj ! 1 limit of the constant s slices of any end of C0 where
limjsj!1 � 62 f0; �g. Thus, the projection of @� along the large jsj part of C to its
local normal bundle defines a non-vanishing section, �0 , of N over any such end. This
�0 is used for the standard section over any end of C where limjsj!1 � 62 f0; �g. A
different section is used on those ends where limjsj!1 � 2 f0; �g.

Meanwhile, hc1; ŒC �i is defined using a certain standard section for the restriction to
the large jsj part of C of the J –version of the canonical bundle for R� .S1 �S2/.
The standard section over an end E � C0 is .dt C i

g
df /^ .sin2 �d'C i

g
dh/ in the

case that the jsj !1 limit of � on E is neither 0 nor � . A different section is used
on the other ends.

If C is not a � D 0 or � D � cylinder, then �0 is nowhere zero at large jsj on C and
so can be used on all ends of C to define a pairing between C ’s fundamental class
and its Poincare’ dual. This new pairing is denoted here by he; ŒC �i� . Of course, the
new pairing is identical to the old when yA has no elements with first component ˙1.

If C is not a � D 0 or a � D � cylinder, then .dt C i
g

df /^ .sin2 �d' C i
g

dh/ is
also non-zero at large jsj on C , and so this section can be used on all of C ’s ends to
define a new pairing of C with c1 . This new pairing is denoted by hc1; ŒC �i� . This
new pairing has the virtue that it is equal to minus the number of intersections (counted
with multiplicity) between C and the locus where � is 0 or � .

To end the digression, let mC denote the number of double points of any compactly
supported perturbation of C that gives an immersed, symplectic curve with purely
double point immersion singularities with positive local intersection numbers. (Such a
perturbation always exists.) It then follows from [18, Proposition 3.1 and Proposition
4.1] using observations from [18, Section 4c] that

��.C /D he; ŒC �i�Chc1; ŒC �i�� 2mC :

yI D he; ŒC �i�� hc1; ŒC �i�� 2mC CN�C yN :
(2–10)

These last formulas end the digression.

Proof of Proposition 2.7 The proof has five steps.

Step 1 By definition, no C in any M yA;&
is a � D 0 or � D � cylinder. Thus, the

section �0 as defined above is nowhere zero at large jsj on C . Define Deg.N / to be
the usual algebraic count of the zero’s of any section of N that has no zeros where jsj
is large and is homotopic on the large jsj slices of C0 through non-vanishing sections
to �0 . The following lemma identifies Deg.N /:
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Lemma 2.8 Let yA be an asymptotic data set and & a non-negative real number. If
C 2M yA;&

is an immersed subvariety, then

(2–11) Deg.N /DNCCN�C yN C c yAC 2& � 2:

Proof of Lemma 2.8 By definition, the integer Deg.N / and the pairing he; ŒC �i� are
related by the formula Deg.N /D he; ŒC �i�� 2mC . This being the case, add the two
lines in (2–10) to obtain

(2–12) ��.C /C yI D 2 Deg.N /CN�C yN :

Upon rearrangement and division by 2, this last equation gives (2–11).

Step 2 Now suppose that C 2M yA;0
�M yA

. Let � be an element in kernel.DC /. It
follows from the large jsj picture of DC in (2–9) that each such � is bounded on C

and has a well defined jsj !1 limit on each end of C . Moreover, the form of (2–9)
also implies that � has finitely many zeros on C0 and so has a well defined degree at
large jsj on each end of C0 as measured with respect to the degree zero standard of �0

and with the orientation of the constant � circles reversed. (Imagine gluing a disk to
such a circle and then the degree is the degree as viewed from the origin of the glued
disk.) Moreover, the form for DC given in (2–9) implies that this large jsj degree on
each end of C0 is non-negative. Indeed, a column vector with negative degree at all
large � that is annihilated by the operator in (2–9) will grow in size as �!1 faster
than allowed as a member of kernel.DC /. (The growth is faster than the exponential
of a positive, constant multiple of � whose value is determined by the data from yA.
Meanwhile, the function r that appears in (2–7) is defined so as to rule out elements
with such growth.)

When E 2 End.C /, use ıE.�/ to denote the degree of � at large jsj on E .

Meanwhile, if z 2 C0 is a point where � vanishes, use degz.�/ to denote the local
degree of �. Note that degz.�/ > 0 at each zero of � as can be proved using the fact
that DC�D 0.

The following identity is now a consequence of the various definitions:

(2–13)
X
E

ıE.�/C
X

fzW�.z/D0g

degz.�/D Deg.N /

For reference later, note that right hand equality in (2–13) is valid even if C is not
everywhere J 0–pseudoholomorphic and � is not a solution to a particular differential
equation. Indeed, (2–13) holds provided only that C is an immersed subvariety with
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the large jsj asymptotics of a J 0–pseudoholomorphic subvariety, and that the section
� of C ’s pull-back normal bundle has no large jsj zeros. Of course, in this general
context, there need not exist sign constraints on ı.�/.�/ and deg.�/.�/.

Step 3 The next point to make is that there exists a subspace, K0 , of codimension no
greater than NC in kernel.DC / with the property that j�j ! 0 as jsj !1 on each
concave side end of C0 where limjsj!1 � 62 f0; �g. Indeed, the upper bound on the
codimension of K0 follows from the assertion that the requirement of a non-zero limit
on a concave side end of C0 defines a codimension 1 condition on kernel.DC /. And,
the latter claim follows from the form of DC given by (2–9) since any 2–component
column vector that is bounded, has non-zero limit as �!1 and is annihilated by (2–9)
must limit to zero or to the column vector with zero in the lower entry and 1 in the
upper. In this regard, remember that the constant & in (2–9) is positive for concave
side ends.

To summarize: The subspace K0 has dim.K0/ � 2.N�C yN C cA � 1/ with a strict
inequality when cokernel.DC / is non-trivial.

Step 4 The subspace K0 also has the following key property: If � 2 K0 is non-
trivial, then the degree ı.�/.�/ � 1 on each concave side end. Indeed, this is another
consequence of the form for DC given in (2–9) because a 2–component column vector
with zero degree at all sufficiently large � that is annihilated by (2–9) will converge
to a non-zero multiple of the column vector with zero in the lower entry and 1 in the
upper.

With this positivity noted, then (2–11) and (2–13) imply that

(2–14)
X

fzW�.z/D0g

degz.�/�N�C yN C c yA� 2

if � is a non-trivial element of K0 . In this regard, note that (2–14) is an equality if and
only if � has degree ı.�/.�/D 1 on each concave side end of C0 where limjsj!1 � 62
f0; �g and ı.�/.�/D 0 on all other ends. (Remember that ı.�/.�/� 0 on all ends.)

Step 5 Now take a set � � C0 of N�C yN C c yA � 1 distinct points. These points
define a subset K1 �K0 of codimension no greater than 2.N�C yN C c yA� 1/ whose
elements vanish at each point in �. By virtue of the dimension count in Step 3, above,
this subspace K1 is non-trivial if cokernel.DC / is non-trivial. However, by virtue
of (2–14), and by virtue of the fact that deg.�/.�/ > 0 at each of its zeros, the subspace
K0 has no elements that vanish at more than N�C yN C c yA � 1 points of C0 . Thus
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K1 must be trivial. This being the case, cokernel.DC /D f0g, and it follows that M
is smooth near C0 of the asserted dimension.

2.D The story on M near non-immersed subvarieties

This subsection explains why M is a smooth manifold on neighborhoods of its non-
immersed subvarieties. There are five parts to the story.

Part 1 To start, suppose that an admissible J 0 has been fixed and that C is a subvariety
in the J 0 version of M. Let �W C0! R� .S1 �S2/ again denote the tautological
map from C ’s model curve onto C . Since � is J 0–pseudoholomorphic, it fails as an
immersion only where its differential is zero. Use „� C0 to denote the set of points
where this occurs. By virtue of Proposition 2.2, the set „ is compact, and standard
arguments about the local structure of pseudoholomorphic subvarieties (as can be found
in McDuff [13], and McDuff and Salamon [14]) prove that „ is a finite set. To be
more explicit, results from [13] (see also Ye [19]) can be used to prove that there is a
holomorphic coordinate u on disk in C0 centered at a given point in „ and complex
coordinates .x;y/ on a ball in R� .S1�S2/ centered at the image of the given point
that give � the form

(2–15) �.u/D .auqC1; 0/C o.jujqC2/

where a is a non-zero complex number and q � 1 is an integer. As a consequence, the
pull-back by � of the .1; 0/ part of the complexified tangent space to R� .S1 �S2/

canonically splits as ��T1;0.R� .S
1�S2//DW ˚N where W and N are complex

line bundles that are characterized as follows: The differential of � provides a complex
linear map from T1;0C into W and N restricts to C0 �„ as its pull-back normal
bundle.

Part 2 This step constitutes a digression to elaborate on the assertion in Proposition
2.4 in the present case. To begin the digression, note that a deformation of the map
� that moves image points only slightly can always be written as the image via an
exponential map of a section of ��T1;0.R� .S

1�S2//. In this regard, an exponential
map restricts to the zero section as � and it embeds a ball in each of the fibers that is
centered at the origin and has a base-point independent radius. Note that an exponential
map can be chosen to embed a disk about the origin in each fiber of each of the W

and N subbundles as J 0–pseudoholomorphic submanifolds in R� .S1 �S2/. These
disks can be assumed to have base-point independent radii.

A section of ��T1;0.R� .S
1�S2/ defines J 0–pseudoholomorphic map from C0 into

R� .S1 �S2/ if and only if it obeys a certain non-linear differential equation whose
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linearization along the zero section has the form d�D 0 where yD is a first order, R–
linear operator with the symbol of the Cauchy–Riemann operator x@. Here, yD maps the
space of sections of ��T1;0.R�.S

1�S2// to those of ��T1;0.R�.S
1�S2//˝T 0;1C0 .

The operator yD is described in [18, Part 2 of Section 3b]. Note in particular that yD maps
the sections of the W summand of ��T1;0.R�.S

1�S2// to sections of W ˝T 0;1C0 .
In particular, if v is a section of T0;1C0 , then yD.��v/ D ��.x@v/. Meanwhile, yD
followed by the orthogonal projection onto N ˝T 0;1C0 acts as the operator in (2–5)
on sections over C0�„ of the N summand of ��T0;1.R� .S

1 �S2//.

This operator yD is Fredholm when mapping a certain L2
1

Hilbert space completion
of a particular subspace of sections of ��T0;1.R � .S

1 � S2// to a corresponding
L2 Hilbert space completion of one of ��T1;0.R � .S

1 � S2//˝ T 0;1C0 . These
completions are defined by norms on the W and N summands of these bundles that
are straightforward analogs of those that are depicted in (2–7). In this regard, the norms
on the W summand force the sections to have limit zero as jsj !1, while those on
the N summands are weighted exactly as depicted in (2–7).

Now deformations of � that preserve the J 0–pseudoholomorphic condition are not of
primary interest. Rather, the interest is in deformations of � that are J 0–pseudoho-
lomorphic for an appropriately deformed complex structure on C0 . The description
of the latter requires the introduction of the vector space of first order deformations
of the complex structure on C0 . In particular, when there are three or more ends to
C0 , this last vector space has dimension NCCN�C yN � 3, and it is the quotient of a
suitably constrained (at large s ) space of sections of T1;0C0˝T 0;1C0 by the image
of x@. This the case, fix a vector space V of smooth sections of T1;0C0˝T 0;1C0 that
projects isomorphically to said quotient.

All this understood, let DC now denote .1�
Q
/ �D where

Q
denotes the orthogonal

projection in D ’s range space onto ��V . Here, ��V denotes the image of V under
the tautological map that is defined by the differential of � , thus a vector subspace of
the summand W ˝T 0;1C0 of ��T1;0.R� .S

1�S2//˝T 0;1C0 . The operator DC is
viewed here as mapping the domain of yD to the image of .1�

Q
/ in the range Hilbert

space for yD .

The operator DC as just described plays the role for the non-immersed subvarieties
that is played by its namesake in the story in the immersed case following Proposition
2.6 and in the previous subsection. In particular, arguments from [18, Section 3] prove
the following: A neighborhood of C in M is homeomorphic to f �1.0/ where f
is a certain smooth map from a ball in the kernel of DC to the cokernel of DC that
vanishes with its first derivatives at the origin. Moreover, C is a regular point of M
when cokernel.DC /D f0g in which case M is a smooth manifold near C and (2–8)
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holds. Arguments from [18, Section 3] also prove that the index of DC is equal to yI
from (2–2).

The identification between f �1.0/ and M uses the exponential map from a uniform
radius ball subbundle of ��T .R� .S1 �S2/ into R� .S1 �S2/. The identification
also involves a certain smooth map from the domain of f to the domain of DC . The
latter map, F , is smooth in the C1 topology, it maps 0 to 0 and it is the identity to
first order. The embedding of f �1.0/ into M identifies any � 2 f �1.0/ with the
image in R� .S1 �S2/ of the composition of exponential map with F.�/.

Granted all of this, here is the promised analog of Proposition 2.7:

Proposition 2.9 The space M is a smooth manifold of dimension NCC .N�C yN C

c yA�2/ on some neighborhood of any given non-immersed subvariety. In particular the
operator DC as just described has trivial cokernel at each such subvariety and each is a
regular point of M.

Part 3 This part of the subsection contains the following proof.

Proof of Proposition 2.9 It follows from the discussion in the preceding part of the
subsection that it is sufficient to prove that the dimension of the kernel of DC is equal
to its index.

To start this task, recall that the restriction of the operator DC to the elements in
its domain that are sections of W maps this subspace to the subspace of its domain
whose elements are sections of W ˝ T 0;1C0 . Denote this restricted operator as
DW . Meanwhile, the composition of DC and then pointwise orthogonal projection
to N ˝T 0;1C0 restricts to the subspace of sections of N in DC ’s domain to give a
differential operator that is denoted in what follows as DN . Since DC is Fredholm,
so are DW and DN . Furthermore, the sum of their indices is the index of DC . In
this regard, note that DC followed by pointwise orthogonal projection to the summand
W ˝T 0;1C0 defines a zeroth order operator from DN ’s domain to the range space of
DW .

To give formulas for the indices of DW and DN , associate to each z 2„ the integer
q � qz that appears in the relevant version of (2–15), then set } �

P
z2„ qz . An

analysis much like that used in [18, Section 3] for DC ’s namesake in (2–7) finds that
DW has index 2} and DN has index yI � 2} . This is all relevant to DC by virtue
of the following observation: If the cokernel of DW is trivial, then kernel.DC / is
isomorphic to the direct sum of the kernels of DW and DN . Thus, it is enough to
prove that both DW and DN have trivial cokernel.
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Consider first the case of DW . Were the kernel to have 2}C 1 linearly independent
vectors, then by virtue of (2–15), this kernel would have a non-trivial vector from the
image via �� of T C0 . This would provide a vector field on C0 . Let v denote the
latter. Then x@v 2 V and this implies that x@v must be zero since V is defined so as to
project isomorphically onto the cokernel of x@. But then v must be zero because its
jsj !1 limit is zero on all ends of C0 . Thus, DW has index 2} and trivial cokernel.

Consider next the case of DN . To this end, note that the bundle N has an associated
degree that is defined with respect to the large jsj section that was used to give (2–8) in
the immersed case. As a consequence of (2–15), the degree of N so defined is NCC

.N�C yNCc yA�2/�} . Now, Corollary 2.11 to come asserts that }�N�C yNCc yA�2

in all cases. Grant this bound. As DN has index NCC2.N�C yN C c yA�1/�2} , its
index is at least NCC2. Since this index is positive, the argument given in the previous
subsection can be taken in an essentially verbatim fashion to prove that DN has trivial
cokernel and thus its kernel dimension is NCC 2.N�C yN C c yA� 1/� 2} .

2.E The critical points of �

This subsection serves as a digression of sorts to describe various key properties of the
pull-back of � to any given subvariety in M. The discussion here has four parts. In
this regard, note that the last part has the promised Corollary 2.11.

Part 1 Let J 0 denote an admissible almost complex structure and let C be a J 0–
pseudoholomorphic subvariety. Assume that C is not an R–invariant cylinder, but
there is no need to assume that C is a multiply punctured sphere. This part explains
why the only local maxima and minima of � ’s pull-back to C ’s model curve occur
where � D 0 or � D � .

To see why such is the case, consider a point z 2C0 where � 2 .0; �/ and d� D 0. The
point �.z/ sits in some pseudoholomorphic disk D0 whose tangent space is everywhere
spanned by @s and the vector field y̨ . Note that � is constant on D0 . Since C is
not R–invariant, the closure of D0 intersects C only at �.z/ if its radius is small, so
assume that such is the case. Then D0 has a well defined, intersection number with the
�–image of any sufficiently small radius disk in C0 centered on z , and this is positive
because both D0 and the image of the disk in C0 are pseudoholomorphic. Were �.z/
a local maximum or minimum of � on C , then a sufficiently small radius version
of D0 could be pushed in the respective @� or �@� directions so that the resulting
isotopy has the following two properties: First, it avoids the �–image of the boundary
of any sufficiently small radius disk in C0 centered on z . Second, it results in a disk
that is entirely disjoint from the �–image of the whole any sufficiently small radius
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disk centered at z . Such an isotopy is precluded by the positive intersection number
between D0 and the �–image of the disks in C0 centered on z .

Part 2 Continuing the story from Part 1, define the degree of vanishing of d� at
z to be one less than the intersection number between D0 and the �–image of any
sufficiently small radius disk in C0 centered at z . Denote this number by deg.d� jz/.
What follows is an equivalent definition of this number.

To start, note that by virtue of the fact that � is constant on the integral curves of
the vector field y̨ but not so on C , a neighborhood in R � .S1 � S2/ of �.z/ has
complex coordinates, .x;y/, with the following four properties: First, .0; 0/ is the
point z . Second, dx and dy span T 1;0.R � .S1 � S2// at �.z/. Third, the y D 0

disk is J 0–pseudoholomorphic. Finally, the constant x disks centered where y D 0

are J 0–pseudoholomorphic disks whose tangent planes are everywhere spanned by
the vector fields @s and y̨ . Thus, � is constant on the x D constant disks and so a
function of x only. This understood, then � can be written as � D Re.�x/C o.jxj2/

with � a non-zero constant

Meanwhile, by virtue of the fact that � is J 0–pseudoholomorphic, there is a complex
coordinate, u, for a small radius disk in C0 centered at z such that � pulls the
coordinate x back as ��x D aupC1Co.jujpC2/ with a 2C and with p an integer of
size at least 1. The integer p is the degree of vanishing of d� at z because d� pulls
back near z as

(2–16) d� D p Re.�aupdu/C o.jujpC1/:

Part 3 Note that C0 has at most a finite number of critical points in any given compact
subset. This is a consequence of (2–16) and the fact that � ’s extremal critical points
occur where C intersects the � D 0 or � D � cylinders.

The next point is that d� is non-vanishing at all sufficiently large values of jsj on C0 .
To see that such is the case, note first that if E is an end of C where the jsj ! 1
limit of � is either 0 or � , then (1–12) implies that there are no large jsj critical points
of � on E . The analysis used in [18, Sections 2 and 3] also serves to prove this in the
case that the jsj !1 limit of � on E is in .0; �/. To be more precise with regard
to the latter case, these techniques in [18] find coordinates .�; �/ for E such that �
is a positive multiple of s , � 2 R=.2�Z/, and d�^ d� is positive. Moreover, when
written as a function of � and � , the function � has the form

(2–17) �.�; �/D �E C e�r�
�
b cos.n.� C �//Cyo

�
;
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where the notation is as follows: First, �E is the jsj !1 limit of � on E . Second,
r > 0 when E is on the concave side and r < 0 when E is on the convex side of C .
Third, b is a non-zero real number, n is a non-negative integer, but strictly positive if
E is on the concave side of C0 , and � 2 R=.2�Z/. Finally, yo and its first derivatives
limit to zero as j�j !1.

In what follows, the integer n that appears in (2–17) is denoted as degE.d�/. In case
that E is an end of C where limjsj!1 � is 0 or � , define degE.d�/ to be zero.

Part 4 This part starts with the following key proposition:

Proposition 2.10 Let C be a J 0–pseudoholomorphic subvariety that is not R–invari-
ant and introduce kC to denote the number of points in C0 where � is either zero or � .
Then

(2–18)
X
E

degE.d�/C
X

z

deg.d� jz/DNCCN�C yN C kC C 2& � 2

where the first sum on the left hand side is indexed by the ends of C , and the second
sum on the left hand side is indexed by the set of non-extremal critical points of � on
C0 .

Proof of Proposition 2.10

This is a standard Euler class calculation given that all of the extremal points of � ’s
pull-back to C0 occur where � D 0 or � D � . The kC summand on the right hand
side of (2–18) accounts for the singular behavior of d� at the points in C0 where � is
either 0 or � .

This proposition has three immediate consequences. These are stated in the upcoming
corollary. This corollary refers to the integer } that is defined from the singular points
of �� as in the proof of Proposition 2.9. In particular, } can be defined for any
J 0–pseudoholomorphic subvariety that is not R–invariant. To be precise, each zero
of �� on such a subvariety has a version of (2–15) with an attending integer q . Then
} is obtained by adding the resulting set of integers. The corollary that follows also
refers to the integer }� that is obtained by restricting the sum for } to the integers
that are associated to the zeros of �� that lie where � D 0 or � D � .

Corollary 2.11 Suppose that C is a J 0–pseudoholomorphic subvariety that is not
R–invariant. Then

� The number of non-extremal critical points of � ’s pull-back to the model curve
C0 is no greater than N�C yN C kC C 2& � 2.
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� }� � c yA� kC .

� } �N�C yN C c yAC 2& � 2.

Proof of Corollary 2.11 The asserted bound on the critical points follows directly
from (2–18) by virtue of the fact that degE.d�/ is in all cases non-negative and at least
1 on the .0;C; : : :/ elements in yA.

As for the bounds on }� and } , remark first that d.cos �/ pulls back as zero at the
singular points of �� . Now, to argue for the bound on }� , focus attention on a point
z 2 C0 where �� is zero and � is either zero or � . Let qz denote the integer that
appears in the corresponding version of (2–15). Then it follows from (2–15) that z

contributes a factor of at least qzC 1 to the count for cA . This observation implies the
bound for }� .

Granted the }� bound, then the asserted bound on } then follows from the fact that
} �}� is no greater than the second sum on the left hand side of (2–18).

2.F Local parametrizations for points in M

A close reading of the proofs of Propositions 2.7 and 2.9 indicate that certain natural
functions on the subvarieties in M yA

can serve as local coordinates. For example,
the proof suggest that such is the case for the R=.2�Z/ parameters that characterize
concave side ends where limjsj!1 � 62 f0; �g. The purpose of this subsection is to
prove that such is the case, and also to provide an expanded list of local coordinates.

To begin, partition yA into the disjoint subsets whereby any two elements in the same
subset are identical and any two elements from distinct subsets are distinct. Let ƒ
denote this list of subsets. Label the elements in each subset in the partition ƒ by
consecutive integers starting at 1.

Now, let Mƒ denote the set of elements of the form .C;L � fL�g�2ƒ/ where
C 2M yA

and where any given L� is a 1–1 correspondence between the subset �
and the set of ends of C that contribute elements to �. This space Mƒ has a natural
topology whereby the evident projection to M yA

is a covering map. It is fair to view
Mƒ as a moduli space of subvarieties with labeled ends.

The point of this is that a pair consisting of a subset � from the partition ƒ and an
element r 2 �, define a function,

(2–19) $�;r WMƒ
! C�

that maps a given .C;L/ to exp.cE.r/C i �E.r//. Here, E.r/� C is the end that L�
assigns to r , while c.�/ and �.�/ are the continuous parameters that are associated to the
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given end. In this regard, note that when � consists of elements of the form .0;C; : : :/,
then any r 2 � version of $�;r maps to the unit circle in C. Let

(2–20) $CWMƒ
!�NC

S1

denote the product of the NC versions of $�;r where �� yA is a such a .0;C; : : :/
element.

Now consider the following:

Proposition 2.12 Fix integers b 2 f0; : : : ;N�g and c �N�C yN C c yA� b� 2, then
fix a size b subset of .0;�; : : :/ elements from yA and a c–element subset in .0; �/.
Use B for the former and � for the latter, and use MB Œ‚� �Mƒ to denote the
subset of subvarieties with the following three properties: First, � ’s pull-back to the
associated model curve has precisely c non-extremal critical points. Second, � is the
corresponding c–element set of critical values. Finally, the versions of c.;/ from (1–8)
vanish for the ends from B but for no other convex side ends. If non-empty, this set
MB Œ‚� is a smooth submanifold of Mƒ of dimension NCC bC cC 2. Furthermore,
choose any map $�;r for which r is a .˙1; : : :/ from yA or a .0;�; : : :/ element from
yA�B . Then, the map $C � .�.�0;r 0/Wr 02B$�0;r 0/�$�;r restricts over MŒ‚� as a

smooth submersion to .�NC
S1/� .�bS1/�C*.

Note that in the case B D ∅, then MB Œ‚� is denoted by MŒ‚� and viewed as a
submanifold of dimension NCC cC 2 in M.

Local coordinates near any given subvariety in MB Œ‚� can be obtained in the following
manner: Let .C;L/ 2MB Œ‚� and let fz1; : : : ; zcg � C0 denote a labeling of the non-
extremal critical points of � ’s pull-back to C0 . This set denoted by Crit.C / in what
follows. Let �W C0 ! R � .S1 � S2/ again denote the tautological map. There is
an open neighborhood of C in M whose subvarieties enjoy the following property:
The model curve of each such subvariety can be viewed as the image in the normal
bundle ��T1;0.R� .S

1 �S2// of a section with everywhere very small norm. This is
in accord with the story from Proposition 2.4 and the discussion prior to Proposition
2.9. If C 0 is in such a neighborhood and comes from a point near C in MB Œ‚�,
then the non-extremal critical points of � ’s pull-back to the model curve of C 0 can be
put in 1–1 correspondence with the points in the set fz1; : : : ; zcg by associating any
given critical point of � on C 0

0
with the closest critical point in C0 as measured by

distance in ��T1;0.R� .S
1 �S2//. This understood, use fz0

1
; : : : ; z0cg to denote the

corresponding labeled set of non-extremal critical points of � ’s pull-back to the model
curve of C 0 . Note that the degree of vanishing of d� at any given z0

k
on the model

curve for C 0 is identical to the degree that d� vanishes on C 0 s model curve at zk .
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To continue, suppose z 2 fz1; : : : ; zng. Fix respective R–valued lifts, yt and y' , of the
R=.2�Z/ valued functions t and ' that are defined on a neighborhood in R�.S1�S2/

of the image of z . Then set

(2–21) v � .1� 3 cos2 �/y' �
p

6 cos �yt :

The c versions of (2–21) define c functions, fv1.�/; : : : ; vc.�/g, on a neighborhood of
C in MB Œ‚� as follows: The value of vk on a given subvariety C 0 is the value of the
zk version of (2–21) at the image in R� .S1�S2/ of the C 0 version of the � –critical
point z0

k
.

To obtain NCC bC 2 additional functions, the map $C from (2–20) pulls back an
affine coordinate from each of the S1 factors from its range space. Let f$C1; : : :g

denote an ordering of the resulting NC element set of such functions. Use f$�1; : : :,
$�bg to denote an ordering of the b affine function that are pulled back by viewing
�.�0;e0/Wr 02B$�0;r 0 as a map from MB Œ‚� to �bS1 . Finally, either choose one of the
following: A pair .�; r/ with � 2ƒ and r some .˙1; : : :/ element from yA. Or, a pair
.�; r/ with � 2ƒ and r 2 yA�B some .0;�; : : :/ element. Or, a point z 2 C0 where
� is 0 or � . In the first two cases, use $�;r from (2–19) to pull-back the standard
complex coordinate on C and call this coordinate $ 0 . For the third case, note that
by virtue of (2–18), each C 0 from MB Œ‚� near C has an unambiguous point in its
model curve that corresponds to z and also maps very near to z in the � 2 f0; �g locus.
Let z0 denote the latter. Because C 0 comes from MB Œ‚�, the contribution from z0 to
the intersection number between C 0 and the f0; �g locus is the same as that from z

to C 0s intersection number with the f0; �g locus. Use $ 0 in this case to denote the
complex valued function on C 0 s neighborhood that assigns to any given C 0 the value
of the complex coordinate on the � 2 f0; �g locus at the image of z0 .

Proposition 2.13 The functions fvj W 1 � j � cg, f$C˛g, f$�˛g and $ 0 together
define local coordinates on a neighborhood of C in MB Œ‚�.

Proof of Propositions 2.12 and 2.13

The proof is given in five parts.

Part 1 This part provides some comments on the dimension count for MB Œ‚�. For
this purpose, let C 2MB Œ‚� and let Crit.C / denote the set of non-extremal critical
points of � ’s pull-back to C 0s model curve. As noted earlier, if C 0 2MB Œ‚� is
near C , then corresponding critical points of � ’s pull-back to the model curves for
C and C 0 must have the same values for � and also for deg.d� j.�//. This places
2
P

z2Crit.C / deg.d� jz/� c constraints on the subvarieties that are near C in MB Œ‚�.
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Requiring that they also have the same values for the functions vj adds c more con-
straints.

There are more constraints that come from C 0 s ends. To see these, let E � C denote
an end that corresponds to some .0; : : :/ element in yA. A given C 0 near to C in
M has a corresponding end E0 . It follows from (2–17) and (2–18) that � ’s pull-
back to the model curve of C 0 has critical points at large values of jsj on E0 in the
case that degE0.d�/ < degE.d�/. Taking this into account finds an additional set of
2.
P

E degE.d�/�NC/� b constraints on the elements in MB Œ‚�.

Even more constraints arise from the local intersection numbers of the subvarieties with
the � 2 f0; �g locus. To elaborate, let z denote a point in C 0 s model curve that maps
to a point in this locus, and let p denote z0s contribution to the intersection number
c yA . If C 0 2MB Œ‚� is near C , then (2–18) requires C 0 to have a corresponding point
very near z in its model curve which contributes p to the intersection number between
C 0 and the � 2 f0; �g locus. All such intersection points thus account for an additional
2.cA� kC / constraints on the subvarieties in MB Œ‚�.

When totalled, the number of constraints that must be satisfied for placement in MB Œ‚�

is

(2–22) 2
�X

E

degE.d�/C
X

z2Crit.C /

deg.d� jz/C c yA� kC

�
� 2NC� b� c:

What with (2–18), this number is NCC bC c less than the dimension of M.

Part 2 Granted this count, the assertion that MB Œ‚� is a manifold of the asserted
dimension with the given local coordinates is proved using an application of the implicit
function theorem. The application requires the introduction of the linearized constraints
on the tangent space to C in M. For this purpose, identify TMjC D kernel.DC /

and let K� � kernel.DC / denote the subspace of vectors that satisfy all of the linear
constraints and also annihilate all of the functions that are listed in Proposition 2.13.
Both Propositions 2.12 and 2.13 follow from the implicit function theorem if K� is
trivial.

The identification given below of K� requires a preliminary digression to introduce
some notation that concerns a given �2 kernel.DC /. First, �N is used below to denote
�’s image in N via the projection from ��T1;0.R� .S

1 �S2//. Second, hd�; �i is
used to denote the pairing on the complement of the � D 0 and � points between �
and d� when the latter form is viewed in ��T 1;0.R� .S1 �S2//. Finally, when z is
a point in C 0 s model curve where � is 0 or � , then r.�/ denotes the projection of �
to the holomorphic tangent bundle of the t D constant pseudoholomorphic subvariety
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through the given point. These subvarieties are described in [18, Section 4a], and for
the present purposes, it is enough to know that these subvarieties are embedded, they
foliate R� .S1 �S2/, and the tangent bundle to any such subvariety on the � D 0 or
� locus is normal to the locus.

What follows are the conditions for membership in K� :

�(2–23) If $ ’ is defined by an element r 2 yA, then degE.�
N / > 0 on the end

E � C that corresponds to r .

� If E � C is an end where degE.d�/ > 0, then ıE.�N /� degE.d�/.

� If z 2 C0 is a non-extremal critical point of the pull-back of � and u

is a local holomorphic coordinate for a disk in C0 centered at z , then
hd�; �i D o.jujk/ near z with k � deg.d� jz/.

� If z 2 C0 is a point where � D 0 or � , let p denote z0s contribution to
c yA . Let u denote a complex coordinate for a disk in C0 centered at z . If
p � 2, then r.�/D o.jujk/ near z with k � p� 1.

� Suppose that z 2 C0 is a point where � D 0 and that z is used to define
$ ’. If ��jz is zero, then �jz must also vanish. If ��jz is non-zero, then
�� jujk near z where k � p .

Note that the final three constraints only involve � where �� is non-zero.

Part 3 As there are dim.kernel.DC // conditions in (2–23), a proof that they are
linearly independent proves that K� D f0g. The argument for linear independence
invokes two observations that concern a section, � , of the W summand in ��T1;0.R�

.S1 �S2//. To set the stage, let z denote a given point in C0 and let qz denote the
integer that appears in z0s version of (2–15). Thus, qz D 0 if ��jz ¤ 0 and qz > 0

otherwise.

Here is the first observation: If z 2 Crit.C / and u is a complex coordinate for a disk
centered in C0 with center z , then hd�; �i D o.jujk/ near z with k � deg.d� jz/� qz .
Moreover, if hd�; �i D o.jujk/ with k � deg.d� jz/, then � near z is the image via ��
of a section of T1;0C0 . This observation follows from (2–15) and (2–16).

The second observation concerns a point z 2 C0 where � is 0 or � , and it involves
the integer, pz , that z contributes to c yA . Here is the observation: Let u denote
a complex coordinate for a disk in C0 centered at z . Then r.�/ D o.jujk/ where
k � pz � qz � 1 near z , and if �jz D 0, then r.�/ D o.jujk/ with k � pz � qz .
Moreover, if r.�/D o.jujk/ with k � pz � 1, then � near z is the image via �� of a
section of T1;0C0 . This observation follows from (2–15).
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Part 4 The analysis of the conditions in (2–23) begins by considering those that
involve only the projection �N of �. In particular, such is the case for the first two. As
is explained next, some of the others also involve only �N . In particular, suppose first
that z 2Crit.C /. As noted previously, deg.d� jz/� qz and so, by virtue of Part 3’s first
observation, the vanishing to order deg.d� jz/ of hd�; �i at z puts 2.deg.d� jz/� qz/

constraints on �N as it requires that �N D o.jujk/ near z with k � .deg.d� jz/� qz/.

Consider next a point z 2C0 where � is 0 or � . As noted previously, pz � qzC1, and
so by virtue of Part 3’s second observation, the vanishing to order pz � 1 of r.�/ at z

forces �N to be o.jujk/ near z where k � pz � qz � 1. Of course, this is a constraint
only in the case that pz > qz C 1. In the case that z is used to define $ 0 , the final
point in (2–23) forces �N to be o.jujk/ near z with k � pz � qz .

If �N is to satisfy all of these constraints, then

(2–24)
X
E

ıE.�
N /C

X
z

degz.�
N /

�

X
E

degE.d�/C
X

z2Crit.C /

.deg.d� jz/� qz/C
X

zW�D0or�

.pz � qz � 1/C 1;

and this, according to (2–18), is greater than deg.N /DNCCN�C yN C c yA� 2�} .
As a consequence, �N D 0 if � 2K� .

Part 5 As just noted, any � 2K� is a section of W . Granted the first observation
from Part 3, the third condition in (2–23) implies that such � is the image via �� near
each z 2 Crit.C / of a section of T1;0C0 . What with second observation from Part
3, the fourth condition in (2–23) implies that � is also in the image of �� near each
point in C0 where � is 0 or � . Thus, � is in the image of �� on the whole of C0

since any � 2 .0; �/ zero of �� is a zero of ��d� . However, as noted in the proof of
Proposition 2.9, the kernel of DW has only 0 from the image of �� . Thus, K� D f0g

as required.

2.G Slicing curves by � level sets

This subsection constitutes a digression of sorts to discuss some algebraic and geometric
issues that arise in conjunction with the use of the critical points of � ’s pull-back to
construct coordinates on M yA

. Some of these issues appear both implicitly and explicitly
in the subsequent sections of this article, and they play a central role in the sequel to
this article. In any event, the subsection starts by examining the nature of the � –level
sets in any given subvariety from M. These level sets are then used to associate to
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each such variety a certain connected, contractible graph with labeled vertices and
labeled edges. The discussion of the constant � loci is contained in Part 1–Part 3 of
this subsection, while Part 4 contains the definition of the associated graph. In all of
what follows, it is assumed that the subvariety C in question is not an R–invariant
cylinder, thus not of the form R�  where  � S1 �S2 is a Reeb orbit.

Part 1 To begin the story here, suppose that yA is an asymptotic data set, J 0 is an
admissible almost complex structure, and C is a subvariety from the J 0–version of
M yA

. Let C0 again denote the model curve for C . Introduce now the locus, � � C0 ,
which is defined as follows: The components of this set consist of the level sets of
� on C0 that are either zero dimensional, singular or non-compact. In particular, �
contains all of the critical points of � on C0 .

To continue, note that any given component of � can be viewed as the embedded image
in C0 of an oriented graph with labeled edges and vertices. To elaborate, the zero
dimensional components of � are the points in C0 where � is 0 or � . In particular
each zero dimensional component is a graph with a single vertex, the latter labeled by
a non-zero integer whose absolute value is the contribution of the given � D 0 or �
point to c yA . The sign of the integer is positive when the � value is 0 and the integer
is negative when the � value is � .

Each singular point in a non-point like component of � is a critical point of � . These
points constitute the vertices of the corresponding graph. The components of the
complement of these singular points constitute the edges in the graph. In this regard,
these edges are henceforth referred to as ‘arcs’ so as not to confuse them with the edges
in the graph that is defined subsequently in Part 4 from C . These arcs are oriented by
the pull-back of the 1–form x� .1�3 cos2 �/d'�

p
6 cos �dt . Note that this 1–form

is nowhere zero on the smooth portion of any given � level set in C0 for the following
reason: The differential of the contact form in (1–1) is

p
6 sin �d� ^x and because J 0

is admissible and C is J 0–pseudoholomorphic, this form is positive on T C0 save at
the critical points of � where it vanishes.

