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Surface subgroups and handlebody attachment

VIVIEN R EASSON

The main theorem of this paper generalizes recent results in Dehn surgery to the
case of handlebody attachment. We consider attaching handlebodies and solid tori
to the boundary of an irreducible, boundary-irreducible, atoroidal and acylindrical
3–manifold. We show that for a large class of homeomorphisms attaching these han-
dlebodies, the fundamental group of the resulting manifold contains the fundamental
group of a closed surface of genus at least two.

57N10; 57M50, 57N35, 20H10

1 Introduction

In this paper, we discuss a particular generalization of the technique of Dehn surgery for
hyperbolic 3–manifolds, which we call handlebody attachment. We consider a simple
3–manifold M (not B3 ) with non-empty boundary, where simple means compact,
irreducible, @–irreducible, atoroidal and acylindrical.

As a consequence of the proof of Thurston’s geometrization of Haken manifolds, we
can give M a complete hyperbolic structure such that the non-cuspidal part of M is
compact and every boundary component of M which has genus at least two inherits a
totally geodesic metric from the hyperbolic structure on M . When we use the term
totally geodesic boundary throughout this paper, this is what we mean. Thus the only
non-compact ends of M are cusps.

We consider attaching a collection of handlebodies and solid tori H to @M . Denote the
resulting manifold by M [� H , where � D f�`g is a collection of homeomorphisms,
and each �` is a map from a boundary component .@M /` of @M to the boundary of a
handlebody or solid torus H` in H .

A surface subgroup of M is a subgroup � � �1.M / which is isomorphic to the
fundamental group of a closed surface of genus at least two. In [8], Cooper–Long–Reid
showed that M always has a non-peripheral surface subgroup.

In the Dehn surgery case, H is a collection of solid tori. Recent papers of Cooper–
Long [7] and Li [16] showed independently that all but finitely many Dehn surgeries
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on a one-cusped hyperbolic manifold give rise to a manifold with a surface subgroup.
Bart [2] gives a result when there are many cusps. We generalize these results to the
case of handlebody attachments.

For a handlebody H 2H , we consider attachments involving pseudo-Anosov home-
omorphisms hW @H ! @H whose stable lamination is of full type with respect to
some pants decomposition of H along meridians, see Definition 2.7. This condition is
generically true, and is equivalent (see [1]) to the condition that h has stable lamination
which lies in the Masur domain of the handlebody.

Theorem 1 (Theorems 6.1 and 7.1) Suppose M ¤ B3 is a simple 3–manifold with
mCm0 � 1 boundary components, precisely m0 of which are tori. Take a collection
H D fH1; : : : ;HmCm0g of handlebodies and solid tori whose genera match those of
@M . Let M [� H denote the closed 3–manifold obtained by gluing each boundary
component .@M /` to @H` by a homeomorphism �` .

Suppose moreover that h`W @H`! @H` is a homeomorphism which is either a pseudo-
Anosov homeomorphism whose stable lamination is of full type, or an Anosov homeo-
morphism, according to whether H` has genus at least two or is a solid torus respec-
tively.

Given homeomorphisms �0
`
W .@M /`! @H` , there exist integers .N`/min such that if

�` D h
N`

`
ı�0

`
with N` � .N`/min for all `, the group �1.M [�H/ contains a surface

subgroup.

There are three main ingredients required in our proof of Theorem 1. Firstly, a closed
�1 –injective surface † with a finite cover which lifts to an embedded incompressible
surface in a finite cover of M . Secondly, suitable classes of gluing homeomorphisms.
Finally, a geometrical analysis of the ways in which † might fail to remain �1 –injective
under handlebody attachment.

We first prove Theorem 1 assuming M has no toral boundary components: every
component of @M is a surface of genus at least two. This proof is given in Sections 2
to 6, and generalized to the case where M also has some toral boundary components
in Section 7. The precise method of proof when the chosen hyperbolic metric on M

has cusps depends on whether † has accidental parabolics, but is broadly similar to
the non-cusped case.

In both cases, we prove Theorem 1 as a corollary of the following theorem.

Theorem 2 (Theorems 6.2 and 7.2) Let M be a hyperbolic 3–manifold with m

totally geodesic boundary components and m0 cusps, m C m0 � 1. Let † be a
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connected, orientable, closed, immersed surface in M with a finite cover which lifts to
a non-peripheral embedded incompressible surface in a finite regular cover � W �M !M

of degree d .

As in Theorem 1, let M [� H denote the closed 3–manifold obtained by attaching
handlebodies to @M via homeomorphisms �`W .@M /`! @H` and consider maps h`
satisfying the condition given in that theorem.

Given homeomorphisms �0
`
W .@M /`! @H` , there exist integers .N`/min such that if

�` D h
N`

`
ı�0

`
with N` � .N`/min for all `, the surface † remains �1 –injective in the

resulting manifold M [� H .

The existence of such a surface † is given by Cooper–Long–Reid [8]. However our
proof works for any virtually embedded �1 –injective surface satisfying the conditions
above, not just those provided by their construction.

The second ingredient is making a good choice of attaching maps. The crucial property
possessed by each gluing homeomorphism described above is that its dynamics are
governed by that of the pseudo-Anosov map. In Section 2 we explain the condition for
a lamination to be of full type, in terms of the way it intersects pants decompositions
of the handlebody.

When we attach handlebodies by maps as above, we force each member of a certain
finite collection of curves to have high geometric intersection number with every curve
bounding a disc in a handlebody H under the attachment map. Furthermore, we can
use the geometry of these intersection sets to prove a key lemma, Proposition 4.1.

Now we use our final ingredient. Suppose that our surface † fails to inject at the level
of the fundamental group into M [� H . Then there exists an essential loop L in †,
and an immersed disc D in M [� H which spans L. The intersection of D with M

is a planar surface, and we may consider an immersed least-area representative Q of
this planar surface. By the Gauss–Bonnet theorem, the area of Q is bounded above by
a linear function of its Euler characteristic, and all but one component of @Q bound a
disc in H under the attaching maps.

Our proof relies on showing that the intersections as above contribute area to a surface
R. This surface is obtained as a cover of Q of degree at most d , where d is the degree
of a finite cover � W �M !M in which † becomes embedded. For a sufficiently high
power of the pseudo-Anosov map, the intersections contribute too much area, and we
obtain a contradiction with the Gauss–Bonnet theorem.

We develop this intuition in Sections 2 to 6 in order to prove Theorem 2 and hence
Theorem 1 in the case when every boundary component of M is of genus at least
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two. In Section 7 we show that the presence of cusps does not materially affect our
argument, so that Theorems 1 and 2 remain true in the general case.

Note that attaching a solid torus by a map as in the theorems ensures that the corre-
sponding Dehn filling slope lies outside the union of a finite number of infinite strips.
In fact a similar argument to ours shows that our results hold in the latter case as well.
The important condition turns out to be that the Dehn filling slope should have high
intersection number with a finite number of exceptional slopes. These slopes depend
only on the surface † and on the way in which its convex hull intersects the boundary
of M .

I would like to thank my DPhil supervisor Marc Lackenby for a great many helpful
conversations. My thanks also to Juan Souto for helping me to place my original
condition on the pseudo-Anosov maps in the context of the literature, to Saul Schleimer
for comments on terminology, and to the referee for several helpful suggestions.

2 Defining the projective wavelike set

Let H be a handlebody of genus g , and write B.@H /emb for the collection of non-
trivial embedded 1–manifolds on @H , each component of which bounds a disc in H ,
considered up to isotopy. Similarly, let B.@H / denote the collection of non-trivial
regular homotopy classes of closed curves on @H , not necessarily embedded, each
component of which bounds a disc in H .

We will consider the first set as a subset of ML.@H /, measured laminations on @H ,
by giving each curve component unit weight. The second set may be thought of in
terms of Bonahon’s theory of geodesic currents (e.g. [5]), but this is not necessary for
our discussion.

Definition 2.1 Suppose P is a pants decomposition of the surface @H such that every
boundary component of a pair of pants P 2 P lies in B.@H /emb . Then we say that P
is a handlebody pants decomposition and that every P 2 P is an H–pants.

We will find it useful to distinguish two different kinds of essential subarcs in an
H–pants P , and relate this to the way that a lamination � intersects P .

Definition 2.2 Suppose that P is a pair of pants, and that � is an essential subarc
properly embedded in P . If both of the endpoints of � lie on the same boundary
component of P , we say that � is a wave in P . Otherwise, � connects two different
boundary components of P , and we say that � is a seam in P .
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Similarly, an essential immersed subarc � with � \ @P D @� is said to be an immersed
wave or an immersed seam according to whether its endpoints lie on the same or
different components of @P .

wave

P

seam

Figure 1: Waves and seams in a pair of pants

Definition 2.3 Consider a measured lamination � and an H–pants P . Label the
boundary components of P by @P1; @P2; @P3 . Let a; b; c denote respectively a D

j� \ @P1j, b D j� \ @P2j and c D j� \ @P3j, where jx \ yj denotes the geometric
intersection number of measured laminations x and y .

