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A categorification of UT .sl.1j1// and
its tensor product representations

YIN TIAN

We define the Hopf superalgebra U T .sl.1j1// , which is a variant of the quantum
supergroup U q.sl.1j1// , and its representations V ˝n

1
for n > 0 . We construct

families of DG algebras A , B and Rn , and consider the DG categories DGP.A/ ,
DGP.B/ and DGP.Rn/ , which are full DG subcategories of the categories of DG
A–, B – and Rn –modules generated by certain distinguished projective modules.
Their 0th homology categories HP.A/ , HP.B/ and HP.Rn/ are triangulated and
give algebraic formulations of the contact categories of an annulus, a twice punctured
disk and an n times punctured disk. Their Grothendieck groups are isomorphic to
U T .sl.1j1// , U T .sl.1j1//˝Z U T .sl.1j1// and V ˝n

1
, respectively. We categorify

the multiplication and comultiplication on U T .sl.1j1// to a bifunctor HP.A/ �
HP.A/! HP.A/ and a functor HP.A/! HP.B/ , respectively. The U T .sl.1j1//–
action on V ˝n

1 is lifted to a bifunctor HP.A/�HP.Rn/! HP.Rn/ .

18D10; 16D20, 57M50

1 Introduction

1.1 Background

This paper is a sequel to [37], in which we categorified the algebra structure of an
integral version of the quantum supergroup Uq.sl.1j1//. The goal of this paper is to
present a categorification of a Hopf superalgebra UT .sl.1j1// (a variant of Uq.sl.1j1//)
and its representations V ˝n

1
for n> 0, where V1 is the two-dimensional fundamental

representation.

In the late 1980s, Witten [41] and Reshetikhin and Turaev [31] established a connection
between quantum groups and knot invariants. In particular, the Jones polynomial
could be recovered as the Witten–Reshetikhin–Turaev invariant of the fundamental
representation of Uq.sl2/. For quantum supergroups, Kauffman and Saleur [15]
developed an analogous representation-theoretic approach to the Alexander polynomial,
by considering the fundamental representation V0 of Uq.sl.1j1//. Rozansky and
Saleur [33] gave a corresponding quantum field-theoretic description.
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The connection between quantum groups and knot invariants can be lifted to the
categorical level. The existence of such a lifting process, called categorification, was
conjectured by Crane and Frenkel in [5]. In the seminal paper [18], Khovanov defined
a doubly graded homology, now called Khovanov homology, whose graded Euler
characteristic agreed with the Jones polynomial. Chuang and Rouquier [4] categorified
locally finite sl2 –representations, and more generally, Rouquier [32] constructed a
2–category associated with a Kac–Moody algebra. For the quantum groups themselves,
Lauda [22] gave a diagrammatic categorification of Uq.sl2/ and general cases are
given by Khovanov and Lauda [19; 20; 21]. The program of categorifying Witten–
Reshetikhin–Turaev invariants was brought to fruition by Webster [38; 39] using the
diagrammatic approach.

On the other hand, the Alexander polynomial is categorified by knot Floer homology,
defined independently by Ozsváth and Szabó [28] and Rasmussen [30]. Although
its initial definition was through Lagrangian Floer homology, knot Floer homology
admits a completely combinatorial description by Manolescu, Ozsváth and Sarkar [25].
It is natural to ask whether there is a categorical program for Uq.sl.1j1// which is
analogous to that of Uq.sl2/ and which recovers knot Floer homology.

This paper presents another step towards such a categorical program. We first define
the Hopf superalgebra UT .sl.1j1// as a variant of Uq.sl.1j1// and the representa-
tions V ˝n

1
of UT .sl.1j1//. Then we categorify the multiplication and comultiplication

on UT .sl.1j1//, and its representations V ˝n
1

. In a subsequent paper [36], we will
categorify the action of the braid group on V ˝n

1
which is induced by the R–matrix

structure of UT .sl.1j1//.

Our motivation is from the contact category introduced by Honda [8], which presents
an algebraic way to study 3–dimensional contact topology. The contact category is
closely related to bordered Heegaard–Floer homology defined by Lipshitz, Ozsváth and
Thurston [23]; see Section 1.3 for more detail on the contact category. Motivated by the
strands algebra in bordered Heegaard–Floer homology, Khovanov in [17] categorified
the positive part of Uq.gl.1j2//. A counterpart of our construction in Lie theory is
developed by Sartori in [34] using subquotient categories of O.gln/.