Because a given vertex in a non-point like component of � is a critical point of � , it has
an even number, at least 4, of incident arcs. This follows from the form of d� in (2–16).
Moreover, half of the incident arcs are oriented to point towards the vertex and half
are oriented to point away. Indeed, a circumnavigation of a small radius circle about
the critical point will alternately meet inward pointing and outward pointing arcs. For
example, if �� � � is a compact, singular component with a single, non-degenerate,
non-extremal critical point, then the associated graph has a single vertex and looks like
the figure ‘8’.
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Meanwhile, the complement of the � critical points in a given non-compact component
of � has an even number of unbounded arcs. Indeed, this follows from (2–17). In
particular, any given end of C where the jsj !1 limit of � is neither 0 nor � has
the following property: Let n denote the integer that appears in (2–17) for the given
end. Then any sufficiently large and constant jsj slice of the end intersects precisely 2n
components of � and this intersection is transverse. Moreover, a circumnavigation of
the constant jsj slice meets components whose orientations alternate towards increasing
jsj and towards decreasing jsj.

By way of an example, suppose that E is a concave side end of C0 where limjsj!1 � 2
.0; �/, and suppose that this limit is distinct from all other jsj !1 limits of � on
C . Suppose as well that this limit is distinct from all of the critical values of � on
C0 . Then the large jsj portion of E will intersect precisely one component of � , the
latter a smooth, properly embedded copy of R whose large jsj portions are properly
embedded in the large jsj part of E .

Part 2 By virtue of the definition of � , any given component K � C0 � � is a
cylinder to which d� and x pullback without zeros. In fact, � and the restriction of x

to the constant � level sets of K can be used to give coordinates to such a cylinder.
To elaborate, let .�o; �1/ denote the range of � on K . Next, let q and q0 denote
the respective integrals around the constant � slices of K (as oriented by x ) of the
closed forms 1

2�
dt and 1

2�
d' . Then K can be parametrized by the open cylinder

.�o; �1/�R=.2�Z/ so that the restriction to K of the tautological immersion of C0 into
R� .S1 �S2/ has a rather prescribed form. To be more specific, let � 2 .�0; �1/ and
v 2 R=.2�Z/ denote the coordinates for the cylinder. Written using these coordinates,
the tautological immersion involves two smooth functions on .�0; �1/�R=.2�Z/, these
denoted by a and w ; and it sends any given point .�; v/ to the point where

(2–25)
�
s D a; t D qvC .1� 3 cos2 �/w mod .2�Z/;

� D �; ' D q0vC
p

6 cos �w mod .2�Z/
�
:

Note that the J 0–pseudoholomorphic nature of the immersion of K requires that the
pair .a; w/ obey a certain non-linear differential equation. For example, in the case
where J 0 D J , this equation reads

(2–26)
˛Qa��

p
6 sin �.1C3 cos2 �/wav D�

1C3 cos4 �

sin �

�
wv�

1

1C3 cos4 �
ˇ

�
.˛Qw/� �

p
6 sin �.1C 3 cos2 �/wwv D

1

sin �
av;
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Here, ˛Q D ˛Q.�/ is the function

(2–27) ˛Q D .1� 3 cos2 �/q0�
p

6 cos �q;

and ˇD q.1�3 cos2 �/Cq0
p

6 cos � sin2 � . In these equations and below, Q denotes
the pair .q; q0/.

By the way, ˛Q is necessarily positive on .�o; �1/ by virtue of the fact that the
parametrization in (2–25) of K pulls back the exterior derivative of the contact form ˛

as

(2–28)
p

6 sin �˛Q.�/d� ^ dv:

In this regard, keep in mind that the form d˛ is non-negative on J 0–pseudoholomorphic
2–planes in R� .S1 �S2/. Moreover, d˛ is zero on such a plane only if the latter is
spanned by @s and the Reeb vector field y̨ .

This last conclusion has the following converse: Suppose that .a; w/ are any given pair
of functions on .�o; �1/�R=.2�Z/. Then, the resulting version of (2–25) immerses
the points in its domain where ˛Q is positive.

Here is one final remark about any map having the form given in (2–25): Suppose that
˛Q is positive on .�o; �1/. Now, let .a; w/ denote any given pair of functions on the
cylinder .�o; �1/�R=.2�Z/. By virtue of the fact that the coordinates t and ' are
defined only modulo 2�Z, the image cylinder in R� .S1�S2/ via the map in (2–25)
is unchanged under the action of Z�Z on the space of function pairs .a; w/ whereby
a given integer pair N D .n; n0/ acts to send .a; w/ to .aN ; wN / with the latter given
by

(2–29)
aN .�; v/D a

�
�; v� 2�

˛N .�/

˛Q.�/

�
and wN .�; v/D w.�; v� 2�

˛N .�/

˛Q.�/
/C 2�

qn0� q0n

˛Q.�/
:

Part 3 This part of the subsection discusses the behavior of the parametrization
in (2–25) at points near the boundary of the closure of the parametrizing cylinder.

To start, remark that if a given �� 2 f�0; �1g is not achieved by � on the closure of
K , then there exists " > 0 such that the portion of K where j� � ��j � " is properly
embedded in an end of C . In particular, the constant � slices of this portion of K are
isotopic to the constant jsj slices when � is very close to �� . Moreover, if �� 62 f0; �g,
then such an end is on the convex side of C and the associated integer n that appears
in (2–17) is zero.

Geometry & Topology, Volume 10 (2006)



822 Clifford Henry Taubes

On the other hand, if �� 2 f�o; �1g is neither 0 nor � and if �� is achieved on the
closure of K , then the complement of the � critical points in the � D �� boundary
of this closure is the union of a set of disjoint, embedded, open arcs. The closures
of each such arc is also embedded. However, the closures of more than two arcs can
meet at any given � –critical point. Conversely, every arc in any given component of �
is entirely contained in the boundary of the closures of precisely two components of
C0�� .

This decomposition of the � D �� boundary of K into arcs is reflected in the behavior
of the parametrizations in (2–25) as � approaches �� . To elaborate, each critical point
of � on the � D �� boundary of the closure of K labels one or more distinct points on
the � D �� circle in the cylinder Œ�o; �1��R=.2�Z/. These points are called ‘singular
points’. Meanwhile, each end of C that intersects the � D �� boundary of the closure
of K in a set where jsj is unbounded also labels one or more distinct points on this
same circle. The latter set of points are disjoint from the set of singular points. A point
from this last set is called a ‘missing point’.

The complement of the set of missing and singular points is a disjoint set of open arcs.
Each point on such an arc has a disk neighborhood in .0; �/�R=.2�Z/ on which the
parametrization in (2–25) has a smooth extension as an embedding into R� .S1�S2/

onto a disk in C . This last observation is frequently used in subsequent arguments
from this article and from the sequel.

As might be expected, the set of arcs that comprise the complement of the singular and
missing points are in 1–1 correspondence with the set of arcs that comprise the � D ��
boundary of the closure K. In particular, the extension to (2–25) along any given arc in
the � D �� boundary of Œ�o; �1��R=.2�Z/ provides a smooth parametrization of the
interior of its partner in the � D �� boundary of the closure of K .

By way of an example, consider the case that �� is a critical value of � on C0 that is
realized by a single critical point with the latter non-degenerate. Assume further that
�� is not an jsj !1 limit of � on C . Thus, the critical locus is a ‘figure 8’. In this
case, there are three components of C0�� with boundary on this locus, one whose
boundary maps to the top circle in the figure 8, another whose boundary maps to the
lower circle, and a third whose boundary traverses the whole figure 8. The first two
have but one singular point on the � D �� boundary of any parametrizing domain,
while the third has two singular points.

For a second example, suppose that �� is neither 0 nor � and is the jsj !1 limit of
� on a convex side end, E , for which degE.d�/D 1. Suppose, in addition, that ��
is not the jsj !1 limit of � on any other end of C . In this case, the corresponding
� D �� component of � is a properly embedded copy of R . Furthermore, there are two
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components of C0�� whose closures lie in this � D �� component of � , and both
have just a single missing point on the � D �� boundaries of any of their parametrizing
domains.

In the case that �� 2 f�o; �1g is either 0 or � and � takes value �� on the closure of
K , then the map in (2–25) extends to the � D �� boundary of the cylinder as a smooth
map that sends this boundary to a single point. This extended map factors through a
pseudoholomorphic map of a disk into R� .S1 �S2/ with the � D �� circle being
sent to the disk’s origin.

Part 4 The graph assigned to a given C from M yA
is denoted here by TC . As

remarked at the outset, this is a connected, contractible graph with labeled edges and
vertices. In this regard, the edges of TC are in 1–1 correspondence with the components
of C0�� . If e denotes an edge, then e is labeled by an integer pair, Qe � .qe; qe

0/,
these being the respective integrals of 1

2�
dt and 1

2�
d' about the constant � slices of

the corresponding component of C0�� . Here, as in Part 1, these slices are oriented
using the pull-back of the 1–form .1� 3 cos2 �/d' �

p
6 cos �dt .

The multivalent vertices of TC are in 1–1 correspondence with the subsets of a certain
partition of the components of � . To define this partition, first introduce a new graph,
G , as follows: The vertices of G are in 1–1 correspondence with the components of � .
Meanwhile, an edge connects two vertices of G when there is an end of C with the
following property: Every sufficiently large and constant jsj slice of the end intersects
at least one arc from each of the corresponding components of � . With G understood,
then the components of G naturally partition the set of components of � . For example,
every compact component of � defines its own, single point set in this partition.

The set of multivalent vertices in TC are in 1–1 correspondence with this partition of
� . If o is a multivalent vertex of TC , then the incident edges to o label the components
of C0�� whose closure intersects that part of � that is assigned to o.

The monovalent vertices in TC are in 1–1 correspondence with the elements in the
union of three distinct sets. The first set consists of points where C intersects the � D 0

and � D � loci. In this regard, a given � D 0 or � D � point can label more than one
monovalent vertex of TC . To elaborate, suppose that a small ball about such a point
intersects C in some k � 0 irreducible components that all meet at the given point.
Then this point labels k monovalent vertices of TC . The second set consists of the
ends of C where the jsj !1 limit of � is either 0 or � . The third set consists of the
convex side ends of C where the jsj !1 limit of � is neither 0 nor � and where the
integer n in (2–17) is zero. Said differently, the second and third sets consist of those
ends of C where the jsj !1 limit of � is not achieved at any sufficiently large value
of jsj. A given monovalent vertex lies on the most obvious edge.
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Note that various versions of TC will be defined here and in the sequel to this article
that differ in the complexity of the labels that are assigned to the vertices. In all versions,
the vertex label contains an angle in Œ0; ��, this the obvious one available. Elements
from yA are part of labels that are used in the next subsequent sections of this article.
The most sophisticated labeling occurs in the sequel to this article where any given
multivalent vertex label is a certain sort of graph, this defined from the components of
� that are contained in the corresponding partition subset.

3 Existence

This and the remaining sections derive necessary and sufficient conditions that insure
that any given M yA

is non-empty. The result is a proof of Theorem 1.3. The strategy
used here is to construct proper immersions of multi-punctured spheres with the correct
jsj !1 asymptotics and then deform them so that the result is pseudoholomorphic.

It is assumed here that an asymptotic data set yA has been specified that obeys a certain
set of auxiliary constraints that differ from those stated in Theorem 1.3. Section 5
explains why the constraints listed here are satisfied if and only if yA satisfies the
conditions in Theorem 1.3.

3.A An associated graph

Granted that yA has been specified, fix a partition of the set of .0;C; : : :/ elements in yA
subject to the following constraint: The integer pairs from any two elements in the same
partition subset define the same angle via (1–7). Let } denote the given partition. What
follows is a description of a contractible graph, T , with labeled vertices and labeled
edges that is defined using yA and } . This graph is used in the subsequent construction
as a blueprint of sorts for constructing the initial subvariety in R� .S1 �S2/.

The story on T begins with the remark that T has N�C yN C c yA monovalent vertices,
N} bivalent vertices and N�C yN C c yA� 2 trivalent vertices. Here N} denotes the
number of sets in the partition } . A subset of monovalent vertices with N� C yN

elements are labeled by assigning a 1–1 correspondence between the vertices in the
subset and the subset of yA whose elements are either of the form .˙1; : : :/ or .0;�; : : :/.
Of those that remain, cC are labeled (1) and c� by .�1/.

The bivalent vertices are labeled by assigning a 1–1 correspondence between the set of
such vertices and elements in } . Thus, each bivalent vertex is labeled by a partition
subset.
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The labeling just described associates an angle in Œ0; �� to each monovalent and each
bivalent vertex; this is the angle 0 when the vertex has label either .1; : : :/ 2 yA or (1),
the angle � when the label is either .�1; : : :/ 2 yA or .�1/. Meanwhile, a monovalent
vertex with label .0;�; : : :/ from yA is assigned the angle that is defined via (1–7) by
the integer pair from this element. Finally, a bivalent vertex is assigned the angle that
is defined via (1–7) by the integer pair from any element in its corresponding partition
subset.

As for the trivalent vertices, each is labeled by an angle in .0; �/ so that no two vertices
are assigned the same angle, and none are assigned an angle that is associated to any
monovalent or bivalent vertex.

There are three further constraints on the angle assignments to the vertices of T . Here
is the first:

Constraint 1

(a) The vertices that share an edge have distinct angle assignments.

(b) The angle assigned to any given multivalent vertex is neither a largest nor a
smallest angle in the set of angles that are assigned those vertices on its incident
edges.

Each edge of T is labeled by a non-trivial, ordered pair of integers. If e denotes an
edge, then its assigned pair is denoted here by Qe or .qe; qe

0/. What follows is the
second constraint.

Constraint 2 These integer pair assignments to the edges are constrained as follows:

�(3–1) If o is a monovalent vertex on e with a 4–tuple label from yA , then
Qe D˙Po where Po is the integer pair from the label. Here, the C sign
appears if and only if one of the following hold:
(a) o’s angle is in .0; �/ and it is the smaller of e0 s vertex angles.
(b) o is labeled by either a .1;�; : : :/ or a .�1;C; : : :/ element in yA.

� If o is a monovalent vertex with label ı 2 .˙1/, then its incident edge, e ,
has qe D 0 and qe

0 D�1.

� If o is a bivalent vertex with incident edges e and e0 with the convention
that e connects o to a vertex with smaller angle label, then Qe�Qe0 DPo

where the integer pair Po is the sum of the pairs from the elements that
comprise o0 s partition subset.
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� If o is a trivalent vertex with incident edges e , e0 and e00 , then Qe�Qe0�

Qe00 D 0 given that the angle labels of the vertices opposite o on e0 and
e00 lie on the same side of the angle that labels o in .0; �/.

With the collection fQeg now defined, here is the third constraint on the angle assign-
ments to the vertices in T :

Constraint 3 Let e denote any given edge of T and let �o < �1 denote the angles
that are assigned the vertices on e . Then

q0e.1� 3 cos2 �/� qe
p

6 cos.�/� 0

at all � 2 Œ�o; �1� with equality if and only if � is either �0 or �1 and the corresponding
vertex is monovalent with label .0;�; : : :/ from yA.

A graph T that obeys all of the preceding constraints is said here to be a ‘moduli space
graph’ for yA .

Two moduli space graphs are said here to be isomorphic when there is an isomorphism
of the unlabeled graphs that preserves the labelings of the vertices and edges.

To explain the relevance of such a graph to M yA
, remember that any C 2M yA

defines
a graph TC as described in Part 4 of Subsection 2.G. In particular, if M yA

is non-empty,
then according to Propositions 2.12 and 2.13, the version of TC that is defined by any
sufficiently generic choice of C 2M yA

defines just such a moduli space graph for a
particular choice of } . To elaborate, the aforementioned propositions guarantee an
open and dense subset in M yA

whose subvarieties have the following property: All
of the critical points of the function cos.�/ on the corresponding model curve are
non-degenerate, and there are N�C yN C c yA� 2 non-extremal critical values with no
two identical and none equal to an jsj!1 limit of � . If C is such a generic subvariety,
then the corresponding graph TC has only monovalent, bivalent and trivalent vertices.
The angles of the vertices satisfy the requirements in Constraint 1. Meanwhile, the
requirements of Constraint 2 are also met when the partition assigned to any given
bivalent vertex consists of the 4–tuples in yA that label those ends of the subvariety that
contain the very large jsj parts of the corresponding components of the locus � . As
explained in Subsection 2.G, the third constraint is met automatically.

Henceforth TC denotes the just described moduli space version of the graph from Part
4 of Subsection 2.G in the case that C 2M yA

satisfies the stated genericity requirement.

As just indicated, if M yA
is non-empty, then it has a moduli space graph. The theorem

that follows states this fact and its converse:
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Theorem 3.1 The space M yA
is non-empty if and only if yA has a moduli space graph.

Moreover, if T is a moduli space graph, then there is a subvariety in M yA
whose

version of T.�/ is isomorphic to T .

The criteria here for M yA
were suggested by observations of Michael Hutchings.

The proof starts by assuming the existence of a moduli space graph for yA and ends
with the conclusion that M yA

is non-empty. This proof occupies the remainder of
Section 3 and all of Section 4.

3.B Parametrizations of cylinders in R � .S 1 � S 2/

As remarked above, the graph T is used as a blue-print for the construction of a properly
immersed, multi-punctured sphere in R� .S1 �S2/. All of the monovalent vertices
with 4–tuple labels from yA correspond to ends of the surface; here, the label from yA

on a given vertex is used to specify the asymptotic behavior of the corresponding end.
The monovalent vertices with either (1) or .�1/ labels correspond to intersection points
between the surface and the respective � D 0 or � D � cylinders. Meanwhile, the
trivalent vertices label the index one critical points of the restriction to the surface of the
function cos.�/. The angle label of a vertex gives the value of � at the corresponding
critical point. The only local maxima or minima of cos.�/ on the surface are relegated
to the intersection with the respective � D 0 and � D � cylinders.

Meanwhile, any given edge of T labels an open, cylindrical component of the surface
where � ranges between the values given by the edge’s end vertices. The ordered
integer pair that is associated to the edge specifies the respective integrals of 1

2�
dt

and 1
2�

d' around any constant � slice as oriented by .1� 3 cos2 �/d' �
p

6 cos �dt .
The incidence relations at the vertices direct the manner in which the edge labeled
cylinders attach to form a closed surface. In this regard, the closure of any component
cylinder whose edge label ends in a (1) or .�1/ labeled monovalent vertex is a disk
that intersects the respective � D 0 or � D � locus.

The basic building blocks for the surface are thus the edge labeled cylinders. When
e � T denotes an edge, its corresponding cylinder is denoted by Ke . Let o and o0

denote the angles that label the end vertices of e with the convention that the � –label
of o is less than that of o0 . These labels are respectfully denoted here by �o and �o0 .

The parametrization of Ke is via a map from its ‘parametrizing cylinder’, this being
the interior of Œ�o; �o0 ��R=.2�Z/. With � denoting the coordinate on Œ�o; �o0 � and
v an affine coordinate on R=.2�Z/, the parametrizing map can be written using two
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functions on the open cylinder, .ae; we/. To be precise, the parametrizing map sends
any given point .�; v/ to the Q�Qe and .a; w/� .ae; we/ version of (2–25). Thus,

(3–2)
�
s D ae; t D qevC .1� 3 cos2 �/we mod .2�/;

� D �; ' D q0evC
p

6 cos �we mod .2�/
�

Unless specified to the contrary, a ‘parametrization’ is one given as in (3–2).

For future reference, note that the 2–form d� ^dv orients Ke . Also, note that the map
into R�.S1�S2/ as defined by (3–2) defines an immersion. As is explained next, this
is a consequence of the positivity of the QDQe � .qe; q

0
e/ version in (2–27) of the

function ˛Q . To see why, first let � denote the parametrizing map to R� .S1 �S2/

and reintroduce the contact 1–form ˛ from (1–1) and (1–2). Then ��d˛ is the 2–form
that appears in (2–28). Granted that such is the case, the rank of �� is two on the
parametrizing cylinder.

The next section provides a specific version of each .ae; we/. These versions are
chosen to meet the following five criteria:

�(3–3) The collection f.ae; we/ge�T are constrained near the boundaries of their
corresponding parametrizing cylinders so as to insure that the closure of
[e�T Ke is the image in R � .S1 � S2/ via a proper immersion of an
oriented, multiply punctured sphere.

� The singularities of this immersion are transversal double points with
positive local intersection number.

� The critical points on the multi-punctured sphere of the pull-back of � are
non-degenerate, the 1–form J �d� pulls back as zero at these critical points,
and the symplectic form ! pulls back as a positive form at these critical
points. Moreover, no critical point maps to an immersion point of C .

� The subvariety has the asymptotics of a subvariety from M yA
.

� The level sets of the pull-back of � to the multiply punctured sphere defines
a moduli-space graph that is isomorphic to the given graph T .

The precise meaning of the fourth point is given in the definition that follows.

Definition 3.2 A subvariety C � R� .S1 �S2/ is said to have the asymptotics of a
subvariety from M yA

when the requirements listed below are met.

Requirement 1: There is a compact subset in C whose complement is a disjoint union
of embedded cylindrical submanifolds in R�.S1�S2/ that are in 1–1 correspondence
with the elements in yA. Such a cylinder is called an ‘end’ of C .
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Requirement 2: Let E �C denote any given end and let .ı; "; .p;p0// denote its label
from yA. Then the following conditions are satisfied:

(a) The function s restricts to E as a smooth function without critical points with
"s bounded from below on the closure of E . Moreover, the 1–form ˛ in (1–1)
has nowhere zero pull-back on each constant jsj slice of E .

(b) The restriction to E of the function � has a unique jsj ! 1 limit; and the
latter equals 0 when ı D 1, it equals � when ı is �1, and it is given by P

via (1–7) when ı D 0. Moreover, when ı D˙1, this convergence makes the

� � jı

q
3
2
C

p0

p
j version of e�jsj sin � converge to a unique limit as jsj !1.

(c) The integers p and p0 are the respective integrals of 1
2�

dt and 1
2�

d' about
any given constant jsj slice of E when the latter is oriented by the 1–form ˛ .

(d) Any given anti-derivative on E for the restriction of the 1–form p0dt �pd'

has a unique jsj !1 limit.

(e) Let NE ! E denote the normal bundle to E . Define
Q

J W TE! NE to be
the composition of the map J W TE! T .R� .S1 �S2//jE with the projection
to NE . Define the norm of

Q
J , the covariant derivative of

Q
J , and the latter’s

norm using the metrics and connections on TE and NE that are induced by
the metric on R� .S1 �S2/. Then the norm of

Q
J and that of its covariant

derivative limit to zero as jsj !1 on E .

As is explained subsequently, a collection of pairs f.ae; we/ge�T that meet the criteria
in (3–3) will serve as a starting point for the deformation to a pseudoholomorphic
subvariety. The remainder of this section assumes that such a collection has been
specified.

3.C A preliminary deformation

Let C denote the closure of [eKe as defined using the given collection of pairs,
f.ae; we/g. This subsection begins the construction a family of deformations of C

whose end member is a subvariety in M yA
. In particular, a preliminary deformation

of C is constructed here so that the result is pseudoholomorphic with respect to an
admissible almost complex structure.

To start the task, return to the observation that d˛ pulls back as a non-zero 2–form to
any given version of Ke . This, being the case, it follows that d˛ is non-negative on
T C . With the third point in (3–3), the last observation has the following consequence:
There exists r > 0 such that the symplectic form d.e�rs˛/ is uniformly positive on
T C . This is to say that its pull-back to the multi-punctured sphere is a multiple of the
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induced area form that is positive and uniformly bounded away from zero. Indeed, by
virtue of the third point, any positive r version of this form is positive on T C near the
images of the critical points of the pull-back of � . Meanwhile, the form is positive for
small r on any given compact subset in the complement of these same critical points.
At large jsj on any given end of C , both �ds ^˛ and d˛ are positive.

Now, specify a positive real number, ". Granted the second and fourth points of (3–3),
there are standard constructions that provide R� .S1 �S2/ with an almost complex
structure, J0 , with the following properties:

�(3–4) The subvariety C is J0 –pseudoholomorphic.

� J0 D J where the distance to C is greater than ".

� J0@s D
1

.1C3 cos4 �/1=2 y̨ where the distance to any singular point of C or
critical point of the restriction of � is greater than ".

� Both J0 � J and its covariant derivative converge uniformly with limit
zero as jsj !1 on R� .S1 �S2/.

� All sufficiently small but positive r versions of d.e�rs˛/ tame J0 .

Having specified J0 , fix a Riemannian metric on R � .S1 � S2/ to be called g0 ,
one with the following three properties: First J0 acts as a g0 –isometry. Second, g0

converges uniformly as jsj !1 to the metric ds2C dt2C d�2C sin2 �d'2 , and its
covariant derivative (as defined by the latter metric) converges uniformly to zero as
jsj !1. Finally, g0 agrees with the latter metric where J0 D J .

The almost complex structure J0 would be admissible in the sense given prior to
Definition 2.1 were the third point to hold on the whole of R� .S1�S2/, and were J0

and J to agree on the nose outside of some compact subset of R�.S1�S2/. This part
of the subsection describes how to move C slightly so that the result is an immersed
subvariety that is pseudoholomorphic for an admissible almost complex structure. The
construction of such a deformation is done in three steps. A fourth step explains how
this can be done so that the version of Subsection 2.G’s graph T.�/ for the resulting
subvariety gives the starting moduli space graph T .

Step 1 This first step specifies J0 in a more precise manner near the images of the
critical points of the pullback of � . To start, note that if z 2 C0 is a critical point of
the pullback of � , then there is a small radius, embedded disk, D � R� .S1 �S2/,
that is contained in C and centered at the image of z . By virtue of the third point
in (3–3), the vectors @s and y̨ span TD at the image of z . Thus, J0 must map one to
a multiple of the other at this particular point. This being the case, there is a constant,
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c , with the following significance: For all sufficiently small yet positive ", an almost
complex structure J0 can be found that obeys (3–4) and is such that

(3–5) jJ �J0j< C " and jr.J �J0/j< C

at points with distance " or less from the image in R� .S1 �S2/ of any critical point
of the pullback of � .

Step 2 This step modifies both C and J0 near the singular points of C so that (3–5)
is also obeyed at each of the latter points. To explain how this is done, let D � C

for the moment denote an embedded disk whose closure is disjoint from the image
of any critical point of the pullback of � . Let z denote the center point of D . Fix
some J –pseudoholomorphic disk, D0 � R� .S1 �S2/, with center z whose tangent
space at z is spanned by @� and J � @� . Having chosen such a disk, there exists � > 0

and complex coordinates .x;y/ centered at z , defined for jxj< � and jyj< � , such
that D0 is the y D 0 disk, and such that @s and y̨ are tangent to each x D constant
disk. Thus � is constant on each of the latter. In these coordinates, the disk D can be
viewed as the image of a neighborhood of the origin in C to C2 that maps the complex
coordinate u on C as

(3–6) u!
�
x D u;y D auC bxuC o.juj2/

�
;

where a and b are complex numbers. Note that the x–coordinate of the map can be
defined in this way by virtue of the fact that � is a function only of x .

Consider now deforming D in a manner that will now be described. To start, pick some
small, positive ı with the property that the disk of radius 4ı in C is mapped via (3–6)
some distance from the boundary of D . Let ˇ denote a favorite, smooth function on
Œ0;1/ that is identically 1 on Œ0; 1�, vanishes on Œ2;1/ and is non-increasing. With
ˇ chosen, consider the deformed disk, D.ı/, that is defined by the image of the map

(3–7) u!
�
x D u;y D auCˇ

�
1
ı
juj
�
bxuC o.juj2/

�
:

The image of this new map agrees with the old where juj> 2ı . The new subvariety
will be immersed and pseudoholomorphic for an almost complex structure that also
obeys the constraints on J0 in (3–4). However, such an almost complex structure exists
that agrees with J near the point z .

Now suppose that z is a singular point of C . Thus, there are two versions of D with
center at z , these now denoted by D1 and D2 . No generality is lost by assuming
here the respective closures of D1 and D2 are disjoint save for the shared point z .
Each such disk is described by a map as in (3–6) using respective .a1; b1/ and .a2; b2/

versions of the pair .a; b/ of complex numbers. For sufficiently small ı , each of D1

Geometry & Topology, Volume 10 (2006)



832 Clifford Henry Taubes

and D2 has their corresponding deformation as given in (3–7). The claim here is that
the resulting disks, D1� and D2� , intersect only at z, transversely, and with positive
intersection number. To explain, remark that any point in D1�\D2� is the image of a
point u 2 C where

(3–8) .a1� a2/uD .b1� b2/ˇxuC o.juj2/:

Since 0 � ˇ � 1, this can happen at non-zero u when ı is small only if jb1� b2j �

ja1� a2j. However, the latter inequality is forbidden by the fact that the D1 and D2

have transversal intersection at z with positive intersection number.

Thus, the new disks, D1� and D2� , intersect transversely only at z with positive
intersection number. Moreover, each is J –pseudoholomorphic at z . This understood,
if such a deformation is made for each singular point of C , then the result is the image
(henceforth named C ) of C0 via an immersion that is pseudoholomorphic for a new
version of the almost complex structure J0 , one that obeys (3–4) and also obeys (3–5)
at each of the singular points of the immersion and at the image of each of the critical
points of the pull-back of � .

Step 3 At this point, the stage is set to deform the newest version of C so that the
result is pseudoholomorphic for an admissible almost complex structure.

To begin describing the latter deformation, let �W C0! R� .S1 �S2/ now denote
the tautological immersion with image C . Introduce the bundle N ! C0 to denote
the pull-back normal bundle; this defined so that the fiber over any given z 2 C0 is
the g0 –normal bundle at �.z/ to the � image of any given sufficiently small radius
disk in C0 with z as center. As in the case for J –pseudoholomorphic subvarieties, the
almost complex structure J0 and the metric g0 together endow N with the structure
of a complex line bundle with a Hermitian and thus holomorphic structure. In addition,
there exists ı > 0, a disk subbundle, N1 � N of g0 –radius ı , and an ‘exponential’
map eW N1! R� .S1 �S2/ with the following properties: First, e is an immersion
that restricts to the zero section as the map � . Second, e is a g0 –isometry along the
zero section. Third, the differential of e is uniformly bounded. Finally, e embeds each
fiber disk in N1 as a J0 –pseudoholomorphic disk.

With e chosen, there exists some ı0 2 .0; ı/ with the following significance: If � is
a section of N1 with suitable decay at large jsj, and if both j�j and jr�j are both
everywhere less than ı0 , then �0 � e ı � will immerse C0 as a pseudoholomorphic
subvariety for a complex structure, J 0

0
, that also obeys the constraints in (3–5). More-

over, if the norms of j�j and jr�j are small, then the critical values and critical points
of the pullback of � via the new immersion will hardly differ from those of the original.
This is an important point in subsequent arguments, so keep it in mind.
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In any event, the plan is to find such a section � with a corresponding J 0
0

that is
admissible. For this purpose, remark that there exists a constant, c , and, given some
very small, but positive constant ", there exists an admissible complex structure, J 0 ,
that has the following properties:

�(3–9) J 0D J0 except where jsj> 1
"

and where the distance to any singular point
of C or image of a critical point of the pullback of � is less than ".

� jJ0�J 0j< cjJ �J0j and jr.J �J 0/j � c.jr.J �J0/jCjJ �J0j/ where
jsj> 1

"
.

� jJ0�J 0j � c � " and jr.J0�J 0/j � c where the distance is less than " to
any singular point of c or to the image of any critical point � ’s pullback.

With " now chosen very small (an upper bound appears below), fix an admissible J 0 that
obeys the constraints in (3–9). This done, the plan here is to search for an immersion,
�0W C0! R� .S1 �S2/, whose image is a J 0–pseudoholomorphic subvariety. Thus,Q

J 0 �d�0 D 0, where
Q

is the projection to the normal bundle of the immersion. The
sought for deformation of C is obtained by composing e with a suitable section of
the bundle N1 . In particular, if � is a section of N1 , then the condition on � can be
written schematically as

(3–10) DC�CR0.�/CR1.�/ � @�C  .�/Cy{ D 0;

where the notation is as follows: First, DC is the .C;J0/ version of the operator that
is depicted in (2–5) while R0 and R1 are the .C;J0/ versions of their namesakes
from (2–3) and (2–5). Meanwhile,  is a smooth, fiber preserving map from N1 to
N1˝T 0;1C0 that obeys

(3–11) j .�/j � c0jJ 0�J0j.1Cjr�j/Cjr.J
0
�J0/jj�j;

where c0 is a constant that can be taken to be independent of the choice of " and
J 0 . Note that R0 , R1 and  are defined on some small, positive and constant
radius disk subbundle of N , and the latter can be taken equal to N1 with no loss of
generality. Finally, y{ is a linear map from a certain finite dimensional vector subspace
of C1.N˝T 0;1C / back into the latter space whose image has compact support where
the distance to any singular point of C or image of a critical point of � ’s pull-back is
large. The form of y{ is described momentarily.

The operator DC in (3–10) has the same sort of Fredholm extension as a bounded
linear operator between the C versions of the range and domain spaces that appear
in (2–7). Note that the index of this Fredholm version of DC is the integer yI in (2–2).
In the present context, it may well be the case that DC has a non-trivial cokernel.
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If cokernel.DC / D 0, then y{ in (3–10) can be discarded. If cokernel.DC / has pos-
itive dimension, then y{ is necessary. To elaborate, y{ can be any linear map from
cokernel.DC / into C1.N ˝T 0;1C0/ with the following properties: First, the support
of the image of y{ is compact and with all points in the support mapped to points
with distance at least one from singular point of C or image of a critical point of � ’s
pullback. Second, the orthogonal projection in DC ’s range Hilbert space composes
with y{ to give the identity map on cokernel.DC /.

With the preceding understood, let HR denote the orthogonal complement in the range
space of DC to the DC ’s cokernel and let

Q
denote the orthogonal projection in

this range Hilbert space onto HR . Meanwhile, use HD to denote the orthogonal
complement in the domain space of DC to its kernel. Note that DC restricts to HD

to define a bounded, invertible map onto HR . The inverse of the latter map is denoted
below as .DC /

�1 .

To continue, let H 0 �HD denote the subset of smooth elements with pointwise norm
no greater than half the radius of the disk bundle N1 . Finally, define the smooth map
Y W H 0 � cokernel.DC /!HD by the rule

(3–12) Y .�; �/D�.DC /
�1
Y�

R0.�/CR1.�/ � @�C  .�/Cy{.�/
�
:

By design, if �D Y .�; �/, then � solves (3–10) provided that

(3–13) �D�
�
1�

Y��
R0.�/CR1.�/ � @�C  .�/

�
:

The existence of such a pair .�; �/ is guaranteed when " is very small. Indeed, the
analysis used in [18, Section 3c and the proof of its Proposition 3.2] can be used here
to construct a version of the contraction mapping theorem to prove the following:

Lemma 3.3 Given small "0 > 0, then all sufficiently small " versions of the fixed
point equation �D Y .�; �/ have a unique solution with � given by (3–13) and with "0

bounding both the Hilbert space norm and pointwise C 1 –norm of �.

Step 4 This last step explains how to make the preceding construction result in a
subvariety whose version of Subsection 2.G’s graph T.�/ is the given moduli space
graph T . To start, take note that given T , there exists a positive constant, ıT , with the
following significance: Suppose that T 0 is a labeled graph, isomorphic to T save for
the fact that its trivalent vertex angle assignments differ. Even so, suppose that there is
a ‘quasi’ isomorphism that identifies the underlying graphs so as to pair like labeled
monovalent and bivalent vertices, match edge labels and pair trivalent vertices only
if their respective angle assignments differ by less than ıT . This graph T 0 is also a
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moduli space graph for yA. If ı 2 (0, ıT /, say that a graph T 0 is “ı close to T ” when
such a quasi-isomorphism pairs trivalent angles so that all such pairs differ by less than
ı .

If ı is small, then graphs that are ı close to T can be parametrized by a cube of side
length 2ı in the product of .N�C yN Cc yA�2/ copies of .0; �/; this the cube centered
on the angle assignments for the trivalent vertices of T . Let Bı denote this cube.

There are now three remarks to make: First, with both " from (3–9) and "0 from
Lemma 3.3 taken to be very small, the constructions just given in Step 1–Step 3 can
be made for any graph that comes from a point in Bı . In this way, each point in Bı
produces a subvariety, and thus a version of Subsection 2.G’s graph T.�/ . Second, with
"1 > 0 fixed and then both " from (3–9) and "0 from Lemma 3.3 even smaller, any
chosen point from Bı=2 provides a version of T.�/ that is isomorphic to T via an
isomorphism with the following additional property: It pairs trivalent vertices so that
the resulting angle assignments define a point in Bı with distance "1 or less from the
initially chosen point. Finally, the constructions in Step 1–Step 3 can be made so that
the result of all this is a continuous map from Bı=2 to Bı .

Now take "1 very small. Granted the preceding three observations, some starting
point in Bı=2 gives T.�/ D T for the simple reason that Bı=2 doesn’t retract onto its
boundary.

3.D The deformation to a J –pseudoholomorphic subvariety

Let J 0 be an admissible almost complex structure, let # denote an unordered set of
NC points in S1 , and let M yA

Œ‚; #� denote the subset in the J 0–version of M yA
Œ‚�

that consists of subvarieties whose inverse images in Mƒ are sent to the points in #
by (2–21)’s map $C . The respective sets ‚ and # are deemed ‘generic’ when the
following conditions apply:

�(3–14) The set � has N�C yN Cc yA�2 elements, and these elements are pairwise
disjoint and none arises via (1–7) from an integer pair of any .0; : : :/

element in yA.

� The set # contains NC distinct elements.

According to Proposition 2.12, any generic � and # version of MŒ‚; #� is a submani-
fold of M yA

.

Now, if T is given by the graph from Subsection 2.G of a subvariety from the J 0

version of M yA
, then the subvariety is in the version of MŒ‚� where � ’s angles are
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those assigned to the trivalent vertices in T . Thus, � is generic if T is generic. More
to the point, Proposition 2.12 finds a subvariety in a generic # version of MŒ‚; #�

whose graph is also isomorphic to T .

With the preceding understood, and granted what has been said in the previous subsec-
tions, there exists an admissible almost complex structure J 0 , a generic pair .‚; #/
and a subvariety C in the J 0 version of MŒ‚; #� whose graph from Subsection 2.G
is isomorphic to the graph T .