Then � satisfies all triangle inequalities on P if aC b � c , bC c � a and cC a� b .
We say that � satisfies all strict triangle inequalities if every such inequality is strict.

On the other hand, if at least one of these strict inequalities does not hold (e.g. aCb� c ),
we say that � satisfies some triangle subequality. Thus it is possible (take aC b D c ,
bC c � a, cC a� b ) that � satisfies both all triangle inequalities and some triangle
subequality.

We can show that curves in B.@H / usually have an immersed wave with respect to
some component of a handlebody pants decomposition.

Lemma 2.4 Consider a closed, connected, possibly non-embedded curve ˛ which
lies in the boundary of a handlebody H and is homotopically trivial in H . Let P
be a handlebody pants decomposition of @H . Then either ˛ is homotopic into some
component P 2 P or ˛ has an immersed wave with respect to some pants P 2 P .

Proof Suppose some component of ˛ is not homotopic into any component P 2 P ,
and write f W D # H for an immersed disc in H that it bounds. Then by ambient
isotopy of f .D/ we may assume it intersects the discs in P in a minimal non-empty
collection of arcs whose preimages are properly and disjointly embedded in D . An
outermost such preimage arc c separates off a subdisc f W D0 # H with boundary
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D

D0

c

˛0

f P

f .D0/

f .c/

f .˛0/

Figure 2: A wave in a curve bounding a disc

c[˛0 whose image lies in the union of some H–pants P and the discs in H bounded
by its boundary components.

Since the endpoints of f .c/ lie in the same boundary component of P , so do those of
f .˛0/. By minimality, f .˛0/ is an essential arc which is proper and immersed in P ,
so it forms an immersed wave in P .

For ˛ embedded, this wave will be embedded, and we can say more.

Corollary 2.5 Suppose that ˛ 2 B.@H /emb . Then the following holds for any han-
dlebody pants decomposition P , whether or not there is a wave. There exist an
H–pants P 2 P , and two boundary components @P1 and @P2 of P , such that ˛ has
no subarcs in P which are seams connecting @P1 and @P2 .

Proof If ˛ has a wave, it cannot have some seam which would cross that wave; and
if ˛ lies inside P , it has a component parallel to a boundary component of some P

and so cannot have any seam running from that component.

Moreover, suppose ˛ 2 B.@H /emb has k > 0 waves in P joining @P3 to itself. These
also separate @P1 from @P2 , so we deduce that the corresponding triple of intersection
numbers is of the form .a; b; c/D .a; b; aCbC2k/. If ˛ has no waves in P but some
component of ˛ is parallel to @P1 , we have .a; b; c/D .0; b; b/.

In particular, given any handlebody pants decomposition P , and a curve ˛ in the set
B.@H /emb , there exists an H–pants P 2 P such that ˛ satisfies a triangle subequality
on P . We are interested in all curves and laminations satisfying this conclusion, which
motivates the following definition.

Definition 2.6 Define the wavelike set W.H /�ML.@H / to be

W.H /D f� W 8P; 9P 2 P s.t. � satisfies some triangle subequality on P g
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where P ranges over all handlebody pants decompositions of H .

Since a measured lamination � lies in W.H / if and only if any positive scalar multiple
of � does, we can also define the projective wavelike set PW.H / consisting of all
projective measured laminations which have a representative in W.H /. This is a subset
of PML.@H /, projective measured lamination space. We may therefore make the
following definition.

Definition 2.7 Let � be a measured lamination in ML.@H /. If it does not lie in
W.H / then we say it is of full type. Similarly, a projective measured lamination is of
full type if it does not lie in PW.H /.

Suppose hW @H! @H is a pseudo-Anosov homeomorphism whose stable and unstable
laminations �S do not lie in the projective wavelike set PW.H /. Then we say that h

is of full type.

We showed above that B.@H /emb �W.H /. Abrams–Schleimer proved that PW.H /

is equal to the closure of PB.@H /emb in the subspace of PML.@H / consisting of
those laminations which occur as the fixed points of pseudo-Anosov homeomorphisms
(see [1], 11.5). They also demonstrated that h has stable lamination of full type if
and only if h has stable lamination contained in the Masur domain of H : the set of
laminations having non-zero geometric intersection with every lamination in the closure
of PB.@H /emb .

By work of Kerckhoff [13] which extends results of Masur [17], the closure of
PB.@H /emb and hence PW.H / has measure zero in PML.@H /. Thus a generic
pseudo-Anosov map is of full type. The terminology full type comes from Kobayashi
[14].

We will consider attaching maps of the form � D hN ı �0 which are formed as the
composition of a power of a pseudo-Anosov homeomorphism hW @H ! @H whose
stable lamination is of full type and a homeomorphism �0W .@M /`! @H . Our results
hold for all � with N larger than some constant depending on h and �0 .

We use throughout the conventions for stable and unstable laminations of a pseudo-
Anosov map found in [6]. In Section 4, we show how to put these definitions together
with that of the set of distinguished curves defined below.

3 The set of distinguished curves Xi

We start by defining what it means for a 3–manifold to be simple. Then, given such
a manifold M (with non-empty boundary) and a suitable �1 –injective surface †
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immersed in it, we define sets Xi of distinguished curves which will play a crucial role
in our argument.

Definition 3.1 An orientable 3–manifold M is said to be simple if it is compact,
irreducible, @–irreducible, atoroidal and acylindrical.

Take a simple 3–manifold M with m boundary components of genus at least two
and m0 toral boundary components, mCm0 � 1. As a consequence of the proof of
Thurston’s geometrization theorem for Haken 3–manifolds, we can give M (minus its
toral boundary) a complete hyperbolic structure g such that the non-cuspidal part of
M is compact and every boundary component of genus at least two inherits a totally
geodesic hyperbolic metric from it.

For M as above, we will consider an immersed surface �W † # M which is is a
closed, connected, orientable �1 –injective surface of genus at least two and which
has a finite cover �† lifting to a non-peripheral embedded incompressible surface in a
degree d cover � W �M !M .

We can always assume that this cover is regular, by lifting if necessary to a further
finite cover. The next result follows from various facts originally due to Thurston, as
described below.

Lemma 3.2 Let �W †# M be a surface in a simple 3–manifold M as above. Then
† is geometrically finite.

Proof Suppose firstly that M has at least one boundary component of genus at least
two. Then, giving M a hyperbolic metric g as above, the limit set of the Kleinian
group �1.M / in the hyperbolic sphere at infinity S2

1 D @H3 does not fill up all of
the sphere. Matsuzaki–Taniguchi [18] call this a Kleinian group of the second kind.
Theorem 3.11 of [18] states that every finitely generated subgroup of such a group is
geometrically finite. This fact of Thurston’s can also be found in [20]. Since † is a
closed surface, �1.†/ is finitely generated and hence geometrically finite.

On the other hand, suppose that M only has toral boundary components, so that .M;g/

is a complete hyperbolic 3–manifold with finite volume. In this case, it follows from
work of Thurston [21] and Bonahon [4] that either † is geometrically finite or it is a
virtual fibre of M : see for example the discussion in Menasco–Reid [19]. But † is
closed so M cannot virtually fibre over it. Therefore † is geometrically finite.

Take a virtually embedded �1 –injective surface �W †#M as above. Write �†1; : : : ;�†s

for the images of the connected surface �† which is a cover of † lifting to �M . These
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are embedded incompressible surfaces which intersect each other in �M . We shall
assume these conditions and this terminology throughout this paper. Until Section 7,
we also assume m0 D 0, so M has no cusps.

Let ‰i denote the characteristic submanifold of �M �
i D

�M � int.N.�†i//, where �M �
i

is the manifold obtained from �M by removing a small open neighbourhood of the
embedded surface �†i . Its vertical boundary @v‰i is a collection of disjoint essential
annuli properly embedded in . �M �

i ; @
�M [�†i/.

Moreover, since M is hyperbolic, ‰i consists of I –bundles over subsurfaces of the
boundary and Seifert-fibred solid tori. This follows since M being atoroidal implies
that no other Seifert-fibred spaces occur as components of ‰i . Again, we note that the
submanifolds ‰1; : : : ; ‰s intersect each other.

Consider a restricted subset of the connected components of each ‰i . This subset
consists of those I –bundles whose vertical boundary is a collection of annuli with one
boundary component in each of @ �M and �†i . Write ‰.@ �M ;�†i/ for the collection of
all such I –bundles in �M .

