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Equivariant characteristic classes of
external and symmetric products of varieties

LAURENT, IU MAXIM

JÖRG SCHÜRMANN

We obtain refined generating series formulae for equivariant characteristic classes of
external and symmetric products of singular complex quasiprojective varieties. More
concretely, we study equivariant versions of Todd, Chern and Hirzebruch classes
for singular spaces, with values in delocalized Borel–Moore homology of external
and symmetric products. As a byproduct, we recover our previous characteristic
class formulae for symmetric products and obtain new equivariant generalizations
of these results, in particular also in the context of twisting by representations of the
symmetric group.

55S15, 57R20; 20C30

1 Introduction

We obtain refined generating series formulae for equivariant characteristic classes of
external and symmetric products of singular complex quasiprojective varieties, general-
izing our previous results for symmetric products from Cappell, Maxim, Schürmann,
Shaneson and Yokura [12].

1.1 Equivariant characteristic classes

All spaces in this paper are assumed to be complex quasiprojective, though many
constructions also apply to other categories of spaces with a finite group action (eg
compact complex analytic manifolds or varieties over any base field of characteristic
zero). For such a variety X , consider an algebraic action G �X ! X by a finite
group G , with quotient map � W X !X 0 WDX=G . For any g 2G , we let X g denote
the corresponding fixed point set.

We let catG.X / be a category of G –equivariant objects on X in the underlying category
cat.X / (eg see Cappell, Maxim, Schürmann and Shaneson [11; 27]), which in this
paper refers to one of the following examples: coherent sheaves Coh.X /, algebraically
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472 Laurent,iu Maxim and Jörg Schürmann

constructible sheaves of complex vector spaces Constr.X /, and (algebraic) mixed
Hodge modules MHM.X / on X . We denote by K0.catG.X // the corresponding
Grothendieck groups of these Q–linear abelian categories. We will also work with the
relative Grothendieck group KG

0
.var=X / of G–equivariant quasiprojective varieties

over X , defined by using the scissor relation as in [11]. Let H�.X / denote the
even-degree Borel–Moore homology H BM

ev .X /˝R with coefficients in a commutative
C–algebra R (or Q–algebra if G is a symmetric group). Note that H�.�/ is functorial
for all proper maps, with a compatible cross-product �.

Let
cl�.�Ig/W K0.catG.X //!H�.X

g/

be one of the following equivariant characteristic class transformation of Lefschetz
type — see Section 5.1:

(i) The Lefschetz–Riemann–Roch transformation of Baum, Fulton and Quart [6]
and Moonen [30],

td�.�Ig/W K0.CohG.X //!H�.X
g/;

with RDC (or RDQ if G is a symmetric group).

(ii) The localized Chern class transformation of Schürmann [37],

c�.�Ig/W K0.ConstrG.X //!H�.X
g/;

with RDC (or RDQ if G is a symmetric group).

(iii) The motivic version of the (unnormalized) Atiyah–Singer class transformation
of Cappell, Maxim, Schürmann and Shaneson [11],

Ty�.�Ig/W K
G
0 .var=X /!H�.X

g/;

with RDCŒy� (or RDQŒy� if G is a symmetric group).

(iv) The mixed Hodge module version of the (unnormalized) Atiyah–Singer class
transformation of [11],

Ty�.�Ig/W K0.MHMG.X //!H�.X
g/;

with RDCŒy˙1� (or RDQŒy˙1� if G is a symmetric group).

These class transformations are covariant functorial for G –equivariant proper maps and
cross-products �. Over a point space, they reduce to a certain g–trace (as explained
in Section 5.1). For a subgroup K of G , with g 2K , these transformations cl�.�Ig/
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Equivariant characteristic classes of external and symmetric products of varieties 473

of Lefschetz type commute with the obvious restriction functor ResG
K . Moreover,

cl�.�Ig/ depends only on the action of the cyclic subgroup generated by g . In
particular, if g D idG is the identity of G , we can take K to be the identity subgroup
fidGg with ResG

K the forgetful functor

ForW K0.catG.X //!K0.cat.X //;

so that cl�.�I idG/D cl�.�/ fits with a corresponding nonequivariant characteristic
class, which in the above examples are:

(i) The Todd class transformation td� of Baum, Fulton and MacPherson [5] appear-
ing in the Riemann–Roch theorem for singular varieties.

(ii) The MacPherson–Chern class transformation c� of MacPherson [25].

(iii) The motivic version of the (unnormalized) Hirzebruch class transformation Ty�

of Brasselet, Schürmann and Yokura [9].

(iv) The mixed Hodge module version of the (unnormalized) Hirzebruch class trans-
formation Ty� of [9]; see also Schürmann [38].

The disjoint union I X WD
F

g2G X g (which is also called the inertia space of the G –
space X ) admits an induced G–action by hW X g!X hgh�1

such that the canonical
map

i W I X D
G
g2G

X g
!X

defined by the inclusions of fixed point sets becomes G–equivariant. Therefore, G

acts in a natural way on
L

g2G H�.X
g/DH�.I X/ by conjugation.

Definition 1.1 The (delocalized) G–equivariant homology of X is the G–invariant
subgroup

(1) H G
� .X / WD .H�.I X//G D

�M
g2G

H�.X
g/

�G

:

This theory is functorial for proper G –maps and induced cross-products �.

This notion is different (except for free actions) from the equivariant Borel–Moore
homology H G

BM;2�.X /˝R defined by the Borel construction. In fact, since G is finite
and R is a Q–algebra, one has

(2) H G
BM;2�.X /˝R' .H BM

2� .X /˝R/G 'H BM
2� .X=G/˝R;
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which is just a direct summand of H G
� .X / corresponding to the identity element of G ,

denoted by H G
id;�.X /. For example, if G acts trivially on X (eg X is a point), then

H G
� .X /'H�.X /˝C.G/;

where C.G/ denotes the free abelian group of Z–valued class functions on G (ie
functions which are constant on the conjugacy classes of G ). Note also that

(3) H G
� .X /D .H�.I X//G 'H�.I X=G/:

Definition 1.2 For any of the above Lefschetz-type characteristic class transformations
cl�.�Ig/, we define a corresponding G–equivariant class transformation (with T G

y�

the G –equivariant Hirzebruch class transformation)

clG� W K0.catG.X //!H G
� .X /

by

clG� .�/ WD
M
g2G

cl�.�Ig/ 2
�M

g2G

H�.X
g/

�G

:

The G–invariance of the class clG� .�/ is a consequence of the conjugacy invariance
of the Lefschetz-type characteristic class cl�.�Ig/; see Cappell, Maxim, Schürmann
and Shaneson [11, Section 5.3]. Note that the summand cl�.�I id/ 2 .H�.X //G

corresponding to the identity element of G is just the nonequivariant characteristic
class, which for equivariant coefficients is invariant under the G –action by functoriality.
Under the identification (2), this class also agrees (for our finite group G ) with the
corresponding (naive) equivariant characteristic class defined in terms of the Borel
construction, eg for cl� D td� , this is the equivariant Riemann–Roch transformation
of Edidin and Graham [15]; and for cl� D c� , this is the equivariant Chern class
transformation of Ohmoto [32; 33].

The above transformation clG� .�/ has the same properties as the Lefschetz-type trans-
formations cl�.�Ig/, eg functoriality for proper push-downs, restrictions to subgroups,
and multiplicativity for exterior products.

Remark 1.3 The G –equivariant characteristic classes defined here for cl�D td�; Ty�

agree, up to the normalization factor 1=jGj, with the corresponding notions introduced
in [11].
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1.2 Generating series formulae

Now let Z be a quasiprojective variety, and denote by Z.n/ WDZn=†n its nth symmet-
ric product (ie the quotient of Zn by the natural permutation action of the symmetric
group †n on n elements), with �nW Z

n ! Z.n/ the natural projection map. The
standard approach for computing invariants of the symmetric products Z.n/ is to
collect the respective invariants of all symmetric products in a generating series, and
then compute the latter solely in terms of invariants of Z ; eg see Cappell, Maxim,
Schürmann, Shaneson and Yokura [12] and the references therein. In this paper, we
obtain generalizations of results of [12], formulated in terms of equivariant characteristic
classes of external products and symmetric products of varieties.

To a given object F 2cat.Z/ in a category as above, ie coherent or constructible sheaves,
or mixed Hodge modules on Z (or morphisms f W Y ! Z in the motivic context),
we attach new objects as follows (see [12], Maxim, Saito and Schürmann [27; 26] for
details):

(a) The †n –equivariant object F�n 2 cat†n.Zn/ on the cartesian product Zn (eg
f nW Y n!Zn in the motivic context).

(b) The †n –equivariant object �n�F�n 2 cat†n.Z.n// on the symmetric product
Z.n/ (eg the †n –equivariant map Y n!Z.n/ in the motivic context).

(c) The following nonequivariant objects in cat.Z.n//:
(1) The nth symmetric power object F .n/ WD .�n�F�n/†n on Z.n/ , defined

by using the projector .�/†n onto the †n –invariant part (or the map
f .n/W Y .n/!Z.n/ induced by dividing out the †n –action in the motivic
context).

(2) The nth alternating power object Ffng WD .�n�F�n/sign�†n on Z.n/ , de-
fined by using the alternating projector .�/sign�†n onto the sign-invariant
part. (This construction does not apply in the motivic context.)

(3) For.�n�F�n/, which is obtained by forgetting the †n –action on �n�F�n 2

cat†n.Z.n// (eg the induced map Y n!Z.n/ in the motivic context).

These constructions and all of the following results also apply to suitable bounded
complexes (eg the constant Hodge module complex QH

Z
); see Remark 5.12 for details.

The main goal of this paper is to compute generating series formulae for the (equivariant)
characteristic classes of these new coefficients only in terms of the original characteristic
class cl�.F/. These generating series take values in a corresponding commutative
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graded Q–algebra H†
� .Z/, PH†

� .Z/ or PH�.Z/, and are formulated with the help
of certain operators which transport homology classes from Z into these corresponding
commutative graded Q–algebras. In each of three situations (a)-(c) above, these
algebras of Pontrjagin type and operators are described explicitly as follows:

(a) H†
� .Z/ WD

M
n�0

H
†n
� .Zn/ � tn;

with creation operator ar defined by: if �r D .r/ is an r –cycle in †r , then ar is the
composition

ar W H�.Z/
�r
�!H�.Z/ŠH�..Z

r /�r /Z†r .�r / ,!H
†r
� .Zr /;

where h�r i DZ†r
.�r / acts trivially on H�..Z

r /�r /.