The remainder of this subsection explains how C is used to construct a J –pseudoholo-
morphic subvariety in the J –version of MŒ‚; #� whose version of T.�/ is isomorphic
to the given moduli space graph T . The description of such a deformation is broken
into six steps.

Step 1 This step explains the strategy for obtaining the desired subvariety. To begin,
choose a continuously parametrized family, fJ aga2Œ0;1� , in the space of admissible
almost complex structures whose initial element, J 0 , is J 0 , and whose final element,
J 1 , is J . Having made such a choice, an attempt is made to construct a corresponding
family, fC aga2Œ0;1� , of subvarieties in R� .S1 �S2/ that has C 0 D C and is such
that any given C a is a J a –pseudoholomorphic subvariety in the J a version of M yA

.
In particular, the goal is to construct such a family where each a� 0 version of C a is
in the submanifold MŒ‚; #� from the J a version of M yA

and whose corresponding
version of T.�/ is the given moduli space graph T .

To proceed, introduce the set, f, of points r 2 Œ0; 1� for which C a exists for every value
of a� r . This f is non-empty since it contains 0. The next step explains why f is open.
Modulo a technical proposition, an argument is given in the third step that proves the
following: Either f is closed, or else the submanifold MŒ‚; #� in the J –version of
M yA

contains the desired subvariety. If f is closed, then 1 2 f and the submanifold
MŒ‚; #� in the J –version of M yA

contains the desired subvariety. Thus, the desired
conclusion follows in either case.

A bit more work will establish that f is, in fact, closed. Moreover, the resulting
parametrized family fC aga2Œ0;1� , can be constructed so that the parametrization varies
continuously with the parametrization, or smoothly in the case that the parametrization
a! J a is smooth. However, this extra work is left to the reader.

(By the way, the terms ‘continuous’ and ‘smooth’ for the parametrization that sends
a! C a are defined as follows: The parametrization is continuous if there exists a
multi-punctured sphere, C0 , with a continuous map ˆW C0 � Œ0; 1�! R� .S1 �S2/

such that each ˆ.�; a/ is a smooth, proper immersion with image C a that is 1–1 to its
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image on the complement of a finite set. The parametrization is smooth when there is
such a map � that is smooth.)

Step 2 The proof that f is open makes fundamental use of the generalization of
Proposition 2.6 that follows. The proof of this proposition, like that of Proposition 2.6,
is much like that of [18, Proposition 3.2] and thus is omitted.

Proposition 3.4 Let J 0 be an admissible almost complex structure, let yA be any
given asymptotic data set, and let C 0 be a subvariety in the J 0 version of M yA

. Let
C0 denote the model curve for C 0 and let �W R� .S1 �S2/ denote its attending J 0–
pseudoholomorphic map. Then, there exists a constant � � 1, a ball B � kernel.DC 0/,
an open neighborhood, U , of J 0 in the space of admissible almost complex structures,
and a smooth map F , from U �B to C1.��T1;0.R� .S

1 �S2// with the following
properties:

� jF.J 0; �/� �jC jr.F.J 0; �/� �j � �jj�jj2 .
� The exponential map on the C 0 version of ��T1;0.R� .S

1 �S2// composes
with F to give a smooth map, ˆW U �B �C0! R� .S1 �S2/.

� With .J 00; �/ 2 U � kernel.DC 0/ fixed, then ˆ.J 00; �; �/ maps C0 onto a J 00–
pseudoholomorphic subvariety.

� As � varies in B with J 00 fixed, the resulting family of subvarieties defines
an embedding,  J 00 , from B onto an open set in the J 00 version of M yA

. In
particular, if C 00 is in the J 00 version of M yA

and if

(3–15) sup
z2C 0

dist.z;C 00/C sup
z2C 00

dist.C 0; z/ <
1

�
;

then C 00 is in the image of  J 00 .

With Proposition 3.4 in hand, what follows explains why f is open. To begin, suppose
that � 2 f and that � < 1. Let eW ��T1;0.R� .S

1 �S2//! R� .S1 �S2/ denote an
exponential map of the sort that is described in Subsection 2.D. For values of a that
are somewhat greater than � , the subvariety C a is the image of the composition of e

with a suitably chosen, smooth section, �a , of ��T1;0.R� .S
1 �S2//. The section

�a has very small norm when a � � and, in any event, is an element in the domain
Hilbert space for the C � version of the operator DC as described in Subsection 2.D.
The properties of �a are summarized by the next lemma. An immediate corollary is
that f is open.

To prepare for the lemma, first note that it refers to the functions

fvj W 1� j � cg; f$C˛ W 1� ˛ �NCg and $�;r
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that appear in the C � version of Proposition 2.13. In this regard, be aware that
the domain of definition of these functions extends in a straightforward manner to
include any subvariety in R � .S1 � S2/ that has the asymptotics of a subvariety
from M yA

and is the image via the exponential map of a pointwise small section of
��T1;0.R� .S

1 �S2// with pointwise small covariant derivative. For example, these
functions are defined for the a< � versions of C a when a is sufficiently close to � .

Lemma 3.5 Given c 2 f0; : : : ;N�C yN Cc yA�2g and a c element subset ‚� .0; �/,
suppose that � 2 Œ0; 1/ and that C � is any element of the J � version of MŒ‚�. Then,
there exists some ı > 0 and a continuous map from .�ı; ı/ into the intersection of
the domain of DC with the C � version of C1.��T1;0.R � .S

1 � S2/// such that
the image of any given � 0 2 .�ı; ı/ is a section, ��C�

0

, whose composition with
the exponential map sends C0 onto a J �C�

0

–pseudoholomorphic subvariety from the
J �C�

0

version of the space MŒ‚�. Moreover, the following is also true: Suppose that
the 1–parameter family fC ag is continuously defined along the interval Œ0; � �.

� The map � 0! ��C�
0

can then be constructed as a continuous map with domain
.�ı; ı/ such that each a2 .��ı; � � version of C a is the image of the composition
of the exponential map with the corresponding �a .

� If the family fJ aga2Œ0;�Cı� is smoothly parametrized, and if the original family
fC aga2Œ0;�� is smoothly parametrized on Œ0; � �, then the map � 0! ��C�

0

can be
constructed to be smooth on the whole of .�ı; ı/.

� If a given subset of the functions fvj W 1 � j � cg; f$C˛ W 1 � ˛ � NCg and
$�;r are constant on C a for values of a near to but less than � . Then the map
� 0 ! ��C�

0

can be constructed so that the same subset of these functions are
constant on the a> � subvarieties as well.

In any event, the given 1–parameter family, fC aga2Œ0;�� , has an extension that is
parametrized by the points in the interval Œ0; � C ı�.

Proof of Lemma 3.5 Granted Propositions 2.7, 2.9, 2.13 and 3.4, all of the assertions
are proved by using various straightforward applications of the implicit function theo-
rem.

Step 3 This step explains why the submanifold MŒ‚; #� in the J –version of M yA

contains the desired subvariety when f is not closed. To begin, suppose that � � 1 and
that the family a! C a has been defined for a< � with each C a in the appropriate
version of the submanifold MŒ‚; #�. The issue here is whether the domain of definition
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for the 1–parameter family extends to the parameter value aD � as well. The focus
here is thus on the convergence or lack there of for the sequence fC aga<� as a! � .

The next proposition asserts some facts about sequences of subvarieties of the sort that
is under consideration. The following is a direct corollary: Either f is closed or else
the subset MŒ‚; #� in the J –version of M yA

is non-empty and contains a subvariety
whose corresponding graph from Subsection 2.G gives the graph T .

Proposition 3.6 Assume here that � and # are generic in the sense of (3–14). Let
J 0 be an admissible almost complex structure, and suppose that f.Jj ;Cj /gjD1::: is a
sequence of pairs of the following sort: First, fJj g is a sequence of admissible almost
complex structures that converges to J 0 . Meanwhile, each Cj is in the subset MŒ‚; #�

from the J 0 version of M yA
and each has graph T.�/ giving T . Then one of the

following two assertions hold:

A There exists a subvariety C 0 in the subset MŒ‚; #� of the J 0 version of M yA

with graph TC 0DT , a subsequence of fCj g and a corresponding sequence, f�j g,
of sections of a fixed radius ball subbundle in the C 0 version of ��T1;0.R �

.S1 � S2// such that composition of the exponential map with any given �j

sends the model curve of C 0 onto Cj . Moreover, the sequence of supremum
norms over C 0 of the elements in f�j g limits to zero as j ! 1, as do the
analogous sequences of norms of the higher derivatives.

B There exists a subvariety C in the subset MŒ‚; #� of the J version of M yA

with graph TC D T a subsequence of fCj g and a corresponding sequence, f�j g,
of sections of a fixed radius ball subbundle in the C version of ��T1;0.R�.S

1�

S2// such that composition of the exponential map with any given �j sends the
model curve of C onto a translate of Cj along the R factor of R� .S1 �S2/.
As before, the sequence of supremum norms over C of the elements in f�j g

limits to zero as j !1, as do the analogous sequences of norms of the higher
derivatives.

The proof of Proposition 3.6 exploits convergence theorems that are modified versions
of assertions from Hofer, Wysocki and Zehnder [8] about the behavior of limits of
pseudoholomorphic curves. (See also Bourgeois, Eliashberg, Hofer, Wysocki and
Zehnder [1], which appeared during the preparation of this article.) The next proposition
summarizes the needed results. Note that it makes no assumptions about � and # or
any given moduli space graph such as T .

Proposition 3.7 Let fJj g denote a sequence of admissible almost complex structures
with the following two properties: First, the derivatives of each such endomorphism
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to any fixed, non-negative order are bounded over the whole of R� .S1 �S2/ by a
j –independent constant. Second, there is an admissible almost complex structure, J 0 ,
such that the restriction of fJj g to any given compact set in R� .S1 �S2/ converges
in the C1 topology to the corresponding restriction of J 0 . Next, let fCj g denote a
sequence where each Cj is in the corresponding Jj version of M yA

. Then, there exists
a subsequence of fCj g (hence renumbered by consecutive integers starting from 1)
and a finite set, „, of pairs of the form .S; n/ where n is a positive integer and S

is an irreducible, J 0–pseudoholomorphic multi-punctured sphere; and these have the
following properties:

� limj!1

R
Cj
$ D

P
.S;n/2„ n

R
S $ for each compactly supported 2–form $ .

� If K � R� .S1 �S2/ is compact, then the following limit exists and is zero:

(3–16) lim
j!1

�
sup

z2Cj\K

dist.z;[„S/C sup
z2.[„S/\K

dist.z;Cj /

�
The proof is given momentarily.

Step 4 A portion of the proof of the previous proposition, as well as subsequent
arguments in this article and in the sequel, require the lifting of certain submanifolds
of †� [.S;n/2„S to large j versions of Cj . This step explains how these liftings
are done.

To start, it is necessary to first pass to a subsequence of fCj g where the corresponding
sequence of sets of critical points of � and sequence of sets of singular points converge
in R�.S1�S2/. Let Yj �Cj denote the set of critical points of � and singular points
of Cj , and let Yo � � denote the limit of fYj g. Next, let †� � � denote the union of
the irreducible components that are not of the form R�  where  � S1 �S2 is a
Reeb orbit. Now, let Y� �†� denote the union of the set Yo , the critical points of �
on the subvarieties that comprise †� and the singular points of � that lie in †� . Note
that the latter set may contain points that are not points of Yo . In any event, Y� is a
finite set.

Suppose next that K �†� �Y� is a given compact set. Such a set K has a tubular
neighborhood, UK � R� .S1 �S2/ with projection � W UK ! K whose fibers are
disks on which � is constant and that are pseudoholomorphic for any admissible almost
complex structure. Indeed, the fiber of the projection to any given p 2 K is a disk
centered on p inside R� p , where p � S1 �S2 is a small segment of the integral
curve of the Reeb vector field through the image of p . In this regard, note that R� p

intersects K transversely at p by virtue of the fact that p is not a critical point of �
on � . With K fixed, then each sufficiently large j version of Cj will have proper
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intersection with UK and intersect each fiber precisely n times, with each a transversal
intersection and local intersection number C1. Such is the case precisely because
the large j version of Cj has no � critical points in UK . In any event, here is a
fundamental consequence: The projection, � W Cj \UK !K defines a smooth, proper,
degree n covering map. In particular, any compact, embedded arc in †��Y� has lifts
to Cj under the projection � .

The lifts just described can be extended as lifts of arcs in a somewhat larger set in †� .
To define this set, let Y � Y� denote the subset of points that are either singular points
of � , critical points of � on � , or limits of convergent sequences of the form fpj g

where pj is either a critical point of � on Cj or a non-immersion singular point of
Cj . Then a smooth arc in a compact subset of †� Y has a well defined lift to all
large j versions of Cj that extends the lift defined in the preceding paragraph. In the
discussion that follows, such a lift is deemed a ‘� –preserving preimage’ in Cj .

Step 5 Here is the proof of Proposition 3.7:

Proof of Proposition 3.7

This result is essentially from Hofer [4] or Hofer–Wysocki–Zehnder [8] (see also the
article by Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [1] that appeared during
the writing of this article). Here is the basic idea: There is a bound on the area of
the intersection of Cj with any given Œs � 1; sC 1�� .S1 � S2/ subcylinder that is
independent of both s and j . The existence of such a bound can be deduced from the
fact that the integral of d˛ on Cj is finite. The existence of this local area bound is
the key observation. The existence of the asserted limit data set „ is deduced from the
latter using arguments that are very similar to those used for the convergence theorems
about sequences of pseudoholomorphic curves on compact symplectic manifold. Given
the local area bound, a somewhat different proof of the convergence assertion can be
obtained using [16, Proposition 3.3], but without the observation that each subvariety
from „ is a multipunctured sphere.

What follows explains why each subvariety from „ is a sphere with punctures. In this
regard, it is enough to consider only the non–R invariant subvarieties. To start this
chore, take any given irreducible component S from †� , and note that it is enough
to prove that some non-zero multiple of any class in the first homology of the model
curve for S is generated by loops on the ends of S , thus ‘end-homologous’. For this
purpose, fix a generator of the first homology of the model curve for S , and let � � S

be the image of an embedded representative that is disjoint from Y \S . In addition,
fix R� 1 so that the jsj>R part of S lies out on the ends of S and is disjoint from
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� . In this regard, remark that given R, there exists " > 0 such that the jsj �R portion
of the ends of S have pairwise disjoint, radius " tubular neighborhoods.

Take the index i to be very large, and let �i � Ci denote a connected, � –preserving
preimage of � . Then �i is homologous in a regular neighborhood of S to some non-
zero multiple of � . However, �i is also homologous in Ci to a union of curves on the
ends of Ci . Intersect this homology with the jsj �R part of Ci and then deform the
latter back to S in a small radius, regular neighborhood. The result is a homology
between a non-zero multiple of � and a union of curves on the ends of S as well as a
union of circles that are very close to points in S \ Y . As the inverse image of the
latter circles are null-homologous in the model curve, so the chosen generator of the
model curve’s first homology is end-homologous.

Step 6 With the proof of Proposition 3.7 now complete, remark that it may well be
the case that each subvariety from „ is an R–invariant cylinder, thus of the form R�

where  �S1�S2 is an orbit of the Reeb vector field. Item B of Proposition 3.6 holds
when all subvarieties from „ are R–invariant cylinders, and Item A of Proposition
3.6 holds when such is not the case. To explain how this dichotomy comes about,
suppose first that there exists some subvariety from „ that is not R–invariant. In this
case, the proof of Proposition 3.6 proceeds to establish that „ consists of a single
pair, and that the latter has the form .S; 1/ with S in the submanifold MŒ‚; #� from
the J 0 version of M yA

. This implies that the graph TS from Subsection 2.G can be
labeled as a moduli space graph. The fact that the TS is isomorphic to T is seen as an
automatic consequence of the strengthened versions of (3–16) that appear in the next
three subsections.

In the case that all subvarieties from „ are R–invariant, the argument for Item B of
Proposition 3.6 proceeds as follows: The original sequence fCig is now replaced by
a new sequence, fC 0i g, where each C 0i is obtained by translating the corresponding
Ci along the R factor in R� .S1 � S2/. It should be evident from the description
given below that the resulting sequence of translations (as elements in R/ does not
have convergent subsequence. In any event, each C 0i is pseudoholomorphic for the
translated almost complex structure, this denoted by J 0i . The latter sequence has a
subsequence that converges on compact sets in R� .S1 �S2/ to the almost complex
structure J . This understood, the sequence of translations is chosen so as to insure that
fC 0i g converges as described in Proposition 3.7, but with a limit data set of pairs that
contains one whose subvariety component is not R–invariant. The argument proceeds
from here as in the previous case: It demonstrates that Proposition 3.7’s limit data set of
pairs is a single pair, this of the form .S; 1/, where S is in the submanifold MŒ‚; #�

of the J –version of M yA
whose corresponding graph is isomorphic to T .
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The translation, sj 2 R , that takes Cj to C 0j is defined as follows: Chose a fixed angle,
�� 2 .0; �/, with the following properties: First, �� is strictly between the minimal
and maximal angles that are defined by the elements of yA. Thus the � D �� locus in
Cj is non-empty. Second, no pair .p;p0/ makes the � D �� version of (1–7) hold.
Now, define sj so that the translate s! sC sj moves Cj so that the result, C 0j , has a
point on its � D �� locus where s D 0.

Granted this definition, it then follows from the fC 0j g version of (3–16) that the resulting
limit data set, f.S; n/g, contains some S on which � takes value �� . Such a subvariety
can not be an R–invariant cylinder.

3.E Convergence

With Proposition 3.7 and with what has been said so far, Proposition 3.6 follows directly
as a corollary to

Proposition 3.8 Assume that � and # are generic. Let fJig denote a sequence of
admissible, almost complex structures with the following three properties: First, the
derivatives of each Jj to any fixed, non-negative order are bounded over R� .S1�S2/

by a j –independent constant. Second, there is a constant, L, such that Jj D J on
the complement of some length L subcylinder in R � .S1 � S2/. Finally, there is
an admissible, almost complex structure, J 0 , such that the restriction of fJj g to any
compact set in R� .S1 � S2/ converges in the C1 topology to the corresponding
restriction of J 0 . Let fCj g denote a sequence where each Cj is in the submanifold
MŒ‚; #� of the Jj –version of M yA

, and where each has its graph from Subsection 2.G
giving T . Now suppose that fCj g converges as described in Proposition 3.7 with limit
data set „. In this regard, assume that „ contains at least one subvariety that is not of
the form R�  where  is a Reeb orbit in S1 �S2 . Then „ consists of a single pair,
this pair has the form .S; 1/, S is in the submanifold MŒ‚; #� from the J 0–version
of M yA

, and the graph of S is isomorphic to T .

The remainder of this subsection and the next two subsections are occupied with the
proof of this proposition. In this regard, note that there are various ways to prove this
proposition, in particular, some using mostly differential equation techniques such as
can be found in Hofer [4; 5; 6] and Hofer–Wysocki–Zehnder [8; 7; 10] and the very
recent Bourgeois–Eliashberg–Hofer–Wysocki–Zehnder [1]. The proof offered below
relies almost entirely on arguments that are of a topological nature. In any event, the
arguments used below are exploited in various modified forms in the sequel to this
article.
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The proof starts with a proof that the convergence assertion in (3–16) holds even in the
case that K D R� .S1 �S2/. This first part of the proof occupies the remainder of
this subsection.

Part 1 of the Proof of Proposition 3.8

The proof that the K D R� .S1 �S2/ version of (3–16) holds starts here by making
the assumption that the K D R � .S1 � S2/ version of (3–16) is false. The proof
proceeds to derive a patently nonsensical conclusion.

To start this derivation, let † � [.S;n/2„S , let E denote any end from � , and let
R�� denote the translationally invariant cylinder with the same large jsj asymptotics
of as E . This is to say that the jsj !1 limits of E converge in S1�S2 to the Reeb
orbit � . Now, fix some very small but positive number " and there exists a value, s0 ,
of s on E and a pair of sequences, fsjCg � Œs0;1/ and fsj�g 2 .�1; s0� with the
following properties:

�(3–17) If E is on the concave side of � , then fsjCg has no convergent subse-
quences; and if E is on the convex side of � , then fsj�g has no convergent
subsequences.

� For each index j , the intersection of Cj with the s 2 Œsj�; sjC� portion of
the radius " tubular neighborhood of R� � has an irreducible component,
Cj� , where jsj takes both the values sj� and sjC and whose points have
distance 1

4
" or less from R� � .

� For each index j , there exists a subinterval, Ij � Œsj�; sjC� such that
(a) The sequence whose j 0 th element is the length of Ij diverges as j !1.
(b) The sequence whose j 0 th element is the maximum distance from the s 2 Ij

portion of Cj� to R� � limits to zero as j !1.

The fact that all of this can be arranged is a straightforward consequence of the manner
of convergence that is dictated by Proposition 3.7.

Now comes a key point: Because each Cj is irreducible, when " is small, there must
exist an infinite sequence of positive integers j (hence renumbered consecutively from
1) and at least one end E � � with the following properties:

(3–18) Values for sjC and sj� can be chosen for use in E0 s version of (3–17) so that
both the s D sjC and s D sj� loci in Cj� contain some point with distance
1
4
" from R� � .

With (3–18) understood, there are two cases to consider.
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Case 1 There is an end E � � where (3–18) holds and where the value, �� , of � on
� is neither 0 nor � . The derivation of nonsense in this case is a four step affair.

Step 1 This step starts with a crucial lemma.

Lemma 3.9 There exists ı > 0 such that for all large j , the angle � takes both the
values ��C ı and �� � ı on the s D sj� locus in Cj� . Meanwhile, � takes at least
one of these values on the s D sjC locus in Cj� .

The proof of this lemma is given below.

Granted Lemma 3.9, the ‘mountain pass’ lemma with the third point in (3–17) implies
that there is a critical point of � on each large j version of Cj� with critical value
equal to �� .

As is explained next, the relatively prime integer pair .p;p0/ that is defined by ��
via (1–7) must be proportional to either Qe0 or Qe00 where e0 , e00 with e label the
three edges in T that are incident to the vertex that labels the critical point with critical
value �� . Here, the convention for distinguishing e from e0 and e00 is as follows: The
respective vertices on e0 and e00 that lie opposite that with angle label �� have angle
labels on the same side of �� in .0; �/. This last conclusion exhibits the required
nonsense since it requires the vanishing at � D �� of either the QDQe0 or QDQe00

version of ˛Q .

To see why .p;p0/ are proportional to one of Qe or Qe0 , let j be very large and let
Ke , Ke0 and Ke00 denote the components in the complement of the Cj version of �
in Cj ’s model curve. Slice Cj� into two pieces near the s D 1

2
sj locus. This then

slices Cj into two parts, where one part, CjC , contains the larger s portion of the
sliced component of Cj� . Let Cj� denote the other part. By virtue of the fact that �
spreads uniformly to both sides of �� on Cj� , the latter must contains most of both
Ke and one of Ke0 or Ke00 . Agree to distinguish the latter as Ke0 . Meanwhile, CjC

contains most of Ke00 . In this regard, the portions that are missing in either of the three
cases are portions where � is everywhere very close �� .

Now, recall from Subsection 2.G that the � D �� part of the � –locus in Cj ’s model
curve has the form of a ‘figure 8’, where one of the circles is the � D �� boundary of
the closure of Ke0 and the other that of the closure of Ke00 . This implies that any given
constant � circle in Ke00 is homologous to the union of a constant � circle in Ke0 and
a constant � circle in Ke . Take these circles to have � value that differ by order one
from �� . This the case, the obvious ‘pair of pants’ in Cj ’s model curve with these
three constant � circles as boundary provides a homology. Now, this pair of pants is
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sliced in two pieces by the s � 1
2
sj cut. In particular, the CjC piece contains one of

the boundary circle in Ke00 and the Cj� piece contains the other two boundary circles.
This understood, it then follows from the definitions of Qe00 and .p;p0/ as integrals
of 1

2�
dt and 1

2�
d' that these integer pairs are proportional.

Step 2 This step, Step 3 and Step 4 contain the following proof.

Proof of Lemma 3.9

Translate each Cj in R� .S1 �S2/ by sending s to sC sj� in the R factor, and let
Cj
0 denote the corresponding subvariety. The sequence fCj

0
g converges in the manner

dictated by Proposition 3.7 with some limit data set „0 . It follows from (3–18) that
„0 contains an irreducible subvariety with a concave side end, E0 , with the following
property: Given some very large R, a value of s on E0 , there is an infinite subsequence
from fCj g (hence renumbered from 1) such that the s ! s C sj� translates of the
sj�CR slices of Cj� converge pointwise to the sDR slice of E0 . Let  ’ denote the
Reeb orbit that is the limit of the the jsj!1 slices of E0 . Step 3 proves that  0D � .

Granted that  0 D � , there are two possibilities: Either E0 sits as a sub-cylinder in
R� � or not. If not, then E0 is a concave side end of some subvariety from „0 that
is not R–invariant. This understood, it follows from (2–17) that � takes values both
above and below �� on any constant jsj slice of E0 . (Remember that the nD 0 case
of (2–17) is reserved solely for convex side ends.) Thus � must take values on the
s D sj� slice of each large j version of Cj� that differ from �� in both directions by
some j –independent, non-zero amount.

Suppose, on the other hand that E0 is contained in R� � . As there are points on Cj�

where s � sj� with distances at least 1
4
" from R� � , the convergence described by

Proposition 3.7 requires a subvariety from „0 that is not R–invariant and contains a
disk with the following property: The center point is on R�� and all other points are
limit points of sequences whose j 0 th element is in the s! sC sj� translate of Cj� .
Since � has no local maximum or minimum on such a disk, it thus follows that � must
take values on the s D sj� slice of each large j version of Cj� that differ from �� in
both directions by some j –independent, non-zero amount.

To establish the asserted behavior of � where s is near sjC on Cj , translate each Cj in
R� .S1�S2/ by sending s! sC sjC in the R–factor. Let Cj

0 now denote the result
of this new translation. Invoke Proposition 3.7 once again to describe the convergence
of this new version of fCj

0
g, using „0 to denote the new limit data set. In this case,

there is a convex side end, E0 , with the following property: Given some very large
R, a value of s on E0 , there is an infinite subsequence from fCj g (hence renumbered
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from 1) such that the s! sC sjC translates of the sjC �R slices of Cj� converge
pointwise to the s D �R slice of E0 . Let  0 denote the Reeb orbit that is the limit
of the the jsj !1 slices of E0 . Step 3 and Step 4 prove that  0 D � . Granted this,
then the argument for the desired conclusion that � takes some value on the s D sjC

slice of Cj� that differs from �� by a j –independent amount is much the same as
that given in the preceding paragraph. In fact, here is the only substantive difference:
The argument now only finds values of � on the s � sjC locus in Cj� that differ in at
least one direction from �� by a non-zero, j –independent amount. This is because the
integer n that appears in a convex side end version of (2–17) can vanish.

Step 3 But for one claim, this step proves that with " small, the Reeb orbits  0 and
� agree in all of their Step 2 incarnations. To start, note first that with " small, the
Reeb orbit  0 sits in a tubular neighborhood of � , and so  0 must be a translate of �
by some element in the group T D S1 �S1 whose distance is o."/ from the identity.

To make further progress, let .p;p0/ again denote the relatively prime pair of integers
that �� defines via (1–7). As can be readily verified, the 1–form pd' �p0dt is exact
on a tubular neighborhood of � , and this form pulls back as zero on any translate
of � by the group T . Moreover, on such a tubular neighborhood, the values of any
chosen anti-derivative of this 1–form distinguish the T –translates of � . In this regard,
let f be an anti-derivative with value zero on � . Then

(3–19)
Z


f
�
pdt Cp0 sin2 ��d'

�
D f j2�

�
p2
Cp02 sin2 ��

�
;

when  is any translate of � by an element from a small radius ball about the identity
in T . Thus, the value of the integral on the left side here will distinguish  0 from �
if these two orbits are not one and the same.

With the preceding understood, take j large, and let sj0 and sj1 denote any two regular
values of s on Cj� , chosen so that Jj D J on the cylinder where s 2 Œsj0; sj1�. As is
explained in Step 4, the respective integrals of f .pdtCp0 sin2 ��d'/ over the sD sj0

and s D sj1 slices of Cj� agree by virtue of the fact that Cj� is pseudoholomorphic.
The use of this last fact is simplest in the case that there exists some j –independent,
positive number, R, such that Jj D J where s 2 Œsj�CR; sjC �R�. If such is the
case, then take any fixed r >R such that each large j version of sj�C r is a regular
value of s on Cj� . Granted this, take sj0 to be sj� C r . For r large and then j

very large, the convergence as described in Proposition 3.7 guarantees that the integral
of f .pdt Cp0 sin2 ��d'/ over the s D sj0 slice of Cj� is very close to the  D  0

version of the right hand side in (3–19). Meanwhile, take sj1 to be some generic value
of s from the interval Ij from the third point of (3–17). As the latter slice of Cj� is
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very close to R� � , the integral of the form f .pdt C p0 sin2 ��d'/ about such a
slice will be very close to the  D � version of the right hand side of (3–19). As r

can be as large as desired, and likewise j , it thus follows that  0 D � .

Of course, it may well be the case that there is no j –independent choice of R that
excludes points with Jj ¤ J from where s 2 Œsj�CR; sjC�R�. There exists in this
case, some fixed R> 0 such that Jj D J save where s 2 Œ�R;R�. If the lower bound
for s on all large j versions of the interval Ij contain points where s < �R, then the
argument given in the previous paragraph works just fine. The situation is different
if the lower bound of s on all large j versions of Ij is greater than �R. Assuming
that such is the case, first fix some large value of r so that for every sufficiently large
j , each of s�j C r , �.RC r/ and RC r are regular values of s on Cj� . This
done, first take s0j D s�j C r and s1j D �.RC r/ to establish that the integral of
f .pdtCp0 sin2 ��d'/ about the sD�.RCr/ slice of Cj� is very close to the  D  0

version of the right hand side of (3–19). Next, take s0j to equal RC r and take s1j to
be a generic value in Ij so as to establish that the integral of f .pdt Cp0 sin2 ��d'/

about the s D .RC r/ slice of Cj� is nearly the  D � version of the right hand side
of (3–19).

It remains now to establish that the integrals of f .pdt C p0 sin2 ��d'/ along the
respective s D �.R C r/ and s D .R C r/ slices of Cj� are, for very large j ,
very close to each other. To argue for this, note that the sequence fCj g converges
according to Proposition 3.7 to a limiting J 0–pseudoholomorphic subvariety. The
sequence fCj�g thus has a subsequence that converges on every subcylinder of the
form Œ�RC r;RC r � � .S1 � S2/ to a component, C 0� , of this subvariety. In this
regard, all points of C 0� , must have distance less than 1

4
" from R� � . Furthermore,

the constant jsj slices of the convex side ends of C 0� must converge as jsj !1 to � .
Meanwhile, those of its concave side ends must converge as jsj !1 to  0 . But, this
then implies that  0 D � since the angle � is the same on  0 as on � and so has to
be constant on C 0� .

Step 4 To tie up the final loose end, suppose that � is a Reeb orbit where the value,
�� , of � is neither 0 nor � . Let .p;p0/ denote the relatively prime pair of integers
that �� defines via (1–7). Let U � S1 �S2 denote a tubular neighborhood of � and
let f denote an anti-derivative of pd'�p0dt on U . Now, suppose that sC > s� , and
that C� is closed, J –pseudoholomorphic subvariety inside Œs��1; sCC1��U . Thus,
C� has compact intersection with the subcylinder Œs�; sC��U . Suppose that both s�
and sC are regular values of the restriction of s to C� . Proved here is the assertion
that the respective integrals of the 1–form f .pdtCp0 sin2 ��d'/ over the sD s� and
s D sC slices of C� agree.
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For this purpose, use Stokes’ theorem to write the difference of the two integrals
as the integral over C� ’s intersection with Œs�; sC� � U of the form df ^ .pdt C

p0 sin2 ��d'/. Written out, the latter is �.p2Cp02 sin2 ��/dt ^ d' . Now, as C� is
J –pseudoholomorphic, the latter integral is identical to that of the 2–form �.p2C

p02 sin2 ��/ds ^ 1
sin � d� . A second application of Stokes’ theorem establishes the

assertion.

Case 2 This case assumes that the jsj ! 1 limits of � is 0 or � on every end in
� where (3–18) holds. Note that the arguments below consider only the case where
the aforementioned limit of � is 0. The argument for the case where the limit is � is
identical but for some minor notational modifications.

To start the derivation of nonsense in this case, remark that the Reeb orbit � in (3–17)
is the � D 0 locus. Let �j� denote the maximum value of � on the s D sj� slice of
Cj� , and let �jC denote the maximum of � on the s D sjC slice. Since both of these
slices have points with distance 1

4
" from the � D 0 locus, it follows that for fixed,

small " and large j , both �j� and �jC are greater than 1
100
". This understood, let

�j� denote the minimum value of the function on the interval Œsj�; sjC� that assigns to
any given a 2 Œsj�; sjC� the maximum value of � on the s D a slice of Cj� . In this
regard, �j� > 0, but by virtue of the third point in (3–17), limj!1 �j� is zero.

Granted the preceding, the mountain pass lemma dictates that all large j versions of Cj�

have a critical point of � where � D �j� . Of course, the latter conclusion is nonsense
as all critical values of � that are neither 0 nor � lie in the fixed, j –independent set � .

3.F Part 2 of the proof of Proposition 3.8

This second part of the proof establishes that the set „ contains just one element. The
argument here is presented in four steps.

Step 1 The first point to make is that the set of jsj!1 limits of � on � are identical
to the set of such limits on any given Cj . Of course, this follows from the fact that
the K D R� .S1 �S2/ version of (3–16) is valid here. In the case that no angle from
any .0;�; : : :/ element in yA is the same as that from a .0;C; : : :/ element, this last
conclusion rules out an R–invariant component of � where � differs from either 0 or
� .

To rule out such components in any case, suppose for the sake of argument that one
were present. Denote the latter as R� � where � is a Reeb orbit, and use �� to
denote the value of � on � . Keep in mind that �� comes both from a .0;C; : : :/ and
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a .0;�; : : :/ element in yA. Let " > 0 be very small and let U � S1 �S2 denote the
radius " tubular neighborhood of � . The argument that follows proves that � on all
large j versions of Cj has a critical value that differs by at most a uniform multiple of
" from �� . Of course, this is conclusion is nonsense for small " since Proposition 3.8
assumes that no angle from � coincides with an angle from a .0; : : :/ element in yA.

To start the argument, note that Proposition 3.7 dictates that there is an irreducible
component of each sufficiently large j version of Cj \.R�U / with one rather specific
property. To describe this property, let Cj� denote the component in question. Here is
the property: This Cj� contains two ends of Cj where the jsj !1 limit of � is �� ,
one on the convex side end and the other on the concave side.

To see where these observations lead, remark that by virtue of the assumptions in
Proposition 3.8, the integer degE.d�/ from (2–16) is zero on each convex side end
of each Cj where the jsj !1 limit of � is neither 0 nor � . This is to say that the
invariant cE that appears in (1–8) is non-zero on any such end. This understood, it
follows that there exists some sj0 > 0 such that either � > �� or else � < �� where
jsj> sj0 on any convex side end in any large j –version of Cj� . Meanwhile, by virtue
of the fact that the integer n that appears in (2–17) is non-zero on any concave side
end of Cj where limjsj!1 � D �� , so � takes on the value �� at points in Cj� .

Now, suppose that �W Œ0;1/! Cj� is a smooth, proper map with �.0/ on the � D ��
locus and with the image of � on a convex side end in Cj� at all sufficiently large
values of its domain. Associate to � the value of � where j� � ��j is maximal. Next,
minimize the latter over all such � . By virtue of what was said in the previous paragraph,
the resulting min-max angle is not equal to �� . Moreover, the mountain pass lemma
guarantees that the latter is a critical value of � on Cj and so an angle in � .

However, since Cj� is connected, and � takes value �� on Cj� , the large j versions
of this critical value can differ by at most some j –independent multiple of " from ��
since the paths in Cj� stay in the tubular neighborhood U .

Step 2 This step rules out the existence of either a � D 0 or a � D � cylinder as an
irreducible component of � by again producing nonsense, a positive critical value of �
that is either too small or too large to be in � . Suppose, for the sake of argument, that
the � D 0 cylinder is an irreducible component of � . Only this case is discussed, as
the � D � argument is identical save for some notation.

To see why no � D 0 cylinder can appear, fix some small, positive " such that 100"

is less than the smallest angle in � , and let U � S1 �S2 denote the radius " tubular
neighborhood of the � D 0 Reeb orbit.
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In this case, Proposition 3.7 provides an irreducible component of each large j version
of Cj \ .R�U / with one very particular property. To state the latter, let Cj� again
denote the component. Here is the salient property: This Cj� contains two ends of Cj

where the jsj !1 limit of � is 0, one on the convex side of Cj and the other on the
concave side.

Granted the preceding, take j very large. If Cj� intersects the � D 0 cylinder, let sj

denote the largest value that is taken on by s at any � D 0 points in Cj� . If there are no
such points, set sj to equal �1. Set Cj�

0
� Cj� to denote that portion where s > sj .

Now, let � W R! Cj�
0 be any smooth map with the following two properties: First,

limr!1 �
�sjr D1 and limr!�1 �

�sjr D sj . Second, limr!�1 �
��D0. Associate

to � the maximum value of ��� , and then let ��j denote the infimum of these maxima
over the set of all such maps from R to Cj�

0 . The mountain pass lemma now guarantees
that ��j is a non-extremal critical value of � . As ��j > 0 it is a point in � . However,
it is also the case that ��j is bounded by 100" if " is small, and this is nonsense as
100" is smaller than the minimal angle in � .

Step 3 This step and the next complete the proof that „ contains but a single element.
The argument begins by assuming, to the contrary, that „ has more than one component
so as to derive some nonsense. In this case, the nonsensical conclusion finds distinct
critical values of � on each large j version of Cj that are closer than the minimal
separation between the points in � .

To start this derivation, reintroduce the set Y � � as defined in Step 4 of Subsection
3.D. As remarked earlier, Y is a finite set. Fix a pair of points in †� Y that lie on
distinct irreducible components and choose a � –preserving preimage of each point and
so obtain, for each large j , a pair, zj and zj

0 , of points in Cj . Associate to each path
in Cj between zj and zj

0 the supremum of jsj along the path, and let rj denote the
infimum of the resulting subset of Œ0;1/. As is explained next, the sequence frj g is
bounded.