The characteristic submanifold is a purely topological object, but we will impose some
geometrical restrictions on the subset ‰.@ �M ;�†i/. We will assume that the boundary
components of ‰.@ �M ;�†i/\ @ �M are geodesic curves in @ �M . This may make some
previously disjoint annuli in @v‰.@ �M ;�†i/ intersect along a closed geodesic in @ �M , as
shown in Figure 3. Note that there are finitely many of these curves since each of them
is the geodesic straightening of a boundary curve of the original ‰.@ �M ;�†i/\ @ �M .
We now give a precise definition.

Definition 3.3 Suppose x is a closed simple geodesic on a totally geodesic boundary
component of @ �M with the following property. There exist curves �C and �� on �†i

which are freely homotopic to x in �M �
i but not freely homotopic to each other in �†i .

Then we say that x is a cut curve for ‰.@ �M ;�†i/.

We are interested in the intersection of ‰.@ �M ;�†i/ with the boundary @ �M . For our
argument it is convenient to express this intersection set in terms of the convex hull
C.�†i/ of �†i . We will use the same notation C.�/ throughout for convex hulls in H3

and their images when we project to a quotient manifold.

We will also occasionally find it useful to consider a slightly larger submanifold
containing the convex hull which has smooth boundary. We may do this by extending
the convex hull in a neighbourhood of small width which will be determined precisely
later. To avoid excessive notation, we also let C.�/ denote the resulting extended
convex hull with smooth boundary.

Geometry & Topology, Volume 10 (2006)



566 Vivien R Easson

�†i

xCx
@ �M

(before making curves on @ �M geodesic)

(after making curves on @ �M geodesic)

vertical boundary annuli in ‰.@ �M ;�†i/

��

possible Seifert
fibred solid tori

[�S1 ]

�C

x�

Figure 3: The curve x is a cut curve in this picture � S1

Proposition 3.4 For �M , C.�†i/ and ‰.@ �M ;�†i/ as defined above,

‰.@ �M ;�†i/\ @ �M D C.�†i/\ @ �M :

Proof For each boundary component .@ �M /` of �M , choose a basepoint � on .@ �M /`
for all fundamental groups considered. Starting from the right-hand-side of the above
equation, we have

C.�†i/\ @ �M D[
`

�
C.�†i/\ .@ �M /`

�
D

[
`

�
C
�
ƒ.�1.�†i//

�
\ C

�
ƒ.�1..@ �M /`//

��
;

where ƒ.�/ denotes the limit set in @H3 of a Kleinian group � .

The limit set of the totally geodesic surface .@ �M /` is a round circle. Thus the convex
hull of .@ �M /` is a geodesic hyperplane in H3 . Since the convex hull of �†i lies to one
side of this hyperplane, we deduce that

C.�†i/\ .@ �M /` D C
�
ƒ.�1.�†i//\ƒ.�1..@ �M /`//

�
:

By a standard theorem on limit sets (see for example Theorem 3.14 of [18]), the
intersection of the limit sets of two geometrically finite subgroups is the limit set
of their intersection, plus perhaps a set P of parabolic fixed points. By our current
assumption that M has no cusps, P D∅. Therefore

C.�†i/\ .@ �M /` D C
�
ƒ
�
�1.�†i/\�1..@ �M /`/

��
:
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Consider a loop x on .@ �M /` based at � which lies in �1.�†i/\�1..@ �M /`/. Choose
a path p from the basepoint � on .@ �M /` to a point on �†i . Then take a loop � on�†i running through this point such that p�p�1 is homotopic to x relative to �. Use
this homotopy to define an annulus f W A # �M with boundary � [ x , obtained by
identifying two sides of the square with sides x;p; � and p�1 .

Put f W A # �M into general position with respect to the embedded surface �†i , and
assume that the annulus f .A/ is transverse to �†i in a neighbourhood of f .@A/. It
follows that the preimage of f .A/\�†i consists of simple closed curves in A. We can
remove any inessential simple closed curves ˛ from A since �†i is incompressible:
f .˛/ will bound discs in f .A/ and therefore in �†i ; these discs cobound a ball across
which f .A/ may be homotoped to remove the intersection.

Therefore we may assume that the preimage of f .A/\�†i in A consists of core curves
in A. Take the core curve ˛ nearest the boundary component of A mapping to x in
.@ �M /` . Let f W Ax # �M denote the subannulus of f W A # �M lying between f .˛/
and f .x/. The interior of this annulus f .Ax/ is disjoint from �†i , and so it lies in�M �

i .

.@ �M /`

x

˛

�

A

Ax

�†i

�

p

Figure 4: Homotopy annulus from � to x

Any such annulus can be homotoped into the characteristic submanifold ‰i of �M �
i

by Johannson’s Enclosing Theorem [11]. By construction, it can be homotoped into
the subset ‰.@ �M ;�†i/ � ‰i . Thus the curve x on .@ �M /` can be isotoped into
‰.@ �M ;�†i/\ .@ �M /` . Indeed, since we assumed that the boundary components of
‰.@ �M ;�†i/\ @ �M were geodesic, the geodesic straightening of x already lies inside
the intersection ‰.@ �M ;�†i/ \ .@ �M /` . We deduce that C.�†i/ \ .@ �M /` lies inside
‰.@ �M ;�†i/\ .@ �M /` .

Conversely, consider any loop x in ‰.@ �M ;�†i/\ .@ �M /` based at �. By definition of
‰.@ �M ;�†i/, it is homotopic relative to � to a loop of the form p�p�1 , where p is
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some path from � to �†i and � is a loop in �†i . Thus x 2 �1.�†i/\�1..@ �M /`/, and
the geodesic representative of x lies in

C.�†i/\ .@ �M /` D C
�
ƒ
�
�1.�†i/\�1..@ �M /`/

��
:

Since the boundary curves of both ‰.@ �M ;�†i/ \ .@ �M /` and C.�†i/ \ .@ �M /` are
geodesic, x also lies inside C.�†i/\ .@ �M /` . This gives the opposite inclusion. By
repeating both directions of this argument for every component of @ �M , we obtain the
required equality ‰.@ �M ;�†i/\ @ �M D C.�†i/\ @ �M .

The curves which occur either as cut curves defined in Definition 3.3 or as boundary
curves of the set described in Proposition 3.4 will play a special role in our argument.
Sometimes we consider some additional curves as well.

Definition 3.5 We define a boundary curve for �†i to be an essential simple closed
geodesic x in @ �M which is a component of @.‰.@ �M ;�†i/\ @ �M /. We say that an
essential simple closed geodesic in @ �M is a characteristic curve for �†i if it is a
boundary curve for �†i or a cut curve for �†i .

Let X 0i denote the set of characteristic curves for �†i . Then X 0i is a possibly empty
finite collection of disjoint essential simple closed geodesics on @ �M .

Definition 3.6 Suppose that X 0i \ .@
�M /` were empty for some boundary component

.@ �M /` of �M . Then we choose an essential simple closed geodesic x` � .@ �M /` and
replace X 0i by X 0i [fx`g. We call x` an additional curve.

Extend each X 0i to a set Xi which is the union of X 0i and an additional curve x` for
every boundary component requiring one. Then Xi \ .@ �M /` is non-empty for all i

and `. We call Xi the set of distinguished curves for ‰.@ �M ;�†i/. It consists of the
characteristic curves for �†i and the additional curves chosen as above. If x is a curve
in Xi , we say it is a distinguished curve.

We will also require the following definition.

Definition 3.7 Let ˛ be an immersed arc on .@ �M /` . We say that ˛ is a quintersecting
arc if it intersects every distinguished curve x 2

S
i Xi on .@ �M /` at least five times.
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4 Ensuring large intersection with Xi

In this section we use the definitions above and show that certain curves whose images
bound discs in an attached handlebody have large geometric intersection number with
each distinguished curve in every set Xi .

Proposition 4.1 Let M ¤B3 be a simple 3–manifold containing a closed, connected,
orientable, immersed surface �W † # M with a finite cover which lifts to a non-
peripheral embedded incompressible surface in a degree d cover � W �M !M . Let H

be a handlebody. Suppose that hW @H ! @H is a pseudo-Anosov map whose stable
lamination is of full type and that �0W .@M /`! @H is a homeomorphism from some
boundary component .@M /` of M to @H .

Then, for all n 2 N, there exists Nmin.h; �
0/ 2 N depending on the maps �, � , h

and �0 and on the integers n and d such that every attaching homeomorphism � D

hN ı�0W .@M /`! @H with N �Nmin.h; �
0/ has the following property.

Œ�� Any connected essential (not necessarily embedded) curve � � .@ �M /` such that
� ı�.�/ bounds a disc in H can be subdivided into at least n subarcs, each of which
is a quintersecting arc.