1.2 Main results

We define the Hopf superalgebra UT .sl.1j1// as an associative Z–algebra with unit I ,
generators E;F;T;T �1 and relations

(1) EF CFE D I �T;

E2
D F2

D 0; ET D TE;F T D TF; T T �1
D T �1T D I:
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The comultiplication �W UT .sl.1j1//!UT .sl.1j1//˝Z UT .sl.1j1// is given by

�.E/DE˝ I C I ˝E; �.F /D F ˝T C I ˝F; �.T /D T ˝T:

Recall from [15] that the commutator relation of Uq.sl.1j1// is

(2) EF CFE D
H �H�1

q� q�1
:

To see the relation between UT .sl.1j1// and Uq.sl.1j1//, we compare their commuta-
tor relations (1) and (2) by setting T DH�2 . Then the right-hand side of (2) is equal
to that of (1) multiplied by H=.q� q�1/.

Let UT denote UT .sl.1j1// from now on. Let V1 be a free ZŒt˙1�–module spanned
by B1 D fj0i; j1ig which admits an action of UT given by

Ej0i D 0; F j0i D j1i;

Ej1i D .1� t/j0i; F j1i D 0;

T j0i D t j0i; T j1i D t j1i:

Consider the nth tensor product representation V ˝n
1

induced by the iterated comultipli-
cation of UT . Note that T �vD tnv for v2V ˝n

1
since �.T /DT˝T . Our categorifica-

tion of V ˝n
1

is built on a distinguished basis B0nDB�n
1
DfaDja1 � � � ani j ai 2 f0; 1gg,

where ja1 � � � ani is shorthand for ja1i˝ � � �˝ jani. The following are the main results
of this paper:

Theorem 1.1 (Categorification of the multiplication on UT ) There exist a triangu-
lated category HP.A/ whose Grothendieck group is UT , and an exact bifunctor

MW HP.A/�HP.A/! HP.A/

whose induced map K0.M/W UT �UT !UT on the Grothendieck groups agrees with
the multiplication on UT .

Theorem 1.2 (Categorification of the comultiplication on UT ) There exist a triangu-
lated category HP.B/ whose Grothendieck group is UT ˝Z UT , and an exact functor

ıW HP.A/! HP.B/

whose induced map K0.ı/W UT ! UT ˝Z UT on the Grothendieck groups agrees
with the comultiplication on UT .

Geometry & Topology, Volume 18 (2014)
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Theorem 1.3 (Categorification of the UT –module V ˝n
1

) For each n> 0, there exist
a triangulated category HP.H.Rn// whose Grothendieck group is V ˝n

1
, and an exact

bifunctor
Mn W HP.A/�HP.H.Rn//! HP.H.Rn//

whose induced map K0.Mn/ on the Grothendieck groups agrees with the action
UT �V ˝n

1
! V ˝n

1
.

The topological motivation for categorifying the multiplication and comultiplica-
tion is completely different. In the corresponding algebraic formulations, we use
HP.A/�HP.A/ for the multiplication and use HP.B/ for the comultiplication; see
Figures 2 and 4 for more detail about the topological motivation.

1.3 Motivation from contact topology

The contact category C.†;F / of .†;F / is an additive category associated to an ori-
ented surface † and a finite subset F of @†. The objects of C.†;F / are formal direct
sums of isotopy classes of dividing sets on † whose restrictions to @† agree with F .
A dividing set � on † is a properly embedded 1–manifold, possibly disconnected
and possibly with boundary, which divides † into positive and negative regions. The
morphism HomC.†;F /.�0; �1/ is an F2 –vector space spanned by isotopy classes of
tight contact structures on †� Œ0; 1� with the dividing sets �i on †� fig for i D 0; 1.
The composition is given by vertically stacking contact structures. Any dividing set
with a contractible component is isomorphic to the zero object since there is no tight
contact structure in a neighborhood of the dividing set by a criterion of Giroux [7].
As basic blocks of morphisms, bypass attachments introduced by Honda [9] locally
change dividing sets as in Figure 1. Honda, Kazez and Matić [11] gave a criterion for
the addition of a collection of disjoint bypasses to be tight.

Figure 1: The picture on the left is a bypass attachment along the dashed arc;
the one on the right is a distinguished triangle given by a triple of bypass
attachments.
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The connection between 3–dimensional contact topology and Heegaard–Floer homol-
ogy was established by Ozsváth and Szabó [29] in the closed case. Honda, Kazez and
Matić generalized it to the case of a contact 3–manifold with convex boundary in [13]
and formulated it in the framework of TQFT in [12]. The combinatorial properties of
this TQFT were studied by Mathews in the case of disks [26] and annuli [27]. The
connection on the categorical level is observed by Zarev [43].