Note that the direct summand

H†
id;�.Z/ WD

M
n�0

H
†n

id;�.Z
n/ � tn

�H†
� .Z/

corresponding to the identity component is a subring, and the projection of H†
� .Z/

onto the subring H†
id;�.Z/ kills all the creation operators except a1 D idH�.Z/ .

(b) PH†
� .Z/ WD

M
n�0

H
†n
� .Z.n// � tn

'

M
n�0

.H�.Z
.n//˝C.†n// � t

n ,! PH�.Z/˝QŒpi j i � 1�;

with corresponding operator pr � dr�W H�.Z/! H�.Z
.r//˝QŒpi j i � 1�, where

dr WD �r ı�r W Z!Z.r/ is the composition of the natural projection �r W Z
r !Z.r/

with the diagonal embedding �r W Z!Zr . The algebra inclusion above is induced
from the Frobenius character

chF W C.†/˝Q WD
M

n

C.†n/˝Q '
�!QŒpi j i � 1�DWƒ˝Q

to the graded ring of Q–valued symmetric functions in infinitely many variables xm

(m2N ), with pi WD
P

m xi
m the i th power sum function; see Macdonald [24, Chapter I,

Section 7], and PH�.Z/ defined as below.

(c) PH�.Z/ WD
M
n�0

H�.Z
.n// � tn;

with corresponding operator dr�W H�.Z/!H�.Z
.r//.
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Moreover, the creation operator ar satisfies the identity

�r� ı ar D pr � dr�;

justifying the multiplication by r in its definition.

The main characteristic class formula of this paper is contained in:

Theorem 1.4 The following generating series formula holds in the commutative
graded Q–algebra H†

� .Z/ WD
L

n�0 H
†n
� .Zn/ � tn if cl� is either td� , c� or T�y� :

(4)
X
n�0

cl†n
� .F�n/ � tn

D exp
�X

r�1

ar .‰r .cl�.F/// �
tr

r

�
;

where ‰r denotes the homological Adams operation defined by

‰r D

8̂<̂
:

id if cl� D c�;

�1=r i on H BM
2i
.Z/˝Q if cl�;D td�

�1=r i on H BM
2i
.Z/˝Q and y 7! yr if cl� D T�y�:

In particular, by projecting onto the identity component, we get

(5)
X
n�0

cl�.F�n
I id/ � tn

D exp.t � cl�.F// 2H†
id;�.Z/:

For the rest of this introduction, cl� denotes any of the classes td� , c� or T�y� . The
proof of Theorem 1.4 is purely formal, based on the multiplicativity and conjugacy
invariance of the Lefschetz-type characteristic classes cl�.�Ig/, together with the
following key localization formula from Cappell, Maxim, Schürmann, Shaneson and
Yokura [12, Lemmas 3.3, 3.6 and 3.10]:

(6) cl�.F�r
I �r /D‰r cl�.F/;

under the identification .Zr /�r 'Z . For this localization formula in the context of
Hirzebruch classes, it is important to work with the parameter �y and the unnormalized
versions of Hirzebruch classes and their respective equivariant analogues; see [12]. In
fact, formula (4) is a special case of an abstract generating series formula (37), which
holds for any functor H (covariant for isomorphisms) with a compatible commutative,
associative cross-product �, with a unit 1pt 2H.pt/. The above-mentioned abstract
formula (37) codifies the combinatorics of the action of the symmetric groups †n , and
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it should be regarded as a far-reaching generalization of the well-known identity of
symmetric functions (eg see the proof of Macdonald [24, (2.14)])X

n�0

hntn
D exp

�X
r�1

pr �
tr

r

�
;

with hn the nth complete symmetric function. Other applications of the abstract
generating series formula (37) in the framework of orbifold cohomology and localized
K–theory are explained in Section 3.1. In this way, we reprove and generalize some
results from Qin and Wang [34] and Wang [40], respectively. Moreover, in Section 4, we
give another application of (37) to canonical constructible functions and orbifold-type
Chern classes of symmetric products, reproving some results of Ohmoto [33].

Remark 1.5 In the motivic context, the exponentiation map

(7) K0.var=Z/!
M
n�0

K
†n

0
.var=Zn/ � tn; Œf W X !Z� 7!

X
n�0

Œf n
W X n

!Zn� � tn;

is well-defined as in Bergh [7], and should be regarded as an equivariant analogue of
the (relative) Kapranov zeta function used in [12] and Maxim and Schürmann [27]. In
fact, the latter can be recovered from (7) by pushing down to the symmetric products
(resp. to a point), and taking the quotients by the †n –action.

By pushing formula (4) down to the symmetric products, we obtain by functoriality
the following result:

Corollary 1.6 The following generating series formula holds in the commutative
graded Q–algebra PH†

� .Z/ WD
L

n�0 H
†n
� .Z.n// � tn ,! PH�.Z/˝QŒpi j i � 1�:

(8)
X
n�0

cl†n
� .�n�F�n/ � tn

D exp
�X

r�1

pr � dr�. r .cl�.F/// �
tr

r

�
:

This should be regarded as a characteristic class version of Getzler [17, Proposition 5.4].
In particular, if Z is projective, then by taking degrees, we get in Section 5.3 generating
series formulae for the characters of virtual †n –representations of H�.ZnIF�n/, that
is,

(9)
X
n�0

tr†n
.Zn
IF�n/ � tn

D exp
�X

r�1

pr ��.H
�.Z;F// � t

r

r

�
2QŒpi j i � 1�ŒŒt ��
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for F a coherent or constructible sheaf and with � denoting the corresponding Euler
characteristic, and

(10)
X
n�0

tr†n
.Zn
IM�n/ � tn

D exp
�X

r�1

pr ���yr .H�.Z;M// �
tr

r

�
2QŒy˙1;pi j i � 1�ŒŒt ��

for M a mixed Hodge module on Z , and with �y.H
�.Z;M// the corresponding

�y –polynomial.

By specializing all the pi to the value 1 — which corresponds to the use of the
projectors .�/†n — formula (8) reduces to the main result of [12], namely:

Corollary 1.7 The following generating series formula holds in the Pontrjagin ring
PH�.Z/ WD

L
n�0 H�.Z

.n// � tn :

(11)
X
n�0

cl�.F .n// � tn
D exp

�X
r�1

dr�. r .cl�.F/// �
tr

r

�
:

In particular, if Z is projective, we recover the degree formulae from [12], which can
now also be derived from (9) and (10) by specializing all the pi to 1.

Corollary 1.6 also has other important applications. For example, by specializing the
pi to the value sign.�i/D .�1/i�1 (which corresponds to the use of the alternating
projectors .�/sign�†n ), formula (8) reduces to:

Corollary 1.8 The following generating series formula holds in the Pontrjagin ring
PH�.Z/:

(12)
X
n�0

cl�.Ffng/ � tn
D exp

�
�

X
r�1

dr�. r .cl�.F/// �
.�t/r

r

�
:

In particular, if Z is projective, we recover special cases of the main formulae from
Maxim and Schürmann [27, Corollary 1.5], which can now be also derived from (9)
and (10) by specializing the pi to .�1/i�1 . For example, if cl�DT�y� and F DQH

Z
,

we recover the generating series formula for the degrees

deg.T�y�.Q
H
Z

fng
//D ��y

�
ŒH�c .B.Z; n/; �n/�

�
;

where B.Z; n/ � Z.n/ is the configuration space of unordered n–tuples of distinct
points in Z , and �n is the rank-one local system on B.Z; n/ corresponding to a sign
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representation of �1.B.Z; n// as in [27, page 293]; compare also with Gorsky [18,
Example 3b] and Getzler [17, Corollary 5.7].

Note also that the specialization p1 7! 1 and pi 7! 0 for all i � 2 corresponds to the
evaluation homomorphisms (for all n 2N )

1

n!
evid D

1

n!
Res†n

id W H
†n
� .Z.n//!H�.Z

.n//:

Then, by forgetting the †n –action on �n�F�n , Corollary 1.6 specializes to the fol-
lowing result:

Corollary 1.9 The following exponential generating series formula holds in the Pontr-
jagin ring PH�.Z/:

(13)
X
n�0

cl�.�n�F�n/ �
tn

n!
D exp.t � cl�.F//:

The above corollary also follows from formula (5), after a suitable renormalization of
the product structure of H†

id;�.Z/ in order to make the pushforward

�� WD
M

�n;�W H
†
id;�.Z/! PH�.Z/

into a ring homomorphism; see Section 4 for details.

In particular, if Z is projective, by taking degrees we get exponential generating
series formulae for the Euler characteristic and �y –polynomial of H�.Zn;F�/. For
example, if cl� D T�y� and F DM is a mixed Hodge module on Z , we get

(14)
X
n�0

��y.Z
n;M�n/ �

tn

n!
D exp.t ���y.Z;M//;

which also follows directly from the Künneth formula; eg see Maxim, Saito and
Schürmann [26].

1.3 Twisting by †n–representations

Additionally, for a fixed n, one can consider the coefficient of tn in the generating series
(4) for the (equivariant) characteristic classes of all exterior powers F�n 2 cat†n.Zn/.
Moreover, in this case, one can twist the equivariant coefficients F�n by a (finite-
dimensional) rational †n –representation V , and compute the corresponding equivariant
characteristic classes of Lefschetz type (see Remark 5.3)

(15) cl�.V ˝F�n
I �/D trace� .V / � cl�.F�n

I �/

Geometry & Topology, Volume 22 (2018)



Equivariant characteristic classes of external and symmetric products of varieties 481

for � 2 †n . By pushing down to the symmetric product Z.n/ along the natural
map �nW Z

n!Z.n/ , we then get by the projection formula the following identity in
H†n
� .Z.n//ŠH�.Z

.n//˝C.†n/ ,!H�.Z
.n//˝QŒpi j i � 1�:

(16) cl†n
� .�n�.V ˝F�n//D

X
�D.k1;k2;:::/an

p�

z�
��.V / �

K
r�1

�
dr�. r .cl�.F///

�kr :

Here, the symbol �D .k1; k2; : : : / a n denotes the partition � D .k1; k2; : : : / of n

corresponding to a conjugacy class of an element � 2†n (ie
P

r rkr D n). We also
denote by z� WD

Q
r�1 rkr �kr ! the order of the stabilizer of � , by ��.V /D trace� .V /

the corresponding trace, and we set p� WD
Q

r�1 p
kr
r . Finally,

J
denotes the Pontrjagin-

type product, as defined in Section 4.