To see that there must be such a bound, suppose to the contrary that this sequence
diverges. Since neither fzj g nor fzj

0g diverges, there is a path in each large j version
of Cj between zj and zj

0 that avoids all convex side ends of Cj where the jsj !1
limit of � is neither 0 nor � . Indeed, if each such end is defined so that the values of
jsj are everywhere greater than its value on either zj or zj

0 , then any path between
these points must exit any such end that it enters.

Meanwhile, let E � Cj denote a concave side end where the jsj !1 limit of � is
neither 0 nor � , and let �� denote said limit. A path between zj and zj

0 can also be
chosen to avoid E even if it must cross the � D �� locus. This is a consequence of the
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following observations: First, as is described in Subsection 2.G, the intersection of the
� D �� locus with E contains just two connected components. These are either the
two ends of a single component of the � D �� locus, a properly embedded copy of R,
or ends of distinct components. In the latter case, the other ends of the corresponding
copies of R are in other ends of Cj . In any event, if there is no path from zj to zj

0

that crosses the � D �� locus at reasonable values of s , it must be the case that the
infimum of s on some component of the large j version of this locus is very large.
Were such to occur, then the whole of this component would lie very close to some
end of � , thus in R�U where U is a small radius tubular neighborhood in S1 �S2

of a � D �� Reeb orbit. Since # is generic, this means that the two components of
the intersection of the � D �� locus with E lie on the same component of this locus.
This understood, let .p;p0/ denote the relatively prime pair of integers that �� defines
via (1–7). As remarked previously, the 1–form pd'�p0dt is exact on U . In particular,
the integral of pd' � p0dt from one end to the other of all large j versions of the
� D �� component in question must then be zero. However, the latter integral can
not be zero because the pointwise restriction of pd' �p0dt to such a component is
nowhere zero.

With the preceding understood, the only way that frj g can diverge is if all paths between
the large j versions of zj and zj

0 have their large values of jsj where � is nearly 0 or
nearly � . However, such an event is ruled out using the mountain pass lemma. Indeed,
under the circumstances just described, this lemma would provide a non-extremal
critical point of � on every large j version of Cj , one whose critical value was either
too close to 0 or too close to � to come from � .

Step 4 This part of the proof argues that „ has but one element, and makes use of the
following auxiliary lemma:

Lemma 3.10 Let Q� .q; q0/ denote a pair of integers and let �o < �1 denote a pair
of angles such that the function ˛Q.�/ from (2–27) is positive on Œ�0; �1�. Given " > 0,
there exists "0 2 .0; "/ such that the following is true: Let J� denote an admissible
almost complex structure, and let � denote an immersion of .�o; �1/�R=.2�Z/ into
R� .S1 �S2/ that is J�–pseudoholomorphic and defined using a pair of functions,
.a�; w�/, by the rule�
s D a�; t D qvC .1� 3 cos2 �/w� mod .2�/;

� D �; ' D q0vC
p

6 cos �w� mod .2�/
�

Then, any two points in .�o; �1/�R=.2�Z/ with �–image in the complement of any
given, radius " ball in R� .S1�S2/ are the endpoints of a continuous path whose �
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image lies in the complement of the concentric, radius "0 ball. Moreover, if the two
points have the same � –coordinate, then such a path exists on which � is constant, and
if they have the same v–coordinate, such a path exists on which v is constant.

Proof of Lemma 3.10

This is the case simply because the variation of � in a radius " ball and the integral
of .1� 3 cos2 �/d' �

p
6 cos �dt on any constant � slice of such a ball are O."/ for

small ".

To resume the proof that „ has a single element, the next point to make is that if such
isn’t the case, then � contains a pair of points that have the same � value but lie in
distinct, irreducible components. Indeed, were there no such pair, then the subvarieties
that comprise � would be pairwise disjoint, and this last conclusion is incompatible
with the results of the previous steps. This understood, fix some very small, but positive
" and then fix points p0 and p1 in � that lie on distinct irreducible components, have
the same � value and have distance at least 2" from any point in the set Y . In particular,
choose the � value to be different than any jsj !1 limit of � on � . When the index
j is very large, these two points are very close to respective � –preserving preimages,
p0j and p1j in Cj . As the model curve for Cj is connected, there exists a smooth
path, j � Cj , that connects p0j to p1j .

Next, introduce, as in Subsection 2.G, the Cj version of the model curve, C0 , and
the corresponding locus � � C0 . Suppose now that p0j and p1j lie in the same
component of the Cj version of C0�� . According to Lemma 3.10, the path j can be
chosen to be an arc on the constant � locus that avoids all points of Y by some fixed,
j –independent amount. Moreover, as this � value is not one of the jsj !1 limits of
� on � , the large j versions of such a path must lie everywhere very close to � . Thus,
any large j version of j has a well defined projection to give a path in � that avoids
all points in Y and runs from p0 to p1 . As this is impossible, it must therefore be the
case that p0j and p1j lie on distinct components of the Cj version of C0�� .

To see that the latter case is also impossible, fix some very small but positive " and use
Lemma 3.10 to construct, for each large index j , a path j � Cj that runs from p0j

to p1j and is an end to end concatenation of two kinds of paths. Paths of the first kind
avoid the radius " balls about the points of Y . Meanwhile, a path of the second kind is
an arc on some constant � locus that is contained in a radius " ball about a point in Y

and passes through a critical point of � on Cj .

Remember now that each critical point on Ci is non-degenerate and the critical values
of distinct critical points are distinct. Thus, if an arc portion of j contains a critical
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point of � , there is a unique component of the Cj version of C0�� whose image in
Cj contains this arc in its closure. This understood, it follows from Lemma 3.10 that
there exists an j –independent choice for its constant "0 such that the endpoints of this
same arc are connected by a path that also avoids the radius "0 balls about the points
of Y . Thus, each large j version of Cj contains a second path, �j , that connects p0j

to p1j and avoids the radius "0 balls about the points of Y . Of course, no such path
exists if p0 and p1 are in distinct, irreducible components of � .

3.G Part 3 of the proof of Proposition 3.8

This part of the proof establishes that the one element in „ has the form .S; 1/ with
S 2MŒ‚; #�. A such, the graph TS from Subsection 2.G can be labeled as a moduli
space graph and it is explained here why the latter is isomorphic to T . The argument
for all of this is given below in nine steps.

Step 1 Let S denote the subvariety from „0s one pair. This step establishes that
every non-extremal critical value of � on the model curve of S is in the set � . In fact,
the argument below proves that every non-extremal critical value of � on the model
curve of S maps to a point in S that is a limit point of a sequence whose j 0 th element
is the image of a critical point on the model curve of Cj .

To start the argument, let S0 denote the model curve for S and let z 2 S0 be a non-
extremal critical point of � and let �� denote the associated critical value. Also, set
k� deg.d� jz/C1. Now, if D�S0 is a small radius disk that is centered at z , then the
� D �� locus in S0 will intersect the boundary of D transversely in 2k points. This
can be seen, for example, using the local coordinate on D that appears in (2–16). If the
radius of D is sufficiently small, then the tautological map from S0 to R� .S1 �S2/

will embed the closure of D . Furthermore, the image of z will be the only point from
Y in the image of this closure. Take any such small radius for D .

Let B � R� .S1 � S2/ be a ball that contains the closure of the image of D with
center at the image of z . Introduce yt and y' to denote the respective anti-derivatives on
B of dt and d' that vanish at z . Then, let yv � .1� 3 cos2 �/y' �

p
6 cos �yt . As can

be seen using the parametrizations provided by (2–25), the pair .�; yv/ pulls-back to
D as bona fide coordinates on the complement of z . Likewise, they pull back to the
model curve of any large j version of Cj as coordinates on the complement of the
� –critical points in the inverse image of B .

Note for use below that yv is annihilated by @s and the Reeb vector field y̨ . As a
consequence, the values of both � and yv are constant on the set of � –preserving
preimages of any given point in S \B .
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As can be seen using the parametrization from (2–16), there exists an embedded
circle,  �D� z , with the following properties: First,  intersects the � D �� locus
transversely in 2k points. Second, � has k local maxima and k local minima on  ,
and the values of � at the local maxima are identical, as are the values at the local
minima.

When the index j is very large, then  has a � –preserving preimages in Cj . Let j
denote the embedded loop in Cj

0 s model curve that maps to one of these preimages.
Suppose, for the sake of argument that there is no � –critical point in the component in
Cj
0s model curve of the preimage of B that contains j . Thus, .�; yv/ provide local

coordinates on an open set in Cj
0 s model curve that contains j .

To continue, start at the local maximum of � on j with smallest yv value and traverse
j in the direction of increasing yv . Since j is embedded, successive local maxima
must occur at successively larger values of yv . Such must also be the case for the
successive minima. This is impossible if j is embedded, for when the largest value of
yv is attained, the traverse must then return to its start without crossing itself even as it
crosses values of yv that are achieved at the local maxima and local minima.

Thus, Cj
0s model curve has a critical point that maps to B . Since the radius of D ,

thus that of B , can be as small as desired, so �� must come from � .

Step 2 As will now be explained, an argument much like the one just given proves
that each critical point of � on S0 is non-degenerate. A modification is also used here
to prove that „ is .S; 1/ as opposed to .S; n/ with n > 1 in the case that � has a
non-extremal critical point on S0 . Finally, a slightly different modification proves that
every element of � is a critical value of � on S0 in the case that nD 1.

Here is the proof that n D 1: Suppose first that z 2 S0 is a critical point of � , and
let D � S0 be as before, a very small radius disk that contains z . Let  be as before.
Suppose that j is large and that  has more than one � –preserving preimage in the
model curve of Cj . As is explained next, this assumption leads to a contradiction. To
start, remark that the � –preserving preimage of  in Cj is contractible. Indeed, this
can be seen using the parametrizations provided in Subsection 2.G with the fact that
each such preimage maps to a small radius ball in R� .S1 �S2/. Being contractible,
each preimage of  is the boundary of an embedded disk in the model curve of Cj .
In this regard, the argument given in Step 1 implies that each such disk contains the
� D �� critical point. This implies that the preimages are nested. In particular, one
such preimage, call it 0 , bounds a disk that contains all of the others. Let D0 denote
the latter disk. Note that the function � must take its maxima and minima on the
boundary of D0 since its only critical point is in the interior. Now, let 1 ¤ o denote
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a hypothetical second � –preserving preimage of  . Since 1 � D0 and since the
maximum value of � on 1 is also the maximum value of � on 0 , it follows that 1

must intersect o .

Up now is the proof that the non-extremal critical points of � on S0 are non-degenerate.
To start, let z denote the critical point in question and let  again be as before.
Reintroduce the integer k from Step 1. Thus, kD 1 if and only if z is a non-degenerate
critical point. In any event, a circumnavigation of  meets k local maxima of � and
k local minima with all local maxima having the same � –value, and likewise all local
minima. For large values of j , let j denote the � –preserving preimage of  in Cj .
As argued in the preceding paragraph, j bounds an embedded disk in the model curve
of Cj that contains the � D �� critical point. Let D0 denote the latter

To continue, use the descriptions from Subsection 2.G to find an embedded disk, U , in
the model curve of Cj with the following properties: The disk contains the � D ��
critical point, it contains j , and its intersection with the � D �� locus consists of four
properly embedded, half open arcs that meet only at their common endpoint, this being
the � D �� critical point. These arcs are called ‘legs’ of the � D �� locus. In any event,
here is one more requirement for U : The complement of the � D �� locus in this disk
consists of four open sets, each an embedded disk.

Now, let U 0 � U denote any one of the four components of the complement of the
� D �� locus. The closure of U 0 in U intersects j in some number of properly
embedded, disjoint, closed arcs. In this regard, there are 2kC 2 such arcs amongst the
four components, with at least one in each. Now, any given such arc in U 0 together
with the stretch of the boundary of U 0 between its two endpoints defines a piecewise
smooth circle in U which is the boundary of the closure of an embedded disk. If the
interior of a second arc lies in this disk, then the second arc is said to be nested with
respect to the first. Of course, no arc in U 0 can be nested with respect to another by
virtue of the fact that all local maxima of � on j have the same � –value, as do all
local minima.

There is one more point here to keep in mind: One and only one component arc in
j \U 0 ‘encircles’ the � D �� critical point in the following sense: This critical point
is contained in the segment of the boundary of the closure of U 0 that lies between the
arc’s two endpoints. Indeed, this is because the disk D0 contains the � D �� critical
point. Note that the endpoints of the latter arc lie on distinct legs of the � D �� locus.
Such an endpoint on a given leg of the � D �� locus is nearer to the � D �� critical
point then any other arc endpoint on the given leg. This is a consequence of the fact
that the arcs that comprise j \U 0 are not nested.
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Granted all of the above, each component of the complement of � D �� locus in U has
its one arc that encircles the �D �� critical point, so there are four such ‘encircling’ arcs
in all. Moreover, by virtue of what is said about endpoints in the preceding paragraph,
these four arcs concatenate to define a closed loop in U . This loop must thus be  ,
and so k D 1 as claimed.

What follows is the proof that every angle from � is a critical value of � on S0 in the
case that the integer n that is paired with S in � is equal to 1. To start, let �� 2 � and
assume that �� is not a critical value of � on S0 so as to derive some nonsense.

To start the derivation, choose a very small, but positive constant ı , subject to the
following constraints: First, neither the � D ��Cı nor ���ı loci in S0 should contain
points of Y . Second, no critical values of � on S0 lie in the interval Œ��� ı; ��C ı�.

The parametrizations described in Subsection 2.G can now be used to first find a positive
constant, ", and then construct for any sufficiently large j , an embedded circle in Cj

0 s
model curve with four special properties: First, the circle bounds a disk in the model
curve that contains the � D �� critical point. Second, � has two local maxima on the
circle, both where � D ��C ı ; and � has two local minima on the circle both where
� D ��� ı . Finally, the tautological map to R� .S1 �S2/ embeds the circle. Finally,
all points in the circle’s image have jsj< 1

"
and distance " or more from all points of

the set Y .

Any given large j version of such a circle has its � –preserving projection as an
embedded circle in S . (This is where the nD 1 assumption is used. If n> 1, then this
circle will not be embedded.) The latter has its inverse image circle,  , in S0 . Now,
 is null-homotopic since the integrals of dt and d' over the original circle in the
model curve of Cj are zero. Meanwhile,  is embedded, it lies where j� � ��j< 2ı ,
and � ’s restriction to  has two local maxima, both with the same � –value, and two
local minima, also with the same � –value. A repetition of one of Step 1’s arguments
now proves that there is no such loop. This nonsense thus proves that �� must be a
critical value of � on S0 .

Step 3 This step investigates the concave side ends of S where the jsj !1 limit
of � is neither 0 nor � . In particular, this step establishes deg.�/.d�/D 1 for all such
ends. A variation of the latter argument is then used to prove that the integer n that „
associates to S is equal to 1 if S has a concave side end where limjsj!1 � 62 f0; �g.
A second variation of the argument proves that there is precisely one such end of S for
every .0;C; : : :/ element in yA. With regards to this last point, keep in mind that the
ends of S define an unordered set of points in S1 via (2–19)’s map $C , and the latter
is the same as # up to multiplicity. This follows directly from the K D R� .S1�S2/

version of (3–16).
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To start the analysis, let E � S denote a concave side end where the jsj !1 limit
of � is neither 0 nor � . As will now be explained, degE.d�/ D 1. To prove that
such is the case, suppose degE.d�/ > 1 so as to derive nonsense. Thus, let k > 1

denote degE.d�/. Let �� now denote the jsj !1 limit of � on E . As can be seen
using (2–17), there exists s0 � 0 such that the � D �� locus intersects the s � s0

portion of E as a disjoint union of 2k properly embedded copies of Œs0;1/, with the
diffeomorphism given by the function s itself. Moreover, it follows from (2–17) that
if ı > 0 and is sufficiently small, there exists an embedded circle, � � E , with the
following properties: First, this loop � has transversal intersections with the � D ��
locus. Second, j� � ��j < ı on � . Third, � ’s restriction to � has precisely k local
maxima and k local minima. Finally, all local maxima have the same � value, this
greater than �� , and all local minima have the same � value, this less than �� .

The circle � has � –preserving preimages in every large j version of Cj . Let �j denote
one of the latter. Because the variation of � on �j is small, the � < �� portion of �j
is contained in a single component of the Cj version of C0�� . Call this component
K . For the same reason, the � > �� part of vj is entirely in a single component also.
Use K0 for the latter. Note that the closure of the j� � ��j< 2ı portion of K[K0 is
diffeomorphic to a closed cylinder with some number of punctures, all on the � D ��
circle.

To proceed, now view the loop �j sitting in this abstract cylinder. Here, it sits as an
embedded, null-homotopic loop. To explain, introduce the relatively prime pair of
integers, .p;p0/, that �� defines via (1–7). The 1–form pd' �p0dt is exact near E

and so integrates to zero around �j . Meanwhile, this form has non-zero integral around
any essential loop in the unpunctured cylinder since this form restricts as a positive
form on the � D �� locus in Cj . To summarize: As a loop in the abstract cylinder, �j
is embedded, it is null homotopic, it intersects the � D �� locus in 2k points, it has k

local maxima all with the same value of � , this greater than �� , and k local minima,
all with the same value of � , this less than �� . Granted all of this, the argument from
Step 1’s second to last paragraph can be borrowed with only minor cosmetic changes
to obtain a contradiction unless k D 1.

Given that there exists a concave side end E � S where limjsj!1 � 62 f0; �g, what
follows proves that the integer n that „ associates to S is equal to 1. For this purpose,
construct a loop, � , as just described. The loop � again has � –preserving preimages
in every large j version of Cj . If n> 1 and if there are less than n such preimages,
then one of them has the following properties: The restriction of � to the loop has
more than one local maximum, and more than one local minimum. Moreover, all
local maxima have the same � value, and all local minima have the same � value.
Finally, the form pd' �p0dt integrates to zero over this loop. The argument given
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in the preceding paragraph shows that this is impossible. Thus, there are n disjoint,
� –preserving preimages of � in every large j version of Cj , each mapping via the
� –preserving projection to � as a diffeomorphism.

To see that nD 1, first note that all � –preserving preimages of � must lie in the closure
of the union of the same two components of the Cj version of C0�� . Indeed, such is
the case because the K D R� .S1 �S2/ version of (3–16) holds and because the set
# is both j –independent and has NC elements.

To continue, let K and K0 again denote the two relevant components of the Cj version
of C0 � � and once again view the � 2 Œ�� � 2ı; �� C 2ı� part of the union of the
closures of K and K0 as a closed, multi-punctured cylinder. Viewed in this cylinder,
any � –preserving preimage of � must encircle one or more of the punctures. Were this
otherwise, then the preimage would be null-homotopic in the � 2 .��� 2ı; ��C 2ı/

part of Cj and thus the same part of R� .S1 �S2/. But such a loop represents the
same homotopy class as � , a non-zero class in the � 2 .0; �/ portion of R� .S1�S2/.

With the preceding understood, pick a point on the � D �� � 2ı boundary circle of
the punctured cylinder, and then draw a smooth path from this chosen point to any
given puncture. A loop in the interior of the punctured cylinder that encircles the
given puncture has non-zero intersection number with this path. Draw a specific path
as follows: Let s0 denote the maximum of the function s on � . Start the path at
the puncture and draw it to decrease s until the latter is equal to 2s0 . Call this path
o . Note that when j is very large, the whole of this path is in a very small radius
tubular neighborhood of a single end of S, and thus it is far from any other end of Cj .
This follows because the K D R� .S1 � S2/ version of (3–16) holds and because
the set # is both j –independent and has NC elements. When j is very large, the
s D 2s0 endpoint of o will be very close to one particular end, E0 � S , and so its
� –preserving projection to E0 is well defined. Draw an s–decreasing path in E0 from
the latter point to a point where both s and � are less than their minimal values on
� . If E D E0 , then have this path intersect � transversely at a single point. In any
event, call this path E0 . When j is large, one of the � –preserving preimages of E0

attaches to the s D 2s0 endpoint of o This understood, continue the concatenation of
the latter preimage with o as a path from where � is less than its minimum on � to
the chosen point on the � D ��� 2ı boundary circle of the cylinder. Make � decrease
monotonically on this continuation.

Only one of the paths just described will intersect any � –preserving preimage of � .
This is the path that at large s is very close to E . Moreover, only one � –preserving
preimage of E can intersect any given � preserving preimage of � . Thus, only one
� –preserving preimage of � encircles a puncture, and so nD 1.
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Here is why S does not have a pair of ends whose constant s slices limit as s!1 to the
same � D �� closed Reeb orbit in S1�S2 : Were this otherwise, let E and E0 denote
the two ends involved, and define loops � �E and �0 �E0 as just described. Each
has a � –preserving preimage in the same multi-punctured cylinder in Cj . However,
only one will intersect a path as described above from a puncture to the � D ��� 2ı

boundary circle of the multi-punctured cylinder.

Step 4 This step proves that deg.�/.d�/D 0 for each convex side end of S where the
jsj !1 limit of � is neither 0 nor � . A variation of the latter argument also proves
that there is only one such end for each .0;�; : : :/ element in yA.

To start, suppose that E � S is a convex side end of the sort in question, and suppose
that degE.d�/ is non-zero. Let �� denote the jsj !1 limit of � on E . Now (2–17)
guarantees that given any ı > 0, there exists R with the following significance: First,
the function j� � ��j is less than ı on the jsj>R part of E . Second, � takes values
both greater than �� and less than �� on any constant jsj �R slice of E .

To see that such an event is nonsensical, take ı very small. Granted this, take j very
large, and there is but one component of the Cj version of C0 � � that maps very
close to the s �R portion of E . Indeed, such is the case because small ı guarantees
that there are no components of the Cj version of � where � 2 .��; ��C 2ı/. Use K

to denote the component of the Cj version of C0 �� in question. This component
must contain a convex side end of Cj where the jsj ! 1 limit of � is �� . Since
deg.�/.d�/D 0 on such an end, the description of K offered in Subsection 2.G finds
that the function � must be either strictly less than �� or strictly greater than �� on K .
Of course, this is impossible when j is large. Indeed, when j is large, then K maps
very close to the s �R portion of E and so to points where � is greater than and to
points where � is less than �� .

To see that there is but one end of S for each .0;�; : : :/ element in yA, suppose for the
sake of argument that there were two, E and E0 . Let �� denote the common jsj !1
limit of � on E and E0 . Fix some ı > 0 and very small, and then let � � E and
�0 �E0 denote the respective loci where j� � ��j D ı . By virtue of (2–17), these loci
are embedded circles. Each has its � –preserving preimage in any sufficiently large j

version of Cj . An argument from the preceding paragraph can be readily modified
to prove that these preimages must lie in the same component of the Cj version of
C0�� . As such, they must coincide.

Note that the same argument proves the following: Suppose that the integer n that „
pairs with S is greater than 1, and suppose that E � S is a convex side end on which
the jsj !1 limit of � is neither 0 nor � . Let � �E denote an embedded circle in
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E that is homologically non-trivial. Then there is but one � –preserving preimage of �
in every sufficiently large j version of Cj ; and the latter maps back to � as an n to 1
covering map.

Step 5 This step investigates the nature of the ends of S where the jsj !1 limit of
� is either 0 or � . In particular, it is proved here that such ends are naturally in 1–1
correspondence with the set of f˙1; : : :g elements in yA unless S is either a disk or a
cylinder and the integer that „ pairs with S is greater than 1.

The discussion starts with the following claim:

(3–20) There exists R� 0 such that when j is large, the intersections of Cj with the
� 2 f0; �g cylinders occur where jsj �R.

This claim is proved momentarily. Note first that it has the following corollary: In
the case that the integer that „ pairs with S is 1, the respective intersection numbers
between S and the � D 0 and � D � cylinders are those prescribed by cC and c� .
Indeed, this corollary follows using the parametrizations from (2–25) given Proposition
3.7 and given that � contains all non-extremal critical values of � on the model curve
of S .

To see why (3–20) holds, fix a very small but positive number, ı , chosen so that there
are no elements of � that lie where � < 2ı and none where � � � < 2ı . Also, choose
ı so that no angle as defined via (1–7) from the integer pair of any .0; : : :/ element in
yA lies either between 2ı and 0 or between � � 2ı and � .

Having chosen ı , then choose R so that the jsj � 1
2
R part of S is contained in the

ends of S . Moreover, choose R so that the variation of � on the jsj � 1
2
R part of

any end of S is very much smaller than ı . Granted this, suppose that j0 is such that
the jsj D 1

2
R locus in any end of S has its full set of � –preserving preimages in all

j � j0 versions of Cj .

Now suppose, for the sake of argument, that some j � j0 version of Cj intersects
the � D 0 locus at a point where jsj > R. This point is the image of a point in the
closure of a particular component of the Cj version of C0�� . Let K denote the latter.
The 1–form dt must pull back to K as an exact form. However, as indicated in the
preceding paragraph, there is some end of S where limjsj!1 � D 0 whose jsj D 1

2
R

slice has a � –preserving preimage in K . Since the 1–form dt is not exact on such a
slice, so its pull-back to K can not be exact. Thus, there is no such K .

A very minor modification of the argument just given also proves the following: Any
given integer pair that appears in some .1;C; : : :/ element in yA is n times that of an

Geometry & Topology, Volume 10 (2006)



862 Clifford Henry Taubes

integer pair that is defined by a concave side end of S where the jsj ! 1 limit of
� is 0, and vice-versa. Here, n is the integer that „ pairs with S . Of course, the
analogous assertion holds for .1;�; : : :/ elements and convex side ends where the
limjsj!1 � D 0. Likewise, a similar assertion holds for .�1; : : :/ elements in yA and
ends of S where the jsj !1 limit of � is � .

Note that this correspondence assigns precisely one end of S to each end of every
large j version of Cj . Indeed, if not then there exists some very small " > 0 and two
disjoint � D " circles in S , or two disjoint � D ��" circles in S whose � –preserving
preimages in all sufficiently large j versions of Cj lie in the same component of the
Cj version of C0�� . This means that the preimages coincide, an impossibility when
j is large.

The next point to make is that this correspondence is a 1–1 correspondence unless S is
either a disk or a cylinder of a certain sort. The assertion that the correspondence is
1–1 follows from the following claim: Two ends of any large j –version of Cj can not
both lie very close to the same end of S . To see why the latter claim holds, remark
first that the occurrence of two ends very close to the same end of S can occur only in
the case that the integer n is greater than 1. This is because distinct ends of Cj that
are convex or have jsj !1 limit of � either 0 or � lie in distinct components of the
Cj version of C0�� . Now, if n¤ 1, then it follows from (2–18) and from what has
been said in previous steps that S has at most two ends, and neither is a concave side
end unless the corresponding jsj !1 limit of � is 0 or � . In particular, S is either a
cylinder or a disk.

By the way, if S is a disk, then (2–18) requires that S have a single, transversal
intersection with one but not both of the � D 0 or � D � cylinders. In this case, the
integral of dt over any constant � circle in S must be zero, and so the large jsj slices
of S converge in S1�S2 to one of the two cos2 � D 1

3
Reeb orbits. In particular, the

sign of cos � on this orbit is the same as its sign at the zero of sin � . In any event, any
large and constant jsj slice of S is isotopic to the jsj !1 limit Reeb orbit.

On the other hand, if S is a cylinder, then (2–18) requires that it be disjoint from both
the � D 0 and � D � cylinders. In this case, it must have at least one convex side
end where the jsj !1 limit of � avoids 0 and � . Indeed, if not, then the fact that
the restriction of � to S has no extremal critical values in .0; �/ would require the
jsj ! 1 limit of � to be 0 on one end and � on the other. Were this the case, the
whole of S could be parametrized as in (2–25) by .0; �/�R=.2�Z/. However, this is
impossible because the corresponding function ˛Q as defined in (2–27) would then
vanish at some value of � that is realized on the parametrizing cylinder.
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Step 6 This step proves that the integer n that „ pairs with S is equal to 1 in the
cases that S is a disk as described in the preceding step. The cases where S is a
cylinder are discussed in Step 7 and Step 8.

The argument has five parts, with the first four constituting a digression to set the stage.
In what follows, keep in mind that S is a J 0–pseudoholomorphic disc, an element in
the J 0–version of the moduli space M yA0 where yA0 has only the 4–tuple .0;�; .0; 1//.
In particular, S intersects the � D 0 cylinder transversely in a single point, there are
no non-extremal critical points of � on S , and the jsj !1 limit of the constant jsj
slices on S converge to a Reeb orbit where cos � D

p
1=3.

Part 1 For j large, Proposition 3.4 provides C1–small deformations of S that
results in a Jj –pseudoholomorphic subvariety in the Jj –version of M yA0 . Any such
subvariety intersects the � D 0 cylinder transversely, also at a single point and there
are no non-extremal critical points of � on any such Sj .

Proposition 2.12 and Proposition 2.13 in conjunction with Proposition 3.4 provide two
different parametrizations of the subsets of the respect J 0 and, for large j , Jj versions
of M yA

whose subvarieties are everywhere close to S in R� .S1 � S2/. The first
parametrizes the constituent subvarieties by the point where they intersect the � D 0

cylinder, and the other by their large jsj asymptotics on their one end.

To be more explicit about the parametrization by points in the � D 0 cylinder, let z0

denote the point where S intersects this cylinder. Then respective neighborhoods that
contain the subvarieties that are pointwise near S in the J 0 version and, for large
j , in the Jj version of M yA0 can be parametrized as follows: The coordinates for
the parametrization are the points that lie in a j –independent disk centered at z0 in
the � D 0 cylinder. The parametrization provides a 1–1 correspondence that assigns
a subvariety in the relevant moduli space to the point where it intersects the � D 0

cylinder.

Part 2 The second parametrization uses the large jsj asymptotics on the subvariety. To
be more precise, first note that the cos � D

p
1=3 Reeb orbits are parametrized by the

constant value on the Reeb orbit of the coordinate, t , on the S1 factor in S1�S2 . Let
�0 denote the value for the orbit that is obtained as the jsj!1 limit of the constant jsj
slices of S . Meanwhile, let c0 denote the constant that appears in the version of (1–8)
that is relevant for the one end of S . In this regard, note that c0 < 0.

According to the aforementioned propositions, there exists some ı > 0 such that
respective neighborhoods of subvarieties that are pointwise near S in the J 0 version
and, for large j , in the Jj version of M yA0 can be parametrized as follows: The
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parametrization uses those .c; �/2 .�1; 0/�R=.2�Z/ where jc�c0j
2Cj���0j

2<ı2 .
In particular, the parametrization provides a 1–1 correspondence that assigns a subvariety
to a pair .c; �/ when the subvariety’s one end provides cE D c in (1–8), while the large
jsj slices of the subvariety converge as jsj!1 to the Reeb orbit where cos � D

p
1=3

and t D � . In this regard, note that the assigned value for � is simply the value on the
end in question of Section 1’s parameter �.�/ .

Part 3 Both of the preceding parametrizations are compatible with the notion of
convergence as given in Proposition 3.7. Indeed, suppose that either a point in the
� D 0 cylinder is fixed in the parametrizing disk about z0 , or else a point .c; �/ is
fixed with distance less than ı from .c0; �0/. Now, in either case, let Sj denote the
subvariety in the Jj version of M yA

that is parametrized by the given point. Meanwhile,
let S 0 denote the corresponding J 0–version. Then the sequence fSj g converges in
the sense of Proposition 3.7 with .S 0; 1/ in the role of „, and with (3–16) valid for
K D R� .S1 �S2/.

Part 4 The part of the argument is summarized by the following lemma:

Lemma 3.11 There exists " > 0 with the following significance: If j is large and if
.c; �/ has distance less than ı from .c0; �0/ but j� � �0j >

1
4
ı , then all points in the

.c; �/ subvariety from the Jj –version of M yA0 have distance at least " from S .

The digression ends with the following proof.

Proof of Lemma 3.11 Granted the contents in Part 2 of this digression, it is sufficient
to prove the following: If .c; �/ is ı close to .c0; �0/ and if � ¤ �0 , then the .c; �/
subvariety in the J 0–version of M yA0 is disjoint from S . To establish this claim, let
S 0 denote the .c; �/ subvariety. If S 0 intersects S , then it has positive intersection
number with S . Thus, any deformation of S 0 has positive intersection number with
S if the intersections with S along the way remain in a fixed, compact subset of
R� .S1 � S2/. This understood, push S 0 along the vector field @s . In this regard,
there is a compact subset of R� .S1 �S2/ that contains all the putative intersections
between this deformation and S . Moreover, the same subset suffices no matter how
far S 0 is pushed along @s . Indeed, such is the case because � ¤ �0 and s is bounded
from above on S .

If pushed far enough, the resulting subvariety at values of s that are achieved on S is
very close to the pseudoholomorphic cylinder that is defined by the ..0; 1/; �/ Reeb
orbit. As � has no local maximum on S , it follows that S must be disjoint from this
Reeb orbit, and so disjoint from a large push of S 0 along @s .
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Part 5 With the preliminaries over, what follows are the final arguments to prove that
the integer paired to S by „ is 1. To start, let " denote the constant from Lemma
3.11. When j is large, then every point in Cj has distance less than 1

100
" from S .

Also, when j is large, the parametrizations from Part 1 and Part 2 above provide some
pair .c; �/ that is very close to .c0; �0/ and have the following significance: This pair
parametrizes a disk in the Jj version of M yA0 that intersects Cj at a point on the
� D 0 cylinder. Let Sj denote the latter disk. Now, the jsj !1 limit of the constant
jsj slices of Cj converge as a multiple cover to some cos � D 1p

3
Reeb orbit with

parameter �j very close to �0 . If �j D � and if the integer paired to S in „ is greater
than 1, then use Propositions 2.12 and 2.13 to find a new subvariety, Cj

0 , from the
Jj –version of M yA

that intersects Sj on the � D 0 cylinder, has asymptotic parameter
�j
0 ¤ � , and lies entirely in the radius 1

100
" tubular neighborhood of S . In particular,

Sj and Cj
0 have positive intersection number. Now, move Sj in its moduli space to

some Sj
0 whose corresponding parameters .c0; � 0/ obey j� 0 � �0j >

1
2
ı . Do so by a

path r ! .c; �.r// where �.0/D � and where j�.r/� �j 0j is strictly increasing. The
intersection number between Sj

0 and Cj
0 is thus the same as that between Sj and Cj

0 .
However, according to Lemma 3.11, the subvarieties Sj

0 and Cj
0 are disjoint. This is

a contradiction and so „ must pair S with 1.

Step 7 This step and Step 8 prove that the integer paired with S by „ is 1 in the case
that S is a cylinder with no concave side ends where limjsj!1 � is not in .0; �/ and
at least one convex side end where the analogous limit is in .0; �/. In this regard, the
arguments are, with minor modifications, a reprise of those given previously in Step 6.

This step considers the case that neither 0 nor � is the jsj ! 1 limits of � on S .
In this case, S is a subvariety in the J 0 version of the moduli space M yA0 where yA0

consists of two elements, .0;�; .p;p0// and .0;�; .�p;�p0//. Here, p and p0 are
relatively prime integers and such that p0

p
�
p

3=2. No generality is lost by taking p

and p0 to be positive. The argument here has three parts.

Part 1 As in the case considered by Step 6, there are two parametrizations for neigh-
borhoods that contain the subvarieties that are pointwise near S from the J 0 version
and, for large j , from the Jj version of M yA0 . In this case, a description of these
parametrizations requires the use of the respective pairs .cC0; �C0/2 .0;1/�R=.2�Z/

and .c�0; ��0/2 .�1; 0/�R=.2�Z/ to parametrize the asymptotics of the .p;p0/ and
.�p;�p0/ ends of S . Here, the parameters �˙0 parametrize the respective .p;p0/ and
.�p;�p0/ Reeb orbits that are obtained as jsj !1 limits of the constant jsj slices
of S . Meanwhile, c˙0 are the respective versions of the parameter cE from (1–8).
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It then follows from Propositions 2.13 and 3.4 that there exists ı > 0 such that one of the
parametrizations in question is by the subset in .0;1/�R=.2�Z/ of points .c; �/ where
jc� cC0j

2Cj� � �C0j
2 < ı , and the other is by the subset in .�1; 0/�R=.2�Z/ that

consists of the points .c; �/ where jc�c�0j
2Cj����0j

2<ı . The first parametrization
assigns a subvariety to the pair .c; �/ that describe the asymptotics of its .p;p0/ end,
and the second those of its .�p;�p0/ end. Thus, � is again the value of Section
1’s parameter �.�/ on the end in question. Call the first parametrization the ‘plus’
parametrization and call the second one the ‘minus’ parametrization.

Part 2 The following observation is the analog of that made in Lemma 3.11: There
exists " > 0 with the following significance: If .c; �/ has distance less than ı from
.cC0; �C0/ and if j���C0j is greater than 1

4
ı , then the large j version of the subvariety

that is parametrized by .c; �/ via the plus parametrization lies outside the radius "
tubular neighborhood of S . Of course, the analogous statement holds for the minus
parametrization when .c; �/ is ı close to .c�0; ��0/ and j� � ��0j>

1
4
ı .

To prove the assertion in this case, it is enough to consider, as in the proof of Lemma
3.11, the intersections between S and the J 0 subvariety, S 0 , that is parametrized by
.c; �/ via the appropriate parametrization. For this purpose, note that if .c; �/ gives S 0

by the plus parametrization and if .c0; � 0/ gives S 0 via the minus one, then � 0¤ ��0 if
and only if � ¤ �C0 .

Having said this, consider deforming S 0 by pushing it along the vector field @s . Such a
deformation keeps the intersections with S in a compact set of R� .S1�S2/ because
� ¤ �C0 and � 0 ¤ ��0 . Thus, the intersection number between the resulting subvariety
and S is that between S 0 and S . Of course, the latter is zero if and only if S is disjoint
from S 0 . Now, by virtue of the fact that the function s is bounded from above on S ,
if S 0 is pushed far enough along the vector field @s , then the portion of the resulting
subvariety where s has values that are also achieved on S has two components, each
very close to an R–invariant cylinder. Of course, one of these cylinders is the product
of R with the Reeb orbit parametrized by ..p;p0/; �/, and the other the product of R

with the Reeb orbit parametrized by ..�p;�p0/; � 0/. Now, as � has neither maxima
nor minima on S , it follows that S stays a uniform distance from both of these constant
� cylinders. Thus, the deformation of S 0 is disjoint from S and so S 0 is also disjoint
from S .