There is a refined version, called the universal cover zC.†;F /, of the contact category
C.†;F / given as follows. Choose a dividing set �0 as a base point. The basic objects
of zC.†;F / are pairs .�; Œ��/, where � is an isotopy class of dividing sets on .†;F /,
and Œ�� is a homotopy class of a 2–plane field � on †� Œ0; 1� which is contact near
†�f0; 1g with the dividing sets �0 on †�f0g and � on †�f1g. The morphism set
Hom zC.†;F /..�1; Œ�1�/; .�2; Œ�2�// is spanned by tight contact structures f�g such that
Œ�2�D Œ�[�1�, where �[�1 denotes a concatenation of the 2–plane fields � and �1 . In
other words, the component Œ�� gives a grading gr.†/ on the objects of zC.†;F / which
takes values in homotopy classes of 2–plane fields. Equivalently, the grading gr.†/ is
given by a central extension by Z of the homology group H1.†/, ie there is a short
exact sequence 0! Z! gr.†/!H1.†/! 0. Note that a similar grading appears
in bordered Heegaard–Floer homology [23, Section 3.3]. The main feature of the
universal cover zC.†;F / is the existence of distinguished triangles given by a triple of
bypass attachments as in Figure 1. The subgroup Z of the grading gr.†/ is related
to the shift functor in a triangulated category. In particular, Huang [14] showed that a
triple of bypass attachments changes the Z component by one.

This paper provides an algebraic formulation of the universal covers of the contact
categories of an annulus, a twice punctured disk and an n times punctured disk. Let zCo

be the universal cover of Co WD C.So;Fo/, where So is an annulus and Fo consists
of two points on each boundary component. Then zCo is a monoidal category with
a bifunctor M W zCo �

zCo !
zCo defined by stacking two dividing sets along their

common boundaries of two annuli for objects and gluing two contact structures for
morphisms; see Figure 2. The Grothendieck group K0. zCo/ is isomorphic to UT ,
where the multiplication on UT is lifted to the monoidal functor M. A ZŒT˙1�–basis
of K0. zCo/ is given by classes of dividing sets in B D fI;E;F;EFg, where EF is
the stacking of E and F under M. The generator of H1.So/ in the grading gr.So/

corresponds to the central element T 2 UT . The commutator relation (1) is lifted
to two distinguished triangles in zCo : I ! EF ! K�1 and K�1! I ! FE as in
Figure 3, where the homotopy gradings are ignored; see Section 2.3 for a computation
of Co .

To categorify UT ˝Z UT in the comultiplication, consider zCoo as the universal cover
of C.Soo;Foo/, where Soo is a twice-punctured disk and Foo consists of two points on

Geometry & Topology, Volume 18 (2014)
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,

�1 �2 M

I E F EF FE

�2

�1

Figure 2: The upper picture describes the monoidal functor M on objects;
the lower one consists of the distinguished basis of K0. zCo/ and the dividing
set FE .

I EF I FE

K�1 K�1

Figure 3: Two distinguished triangles lift the commutator relation (1).

each boundary component. A distinguished basis of the Grothendieck group K0. zCoo/ is
given by classes of dividing sets in f�1˝�2 j�1; �2 2Bg as in Figure 4. There are two
generators t1; t2 2H1.Soo/ in the grading gr.Soo/ given by the two loops. They corre-
spond to the central elements T˝I; I˝T 2UT˝ZUT . Hence K0. zCoo/ is isomorphic
to UT˝ZUT . To categorify the comultiplication �W UT!UT˝ZUT , define a functor
ıW zCo !

zCoo on objects by stacking dividing sets � 2 zCo with the specific dividing
set I ˝ I 2 zCoo along the outmost boundary of Soo , on morphisms by gluing contact
structures in So� Œ0; 1� with the I –invariant contact structure of I ˝ I in Soo� Œ0; 1�.
An I –invariant contact structure is the trivial contact structure which contains no
nontrivial bypass attachments. Then the decategorification K0.ı/W UT !UT ˝Z UT

Geometry & Topology, Volume 18 (2014)
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agrees with the comultiplication �. For instance, �.E/DE˝ I C I ˝E is lifted to
a distinguished triangle: I ˝E! ı.E/!E˝ I .

�1 �2

ı�
�

ı.E/ E˝ I

I ˝E

Figure 4: The upper picture on the left describes the basis f�1 ˝ �2g of
K0. zCoo/; the lower picture on the left gives the comultiplication ı ; the
picture on the right is the triangle I ˝E! ı.E/!E˝ I in zCoo .