If Z is projective, by taking the degree in formula (16) we have the following character
formulae generalizing (9) and (10):

(i) For F a coherent or constructible sheaf, we get

(17) tr†n
.H�.Zn

IV ˝F�n//D
X
�an

p�

z�
��.V / ��.H

�.ZIF//`.�/;

with � denoting the corresponding Euler characteristic, and for a partition
�D .k1; k2; : : : / of n we let `.�/ WD k1C k2C � � � be the length of �.

(ii) For M a mixed Hodge module on Z , we get

(18) tr†n
.H�.Zn

IV ˝M�n//

D

X
�D.k1;k2;:::/a n

p�

z�
��.V / �

Y
r�1

�
��yr .H�.ZIM//

�kr ;

with �y.H
�.Z;M// the corresponding �y –polynomial.

The formula (16) is a generalization of Corollary 1.6, which one gets back for V the
trivial representation. Furthermore, by specializing all the pi in (16) to the value 1

(which corresponds to the use of the projectors .�/†n ), one obtains the following
identity in H�.Z

.n//:

(19) cl�..�n�.V ˝F�n//†n/D
X

�D.k1;k2;:::/an

1

z�
��.V / �

K
r�1

�
dr�. r .cl�.F///

�kr :

Note that by letting V be the trivial (resp. sign) representation, formula (19) reduces to
Corollary 1.7 (resp. Corollary 1.8). Another important special case of (19) is obtained
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by choosing V D Ind†n

K
.triv/, the representation induced from the trivial representation

of a subgroup K of †n , with

.�n�.V ˝F�n//†n ' .Ind†n

K
.triv/˝�n�.F�n//†n

' .�n�.F�n//K ' � 0�
�
.��.F�n//K

�
:

Here � W Zn! Zn=K and � 0W Zn=K! Z.n/ are the projections factoring �n . In
this case, formula (19) calculates the characteristic class

cl�..�n�.F�n//K /D � 0�cl�
�
.��.F�n//K

�
:

In particular, if Z is projective and we consider the constant Hodge module F DQH
Z

,
we get at the degree level the following formula for the �y –polynomial of the quotient
Zn=K :

(20) ��y.Z
n=K/D

X
�D.k1;k2;:::/an

1

z�
��.Ind†n

K
.triv// �

Y
r�1

��yr .Z/kr :

The corresponding Euler characteristic formula, obtained for y D 1, is also a special
case of Macdonald’s formula (see [23, page 567]) for the corresponding Poincaré
polynomial.

Finally, by letting V D V� ' V �� be the (self-dual) irreducible representation of †n

corresponding to a partition � of n, the coefficients

.�n�.V�˝F�n//†n ' .V�˝�n�.F�n//†n DW S�.�n�F�n/

of the left-hand side of (19) calculate the corresponding Schur functor of �n�F�n as
an element in cat†n.Z.n//, with

(21) �n�F�n
'

X
�an

V�˝S�.�n�F�n/ 2 cat†n.Z.n//I

eg see Remark 5.9. These Schur functors generalize the symmetric and alternating
powers of F , which correspond to the trivial and sign representation, respectively. Note
that, by using (21), we get an alternative description of the equivariant classes

cl†n
� .�n�F�n/ 2H

†n
� .Z.n//ŠH�.Z

.n//˝C.†n/ ,!H�.Z
.n//˝QŒpi j i � 1�

in terms of the Schur functions s� WD chF .V�/ 2QŒpi j i � 1� — see Macdonald [24,
Chapter 1, Sections 3 and 7]:

(22) cl†n
� .�n�F�n/D

X
�an

s� � cl�.S�.�n�F�n//;

with cl�.S�.�n�F�n// computed as in (19).
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As a concrete example, for Z pure-dimensional with coefficients given by the in-
tersection cohomology Hodge module ICH

Z on Z , the corresponding Schur functor
S� of �n�ICH

Zn is given by the twisted intersection cohomology Hodge module
S�.�n�ICH

Zn/D ICH
Z .n/.V�/ with twisted coefficients corresponding to the local system

on the configuration space B.Z; n/ of unordered n–tuples of distinct points in Z ,
induced from V� by the group homomorphism �1.B.Z; n//!†n (compare Maxim
and Schürmann [27, page 293] and Meinhardt and Reineke [29, Proposition 3.5]). For
Z projective and pure-dimensional, by taking the degrees in (19) for the present choice
of coefficients ICH

Z and representation V� , we obtain the following identity for the
�y –polynomial of the twisted intersection cohomology:

(23) ��y

�
H�.Z.n/

I ICH
Z .n/.V�//

�
D

X
�D.k1;k2;:::/an

1

z�
��.V�/ �

Y
r�1

��yr .H�.ZI ICH
Z //

kr :

Note that results like (20) or (23) cannot be deduced only from the nonequivariant
study of symmetric products as in [12].

We conclude the introduction with a brief discussion of potential applications of our
results.

First, the techniques developed here have also been applied by the authors to the study
of cohomology representations of external and symmetric products (see Maxim and
Schürmann [28]), generalizing our previous results from [27].

Secondly, we plan to employ the results of this paper for the study of Hilbert schemes
of points on quasiprojective manifolds. In fact, our prior work on symmetric products
from [12] has already been used for the study of (pushforwards under the Hilbert–
Chow morphism of) characteristic classes of Hilbert schemes of points on smooth
quasiprojective varieties; see [10]. But for smooth surfaces, the results of [10] may
be improved via the McKay correspondence — see Krug [22] and Scala [35; 36] —
by using the stronger equivariant results of the present paper. In addition, the present
work can also be used for obtaining generating series formulae for the singular Todd
classes td�.F Œn�/ of tautological sheaves F Œn� (associated to a given F 2 Coh.Z/) on
the Hilbert scheme ZŒn� of n points on a smooth quasiprojective algebraic surface Z .
For degree formulae in this context, see eg Wang and Zhou [42].

One can also use similar techniques for the study of equivariant characteristic classes
of the †n –equivariant Fulton–MacPherson (and other similar) compactifications of
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configurations spaces of points on a smooth variety Z of any dimension. Here, again,
the equivariant results of this paper (and in particular, the twisting by a representation)
are needed, while the nonequivariant results from [12] are not sufficient. For equivariant
degree formulae in this context, see eg Getzler [17].

Finally, techniques and results of this paper can be extended to the context of actions
of wreath products Gn WD G o†n D Gn Ì†n on external powers F�n 2 catGn.Zn/

of a given object F 2 catG.Z/ on a G –space Z , provided that the corresponding key
localization formula analogous to (6) holds. This will be the object of future work by
the authors. Results of this type for Chern classes already appeared in Ohmoto [33],
while for degree versions, see eg Qin, Wang and Zhou [34; 40; 41; 43].
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2 Delocalized equivariant theories

In this section, we introduce the notion of delocalized equivariant theory of a G–
space X (with G a finite group) associated to a covariant functor H with compatible
cross-product. We also describe the corresponding restriction and induction functors,
which will play an essential role in the subsequent sections of the paper.

In the classical context of the usual (co)homology functor, such delocalized theories
have been defined in [3; 4], as well as in an unpublished paper of Segal, where they
were used for obtaining Riemann–Roch-type theorems. For analogues in the context of
Deligne–Mumford stacks, see also [14; 39]. The corresponding orbifold index theorem
was developed in [21], by using for the first time the G –equivariant cohomology of the
inertia space I X (as in (3)) of a smooth G –space X , described in terms of differential
forms. The corresponding restriction and induction functors were also studied in this
classical context in [34; 43].
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For simplicity, all spaces in this paper are assumed to be complex quasiprojective,
though many constructions in this section apply to other categories of spaces with a
finite group action (eg topological spaces or varieties over any base field). For such
a variety X , consider an algebraic action G �X !X by a finite group G . For any
g 2 G , we let X g denote the corresponding fixed point set. Let H be a covariant
(with respect to isomorphisms) functor to abelian groups, with a compatible cross-
product � (Z–linear in each variable) which is commutative, associative and with a
unit 1pt 2 H.pt/. As main examples used in this paper, we consider the following,
with R a commutative ring with unit (eg RD Z, Q or C ):

(i) The even-degree Borel–Moore homology H BM
ev .X /˝R of X with coefficients

in R.

(ii) Chow groups CH�.X /˝R with R–coefficients.

(iii) The Grothendieck group of coherent sheaves K0.Coh.X //˝R with R–coeffi-
cients.

Another possible choice would be the usual R–homology in even degrees, Hev.X /˝R.
Since in this section we only need functoriality with respect to isomorphisms, we could
also work with cohomological theories, such as the even-degree (compactly supported)
R–cohomology H ev

.c/
.X /˝R or the Grothendieck group of algebraic vector bundles

K0.X /˝R with R–coefficients, as used in [34; 43]. In this case, the corresponding
covariant transformation g� , as used in this paper, is given by .g�/�1 , the inverse of
the induced pullback under g . If X is smooth, this fits with the following Poincaré
duality isomorphisms:

(24)

Hev.X /˝RŠH ev
c .X /˝R;

H BM
ev .X /˝RŠH ev.X /˝R;

K0.Coh.X //˝R'K0.X /˝R:

The disjoint union
F

g2G X g admits an induced G –action by hW X g!X hgh�1

such
that the canonical map

i W
G
g2G

X g
!X

defined by the inclusions of fixed-point sets becomes G–equivariant. Therefore, G

acts in a natural way on
L

g2G H.X g/.
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Definition 2.1 The delocalized G–equivariant theory of X associated to H is the
G –invariant subgroup of

L
g2G H.X g/, namely,

(25) H G.X / WD

�M
g2G

H.X g/

�G

:

This theory is functorial for proper G –maps (or G –equivariant isomorphisms).

Remark 2.2 An equivalent interpretation of this delocalized G–equivariant theory
H G.X / of a G –space X can be obtained by breaking the summation on the right-hand
side of (25) into conjugacy classes, ie

(26) H G.X /D
M
.g/2G�

� M
Œh�2G=ZG.g/

h�.H.X
g/ZG.g//

�
Š

M
.g/2G�

H.X g/ZG.g/;

where G� denotes the set of all conjugacy classes of G , and ZG.g/ is the centralizer
of g 2G .