Part 3 Granted all of the proceeding, take j very large, and in particular, large enough
so that Cj is contained in the radius 1

100
" tubular neighborhood of S . The point now

is that there exists some Sj in the Jj version of M yA0 that intersects Cj . This follows
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using Proposition 3.4, the lead observation in Part 2, and the observation made towards
the end of Part 2 that distinct subvarieties in any given version of M yA0 are disjoint.

If the integer paired with S by „ were greater than 1, then any subvariety Sj from the
Jj version of M yA0 that intersects Cj must do so in a finite set of points. This under-
stood, pick such an Sj that is parametrized by some .c; �/ via the plus parametrization,
and some .c0; � 0/ via the minus parametrization. Now use Proposition 2.13 to find a
subvariety Cj

0
2M yA

with the following properties: First, it lies in the radius 1
100
"

tubular neighborhood of S and it intersects Sj . Second, the jsj ! 1 limit of the
constant jsj slices converge to Reeb orbits that are distinct from both the ..p;p0/; �/
and ..�p;�p0/; �/ Reeb orbits. Note that by virtue of Sj and Cj

0 intersecting in a
finite set of points, the latter have positive intersection number between them.

Having chosen Cj
0 , now deform Sj by pushing it along the vector field @s . The

argument given at the end of the previous part works as well here to establish that
result of a large push has the same intersection number with Cj

0 as does Sj , but is
also disjoint from Cj

0 . As these two constraints are mutually exclusive, it follows that
„ assigns 1 to S .

Step 8 This step proves that the integer paired with S by „ is 1 in the case where
S is a cylinder with one end where the jsj ! 1 limit of � is in f0; �g and where
the other end is a convex side end where the jsj !1 limit of � is neither 0 nor � .
Granted the discussion in the previous step, the simplest case to consider is that where
both ends of S are convex side. In this case, the argument from the previous step
translates with almost no essential changes to handle this case. In fact, the only slight
substantive difference arises in from, the different meanings of Section 1’s parameters
.cE , �E/ in the cases that E is an end where limjsj!1 � is or is not one of 0 or � .
In any event, the details for this case are left to the reader.

Turn instead to the case where S has a concave side end where the jsj !1 limit of
� is either 0 or � . Again, save for notation, no generality is lost by taking this limit
to be 0. The argument for this case differs somewhat from that in the preceding case
and in Step 7 because the function s on S ranges over the whole of R . In particular, a
somewhat different argument must be used to establish that distinct subvarieties in any
given version of M yA0 are disjoint. In particular, where in Step 7 (and in the proof of
Lemma 3.11), the subvariety S 0 was pushed along the vector field @s , the argument
now pushes S 0 along the vector field -@� to values of � very near zero. Make this
change and then the rest of the argument amounts to little more than a notationally
changed version of that given previously.
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Step 9 Here is a summary of what has been established by the preceding steps: First,
the one element in „ has been shown, in all cases, to have the form .S; 1/. As for
S , its ends are known to be canonically in 1–1 correspondence with the elements in
yA. In addition, the value of deg.�/.d�/ on all .0;C; : : :/ ends of S has been shown to

be 1, and its value on all .0;�; : : :/ ends has been shown to be zero. The set # arises
from the asymptotic data for the ends of S that correspond to .0;C; : : :/ elements of
yA. Meanwhile, the angles in � are now known to be in 1–1 correspondence with the

critical values of � on S , and each non-extremal critical point of � has been proved
non-degenerate. The arguments given above also prove that there are N�C yN Cc yA�2

such critical points in all. Finally, the respective numbers, counting multiplicity, of the
intersections between S and the � D 0 and � D � cylinders are cC and c� .

Granted all of this, it follows directly that S 2 M yA
Œ‚; #�. Moreover, since the

KDR� .S1�S2/ version of (3–16) holds, it follows directly that the graph TS from
Subsection 2.G when labeled as a moduli space graph is isomorphic to the graph T .

4 Constrained punctured spheres

This section completes some unfinished business from Section 3 by finishing the proof
of Theorem 3.1. This is done with the specification of a collection f.ae; we/ge�T that
meets the criteria that are laid out in Subsection 3.B and (3–3).

What follows is a brief outline of the manner in which f.ae; we/g are specified. Sub-
section 4.A starts the story with a description of any given pair .ae; we/ at points in
the parametrizing cylinder that are comparatively far from the boundary circles. This
description involves a set of two positive but very small numbers, f�e0; �e1g, that are
constrained in the subsequent subsections plus a function, "e , of the coordinate � on
the closed parametrizing cylinder. In this regard, "e is strictly positive. Keep in mind
throughout that all of the subsequent constraints involve only upper bounds on "e , �e0

and �e1 . No positive lower bounds arise.

The mid-cylinder definition of .ae; we/ also involves three additional functions of
the coordinate � on the closed parametrizing cylinder, these denoted by a0

e , w0
e and

ve . These three have no essential role until Subsection 4.E, and until then, they are
unconstrained save for their boundary values. However, substantive constraints do arise
on a0

e and w0
e in the final section so as to insure that distinct versions of K.�/ intersect

transversely with C1 local intersection numbers.

Sunsections 4.B, 4.C and 4.D specify f.ae; we/g near the boundaries of the parametriz-
ing cylinders. In this regard, Subsection 4.B specifies these pairs near boundaries that
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correspond to the monovalent vertices in T . Subsection 4.C does this same task near
the boundaries that correspond to the bivalent vertices in T ; and Subsection 4.D gives
the specifications for boundaries that correspond to the trivalent vertices in T . The
criteria in Definition 3.2 are addressed in Subsections 4.B and 4.C. In this regard, note
that the definitions in Subsection 4.C are relevant only to the case where partition for
the graph T has only single element subsets.

These subsections also provide constraints on the relevant versions of ."e; �e0; �e1/,
but all are of the following sort: An upper bound appears for the values of "e near
each boundary circle of the parametrizing domain. A particular choice for "e then
determines upper bounds for �e0 and �e1 . As remarked above, no positive lower
bounds arise. Mild constraints on f.a0

e ; w
0
e ; v

0
e /g occur in these subsections.

Sections 4.B, 4.C and 4.D also address the nature of the singular points in the resulting
versions of K.�/ . In particular, they prove that any singular point in the closure of
any given version of K.�/ arises as the transversal intersections of two disks with C1

local intersection number. Note that these subsections do not address the nature of the
intersections between versions of K.�/ with distinct edge labels.

Subsection 4.E, addresses this last issue by explaining how to modify the original
choices for f."e; �e0; �e1; a

0
e ; w

0
e ; v

0
e /g subject to all previously noted constraints to

guarantee that distinctly labeled versions of K.�/ have transversal intersections with
C1 local intersection number.

Granted the results from Section 3, the discussion in Subsection 4.E completes the
proof of Theorem 3.1 in the case that the partition for T has only single element
subsets. Subsection 4.F completes the proof of Theorem 3.1 in the cases where the
latter assumption does not hold.

4.A Parametrizations in the mid-cylinder

To start, fix a number, ı that is positive but less than 1
1000

times the difference between
the maximal and minimal angle labels of the vertices on every edge of T .

Now, let e denote a given edge in T , and let �o and �1 > �o denote the angles that
are assigned to the vertices of T that lie on e . Fix a positive numbers �0 � �e0 ,
�1 � �e1 but constrained so that both are much smaller than ı . In addition, choose
a similarly small, strictly positive function "� "e on Œ�o; �1�. The constructions that
follow assume that �0 , �1 and " are all very small.
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Let � denote the coordinate on Œ�o; �1� and let v denote the usual affine coordinate on
R=.2�Z/. At values of � 2 Œ�oC 2�0; �1� 2�1�, the pair .ae; we/ are given by

(4–1)
ae.�; v/D a0

e.�/C ".�/ cos
�
vC v0

e .�/
�

and we.�; v/D w
0
e .�/� ".�/ sin

�
vC v0

e .�/
�

where a0
e , w0

e and v0
e functions on Œ�o; �1�. These functions are as yet unconstrained.

One point to verify at the outset is whether the use of (4–1) leads via (3–2) to an
embedding in R�.S1�S2/ of the � 2 Œ�oC2�0; �1�2�1� portion of the parametrizing
cylinder. That such is the case when " is small is one consequence of the following
lemma.

Lemma 4.1 Suppose that �o < �1 are angles in Œ0; �� and that Q D .q; q0/ is an
integer pair such that ˛Q.�/ > 0 when � 2 .�o; �1/. Now, suppose that a0 , w0 and
v0 are smooth functions on Œ�o; �1�, and suppose that " is a strictly positive function of
� and constrained so that "˛Q < 1

2
at all points. Use this data to define the functions

a� a0
C " cos.vC v0/ and w � w0

� " sin
�
vC v0

�
on the cylinder .�o; �1/�R=.2�Z/. The pair .a; w/ then define an embedding of the
cylinder .�o; �1/�R=.2�Z/ into R� .S1 �S2/ via the map in (3–2).

Proof of Lemma 4.1 Suppose for the moment that the functions a and w that are
used in (2–25) are any given pair of functions on .�o; �1/. As remarked in Subsection
2.G, the resulting map then defines an immersion of the parametrizing cylinder when
˛Q > 0. This understood, the issue is whether two distinct points in the domain are
mapped to the same point in the range. To analyze this last issue, note that points .�; v/
and .� 0; v0/ from the parametrizing cylinder .�o; �1/�R=.2�Z/ are mapped to the
same point in R� .S1�S2/ if and only if both � D � 0 and there exists an integer pair
N D .n; n0/ such that

v0 D v� 2�
˛N .�/

˛Qe
.�/

mod .2�Z/;

ae

�
�; v� 2�

˛N .�/

˛Qe
.�/

�
D ae.�; v/;

we

�
�; v� 2�

˛N .�/

˛Qe
.�/

�
D we.�; v/� 2�

nq0e � n0qe

˛Qe
.�/

:

(4–2)

Here, and below, ˛N denotes the function � ! .1� 3 cos2 �/n0�
p

6 cos �n.
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To analyze the condition in (4–2), fix a pair Z � .z; z0/ 2 Z�Z of integers such that
z qe

0 � z0 qe D m with m used here to denote the greatest common divisor of the
ordered pair of integers that comprise Qe � .qe; qe

0/. With Z fixed in this way, then
N can be written as N D yx.z; z0/C yy

m
.qe; qe

0/ with yx and yy integers. This notation
allows the third point in (4–2) to be written as

(4–3) ˛Qe
.�/we

�
�; v� 2� yx

˛Z .�/

˛Qe
.�/
� 2�

yy

m

�
D ˛Qe

.�/we.�; v/� 2� myx:

In particular, this last condition implies that there are at most a finite number of possible
values for yx that can appear at any given value of � 2 .�o; �1/. Meanwhile, the second
condition in (4–2) requires that

(4–4) ae

�
�; v� 2� yx

˛Z .�/

˛Qe
.�/
� 2�

yy

m

�
D ae.�; v/:

Together, (4–3) and (4–4) imply that only yy ’s reduction modulo m is relevant. Thus,
there is a finite set of possible values for .yx; yy/ that need be considered for immersion
points in any given compact subset of .�o; �1/�R=.2�Z/.

Now consider the additional ramifications of (4–3) and (4–4) in the case that a and
w are as described in the lemma. The first point to make is that with " constrained
as indicated, only yx D 0 can appear in (4–3). This understood, it then follows that
both (4–3) and (4–4) can hold simultaneously only if yy D 0 mod .mZ/. Thus v and
v0 in (4–2) agree mod .2�Z/ and (4–1) is an embedding.

4.B Parametrizations near boundary circles with a monovalent vertex la-
bel

Suppose here that e � T is an edge and that �o and �o < �1 are the angles that are
assigned to the vertices on e . Suppose, in addition that o 2 e is a monovalent vertex
from T . For the sake of argument, suppose that the latter is assigned the angle �o .
The story when the assigned angle is �1 is identical save for notation and some sign
changes and so the latter case is not presented.

There are three separate cases to consider, these depending on the label given the vertex
o. These cases are considered in turn below. In what follows, ˇ denotes a favorite
smooth function on Œ0;1/ that takes value 1 on Œ0; 1�, value 0 on Œ2;1/, and has
negative derivative on .1; 2/. Having chosen ˇ , and granted that � > 0 and �� 2 Œ0; ��,
introduce the function

(4–5) ˇ0 � ˇ

�
1

�4
j� � ��j

�
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Case 1 In this case, o is assigned a .1;˙; : : :/ label in yA. This is to say that in the
respective C and � cases, the image in R� .S1 � S2/ of the � < 2�e0 part of the
parametrizing cylinder should have the asymptotics of a concave side or convex side
end of a J –pseudoholomorphic subvariety where the jsj !1 limit of � is 0.

In the remainder of this Case 1 discussion, � denotes �e0 . In this regard, � � �e0

along with �� D 0 are to be used for defining the function ˇ0 via (4–5).

To extend the definition in (4–1) of .ae; we/ to the � < 2� portion of the parametrizing
cylinder, first constrain the functions ", a0

e , w0
e and v0

e that appear in (4–1) to be
constant where � < 2� . This understood, extend the definition in (4–1) to the points
where � < 2� by setting

ae D
1

�
ˇ0 ln � C a0

e C
�
".1�ˇ0/C �ˇ0/ cos.vC v0

e /:

we D .1�ˇ
0/w0

e � .".1�ˇ
0/C �ˇ0/ sin.vC v0

e /:

(4–6)

Here,

(4–7) � �
qe
0

qe
C

r
3

2
;

According to Lemma 4.1, any small " version of (4–1) embeds the � 2 .0; �1 � 2��

portion of the parametrizing cylinder in R � .S1 � S2/. Moreover, as jaej ! 1

uniformly as � ! 0, any such version of (4–1) defines a proper embedding of this
same portion of the parametrizing cylinder. Thus, the only issue to consider is whether
the � ! 0 asymptotics are correct. In particular, the key point here is to verify (1–12),
and the latter task is straightforward so left to the reader.

Case 2 In this case, the vertex 0 is assigned the element (1) from yA. To start, once
again set � � �e0 when referring to the function ˇ0 in (4–5), also set �� D 0. It is
also to be understood here that a0

e , w0
e and v0

e from (4–1) are again constrained to be
constant where � � 2� . Granted these conventions, the extension of the pair .ae; we/

to the points where � < 2� is given by

(4–8)
ae D a0

e C ".1�ˇ
0/ cos.vC v0

e /

and we D w
0
e � ".1�ˇ

0/ sin.vC v0
e /:

The reader is left to verify that the resulting extension of (4–1) to the closed cylinder
Œ0; �1� 2�1��R=.2�Z/ maps it onto an embedded, closed disk in R� .S1�S2/ that
intersects the � D 0 circle transversely and with intersection number C1 with respect
to the latter’s symplectic orientation.
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Granted that the extension given in (4–8) maps onto an embedded disk, note that at
the latter’s intersection point with the � D 0 cylinder, the restriction of the symplectic
form on its tangent space is positive. Indeed, this can be seen from the fact that the
symplectic form pulls back along the � D 0 circle in the parametrizing cylinder to the
form �d� ^ dv .

Case 3 In this case, the monovalent vertex is assigned some .0;�; : : :/ element from
yA. As in the previous cases, set � to equal �e0 . Use this value for � and use �� D �o

for defining the function ˇ0 .

The parametrization given below requires that a0
e , w0

e and v0
e from (4–1) are constant

where � 2 Œ�o; �oC 2��. Granted that such is the case, extend the definition of .ae ,
we/ to the � < �oC 2� portion of the parametrizing cylinder using the rule

ae �
1

&
ˇ0 ln.� � �o/C a0

e C .".1�ˇ
0/C .� � �o/ˇ

0/ cos.vC v0
e /;

we D .1�ˇ
0/w0

e � .".1�ˇ
0/C .� � �o/ˇ

0/ sin.vC v0
e /;

(4–9)

where & D
p

6 sin2 �o.1C 3 cos2 �0/=.1C 3 cos4 �o/. It is left as another exercise for
the reader to verify that (4–9) and (3–2) together define a proper embedding of the
� 2 .�o; �1�2�e1� portion of .�o; �1/�R=.2�Z/ into R� .S1�S2/ as submanifold
whose large jsj asymptotics meet the requirements of Definition 3.2 to be those of a
convex side end in some J –pseudoholomorphic subvariety.

4.C Parametrizations near boundary circles with a bivalent vertex label

In this subsection, o denotes a bivalent vertex in T whose associated partition subset
has but a single element. In what follows, e and e0 are the two incident edges to o

with the convention that o0 s angle label, �o , is the greater of the two angles that label
the vertices on e , and so the lesser of the two that label the vertices on e0 .

The story starts with a preliminary digression to set the stage. To begin the digression,
note that �e1 D �e00 in what follows, and � denotes either. Take �� ı . The function
ˇ0 now refers to the version in (4–5) with this same value for � and with �� set to
equal �o .

Require that both the e and e0 versions of " in (4–1) are constant where j� � �oj< ı

and that these constants agree. Require that a0
e is constant where � > �o � 2� , that

a0
e0 is constant where � < �oC 2� , and that these two constants also have the same

value. Use a0 for the latter. In addition, require that both w0
e and w0

e0 are zero where
� is within 2� of �o . Finally, require that both v0

e and v0
e0 are constant where �
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is respectively greater than �o � 2� and less than �oC 2� with equal value, and for
notational convenience, take the constant to equal 0. To obtain the case where the
constant value for v0

e and v0
e0 is non-zero, replace v in what follows by v� v0

e .

To proceed with the digression, introduce P0 � .p0;p0
0/ to denote the integer pair

from o0 s element in yA, and set

(4–10) x0 � qe
0p0� qep0

0:

Note that x0 is a positive integer. To explain, remember that .p0;p0
0/ is a positive

multiple of the pair .p;p0/ that is defined by �o via (1–7). This understood, positivity
of x0 is a consequence of the positivity of the QDQe version of ˛Q.�o/. Note that
the formula for x0 in (4–10) can be written with the pair Qe0 replacing Qe ; this a
consequence of (3–1).

The next task for this digression is to define certain ‘polar’ coordinates for respective
neighborhoods of .�o; 0/ in both the e and e0 versions of the parametrizing cylinder. In
both cases, the ‘radial’ coordinate is denoted as r ; it takes values in Œ0; 3�/. Meanwhile,
the angular coordinate is denoted as � ; it takes values in Œ��; 0� on e0s version of
the parametrizing cylinder, and it takes values in Œ0; �� on the e0 version. To describe
the coordinate transformation from .r; �/ coordinates to the standard coordinates, it
is necessary to fix an R–valued anti-derivative, yv , for dv that is defined near 0 in
R=.2�Z/ and vanishes at 0. Thus, v is the mod.2�/ reduction of yv .

With the preceding understood, here is the coordinate transformation between the .�; yv/
and the variables .r; �/ for e0 s parametrizing cylinder:

� D ��C "r sin.�/:

yv D

�
1�

˛Qe0 .�/

˛Qe
.�/

�
� C

1

˛Qe
.�/

r cos.�/:
(4–11)

In this regard, keep in mind that � 2 Œ��; 0�. To verify that .r; �/ are bona fide
coordinates, use Taylor’s theorem with remainder while referring to (3–1) and the
first point in (4–11) to write yv D r.c0"� sin.�/C cos.�//C 0.�r/ with c0 a positive
constant that is determined by �o . In particular, the Jacobian of the map .r; �/! .�; v/

therefore has the form �r.1� c0" sin2.�//C 0.�r/, and this is negative if " is small
and � is very small.

Meanwhile, the coordinate transformation between the (�; yv/ and .r; �/ coordinates
for the e0 version of the parametrizing cylinder is given as follows:

� D ��C "r sin.�/:

yv D

�
˛Qe

.�/

˛Qe0 .�/
� 1

�
� C

1

˛Qe0 .�/
r cos.�/:

(4–12)
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In this case, the coordinate � ranges in Œ0; ��.

The digression continues with the introduction of a certain function, v� , a function that
is defined where r > 1

8
� in the j� � �oj< 3� portion of .0; �/�R=.2�Z/. To define

v� , it is necessary to view v as taking values in Œ0; 2��. This understood, set

(4–13) v� D

�
.1�ˇ0/C

˛Qe
.�/

˛Qe0 .�/
ˇ0
�
v:

As its final task, this digression introduces two versions of a function, ˇ� , one on e0 s
version of the parametrizing cylinder and the other on the e0 version. In both cases,
ˇ� is defined to be zero on the complement of the set where r is defined and less than
3� . Meanwhile, where r � 3� , this function is set equal to ˇ.1

�
r/.

With the digression now over, what follows are the rules for extending the definition of
.ae , we/ to the � > �o�2� portion of e0 s version of the parametrizing cylinder. With
� viewed as taking values in Œ��; 0�, set

ae D�ˇ� ln.r/C a0C "
�
ˇ�C .1�ˇ�/ cos.v�/

�
:

we D�".1�ˇ�/ sin.v�/

Cx0ˇ
0

�
1

˛Qe

ˇ�

�
� �

1

2˛Qe0

r cos.�/
�
�

1

2˛Qe

.1�ˇ�/v�

�
:

(4–14)

Here, one must view v and � as functions of r and � where r < 3� . As for .ae0 ; we0/,
view � as taking values in Œ0; �� and set

ae0 D�ˇ� ln.r/C a0C " .ˇ�C .1�ˇ�/ cos.v// :

we0 D�".1�ˇ�/ sin.v/

Cx0ˇ
0

�
1

˛Qe0

ˇ�

�
� C

1

2˛Qe

r cos.�/
�
C

1

2˛Qe

.1�ˇ�/v

�
:

(4–15)

In this last equation, v and � must again be viewed as functions of r and � where
r < 3� with v taking values in Œ0; 2��.

As is proved below, these extensions have the following three special properties: First,
the union of the images in the j� � �oj< 3� portion of R� .S1�S2/ of the e and e0

parametrizing cylinders fit along the � D �o locus so as to define a smooth, properly
immersed, thrice punctured sphere. Second, the closure of this thrice punctured sphere
in R�.S1�S2/ has the asymptotics as dictated by Definition 3.2 of a limjsj!1 �D �o ,
concave side end of a J –pseudoholomorphic subvariety. Third, this thrice punctured
sphere has a finite number of singular points, all are transversal double points, and all
have C1 local intersection number.
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The remainder of this subsection is divided into four parts, with the first two containing
the proofs of the first two of the preceding assertions. The final two parts contain the
proof of the third assertion.

Part 1 This part addresses the manner in which the images of the two parametrizing
cylinders match along the � D �o locus in R� .S1 �S2/. In this regard, it follows
from (2–25) that these images define a smoothly immersed surface near the � D �o

locus provided that the following is true: Let v1 2 .0; 2�/. Then, there exists an integer
pair, N D .n; n0/, and extensions of the definitions of .ae; we/ and .ae0 ; we0/ to some
neighborhood in .0; �/�R=.2�Z/ of .��; v1/ so that

ae

�
�;
˛Qe0 .�/

˛Qe
.�/

vC 2�
˛N .�/

˛Qe
.�/

�
D ae0.�; v/;

we

�
�;
˛Qe0 .�/

˛Qe
.�/

vC 2�
˛N .�/

˛Qe
.�/

�
D we0.�; v/C

1

˛Qe
.�/

.qe
0qe0 � qeqe0

0/vC
2�

˛Qe
.�/

.qe
0n� qen0/:

(4–16)

To verify that (4–16) holds, let U � .0; �/�R=.2�Z/ denote the complement of the
point .�o; 0/. Now observe that the formulae in (4–14) and (4–15) make perfectly
good sense on some neighborhood in U of U 0 s intersection with the � D �o circle. In
particular, where r � 3� , the formula in (4–14) makes good sense where � 2 .�3�

2
; �

2
/

and that in (4–15) makes good sense where � 2 .��
2
; 3�

2
/. Meanwhile, where r is

either undefined or greater than 2� , both formula make good sense where j���oj<�
4 .

Use these extensions of (4–14) and (4–15) to provide extensions for use in (4–16) of
the domains of .ae; we/ and .ae0 ; we0/.

Consider now (4–16) at a point .�o; v1/ where both j� � �oj < �4 and r is either
undefined or greater than 2� . In this case, the N D .0; 0/ version of (4–16) holds by
virtue of two facts: First, ˇ0 D 1 where j� � �oj< �

4 and thus

(4–17) v�

�
˛Qe0 .�/

˛Qe
.�/

v

�
D v:

Second, (3–1) equates �x0 with qe
0qe0 � qeqe0

0 .

Consider next the story for a point .�o; v1/ where r < 3� that sits on the cos.�/D 1 ray.
To begin, note that (4–15) and (4–16) require the evaluation of .ae0 ; we0/ at parameters
.r; �/ that give � in (4–12), and that gives the R–valued parameter yv as it ranges over
some interval of small length in .0; 2�/ that contains v1 . In particular, let v0 denote
a point in such an interval and take � to lie within �4 of �o . Let .r 0; � 0/ denote the
values for .r; �/ that give .�; v0/.
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Now suppose that N D .0; 0/ again so that the pair .ae; we/ in (4–16) are to be
evaluated at parameters r D r� and � D �� that give the value of � used for .ae0 ; we0/

and give v0 for the R–valued parameter yv . As such, (4–11) and (4–12) require that
.r�; ��/ is determined by .r 0; � 0/ via the identities

r� sin.��/D r 0 sin.� 0/;�
1�

˛Qe0 .�/

˛Qe
.�/

�
��C

1

˛Qe
.�/

r� cos.��/

D
˛Qe0 .�/

˛Qe
.�/

��
˛Qe

.�/

˛Qe0 .�/
� 1

�
� 0C

1

˛Qe0 .�/
r 0 cos.� 0/

�(4–18)

In particular, if " is small and � very small, then (4–19) requires r� D r 0 and �� D � 0 .

Granted this last conclusion, the top equality in (4–16) now follows from (4–14)
and (4–15). Meanwhile, since ˇ0 D 1 at the given value of � , the lower equality holds
provided that

(4–19) x0ˇ�

��
1

˛Qe

�
1

˛Qe0

�
� 0�

1

˛Qe
˛Qe0

r cos.� 0/
�
�x0.1�ˇ�/

1

2˛Qe

.2v0/

D
1

˛Qe

.�x0/v
0
I

and such is the case by virtue of (4–12).

The last case to consider is that where the point .�o; v1/ sits where r < 3� on the
cos.�/D�1 ray. Supposing that � is within �4 of �o and v0 is very close to v1 , then
the pair .ae0 ; we0/ in (4–16) must be evaluated at parameters values r 0 for r and � 0

for � that give the point .�; v0/ via (4–12). In this regard, note that � 0 � � .

Now suppose that N DQe0 in (4–16). This being the case, then the pair .ae; we/ are
to be evaluated at parameters r D r� and � D �� with �� ��� that give the value of
� used for .ae0 ; we0/, but now give the R–valued parameter yv that obeys

(4–20) yv D
˛Qe0 .�/

˛Qe
.�/

.v0C 2�/ mod .2�Z/:
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As such, (4–11) and (4–12) require that .r�; ��/ is determined by .r 0; � 0/ via the
identities

(4–21)

r� sin.��/D r 0 sin.� 0/;�
1�
˛Qe0 .�/

˛Qe
.�/

�
��C

1

˛Qe
.�/

r� cos.��/D

˛Qe0 .�/

˛Qe
.�/

"�
˛Qe

.�/

˛Qe0 .�/
�1

�
� 0C

1

˛Qe0 .�/
r 0 cos.� 0/

#

C

�
˛Qe0 .�/

˛Qe
.�/
�1

�
2�:

When " is small and � is very small, then (4–21) requires r� D r 0 and �� D � 0� 2� .

Granted the preceding, the top equality in (4–16) again follows from (4–14) and (4–15)
straight away. Meanwhile, the lower equality holds provided that

(4–22) x0ˇ�

"�
1

˛Qe

�
1

˛Qe0

�
� 0�

1

˛Qe
˛Qe0

r cos.� 0/

#

� 2�x0ˇ�
1

˛Qe

�x0.1�ˇ�/
1

2˛Qe

.2v0C 4�/

D
1

˛Qe

.�x0/.v
0
C 2�/:

And this last equation does indeed hold; this is another consequence of (4–12).

Part 2 This part discusses the image of the points in the respective e and e0 parametriz-
ing cylinders that are close to the .� D �o; vD 0/ point. The result is a verification that
the images of this portion of the two parametrizing cylinders fit together so as to define
a submanifold that has the required large jsj asymptotics as dictated by Definition 3.2.

To start the discussion, note that the respective images of the � � �o and � � �o parts
of the complement of .�o; 0/ in a closed, small radius disk about this point define a
properly immersed surface with boundary in R�.S1�S2/. In this regard, let e denote
the union of the respective images in R� .S1 �S2/ of the portions of the e and e0

versions of the parametrizing cylinder where r is defined and where r � �4 .

Here is the first observation: With both � and " chosen to be very small, then the
map from .0; 3���R=.2�Z/ to R� .S1�S2/ that uses the appropriate pair of (4–11)
and (4–14) or (4–12) and (4–15) defines a smooth, proper map. As is explained some
paragraphs hence, this map embeds the subset of the disk where ˇ� D ˇ0 D 1. In
particular, E is embedded.
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To verify the second requirement, note that the 1–form ds pulls back to the .r; �/ disk
via the parametrizing map as �1

r
dr where ˇ� D 1. Thus s has no critical points on

E . Moreover, as r D e�s , so � has a unique s!1 limit on E . The condition on
the pull-back of the contact 1–form in (1–1) is considered momentarily. The fact that
p0 and p0

0 give the respective integrals of the pull-backs of 1
2�

dt and 1
2�

d' follow
from the relationship between Qe and Qe0 given in (3–1).

To see about the requirement for the 1–form p0d'�p0
0dt , first use (4–11) and (4–14)

where ˇ� D ˇ0 D 1 and � 2 Œ��; 0� to write

(4–23) p0' �p0
0t D x0

"�
1�

˛Qe0 .�/

˛Qe
.�/

�
� C

r

˛Qe
.�/

cos.�/

#

�˛Po

1

˛Qe

x0

"
� �

1

2˛Qe0

r cos.�/

#
mod .2�Z/:

Now use (3–1) to conclude that

(4–24) p0' �p0
0t D x0

1

2

�
1

˛Qe
.�/
C

1

˛Q0
e
.�/

�
r cos.�/ mod .2�Z/

where ˇ� D ˇ0 D 1 and � 2 Œ��; 0�. Meanwhile, the same expression for p0' �p0
0t

appears when (4–12) and (4–15) are used where ˇ�D ˇ0D 1 and � 2 Œ0; ��. Thus, the
right hand side of (4–24) without the ‘ mod .2�Z/’ proviso provides an anti-derivative
for p0d' �p0

0dt with a unique s!1 limit on E .

Return next to the question of the contact form in (1–1). The fact that it has nowhere
zero pull-back at large jsj on e can be readily deduced from the following three
facts: First, the vectors .p0

0;�p0/ and ..1�3 cos2 �o/;
p

6 cos �o sin2 �o/ are linearly
independent in R2 ; this a consequence of the �o version of (1–7). Second, (4–24)
implies that the 1–form p0d'�p0

0dt is o.e�s/ on the large s slices of E . Finally, the
.q; q0/DQe and .q; q0/DQe0 versions of qd' � q0dt differ from x0d� by o.e�s/

on the respective portions of the large s slices in E where � 2 Œ��; 0� and where
� 2 Œ0; ��.

Here is the promised explanation as to why the punctured .r; �/ disk is embedded
where ˇ� D ˇ0 D 1. To see that such is the case, note first that two points are mapped
to the same point only if the corresponding pull-backs of � agree. Moreover, the
corresponding pull-backs of a chosen R lift of the right hand side of (4–24) must also
agree. These two requirements can be met only if the two points are one and the same.

The final issue concerns the size of the projection
Q

J as defined in the last line of
Definition 3.2’s second requirement. The fact is that this projection and its covariant
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derivative are both o.e�s/ at large s on E , this by virtue of (4–24) and the formulae
for � in the top lines in (4–11) and (4–12).

Part 3 This and the remaining part of the discussion in this subsection analyze the
singular points of the j� � �oj< 3� portion of the closure of Ke [Ke0 . In this regard,
it follows from what has been said so far that this closure is an immersed surface with
compact singular set. Indeed, this happens because both the e and e0 parametrizations
extend across the � D �0 circle save at the missing point where � D �o and v D 0.
With the preceding understood, the task at hand is to verify that there are but a finite
number of singular points, all regular double points and all with C1 local intersection
number.

To start the story, remark that points in Ke and Ke0 are disjoint as they have distinct �
values. Thus, a pair of points .�; v/ and .� 0; v0/ in the extended domain of either the
e or e0 parametrizing maps are sent to the same point in R� .S1 �S2/ if and only
if � D � 0 and the respective e or e0 versions of the conditions in (4–2) are satisfied.
This noted, the discussions that follows in this Part 3 and in Part 4 focus exclusively on
points in the closure of Ke ; thus points in the image of the complement of .�o; 0/ in
e0s version of the closed parametrizing cylinder. The analysis for Ke0 is very much
the same and so omitted.

The rest of the story from this Part 3 is summarized by the following lemma:

Lemma 4.2 There exists "0 and given " 2 .0; "0/, there exist positive constants ı
and ��� " such that when � < �� , then the closure of Ke is smooth near any point
with an inverse image in the portion of the closed parametrizing cylinder that lie where
ˇ� > 0, or where ˇ0 < ı , or where ˇ0 > 1� ı .

The proof of this lemma occupies the remainder of Part 3.

Proof of Lemma 4.2 The proof is facilitated by introducing a relatively prime pair of
integers, Z� .z; z0/, such that zqe

0�z0qeDm where m denotes the greatest common
divisor of .qe; qe

0/. With Z so specified, any given integer pair N D .n; n0/ can be
written as N D yx.z; z0/C yy

m
.qe; qe

0/ with yx and yy integers. Writing N in this way
makes the third point in N 0 s version of (4–2) into the condition in (4–3) and the second
point into the condition in (4–4). Note that yx does not depend on the choice for Z but
yy does. In any event, only values for yy that lie in f0; : : : ;m� 1g need be considered.

The rest of the proof is broken into four steps.

Step 1 This step derives the lower bound for ˇ0 on the inverse image of a singularity.
For this purpose, note that with " small in (4–14) and ˇ0 � "2 , then jwej < 2" and
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so only the case that yx D 0 case can possibly arise in (4–3). However, this case then
requires yy D 0 as well since the form of ae and we in (4–14) precludes any other
yx D 0 solutions to both (4–3) and (4–4). The argument here is essentially the same as
one given in Part 1, above.

Step 2 This step proves the following assertion: If " is small and then � is very small,
the closure of Ke is smooth at the image of any point in the closed parametrizing
cylinder that lies where r is defined and less than 3

4
� .

To start the proof, suppose that � and �0 are two points in the closed parametrizing
cylinder that map to the same point in R� .S1 �S2/ and are such that one lies in the
indicated region. As the respective values for ae must agree at the two points, (4–14)
demands that both points lie where r < � when " is small. In particular, ˇ� D 1 at
both points, so they both lie where r is defined, and their respective r coordinates
must agree. As the respective values of � also agree at the two points, (4–11) demands
that their respective � coordinates either agree or are interchanged by the involution
of Œ��; 0� that sends � to �� � � . The latter must be the case if the two points are
distinct.

Meanwhile, (4–3) and (4–4) requires that the respective R=.2�Z/ coordinates of the
two points are related by

(4–25) v.�0/D v.�/� 2� yx
˛Z .�/

˛Qe
.�/
� 2�

yy

m
mod .2�/:

with yx and yy integers and with Z D .z; z0/ as in (4–3). To see what this implies, note
that as ˇ0 ¤ 0, it follows that j� � �oj< 2�4 and so

(4–26)
˛Z .�/

˛Qe
.�/
D

z0po� zp0o
xo

C o.�4/;

where the term that is indicated by o.�4/ is bounded by ��4 where � depends only on
Qe and P0 . As the ratio on the right hand side is a rational number with denominator
no larger than x0 , the equality in (4–25) demands that

(4–27) v.�0/D v.�/C o.�4/ mod .2�/

where the term o.�4/ has the same significance as in (4–26).

To continue, note next that (4–27) is consistent with the lower line in (4–11) only in the
case that the value of jr cos.�/j at the two points is bounded by ��4 where � again
depends only on P0 and Qe . On the other hand, as ˇ0 is neither 0 nor 1, the top line
in (4–11) requires that jr sin.�/j> "�1�4 . In particular, r � "�1�4 . This then means
that the value of j cos.�/j at the two points is bounded by �". As such, the values of �
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at these points must have the form � D �
2
˙ " � & , where & > 0 is bounded solely in

terms of P0 and Qe . This understood, use of the lower line in (4–14) will establish
that the respective values of we at the two points differ by an amount that is bounded
by �", where � is as before, a constant that depends only on P0 and Qe . However, if
such is the case, then small " is consistent with (4–3) only if yx D 0. This and (4–27)
require that yy D 0 also, and so � D �0 .

Step 3 As is argued subsequently in this step, if " is small and � is very small, then
the closure of Ke is smooth near any point with an inverse image that lies where r is
defined and has value in .1

2
�; 3�/. To see why this is true, take � and �0 to be points in

the closed parametrizing cylinder that are mapped to the same point in R� .S1 �S2/,
are such that ˇ0 > 0, and that one lies where r is defined and is in the indicated range.
In this case, the top line of (4–14) requires that the respective values of ˇ� ln.r/ differ
by less than " at the two points. Thus, both points lie where r is greater than 1

4
� .

Furthermore, as one of them lies where r � 3� , the top line in (4–14) requires that
1���1�2 > cos.v�/ > 1���2 ; at both; here � � 1 is a constant that depends only on
P0 and Qe .

Meanwhile, (4–3) and (4–4) require (4–25), and as ˇ0 ¤ 0, so (4–26) and (4–27) hold
here too. However, if such is the case, then both lie where sin.v�/� ��1� or both lie
where sin.v�/ < ���1� . Here again, � � 1 depends only on P0 and Qe when � is
small. As a result, (4–11) and (4–14) insure that the respective values of we at the two
points differ by no more that �0� where �0 is again a constant that depends only on P0

and Qe . Granted this, then only the yx D 0 case of (4–3) can arise when � is small,
and this then requires that yy D 0 mod .m/ also. Thus, v.�0/D v.�/ and the points
are one and the same.