Proof Take the component of @ �M containing � and denote it by .@ �M /` . Thus
.@ �M /` projects to .@M /` . The homeomorphism �0W .@M /`! @H allows us to define
a cover ��0 of @H by

��0 WD �0 ı� W @ �M`! @H

We write �@H D @ �M` . Note that in general ��0 does not extend to a cover of the
handlebody H . We then want to be able to lift a homeomorphism hW @H ! @H to a
homeomorphism �hW �@H ! �@H . The necessary and sufficient condition for this to be
possible is that the map h� induced by h at the level of the fundamental group should
satisfy h�� D � , where � � �1.@H / is the subgroup

� D .��0/�

�
�1. �@H /

�
:

This subgroup is of finite index equal to xd � d , where d is the degree of the cover
� W �M !M . The group �1.@H / is finitely generated, hence it has finitely many sub-
groups of index xd , and the automorphism h� must permute them. Such a permutation
has order � dividing t ! where

t Dmax
xd�d

n
number of subgroups of �1.@H / of index xd

o
<1
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Thus for any h, the induced map .ht !/� D .h�/
t ! preserves � . This implies that ht !

lifts to a homeomorphism �ht !W �@H ! �@H :

Consider the map � D hN ı�0 , and take n 2N. We may write N as N 0t !C r , where
0� r < t !. Write � as

� D .ht !/N
0

ı .hr
ı�0/;

noting that none of N 0; t or r depends on �0 .

Suppose that  W .@M /`! @H ranges over the homeomorphisms in the set

ˆt ! D f�
0; h�0; h2�; : : : ; ht !�1�0g:

If for every  2ˆt ! we can obtain an integer Nmin.h
t !;  / which satisfies the require-

ments of the proposition, then we can take

Nmin.h; �
0/D t !�

�
max
 2ˆt!

Nmin.h
t !;  / C 1

�
:

Indeed, if we take N �Nmin.h; �
0/ with Nmin.h; �

0/ defined as above, then for

hN
ı�0 D .ht !/N

0

ı .hr
ı�0/;

we have

N 0 �
N

t!
� 1 � Nmin.h

t !;  /

with  D hr ı�0 , so that the conclusion holds.

Thus from now on we will assume that the map h lifts to a pseudo-Anosov homeomor-
phism �hW �@H ! �@H . The stable lamination ��S of �h is ��1

�0 .�
S /.

We define ��W @ �M`!
�@H to be �hN using �@H D @ �M` . Then

��0 ı�� D ��0 ı�hN
D hN

ı��0 D hN
ı�0 ı� D � ı�

so that gluing commutes with the projection map.

By our choice of map h, �S 2 PW.H /c . Thus the lamination �S satisfies all
strict triangle inequalities on each pants component P of some handlebody pants
decomposition P D P.�S /. As �S has no self-intersections and never spirals into
a closed leaf, the strict triangle inequalities imply that �S has no waves and has all
possible seams. Moreover, the union �S [ P splits @H up into simply-connected
regions, either square or hexagonal.

In the cover �@H , these regions must lift to simply-connected regions. Figure 5 shows
an example of a possible lift of some P 2 P .

Geometry & Topology, Volume 10 (2006)



Surface subgroups and handlebody attachment 571

in � ı�.�/
lift of a wave

lift of P

close-up of intersection

hexagonal regions

��.�/
subarcs containing intersections

��S

lift of component of � ı�.�/
which is parallel to some @P

Figure 5: Every lift of a wave intersects��S many times

We now carry out the technical part of the proof. Take a curve � in @ �M (connected
but not necessarily simple) such that � ı�.�/D ��0 ı��.�/ bounds a disc in H . This
disc is proper and essential in .H; @H / but need not be embedded. By Lemma 2.4,
either � ı �.�/ is freely homotopic into P 2 P and hence separates two boundary
components of the H–pants P , or it has an immersed wave with respect to P . In
either case, � ı�.�/ intersects �S .

This intersection persists when we lift to �@H : ��.�/ must intersect ��S . Indeed, the
lift of the immersed wave (or boundary-parallel curve) starts in one of the square or
hexagonal regions and must leave by one of the edges lying in ��S . Furthermore, since
the lamination ��S has local geometry modelled on a Cantor set � R, the lift of the
wave intersects ��S uncountably many times near this point.

Apply the map �� D�hN to a simple closed curve x in .@ �M /` . Denoting the geodesic
straightening of a curve’s image by .�/� , we have���.x/�� D .�hN .x//� � �@H :

As N !1, .�hN .x//�!��S in the Gromov–Hausdorff sense (e.g. [12], ~11.15).

Geometry & Topology, Volume 10 (2006)



572 Vivien R Easson

Write W .x/ for the smallest integer (depending on �, � , h and �0 ) such that whenever
N �W .x/, the following property holds. This integer will exist by the convergence
above.

Property 4.2 For every lift �� of a seam � in an H–pants P of P such that ��S has a
subarc homotopy equivalent to �� keeping its endpoints on @P , the curve .�hN .x//�

has a subarc homotopy equivalent to �� keeping its endpoints on @P .

Note that there may not be a uniform bound W such that, for all simple closed curves
x , W .x/ � W . Consider however the set of distinguished curves Xi in @ �M from
Definition 3.6. Since there are finitely many curves in each Xi , and finitely many lifts�†i from which we obtain a set of distinguished curves Xi , there are finitely many
curves in all of these sets put together.

Write X
.@ �M /`

for [iXi \ .@ �M /` . Since X
.@ �M /`

is finite, we can define WX ;` to be
the maximum of the integers W .x/ such that x 2X

.@ �M /`
. Then, for N �WX ;` and a

geodesic x 2X
.@ �M /`

, the curves

.��.�//� � .�hN .�//� and .�hN .x//�

have non-zero geometric intersection number. Thus � and x intersect, proving a weak
form of the proposition.

More generally, take a point p in the intersection of ��S with ��.�/ D �hN .�/. As
N tends to infinity, the intersection of .��.x//� D .�hN .x//� with �hN .�/ converges
to ��S \ �hN .�/ around p in the sense of Gromov–Hausdorff. In particular, the
intersections tend to the Cantor set limit.

To complete the proof, take n 2 N. Any curve ��.�/ as above has at least n subarcs
each of which intersects ��S at least five times, possibly all on the same lift of a wave.
This implies that for each distinguished curve x there exists Nmin.x/ such that ��.�/
has at least n subarcs each of which intersects �.x/ at least five times.

Since there are finitely many distinguished curves and their images all converge to��S , we deduce that there exists Nmin such that ��.�/ has n subarcs each of which
intersects all distinguished curves at least five times. For example, pick 5n consecutive
intersections between ��.�/ and ��S , a number � > 0 small enough so that the distance
between any two such intersections is greater than 2� , and take Nmin large enough so
that for every distinguished curve x , the geodesic .�.x//� has an intersection with��.�/ within an �–neighbourhood of each intersection with ��S . Thus the same subarcs
may be chosen so that they work for all distinguished curves.
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Moreover, the integer Nmin can be taken to be independent of � since there are only
finitely many types of square or hexagonal regions to consider. We conclude the proof
by noting that this property is preserved under ���1 . Thus there exists Nmin so that
every � can be subdivided into at least n subarcs, each of which is quintersecting.

5 Gathering area outside C.†i /

In Sections 3 and 4 we obtained two useful results. Proposition 3.4 expresses the
intersection of the convex hull of a surface �†i with @ �M as the intersection of a certain
collection of I –bundles ‰.@ �M ;�†i/ with @ �M . Proposition 4.1 gives conditions
guaranteeing that certain curves in @ �M have many subarcs, each intersecting every
curve in the set Xi of distinguished curves for ‰.@ �M ;�†i/.

In this section and Section 6 we combine these results to show that all but a small
number of these subarcs containing enough of these intersections will contribute a fixed
quantum of area to a lift of a planar surface lying in M . This surface will be of the
following kind.

Let f W Q # M be a least-area planar surface immersed in M , with k � 2 geo-
desic boundary components f .q1/; : : : ; f .qk/ lying on @M and a geodesic boundary
component f .q0/ lying in C.†/ and homotopic to a curve in †. This surface Q

inherits a negatively curved metric from M (see Theorem 5.5, ~V.A, [9]) of curvature
at most �1. Assume also that Q is homotopically incompressible and homotopically
@–incompressible.

Basmajian [3] showed that the totally geodesic boundary @M of a hyperbolic manifold
such as M has a collar of width some fixed constant U depending only on f�..@M /`/g.
This leads us to the following definitions of a U–collar and of minimal U–thin arcs in
a planar surface immersed in M .

Definition 5.1 For M , † and Q as above, consider a curve qj (j ¤ 0). The U–collar
of qj consists of all points � 2Q such that the distance d.�; qj / is at most U in the
path metric on Q obtained from the metric on M .

By Basmajian’s result these collars are disjoint for qj (j ¤ 0). For if not, we can find
an embedded essential arc in Q running between curves qj1

and qj2
which lies in

the U–collar of @M and so can be homotoped into @M . This contradicts homotopic
@–incompressibility of Q. However, the curve f .q0/ may approach some f .qj / at a
distance less than U , and so we define ı–thin arcs for Q.