Remark 2.3 If X is smooth, then also all fixed-point sets X g are smooth, so the
classical Poincaré duality isomorphisms (24) induce similar duality isomorphisms

H G
� .X /ŠH�G.X /

between the corresponding delocalized equivariant (co)homology theories.

Remark 2.4 If G acts trivially on X (eg X is a point), then

(27) H G.X /ŠH.X /˝C.G/;

where C.G/ denotes the free abelian group of Z–valued class functions on G (ie
functions which are constant on the conjugacy classes of G ).

Remark 2.5 If G is an abelian group, then

(28) H G.X /D
M
g2G

H.X g/G :

Let us next describe two functors which will be used later.

Definition 2.6 (restriction functor) Let X be a G –space, as before. For a subgroup
K of G , the restriction functor ResG

K from G to K is the group homomorphism

ResG
K W H

G.X /!H K.X /
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induced by restricting to the G –invariant part the projectionM
g2G

H.X g/!
M
g2K

H.X g/:

Clearly, ResG
K is transitive with respect to subgroups, with ResG

G the identity homo-
morphism. In terms of fixed-point sets of conjugacy classes, ie with respect to the
isomorphisms

H G.X /Š
M
.g/2G�

H.X g/ZG.g/; H K.X /Š
M

.k/2K�

H.X k/ZK .k/;

the restriction factor can be described explicitly as follows (compare with [43, page 4]):
If an element g 2 G is not conjugate by elements in G to any element in K , then
ResG

K jH .X g/ZG .g/ D 0. Otherwise, assume that g is conjugate by elements in G

to k1; : : : ; ks 2 K which have mutually different conjugacy classes in K ; then
H.X g/ZG.g/ Š H.X ki /ZG.ki / for i D 1; : : : ; s , and ResG

K jH .X g/ZG .g/ is given by
the direct sum of inclusions H.X ki /ZG.ki / ,!H.X ki /ZK .ki / .

The following induction functor will be used in Section 4 in the definition of Pontrjagin-
type products.

Definition 2.7 (induction functor) For a G–space X as before and K a subgroup
of G , the induction IndG

K from K to G is the group homomorphism (compare with
[34, page 9])

(29) IndG
K D

X
Œg�2G=K

g�.�/W H
K.X /!H G.X /;

where the summation is over K–cosets of G . In particular, on a G –invariant class (ie
in the image of the restriction functor ResG

K ) this induction map is just multiplication
by the index ŒG WK� of K in G . Note that IndG

K is transitive for subgroups of G , with
IndG

G the identity homomorphism. In terms of fixed-point sets of conjugacy classes,
this induction is given as follows (compare with [43, page 4]): for any conjugacy class
.k/ in K which intersects the conjugacy class .g/ in G , we have

(30) IndG
K D

X
Œh�2ZG.k/=ZK .k/

h�.�/W H.X
k/ZK .k/!H.X k/ZG.k/ŠH.X g/ZG.g/;

so on a G –invariant class this is just multiplication by the index ŒZG.k/ WZK .k/�.
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Remark 2.8 In terms of the above induction functors, the identification (26) is given
by M

.g/2G�

IndG
ZG.g/

W

M
.g/2G�

H.X g/ZG.g/!H G.X /;

where IndG
ZG.g/

W H.X g/ZG.g/!H G.X / is the restriction of IndG
ZG.g/

to the direct
summand

H.X g/ZG.g/ ,!H ZG.g/.X /

coming from the ZG.g/–equivariant direct summand H.X g/�
L

h2ZG.g/
H�.X

h/.

Remark 2.9 Over a point space, the above functors reduce in many cases to the
classical restriction and induction functors from the representation theory of finite
groups.

2.1 Compatibilities with cross-product

Assume G acts on X , with g 2G and K �G a subgroup, and similarly for G0 acting
on X 0, with g0 2 G0 and K0 � G0 a subgroup. Then .X �X 0/g�g0 D X g �X 0g

0

,
ZG�G0.g�g0/DZG.g/�ZG0.g

0/, as well as G�G0=K�K0DG=K�G0=K0 , and
similarly for the quotient of centralizers as above.

Then all products �W H.X g/�H.X 0g
0

/!H.X g�X 0g
0

/ induce, by the functoriality
of �, a corresponding commutative and associative cross-product

�W H G.X /�H G0.X 0/!H G�G0.X �X 0/

(with unit 1pt 2H fidg.pt/, with fidg denoting the trivial group). Moreover, this product
is compatible with the restriction and induction functors, ie

(31) IndG�G0

K�K 0.���/D IndG
K .�/� IndG0

K 0.�/

and

(32) ResG�G0

K�K 0.���/D ResG
K .�/�ResG0

K 0.�/:

Finally, the above facts about cross-product and restriction functors can be used to
define a pairing

C.G/�H G.X / �!H G.X /

by
H G.pt/�H G.X / �

�!H G�G.pt �X / Res
��!H G.X /;
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with pt �X ŠX and Res denoting the restriction functor for the diagonal subgroup
G ,!G �G .

Remark 2.10 The distinguished unit element id 2G gives the direct summand

H G
id .X / WDH.X /G �H G.X /;

ie the G–invariant subgroup H.X /G of H.X /. This direct summand is compatible
with restriction, induction and induced cross-products. If the functor H is also covari-
antly functorial for closed embeddings, we get a pushforward for the closed fixed point
inclusions igW X

g ,!X , ie

ig�W H.X
g/!H.X /;

and a group homomorphism

sumG WD

X
g

ig�W H
G.X /!H G

id .X /DH.X /G �H.X /:

Note that this homomorphism commutes with induction and cross-products.

Remark 2.11 If X is in addition smooth, the induction and restriction functors, as
well as their compatibilities with cross-products, are also compatible with Poincaré
duality for (co)homology as in Remark 2.3.

3 Generating series for symmetric group actions on external
products

In this section, we describe a very general generating series formula for symmetric group
actions on external products, which should be regarded as a far-reaching generalization
of a well-known identity of symmetric functions. In Section 3.1, we give applications
of this abstract generating series formula in the context of orbifold cohomology and
localized K–theory.

Let Z be a quasiprojective variety, with the symmetric group †n acting on the cartesian
product Zn of n� 0 copies of Z by the natural permutation action. For our generating
series formula, it is important to look at all groups H†n.Zn/ simultaneously. Let

(33) H†.Z/ WD
M
n�0

H†n.Zn/ � tn
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be the commutative graded Z–algebra (with unit) with product

ˇ WD Ind†nCm

†n�†m
. �� � /

induced from the external product by induction. Here,
L

n�0 H†n.Zn/ becomes a
commutative graded ring with product ˇ, and we view the completion H†.Z/ as a
subring of the formal power series ring

L
n�0 H†n.Zn/ŒŒt ��.

The algebra H†.Z/ is, in addition, endowed with creation operators

ar W H.Z/!H†r .Zr /

for r � 1, which allow us to transport elements from H.Z/ to the delocalized groups
H†r .Zr /. These are defined as follows: if �r D .r/ is an r –cycle in †r , then ar is
the composition

ar W H.Z/
�r
�!H.Z/ŠH..Zr /�r /Z†r .�r / ,!H†r .Zr /;

where h�r i D Z†r
.�r / acts trivially on .Zr /�r , and therefore also on H..Zr /�r /.

The role of multiplication by r in the definition of creation operator will become
clear later on, eg in the proof of Theorem 3.1 below. The creation operator ar can be
rewritten as

ar WD r � Ind†r

h�r i
ı ir ;

with
ir W H.Z/'H..Zr /�r /h�r i �H<�r>.Zr /:

Here, the last inclusion is just a direct summand, because h�r i is abelian. In the
following we omit to mention ir explicitly.

Let � 2 †n have cycle partition � D .k1; k2; : : : /, ie kr is the number of length-r
cycles in � and nD

P
r r � kr . Then

.Zn/� '
Y

r

..Zr /�r /kr '

Y
r

�r .Z/
kr 'Zk1Ck2C���;

where �r denotes, as above, a cycle of length r in †n , and �r .Z/ is the diagonal
in Zr , ie the image of the diagonal map �r W Z!Zr .

Let us now choose a sequence b D .b1; b2; : : : / of elements br 2 H.Z/ for r � 1,
and associate to a conjugacy class represented by � 2 †n of type .k1; k2; : : : / the
element b.�/ 2H†n.X n/ corresponding to

�r .br /
�kr 2H

�Y
r

Zkr

�
'H..Zn/� /;

Geometry & Topology, Volume 22 (2018)



Equivariant characteristic classes of external and symmetric products of varieties 491

as will be explained below. Recall that Z†n
.�/ is a product over r of semidirect

products of †kr
with h�r i

kr , that is,

(34) Z†n
.�/Š

Y
r

†kr
ËZkr

r

(with �r denoting as before an r –cycle). The group Zkr
r Šh�r i

kr acts trivially on Zkr ,
whereas †kr

permutes the corresponding Z–factors of Zkr (compare [43, page 8]).
By commutativity and associativity of the cross-product �, it follows that �r .br /

�kr

is invariant under Z†n
.�/, so it indeed defines an element

(35) b.�/ D Ind†n

Z†n .�/

�
�r .br /

�kr
�
2H†n.Zn/;

with induction defined as in Remark 2.8. Moreover, for � 2†n and � 0 2†m , we have

(36) b.�/ˇ b.�
0/
D b.���

0/
2H†nCm.ZnCm/:

In what follows, we assume that the functor H takes values in R–modules, with R a
commutative Q–algebra (otherwise, work with H†.Z/˝R). It follows that H†.Z/ is
also a commutative graded Q–algebra. Note that one can also switch between covariant
and contravariant notions, eg between homology and cohomology by Poincaré duality,
if X is smooth.

The main result of this section is the following generating series formula:

Theorem 3.1 With the above notations, the following generating series formula holds
in the Q–algebra H†.Z/:

(37)
X
n�0

� X
.�/2.†n/�

b.�/
�
� tn
D exp

�X
r�1

ar .br / �
tr

r

�
;

where .†n/� denotes the set of conjugacy classes of †n .

Proof We have the following string of equalities in the Q–algebra .H†.Z/;ˇ/:

exp
� 1X

rD1

xr
tr

r

�
D

1Y
rD1

exp
�

xr
tr

r

�
(38)

D

1Y
rD1

1X
krD0

�
xr

tr

r

�kr
1

kr !

D

X
N�0

X
k1;:::;kN

x
k1

1
� � �x

kN

N

k1! � � � kN !