Step 4 This step proves the following: If " is small, there then exists ı0 > 0 with
the following significance: When � is very small, the parametrizing map embeds the
portion of e0 s parametrizing cylinder where ˇ0 > 1� ı0 and ˇ� D 0.

To start the proof, suppose that .�; v/ and .�; v0/ are two points that lie in the indicated
portion of the closed parametrizing cylinder. Suppose, in addition, that v ¤ v0 and
that these two points are sent to the same point in R � .S1 � S2/. This being the
case, the equality between the respective values of ae at the two points requires that
v0 D 2� � v mod .2�Z/. As the two points .�; v/ and .�; v0/ are distinct, so v ¤ �
mod .2�Z//. Thus, at the expense of choosing which to call v and which to call v0 ,
as well as a Z lift of yy , one can assume that v and v0 have respective R–lifts yv and
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yv0 with yv 2 .�; 2�/ and with yv0 D 2� � yv . Meanwhile, (4–3) requires that

(4–28) " sin.yv/�x0

1

2˛Qe0

ˇ0yv0 D�" sin.yv/�x0

1

2˛Qe0

ˇ0yv� 2�m
1

˛Qe

yx:

To see the implications of these constraints, it proves convenient to introduce

(4–29) } ��

�
yx

z0po� zp0o
xo

�
yy

m

�
:

As will now be explained, } 2 .0; 1/. Indeed, as ˇ0 ¤ 0, so (4–26) holds and can be
used to write

(4–30) yv D �.1C}C yxyu/ and yv0 D �.1�} � yxyu/

where yu is a function of � that obeys jyuj � ��4 and j@� yuj � � with � a constant that
is determined by P0 and Qe .

With } as just defined, the constraint in (4–28) can be rearranged to read

(4–31) ˇ0} � 2m
yx

xo
�

1

�
" sin.2�}/C yxuD 0;

where u is a function of � that vanishes at �o and is determined a priori by P0 and
Qe . In particular juj � ��4 where ˇ0 ¤ 0 and j@�uj � � where � is a constant that
is determined a priori by P0 and Qe . As will now be explained, the desired bound
for .1�ˇ0/ follows from this last equation. To see why, note that by virtue of (4–30),
small � insures that the distance between yv from either � or 2� is bounded from zero
by a constant that depends only on P0 and Qe . In particular, j sin.yv/j is bounded away
from zero by such a positive constant. As j sin.yv/j is uniformly bounded away from
zero, and as } is a fraction between 0 and 1 whose denominator is mx0 , it follows
that there are no .yx; yy/ versions of (4–31) when " is small, .1�ˇ0/ < "2 , and � is
very small.

Part 4 This part of the discussion identifies the singular points and verifies that
they have positive local intersection number. In this regard, remember Lemma 4.2
which states that the inverse images of the singular points lie where ˇ� D 0 and
ˇ0 2 .ı; .1� ı//.

To begin, fix yx and yy so that } 2 .0; 1/ as defined in (4–29). Then view the small
" and very small � version of (4–31) as an equation for � 2 .�0 � 3�; �o/. Because
the values of ˇ0 range over Œ0; 1�, this equation has a solution only if 0�myx � 1

2
x0 .

Moreover, if a solution exists, then it is unique. To explain, remember that with "
fixed and small, Lemma 4.2 provides a constant ı � ı."/ 2 .0; 1/ such that a solution
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to (4–31) must occur at a value for � where ı < ˇ0 < .1� ı/. Thus, there exists a
constant, b � b."/ 2 .0; 1/ such that

(4–32) @�ˇ
0 > b

1

�4

at any value of � where (4–31) holds. This last fact implies the uniqueness of any
solution to (4–31) in the case that � is very small.

The next point to make is that the solutions to the various .yx; }/ versions of (4–31)
result in singularities of Ke of the simplest sort: Each singular point is the center of a
small radius ball in R� .S1 �S2/ that intersects Ke as the union of two embedded
disks meeting only at the origin. Here is why: According to (4–30), yv D �.1C}/C
o.�4/ and As a consequence, when � very small, (4–4) guarantees that any pair of
versions of (4–31) with different values for } will yield disjoint singular points in Ke .
Meanwhile, two versions of (4–31) that are defined using the same choice for } but
with different choices for yx give corresponding singular points in Ke at distinct �
values.

With the singular points identified, the next task is to verify that each self intersection is
transversal and has positive intersection number. This task requires a suitable expression
for the push-forward by the parametrizing map of the vector fields @� and @v . Such a
formula is given in (4–33) below. In this regard, the following notation is used: The
pull-back via the parametrizing map of .1 � 3 cos2 �/ is denoted as c , and that of
p

6 cos � as c0 . Note also that the push-forwards of @� and @v are not notationally
distinguished from the originals. In addition, the label e on .ae; we/ is suppressed so
that a subscript on the resulting a or w can be used to indicate the partial derivatives in
the direction labeled by the subscript. The label e is also suppressed so that the integer
pair Qe appears as .q; q0/. With this notation set, here are the promised formulae for
the push-forwards of @� and @v :

@� D .cw/�@t C .c
0w/�@' C a�@sC @� :

@v D .qC cwv/@t C .q
0
C c0wv/@' C av@s:

(4–33)

Now let .a; w/ and .a0; w0/ denote the respective versions of the parametrizing func-
tions that come from the two sheets that are involved at the given intersection point.
Likewise, use .@� ; @v/ and .@� 0; @0v/ to denote the corresponding versions of (4–33).
The convention used below takes the unprimed pair as the image via the parametrizing
map of the point .�; yv/ with yv as in (4–30). Meanwhile, the primed pair is the image
of .�; yv0/ with yv0 also from (4–30).

To establish transversality for the self-intersection point and to obtain the local inter-
section number, first write @� ^ @v ^ @� 0 ^ @v 0 as �.@s ^ @t ^ @� ^ @'/ with � 2 R.
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As demonstrated below, � is non-zero; thus, the intersection is transversal. Granted
this, the sign of � is the sign to take for the local sign of the self intersection point.
With regard to the upcoming expression for � , note that (4–14) finds a� D a0� D 0 and
wv D w

0
v at the intersection point. Here is � :

(4–34) � D�.av � a0v/
h
.c.w�w0//� .q

0
C c0wv/� .c

0.w�w0//� .qC cwv/
i
:

To evaluate (4–34), use (4–14) to deduce that when � is very small, then

av � a0v D 2" sin.�.}C yxyu// > 0;

w� �w
0
� D��}x0

1

˛Qe
.�/

@�ˇ
0
C o.1/;

(4–35)

where the term denoted by o.1/ is bounded by a constant that depends only on P0

and Qe . Granted (4–35) and granted that w �w0 is of the order of unity, any very
small � version of (4–34) has the form � D 2�"} sin.�}/x0@�ˇ

0C o.1/, where the
term designated as o.1/ is again bounded by a constant that depends only on P0 and
Qe . As (4–32) guarantees that @�ˇ0 is very large when � is very small, so � > 0 as
required for a transversal intersection with positive local intersection number.

4.D Parametrizations near boundary circles with a trivalent vertex label

In this subsection, o denotes a trivalent vertex in T while e , e0 and e00 denote the
three incident edges to o. In this regard, it is assumed here that only one of these edges
labels a cylinder in R� .S1 �S2/ where � < �o . The discussion for the case when
� > �o on only one of Ke , Ke0 and Ke00 is not presented since it is identical to the
discussion that follows but for some obvious cosmetic alterations. This understood, the
edges e , e0 and e00 are distinguished as follows: First, � < �o only on Ke . Second,
in the case that Qe0 and Qe00 are not proportional (and thus not proportional to Qe ),
take e0 so as to make

(4–36) qe0qe00
0
� qe0

0qe00 < 0:

The story starts with a preliminary digression to set the stage. To begin the digression,
assume that �e1 D �e00 D �e000 in what follows, and use � denote any of the three.
Here again, take �� ı . Now the function ˇ0 refers to the version in (4–5) with this
same value for � and with �� set to equal �o .

Require the e , e0 and e00 versions of " in (4–1) to be constant and much less than ı
near the respective circles where j� � �oj D 2� , and require that the three constants
agree. Likewise, require that a0

e , a0
e0 and a0

e00 are constant near these circles; the values
for these constants are specified below. In addition, require that w0

e , w0
e0 and w0

e00
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vanish near the respective circles where j� ��oj D 2� . Finally, require that each of v0
e ,

v0
e0 and v0

e00 is constant where j� � �oj � 2� ; the values of the latter are also specified
below.

As � approaches �o , the functional form of a and w must be modified for each of the
three edges to accommodate the first three constraints in (3–3). To ease the proliferation
of subscripts in the subsequent discussion, agree now to use ˛ , ˛0 and ˛00 to denote
the respective Q D Qe , Qe0 and Qe00 versions of ˛Q.�/. Also, to avoid possible
confusion, the coordinate v is used only to denote the R=.2�Z/ coordinate on the
parametrizing cylinder for Ke . The corresponding coordinates for the Ke0 and Ke00

cylinders are denoted below by v0 and v00 . Finally, to avoid a proliferation of primes,
when N D .n; n0/ and KD .k; k 0/ are pairs of integers (or real numbers), then ŒN;K�
is used below to denote nk 0� n0k . For example, the distinction between the edges e0

and e00 that appears in (4–36) can now be written as ŒQe0 ;Qe00 � < 0.

The first step to defining the three versions of .a; w/ where � is near �o is to specify
each near the point or points on the � D �o boundary of its parametrizing cylinder
that will map to the point in the mutual intersection of the closures of Ke , Ke0 and
Ke00 . In this regard, there are two such ‘singular points’ on the � D �o circle in the e

version of the parametrizing cylinder, and one each on the � D �o circle in the e0 and
e00 versions of the parametrizing cylinder. Here, the singular points on the e version of
the � D �o circle have R=.2�Z/ coordinates 0 and 2� ˛

0

˛
, the singular point on the

e0 version of this circle has R=.2�Z/ coordinate 0, while that on the e00 circle has
R=.2�Z/ coordinate 2� ˛0

˛00 .

To define the versions of .a; w/ near these singular points, let .x;y/ denote Cartesian
coordinates for R2 . Divide a small radius, open disk centered at the origin in the
.x;y/ plane into four open sets, the four components of the complement of the locus
where x2D y2 . The closures of the two components where jyj> jxj will be identified
with respective open neighborhoods of the points v D 0 and v D 2� ˛

0

˛
on the � D �o

circle in the parametrizing cylinder for Ke . Meanwhile, the closure of the x > jyj

component will be identified with an open neighborhood of the v0 D 0 point on the
the � D �o circle in the parametrizing cylinder for Ke0 . Finally, the closure of the
x <�jyj portion will be identified with an open neighborhood of the v00D 2� ˛0

˛00 point
on the � D �0 circle in the parametrizing cylinder for Ke00 . These identification are
made as follows: In all cases,

(4–37) � D �oCx2
�y2:
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Thus, � D �o where x2 D y2 . Meanwhile,

(4–38)
v D

1

˛
xy where y > jxj; v D

1

˛
xyC 2�

˛0

˛
where y < �jxj;

v0 D
1

˛0
xy where x > jyj; v00 D

1

˛00
xyC 2�

˛0

˛00
where x < �jyj:

Here, all assignments are defined modulo 2�Z.

The next step parametrizes the three versions of .a; w/ using the coordinates x and y .
This is done as follows: In all cases,

(4–39) a� x:

Meanwhile,

(4–40)

we � y where y > jxj:

we � y � 2�
ŒQe0 ;Qe00 �

˛
where y < �jxj:

we0 � yC
ŒQe;Qe0 �

˛˛0
xy:

we00 � yC
ŒQe;Qe00 �

˛˛00
xyC 2�

ŒQe;Qe00 �

˛00
:

Granted (4–37)–(4–40), the e , e0 and e00 versions of (3–2) now define a smooth map
to R� .S1 � S2/ from each of the four components of the complement in a small
disk about the origin in the x–y plane of the x2�y2 D 0 locus. As explained below,
the resulting maps fit together across this locus so as to define a smooth, symplectic
embedding of the whole of some smaller radius disk into R� .S1 �S2/.

The preceding formulae write .ae; we/ near the points where v D 0 and v D 2� ˛
0

˛
on

the � D �o boundary circle of Ke ’s parametrizing cylinder. They also give .ae0 ; we0/

near the v0 D 0 point on the � D �o in the parametrizing cylinder for Ke0 , and they
give .ae00 ; we00/ near the point where v00 D 2� ˛0

˛00 on the � D �o boundary of the
parametrizing domain for Ke00 . The third step parametrizes the three versions of .a; w/
on a neighborhood of the rest of the relevant � D �o circle. Note that in the equations
that follow,

(4–41) ˇ� � ˇ

�
1

�

�
x2
Cy2

��
:
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To start, consider .ae; we/. In this case, take
(4–42)

ae D ˇ�xC .1�ˇ�/"

�
cos

�
v��

˛0

˛

�
� cos

�
�
˛0

˛

��
and we D ˇ�yCˇ

0

�
ˇ
ŒQe;Qe0 �

˛˛0
xyC

ŒQe;Qe0 �

˛0
v

�
� .1�ˇ�/" sin

�
v��

˛0

˛

�
where 0� v � 2� ˛

0

˛
and j� � �oj< � . Where 2� ˛

0

˛
� v � 2� and j� � �oj< � , take

ae D ˇ�xC .1�ˇ�/"

�
cos

�
v��

˛0

˛

�
� cos

�
�
˛0

˛

��
(4–43)

and we D ˇ�yCˇ
0

�
ˇ�
ŒQe;Qe00 �

˛˛00
xy � 2�

ŒQe;Qe00 �

˛00
C
ŒQe;Qe00 �

˛00
v

�
� .1�ˇ�/" sin

�
v��

˛0

˛

�
:

The e0 version of .a; w/ requires the introduction of a � –dependent family of diffeo-
morphisms of the constant � circles in the e0 version of the parametrizing cylinder. The
latter is denoted by �e0 . View it as a map from the parametrizing cylinder to R=.2�Z/

with the property that its restriction to any fixed value of � define a diffeomorphism of
R=.2�Z/. As such, it need only have the following two properties:

(4–44)
�e0.�; v0/D

˛0

˛
.v0��/ where both j� � �oj< 2�4 and x2

Cy2 > 1
2
�:

�e0.�; v0/D v0 where j� � �oj � 3�4:

An analogous e00 version is denoted by �e00 . The latter should obey

(4–45)
�e00.�; v00/D

˛00

˛
v00��

˛0

˛
where both j� � �oj< 2�4 and x2

Cy2 > 1
2
�:

�e00.�; v0/D v00 where j� � �0j � 3�4:

With �e0 and �e00 as above, what follows are the e0 and e00 versions of .a; w/:

(4–46)
ae0 D ˇ�xC .1�ˇ

0/�C .1�ˇ�/"
�

cos.�e0/� cos.�e0 jv0D0/
�
:

we0 D ˇ�

�
yC

ŒQe;Qe0 �

˛˛0
xy

�
� .1�ˇ�/" sin.�e0/:

Meanwhile,

(4–47)
ae00 D ˇ�x� .1�ˇ

0/�C .1�ˇ�/"
�

cos.�e00/� cos.�e00 jv00D0/
�
:

we00 D ˇ�

�
yC

ŒQe;Qe00 �

˛˛00
xy

�
� .1�ˇ�/" sin.�e00/C 2�ˇ0

ŒQe;Qe00 �

˛00
:
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Three tasks lie ahead. Here is the first: Verify that the closures of Ke , Ke0 and Ke00

fit together where they meet along the � D �o locus to define a smoothly immersed
surface. The second task is to verify that the singular points are of the simplest sort:
Each centers a small radius ball that intersects the surface as a pair of embedded disks
that meet transversely at a single point. Here is the final task: Verify the positivity of
the local intersection number at each singular point.

The three tasks are addressed next.

Task 1 The first step here is to verify that (4–37)–(4–40) in conjunction with (3–2)
define maps to R� .S1 �S2/ that fit together across the x2 D y2 locus to provide a
smooth, symplectic embedding of some small radius disk about the origin in the x–y

plane. To be precise here, the resulting map from a small radius disk can be written so
that it sends a pair .x;y/ with norm .x2Cy2/1=2� �4 to the point with coordinates

(4–48)
�
s D x; t D qe

1

˛.�/
xyC .1� 3 cos2 �/y;

� D �oCx2
�y2; ' D qe

0 1

˛.�/
xyC

p
6 cos.�/y

�
Here, both t and ' are defined modulo 2�Z. Note that the differential at the origin of
the map in (4–48) sends @x to @s and @y to the Reeb vector field in (1–6). Thus, it
symplectically embeds a small radius disk about the origin.

By definition, the map in (4–48) agrees with that given where y > jxj using (3–2)
and (4–37)–(4–40). The verification that it agrees with the maps from (3–2) and (4–37)–
(4–40) on the other components of the complement of the x2 D y2 locus is left to
the reader except for the following comment: Algebraic manipulations can rewrite the
various maps to R� .S1 �S2/ from the other components so that they appear exactly
as depicted in (4–48) but for the addition to t and ' of some integer multiple of 2� .

The next step is to verify that the maps that are defined using (3–2) in conjunction
with (4–42)–(4–47) extend to the � D �o circle of each parametrizing cylinder so
that the union of the j� � �oj< 3� portion of the resulting images defines the image
via a proper immersion of the complement in S2 of three pairwise disjoint, closed
disks. This is done as follows: Suppose that v 2 .0; 2� ˛

0

˛
/. As written, the formulae

in (4–42) extend the definition of .ae; we/ to a small radius disk centered on .�o; v/ in
.0; �/�R=.2�Z/. Likewise, when v 2 .2� ˛

0

˛
; 2�/, then (4–43) extend the definition

of .ae; we/ to a small radius disk centered on .�o; v/ in .0; �/�R=.2�Z/. Meanwhile,
if v0 2 .0; 2�/, then (4–44) together with (4–46) extend the definition of .ae0 ; we0/

to a small radius disk about .�o; v
0/. Finally, if v00 ¤ 2� ˛0

˛00 mod .2�/, then (4–45)
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and (4–47) extend the definition of .ae00 ; we00/ to a small radius disk about .�o; v
00/ in

.0; �/�R=.2�Z/.

With these extensions understood, suppose again that v 2 .0; 2� ˛
0

˛
/. Then the extended

.ae; we/ define via (3–2) an immersion into R � .S1 � S2/ of a small radius disk
centered at .�o; v/. Set v0� ˛

˛0 v . Then (4–44) and (4–46) define via (3–2) an immersion
into R� .S1 � S2/ of a small radius disk centered at .�o; v

0/. Now, let � 2 .0; �/
and v 2 R=2� be such that j�o� � j � �4 and such that the extension of .ae; we/ is
defined at the point .�; v/ and that of .ae0 ; we0/ is defined at .�; ˛

˛0 v/. It then follows
from (4–42), (4–44) and (4–46) that
(4–49)

ae.�; v/D ae0

�
�;
˛

˛0
v

�
and we.�; v/Dwe0

�
�;
˛

˛0
v

�
C

1

˛0
.qe
0qe0 �qeqe0

0/v

These last equalities imply that the e and e0 versions of the extended maps parametrize
open subsets of a single immersed surface, this the union of the � < �oC 3� portion
of the closure of Ke0 , the closure of the portion of Ke in the image of points .�; v/
with � > �o� 3� and v 2 .0; 2� ˛

˛0 /, and the image via (4–48) of a small radius disk
centered at the origin in the .x;y/ plane.

A similar argument using (4–43), (4–45) and (4–47) proves the analogous statement for
the union of the � < �oC 3� portion of the closure of Ke00 , the closure of the portion
of Ke that is in the image of points .�; v/ with � > �o� 3� and v 2 .2� ˛

˛0 ; 2�/, and
the image via (4–48) of a small radius disk centered at the origin in the .x;y/ plane.
The details of the latter argument are left to the reader.

Task 2 The task is to describe all of the immersion points. This task is accomplished
in five steps.

Step 1 Note that ae0 > 0 except at v0 D 0 2 R=.2�Z/ and x D 0, while ae00 < 0 save
at v00 D 2� ˛0

˛00 and x D 0. However, both of these points correspond to the origin in
the x–y coordinate disk. Thus, the closures of the portions of Ke0 and Ke00 where
j� � �oj < 3� are disjoint save for the image of the origin in the x–y coordinate
disk. As a consequence, it is sufficient to focus separately on the singularities in the
respective closures of Ke , Ke0 and Ke00 .

As will now be explained, if " and � are small, then the closures of the � < �oC 3�

portions of Ke0 and Ke00 lack singular points. To argue in the case of Ke0 , note that
the variation in we0 is not greater than a multiple of �C ", so with the latter very
small, only the yx D 0 case of (4–3) and (4–4) can appear. Furthermore, no yx D 0

and yy ¤ 0 mod .m/ versions of (4–3) and (4–4) can occur in this case with one of
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v0 and v0 � 2� yy
m

very close to 0 in R=.2�Z/. Indeed, such is the case because ae0

achieves its unique maximum on any given constant � circle at the origin in R=.2�Z/.
This understood, the existence of any yx D 0 and yy ¤ 0 mod .m/ solutions to (4–3)
and (4–4) is precluded by virtue of two facts: First, �e0 is a diffeomorphism. Second,
if the respective values of the cosine function agree at two distinct points in R=.2�Z/,
then the corresponding values of the sine function do not.

Except for notational changes, the argument just given also proves the assertion that
the � < �o� 3� part of the closure of Ke00 is embedded.

Step 2 Turn next to the case of Ke . In this regard, keep in mind that points .�; v/ and
.� 0; v0/ in the parametrizing domain are mapped to the same point if and only if the
conditions in (4–2) are obeyed for some integer pair N . Equivalently, the conditions
in (4–3) and (4–4) are obeyed for some pair .yx; yy/ 2 Z�Z=.mZ/, and

(4–50) v0 D v� 2� yx
˛Z .�/

˛Qe
.�/
� 2�

yy

m
mod .2�Z/

To start the story for Ke , note that ae > 0 when v 2 .0; 2� ˛
0

˛
/, while ae < 0 in the

case that v 2 .2� ˛
0

˛
; 2�/. Thus, the respective images of the maps that are defined

via (3–2) by (4–42) and (4–43) are disjoint except where their domains overlap, where
v D 0 and v D 2� ˛

0

˛
. On both of these loci, ae D 0. In any event, it is sufficient to

consider separately the cases where v 2 Œ0; 2� ˛
0

˛
� and where v 2 Œ2� ˛

0

˛
; 2��, but taking

care not to double count any immersion points that occur where v D 0 or v D 2� ˛
0

˛
.

The next point to make is that the values of either ˇ� or ˇ0 at any point mapping to
a singular point must be non-zero when " and � are small. Indeed, with a reference
to (4–42), an argument given previously establishes the existence here of a positive
lower bound for ˇ� C ˇ0 that depends only on �o , Qe and Qe0 . Thus, solutions
to (4–3) and (4–4) where � 2 .�o�3�; �o� can occur only where j�o�� j< 2�4 , or in
the image of a point where x2Cy2 � 4�2 via the map in (4–48).

The subsequent discussion involves the number }0 2 Œ0; 1/ that is defined for each pair
.yx; yy/ 2 Z�Z=.mZ/ by the condition

(4–51) }0 D yx
˛Z .�o/

˛.�o/
C
yy

m
mod .Z/:

Because any small " and � version of jwej in (4–42) is a priori bounded by a constant
that depends only on �o , Qe and Qe0 , so the set of pairs .yx; yy/ that allow a solution
to (4–3) and (4–4) where ˇ� > 0 or where ˇ0 > 0 has size bounded by �o , Qe and
Qe0 . Thus, the set of values of }0 that can arise from such pairs has a corresponding
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upper bound to its size. Moreover, the possible values for }0 in this set are determined
a priori by �o , Qe and Qe0 .

With }0 so defined, introduce the function of � given by

(4–52) } � }0C yx

�
˛Z .�/

˛.�/
�
˛Z .�o/

˛.�o/

�
:

Note that if � is such that ˇ0 > 0, then j} �}0j � �jyxj�
4 where � is determined

solely by �o , Qe and Qe0 . Note as well that the relation in (4–50) between v0 and v
can be summarized succinctly by the formula v0 D v� 2�} mod .2�Z/.

Step 3 Suppose now that .�; v/ is a solution to some given .yx; yy/ version of (4–3)
and (4–4) with v 2 Œ 1

˛
�2; 2� ˛

0

˛
�

1
˛
�2� and ˇ0.�/ > 0. Granted (4–42), the condition

in (4–4) is equivalent to

(4–53) cos
�
v��

˛0

˛
� 2�}

�
D cos

�
v��

˛0

˛

�
If � is small and � fixed, there are at most two values for v that lie in the indicated
range and satisfy (4–53). To elaborate, without the constraint on the domain of v , there
are precisely two solutions to equation in (4–53) for the given value of � ; one is the
point �.˛

0

˛
C}/, and the other is �.˛

0

˛
C} � 1/. Moreover, if � is sufficiently small

and ˛0

˛
< 1

2
, then at most one of these lies in the required interval. If ˛0

˛
> 1

2
, then at

least one of the two is in this interval.

In any event, if �.˛
0

˛
C}/ lies in Œ 1

˛
�2; 2� ˛

0

˛
�

1
˛
�2�, then so does �.˛

0

˛
�}/; and

if �.˛
0

˛
C} � 1/ lies in Œ 1

˛
�2; 2� ˛

0

˛
�

1
˛
�2�, then so does �.˛

0

˛
C 1�}/. This said,

note that if any given .yx; yy/0s version of } puts �.˛
0

˛
C}/ in Œ 1

˛
�2; 2� ˛

0

˛
�

1
˛
�2�,

then the corresponding version of } for the pair .�yx;m� yy/ has �.˛
0

˛
C} � 1/ in

this same interval. The converse is also true. Moreover, this correspondence does not
alter the corresponding intersecting disks in Ke since it amounts to switching v with
v0 . Thus, it is enough to consider the case that �.˛

0

˛
C}/ lies in the desired interval

Œ 1
˛
�2; 2� ˛

0

˛
�

1
˛
�2�. Note that when � is small, such is the case if and only if

(4–54) }0 <
˛0

˛
j�D�o

To start the analysis, use (4–42) to write (4–3) as

(4–55) " sin.�}/D �m
1

˛0

�
ˇ0}

ŒQe;Qe0 �

m
�
˛0

˛
yx

�
:
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This last equation should be viewed as a condition on � . In particular, because ˇ0 takes
values in [0, 1], and because ŒQe;Qe0 �D �ŒQe0 ;Qe00 � � 0, any small " and � < "2

version of (4–55) can be satisfied by some � 2 Œ�o� 3�; �o� if and only if

(4–56) 0< yx
˛0

˛
j�D�o

< }0

ŒQe;Qe0 �

m
:

Moreover, this solution occurs at a value of � where

(4–57)
ˇ0 2 .�; .1� �//:

ˇ0}
ŒQe;Qe0 �

m
�
˛0

˛
yx >

1

�
":

Here, � 2 .0; 1/ is a constant that depends only on �o , Qe and Qe0 . Finally, if
" is small, if � < "2 , and if (4–56) holds, then there is a unique choice of � that
solves (4–55).

There is one last point to make for the cases when }0 obeys (4–54): Distinct values
for the pair .yx; yy/ produce disjoint singular points in Ke . To explain, note first that by
virtue of the fact that the respective values of ae that arise must be equal, two choices
for .yx; yy/ can produce the same singular point in Ke only if the corresponding values
for }0 agree. Granted this, if the resulting singular points have the same � coordinate,
then (4–55) demands that the respective values for yx agree. Thus, so do the values for
yy .

Step 4 The story in this step concerns the cases where (4–3) and (4–4) hold with a value
of v either in Œ2� ˛

0

˛
�

1
˛
�2; 2� ˛

0

˛
� or in Œ0; 1

˛
�2�. As is explained next, no solutions

to (4–3) and (4–4) with such values for v result in Ke singularities singularities if "
and � are small, and if �o is suitably generic.

To begin the explanation, assume for the moment only that v is within 1
˛
�2 of either 0

or 2� ˛
0

˛
. If v 2 Œ2� ˛

0

˛
�

1
˛
�2; 2� ˛

0

˛
�, then (4–4) requires that }0 is either 0 or equal

to the value of ˛
0

˛
at �o . If v 2 Œ0; 1

˛
�2�, then }0 is either zero or equal to the value of

1� ˛0

˛
at �o . In this regard, note that when " and � are small, the case where }0 D 0

requires yx D 0 and thus yy D 0 as well. Thus, the }0 D 0 case does not lead to a
singularity in Ke . Meanwhile, at the risk of replacing the pair .yx; yy/ with .�yx;m� yy/,
it is sufficient to study the case where v 2 Œ2� ˛

0

˛
�

1
˛
�2; 2� ˛

0

˛
� and where }0 is equal

to the �o value of ˛
0

˛
.

To see what this last condition implies, write Qe0 D ŒQe0 ;Qe �ZC
w
m

Qe where w 2 Z.
Doing so identifies

(4–58)
˛0

˛
D ŒQe0 ;Qe �

˛Z

˛
C
w

m
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and so the condition on }0 requires that

(4–59) .ŒQe0 ;Qe �� yx/
˛Z

˛
D 0 mod

�
1

m
Z

�
:

Now, if �o is suitably generic, then the ratio ˛Z=˛ will be irrational, and so the only
solution to (4–59) is that where yxD ŒQe0 ;Qe �. However, with " and � small, a glance
at (4–42) shows that such a value for yx is incompatible with the condition in (4–52)
unless ŒQe0 ;Qe � and yx both vanish. Indeed, such is the case because

(4–60) we.�; v� 2�}/�we.�; v/D 2�ˇ0
ŒQe;Qe0 �

˛
C o."C �/;

and this has the same sign as �yx in the case that yx D ŒQe0 ;Qe �, neither are zero and
both " and � are small.

To rule out the case that both ŒQe0 ;Qe �D 0 and yx D 0, note that (4–42) demands that
the resulting singularity in Ke is the image of two points in the .x;y/ plane via the
map in (4–48) where one has the form .0;y/ and the other .0;�y/. Moreover, (4–4)
demands that y obey

(4–61) ˇ�jyj D �.1�ˇ�/" sin
�
�
w

m

�
where w 2 f1; : : : ;m�1g is the integer that appears in (4–58). Since � w

m
D
˛0

˛
in this

case and since ˛0

˛
2 .0; 1/, the right hand side of (4–61) is non-positive and the left

hand side is non-negative. Since the two sides can not vanish simultaneously, there are
no values of y that make (4–61) hold.

In the case that �o is special and so there is an yx ¤ ŒQe0 ;Qe � solution to (4–59), there
may well be solutions to (4–3) and (4–4) with v 2 Œ2� ˛

0

˛
�

1
˛
�2; 2� ˛

0

˛
�. These can be

analyzed with much the same machinery as used for when v is further from either 0 or
2� ˛

0

˛
. To keep an already long story from getting longer, this task is left to the reader,

as is the task of verifying that the resulting singularities of Ke are transversal with
local self-intersection number 1.

Step 5 This final step characterized the singularities in the closure of Ke that lie where
j�0�� j< 3� and v 2 Œ2� ˛

0

˛
; 2��. The story here is much as in Step 3 and Step 4. First,

when �o is sufficiently generic, there are no solutions that lie in the image via the map
in (4–48) of points where ˇ� ¤ 0. Second, if " and � are sufficiently small, then all
singularities in Ke must lie where ˇ0.�/ is bounded away from zero by a constant that
depends only on �o , Qe and Qe0 . Third, if .�; v/ and .� 0; v0/ map to the same point
in Ke , then � D � 0 and v0 D v� 2�} mod .2�Z/ where } is defined as in (4–52).
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Here, }0 2 [0, 1) is defined from some pair .yx; yy/ as in (4–51). In addition, (4–53)
must hold. As a consequence, if v is taken to be a real number in Œ2� ˛

0

˛
; 2��, then v

must have one of two forms: Either v D �.1C ˛0

˛
C}/ or else v D �.˛

0

˛
C}/. In the

former case, 1�} > ˛0

˛
and in the latter, } > ˛0

˛
. For essentially the same reasons

as before, it is only necessary to consider one of these two sorts of cases, and so the
discussion below makes the assumption that v D �.1C ˛0

˛
C}/ and that 1�} > ˛0

˛
.

In this regard, note that when � is small, then the latter condition holds if and only if
1�}0 >

˛0

˛
.

With this last assumption understood, then v0D�.1C ˛0

˛
�}/ is also in Œ2� ˛

0

˛
; 2�� and

v > v0 . This being the case, a referral to (4–43) finds (4–3) equivalent to the condition

(4–62) �" sin.}/D �m
1

˛00

�
ˇ0
ŒQe;Qe00 �

m
} �

˛00

˛
yx

�
:

As with its analog in (4–55), this should be viewed as an equation for � . As such, it
has a solution if and only if

(4–63)
ŒQe;Qe00 �

m
}0 < yx

˛00

˛

ˇ̌̌̌
�D�o

< 0:

Moreover, when " is small and � is very small, then the solution is unique and it occurs
where

(4–64)
ˇ0 2 .�; 1� �/:

ˇ0
ŒQe;Qe00 �

m
} �

˛00

˛
yx <

1

�
";

where � 2 .0; 1/ is a constant that depends only on �o , Qe and Qe0 .

An argument from Step 3 also applies here to prove that each singular point in the
ˇ0 > 0 and v 2 Œ2� ˛

0

˛
; 2�� portion of Ke lies in a ball whose intersection with Ke is

the union of two embedded disks that meet only at their centers.

Task 3 The task here is to verify that small " and very small � guarantees that the
singularities in the � > �o� 3� portion of Ke are those of transversally intersecting
disks with positive local intersection number. For this purpose, use .a; w/ and .a0; w0/
to denote the respective versions of the parametrizing functions that come from the
two disk that are involved at the given intersection point. Use .@� ; @v/ and .@� 0; @0v/
to denote the corresponding versions of the push-forward that are depicted in (4–33).
Consider first the case where the inverse image in the parametrizing cylinder of the
singular point in the unprimed disk is a point .�; v/ with v D �.˛

0

˛
C}/ and with
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} < ˛0

˛
. In this case, the primed pair is the image of .�; v0/ with v0D�.˛

0

˛
�}/. Thus,

both v and v0 lie in the interval .0; 2� ˛
0

˛
/.

In the present situation, the intersection is transversal if � as defined in (4–34) is
non-zero; and then the sign of � is the local sign at the intersection point. In the case
at hand, a referral to (4–42) finds that

(4–65)
av � a0v D�2" sin.�}/ < 0:

w� �w
0
� D 2�}

ŒQe;Qe0 �

˛0
ˇ0� C o.1/:

Here, the term that is designated as o.1/ is uniformly bounded no matter how small
" and � . By virtue of (4–57), ˇ0� is bounded from below by �0��4 , with �0 > 0

depending solely on �o , Qe and Qe0 . Meanwhile, ŒQe , Qe0 � = - ŒQe0 , Qe00 � and thus
is positive. Therefore, � is positive and so the local sign at the intersection point is C1.

To continue with the assigned task, the second case to consider are those intersections
where v D �.˛

0

˛
C 1C }/ and 1� } > ˛0

˛
. Here, v0 D �.˛

0

˛
C 1� }/. Thus, the

self-intersections that occur in the case at hand occur at values of v and v0 that lie in
the interval .2� ˛

0

˛
; 2�/. This noted, then referral to (4–43) finds

(4–66)
av � a0v D 2" sin.�}/ > 0:

w� �w
0
� D 2�}

ŒQe;Qe00 �

˛00
ˇ0� C o.1/;

where the term designated as o.1/ has the same properties as its analog in (4–65). In
this case, the second line in (4–66) is very negative when � is small, so � is again
positive and the local intersection number is equal to 1.

4.E Intersections between distinct cylinders

The purpose of this next to last subsection is to complete the proof of Theorem 3.1
in the case that all partition sets that define T have a single element. In this regard,
the task here is to verify that the intersections between cylinders Ke and Ke0 when
e ¤ e0 are distinct edges in the graph T are transversal with positive local intersection
number.

To see how such a guarantee can be made, suppose that e is any given edge. The
immersion constructed in the preceding subsections that defines Ke involved the
specification of data

˚
�e0; �e1; "e; a

0
e ; w

0
e ; v

0
e

	
where "e; a

0
e ; w

0
e and v0

e are functions
of the coordinate � on the parametrizing cylinder, and where the other two are constant
and positive. Although subsequent subsections gave upper bounds for "e near the
boundaries of the parametrizing cylinder there is no positive lower bound near these
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boundaries. With "e chosen near boundaries of the parametrizing cylinder, upper
bounds were then specified for the constants �e0 and �e1 , but there were no positive
lower bounds. As is explained below, the transversality of all intersections between
all pairs of distinct Ke and Ke0 is guaranteed with careful choices for the various
versions of

˚
"e; �e0; �e1; a

0
e ; w

0
e ; v

0
e

	
. As should be evident from details below, all

new constraints on
˚
"e; �e0; �e1; a

0
e ; w

0
e ; v

0
e

	
are compatible with those given in the

previous subsections.

The discussion in the remainder of this subsection is divided into eight parts.

Part 1 There is an immediate issue that arises when edges e0 and e00 have monovalent
vertices that share an angle assignment. Of concern is to choose the eD e0 and eD e00

versions of f"e; �e0; �e1; a
0
e ; w

0
e ; v

0
e g so as to keep the resulting versions of Ke0 and

Ke00 disjoint at values of � that approach the common vertex angle assignment. The
discussion of this issue addresses the respective cases where the angle label in question
is 0, � , and then neither 0 nor � .

The case of angle 0

Let o0 and o00 denote the respective vertices on e0 and e00 with angle label 0. Now,
o0 has a label from yA, either of the form .1;C; : : :/, .1;�; : : :/ or simply f1g. In the
first case, s!1 on Ke0 as �! 0, in the second case, the function s has a finite limit
as � ! 0, and in the third case, s!�1 on Ke0 as � ! 0. Of course, o00 has one of
these three sorts of labels also.