Geometry & Topology, Volume 10 (2006)



574 Vivien R Easson

Definition 5.2 Define a minimal U–thin arc in f W Q # M to be a geodesic arc �
properly embedded in Q with endpoints on q0 and some qj (j ¤ 0), such that (i) the
length of � is at most U in the path metric on Q; (ii) � is of minimal length among
embedded arcs homotopy equivalent to it keeping their endpoints on the boundary.

U

U–thin arc

q2
q1

Q

q0

v2 v1

v0

GQ

Figure 6: Definition of minimal U–thin arcs and example of a graph

Note that these arcs are disjoint. For any constant 0< ı � U , we may similarly define
minimal ffi–thin arcs for f W Q # M . Moreover, if R is a cover of Q which lifts to
some finite cover �M !M , the set of minimal ı–thin arcs of R consists of all arcs in
R which project to a minimal ı–thin arc of Q.

Lemma 5.3 Let zf W R # �M be a (minimal) surface immersed in �M such that its
projection Q D �.R/ is a least-area planar surface in M as described above, with
kC1�3 boundary components. Suppose that d is the degree of the cover � W �M!M .
Then, for any 0< ı � U , there are at most 2.k � 1/d minimal ı–thin arcs in R.

Proof By construction it is enough to show that Q has at most 2.k � 1/ minimal
ı–thin arcs, where k � 2. Consider therefore the graph GQ obtained from Q by taking
a vertex for every boundary component of Q and an edge for every minimal ı–thin
arc. Then GQ is planar, and we claim it has at most 2.k � 1/ edges.

We prove this by induction on k . If k D 2, there are at most two edges, each of which
runs from the vertex v0 representing q0 to one of the other vertices v1 or v2 . For,
since each f .qj / is a geodesic curve in the negatively-curved surface Q, there cannot
be two disjoint adjacent minimal ı–thin arcs without some non–simply-connected
region of Q separating them.

If k > 2, we can always find a vertex with at most one edge connecting it to v0 . For,
suppose v is some vertex with more than such one edge, and let �1 and �2 be minimal
ı–thin arcs represented by two of these edges.
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Consider cutting Q along �1[ �2 . Since �1 and �2 have some non-simply connected
region of Q lying between them, both components of Q�.�1[�2/ are planar surfaces
of Euler characteristic at most zero. Hence each such surface has Euler characteristic
whose absolute value is strictly less than j�.Q/j.

�1

q0

Q

�2

Figure 7: Cutting Q along some �1 and �2

Therefore we may argue by induction on j�.Q/j, choosing one of these new planar
surfaces each time. But j�.Q/j is finite so this process must terminate. We eventually
find a boundary component qj of Q incident with at most one minimal ı–thin arc;
equivalently, we find a vertex vj with at most one edge connecting it to v0 .

Removing this boundary component causes at most one pair of the minimal ı–thin
arcs to become adjacent. Since the curvature of Q is negative, these will combine into
a single minimal arc.

In the graph, this corresponds to removing the vertex with at most one edge, and
amalgamating at most one pair of edges into a single edge. In this way we obtain a
graph with one fewer vertex and at most two fewer edges. By induction, GQ has at
most 2.k � 1/ edges.

We have now shown that, for any 0 < ı � U , the surface R has at most 2.k � 1/d

minimal ı–thin arcs. These will provide the possible exceptional cases in the argument
which follows in Section 6. Before this, we will determine a couple of constants which
will appear in future formulae.

Definition 5.4 For †, M and �M as described at the beginning of Section 3, recall
the set Xi of distinguished curves from Definition 3.6.

Consider all geodesic curves xi;j 2X D
S

i Xi . They each have an annular collar in
@ �M of some strictly positive width wi;j . For fixed i these collars are assumed to be
disjoint. Define a constant � > 0 by � D 1

4
mini;j wi;j . We say that � is the minimum

disjoint annular width for X .
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It is useful to consider a special case. Choose a boundary component .@ �M /` and
suppose that each set Xi has some boundary curves on .@ �M /` in it. By Definitions 3.5
and 3.6 this is equivalent to assuming that, for each i , the set C.�†i/\ .@ �M /` is a
non-empty proper subset of .@ �M /` .

Ai;2

�

convex hull of �†i

convex hull

cross-section
of collar

@ �M
xi;1

xi;2

� ı
xi;1

xi;3

@ �M
xi;2

�
�

�

Figure 8: Obtaining a collar disjoint from the convex hull

Choose a lift �†i of † and consider its convex hull C.�†i/. This intersects .@ �M /` in
subsurfaces of �M whose boundary curves lie at least a distance 4� apart. For each
boundary curve xi;j , consider an annulus Ai;j in .@ �M /` which lies parallel to xi;j

and which is disjoint from the convex hull C.�†i/. We assume that the distance between
xi;j and the annulus is � , and that the annulus has width � .

Lemma 5.5 There exists a constant ı > 0 such that, for all i; j , the annulus Ai;j has
a solid collar Ai;j � I of width at least ı , where this collar is disjoint from the convex
hull of �†i .

Proof By taking ı � U , we know that each Ai;j has a collar of width at least ı in�M . Each annulus Ai;j lies outside the appropriate convex hull C.�†i/\ .@ �M /` , and
there are finitely many such annuli. By compactness for each i and `, the annuli Ai;j

lie at least some distance 2ıi from the appropriate convex hull. Thus they each have a
collar of width ı Dmini ıi which is disjoint from it.

Take a ı–collar of the boundary of �M , and denote it by Nı.@ �M /. By decreasing
ı > 0 if necessary, the intersection of the convex hull of each �†i with Nı.@ �M / is a
collar on the intersection of that convex hull with the boundary of �M .
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We may do this as explained before Proposition 3.4 by making an extremely small
modification (of width < ı=1000, say) to extend the convex hull to a submanifold with
smooth boundary. This condition will ensure that arguments which work for boundary
curves also work for any additional curves. We will deal with cut curves separately
later.

Definition 5.6 We say that any constant ı > 0 satisfying Lemma 5.5 and the above
condition on the collar of every convex hull is a minimum collar width for X . The
value of this constant depends only on M , �M and †.

We have now defined two constants depending on M , �M and †: the minimum disjoint
annular width � and the minimum collar width ı . These will enable us to prove our
main theorem in Section 6. The idea is to show that a planar surface intersects many of
these annular collars, and hence picks up at least � sinh ı area each time, leading to a
contradiction with the Gauss–Bonnet theorem.

6 Proof of main theorem: non-cusped case

We now use the results obtained in Sections 2 to 5 to deduce our main result in the case
where the manifold M has no cusps. We consider the general case in Section 7.

Theorem 6.1 Suppose that M is a simple 3–manifold with m� 1 boundary compo-
nents .@M /1; : : : ; .@M /m each of genus � 2. Consider a collection of handlebodies
H D fH1; : : : ;Hmg whose genera match those of @M . Let M [� H denote the
closed 3–manifold obtained by gluing each boundary component .@M /` to @H` via a
homeomorphism �` .

Suppose moreover that h`W @H` ! @H` is a pseudo-Anosov homeomorphism with
stable lamination of full type. Given homeomorphisms �0

`
W .@M /`! @H` , there exist

integers .N`/min such that if �` D h
N`

`
ı �0

`
with N` � .N`/min for all `, the group

�1.M [� H/ contains a surface subgroup.

Recall that M ¤ B3 is simple if it is compact, irreducible, @–irreducible, atoroidal
and acylindrical, so @M is incompressible. A surface subgroup is a subgroup which
is isomorphic to the fundamental group of a closed surface of genus at least two. We
defined laminations of full type in Definition 2.7.

Proof Any 3–manifold M ¤ B3 which is irreducible, atoroidal and acylindrical and
which has non-empty incompressible boundary is Haken. As a consequence of the
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proof of Thurston’s geometrization of Haken manifolds, M can be given a hyperbolic
structure with totally geodesic boundary in the sense of Section 1.

By Cooper–Long–Reid [8], there exists a �1 –injective surface �W †# M . Thus M

has a surface subgroup. This surface † has a finite cover which lifts to a non-peripheral
embedded incompressible surface in a finite cover � W �M !M , which we can further
assume to be a regular finite cover.

It is therefore enough to show the following theorem. We will make free use of any
terminology defined in the preceding sections. We usually abuse notation by writing
H for the union of the handlebodies H1; : : : ;Hm .

Theorem 6.2 Let M be a hyperbolic 3–manifold with non-empty totally geodesic
boundary. Let �W † # M be any closed, connected orientable surface with a finite
cover which lifts to a non-peripheral embedded incompressible surface in a finite regular
cover � W �M !M . Let M [� H denote the closed 3–manifold obtained by gluing
each boundary component .@M /` to @H` via a homeomorphism �` , where each H`

is a handlebody as in Theorem 6.1.