NY
rD1

�
tr

r

�kr
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D

X
N�0

X
k1;:::;kN

x
k1

1
� � �x

kN

N

k1! � � � kN !

tk1C2k2C���CN kN

1k1 � � �N kN

D

1X
mD0

tm
X

k1C2k2C���CN kNDm

x
k1

1
� � �x

kN

N

k1! � � � kN !1k1 � � �N kN

D

1X
mD0

tm
X

k1C2k2C���CN kNDm

NY
rD1

x
kr
r

kr !rkr
:

Note that the sum over k1C 2k2C � � �CN kN Dm corresponds to a summation over
the cycle classes .�/ in †m given by

Q
r �r

kr for �r D .r/ an r –cycle in †r . In our
case, we take

xr D ar .br /D Ind†r

h�r i
.r � br /:

All products (and powers) above are with respect to the multiplication ˇ in H†.Z/,
which is defined via cross-product and induction. In particular,

NY
rD1

.xr /
kr

rkr
D Ind†mQ

r .†r /kr

�
�N

rD1

.xr /
�kr

rkr

�
:

Moreover, by using the compatibility of induction with �, Z–linearity and transitivity,
we have

Ind†mQ
r .†r /kr

�
�N

rD1

.xr /
�kr

rkr

�
D Ind†mQ

r h�r i
kr

�
�r .br /

�kr
�

D Ind†m

Z†m .�/
ı IndZ†m .�/Q

r h�r i
kr

�
�r .br /

�kr
�
;

where, as before, � is a representative of the cycle type .k1; k2; : : : /. But, as already
mentioned, Z†m.�/ acts trivially on�r .br /

�kr , so IndZ†m.�/Q
r h�r i

kr
is just multiplication

by the index
�
Z†m.�/ W

Q
r h�r i

kr
�
D
Q

r kr !.

Altogether, we get
NY

rD1

.xr /
kr

kr !rkr
D b.�/;

which finishes the proof.

3.1 Examples

Let us now explain some special cases of Theorem 3.1 in the cohomological language,
which in some situations are already available in the literature. Our main applications,
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to equivariant characteristic classes for singular spaces, will be given later on, in
Section 5.3, after we develop the necessary background.

3.1.1 Orbifold cohomology Here we work with H.X / WDH ev.X /˝Q, the (even-
degree) rational cohomology functor. For X smooth, our notion of H G.X / corresponds
to the even-degree orbifold cohomology H 2�

orb.X=G/, as used for example in [34].

For Z a quasiprojective complex variety and for a given 
 2 H.Z/, let br WD 


for all r � 1. Then b.�/ corresponds to 
�`.�/ 2 H..Zn/� / for � 2 †n of cycle
type .k1; k2; : : : /, and `.�/ WD

P
r kr the length of the partition associated to � .

Following [34], we set

(39) �n.
 / WD
X

.�/2.†n/�

Ind†n

Z†n.�/
.
�`.�//D

X
.�/2.†n/�

b.�/:

Then our formula (37) specializes to the following result:

(40)
X
n�0

�n.
 / � t
n
D exp

�X
r�1

ar .
 / �
tr

r

�
:

For X smooth, this fits with the formula stated after Definition 3.2 in [34]. However,
our proof is purely formal, so it applies to any topological space, as well as to algebraic
varieties with rational Chow groups for H .

3.1.2 Localized K –theory Here we work with H.X / WD K0.X /˝C , the com-
plexified Grothendieck group of algebraic vector bundles on X . For a finite group G

acting algebraically on a quasiprojective complex variety X , we define a localization
map of Lefschetz type,

LG
W K0

G.X /!H G.X /;

on the Grothendieck group of G –equivariant algebraic vector bundles as a direct sum
of transformations

L.g/W K0
G.X /!K0

hgi.X
g/'K0.X g/˝RepC.hgi/!K0.X g/˝C;

ŒW � 7! ŒW jX g � 7! traceg.ŒW jX g �/;

where the last map is induced by taking the trace against g 2G . Here, RepC.hgi/ is the
Grothendieck group of complex representations of the group hgi, and the isomorphism
in the above definition holds since hgi acts trivially on the fixed-point set X g (eg this
fact follows from [13, (1.3.4)]; compare also [17]). Note that, by construction, LG

commutes with cross-products as in Section 2.1
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For Z a quasiprojective complex variety and an algebraic vector bundle V on Z ,
we get the †n –equivariant vector bundle V �n on Zn . Let � 2†n be of cycle type
.k1; k2; : : : /. Then, by the multiplicativity of L.�/, we get

L.�/D�r L.�r /
�kr :

So it suffices to understand the transformations L.�r / for all r –cycles, with r � 1.

For �n D .n/ an n–cycle, we have that

(41) L.�n/ŒV
�n�D  n.V / 2K0.Z/˝Q

under the identification .Zn/�n D�n.Z/'Z , with

��n.V
�n/D V ˝n:

Here  n denotes the nth Adams operation defined by Atiyah [1] in the topological
context and eg Nori [31, Lemma 3.2] in the algebraic geometric context. Note that
we can work here with rational coefficients, since characters of symmetric groups are
integer-valued.

If we choose br WD  r .V / for all r � 1, our main formula (37) specializes to the
generating series identity

(42)
X
n�0

L†n.V �n/ � tn
D exp

�X
r�1

ar . r .V // �
tr

r

�
;

since, by multiplicativity and conjugacy-invariance of L.�/, we have that

L†n.V �n/D
X

.�/2.†n/�

Ind†n

Z†n .�/

�
�r L.�r /

�kr
�
D

X
.�/2.†n/�

b.�/:

The same proof applies in the topological context, for topological K–theory, in which
case we obtain a special case (for G the identity group) of Proposition 4 of [40]. Note
that [40] uses the identification LG ˝CW K0

G
.X /˝C 'H G.X /.

Similarly, one can work with algebraic varieties over any base field of characteristic
zero, with L.g/ the corresponding Lefschetz transformation of Baum, Fulton and
Quart [6].

3.1.3 Localized Grothendieck groups of constructible sheaves Here we work with

H.X / WDK0.Constr.X //˝C;
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the complexified Grothendieck group of (algebraically) constructible sheaves of com-
plex vector spaces. For a finite group G acting algebraically on a quasiprojective
complex variety X , we define a localization map of Lefschetz type

LG
W KG

0 .Constr.X //!H G.X /

on the Grothendieck group of G –equivariant (algebraically) constructible sheaves of
complex vector spaces as a direct sum of transformations

L.g/W KG
0 .Constr.X //!K

hgi
0
.Constr.X g//'K0.Constr.X g//˝RepC.hgi/

!K0.Constr.X g//˝C;
ŒF � 7! ŒF jX g � 7! traceg.ŒF jX g �/;

where the last map is induced, as before, by taking the trace against g 2 G . The
isomorphism in the above definition holds since hgi acts trivially on the fixed-point set
X g and Constr.X g/ is an abelian C–linear category (eg see as before [13, (1.3.4)];
compare also [17]). Note that, by construction, LG commutes as before with cross-
products, as in Section 2.1

For Z a quasiprojective complex variety and an (algebraically) constructible sheaf F
on Z , we get the †n –equivariant (algebraically) constructible sheaf F�n on Zn . For
�n D .n/ an n–cycle, we have that

(43) L.�n/ŒF�n�D  n.V / 2K0.Constr.Z//˝Q

under the identification .Zn/�n D�n.Z/'Z , with

��n.F
�n/D F˝n:

Here,  n denotes the nth Adams operation corresponding to the pre-lambda ring
structure on K0.Constr.Z// induced from the symmetric monoidal tensor product ˝
of constructible sheaves, as in [27, Lemma 2.1]. As before, we can work here with
rational coefficients.

If we choose br WD r .F/ for all r � 1, our main formula (37) specializes as above to
the generating series identity

(44)
X
n�0

L†n.F�n/ � tn
D exp

�X
r�1

ar . r .F// �
tr

r

�
:

3.1.4 Frobenius character Specializing to a point space X , the above localized
theories for vector bundles and constructible sheaves reduce to the classical character
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theory of a finite group G ,

trG W RepC.G/! C.G/˝C; ŒV � 7! ftraceg.V /;g 2Gg;

with RepC.G/ the Grothendieck group of complex representations of G and C.G/ the
free abelian group of Z–valued class functions on G . The trace, traceg , is of course
multiplicative and conjugacy-invariant.

For symmetric groups, we can work again with rational coefficients, and get an algebra
homomorphism

tr†W RepC.†/ WD
M

n

RepC.†n/! C.†/˝Q WD
M

n

C.†n/˝Q

with respect to the classical induction product: ˇ WD Ind†nCm

†n�†m
. �� � / for representa-

tions and characters; see eg [24, Chapter I, Section 7]. This homomorphism can be
composed with the Frobenius character

chF W C.†/˝Q WD
M

n

C.†n/˝Q '
�!QŒpi j i � 1�DWƒ˝Q

to the graded ring of Q–valued symmetric functions in infinitely many variables xm

for m 2N , with pi WD
P

m xi
m the i th power sum function. On C.†n/˝Q, chF is

defined by

(45) chF .f / WD
1

n!

X
�2†n

f .�/ .�/;

with
 .�/ WD

Y
r

pkr
r

for � of cycle type .k1; k2; : : : /; eg see [24, Chapter I, Section 7]. For example, if f is
the indicator function of the conjugacy class of the n–cycle �n in †n , then chF .f /D
1
n
pn since nDjZ†n

.�n/j. In particular, the creation operator ar W Q!QŒpi j i � 1�D

ƒ˝Q is (up to the Frobenius isomorphism) given by multiplication with pr , which
also motivates the use of multiplication by r in the definition of our creation operator
in Section 3.

If we choose br WD 1 2 Q for all r � 1, our main formula (37) specializes to the
well-known identity of symmetric functions (eg see the proof of [24, (2.14)])

(46) H.t/ WD
X
n�0

hntn
D exp

�X
r�1

pr �
tr

r

�
;
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with hn D chF .1†n
/ the nth complete symmetric function (see [24, page 113]) and

1†n
WD tr†n

.trivn/ the identity character of the trivial representation trivn of †n .

4 (Equivariant) Pontrjagin rings for symmetric products

Let Z be a quasiprojective variety, and denote by Z.n/ its nth symmetric product, ie
the quotient of the product Zn of n copies of Z by the natural action of the symmetric
group on n elements, †n . Let �nW Z

n!Z.n/ denote the natural projection map.