Now, suppose that o0 is labeled by an element of the form .1;C; : : :/ from yA and o00

by either an element f1g from yA or one of the form .1;�; : : :/. In this case, make
both a0

e0 and a0
e00 constant at values of � where either the e0 or e00 version of the

relevant (4–6) or (4–8) holds. Choose these constants so that a0
e0 � a0

e00 ; this then
makes Ke0 disjoint from Ke00 where either version of which ever of (4–6) or (4–8)
holds. A similar choice for a0

e0 and a0
e00 guarantees this same conclusion when o0 is

labeled by f1g and o00 by .1;�; : : :/.

Suppose next that ŒQe0 , Qe00 � < 0 and that both o0 and o00 are labeled by .1;C; : : :/
elements from yA. Granted this, take �e00� �e00 , and take a0

e0 and a0
e00 to be constant

where either version of (4–6) holds with a0
e0� a0

e00 . This makes Ke0 and Ke00 disjoint
where either version of (4–6) holds. In the case that ŒQe0 ;Qe00 � < 0 and both o0 and
o00 are labeled by an .�1;�; : : :/ element from yA, now take �e00� �e000 , and take
a0

e0 and a0
e00 to be constant where either version of (4–6) holds, but keep a0

e0 � a0
e00 .

To continue, suppose that ŒQe0 , Qe00 � D 0. The simplest case has both o0 and o00

labeled by (1). Here, it is sufficient to take a0
e0 and a0

e00 to be constant where either
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version of (4–8) holds, but with ja0
e0 � a0

e00 j > 1. Such a choice makes Ke0 and Ke00

disjoint where either version of (4–8) holds.

Here is the story when ŒQe0 ;Qe00 �D 0 and both o0 and o00 are labeled by .1;C; : : :/
elements from yA, or both by .1;�; : : :/ elements from yA. In either case, make
�e00D �e000 , both "e0 and "e00 much less than 1. Then, make both a0

e0 and a0
e00 constant

where either version of (4–6) holds, but with ja0
e00 j � jae00 j> 1. This then guarantees

that Ke0 is disjoint from Ke00 where (4–6) holds. and both "e0 and "e00 much less than
1 to insure that Ke0 and Ke00 are disjoint where either version of (4–6) holds.

The case of angle �

Each of the angle 0 subcases just described has a very evident angle � analog and vice
versa. The stories for the corresponding angle 0 and angle � subcases are identical
save for some notation and sign changes. This understood, the angle � cases are left
to the reader save for the following equations that give the angle � versions of (4–6)
and (4–7):

(4–67)
ae D

1

�
ˇ0 ln.� � �/C a0

e C
�
".1�ˇ0/C .� � �/ˇ0

�
cos.vC v0

e /:

we D .1�ˇ
0/w0

e �
�
".1�ˇ0/C .� � �/ˇ0

�
sin.vC v0

e /:

Here, "� "e and

(4–68) � ��
q0e
qe
C

r
3

2
;

Note that the angle � version of (4–8) has the same form as the original.

The case of neither 0 nor �

Let e0 and e00 again denote the two edges that are involved. The first point to make is
that Ke0\Ke00 D∅ if the vertex o0 has the smaller angle label of the two vertices on e0

while o00 has the larger of the two angle labels of the vertices on e00 . This understood,
consider the case where the angle labels of o0 and o00 are either both the smaller of
the two angle labels on their incident edges. In this case, take �0e0 D �0e00 , with both
much less than 1. Likewise, choose "e and "e0 to be very small. Finally, take both a0

e0

and a0
e00 to be constant with

ˇ̌
a0

e0 � a0
e00

ˇ̌
> 2� where (4–9) is valid. This makes Ke

and Ke0 disjoint where (4–9) holds.

Part 2 There is also an issue to address in the case that two bivalent vertices in T

have the same angle assignment. Let o denote the first and let e and e0 denote its
incident edges using the usual convention where �o is the larger of the angles that are

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R�.S1�S2/ 899

assigned to the vertices on e . Let yo denote a vertex with �yo D �o , and let ye and ye0

denote the corresponding incident edges. Let Yo denote the closure of Ke [Ke0 and
let Yyo denote that of Kye [Kye0 . Since s!1 on both Yo and Yyo along certain paths
where � limits to �0 , these two subvarieties may well intersect where � is near �o . The
goal is to insure that the intersection points are transversal with positive intersection
number.

For this purpose, keep in mind that both Yo and Yyo converge in S1 �S2 as multiple
covers of � D �� Reeb orbits. Let o and yo denote the latter. Note that o is
determined by the � D �0 value for the parameter v0

e , and yo is determined in an
analogous fashion by v0

ye
. In particular, if the respective constant values of v0

e D v
0
e0

and v0
ye
D v0
ye0 near the � D �o circles in the relevant parametrizing domains are chosen

to be unequal and sufficiently generic, then o and yo will be distinct Reeb orbits.
Choose these two angles to insure that such is the case.

To continue, take �e1� �ye1 and take a0
e and a0

ye
both constant with a0

ye
� a0

e at points
in the respective parametrizing cylinders where � is within 3�ye of �o . In particular,
choose a0

ye
� a0

e�2 ln.�e1/. Likewise, make a0
e0 and a0

ye0 both constant with a0
ye0� a0

e0

at points where � < �0 C 3�ye in their respective parametrizing cylinders. If �ye1

is sufficiently small, then these choices have the following consequences: First, all
intersections between Yo and Yyo occur at points in Yo at very large s, in particular
where the o version of the coordinates .r; �/ are defined and where the corresponding
ˇ� D 1. More to the point, these intersection points occur where Yo looks very much
like a multiple cover of the R–invariant cylinder R�o . Meanwhile, these intersection
points occur in Yyo where the yo version of ˇ� is zero.

Granted the preceding, keep in mind the following: Let I denote an arc with compact
closure in an orbit of the Reeb vector field. Then R�I has transversal intersections with
the closure of any given version of K.�/ , and that these intersection points have positive
local intersection number. As can be verified using (4–33), this is a consequence of the
positivity of the relevant version of the function ˛Q .

Now, as remarked, if �e1 � �ye1 and if a0
e � a0

ye
, then Yo looks very much like

the cylinder R� o where it intersects Yyo . Meanwhile, neighborhoods in Yyo of the
intersection points are constant translates along R in R � .S1 � S2/ of a standard
embedding. This understood, it should not come as a surprise that these intersections
are also transversal and have positive intersection number. It is left to the reader as an
exercise with (4–14), (4–15) and (4–33) to verify that such is the case.

Part 3 This part of the discussion provides an overview of the strategy that is used
below to control the remaining intersections between distinct versions of K.�/ .
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To start, suppose that e0 and e00 are edges of T , and that ��0 < ��1 are values of � on
both Ke0 and Ke00 . In addition, suppose that both the e D e0 and e D e00 versions of
the pair .ae; we/ are given by (4–1) when � 2 Œ��0; ��1�. It then follows from (3–2)
that Ke0 and Ke00 are disjoint provided that

(4–69) ja0
e0 � a0

e00 j> "e0 C "e00 when � 2 Œ��0; ��1�:

The pair Ke0 and Ke00 are said below to be ‘well separated’ at a given value, �� , of
� if (4–1) describes the e D e0 and e D e00 versions of .ae; we/ and if the inequality
in (4–69) holds at � D �� . So as to avoid repetitive qualifiers, the respective portions
of two versions of K.�/ where � has a given range are also deemed ‘well separated’ in
the event that one or both such portions is empty.

The strategy used below keeps the various versions of K.�/ pairwise well separated as
much as possible. To implement the strategy, first fix some positive constant � , smaller
than the constant ı that was introduced in Subsection 4.A. Thus, � is much smaller than

1
1000

times the difference between the larger and smaller of the angles that label the
vertices on any given edge of T . Agree to make sure that all versions of �e0 and �e1

are much less than � . The plan is to keep the versions of K.�/ pairwise well separated
at angles with distance 2� or more from the angles that label T ’s vertices. To be
precise, the various versions of a0

e are taken to be locally constant on the complement
in Œ0; �� of the points with distance 2� or less from the finite set of angles that label
the vertices of T . Of course, these constant values are chosen to insure that (4–69) is
pairwise obeyed.

Granted the preceding, it is worth noting in advance those values of � where well
separation must be abandoned. It proves useful for this purpose to have on hand a
particular proper immersion of T into the rectangle Œ�1; 1�� Œ0; ��. To define this
immersion, first map the monovalent and bivalent vertices to the boundary of the
rectangle Œ�1; 1�� Œ0; �� in the following manner: Each vertex whose label from yA

has the form .�;�; : : :/ is placed on f�1g � Œ0; �� by using its angle label for the
Œ0; �� factor. The analogous rule places each vertex from yA of the form .�;C; : : :/ on
f1g� Œ0; ��. Put each monovalent vertex with label (1) from yA on .�1; 1/�f0g, and
put each with a .�1/ label on .�1; 1/�� . In this regard, if e is the incident edge to
such a vertex, set the horizontal coordinate of the vertex equal to the value of tanh.a0

e/

at either � D 0 or � D � as the case may be. If o is any given trivalent vertex, use �o

to denote its angle label, and place o on .�1; 1/� �o .

To finish the construction, it is necessary to identify each edge of T with an arc in
the rectangle that runs between the relevant vertices. This is to be done so that the
interior of each arc avoids the boundary of the rectangle and also avoids all vertices. In
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addition, the horizontal coordinate on the rectangle must restrict without critical points
to each arc.

The vertical coordinate on the arc labeled by a given edge e at any given interior point
is written below as tanh.se/ with se 2 R.

If e0 and e00 are distinct edges and if their representative arcs can be drawn without
interior intersections, then Ke0 and Ke00 can be kept well separated. Indeed, this can be
done along the following lines: Use � to denote the vertical coordinate in the rectangle.
As � has nowhere zero derivative on each arc, so the corresponding version of s.�/ can
be viewed as a function of � . This understood, identify a0

e0 and a0
e00 with se0 and se00 .

If "e0 and "e00 are made very small, the resulting Ke0 will then be well separated from
Ke00 .

As might be expected, crossing of these edge labeled arcs may be unavoidable. To
identify the necessary arc crossings, draw the edge labeled arcs by starting at the top
edge of the rectangle, Œ�1; 1�� f�g, and proceeding downwards. To conform to what
has been said already, all edge labeled arcs will be drawn as vertical arcs except perhaps
where the horizontal coordinate has distance 2� or less to an angle that labels a vertex in
T . Of course, distinctly labeled vertical arcs will have distinct horizontal coordinates.

With the arcs drawn in this manner, the following are the only circumstances that may
require one arc to cross another:

�(4–70) If edges e and ye have monovalent vertices that share an angle assignment
in .0; �/, then a crossing of their arcs may be necessary to keep the a0

e and
a0
ye

assignments compatible with those given already in Part 1.

� Let o denote a monovalent vertex with a label .0;�; : : :/ and suppose that
e is the incident edge. Let ye denote a second edge whose vertices are
assigned angles that are distinct from �o . The arcs labeled by e and ye
must cross in the case that se and sye are both defined with se > sye at the
relevant � 2 f�0˙ 2�g. It follows from (4–9) that no crossing is necessary
if se < sye at this value of � .

� Let o denote a bivalent vertex and suppose that e is an edge that is incident
to o. The arc labeled by e must cross that labeled by some other edge ye if
se and sye are both defined with se < sye at the relevant � 2 f�o˙ 2�g. It
follows from (4–14) and (4–15) that no crossing is necessary if se > sye at
this value of � .

� Let o denote a trivalent vertex that connects by two incident edges to
vertices with larger angle label. Denote these two edges by e0 and e00 . Then
the respective arcs labeled by e0 and e00 cross in the case that ŒQe0 ;Qe00 �<0
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and se0 < se00 at � D �oC 2� . It follows from (4–46) and (4–47) that no
crossing is necessary if both ŒQe0 ;Qe00 � < 0 and se0 > se00 at � D �oC 2� ,
or if ŒQe0 ;Qe00 �D 0.

� Let o, e0 and e00 be as in the previous point. Let ye denote a third edge and
suppose that sye is defined at � D �oC 2� and suppose that it lies between
se0 and se00 . Then the arc labeled by ye must cross either that labeled by e0

or that labeled by e00 .
� Let o and o0 both denote vertices with angle label 0. Then the respective

arcs that are labeled by the incident edges to o and o0 may have to cross to
keep the a0

e0 and a0
e00 assignments compatible with those given already in

Part 1 of this discussion.

Part 5–Part 8 below address these various cases.

Part 4 This part of the story relates two observations that are subsequently exploited
in the case that Ke0 and Ke00 can not be kept well separated.

Observation 1 This observation concerns an example where (4–69) holds at � D ��0
and � D ��1 , fails in between, yet Ke0 and Ke00 remain disjoint. In particular, if Qe0

is proportional to Qe00 , then the respective signs of a0
e0 � a0

e00 can differ at � D ��1
and at � D ��0 with Ke0 still disjoint from Ke00 .

To explain, note that whether or not Qe0 and Qe00 are proportional, a point .�; v0/ in
the parametrizing cylinder for Ke0 and a point .�; v00/ in the parametrizing cylinder
for Ke00 are sent via the relevant versions of (3–2) to the same point in R� .S1 �S2/

if and only if the following holds: There is an R–valued lift, yv0 , of v0 , a corresponding
lift, yv00 , of v00 , and an integer pair N D .n; n0/ such that

(4–71)

˛Qe0 yv
0
D ˛Qe00 yv

00
� 2�˛N

ae0.�; v0/D ae00.�; v00/

we00.�; v0/D we00.�; v00/�
1

˛Qe0

ŒQe0 ;Qe00 �yv00C 2�
1

˛Qe0

ŒQe0 ;N �

Now, if Qe0 is proportional to Qe00 then the middle term in the lowest line above
is zero. Such being the case, let � denote the maximum of the Q D Qe0 version
of ˛Q over the interval Œ��0; ��1�. Then the third point in (4–71) can not be met if
0< jwe0 �we00 j< 2� 1

�
in this interval. This last condition can be achieved by suitable

choices of w0
e0 and w0

e00 if "e and "e00 are small. Of course, if the third condition
in (4–71) can not be met, then no amount of variation in a0

e0 and a0
e00 on Œ��0; ��1� will

make Ke0 intersect Ke00 .
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Observation 2 Intersections between Ke0 and Ke00 are allowed when transversal with
C1 local intersection number. This can always be arranged at values of � in .��0; ��1/
if the following three conditions hold: First, ŒQe0 ;Qe00 � < 0. Second, (4–69) holds at
both � D ��0 and at � D ��1 . Finally, a0

e0 �a0
e00 is positive at � D ��0 but negative at

� D ��1 .

To explain this last claim, note that when both "e and "e0 are sufficiently small,
then (4–33) dictates that the intersections between Ke0 and Ke00 where � 2 .��0; ��1/
are transversal with sign that of .a0

e0 � a0
e00/� ŒQe0 ;Qe00 �. Thus, if the given conditions

are satisfied, then the variation of a0
e0 and a0

e00 over Œ��0; ��1� can be arranged to
guarantee the given conclusions.

Part 5 This part of the discussion considers the cases in the first and second points
of (4–70). In the situation outlined by the first point, any two edges that are involved will
have respective versions of Q.�/ that are proportional. With this understood, then the
first observation in the preceding Part 4 can be used to keep the corresponding versions
of K.�/ disjoint in spite of the crossing of the corresponding arcs in Œ�1; 1�� Œ0; ��.

Turn now to the second point in (4–70). Suppose that o is a monovalent vertex in T

with label .0;�; : : :/ from yA. Suppose first that � takes values that are greater than
�o on Ke . If, as assumed, a0

e > a0
ye

at � D �oC 2� , then a suitable modification of a0
e

can guarantee that the � 2 .�o; �oC 2�/ intersection points between Ke and Kye are
transversal and have C1 local intersection number.

To explain, take �e0 to be very small, and let ��0 � �oC 2�e0 and ��1 � �oC 2� .
The assumption here is that a0

ye
� a0

e is negative at ��1 . The goal then is to modify
a0

e inside the interval .��0; ��1/ so that a0
ye
� a0

e is positive at ��0 . For this purpose,
keep in mind that the pair Qe is equal to m.p;p0/ with m a positive integer and with
.p;p0/ the relatively prime pair of integers that �o defines via (1–7). As such, there is
a positive number, � , such that

(4–72) ˛Qye
.�o/D �ŒQe;Qye �

Since the right hand side of (4–72) is positive, so ŒQe;Qye � > 0. This understood, if ye
and e are respectively renamed as e0 and e00 , then the final observations in Part 4 can
be applied here to find the desired modification of a0

e .

Consider next the case that � takes values on Ke that are less than �o . In this case,
set ��0 D �0� 4�e1 and set ��1 D �0� 2� . By assumption, a0

e � a0
ye
> 0 at � D ��0 ,

and the goal is to modify a0
e inside the interval .��0; ��1/ so that a0

e � a0
ye

is negative
at � D ��1 . For this purpose, note that Qe in this case is equal to �m.p;p0/ with m

a positive integer and with .p;p0/ as before. Thus, (4–72) holds with � < 0 and so
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ŒQye;Qe � > 0. In this case, agree to relabel ye as e00 as e as e0 . This done, then the
observations in Part 4 again apply to give the desired modification of a0

e .

Part 6 This part considers the third point in (4–70). Consider here the case that o is
a bivalent vertex in T . Let e and e0 denote the edges of T that contain o with the
convention taken here that � takes values that are less than �o on Ke . Let �� denote
the equal values of �e1 and �e00 . Now, suppose that ye is a third edge and that �o is a
value of � on Kye . As noted in (4–70), in the case that a0

ye
< a0

e where � D �o � 2�

then it is a straightforward consequence of (4–14) and (4–15) that the values of a0
ye

can
be modified if necessary where j� � �oj < 2� so as to guarantee that Kye is disjoint
from the j� � �oj � 2� part of the closure of Ke [Ke0 .

On the other hand, if a0
ye
� a0

e > 0 where � D �o� 2� , then it may not be possible to
modify a0

ye
where j� � �oj � 2� so that Kye avoids the � 2 Œ�0� 2�; �oC 2�� portion

of the closure of Ke [Ke0 . However, as is explained next, there are modifications that
guarantee that all intersection points here are transversal with C1 local intersection
number.

To see how this such modifications come about, suppose that a0
ye
>a0

e where �D�o�2� .
In this case, keep a0

e constant where � 2 Œ�o�2�; �o��� but make a0
ye

a non-decreasing
function of � in this interval so that the result is constant near �o� � and is such that
a0
ye
��4 ln.��/ at � D �o � � . In particular, make this constant value greater than

�4 ln.��/ plus the supremum of the values of a0
e and a0

e0 on the j����j< 2� portions
of their parametrizing cylinders. This done, keep a0

ye
constant on Œ�o� �; �oC ��, thus

huge. Now, the larger this constant value for a0
ye

, the closer Ke [Ke0 is to an R–
invariant cylinder where it comes near Kye . With this in mind, the argument used in Part
2 can be repeated in the case at hand to guarantee that the intersection points between
Kye and the closure of the � 2 Œ�o�2�; �oC2�� part of Ke [Ke0 are transversal with
C1 local intersection numbers if the constant value of a0

ye
on the interval Œ�0��; �oC��

is sufficiently large.

Part 7 This part considers the fourth and fifth points in (4–70). In the case of the
fourth point, the second observation of Part 4 can be employed to defined a0

e0 and
a0

e00 where � 2 Œ�0C �; �oC 2�� to the following effect: First, all � 2 Œ�o; �oC 2��

intersections between Ke0 and Ke00 occur where � 2 Œ�oC�; �oC2��, are transversal,
and have +1 local intersection number. Second, a0

e0 � a0
e00 > "e0 C "e00 at � D �oC � .

Consider next the situation that is described in the fifth point of (4–70). To start, set
the convention so that ŒQe0 ;Qe00 �� 0. Use e to denote the third of the incident edges
to o, and use �� to denote the common values of �e1 , �e00 and �e000 .
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There are two cases to consider. The first case has a0
e00 > a0

ye
> a0

e0 at � D �oC2� . With
the first two observations of Part 4 in mind, there is no cause for concern in this case
if either ŒQye;Qe00 � � 0 or ŒQye;Qe0 � � 0. An argument that rules out the possibility
that both inequalities fail simultaneously invokes an identity that concerns a set of four
ordered pairs of real number: Denote the four ordered pairs as fAkgkD0;1;2;3 , and here
is the identity:

(4–73) ŒA1;A2�ŒA3;A0�C ŒA2;A3�ŒA1;A0�C ŒA3;A1�ŒA2;A0�D 0:

In this last equation, the bracket between a pair AD .a; a0/ and another, B D .b; b0/ is
again defined by the rule ŒA;B�D ab0�a0b . This last identity is now applied with A0

equal to the value of .1� 3 cos2 �;
p

6 cos �/ at � D �oC 2� , A1 DQe0 , A2 DQe00

and A3 DQye . With these assignments, (4–73) is equivalent to the assertion that

(4–74) ŒQe0 ;Qe00 �˛Qye
C ŒQe00 ;Qye �˛Qe0 C ŒQye;Qe0 �˛Qe00 D 0:

Since the various versions of ˛Q are positive and since ŒQe0 ;Qe00 �� 0, this equality
rules out the possibility that both ŒQye;Qe00 � > 0 and ŒQye;Qe0 � < 0.

In the second case, a0
e0 >a0

ye
>a0

e00 at � D �oC2� . If ŒQe00 ;Qye �� 0 or if ŒQye;Qe0 �� 0,
then the second observation in Part 4 above can be applied to suitably modify a0

ye
where

� 2 Œ�o� 2�; �oC 2�� so that the resulting version of Kye intersects the portion of the
closure of Ke [Ke0 [Ke00 where � 2 Œ�o� 2�; �oC 2�� transversally with C1 local
intersection numbers. Of course, it may well be that both of these inequalities go the
wrong way.

What follows explains the story when both ŒQe00 ;Qye � > 0 and ŒQye;Qe0 � > 0. The
first step here is to make "e; "e0 and "e00 constant where j� � �oj < 2� . Meanwhile,
decrease "ye between �oC 2� and �0C � so that the result is constant near �oC �

and very much smaller than ."e��/
6 . Extend "ye to Œ�o� 2��; �oC �� as this constant.

Next, vary a0
ye

as � decreases from �oC � to �oC
1
2
� so that the result is constant

and zero near �oC
1
2
� . Then, extend a0

ye
to the interval Œ�o � 2��; �oC

1
2
�� as zero.

It follows from the vertex o versions of the formulae in (4–1), (4–46) and (4–47)
that a0

e0 and a0
e00 can be chosen so that Ke0 , Ke00 and Kye are pairwise disjoint where

� 2 Œ�0C 2��; �oC 2��.

In the case that ŒQye;Qe �¤ 0, vary w0
ye

as � decreases from �oC2� to �oC� so that
the result is constant and zero near �oC � . In the case that ŒQye;Qe �D 0, introduce �
to denote the maximum value of the QDQe version of ˛Q on the � 2 Œ�o� 2�; �o�

portion of Ke ’s parametrizing cylinder. In this case, vary w0
ye

as � decreases from
�oC 2� to �oC � so that the result is constant near �oC � and equal to �

2�
. Extend

w0
ye

as a constant to the interval Œ�o� 2��; �oC ��.
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Now, if "ye is very much smaller than ."e��/
6 on Œ�o � 2��; �oC �� it then follows

from the formulae in (4–42), (4–43), (4–46) and (4–47) that any intersection between
Kye and the portion of the closure of Ke [Ke0 [Ke00 where � 2 Œ�o� 2��; �oC 2��

occurs in the region of the latter surface that is parametrized via (3–2) and (4–48) by
the radius �� disk centered in the x–y plane. In fact, these intersections must occur at
points whose x–y coordinates are within 4"ye of zero when "ye is very small.

To continue, note that the origin in the x–y plane maps to a point in the closure of
the union Ke [Ke0 [Ke00 where the tangent plane is parallel to the tangent plane
of R �  , where  � S1 � S2 is a small portion of an integral curve of the Reeb
vector field. Now, as an observation of Part 2 recalls, Kye intersects such a surface
transversely with C1 local intersection numbers. This suggests that the intersections
of the small "ye version of Kye with the � 2 Œ�o� 2��; �oC 2�� portion of the closure
of Ke [Ke0 [Ke00 will be transversal with C1 local intersection numbers. It is a left
as an exercise with (4–33) and (4–48) to verify that such is indeed the case.

There is still more to do because as things stand now, both a0
ye

and a0
e are zero where

� D �o � 2�� . Note that the � 2 Œ�o � 2�; �o � 2��� portions of the cylinders Ke

and Kye will be disjoint as long as "ye is very much smaller than " and both the pairs
.a0
ye
; w0
ye
/ and .a0

e ; w
0
e / are kept at their � D �o� 2�� values as � decreases further to

�o� 2� . Even so, such an extension is not consistent at � D �o� 2� with (4–69).

The desired extension of .a0
e ; w

0
e / keeps the latter constant on Œ�o � 2�; �o � 2���.

Meanwhile, the extension of .a0
ye
; w0
ye
/ employs the first and second observations in Part

4. To be more explicit, a0
ye

is either increased or decreased from zero as � decreases
so that it is constant near �o � 2� , but with a value that obeys ja0

ye
j > "e C "ye . In

this regard, a0
ye

is increased in the case that ŒQye;Qe � < 0 and it is decreased when
ŒQye;Qe � > 0. In the case that ŒQye;Qe �D 0, either a decrease or increase is permissible.
It then follows using (4–1) and (4–33) that such a version of a0

ye
can be constructed to

insure that Kye and Ke are disjoint at values of � near �oC 4� and that they intersect
transversally where � 2 Œ�o�2�; �o�2��� with C1 local intersection numbers. In this
regard, note that this can be done in the case that ŒQye;Qe �D 0 without introducing
any intersections between Kye and Ke .

Part 8 This last part of the subsection discusses the final point in (4–70). To explain
the situation here, let o0 and o00 denote distinct vertices of T with angle label 0, and
let e0 and e00 denote the corresponding incident edges. Suppose first that the yA label
of o0 has the form .1;C; : : :/ while o00 has either (1) or a label of the form .1;�; : : :/

from yA. In this case, there is no need for an arc crossing if se0 > se00 at � D 2� . Such
is also true when se0 > se00 at � D 2� and the yA label of o0 is labeled by (1) while

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R�.S1�S2/ 907

that of o00 has the form .1;�; : : :/. However, in either case, the corresponding arcs
must cross where � < 2� if se0 < se00 . Make such a crossing where � 2 Œ�; 2�� and the
second observation in Part 4 can be applied to choose a0

e0 and a0
e00 on Œ�; 2�� so as to

keep all � < 2� intersections between Ke0 and Ke00 where � 2 Œ�; 2��, all transversal,
and all with C1 local intersection number.

The case that both o0 and o00 have a .C1/ label is the simplest of those where o0 and
o00 have the same sort of label from yA. In this case, ŒQe0 , Qe00 �D 0, and so the first
observation in Part 4 can be used to keep Ke0 disjoint from Ke00 if the corresponding
e0 and e00 arcs must cross at some point where � < 2� .

In the case that o0 and o00 both have either a .1;C; : : :/ label or a .1;�; : : :/ label,
there are two subcases to consider. In the case that the e0 and e00 arcs must cross
where � � 2� , then make such a crossing where � 2 Œ�; 2��. In the case that Qe0 is
not proportional to Qe00 , the second observation in Part 4 is used to choose a0

e0 and
a0

e00 on Œ�; 2�� so as to keep all � < 2� intersections between Ke0 and Ke00 where
� 2 Œ�; 2��, all transversal, and all with local C1 intersection number. In the case that
ŒQe0 ;Qe00 � D 0, then the first observation in Part 4 can be used to choose .a0

e0 ; w
0
e0/

and .a0
e00 ; w

0
e00/ on Œ�; 2�� so as to keep Ke0 disjoint from Ke00 where � < 2� .

4.F The case when } has sets with two or more elements

This last subsection considers now the general case where the graph T is defined by a
partition with sets that have more than one element. In what follows, } will denote
such a partition with chosen cyclic orderings of its subsets. The discussion here is
broken into four parts. The first three parts serve to specify the collection f.ae; we/g

and the remaining part verifies that the collection meets all requirements.

Part 1 The purpose of this first part of the discussion is to construct from T a
canonical moduli space graph to which the constructions in Subsection 4.C apply. This
new graph is denoted by yT . The latter is isomorphic to T as an abstract graph via an
isomorphism that preserves the labels of all edges and all but the bivalent vertices. The
isomorphism also preserves the angles of the corresponding pairs of bivalent vertices.

Here is how the graphs T and yT differ: Suppose that o 2 T is a bivalent vertex, and
let yo 2 yT denote its partner. The vertex o is labeled by a cyclic ordering of a partition
subset, say }o 2 } . Meanwhile, yo is labeled by the data .0;C;Pyo/ where Pyo is the
sum of the integer pairs from the elements in }0 .

A referral to Subsection 3.A shows that yT is a bona fide moduli space graph. Moreover,
the discussion in Subsection 4.C applies to yT . Let f.aye; wye/g denote the resulting
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data set for yT as constructed in the preceding Sections 4.B–4.E. The required set
f.ae; we/g for T is constructed now either starting directly from f.aye; wye/g, or from
the J –pseudoholomorphic curve that Theorem 3.1 provides from f.aye; wye/g. The
former approach is taken below and the latter is left as an exercise for the reader.

Part 2 Suppose that e is a given edge of T , and let o0 and o denote the vertices from
T that lie on e with the convention taken that �o0 < �o . The corresponding edge, ye , in
yT has the corresponding bounding vertices yo and yo0 with �yo D �o and �yo0 D �o0 . This
understood, the functions .ae; we/ on Œ�o0 ; �o��R=.2�Z/ are set equal to .aye; wye/
at all points except in the case that one of o and o0 is a bivalent vertex. In the latter
case, the equality still holds except at values of .�; v/ that are very close to those of
the missing point for the yT –parametrization on the relevant boundary circle. In any
event, the required data f"e; �e0; �e1; a

0
e ; w

0
e ; v

0
e g for .ae; we/ are declared equal to

their yT counterparts.

To be more explicit about the differences between .ae; we/ and .aye; wye/, suppose for
the sake of argument that the vertex o 2 T is bivalent. Let ye denote the respective
partner to e in yT . Let � denote the constant value of �ye1 where � is near �o . For
convenience of notation, assume that v0

ye
D 0 where � is near �o . This understood,

then the equality between .ae; we/ and .aye; wye/ holds where � � �o except possibly
at values of .�; v/ with distance �8 or less from the missing point on the � D �o circle.

Part 3 To describe .ae; we/ near the point where � D �0 and vD 0, it is necessary to
parametrize a neighborhood of the point .� D �o; v D 0/ in the parametrizing cylinder
for e by the coordinates .r; �/ with r � 3� and with � 2 Œ��; 0�. For this purpose, it
proves necessary to introduce the complex coordinate z � rei� . Also required is the
choice of a parameter ı 2 .0; �7/.

To obtain the desired parametrization, write Pyo D myo.p;p
0/ with p and p0 the

relatively prime integers defined via (1–7) by �o and with myo � 1. Next, let n denote
the number of elements in }o and suppose that }o has been given a linear ordering.
Use the latter to label the integer pairs from its elements as fm1.p;p

0/; : : : ;mn.p;p
0/g

with each mj a positive integer. Thus,
P

j mj Dmyo .

Let 0D b1 < b2 < : : : < bn < ı�
8 now denote a chosen set of very small real numbers,

and introduce the complex function

(4–75) �.z/D ˇ

�
1

ı�
r

� Y
1�j�n

.z� bj /
mj C

�
1�ˇ

�
1

ı�
r

��
zmyo :

Note that with � small, and any choice for ı 2 .0; �7/, the zeros of � consist of the
points in the set fbj g. An argument for the function � is needed on the lower half

Geometry & Topology, Volume 10 (2006)



Pseudoholomorphic punctured spheres in R�.S1�S2/ 909

plane and also at points on the real axis where z 62 fbj g. To be precise, take the branch
that gives

(4–76) arg.�/Dmyo� at points where jzj � 2�8:

With the preceding in hand, here is is how to write � and v in terms of r and � :

(4–77)

� D �yoC "r sin.�/:

yv D

�
1�

˛Qe0 .�/

˛Qe
.�/

�
1

myo
arg.�/C

1

˛Qe
.�/

r cos.�/:

As in the analogous (4–11), the coordinate yv is R–valued and reduces modulo 2� to
v . Meanwhile, e0 is the second of o’s incident edges.

With v� as in (4–13) set

(4–78)

ae D�ˇ�
1

myo
ln.j�j/C ayoC "

�
ˇ�C .1�ˇ�/ cos.v�/

�
:

we D�".1�ˇ�/ sin.v�/

Cxyoˇ
0

�
1

˛Qe

ˇ�

�
1

myo
arg.�/�

1

2˛Qe0

r cos.�/
�
�

1

2˛Qe

.1�ˇ�/v�

�
:

Here, v is viewed as taking values in Œ0; 2��. In addition, both � and v are to be
viewed where ˇ� > 0 as functions of r and � .

To define .ae0 ; we0/ near the point where � D �yo and v D 0 on the e0 version of the
parametrizing cylinder, first write the cylinder’s coordinates � and v near this point in
terms of r 2 .0; 3�/ and � 2 Œ0; �� using the rule

(4–79)

� D ��C "r sin.�/:

yv D

�
˛Qe

.�/

˛Qe0 .�/
� 1

�
1

myo
arg.�/C

1

˛Qe0 .�/
r cos.�/:

Here, arg.�/ is again defined by (4–76). With (4–79) set, define

(4–80)

ae0 D�ˇ�
1

myo
ln.j�j/C ayoC "

�
ˇ�C .1�ˇ�/ cos.v/

�
:

we0 D�".1�ˇ�/ sin.v/

Cx0ˇ
0

�
1

˛Qe0

ˇ�

�
1

myo
arg.�/C

1

2˛Qe

r cos.�/
�
C

1

2˛Qe

.1�ˇ�/v

�
:

Here v is again viewed as taking values in Œ0; 2��, and it with � are viewed as functions
of r and � where ˇ� > 0.
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Part 4 With what has been said in Section 3, Theorem 3.1 now follows from the
following claim:

Very small ı versions of the definition just given of f.ae; we/g satisfy the criteria
in (3–3).

The justification for this claim is given next in three steps.

Step 1 To start, let o denote a bivalent vertex in T and let e and e0 denote the incident
edges. The first point to note is that if ı is very small, then minor modifications of the
arguments from Subsection 4.C prove that the change of variables from .�; v/ to .r; �/
is invertible on both the e and e0 versions of the parametrizing cylinders.

Step 2 The closures of Ke and Ke0 fit together to define a smoothly immersed surface
near points with � � �yo provided that the following is true: Let v1 2 .0; 2�/ obey

(4–81) v1 62

�
1

˛Qe
.�o/

b1; : : : ;
1

˛Qe
.�o/

bn

�
:

Then, there exists an integer pair, N D .n; n0/, and extensions of the definitions of
.ae; we/ and .ae0 ; we0/ to some neighborhood in .0; �/ � R=.2�Z/ of .��; v1/ so
that (4–16) holds.

The verification of this condition proceeds just as in Subsection 4.C at points v1 that
differ by more than 2ı� from either 0 or 2� . In the case that v1 does not obey this
condition, the equations in (4–77)–(4–80) directly give the required extensions of
.ae; we/ and .ae0 ; we0/. This understood, there are various cases to consider depending
on whether

v1 < 2�;

or
1

˛Qe
.�yo/

bk < v1 <
1

˛Qe
.�yo/

bkC1 for some k 2 f1; : : : ; n� 1g;

or v1 >
1

˛Qe
.�o/

bN :

(4–82)

In the left most case, take the integer pair N DQe0 . In the k ’th version of the middle
case in (4–82), take N DQe0 C

P
1�j�k mj .p;p

0/, and in the right most case, take
N DQe . Note that when comparing this last case with the case in Subsection 4.C, the
N DQe version of (4–16) is indistinguishable from the N D 0 version. It is left to
the reader to confirm that (4–16) holds with the values of N as above. In this regard,
note that the functions ˇ� and ˇ0 that appear in (4–13) and (4–77)–(4–80) are equal to
1 at the relevant points.
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Step 3 There are three more issues to examine vis à vis (3–3). The first is that of the
asymptotics as laid out in Definition 3.2. The verification that these are as required is a
straightforward task using (3–2) with (4–77)–(4–80). The second is to verify that the
data f.ae; we/g define a moduli space graph that is isomorphic to the given graph T .
This is also straightforward and so the details are omitted.

The final issue concerns the singularities that lie in the closure of [eKe . A very small
choice for ı also simplifies the analysis. To explain, let o denote any given bivalent
vertex. Then (3–2) and (4–77)–(4–80) define a smooth map, �0 , from some multiply
punctured version of the jzj< 2ı� disk in C into R� .S1 �S2/. If ı is very small,
then s is huge on the image of each such �0 . Thus, any singularity in [eKe that is
not already present in its yT analog is a singularity of the image of some �0 . However,
as explained next, each �0 is an embedding when ı is small. Hence, the closure of
[eKe meets all of (3–3)’s requirements.

To prove that �0 is an embedding, note first that points z and z0 in the domain of �0 are
mapped to the same point only if they have the same imaginary part. Indeed, otherwise,
the images will have distinct � values. Meanwhile, use of (3–2) with (4–77)–(4–80)
finds that (4–24) still holds. Granted that this is the case, it then follows that the real
parts of z and z0 must agree as well if �0.z/D �0.z

0/. Thus, z D z0 .

5 Proof of Theorem 1.3

The purpose of this last section is to prove Theorem 1.3. In this regard, the proof is
obtained from Theorem 3.1 by demonstrating that yA has a positive line graph if and
only if it has a moduli space graph. The implication from positive line graph to moduli
space graph is proved in the first subsection. The reversed implication is proved in the
second.

5.A From a positive line graph to a moduli space graph

Suppose that yA has a positive line graph, L yA . The goal is to use the data from L yA
to construct a labeled, contractible graph, T , as described in Subsection 3.A The
construction starts with the graph L yA and successively modifies it to obtain T . This
construction of T occupies the seven parts of this subsection that follow.