Suppose moreover that h`W @H` ! @H` is a pseudo-Anosov homeomorphism with
stable lamination of full type. Given homeomorphisms �0

`
W .@M /`! @H` , there exist

integers .N`/min such that if �` D h
N`

`
ı�0

`
with N` � .N`/min for all `, the surface

† stays �1 –injective in the resulting manifold M [� H .

In particular, �1.†/� �1.M [� H/ is a surface subgroup.

Proof We argue by contradiction. If the surface † does not remain �1 –injective
in M [� H , there is some essential loop L in �.†/ bounding an immersed disc
f W D # M [� H . By the hypotheses, we can take each .N`/min large enough to
apply a result of Lackenby [15], and deduce that �1.H/ injects into �1.M [� H/. In
this case, the intersections of the disc f .D/ with M and H can be assumed to have
the following structure.

Lemma 6.3 Suppose �1.H/ injects into �1.M [� H/. For any loop L in M

homotopically trivial in M [� H , take a spanning disc f W D # M [� H with L
running once round f .D/. Assume moreover that D\f �1.H/ consists of a collection
of discs which are disjoint in D , and that the number of such discs is minimal. Then
f .D/\M is a homotopically incompressible and homotopically @–incompressible
surface in M .

Note that here homotopically incompressible means that no homotopically non-trivial
simple closed curve in D \ f �1.M / maps to a homotopically trivial curve in M ;
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homotopically @–incompressible means that there is no properly embedded essential
arc in D\f �1.M / which maps to an arc which can be homotoped into @M while
keeping its endpoints fixed.

Proof We can always find f W D # M [�H such that f .D/\H is a disjoint union
of discs by considering the handlebodies in H to be small neighbourhoods of their core
graphs. Indeed, these graphs can be made to intersect f .D/ transversely in isolated
points. Thus we can assume that D\f �1.H/ is a collection of small discs embedded
in D , and that the number of such discs is minimal.

Suppose f .D/\M were homotopically compressible in M . Then there would exist
a homotopically non-trivial simple closed curve c in D\f �1.M / which mapped to a
homotopically trivial curve in M . We could then modify f by replacing the interior of
c by the disc it spans in M , reducing jD\f �1.H/j. Since this number was assumed
minimal, we have a contradiction. Thus we see that f .D/ \M is homotopically
incompressible in M .

Similarly, suppose f .D/\M were homotopically boundary compressible in M . Then
there would exist an essential arc ˛ properly embedded in D \ f �1.M / such that
f .˛/ could be homotoped in M to an arc in @M whilst keeping its endpoints fixed.

If such an arc ˛ had both its endpoints on the same boundary component @Di of
D\f �1.M /, it would separate D\f �1.M / into two planar surfaces as shown in
Figure 9. Here Di is a disc component of D\f �1.H/. After homotoping f .˛/ into
@M , consider a subdisc D0 �D with image disjoint from L and with f .@D0/� @H
running along f .˛/ and a subarc of f .@Di/, choosing this subarc so that the disc Di

lies inside D0 . This ensures that jD0\f �1.H/j � 2.

Then f .@D0/ is a curve in H which is homotopically trivial in M[�H . By assumption,
�1.H/ injects into �1.M[�H/, so f .@D0/ is homotopically trivial in H . This implies
that we may modify f so that f .D0/ is replaced by a single disc in H . But this too
would reduce jD\f �1.H/j, a contradiction.

Therefore we must assume that such an ˛ has its endpoints on two different components
of @.D\f �1.M //, say @D1 and @D2 bounding discs D1 and D2 in H respectively,
as shown in the right-hand diagram of Figure 9.

However, we may then modify f by replacing both discs D1 and D2 by a single
disc D1;2 consisting of D1 and D2 banded together by a strip lying in a small
neighbourhood of the image of the arc ˛ on @H pushed into H , as in Figure 10. Note
that @D1;2 is embedded in D although f .@D1;2/ is not necessarily embedded in H .
This reduces jD\f �1.H/j, a final contradiction.
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D1

D2

D

D0

˛

@D0

Di

˛

D

@D1;2

Figure 9: Two possibilities for ˛ : endpoints on the same or different components

˛

D1;2

D1

D2

Q

f .D1/f .D2/

H

f .˛/

Figure 10: Banding pairs of discs

Thus we have shown that for any curve L which is homotopically trivial in M [� H ,
we can find a spanning disc D such that the planar surface f .D/\M is homotopically
incompressible and homotopically @–incompressible.

Proof of Theorem 6.2 By Lemma 6.3, we may consider a least-area immersed planar
surface f W Q # M in the homotopy class of f .D/\M ([15], Claim 4). Write the
boundary components of Q as q0; : : : ; qk . Here q0 denotes the boundary component
of Q which is mapped to a geodesic curve homotopic to L. The other components
q1; : : : ; qk all map to @M .

We may assume that k � 2. For, if k D 1, the essential loop L is homotopic to a
geodesic curve L� in @M bounding a disc in H under the attaching map. Suppose�L� � .@ �M /` is a lift of L� to the convex hull of �†i , and let A be an annulus realizing
the homotopy in �M from �L� to a lift �L of L up to �†i .

The set Xi \ .@ �M /` must contain some characteristic curves, else this lift �L cannot be
homotopic to a curve in .@ �M /` . Proposition 4.1 then shows that �L� intersects some
characteristic curve x 2Xi lying in .@ �M /` .
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By an argument using Johannson’s Enclosing Theorem as in Proposition 3.4, some
subannulus of A in �M �

i �
�M can be homotoped into the characteristic submanifold ‰i

and hence into ‰.@ �M ;�†i/. But this contradicts the assumption that x is a characteristic
curve. Thus k � 2.

Consider a degree d cover R of Q which lifts to �M . The images of components of
@R which cover curves qj .j ¤ 0/ bound discs under the map � ı� and so satisfy the
hypotheses of Proposition 4.1. Recall that this ensures that such a curve � � .@ �M /`
has many quintersecting subarcs.

Furthermore, note that R has area at most d times that of Q, where d is the degree
of the cover � W �M !M . Since Q is least-area, the curvature of Q inherited from
M is at most �1 (Thm 5.5, ~V.A, [9]). By Gauss–Bonnet,

Area.R/� d Area.Q/� d.2�.k � 1// < 2�kd:

Recall the minimum disjoint annular width and minimum collar width constants � and
ı , which depend only on †, M and �M . We can use these to deduce a contradiction
with the area calculation above by taking

n�
2�d

� sinh ı
C 2d

as the number of quintersecting subarcs; compare Proposition 4.1.

Consider a component � of @R which projects to some qj (j ¤ 0), and the ı–collar
Nı.˛/ of a quintersecting subarc ˛ of � . Since @ �M has a collar of width U in �M ,
and ı � U , no ı–collar of another boundary component of R which is a lift of some
qj .j ¤ 0/ may intersect it.

Therefore the only boundary components of R which do intersect Nı.˛/ are those
which arise as lifts of q0 . Label such curves r1; : : : ; rt . By construction, each ri maps
into the convex hull of some lift �†�.i/ of †.

Suppose firstly that the intersection of some set Xi of distinguished curves with a
boundary component .@ �M /` contains no characteristic curves but only an additional
curve x` . Then by our choice of ı the convex hull �†i cannot intersect the ı–collar of
.@ �M /` .

In particular, any curves rij lying in C.�†i/ cannot intersect the ı–collar of � as it runs
along .@ �M /` between intersections with x` . We will see below that this is enough
to deduce a contradiction. Henceforth we assume that for all i and `, Xi \ .@ �M /`
contains some characteristic curve.
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Consider an arc of intersection y between a curve ri � C.�†�.i// and Nı.�/. It gives
rise to a minimal ı–thin arc �y with an endpoint � on � . Suppose ˛ is a quintersecting
subarc of � with y \Nı.˛/¤∅. If y lies wholly in the ı–collar of the interior of ˛ ,
� approaches y most closely at some point in ˛ and � 2 ˛ .

If instead � lies on a quintersecting subarc ˛0 whose interior is disjoint from that of
˛ , note that y cannot cross the ı–collar of an annulus A�.i/;j parallel to a boundary
curve x�.i/;j by Lemma 5.5, nor the ı–collar of a cut curve x�.i/;j more than twice by
Lemma 6.5 below. Assume we have decomposed � into n quintersecting subarcs; each
of these intersects each characteristic curve five times. Then y can only run through
the ı–collar of ˛0 and perhaps one quintersecting subarc of � adjacent to ˛0 .

Definition 6.4 We say that a quintersecting subarc ˛ is safe if
S

i ri\Nı.˛/ is either
connected or empty.

Each minimal ı–thin arc corresponds to an arc y which intersects the ı–collar of
at most two quintersecting subarcs of � . By Lemma 5.3, R has at most 2.k � 1/d

minimal ı–thin arcs. Therefore, there are at most 2.k � 1/d < 2kd quintersecting
subarcs (in total counting subarcs of all � � @R) which have two or more arcs y

intersecting their ı–collar, and hence are not safe.