In this section, the functor H from Section 2 is required in addition to be covariant
(at least) for finite maps such as �n or the closed embedding i� W .Z

n/� ,! Zn for
� 2†n . We will carry over the assumption that H takes values in R–modules, with
R a commutative Q–algebra.

Besides H†.Z/ WD
L

n�0 H†n.Zn/ � tn , here we consider other structures of commu-
tative graded Q–algebra with units, defined in terms of symmetric or external products
of Z :

(a) On

PH.Z/ WD
M
n�0

H.Z.n// � tn
D

Y
n�0

H.Z.n//

there is the Pontrjagin ring structure, with multiplication ˇ induced from the maps

Z.n/
�Z.m/

!Z.mCn/
I

see [12, Definition 1.1] for more details. Here,
L

n�0 H.Z.n// becomes a commutative
graded ring with product ˇ, and we view the completion PH.Z/ as a subring of the
formal power series ring

L
n�0 H.Z.n//ŒŒt ��.

(b) On

PH†.Z/ WD
M
n�0

H†n.Z.n// � tn
Š

M
n�0

.H.Z.n//˝C.†n/˝Q/ � tn

,! PH.Z/˝ .C.†/˝Q/

there is a product induced from that of the Pontrjagin product in the H –factor and the
induction product for class functions. Via the Frobenius character identification

chF W C.†/˝Q'QŒpi j i � 1�;
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we can also view PH†.Z/ as a graded subalgebra of PH.Z/˝QŒpi j i � 1�, and
with i th power sum pi regarded as a degree-i variable.

(c) By Remark 2.10, the direct summand

H†
id .Z/ WD

M
n�0

H
†n

id .Zn/ � tn
�H†.Z/

corresponding to the identity component is a subring, so thatM
n�0

sum†n
W H†.Z/!H†

id .Z/

is a ring homomorphism. With respect to the Frobenius homomorphism, it is more nat-
ural to use the averaging homomorphisms avn WD

1
n!

sum†n
W H†n.Zn/!H

†n

id .Zn/.
Then the graded group homomorphism

av WD
M

avnW H
†.Z/!H†

id .Z/

becomes a graded algebra homomorphism if we introduce on H†
id .Z/ the twisted

product

ž WD
n!m!

.nCm/!
ˇW H

†n

id .Zn/�H
†m

id .Zm/!H
†nCm

id .ZnCm/:

With this twisted product, we also have a Frobenius-type ring homomorphism

avF W H
†.Z/!H†

id .Z/˝QŒpi j i � 1�

given by

1

n!

X
�2†n

i�� � .�/W H
†n.Zn/!H

†n

id .Zn/˝QŒpi j i � 1�;

with  .�/ as in the Frobenius homomorphism chF of (45).

These structures are related by homomorphisms of commutative graded Q–algebras,
fitting into the commutative diagram

(47)

H†.Z/ WD
L

n�0 H†n.Zn/ � tn

��D
L

n �n�

��

avF
// H†

id .Z/˝QŒpi j i � 1�

��˝id
��

PH†.Z/ WD
L

n�0 H†n.Z.n// � tn

L
n.1=j†nj/

P
� ev�

��

// PH.Z/˝QŒpi j i � 1�

piD1

��

PH.Z/ WD
L

n�0 H.Z.n// � tn D
// PH.Z/

with ev� W C.†n/˝Q!Q the evaluation map at � 2†n .

Geometry & Topology, Volume 22 (2018)



Equivariant characteristic classes of external and symmetric products of varieties 499

Let dr WD �r ı�r be the composition dr W Z!Zr !Z.r/ of the natural projection
�r W Z

r!Z.r/ with the diagonal embedding �r W Z!Zr . Then the creation operator
ar satisfies the identities

(48) �r� ı ar D pr � dr�; avF ı ar D pr ��r� and av ı ar D�r�:

This generalizes the corresponding relation between ar and pr discussed at the end of
Section 3.1.4.

Remark 4.1 Under the assumptions from the beginning of this section, the commuta-
tive diagram (47) is functorial in Z for finite maps. If, moreover, the functor H and
the cross-product are functorial for proper morphisms, then (47) is also functorial for
such morphisms. In particular, for Z compact, we can push down our generating series
formulae (such as (37)) to a point to obtain (equivariant) degree formulae. Finally, the
diagram (47) is compatible with natural transformations of such functors.

4.1 Example: constructible functions and orbifold Chern classes

In this example, we explain how our main result of Theorem 3.1 can be used to
reprove Ohmoto’s generating series identities for canonical constructible functions [33,
Proposition 3.9] and orbifold Chern classes [33, Theorem 1.1]. These are generalized
class versions of the celebrated Hirzebruch–Höfer (or Atiyah–Segal) formula for the
orbifold Euler characteristic of symmetric products. Recall that for a (compact) G–
space X as before, the orbifold Euler characteristic �.X;G/ is defined as

(49) �.X;G/D
1

jGj

X
ghDhg

�.X g
\X h/D

X
.g/2G�

�.X g=ZG.g//D �.I X=G/;

with I X D
F

g2G X g the inertia space as in the introduction.

Let H be the functor F.�/ of Q–valued algebraically constructible functions, which is
covariant for all morphisms, and with a compatible cross-product. Following Ohmoto’s
notations, for a fixed group A, let jr .A/ be the number of index-r subgroups of A,
which is assumed to be finite for all r . In the notation of Theorem 3.1, let

br WD jr .A/ � 1Z 2 F.Z/:

Then

b.�/ D Ind†n

Z†n .�/

�
�r .jr .A/ � 1Z /

�kr
�
2 F†n.Zn/;
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and the element

1A
ZnI†n

WD

X
.�/2.†n/�

b.�/ 2 F†n.Zn/

appearing on the left-hand side of (37) is a delocalized version of Ohmoto’s canonical
constructible function 1.A/

ZnI†n
of [33, Definition 2.2], in the sense that

avn.1
A
ZnI†n

/D 1.A/
ZnI†n

2 F
†n

id .Zn/:

This identification follows from [33, Lemma 3.4]. (Note that Ohmoto’s product in [33]
corresponds to our twisted product ž .)

Let us illustrate what these distinguished constructible functions are in the cases ADZ

and AD Z2 (for other examples, see [33]):

(a) If AD Z, then

1Z
ZnI†n

D

M
�2†n

1.Zn/� 2

� M
�2†n

F..Zn/� /

�†n

and

1.Z/
ZnI†n

D
1

n!

X
�2†n

1.Zn/� 2 F.Zn/†n :

(b) If AD Z2 , then

1.Z
2/

ZnI†n
D

1

n!

X
�� 0D� 0�

1.Zn/�\.Zn/�
0 2 F.Zn/†n ;

as shown in [33]. On the other hand, the combinatorics used in [33] only applies
to F.Zn/†n , but not to the delocalized theory� M

�2†n

F..Zn/� /

�†n

:

Nevertheless, the function 1Z2

ZnI†n
is a canonical lift of 1.Z

2/
ZnI†n

with respect to
the averaging avn .

Then our main Theorem 3.1 yields the identity

(50)
X
n�0

1A
ZnI†n

� tn
D exp

�X
r�1

jr .A/

r
tr
� ar .1Z /

�
2 F†.Z/:
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By applying to (50) the ring homomorphism avW .F†.Z/;ˇ/ ! .F†id .Z/; ž /, we
recover, by (48), Ohmoto’s generating series formula [33, Proposition 3.9]

(51)
X
n�0

1.A/
ZnI†n

� tn
D exp

�X
r�1

jr .A/

r
tr
��r�.1Z /

�
:

Recall now that MacPherson’s Chern class transformation (with rational coefficients)
c�W F.�/!H�.�/ WDH BM

ev .�/˝Q commutes with proper pushforward and cross-
products. Applying c� to (50), we obtain a new generating series

(52)
X
n�0

c�.1
A
ZnI†n

/ � tn
D exp

�X
r�1

jr .A/

r
tr
� ar .c�.1Z //

�
2H†.Z/;

with c�.1A
ZnI†n

/ 2H†n.Zn/ a delocalized version of Ohmoto’s orbifold Chern class
c�.1

.A/
ZnI†n

/ 2 H
†n

id .Zn/. Ohmoto’s formula [33, Theorem 1.1] for orbifold Chern
classes of symmetric products is obtained by applying c� to (51), or equivalently, by
applying av to (52).

If Z is projective, by taking the degrees deg c�.1A
ZnI†n

/ D deg c�.1
.A/
ZnI†n

/ of the
above characteristic class formulae, one recovers generating series for orbifold-type
Euler characteristics; see [33] for details and examples.

Finally, note that for ADZ (hence jr .A/D 1 for all r ), we recover a special case (for
cl� D c� and F DQZ ) of Theorem 1.4 from the introduction, via the identification

c
†n
� .Q�n

Z /D
M
�2†n

c�.1.Zn/� /D c�.1
Z
ZnI†n

/ 2

� M
�2†n

H�..Z
n/� /

�†n

:

The corresponding degree formula for Z compact is the classical Euler characteristic
formula

�.Zn=†n/D
1

n!

X
�2†n

�..Zn/� /:

Similarly, for AD Z2 and Z compact, one recovers at the degree level the orbifold
Euler characteristic �.Zn; †n/ as in (49).

Remark 4.2 Instead of fixing the group A and the coefficients brDjr .A/�1Z 2F.Z/,
one could also start with br D 1Z for all r . Applying the Frobenius-type homomor-
phism avF to the corresponding identity derived from our Theorem 3.1, we recover the
above results in a uniform way by specializing pr for a given group A to pr D jr .A/

for all r .
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Remark 4.3 The delocalized equivariant homology H G
� .X / D H�.I X=G/ of the

G–space X and related invariants (eg Euler characteristic, Hodge numbers) can be
used in two different ways:

(a) For the study of (equivariant) invariants of the quotient space X=G (resp. the
G –space X ), via fixed-point contributions; this is the context studied in this paper via
characteristic classes of Lefschetz-type.

(b) For studying (equivariant) orbifold-type invariants of X=G , defined as the cor-
responding (equivariant) invariants of the quotient space I X=G (resp. the inertia
space I X ). A de Rham-type description of the orbifold cohomology is already implicit
in [21], but see also [16] for a more recent version adapted to compact group actions.
Generating series for the corresponding orbifold Euler characteristic and orbifold
Hirzebruch genus of symmetric products have been obtained, eg in [34; 40; 41; 43].
Orbifold Chern class versions have been systematically studied in [33], whereas orbifold
elliptic classes are considered in relation to the McKay correspondence in [8]. Note
that the orbifold elliptic classes specialize to orbifold Hirzebruch as well as orbifold
Todd classes, which are only implicitly studied in [8].