To categorify V ˝n
1

, consider zCn as the universal cover of C.†n;Fn/, where †n is an n

times punctured disk and Fn contains two marked points on the outermost boundary and
no points on the other boundary components.1 The Grothendieck group K0. zCn/ is a free
module over ZŒt˙1

1
; t˙1

2
; : : : ; t˙1

n �, where ti is the generator in H1.†n/ corresponding
to the i th loop. A quotient of K0. zCn/ by the relations t1 D t2 D � � � D tn D t is
isomorphic to the UT –module V ˝n

1
. A distinguished collection of dividing sets in zCn

is obtained by lifting the basis B0n of V ˝n
1

; see Figure 5 for zC1 and zC2 . Note that zC1

and zCo have the same underlying surface but with different boundary conditions. The
UT action on V ˝n

1
is lifted to a functor Mn W

zCo�
zCn!

zCn given by stacking dividing
sets on the annulus So with those on †n along the outermost boundary of †n .

We give some morphism sets in zC1 and zC2 as follows. There is a unique tight contact
structure e∅ 2 Hom zC1

.j0i; j0i/ which is I –invariant. In particular, e∅ is an idem-
potent under the composition: e∅ � e∅ D e∅ . There are exactly two tight contact
structures e1; �1 2 Hom zC1

.j1i; j1i/, where e1 is I –invariant and �1 is nilpotent, ie
the composition �1 � �1 is not tight:

Hom zC1
.j0i; j0i/D he∅i; Hom zC1

.j1i; j1i/D he1; �1 j �
2
1 D 0i

1Since there is no marked point on interior boundary components @†0n , the boundary restriction of
contact structures in Hom zCn

.�1; �2/ is a collection of dividing sets .@†0n�f1=2g[�1�f0g[�2�f1g/�

@.†� Œ0; 1�/ .
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The nonzero morphism sets in zC2 are

Hom zC2
.j00i; j00i/D he∅i;

Hom zC2
.j01i; j01i/D he2; �2 j �

2
2 D 0i;

Hom zC2
.j10i; j10i/D he1; �1 j �

2
1 D 0i;

Hom zC2
.j01i; j10i/D hr; �2 � r; r � �1; �2 � r � �1i;

Hom zC2
.j11i; j11i/D he1;2; �1; �2; �1 � �2 j �

2
1 D �

2
2 D 0; �1 � �2 D �2 � �1i:

There is one nilpotent endomorphism of x 2B0
2

associated to each factor j1i in x . The
two nilpotent endomorphisms of j11i commute. There is one tight contact structure
r 2 Hom zC2

.j01i; j10i/ given by a single bypass attachment as in Figure 5. Note that
Hom zC2

.j10i; j01i/D 0 which is related to the nondecreasing restriction on diagrams
in strands algebras; see Definition 5.2 for more detail.

F

E

j0i j1i

j10i

r

j00i j11i

j01i

j0i j1i

�1

j00i j01i j10i j11i

�2
r

�1 �1
�2

Figure 5: The upper picture on the left describes actions of E and F ex-
changing j0i and j1i in zC1 . The upper picture on the right gives the distin-
guished collections of objects in zC2 , where the arrow r is a bypass attachment
along the dashed line in Hom zC2

.j01i; j10i/ . The quivers in the lower picture
give morphisms in zC1 and zC2 .

1.4 Algebraic formulations

At this point we pass to algebra.2 An algebraic formulation of zCn is given as follows.
We construct a quiver �n whose vertex set V .�n/ is the basis B0n of V ˝n

1
. The

arrow set A.�n/ is given by morphisms between the objects of zCn in the distinguished

2In fact, the rest of this paper is just algebra motivated by the contact category.
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collection which lifts the basis B0n . Consider the path algebra F2�n of the quiver
�n with an additional t –grading. Finally, we define a t –graded DG algebra Rn by
adding a nontrivial differential on a quotient of F2�n . We prove that Rn is formal, ie
it is quasi-isomorphic to its cohomology H.Rn/. Similarly, we define t –graded DG
algebras A and B from the contact categories zCo and zCoo .

The DG algebra Rn is closely related to the strands algebra for an n times punctured
disk. In general, the strands algebra of any surface with boundary was defined by
Zarev [42]. Motivated by the rook monoid (see Solomon [35]) and its diagrammatic
presentation rook diagrams (see Flath, Halverson and Herbig [6]), we describe Rn in
terms of decorated rook diagrams. The rook diagram is used to study the Alexander and
Jones polynomials by Bigelow, Ramos and Yi [3], and tensor representations of gl.1j1/
by Benkart and Moon [1].