Since there are at least k boundary components in @R which project to some qj .j ¤ 0/,
and each of these has n quintersecting subarcs, there are at least

nk � 2kd D .n� 2d/k �
2�kd

� sinh ı
safe quintersecting subarcs. Take a safe quintersecting subarc ˛ . At most one compo-
nent ri � @R intersects Nı.˛/, and it does so in a connected subarc of ri . Suppose ri

maps to the convex hull of �†�.i/ . By Proposition 4.1, ˛ has at least five intersections
with every characteristic curve in the set X�.i/ .

Case I We deal with the simpler of two possibilities first. Suppose that for each
boundary component .@ �M /` of �M , some curves in every Xi are boundary curves of
C.�†i/\ .@ �M /` . That is, not all characteristic curves are cut curves.

Since ˛ is a safe quintersecting subarc, it has at least five (hence at least three)
intersections with some boundary curve x�.i/;j 2 X�.i/ . Lemma 5.5 then implies that
˛ runs through an annulus A�.i/;j of width � lying outside the convex hull of �†�.i/ .
The image of ri in �M cannot intersect Nı.˛/ while it runs through the collar of this
annulus, since the image of ri lies in C.�†�.i//. By assumption, no other boundary
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disjoint from the convex hull

width at least �
height at least ı

ri

ı

ı–collar of annulus

x�.i/;jx�.i/;j

x�.i/;j

˛

convex hull

of �†�.i/

Figure 11: The curve ri cannot run through part of the ı–collar of ˛ � �

component of R can do so either. We deduce that the ı–collar of ˛ contributes area at
least � sinh ı to R, as illustrated in Figure 11. This concludes the first case.

Case II Now suppose instead that .@ �M /` is a boundary component of �M whose
intersection with the convex hull C.�†i/ of the embedded surface �†i is all of .@ �M /` .
Since this means that C.�†i/\ .@ �M /` is closed, it has no boundary curves. Thus for
such i , Xi \ .@ �M /` consists of at least one cut curve.

Recall Definition 3.3: a cut curve x 2Xi is a closed geodesic curve on some boundary
component .@ �M /` such that there exist curves �C and �� on �†i which are homotopic
to x in �M �

i but not to each other in �†i .

These cut curves arose when we insisted that the boundary curves of ‰.@ �M ;�†i/ on
.@ �M /` should be geodesics. Thus for any cut curve x we can find curves �C and
�� in �†i satisfying the definition and which were boundary components of vertical
boundary annuli for ‰.@ �M ;�†i/: see Figure 3. There may be some Seifert-fibred solid
torus components of the characteristic submanifold ‰i lying between the components
of ‰.@ �M ;�†i/, but they will make no difference to our argument.

Lemma 6.5 Suppose ri � @R maps to the convex hull C.�†�.i//, and suppose that y

is a connected subarc of ri lying in the ı–collar of ˛ . Then this arc y intersects the
ı–collar of a cut curve x�.i/;j at most twice.

Proof Suppose not, so y intersects the ı–collar of the cut curve x�.i/;j three times.
Choose one of the endpoints of y as a basepoint for �M . Consider the cover �M1! �M
such that �1. �M1/ D �1.�†�.i//, and give �M1 a basepoint which projects to the
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basepoint for �M . Note that the manifold �M1 is homeomorphic to �†�.i/ � I , and
moreover that �†�.i/ lifts homeomorphically to �M1 . Write �†�.i/;1 for such a lift.

Take a ı–collar of the boundary of �M1 , and denote it by Nı.@ �M1/. By decreasing
ı > 0 again if necessary (see before Definition 5.6), the intersection of the convex hull
of �†�.i/;1 with this ı–collar is a collar on the intersection of the convex hull with the
boundary of �M1 . In this way we obtain

C.�†�.i/;1/\Nı.@ �M1/D �C.�†�.i/;1/\ @ �M1�� I:

Since the cover �M1 only contains loops which lie in �1.�†�.i//, the convex hull has
been cut along every cut curve in X�.i/ . Thus every component of the above intersection
is the lift of a collar on the appropriate intersection of the original characteristic
submanifold ‰�.i/ with @ �M , where we assume that boundary curves on @ �M remain
disjoint rather than being made geodesic.

The loop ri is homotopic to a loop in �†�.i/ , and passes through the basepoint of �M .
When we lift ri to �M1 , it remains a loop based at the chosen lift of the basepoint,
lying in the convex hull C.�†�.i/;1/. The subarc y lifts to a subarc in �M1 lying
entirely in one component of the intersection of C.�†�.i/;1/ with Nı.@ �M1/. Note
also that the cut curve x�.i/;j is homotopic to a loop in �†�.i/ so that it can be lifted to
a loop in �M1 as well.

Since y crosses the ı–collar of a cut curve x�.i/;j three times, we can choose two
of these intersections which have coherent orientations. Thus there is a based loop
(see Figure 12) lying entirely in one component of C.�†�.i/;1/\Nı.@ �M1/ which has
non-zero geometric intersection with the ı–collar of some lift �x�.i/;j of the cut curve.
But this component is a lift of a component of�

‰�.i/\ @ �M�
� I

and so cannot contain such a based loop crossing the lift of any cut curve. This is a
contradiction, proving Lemma 6.5.

Therefore a curve ri can intersect the ı–collar of at most two intersections of ˛ with
x�.i/;j . Since Proposition 4.1 ensures that ˛ intersects x�.i/;j at least five times, there
are two consecutive intersections between which ri does not intersect the ı–collar
of ˛ . By choice of � , these intersections are at least distance � apart. This ensures
that ˛ contributes at least � sinh ı to the area of R between these two intersections,
concluding the second case.
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convex hull

basepoint

�

rix�.i/;j

˛

y

lift of x�.i/;j

lift to �M1 lift of y

�†�.i/;1�†�.i/

Figure 12: The subarc y of ri and its lift to �M1
We have shown the existence of at least 2�kd=.� sinh ı/ subarcs of @R each con-
tributing area at least � sinh ı to R. This implies that

Area.R/�
2�kd

� sinh ı
� � sinh ı � 2�kd

which contradicts the Gauss–Bonnet calculation above. Thus no such surface R can
exist, and our original assumptions cannot hold. In particular, no essential loop in †
bounds a disc f W D # M [� H .

Let us summarize. For a suitable �1 –injective virtually embedded surface †, there
exists a constant n as described above depending only on †, M and �M . Choosing
suitable pseudo-Anosov maps h`W @H`! @H` and homeomorphisms �0

`
W .@M /`!

@H` , there exist integers .N`/min depending on n and which have the following property.
Whenever N` � .N`/min for all ` D 1; : : : ;m, the surface † remains �1 –injective
in M [� H under the handlebody attachments �` D h

N`

`
ı�0

`
W .@M /`! @H` . This

proves Theorem 6.2.

Proof of Theorem 6.1 By work of Cooper–Long–Reid [8], any 3–manifold M satis-
fying the hypotheses of Theorem 6.1 contains a surface † satisfying the assumptions
of Theorem 6.2. Indeed, there may be infinitely many such surfaces. They are formed
by connecting two copies of an essential surface realizing some boundary slope on
@M by high-genus tubes wrapping many times round the appropriate components of
@M , and then compressing if necessary.

Theorem 6.2 shows that such surfaces † remain �1 –injective under appropriate gluing
maps � . In particular, �1.M [� H/ contains �1.†/ as a surface subgroup. This
enables us to deduce Theorem 6.1.
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7 Proof of main theorem: general case

In Section 6 we proved our main theorem in the case where M does not have cusps.
We now show that our arguments also extend to the cusped case.

Theorem 7.1 Suppose M ¤B3 is a simple 3–manifold with mCm0 � 1 boundary
components, m0 of which are tori. Let H D fH1; : : : ;HmCm0g be a collection of
handlebodies and solid tori whose genera match those of @M . Let M [�H denote the
closed 3–manifold obtained by gluing each boundary component .@M /` to @H` by a
homeomorphism �` .

Suppose moreover that h`W @H`! @H` is a homeomorphism which is either a pseudo-
Anosov homeomorphism whose stable lamination is of full type, or an Anosov homeo-
morphism, according to whether H` has genus at least two or is a solid torus respec-
tively.

Given homeomorphisms �0
`
W .@M /`! @H` , there exist integers .N`/min such that if

�` D h
N`

`
ı�0

`
with N` � .N`/min for all `, the group �1.M [�H/ contains a surface

subgroup.

Recall from [6] that an Anosov homeomorphism of a torus is a map whose trace under
any geometric SL.2;Z/–representation has absolute value strictly greater than two.
They fulfil a similar dynamical purpose to pseudo-Anosov maps.