Let us finally note that in order to study these orbifold-type invariants via techniques of
the present paper one has to apply the Lefschetz-type Riemann–Roch transformations
to the inertia space I X (as opposed to the G –space X , as in this paper). This in turn
changes the underlying combinatorics, and it is only for constructible functions that the
corresponding invariants can be directly deduced from our abstract generating series
formula (37), as indicated above.

5 Generating series for (equivariant) characteristic classes

In this section, we specialize our abstract generating series formula (37) in the framework
of characteristic classes of singular varieties.

5.1 Characteristic classes of Lefschetz type

For a complex quasiprojective variety X , with an algebraic action G �X !X of a
finite group G , let � W X!X 0 WDX=G be the quotient map. We denote generically by
catG.X / a category of G –equivariant objects on X in the underlying category cat.X /;
see [27; 11]. From now on, H.X / WDH�.X / will be H BM

ev .X /˝R, the even-degree
Borel–Moore homology of X with R–coefficients for R a commutative C–algebra,
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or Q–algebra if G is a symmetric group. Note that H.�/ is functorial for all proper
maps, with a compatible cross-product (as used in the previous section).

Definition 5.1 An equivariant characteristic class transformation of Lefschetz type is
a transformation

cl�.�Ig/W K0.catG.X //!H�.X
g/

such that the following properties are satisfied:

(i) cl�.�Ig/ is covariant functorial for G –equivariant proper maps.

(ii) cl�.�Ig/ is multiplicative under cross-product �.

(iii) if X is a point space and cat.pt/ is an abelian C–linear category, then the
category VectC.G/ of (finite-dimensional) complex G –representations is a sub-
category of catG.pt/ and cl�.�Ig/ is a certain g–trace (as shall be explained
later on), with cl�.�Ig/D traceg on RepC.G/.

(iv) if G acts trivially on X and cat.X / is an abelian C–linear category, then

K0.catG.X //'K0.cat.X //˝RepC.G/

via the Schur functor decomposition as in (21), and

(53) cl�.�Ig/D cl�.�/˝ traceg;

with cl�.�/ the corresponding nonequivariant characteristic class, as explained
below. If G D †n is a symmetric group, it is enough to assume that cat.X /
is an abelian Q–linear category, with the category VectQ.†n/ of rational †n –
representations a subcategory of cat†n.pt/.

Remark 5.2 For a subgroup K of G , with g 2 K , we assume that such a trans-
formation cl�.�Ig/ of Lefschetz type commutes with the restriction functor ResG

K .
Then cl�.�Ig/ depends only on the action of the cyclic subgroup generated by g . In
particular, if g D idG is the identity of G , we can take K the identity subgroup fidGg

with ResG
fidGg

the forgetful functor

ForW K0.catG.X //!K0.cat.X //;

so that cl�.�I idG/D cl�.�/ fits with a corresponding nonequivariant characteristic
class.
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Remark 5.3 The above assumptions about cross-product and restriction functors can
be used to define a pairing

VectC.G/� catG.X / ˝�! catG.X /

by
catG.pt/� catG.X / �

�! catG�G.pt �X / Res
��! catG.X /;

with pt �X ŠX and Res denoting the restriction functor for the diagonal subgroup
G ,!G �G . This induces a pairing

RepC.G/�K0.catG.X // ˝�!K0.catG.X //

on the corresponding Grothendieck groups such that

(54) cl�.V ˝F Ig/D traceg.V / � cl�.F Ig/

for V a G–representation and F 2 catG.X /. If G is the symmetric group, then the
above holds also for rational representations.

Let us give some examples of equivariant characteristic class transformations of Lef-
schetz type.

Example 5.4 (Todd classes) Let X be a quasiprojective G–variety, and denote
by K0.CohG.X // the Grothendieck group of the abelian category CohG.X / of G–
equivariant coherent algebraic sheaves on X . For each g 2G , the Lefschetz–Riemann–
Roch transformation [6; 30]

(55) td�.�Ig/W K0.CohG.X //!H�.X
g/

is of Lefschetz type with R WDC (or R WDQ if G is a symmetric group). Moreover,
td�.�I idG/ is the complexified (nonequivariant) Todd class transformation td� of
Baum, Fulton and MacPherson [5]. Over a point space, the transformation td�.�Ig/
reduces to the g–trace on the corresponding G –equivariant vector space. In particular,
if X is projective, by pushing down to a point we recover the equivariant holomorphic
Euler characteristic, ie for F 2 CohG.X / the following degree formula holds:

�a.X;F Ig/ WD
X

i

.�1/i trace.gjH i.X IF//D
Z
ŒX g�

td�.ŒF �Ig/:

Example 5.5 (Chern classes) Let K0.ConstrG.X // be the Grothendieck group of
the abelian category ConstrG.X / of algebraically constructible G –equivariant sheaves
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of complex vector spaces on X . Then the localized Chern class transformation [37,
Example 1.3.2]

c�.�Ig/ WD c�.trg.�jX g//W K0.ConstrG.X //!H�.X
g/

is of Lefschetz type with R WD C (or R WD Q if G is a symmetric group). Here
c�.�/ is the Chern–MacPherson class transformation [25] and trg.�jX g/ is the group
homomorphism which, for F 2 ConstrG.X /, assigns to ŒF � 2 K0.ConstrG.X // the
constructible function on X g defined by

x 7! trace.gjFx/:

(Note that for x 2 X g, g acts on the finite-dimensional stalk Fx for a constructible
G –equivariant sheaf F .) For the identity element, the transformation c�.�Ig/ reduces
to the complexification of MacPherson’s Chern class transformation. It also follows
by definition that if X is a point space, then c�.�Ig/ reduces to the g–trace on the
corresponding G –equivariant vector space. In particular, if X is projective, by pushing
down to a point we recover the equivariant Euler characteristic, ie for F 2ConstrG.X /

the following degree formula holds:

�.X;F Ig/ WD
X

i

.�1/i trace.gjH i.X IF//D
Z
ŒX g�

c�.ŒF �Ig/:

Example 5.6 ((unnormalized) Atiyah–Singer classes, mixed Hodge module version)
Let K0.MHMG.X // be the Grothendieck group of G –equivariant (algebraic) mixed
Hodge modules. The (unnormalized) Atiyah–Singer class transformation of [11],

Ty�.�Ig/W K0.MHMG.X //!H�.X
g/;

is of Lefschetz type with RDCŒy˙1� (or R WDQŒy˙1� if G is a symmetric group).
In this case, MHM.X / is only a Q–linear abelian category, so for the isomorphism of
Grothendieck groups in property .3/ of Definition 5.1 one should assume that G is a
symmetric group (or work with the Grothendieck group of the underlying C–linear
exact category of filtered holonomic D–modules). For the identity element of G ,
this reduces to the mixed Hodge module version of the (unnormalized) Hirzebruch
class transformation of Brasselet, Schürmann and Yokura [9; 38]. Over a point space,
Ty�.�Ig/ coincides with the equivariant �y.�Ig/–genus ring homomorphism

�y.�Ig/W K
G
0 .MHSp/!CŒy˙1�
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defined on the Grothendieck group of the category G –MHSp of G –equivariant (graded)
polarizable mixed Hodge structures by

�y.ŒH �Ig/ WD
X
p

trace.gjGrp
F
.H ˝C// � .�y/p

for F � the Hodge filtration on H 2 G–MHSp . Here we use the identification
MHMG.pt/'G –MHSp of G –equivariant mixed Hodge modules over a point space
with G –equivariant (graded) polarizable mixed Hodge structures, so that the category of
(finite-dimensional) rational G –representations is a subcategory of G –MHSp (viewed
as mixed Hodge structure of pure type .0; 0/). In particular, if X is projective and
M2MHMG.X /, by pushing down to a point we recover the equivariant twisted Hodge
genus, ie the following degree formula holds (see [11, Proposition 4.7] for M the
intersection cohomology mixed Hodge module):

�y.X;MIg/ WD
X
i;p

.�1/i trace.gjGrp
F

H i.X IM/˝C/ � .�y/p D

Z
ŒX g�

Ty�.MIg/:

Remark 5.7 The motivic version of the Atiyah–Singer class transformation, as men-
tioned in the introduction, can be deduced from the corresponding mixed Hodge module
version through the natural transformation (eg see [11])

�G
HdgW K

G
0 .var=X /!K0.MHMG.X //

mapping ŒidX � to the class of the constant Hodge module (complex) ŒQH
X
�. This

transformation commutes with push-downs, cross-products and restriction functors.
Then the (unnormalized) motivic Atiyah–Singer class transformation is the composition

Ty�.�Ig/W K
G
0 .var=X /

�G
Hdg
��!K0.MHMG.X //

Ty�.�Ig/
�����!H�.X

g/:

In particular, the Atiyah–Singer class of X is defined as

Ty�.X Ig/ WD Ty�.ŒidX �Ig/D Ty�.ŒQ
H
X �Ig/:

Let us explain some of the above examples in the simplest situation when X is smooth
(see [11] for complete details). Then X g is also smooth, and we denote by TX g and
NX g its tangent and normal bundles in X . In this case, the homological Lefschetz-
type transformations correspond under Poincaré duality (and for suitable “smooth”
coefficients in catG.X /) to similar cohomological transformations, as explained below.
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Todd classes Let K0
G
.X / be the Grothendieck group of algebraic G –vector bundles,

and note that the natural map K0
G
.X /!K0.CohG.X // is an isomorphism. Let ch�

and td� denote the Chern character and the Todd class in cohomology. The Lefschetz–
Riemann–Roch transformation is then given by: for V an algebraic G –vector bundle
on X ,

(56) td�.V Ig/D ch�.g/.V jX g/\

�
td�.TX g/

ch�.g/.ƒ�1N �
X g/
\ ŒX g�

�
:

Here, N �
X g denotes the dual of the normal bundle of X g , and for a vector bundle E

we let ƒ�1.E/ WD
P

i.�1/iƒiE . Moreover, the equivariant Chern character

ch�.g/.�/W K0
G.X

g/!H�.X g/

is defined as follows: for W 2K0
G
.X g/ we let

ch�.g/.W / WD
X
�

�.g/ � ch�.W�/

for W '
L
� W� the (finite) decomposition of W into subbundles W� on which g acts

by a character �W hgi !C� . Note that ch�.g/.V jX g/ is just the complexified Chern
character of L.g/.V /, with L.g/ the Lefschetz-type transformation of Section 3.1.2.
If X is projective, by taking degrees in formula (56) we obtain the Atiyah–Singer
holomorphic Lefschetz formula from [2; 20].