Consider the DG category DG.Rn/ of t –graded DG Rn –modules and its full subcat-
egory DGP.Rn/ generated by some distinguished projective DG Rn –modules. We
model zCn by the 0th homology category of DGP.Rn/ which is denoted by HP.Rn/.
Let HP.H.Rn// denote the 0th homology category of DGP.H.Rn//. Then HP.Rn/

and HP.H.Rn// are equivalent as triangulated categories since Rn is formal. Their
Grothendieck groups are isomorphic to free ZŒt˙1�–modules over B0n : K0.HP.Rn//Š

K0.HP.H.Rn/// Š ZŒt˙1�hB0ni Š V ˝n
1

. Similarly, zCo and zCoo are modeled by tri-
angulated categories HP.A/ and HP.B/ whose Grothendieck groups are isomorphic
to UT and UT ˝Z UT , respectively.

In order to categorify the UT –action on V ˝n
1

, we define a DG algebra A � Rn by
adding a differential to A˝Rn . Consider the 0th homology category HP.A � Rn/ of
DGP.A�Rn/ whose Grothendieck group is isomorphic to a quotient UT˝fTDtngV

˝n
1

of UT �V ˝n
1

by the relation .T; v/D .I; tnv/. Motivated from stacking of dividing
sets in the contact categories, we define a DG .H.Rn/;A � Rn/–bimodule Cn which
is the key construction in our categorification. A functor defined by tensoring with Cn

over A � Rn ,
DGP.A � Rn/

Cn˝�
����! DGP.H.Rn//;

induces an exact functor �n between their 0th homology categories. The decat-
egorification K0.�n/ on the Grothendieck groups agrees with the UT –action on
V ˝n

1
W UT ˝fTDtng V

˝n
1
! V ˝n

1
. Similarly, we construct functors

�W HP.A˝A/
N˝�
����! HP.A/

by tensoring with a DG .A;A˝A/–bimodule N , and

ıW HP.A/
S˝�
���! HP.B/

Geometry & Topology, Volume 18 (2014)
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by tensoring with a DG .B;A/–bimodule S . We show that � and ı categorify the
multiplication and comultiplication on UT , respectively:

�n W HP.A � Rn/
Cn˝�

//

K0

��

HP.H.Rn//

K0

��

K0.�n/ W UT ˝fTDtng V
˝n

1
// V ˝n

1

The organization of the paper Since many algebraic constructions are quite technical,
we will try to give the motivation from contact topology in remarks after the algebraic
definitions.
� In Section 2 we define the Hopf superalgebra UT and categorify its multiplication

via the DG .A;A˝A/–bimodule N .
� In Section 3 we categorify the comultiplication on UT via the DG .B;A/–

bimodule S .
� In Section 4 we define the representations V1 and V ˝n

1
of UT .

� In Section 5 we define the decorated rook diagrams and the t –graded DG
algebras Rn , A � Rn and show that they are formal as DG algebras.

� In Section 6 we define the DG .H.Rn/;A � Rn/–bimodule Cn .
� In Section 7 we give a categorification of the UT action on V ˝n

1
.
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2 UT .sl.1j1// and the categorification of its multiplication

In Section 2.1 we define the Hopf superalgebra UT . In Section 2.2 we define the t –
graded DG algebra A and the triangulated category HP.A/ whose Grothendieck group
is isomorphic to UT . In Section 2.3 we define the triangulated category HP.A˝A/

whose Grothendieck group is isomorphic to UT ˝ZŒT˙1� UT . In Section 2.4 we
construct the t –graded DG .A;A˝A/–bimodule N . In Section 2.5 we categorify
the multiplication UT ˝ZŒT˙1�UT !UT to the exact functor

�W HP.A˝A/
N˝A˝A�

�������! HP.A/:
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2.1 The Hopf superalgebra UT

Definition 2.1 Define the Hopf superalgebra fUT ;m; p; �; �;Sg over Z as follows.
(1) The multiplication m makes UT into an associative Z–algebra with unit I ,

generators E;F;T;T �1 and relations

E2
D F2

D 0; EF CFE D I �T;

ET D TE; F T D TF; T T �1
D T �1T D I:

(2) The parity p is a Z–grading3 defined by p.E/D�1; p.F /D1; p.I/Dp.T /D0.

(3) The comultiplication �W UT ! UT ˝Z UT is an algebra map defined on the
generators by

�.E/DE˝ I C I ˝E; �.F /D F ˝T C I ˝F; �.T /D T ˝T:

(4) The counit �W UT !Z is an algebra map defined by �.E/D �.F /D 0; �.I/D

�.T /D 1.

(5) The antipode S W UT ! UT is an antihomomorphism of superalgebras, ie
S.ab/ D .�1/p.a/p.b/S.b/S.a/, defined by S.T / D T �1 , S.E/ D �E and
S.F /D�F T �1 .