Theorem 7.1 may be deduced from the appropriate analogue of Theorem 6.2 as in the
non-cusped case. Since M is Haken, we may give M (minus its toral boundary) a
complete hyperbolic structure with totally geodesic boundary.

Theorem 7.2 Let M be a hyperbolic 3–manifold with m totally geodesic boundary
components and m0 cusps, mCm0 � 1. Let † be a connected, orientable, closed,
immersed surface in M with a finite cover which lifts to a non-peripheral embedded
incompressible surface in a finite regular cover � W �M !M of degree d .

As in Theorem 7.1, let M [� H denote the closed 3–manifold obtained by filling each
of the boundary components or cusps of M via homeomorphisms �`W .@M /`! @H` ,
and consider maps h` satisfying the condition given in that theorem.

Given homeomorphisms �0
`
W .@M /`! @H` , there exist integers .N`/min such that if

�` D h
N`

`
ı�0

`
with N` � .N`/min for all `, the surface † remains �1 –injective in the

resulting manifold M [� H .
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Proof of Theorem 7.2 We argue by contradiction as in Theorem 6.2. Apply Lemma
6.3 to a disc f W D # M [� H spanning a loop L in †, and obtain once more
a least-area planar surface f W Q # M with k C 1 boundary components and k 0

punctures. We say that the boundary components mapping to totally geodesic boundary
components of �M are non-toral curves, and label them q1; : : : ; qk . We also label the
punctures p1; : : : ;pk0 . Take a cover zf W R # �M as before.

By the same arguments as for the non-cusped case, we can ensure kCk 0 � 2. There
are then two possible cases: either † contains accidental parabolics or it does not.
Since † is closed, it contains no genuine parabolics.

Before we examine these cases separately, we need to generalize the proof of one of
our results to the cusped case. Recall the proof of Proposition 3.4: at one point we
used the assumption that �1.M / had no parabolic elements. With this assumption we
deduced that ‰.@ �M ;�†i/\ @ �M D C.�†i/\ @ �M .

In fact the same proof works in the cusped case, but we need to justify this. Note
that M still cannot be virtually fibred over † since † is closed. The only potential
problem is the set P of parabolic fixed points which occurs in the identity (Theorem
3.14 of [18])

ƒ.�1/\ƒ.�2/Dƒ.�1\�2/[P

for two geometrically finite subgroups �1; �2 of a Kleinian group � .

The set P is defined in [18] as the set of points � in the complement �.�1\�2/ of
ƒ.�1\�2/ such that stab�1

.�/ and stab�2
.�/ generate a parabolic abelian group of

rank 2 and stab�1
.�/ \ stab�2

.�/D fidg.

The set P is only non-empty when the appropriate stabilizers of � 2 P are both of
rank 1 and intersect trivially. In our case, �1 is the fundamental group of some lift �†i .
The group �2 is the fundamental group of some boundary component .@ �M /` which
is either totally geodesic or cuspidal.

If it is cuspidal, the group �2 contains a rank 2 stabilizer of � if and only if .@ �M /` is
the appropriate toral boundary component for the cusp corresponding to � . If .@ �M /` is
non-toral or if it corresponds to a different cusp, only the identity element stabilizes the
parabolic fixed point � . The group stab�2

.�/ can never be of rank 1. In our application,
therefore, P is always empty.

We deduce that Proposition 3.4 still holds when M has cusps. Thus, assuming that
the characteristic submanifold ‰.@ �M ;�†i/ has geodesic boundary on @ �M , the convex
hull of �†i intersects each torus .@ �M /` in immersed annuli whose boundary curves
are characteristic curves of ‰.@ �M ;�†i/ and whose image may be all of .@ �M /` .
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Now we can return to the main argument. By Gauss–Bonnet applied to Q,

Area.R/� d Area.Q/� d.2�.kC k 0� 1// < 2�.kC k 0/d:

Choose disjoint horoball neighbourhoods of each cusp in �M which are disjoint from
the U–collars of every non-toral curve. Suppose moreover that the ı–collar of each
horoball neighbourhood is disjoint from any convex hull which is disjoint from the
toral boundary corresponding to this cusp.

By homotopic @–incompressibility, each puncture zp in R covering a puncture in Q

has a half-open annulus neighbourhood A. zp/ whose image lies in one of these horoball
neighbourhoods. The boundary of each horoball neighbourhood is a torus T` which
inherits a Euclidean path metric from the metric on �M .

Case A: no accidental parabolics Suppose † contains no accidental parabolics:
non-trivial loops in † homotopic to loops in the cusp boundary of M . Then, for any
lift �†i , the convex hull C.�†i/ avoids the cusps of �M .

Write �. zp/ for the boundary component of A. zp/ on some T D T` . We say that
such curves are toral curves in R. By the appropriate and much easier analogue of
Proposition 4.1 for these toral attachments, we may ensure that each toral curve �. zp/
has uniformly large geometric intersection number with some additional curve x` . As
these intersections occur at least distance � apart, we may also ensure that all curves
�. zp/ are longer than any given fixed length.

The area of A. zp/ is at least the length of �. zp/ (see e.g. [10], proof of Thm 4.3). By
the above argument we can make all toral curves at least 2d.�C � sinh ı/ long so that
each annulus A. zp/ contributes 2d.�C � sinh ı/ to the area of R. There are at least
k 0 such annuli.

As in the proof of Theorem 6.2, we can subdivide every non-toral curve into at least
n� 2�d=.� sinh ı/C 2d quintersecting subarcs. Over all non-toral curves, all but at
most 2.kC k 0/d of these subarcs contribute area � sinh ı to R. Thus

Area.R/�
�

2�kd

� sinh ı
C 2kd � 2.kC k 0/d

�
� � sinh ıC 2k 0d.� C � sinh ı/

and so Area.R/� 2�.kC k 0/d , which contradicts the Gauss–Bonnet calculation.

In fact, we could have obtained a contradiction by showing that each pair of intersections
of �. zp/ with x` picked up a quantum of area outside A. zp/. We need to use this idea
in the general case.

Case B: accidental parabolics Now suppose that the surface † contains some acci-
dental parabolics. Consider a boundary component T of a horoball neighbourhood of
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R

R

toral curve �. zp/
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Figure 13: Comparing the area calculations in Case A and Case B

a cusp in �M which has non-empty intersection with some C.�†i/, and suppose that
A. zp/ lies in the corresponding horoball neighbourhood.

In this case, the boundary curve @A. zp/ may not lie entirely in T . Define a toral curve
�. zp/ instead to be a curve freely homotopic to a core curve of A. zp/ lying on T . Also
define Nı.A. zp// to be the set of all points in R which lie within ı of A. zp/. There
are two cases.

Case B(I) C.�†i/\T ¤ T for all i By construction, the only boundary components
of R which intersect Nı.A. zp// are those components ri which cover q0 and which
map to some C.�†�.i// intersecting T .

Since C.�†�.i//\T is never all of T , it has some boundary curve x0
�.i/;j

on T . Again
we may adapt Proposition 4.1 to the case of these toral attachments, since they are
the composition of a large power of an Anosov map with the map �0 . Thus �. zp/ can
be subdivided into many quintersecting subarcs, each intersecting x0

�.i/;j
at least five

times. But none of the intersections can occur while ri runs through A. zp/, so we can
replace �. zp/ by @A. zp/ in this statement.

Taking the powers of the Anosov map in the solid torus attachments to be suffi-
ciently large, we assume that each curve @A. zp/ has been subdivided into at least
n� 2�d=.� sinh ı/C 2d quintersecting subarcs.

By analogy with Definition 5.2, define minimal ı–thin arcs in R to be possibly
degenerate minimal arcs of length at most ı with endpoints on @A. zp/ and some ri

respectively. Such an arc may be collapsed to a single point. Adapting Lemma 5.3 to
this case, R has � 2.kC k 0/d minimal ı–thin arcs. Suppose that � of these occur
within the ı–collar of a non-toral curve.
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This leaves at most 2.kC k 0/d � � subarcs of curves @A. zp/ which have two or more
curves ri intersecting their ı–collar. By the appropriate version of Lemma 5.5, every
other subarc is safe and contributes area � sinh ı to R.

Subdivide each non-toral curve into at least n� 2�d=.� sinh ı/C 2d subarcs. Over
all non-toral curves, at most � subarcs fail to contribute area � sinh ı . Combining
these contributions,

Area.R/
� sinh ı

�

�
2�kd

� sinh ı
C 2kd � �

�
C

�
2�k 0d

� sinh ı
C 2k 0d � .2.kC k 0/d � �/

�
and hence we obtain Area.R/� 2�.kC k 0/d , contradicting Gauss–Bonnet.

Case B(II) C.�†i/\T D T for some i We may combine the arguments above with
those explained in Case II of the proof of Theorem 6.2.

This proves Theorem 7.2 and hence Theorem 7.1.
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