Atiyah–Singer classes, mixed Hodge module version Let X be smooth with an
algebraic G–action, together with a G–equivariant “good” variation L of rational
mixed Hodge structures (ie graded polarizable, admissible and with quasiunipotent
monodromy at infinity). This corresponds to a (shifted) smooth G –equivariant mixed
Hodge module. Let V WD L˝Q OX be the flat G –equivariant bundle whose sheaf of
horizontal sections is L˝C . The bundle V comes equipped with a decreasing (Hodge)
filtration (compatible with the G –action) by holomorphic subbundles FpV . Note that
since we work with a “good” variation, each FpV underlies (by GAGA) a unique
complex algebraic G –vector bundle. Let

�y.V/ WD
X
p

ŒGrp
FV � � .�y/p 2K0

G.X /Œy;y
�1�

be the �y –characteristic of V . Then

(57) Ty�.X;LIg/D ch�.g/.�y.V/jX g/\Ty�.X Ig/;

with Ty�.X Ig/ WD
P

i�0 td�.Œ�i
X
�Ig/ �yi the Atiyah–Singer class of X .
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Our generating series results for these characteristic class transformations, as discussed
in the next sections, will, however, be valid for any quasiprojective complex variety X

(possibly singular) and all coefficients in catG.X /.

5.2 Delocalized equivariant characteristic classes

Let X be a (possibly singular) quasiprojective variety acted upon by a finite group G

of algebraic automorphisms.

From now on, we use the symbol cl� to denote any of the characteristic classes c� ,
td� and Ty� , respectively, with their corresponding equivariant versions of Lefschetz
type, cl�.�Ig/W K0.catG.X //!H�.X

g/, as discussed in the previous section.

Definition 5.8 For any of the above Lefschetz-type characteristic class transformations
cl�.�Ig/, we define a corresponding G –equivariant class transformation

clG� W K0.catG.X //!H G
� .X /

by

clG� .�/ WD
M
g2G

cl�.�Ig/D
M
.g/

IndG
ZG.g/

.cl�.�Ig// 2
�M

g2G

H�.X
g/

�G

;

with induction as in Remark 2.8.

Note that the G–invariance of the class clG� .�/ is a consequence of the conjugacy-
invariance of cl�.�Ig/, proved in [11, Section 5.3]. This also explains the equality of
the two descriptions of clG� .�/.

The above transformation clG� .�/ has the same properties as the Lefschetz-type trans-
formations cl�.�Ig/, eg functoriality for proper push-downs, restrictions to subgroups,
and multiplicativity for exterior products.

If X is projective, then by pushing clG� .�/ down to a point, the degree

deg.clG� .�//D trG.X;�/ WD trG.H
�.X;�// 2 C.G/˝R

is the character trG of the corresponding virtual cohomology representationX
i

.�1/i ŒH i.X;�/� 2 RepC.G/˝R' C.G/˝R:
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In addition, if clG� D T G
y� is the G –equivariant Hirzebruch class, then

deg
�
T G

y�.ŒM�/
�
D trG.X;M/ WD

X
p

trG.Grp
F

H�.X;M//.�y/p

for M 2MHM.X /.

If G acts trivially on X , then there is a functor

Œ��G W K0.catG.X //!K0.cat.X //

defined by taking G–invariants, which in the case of any of the Q–linear abelian
categories Coh.X /, Constr.X / and MHM.X / is induced from the exact projector

.�/G WD
1

jGj

X
g2G

�gW catG.X /! cat.X /:

Here �gW F!g�F (with g2G ) is the isomorphism of the G –action on F 2 catG.X /;
see [11; 27] for details.

Remark 5.9 For a given G–representation V , by using the pairing of Remark 5.3
one can define Schur functors SV W catG.X /! cat.X / by SV .F/ WD .V ˝F/G . Here
we assume that G acts trivially on X . This notion agrees with the abstract categorical
definition from [13; 19].

For the Grothendieck group KG
0
.var=X / of G –varieties over X , the functor

Œ��G W KG
0 .var=X /!K0.var=X /

is given by ŒY !X � 7! ŒY=G!X �. This is a well-defined functor since our equivariant
Grothendieck group KG

0
.var=X / from [11] only uses the scissor relation. Note that

the transformation

�G
HdgW K

G
0 .var=X /!K0.MHMG.X //

relating the two versions of the Atiyah–Singer transformation, commutes with Œ��G

since, with � W Y !Y=G denoting the quotient map, we have that (see [11, Lemma 5.3],
but see also [26, Remark 2.4])

QH
Y=G D .��Q

H
Y /

G
2DbMHM.Y=G/:

Then if G acts trivially on X , the following averaging property holds by the definition
of the projector .�/G together with (53) (compare also with [11, Section 5.3], [12,
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Section 3]):

(58)

K0.catG.X //
clG�
//

Œ��G

��

H G
� .X /ŠH�.X /˝C.G/

.1=jGj/
P

g2G evg

��

K0.cat.X //
cl�

// H�.X /

where evg is the evaluation at g 2G of class functions on G .

5.3 Proof of the main theorem, Theorem 1.4, and its applications

In this section, we explain how to deduce our main result, Theorem 1.4, for equivariant
characteristic classes of external products of varieties from the abstract generating
series formula (37). We also explain the various specializations of Theorem 1.4, as
formulated in the introduction.

Let Z be a quasiprojective variety, with a given object F 2 cat.Z/ as in the introduction.
We use as before the symbol

cl�W K0.cat.Z//!H�.Z/DH BM
2� .Z/˝R

to denote any of the characteristic classes

� td�W K0.Coh.Z//!H BM
2�
.Z/˝Q,

� c�W K0.Constr.Z//!H BM
2�
.Z/˝Q,

� Ty�W K0.var=Z/!H BM
2�
.Z/˝QŒy�,

� Ty�W K0.MHM.Z//!H BM
2�
.Z/˝QŒy˙1�,

with their corresponding localized and delocalized equivariant versions cl�.�Ig/ and
clG� .�/, as discussed in the previous two subsections.

The following properties will allow us to further specialize our main generating series
formula (37) in the context of characteristic classes.

It follows from [12] that cl�.�Ig/ satisfies the following multiplicativity property (see
[12, Lemmas 3.2, 3.5 and 3.9]):

Lemma 5.10 (multiplicativity) If � 2†n has cycle-type .k1; k2; : : : /, ie kr is the
number of r –cycles in � and nD

P
r r � kr , then

(59) cl�.F�n
I �/D�r .cl�.F�r

I �r //
kr 2H�..Z

n/� /Z†n .�/ �H�..Z
n/� /;

with �r denoting an r –cycle in †r .
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Moreover, the following localization result holds — see [12, Lemmas 3.3, 3.6 and 3.10]:

Lemma 5.11 (localization) Under the identification .Zr /�r 'Z ,

(60) cl�.F�r
I �r /D‰r cl�.F/;

where ‰r denotes the homological Adams operation defined by

‰r D

8<:
id if cl� D c�;

�1=r i on H BM
2i
.Z/˝Q if cl� D td�;

�1=r i on H BM
2i
.Z/˝Q and y 7! yr if cl� D T�y�:

We can now explain how to use the abstract generating series formula (37) to derive
Theorem 1.4 from the introduction.

Proof of Theorem 1.4 For any r � 1, let

br WD cl�.F�r
I �r / 2H�.Z/:

By multiplicativity (see Lemma 5.10) and conjugacy-invariance of cl�.�I �/, it follows
that

cl†n
� .F�n/D

X
.�/2.†n/�

Ind†n

Z†n.�/

�
�r cl�.F�r

I �r /
�kr

�
D

X
.�/2.†n/�

b.�/:

Then (4) follows from our main formula (37) together with the localization formula (60).

Let us now apply �� WD
L

n �n� to formula (4). Then, by using functoriality and
the corresponding Q–algebra homomorphism ��W H†

� .Z/! PH†
� .Z/ of (47), we

obtain by the first identity of (48) a proof of Corollary 1.6 from the introduction.

The averaging property (58) together with the Q–algebra evaluation homomorphism
PH�.Z/˝QŒpi j i � 1�! PH�.Z/, pi 7! 1 (for all i ), as in (47), now yields a
proof of Corollary 1.7 from the introduction, which recovers the main result of [12].

We want to emphasize that Corollary 1.6 has other important applications, as already
mentioned in the introduction. For example, it specializes to Corollary 1.8 by using the
Q–algebra evaluation homomorphism

PH�.Z/˝QŒpi j i � 1�! PH�.Z/; pi 7! sign.�i/D .�1/i�1
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(for all i ), together with the commutative diagram:

(61)

K0.cat†n.Z.n///
cl†n
�
//

Œ��sign�†n

��

H
†n
� .Z.n//ŠH�.Z

.n//˝C.†n/

.1=n!/
P
�2†n

sign.�/�ev�
��

K0.cat.Z.n///
cl�

// H�.Z
.n//

Finally, formula (16) from the introduction follows by combining the multiplicativity
of (54), together with the identification of the coefficient of tn in the explicit expansion
(as in the proof of Theorem 3.1) of the exponential on the right-hand side of (8), that
is,

(62) cl†n
� .�n�F�n/D

X
�D.k1;k2;:::/an

p�

z�
�

K
r�1

�
dr�. r .cl�.F///

�kr :

Remark 5.12 All these results and arguments also apply to a bounded complex F in
Db

coh.Z/ or Db
c .Z/, with coherent or constructible cohomology, respectively, as well

as to bounded complexes (such as QH
Z

) in Db.MHM.Z//. Then F�n and �n�F�n

become weakly equivariant †n –complexes (as in [11, Appendix]), which still have
well-defined Grothendieck classes ŒF�n� 2K0.cat†n.Zn//, respectively, Œ�n�F�n� 2

K0.cat†n.Z.n///. Moreover, the definition of the symmetric and alternating power
objects via the projector Œ��†n and Œ��sign�†n , respectively, still works as above since
the corresponding derived categories are Q–linear Karoubian (see [12; 27] for more
details).
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