Remark 2.2 (1) Since T is a central element, UT can be viewed as a free ZŒT˙�–
module over the basis B D fF I I;EF IEg.

(2) The parity p actually comes from the Euler number of a dividing set. Recall
a dividing set divides the surface into positive and negative regions. Then the
Euler number is the Euler characteristic of the positive region minus the Euler
characteristic of the negative region.

(3) The multiplication on UT˝ZUT is graded: .a˝b/�.c˝d/D.�1/p.b/p.c/ac˝bd .

(4) The counit corresponds to a functor zCo!
zC.S2/ between the contact categories

of an annulus So and a sphere S2 which is given by capping each component
of @So off with a disk.

(5) The antipode corresponds to a functor zCo!
zCo given by an inversion about the

core of the annulus.

Lemma 2.3 The definition above gives a Hopf superalgebra fUT ;m; p; �; �;Sg:
(1) � is an algebra map

(2) � is coassociative: .�˝ id/ ı�D .id˝�/ ı�

(3) S is an antipode: m ı .S ˝ id/ ı�.a/ D m ı .id˝S/ ı�.a/ D �.a/I for all
a 2UT

3In fact, this is a “categorical parity” rather than the usual parity taking values in F2 .
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Proof We verify (1) and leave (2) and (3) to the reader:

�.E/�.E/D .E˝ I C I ˝E/.E˝ I C I ˝E/

DE2
˝ I C I ˝E2

C .E˝ I/.I ˝E/C .I ˝E/.E˝ I/

DE˝E �E˝E D 0

Similarly, �.F /�.F /D 0. Finally,

�.E/�.F /C�.F /�.E/

D .E˝ I C I ˝E/.F ˝T C I ˝F /C .F ˝T C I ˝F /.E˝ I C I ˝E/

D .EF˝T �F˝ETCE˝FCI˝EF /C.FE˝TCF˝TE�E˝FCI˝FE/

D .EF CFE/˝T C I ˝ .EF CFE/

D I ˝ I �T ˝T D�.I �T /D�.EF CFE/:

This completes the proof.

2.2 The t–graded DG algebra A

We refer to Bernstein and Lunts [2, Section 10] for an introduction to DG algebras,
DG modules and projective DG modules, and to Keller [16] for an introduction to DG
categories and their homology categories. A t –graded DG algebra R is a DG algebra
with an additional t –grading. Let DG.R/ denote the DG category of t –graded DG
left R–modules. We refer to [37] for more detail.

Definition 2.4 Let A be a t –graded DG F2 –algebra with idempotents e.�/ for
� 2 B D fF I I;EF IEg, generators �.I;EF /; �.EF; I/ and relations

e.�/ � e.� 0/D ı�;� 0e.�/ for �; � 0 2 B;

e.I/ � �.I;EF /D �.I;EF / � e.EF /D �.I;EF /;

e.EF / � �.EF; I/D �.EF; I/ � e.I/D �.EF; I/;

�.I;EF / � �.EF; I/D 0:

The differential on A is trivial. The grading degD .degh; degt / is defined by

deg.a/D
�
.1; 1/ if aD �.EF; I/;

.0; 0/ otherwise;

where degh is the cohomological grading and degt is the t –grading.
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Remark 2.5 (1) The algebra A Š
L
�1;�22B Hom zCo

.�1; �2/ describes all tight
contact structures between the dividing sets in B . Each of e.�/ is the I –invariant
contact structure associated to � 2 B . Each of �.I;EF / 2 Hom zCo

.I;EF / and
�.EF; I/ 2 Hom zCo

.EF; I/ is given by a single nontrivial bypass attachment;
see Proposition 2.10 for more detail.

(2) The stacking �.I;EF / ��.EF; I/D 02Hom zCo
.I; I/ is a nontight contact struc-

ture. On the other hand, the stacking �.EF; I/ ��.I;EF /2Hom zCo
.EF;EF / is

tight and nonzero. This nonzero product compared to �.I;EF / � �.EF; I/D 0

reflects the differences between I and EF as dividing sets, where I is the
identity in categorical actions but EF is not the identity.

(3) The algebra A is a quotient of the path algebra F2QA of a quiver QA :

F; I � EF; E

There is a decomposition A D A1˚A0˚A�1 , where we have A1 D e.F /Ae.F /,
A�1 D e.E/Ae.E/ and A0 D e.I/Ae.I/˚ e.EF /Ae.EF /.

Definition 2.6 Define a parity pW A! Z on A by p.a/D i for a 2Ai . Note that p
is not a grading with respect to the multiplication on A.