Part 1 The purpose of this part of the subsection is to explain why the edges of a
positive line graph obeys Constraint 2 in Subsection 3.A. Here is a formal statement to
this effect:
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Lemma 5.1 Let L denote a positive line graph for yA, let e 2L denote an edge, and
let �o < �1 denote the angles that are assigned the vertices on e . Then

qe
0.1� 3 cos2 �/� qe

p
6 cos.�/� 0

at all � 2 Œ�o; �1� with equality if and only if � is either �0 or �1 and the corresponding
vertex is monovalent with angle in .0; �/.

Proof of Lemma 5.1

The verification of the claim is given in five steps.

Step 1 This first step considers the claim at the vertex angles on e . To start, remark
that the stated inequality holds at any bivalent vertex angle on e because the final point
in (1–18) requires

(5–1) pqe
0
�p0qe > 0

when .p;p0/ defines the angle of the vertex via (1–7). In this regard, keep in mind
that (1–7) writes p as a positive multiple of .1�3 cos2 �/ and p0 as the same multiple
of
p

6 cos � .

When the vertex is monovalent with angle in .0; �/, then the condition in the lemma
holds at the vertex angle in as much as the first and third points in (1–18) assert that
.qe; qe

0/ is proportional to the pair that defines the angle via (1–7).

Meanwhile, the required inequality can be seen to hold at � D �o when the latter is 0
by using (1–14) with the fourth point in (1–18). Likewise, (1–14) and the second point
in (1–18) imply the lemma’s assertion when � D �1 and �1 D � .

Step 2 This and the remaining steps verify the Lemma’s inequality at the angles that
lie strictly between �o and �1 . To start this process, let QD .q; q0/¤ .0; 0/ denote
a given ordered pair of integers. Then the function ˛Q.�/ on Œ0; �� vanishes only at
that angles �Q and ��Q that are respectively defined via (1–7) by Q and by �Q.
In this regard, note that �Q can be defined when q < 0 provided that

ˇ̌
q0

q

ˇ̌
>
p

3=2.
Meanwhile, ��Q can be defined when q > 0 provided

ˇ̌
q0

q

ˇ̌
>
p

3=2. Thus, at least of
one of �Q and ��Q exists in all cases and both exist only in the case that

ˇ̌
q0

q

ˇ̌
<
p

3=2.

To continue, note that the derivative of any given QD .q; q0/ version of ˛Q is

(5–2)
p

6 sin �.qC
p

6 cos �q0/:

In particular, this derivative is positive at � D �Q and negative at � D ��Q . As a
consequence, the desired inequality is satisfied for the given edge e if and only if one
of the conditions listed next hold:
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�(5–3) Both �Qe
and ��Qe

are defined, �Qe
< ��Qe

, and both �Qe
� �o and

�o0 � ��Qe
.

� Both �Qe
and ��Qe

are defined, ��Qe
< �Qe

and either �Qe
� �o or

�o0 � ��Qe
.

� ��Qe
is not defined and �o � �Qe

.

� �Qe
is not defined and �o0 � ��Qe

.

These last constraints are analyzed with the help of the following observation: Suppose
that P and Q are non-trivial integer pairs and suppose that both �P and �Q exist.
Then �Q < �P if and only if one of the following holds:

�(5–4) q0 � 0, p0 � 0 and at least one is non-zero.

� If p0 and q0 have the same sign, then q0p� qp0 > 0.

Step 3 This step and the next assume that �o > 0 and �o0 < � . For this purpose,
let .po;p

0
o/ and .po0 ;p0o0/ denote the respective integer pairs that define these angles

via (1–7).

This step considers the case when the Qe version of
ˇ̌

q0

q

ˇ̌
is greater than

p
3=2. Thus,

the third and fourth options in (5–3) are moot. The first option in (5–3) holds when
qe
0 > 0 and the second when qe

0 < 0. Suppose first that qe
0 > 0. If p0o � 0 then the �o

requirement is met by virtue of the first point in (5–4). Meanwhile, (5–1) together with
the second point in (5–4) guarantee the �o requirement in the case that p0o > 0. The
first point in (5–4) guarantees the �o0 requirement if p0o0 � 0. If p0o0 < 0, then the �o0

requirement is guaranteed by the o0 version of (5–1) using the second point in (5–4).

Now suppose that qe
0< 0. If p0o< 0, then (5–1) and the second point in (5–4) guarantee

the �o requirement. If p0o � 0, then the �o requirement fails. In this case, the �o0

requirement holds due to the second part of the final point in (1–18). Indeed, it would
fail automatically were p0o0 � 0, but this is not allowed. On the other hand, if p0o0 > 0,
then the �o0 requirement follows from the o0 version of (5–1) using the second point
in (5–4).

Step 4 Granted that �o > 0 and �o0 < � , this step assumes that the Qe version ofˇ̌
q0

q

ˇ̌
is less than

p
3=2. In this case, neither of the first two points in (5–3) hold. In

the case that qe > 0, only the third point is possible to satisfy. If qe
0 and p0o have the

same sign, then the requirement is met by virtue of (5–1) and the second point in (5–4).
The requirement is also met if p0o � 0 and qe

0 � 0. Of course, the requirement can not
be met if p0o > 0 and qe

0 < 0. However, as will now be explained, such signs for p0o
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and qe
0 never appear. Indeed, were these the correct signs, then (5–1) would demand

po to be negative and

(5–5)

r
3

2
>

ˇ̌̌̌
q0e
qe

ˇ̌̌̌
�

ˇ̌̌̌
p0o
po

ˇ̌̌̌
:

However, this violates the condition in (1–7).

Suppose next that qe < 0 and so only the fourth point in (5–3) is relevant. In the
case that p0o0 � 0 and qe

0 � 0, then the desired inequality is insured by the first point
in (5–4). If p0o0 and qe

0 have different signs, the desired inequality is insured by (5–1)
and the second point in (5–4). Meanwhile, the case where both p0o0 < 0 and qe

0 < 0

can not occur because (5–1) again requires that po is negative while satisfying (5–3).

Step 5 This step considers the case that �o = 0. The argument for the case when
�o0 D � is omitted because it is identical to that given here save for some cosmetic
changes. In the �o D 0 case, it is necessary to verify either the second or fourth of the
options in (5–3). In this regard, the first point is that �Qe in all cases defines an angle
via (1–7). Indeed, this is a consequence of the fact noted in Step 1 that Lemma 5.1’s
inequality holds at � D 0.

In the case that Qe defines an angle via (1–7), then Lemma 5.1’s inequality at � D 0

requires that qe
0 < �.

p
3=2/jqej and so the angle defined by Qe via (1–7) is greater

than that defined by �Qe . Moreover, neither is less than �o0 . Indeed, the angle defined
by Qe via (1–7) must be greater than �o0 since the condition in Lemma 5.1 holds near
� D 0. Since qe

0 < 0, this last point, the o0 version of (5–1) and the second point
in (5–4) are consistent only if p0o0 > 0. Given that p0o0 > 0, then the o0 version of (5–1)
and the second point in (5–4) establish the claim.

In the case that Qe does not define an angle via (1–7), then qe < 0 and the absolute
value of the ratio of qe

0 to qe is less than
p

3=2. If qe
0 and p0o have opposite signs, or

if both are positive, then (5–4) guarantees the conditions for the fourth option in (5–3).
On the other hand, in no case can both qe

0 and p0o be negative when qe is negative.
Here is why: Were all three negative, then the o0 version of (5–1) would require po0 < 0

also. As such, this same version of (5–1) would declare the ratio of p0o0 to po0 to be
less than that of qe

0 to qe . By assumption the latter is less than
p

3=2, and thus the
former would be less than

p
3=2. But this conclusion with po0 < 0 violates the given

fact that .po0 ;p0o0/ defines an angle via (1–7).

Part 2 Suppose that the maximal angle on L yA is less than � . Let �o denote this
angle. This step describes a modified version of L yA , a graph that is isomorphic to L yA
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except perhaps at angles that are very close to �o . This new graph has some number of
added monovalent vertices, all with angle �o , these labeled by the .0;�; : : :/ elements
from yA whose integer pairs define �o via (1–7). The modification of L yA is denoted
below as T1 .

To start the description, let o 2L yA denote the monovalent vertex with the largest angle
on L yA . Let ye denote the incident edge to o. In the case that the element .0;�;�Qye/

is in yA, no modification occurs and T1 D L yA . If this 4–tuple is is not in yA, then
�Qye is equal to a sum of some n> 1 pairs, P1C � � �CPn , where each such pair is a
positive multiple of the relatively prime pair that defines �o via (1–7) and where each
.0;�;Pk/ is in yA.

To proceed in this case, choose n� 1 angles �1 < �2 � � � �n�1 < �o that are all greater
than the smallest angle on e .

Modify L yA so that the resulting graph has n� 1 trivalent vertices at these chosen
angles. Label the incident edges to the k 0 th such vertex as e , e0 , and e00 using the
convention that e connects the vertex o to a vertex with smaller angle, while e0 and e00

connect to vertices with larger angle. Also take the convention that any given k � n�2

version of the edge e00 is the same as the .kC1/0 st version of the edge e . In particular,
e0 is capped with a � D �o monovalent vertex. This is also the case for e00 when
k D n� 1.

Here are the integer pair assignments: In the case k D 1, the edge integer pair
assignments are Qe D Qye , Qe0 D �P1 and Qe00 D Qye C P1 . In the case where
k > 1, these pair assignments are Qe D Qye C

P
j<k Pj , while Qe0 D �Pk and

Qe00 DQyeC
P

j�k Pj .

By virtue of Lemma 5.1, this graph obeys the moduli space graph constraints where
it differs from L, thus at angles that are less than the minimal angle on ye . In this
regard, Constraint 2 in Subsection 3.A is obeyed for T1 because any given T1 version
of ˛Q is a positive multiple of a corresponding L yA version that obeys the constraint in
Lemma 5.1 for the relevant interval. Moreover, the � D �o monovalent vertices on T1

are in 1–1 correspondence with the subset of .0;�; : : :/ elements in yA whose integer
pair component defines �o via (1–7).

Part 3 This part of the construction describes the analogous operation on L yA when
its largest angle is � . The resulting version of T1 is isomorphic to L yA except at
angles near � where it may have some trivalent vertices and more than one � D �
monovalent vertex. In particular, the labels of its � D � monovalent vertices account
for the .�1; : : :/ elements in yA.
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To start, let n and n0 denote the respective numbers of .�1;�; : : :/ and .�1;C; : : :/

elements in yA. If n> 0, label the .�1;�; : : :/ elements from yA from 1 to n, and if
n0>0, label the .�1;C; : : :/ elements from 1 to n0 . Let fP�

k
g1�k�n and fPC

k
g1�k�n0

denote the corresponding set of integer pair components.

Two trivial cases can be dispensed with straight away; that where yA has but a single
.�1; : : :/ element and c�D 0, and that where yA has no .�1; : : :/ elements and c�D 1.
No modification of L yA is necessary in either of these cases. Thus, T1 is equal to L yA
in both of these cases.

In the general case, the modification adds nC n0 C c� � 1 trivalent vertices with
successively larger angles, all near � . To be precise here, the incident edges to any
given vertex can be designated by e , e0 and e00 so that e connects the vertex in question
to one with a smaller angle while e0 and e00 connect to vertices with larger angles. In
all cases, the edge designated as e0 is capped by a monovalent vertex with angle � D� .
Such is also the case for the version of e00 that attaches to the trivalent vertex with the
largest angle.

The edge labels for the incident edges to the trivalent vertices are obtained via an
inductive process using the following rules: For the trivalent vertex with the smallest
angle label, set Qe D

P
k PC

k
�
P

k P�
k
� .0; c�/. Now, granted this, label this vertex

as number 1 and label the remaining trivalent vertices by consecutive integers starting
from 2 in order of increasing angle. Granted this numbering system, the first c� of
the trivalent vertices have Qe0 D .0;�1/. If n0 D 0, then the remaining n� 1 have
Qe0 D Pj for the vertex numbered c� C j when 1 � j � n � 1. If n0 > 0, then
Qe0 D Pj for the vertex numbered c�C j when 1� j � n. Use Qe0 D�Pj for the
vertex numbered c�C nC j with 1� j � n0� 1. With regard to these assignments,
note that the convention that ŒQe0 ;Qe00 �� 0 is not necessarily observed.

By virtue of Lemma 5.1, the graph T1 obeys the moduli space graph conditions where
it differs from L yA , thus at the angles that are achieved on L yA ’s largest angled edge.
Moreover, this new graph has the desired property: Its � D � monovalent vertices
account for all of the .�1; : : :/ elements in yA plus c� elements with label .�1/.

By the way, the positivity requirement in Constraint 2 in Subsection 3.A can be deduced
from the following observations: If � is less than its value at the first trivalent vertex,
then the relevant Q is that of an edge in L yA whose version of Constraint 2 in Subsection
3.A holds for the same value of � . To argue for this constraint in the case that � is
near � , note that if the relevant version of Q D .q; q0/ obeys q0 < .

p
3=2/q , then

˛Q.�/ > 0 if � is nearly � since (1–14) guarantees its positivity at � D � . This is to
say that if the trivalent vertex angles are very near � , it is enough that qe

0 < .
p

3=2/qe
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for each incident edge to each trivalent vertex. This last requirement is met by virtue
of the conditions in (1–14).

Part 4 Let �o now denote the minimal angle on L yA . Of course, this is also the
minimal angle on T1 . If �o> 0, then an upside down version of the discussion in Part 2
(a verbatim repetition save for some evident cosmetic changes) modifies T1 by adding
trivalent vertices with angles just slightly greater than �o and monovalent vertices at
�o to construct a new graph, T2 , with the following property: First there exists some
ı > 0 such that T2 obeys the moduli space graph conditions at angles � 2 Œ�o; �oC ı�.
Moreover, it has only trivalent vertices at angles in .�o; �oC ı/ and it has as many
� D �o monovalent vertices as there are .0;�; : : :/ elements in yA whose integer pairs
define �o via (1–7). Moreover, these elements label the � D �o monovalent vertices in
T2 . Meanwhile, T2 is isomorphic to T1 at angles � > �oC

1
2
ı .

In the case that �oD 0, the upside down version of the discussion of Part 3 modifies T1

by adding only trivalent vertices at angles near 0 and monovalent vertices with angle
equal to 0. This version of T2 obeys the moduli space graph conditions where it differs
from T1 and thus where it differs from L yA . Moreover, the set of � D 0 vertices in T2

has a two subset partition: The first subset accounts for the .1; : : :/ elements in yA, and
the second contains cC vertices with the label (1).

Part 5 Suppose now that o is a bivalent vertex in L yA whose angle is defined via (1–7)
by one or more integer pairs from the collection of .0;�; : : :/ elements in yA. In this
regard, consider only the case when there are no pairs from .0;C; : : :/ elements in
yA that define �o . Described here is a modification to T2 at angles very close to �o

that replaces the bivalent vertex o with one or more trivalent and monovalent vertices
that account for those .0;�; : : :/ elements in yA with integer pair giving �o . To begin,
let e denote the incident edge to o on which �o is maximal, and let e0 denote the
incident edge on which �o is minimal. Fix some very small and positive number, ı .
The modification proceeds in two steps.

The first step constructs a graph, yT , that lacks a bivalent vertex at �o , having one
trivalent vertex at �o � ı and one monovalent vertex at �o . To be more explicit, let
yo 2 yT denote its trivalent vertex at �o� ı and let ye , ye0 and ye00 denote its three incident
edges. The labeling convention here is such that yo has the largest angle of the two
vertices on ye , and the smallest angle of the two vertices on ye0 and on ye00 . In this regard,
ye00 contains the added monovalent vertex with angle �o . In addition, as the integer pair
assigned to ye00 is Qe �Qe0 , so �Qye00 is the sum of the integer pairs that define �o

via (1–7).
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To describe the rest of yT , agree to designate the three components of yT �yo as yTye , yTye0

and yTye00 so that the subscript indicates that the component contains the interior of its
labeling edge. Let T2e and T2e0 denote the analogously labeled components of T2�o.
Then yTye is isomorphic to T2e and yTye0 to T2e . With regards to such isomorphisms,
the convention taken here and subsequently is that an isomorphism between labeled
graphs with some open edges must preserve all labeling of vertices and edges, but it
need not match the angles of any ‘absent’ vertices.

If yA has a single .0;�; : : :/ element whose integer pair defines �o , then the graph
T3 is set equal to yT . If there is more than one such element, the graph yT is further
modified by employing the construction in Part 2 with the edge ye00 playing the role of
L yA . Thus, the modification replaces the edge ye00 with a subgraph whose monovalent
vertices account for all of the .0;�; : : :/ elements in yA with integer pairs that define �o

via (1–7). This subgraph has one less trivalent vertex than it has monovalent vertices.
These can be assigned distinct angles, all between �o and �o� ı .

As will now be explained, any sufficiently small ı version of the graph T3 obeys the
moduli space graph conditions where it differs from T2 and thus where it differs from
L yA . To begin, remark that the positivity of the Q DQe and Q DQe0 versions of
the function ˛Q imply that these functions are positive for small ı on the edges ye
and ye0 of yT . If the QDQye version of ˛Q is positive on Œ�o � ı; �o/ and vanishes
at �o , then the arguments from Part 2 settle the claim that T3 obeys the moduli space
graph conditions where it differs from T2 . Granted this, remark that the Q D Qye
version of ˛Q is zero at �o because Qye DQe �Qe0 , and according to the fifth point
in (1–18), this pair is �1 times a pair that defines �o via (1–7). Moreover, as explained
subsequent to (5–2), the derivative of ˛Q at its zero is negative when the angle of the
zero is ��Q . Since this is the case at hand, the QDQye version of ˛Q is positive on
the half open interval Œ�o� ı; �o/ when ı is small.

Part 6 Suppose next that o is a bivalent vertex whose angle is defined via (1–7) by an
integer pair from some .0;C; : : :/ element in yA. Consider first the case when no integer
pairs from .0;�; : : :/ elements in yA define this angle. In this case, the modification to
T2 amounts to adding some data to the label of the bivalent vertex o so as to make the
label that of a bivalent vertex in a moduli space graph. In this regard, o0 s label must be
a partition subset for some partition of the set of .0;C; : : :/ elements whose integer
pairs define �o via (1–7). Take the one set partition and assign o this set.

Consider now the case where �o is also defined via (1–7) by integer pairs from both
.0;C; : : :/ elements in yA and .0;�; : : :/ elements in yA. Let PC denote the sum of
the integer pairs from the former set and let P� denote the sum of those from the latter.
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Note that both PC and P� define �o via (1–7). What follows describes a modification
of T2 so as to obtain a graph, T3 , with one bivalent vertex with angle �o , one or more
monovalent vertices with angle �o , and some trivalent vertices with angles near �o .
This graph T3 will satisfy the moduli space graph conditions where it differs from T2

and its bivalent and monovalent vertices will account for all of the .0; : : :/ elements
in yA whose integer pair component defines �o via (1–7). The modification here is
very similar to that described in Part 5. In particular, there are two steps, with the
first modifying T2 by adding a single trivalent vertex at an angle just less than �o and
adding a monovalent vertex with angle �o . This preliminary modification also has
a bivalent vertex with angle �o . Let yT denote this new graph. If ı is positive but
very small, then yT can be constructed so that it has a trivalent vertex, yo , with angle
�o � ı . The three incident edges, ye , ye0 , and ye00 are such that yo has the larger of the
angles of the vertices on ye . As before, the component yTye � yT �yo is isomorphic to the
component T2e � T2� o. Meanwhile, ye0 connects yo to the bivalent vertex at angle �o

in yT while ye00 connects yo to the monovalent vertex with angle �o . The label for ye00 is
�P� , while that for ye0 is QeCP� . Note that the open graph yTye0 � ye0 is isomorphic
to T2e0 .

The graph yT must now be modified so that the result, T3 , obeys the moduli space
graph conditions where it differs from T2 . First of all, this involves replacing ye00 by a
subgraph with some number of monovalent vertices and one less number of trivalent
vertices, with the subgraph chosen so that its monovalent vertices have angle �o and
account for those .0;�; : : :/ elements in yA whose integer pair defines �o via (1–7).
This procedure is exactly that used in the previous step to go from the latter’s yT to
T3 . Note that Constraint 2 in Subsection 3.A is obeyed on all of the edges in this
subgraph. Indeed, the argument for this is a verbatim repetition of the one that proves
the analogous claim in Part 5. The final task in the construction of T3 is to grant a label
to the bivalent vertex at angle �o . In this case, the label must be a partition of the set
of those .0;C; : : :/ elements in yA whose integer pair defines �o via (1–7). As before,
take the 1–set partition. Note that this is forced by the fact that Qye0�Qe0 DPC which
is the sum of the integer pairs from this same set of elements. By the way, note that the
ye0 version of Constraint 2 in Subsection 3.A is obeyed when ı is small by virtue of
two facts: First, the QDQe version of ˛Q is bounded away from zero on Œ�o� ı; �o�.
Second, the QD PC version of ˛Q is zero at �o and so is very small on this interval
when ı is small.

Part 7 Apply the constructions in Part 5 and Part 6 simultaneously to all of the bivalent
vertices. The result is a moduli space graph for yA.
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5.B From moduli space graph to positive line graph

Now suppose that yA has a moduli space graph, T yA . The goal is to obtain from T yA
a positive line graph for yA. This is accomplished in a sequential fashion using the
various ‘moves’ that are described in Part 1, below. These moves are used to eliminate
trivalent vertices. To picture this process, imagine a trivalent vertex as the point in a
partially unzipped zipper where two edges are joined as one. The modifications amount
to closing in a sequential fashion all of these zippers. Part 2 of the subsection provides
the details for how these moves are used.

The modifications to T yA will result in graphs that are not moduli space graphs. Even
so, these graphs have labeled edges and vertices that obey certain constraints. These
constraints are listed below, and a graph that obeys them is deemed a ‘positive graph’.

A positive graph, T , is a connected, contractible graph with at least one edge and
with labeled vertices and edges. The vertices of T are either monovalent, bivalent
or trivalent. Each is labeled with an angle in Œ0; ��. These angles are constrained as
follows:

�(5–6) The two vertices on any given edge have distinct angles.
� The angle of any given multivalent vertex is neither the largest nor the

smallest of the angles of the vertices on its incident edges.
� Any vertex angle in .0; �/ is defined via (1–7) by an integer pair.

Each edge of T is labeled by an integer pair. If e its an edge, then Qe D .qe , qe
0/

denotes its integer pair. These are constrained as follows:
�(5–7) Let o2T denote a monovalent vertex with angle in .0; �/ and let e denote

its incident edge. Then ˙Qe defines �o via (1–7) with the C sign taken if
and only if �o is the smaller of the two angles of the vertices.

� Let o2T denote a bivalent vertex and let e and e0 denote its incident edges.
If Qe ¤Qe0 , then either Qe �Qe0 or Qe0 �Qe defines �o via (1–7).

� Let o 2 T denote a trivalent vertex, and let e , e0 and e00 denote its incident
edges. Then Qe DQe0CQe00 with the convention that �o lies between the
angle of the vertex opposite o on e and the angles of the vertices opposite
o on both e0 and e00 .

� Let e denote any given edge of T and let �o < �1 denote the angles that
are assigned the vertices on e . Then

qe
0.1� 3 cos2 �/� qe

p
6 cos.�/� 0

at all � 2 Œ�o; �1� with equality if and only if � is either �0 or �1 , the angle
in question is in .0; �/, and the corresponding vertex is monovalent.
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Each positive graph that appears below is related to the asymptotic data set yA in a
manner that is described momentarily. For this purpose, it is necessary to assign an
integer pair to each vertex with angle in .0; �/. If o is such a vertex, then Po is used to
denote its integer pair. Here are the assignments: If o is monovalent, then Po D˙Qe ,
where e denotes os incident edge and where the C sign is taken if and only if �o is
the smaller of the two angles of e0s vertices. If o is bivalent, then Po D Qe �Qe0

where e and e0 are os incident edges with the convention here that �o is the larger of
the two angles of the vertices on e . If o is a trivalent vertex, set Po D 0.

What follows describes how yA enters the picture:

�(5–8) The sum of the integer pairs that are associated to the edges with a � D �
vertex is obtained from yA by the following rule: First, subtract the sum
of the integer pairs from the .�1;�; : : :/ elements in yA from the sum of
those from the .�1;C; : : :/ elements, and then subtract .0; c�/ from the
result.

� The sum of the integer pairs that are associated to the edges with a � D 0

vertex is obtained from yA by the following rule: First, subtract the sum of
the integer pairs from the .1;C; : : :/ elements in yA from the sum of those
from the .1;�; : : :/ elements and then subtract .0; cC/ from the result.

� Let � 2 .0; �/. Then, the sum of the integer pairs that are associated to the
bivalent vertices at angle � minus the sum of those pairs that are associated
to the monovalent vertices at angle � is obtained from yA by the following
rule: Subtract the sum of the integer pairs from the .0;�; : : :/ elements
in yA that define � via (1–7) from the sum of the integer pairs from the
.0;C; : : :/ elements in yA that defined � via (1–7).

A positive graph that obeys (5–8) is called a ‘positive graph for yA’. According to
Lemma 5.1, a positive line graph for yA is a linear positive graph for yA, that is, one
with no trivalent vertices. Lemma 5.2 below proves the converse. Note that T yA itself
is a positive graph for yA.

Part 1 To set the stage here and in Part 2, let T now denote a given positive graph. Let
o denote a trivalent vertex in T and let e , e0 and e00 denote the three incident edges to
o with the usual convention taken to distinguish e . This is to say that the angle �o lies
between the angle of the vertex opposite o on e and both the angle of the vertex opposite
o on e0 and that of the angle opposite o on e00 . The edges e0 and e00 are distinguished
when Qe0 is not proportional to Qe00 by making ŒQe0 ;Qe00 ��qe0qe00

0�qe0
0qe00 negative.

Also, keep in mind the following two conventions from the previous subsection that
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concern the three components of T � o: The first is with regards to their labeling, this
as Te , Te0 and Te00 with the labeling such that the closure of any one of the three
contains its labeling edge. The other convention concerns the notion of an isomorphism
between one of these components and some other non-compact graph with labeled
vertices and edges. In particular, the isomorphism must send vertices to vertices and
edges to edges so as to respect the labeling. However, such an isomorphism has no
need to respect the angle of the absent vertex on the open edge.

With these conventions set, what follows in this Part 1 are the moves that are used to
modify a given positive graph for yA so as to eliminate the trivalent vertices. In all
cases, the modified graph is a positive graph for yA. There are two versions to each
move listed below, one for the case that e connects the given vertex to a vertex with a
larger angle, and one for the case that the connection is to a vertex with a smaller angle.
Only the first version is presented since the two versions differ only cosmetically.

Note that the first three moves modify the original graph so as to decrease the angle
that is assigned to the given trivalent vertex. (In the omitted version where e connects
to a vertex with smaller angle, the corresponding moves will increase the angle of the
given trivalent vertex.) The remaining four moves modify the graph so as to eliminate
the given trivalent vertex.

To set the stage for the moves, agree to let o denote the trivalent vertex in question and
let �o denote its original angle assignment. In what follows, �yo denotes the larger of
the two angles that label the vertices that lie opposite o on e0 and e00 . Keep in mind
that �yo is less than �o . A distinguishing feature of the geometry here is that neither the
QDQe0 nor Qe00 versions of ˛Q can vanish on .�yo; �o/. Since Qe DQe0 CQe00 ,
the QDQe version of ˛Q is also positive on .�yo; �o/. As a result, T can be modified
without either compromising the positive graph conditions or changing its topology by
giving o any angle in .�yo; �o/.

With the preceding understood, the first three moves describe cases where T is modified
so that the result has a trivalent vertex with angle just less than �yo .

Move 1 Assume here that �yo labels just one vertex on e0 [ e00 and that this vertex
is bivalent. In this case T is modified to produce a new positive graph for yA, this
denoted by T� . The graph T� has a trivalent vertex, o� , with angle �� just less than
�yo and a bivalent vertex with angle �yo . The integer pair component of the latter’s label
is the same as that of the �yo labeled vertex on e0[ e00 .

To continue the description, note that o� has incident edges e� , e0� , e00� where e� is
the only one of the three that connects o� to a vertex with a larger angle. The latter is
the aforementioned bivalent vertex with angle �yo . Write the components of T�� o�
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as T�e , T�e0 and T�e00 . These graphs are related to Te , Te0 and Te00 as follows: In
the case that e00 has the �yo labeled vertex, then, Te00 � e00 and T�e00 are isomorphic
as non-compact graph with labeled vertices and edges. Meanwhile Te0 and T�e0 are
likewise isomorphic, as are the pair Te and T�e � e� . The analogous isomorphisms
hold when e0 has the �yo bivalent vertex.

Move 2 This move is relevant to the case that both e0 and e00 have bivalent vertices
with angle �yo . In this case, T is again modified to produce a new positive graph for yA.
This graph has a trivalent vertex at angle just less than �yo and a single bivalent vertex
at angle �yo that sits on the incident edge e� to o� . Here, the notational convention for
the incident edges to o� are as in Move 1. The integer pair component of the label for
this bivalent vertex is the sum of the integer pairs that label the bivalent vertices on
e0 and e00 . In this regard, the components T�e0 and T�e00 of T�� o� are respectively
isomorphic to Te0 � e0 and Te00 � e00 from T � o. Meanwhile, T�e � e� is isomorphic
to Te . The verification that the version of T� with �� nearly �yo is a positive graph for
yA requires only the verification of the fourth point in (5–7) for the edges that touch e� .

In this regard, the positivity of the relevant versions of ˛Q follow from the positivity
at �yo of the Qe0 and Qe00 versions.

Move 3 This move is relevant to when there is a single vertex yo 2 e0[ e00 with angle
�yo , that this vertex is trivalent, and that it has a single incident edge that connects it to a
vertex with angle less than �yo . Agree to relabel the edge between o and yo as e0 . Now,
label the other two incident edges to o as e1 and e2 with the convention that e D e1 ,
while labeling the other two incident edges to yo as e3 and e4 with the convention that
e4 connects yo to a vertex with angle less than �yo .

Let T� denote the modified graph. It has a trivalent vertex, o� , at angle just less than
�yo , and another, yo� at angle just greater than �o . These two are connected by an edge,
e�0 . The remaining two incident edges to o� connect the latter to vertices with smaller
angles, while the remaining two incident edges to yo� connect it to vertices with larger
angles. The integer pair assigned to e�0 is the sum of those assigned to e2 and e4 , this
being also the sum of those assigned to e1 and e3 . Meanwhile, T��e�0 is isomorphic
to T � e0 .

The fact that T� is a positive graph for yA follows directly with the verification of the
fourth condition in (5–7). And, the latter follows when o� has angle nearly �yo and
yo� has angle nearly �o from the fact that the inequality is strictly obeyed by e0 on
Œ�yo; �o�, and by the other incident edges to o and yo on the relevant intervals in Œ0; ��.

The remaining moves describe modifications to T that either remove a given trivalent
vertex, or replace it with either one monovalent vertex or one bivalent vertex.
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Move 4 Suppose here that only one vertex on e0[ e00 has angle �yo , and that the latter
is monovalent. This move explains how T is modified so as to replace the trivalent
and monovalent vertices with a single bivalent vertex.

To begin the story, remark that �yo must be greater than 0 as e0[ e00 has a vertex with a
smaller angle. Moreover, because the e0 version of ˛Q is positive at �yo and because
ŒQe0 ;Qe00 � < 0, the vertex on e0 [ e00 with angle �yo must sit on e00 . The graph T is
modified at angles near �yo by removing e00�o so as to replace o with a bivalent vertex
in the modified graph. To elaborate, let T� denote the new graph. It has a bivalent
vertex, o� , at angle �yo . Use e� and e0� to denote its incident edges with the convention
that e� connects o� to a vertex with angle less than �yo . Label the components of
T� � o� as T�e and T�e0 with the convention that T�e contains the interior of e� .
Then T�e is isomorphic to the component Te0 of T � o, and T�e0 is isomorphic to the
component Te . Because the QDQe0 version of ˛Q is positive at �yo , this is also the
case for the QDQe version. This then implies that T� obeys the fourth constraint
in (5–7). Thus, T� is a positive graph since it also obeys the first three conditions
in (5–7). Meanwhile, the T� version of (5–8) is obeyed by virtue of the fact that the
integer pair for the vertex o� is �Qe00 .

Move 5 This move is relevant when both e0 and e00 have vertices with angle �yo with
one bivalent and the other monovalent. In this regard, note that Qe0 and Qe00 can not
lie on the same line in R2 in this case. Thus, with the ŒQe0 ;Qe00 � < 0 convention, the
bivalent vertex must lie on e0 . In this case, the graph T is modified by eliminating both
the trivalent vertex and the monovalent vertex on e00 . To elaborate here, let T� again
denote the new graph. It has a bivalent vertex with angle �yo . Let o� denote the latter,
and let e� and e0� denote its incident edges with the convention that e� connects o� to
a vertex with a smaller angle label. Then the component T�e of T�� o� is isomorphic
to the component T � e0 that contains vertices with angles less that �yo . Meanwhile,
the component T�e0 of T�� o� is isomorphic to the component Te of T � o.

With the labeling as describe, T� is a positive graph for yA. Indeed, the only substantive
issue here is that raised by the fourth point in (5–7). In this regard, the e0� version of
this inequality holds because it is strictly obeyed by the QDQe version of ˛Q at �� .
Meanwhile, the e� version of the inequality holds because it holds for the version that
is labeled by the edge that connects the bivalent vertex on e0 to a smaller angled vertex.

Move 6 This and the remaining moves are relevant to the cases where �yo is the angle
of a monovalent vertex on e0 and a monovalent vertex on e00 . This move considers the
case where the angle is in .0; �/.
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In this case, a new graph, T� , is obtained from T by removing .e0 [ e00/� o, thus
replacing o by a monovalent vertex with angle �yo . To elaborate, the graph T� has
a monovalent vertex, o� , with angle �yo . In addition, T� � o� is isomorphic to Te .
In this regard, keep in mind that both Qe0 and Qe00 define �yo via (1–7). Thus, they
are positive multiples of each other. This understood, then Qe must also define �yo
via (1–7). The fourth point in (5–7) holds on T� because it holds on T and because
the QDQe version of ˛Q vanishes at �yo and is positive on .�yo; �o�.

Move 7 This considers the case that �yo D 0. In all of these cases, T� has a � D 0

monovalent vertex whose complement is isomorphic to Te . The verification that T� is
a positive graph for yA is straightforward and so left to the reader.

Part 2 This last part of the subsection explains how the preceding moves can be used
to construct a positive line graph from yA given its original moduli space graph T yA . In
this regard, keep in mind that T yA is a positive graph for yA. The forthcoming Lemma
5.2 asserts that a linear positive graph for yA is a positive line graph. This understood,
the task at hand is to modify T yA using Move 1–Move 7 so as to obtain a positive graph
for yA that lacks trivalent vertices.

Lemma 5.2 A linear, positive graph for yA is a positive line graph for yA.

Proof of Lemma 5.2 The only substantive issue here is that raised by the fourth point
in (1–18). In this regard, suppose that L is a linear, positive graph for yA and that e is
an edge in L. The condition on the positivity of pqe

0�p0qe > 0 in the case that .p;p0/
is an integer pair that defines the angle of a bivalent vertex on ye follows directly from
fourth constraint in (5–7). Now, suppose that qe

0 < 0. Let o and o0 denote the two
vertices on e with the convention that o’s angle is less than that of o0 . Assume first
that both these vertices have angles in .0; �/. If such is the case, then p0o0 > 0 requires
p0o > 0 because both angles must be smaller than �

2
if the larger is.

For the sake of argument, suppose that p0o > 0 but that p0o0 < 0. The QDQe version
of �Q must be greater than �o since the former is greater than �

2
and the latter less

than �
2

. However, according to the second point in (5–4), this same �Q is less then �o0 .
Thus, ˛Q vanishes between �o and �o0 and this violates the last item in (5–7). The
other possibility is that where either �o is 0 or �o0 D � . In the case that �o D 0, then
the argument just given has the QDQe version of �Q less than �o0 when it exists. If
available, the QD�Qe version of this angle is also less than �o0 by virtue of the first
point in (5–4). In either case, this means that the QDQe version of ˛Q has a zero
in .0; �o0/. In the case that �o0 D � , the Q D Qe version of �Q is greater than �o
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when it exists. This is another consequence of the first point of (5–4). When available,
the QD�Qe version of �Q is also greater than �o ; this a consequence of the second
point in (5–4). Thus the QDQe version of ˛Q has a zero in .�o; �/.

The remainder of this section describes an algorithm that uses Move 1–Move 7 from
Part 1 to change T yA into a linear, positive graph for yA and thus produce the desired
positive line graph for yA. The algorithm has four steps.

Step 1 Suppose that T is any given positive graph for yA. Let VC denote the set
of trivalent vertices with only one incident edge that contains a larger angle vertex.
Likewise, define V� to be the set of trivalent vertices with only one incident edge that
contains a smaller angle vertex. Let nTC denote the number of elements in VC and
let nT� denote the corresponding number in V� . If VC is empty, go to Step 3. If
not, let o 2 VC be a vertex whose angle is the smallest of those from the vertices in
VC . Move 1–Move 7 can now be used to successively modify T so that the result,
T 0 , is a positive graph for yA with nT 0C D nTC � 1 and with nT 0� D nT� . Indeed,
Move 1–Move 3 successively decrease the angle of the relevant trivalent vertex, this
by an amount that is bounded uniformly away from zero. Thus, only finitely many
applications of Move 1–Move 3 are possible. The subsequent moves all eliminate a
trivalent vertex. In any event, when T 0 is produced, go to Step 2.

Step 2 Repeat Step 1 using T 0 now instead of T .

Note that Step 1 and Step 2 ultimately result in a positive graph for yA whose version
of VC is empty and whose version of V� has the same number of elements as does
that of T yA .

Step 3 The input to this step is a positive line graph for yA whose version of VC is
empty. Let T now denote the latter. If V� is also empty, then stop because T is the
desired linear graph. If V� ¤∅, let o denote the trivalent graph with the largest angle.
Successively apply the up side down versions of Move 1–Move 7 to o. The result is a
new, positive graph for yA with no elements in its version of VC and one less trivalent
vertex than T . Denote this graph by T 0 . Go to Step 4.

Step 4 Repeat Step 3 using T 0 now instead of T .
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