Consider a collection of projective DG A–modules fP .�/D A � e.�/ j � 2 Bg. As
a left A–module, P .�/ is generated by the idempotent e.�/. To distinguish from
e.�/ 2A, let m.�/ denote the generator of P .�/. The grading on P .�/ is inherited
from A, ie deg.m.�//D .0; 0/.

Definition 2.7 We define a parity pW
F
�2B P .�/ ! Z by p.m/ D p.�/ for all

m ¤ 0 2 P .�/ and � 2 B � UT , where p.�/ is the parity of � in UT from
Definition 2.1.

For a 2 A and m 2 P .�/, p.a �m/ D p.m/ D p.a/ if m and a �m are nonzero. In
particular, p on P .�/ is not a grading with respect to the A action on P .�/. The two
parities in Definitions 2.6 and 2.7 will be used to define twisted gradings on A˝A in
Definition 2.11 and on P .�1/˝P .�2/ in Definition 2.15.

Definition 2.8 Let DGP.A/ be the smallest full subcategory of DG.A/ which contains
the projective DG A–modules fP .�/ D A � e.�/ j � 2 Bg and is closed under the
cohomological grading shift functor Œ1�, the t –grading shift functor f1g and taking
mapping cones.
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The 0th homology category HP.A/ of DGP.A/ is the homotopy category of t –graded
DG projective A–modules generated by fP .�/ j� 2Bg. It is a triangulated category and
the Grothendieck group K0.HP.A// has a ZŒT˙1�–basis fŒP .�/� j � 2 Bg, where the
multiplication by T is induced by the t –grading shift: ŒM f1g�D T ŒM � 2K0.HP.A//
for M 2 HP.A/.

Lemma 2.9 There is an isomorphism K0.HP.A//ŠUT of free ZŒT˙1�–modules.

2.3 The connection to contact topology

This subsection is a digression to contact topology. We give a computation of the contact
category Co WD C.So;Fo/, where So is an annulus and Fo consists of two points on
each component of @So . In particular, we relate the numbers of tight contact structures
on So � Œ0; 1� to the dimensions of the corresponding subspaces of the algebra A.

Recall that an object � of Co is a dividing set satisfying �\@SoDFo . The collection
B D fF I I;EF IEg of distinguished dividing sets of Co is given in Figure 2. Let xFo

be a subset of @So consisting of two points on each component of @So such that the
points of Fo and xFo are alternating along @So ; see Figure 6. Given two dividing
sets �1; �2 , let ER.�1; �2/ denote a dividing set on @.So � Œ0; 1�/ which is given by
connecting a union .�1�f0g/[ .�2�f1g/[ . xFo� Œ0; 1�/ along the corner @So�f0; 1g

via the Edge-rounding Lemma. We refer to [9, Lemma 3.11] for more detail about
edge-rounding. An example of ER.I; I/ is given in Figure 6.

Fo

xFo

I

I

Figure 6: The alternating points of Fo and xFo are depicted on the left,
where Fo consists of four red bars and xFo consists of four red dots; ER.I; I/
consisting of two components is given on the right.

For objects �1; �2 of Co , let Tight.�1; �2/ WD dimF2
HomCo

.�1; �2/ denote the num-
ber of tight contact structures on So � Œ0; 1� with the dividing set ER.�1; �2/ on
@.So � Œ0; 1�/. Then we have the following connection between the algebra A and the
contact category Co .
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Proposition 2.10 There exists a collection of dividing sets B D fF I I;EF IEg as the
objects of Co such that Tight.�1; �2/D dimF2

.e.�1/ �A � e.�2// for �1; �2 2 B .

Proof We compute Tight.�1; �2/ depending on parities of �1 and �2 .

Case I We have Tight.�1; �2/D 0 if p.�1/¤ p.�2/. It is easy to see that ER.�1; �2/

contains at least one contractible component if p.�1/¤p.�2/. An example of ER.I;E/
is given in Figure 7. Then Tight.�1; �2/D 0 by a criterion of Giroux [7].

Case II We have Tight.�1; �2/D 1 for

.�1; �2/ 2DD f.E;E/; .F;F /; .I;EF /; .EF; I/; .I; I/g:

It is easy to see that ER.�1; �2/ consists of two components of longitude for .�1; �2/2

Dn.I; I/ and ER.I; I/ consists of two components with slope equal to �1 as in
Figure 6. Examples of ER.E;E/ and ER.I;EF / are given in Figure 7. Then
Tight.�1; �2/ D 1 by a result of Makar and Limanov [24] on the classification of
tight contact structures on solid torus.

Case III We have Tight.EF;EF /D 2. It is easy to see that ER.EF;EF / consists
of four components of longitude. Then Tight.EF;EF /D 2 by a result of Honda [10]
on gluing tight contact structures.

E

I

E

E

EF

I

D D D

Figure 7: From the left to the right: ER.I;E/;ER.E;E/ and ER.I;EF /

Then it is straightforward to check Tight.�1; �2/D dimF2
.e.�1/ �A � e.�2// case by

case.

2.4 The t–graded DG algebra A˝A

Definition 2.11 Let A˝A be the tensor product of two A’s over F2 as an algebra.
The differential is trivial. The grading deg D .degh; degt / is defined for generators
a; b 2A by

degt .a˝ b/D degt .a/C degt .b/;

degh.a˝ b/D degh.a/C degh.b/C 2 degt .a/p.b/:
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Remark 2.12 The cohomological grading degh of A˝A is the sum of two degh ’s
twisted by the t –grading degt and the parity p. The topological meaning of degh is
the framing of links in So� Œ0; 1�. In general, degh.a˝b/¤ degh.a/Cdegh.b/ when
two links are nontrivially linked.

Lemma 2.13 The grading deg is well defined:

deg.ac˝ bd/D deg.a˝ b/C deg.c˝ d/

Proof If ac˝ bd ¤ 0 for generators a; b; c; d 2A, then p.b/D p.d/D p.bd/ and
degt .ac/D degt .a/C degt .c/. By definition

degh.ac˝ bd/

D degh.ac/C degh.bd/C 2 degt .ac/p.bd/

D degh.a/C degh.c/C degh.b/C degh.d/C 2 degt .a/p.b/C 2 degt .c/p.d/

D degh.a˝ b/C degh.c˝ d/:

The equation for the t –component is obvious.

Definition 2.14 Let DGP.A˝A/ be the smallest full subcategory of DG.A˝A/

which contains the projective DG A˝A–modules fP .�; � 0/D .A˝A/�.e.�/˝e.� 0// j

�; � 02Bg and is closed under the cohomological grading shift functor Œ1�, the t –grading
shift functor f1g and taking mapping cones.

The 0th homology category HP.A˝A/ of DGP.A˝A/ is the homotopy category of
t –graded DG projective A˝A–modules generated by fP .�; � 0/ j �; � 0 2 Bg.

Definition 2.15 Define a tensor product functor

�W HP.A/�HP.A/! HP.A˝A/;

M1;M2 7!M1˝F2
M2;

where the grading on M1˝M2 is given for m1 2M1 and m2 2M2 by

degt .m1˝m2/D degt .m1/C degt .m2/;

degh.m1˝m2/D degh.m1/C degh.m2/C 2 degt .m1/p.m2/:

Remark 2.16 The grading on M1˝M2 is compatible with the grading on A˝A.
We have

�.P .�/fng;P .� 0/fn0g/D P .�; � 0/fnC n0gŒ2np.� 0/�:

Note that the twisting Œ2np.� 0/� cannot be seen on the level of Grothendieck groups.
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Since K0.HP.A˝A// has a ZŒT˙1�–basis B�B , we have the following:

Lemma 2.17 There is an isomorphism K0.HP.A˝A// Š UT ˝ZŒT˙� UT of free
ZŒT˙1�–modules. Additionally, the functor � induces a tensor product on their
Grothendieck groups:

K0.�/W UT �UT

˝
ZŒT˙�

�����!UT ˝ZŒT˙�UT

2.5 The t–graded DG .A;A˝A/–bimodule N

To define a functor �W DGP.A˝A/! DGP.A/ lifting the multiplication on UT , we
construct a DG .A;A˝A/–bimodule N in two steps: a left DG A–module N in
Section 2.5.1 and a right DG A˝A–module N in Section 2.5.2.

In practice, the functor � is obtained by “reverse-engineering”: we have all the essential
information about � from the contact topology and we construct the bimodule N to
realize the functor. More precisely, we first figure out the behavior of � on the objects
P .�1; �2/ and set

N D
M

�1;�22B

N.�1; �2/D
M

�1;�22B

�.P .�1; �2// 2 DGP.A/;

as left DG A–modules. We then determine the right A˝A–module structure on N by
considering morphism sets Hom.P .�1; �2/;P .�

0
1
; � 0

2
// in DGP.A˝A/. For instance,

the right multiplication by e.F /˝ �.I;EF / in A˝A defines a morphism

f W P .F; I/! P .F;EF /;

m 7!m � .e.F /˝ �.I;EF //:

Then the right multiplication on N by e.F /˝ �.I;EF / is given by the morphism

�.f /W �.P .F; I//! �.P .F;EF //

in DGP.A/, where �.P .F; I// and �.P .F;EF // are viewed as left A–submodules
of N . This technique will be used to construct various bimodules in the paper.

2.5.1 The left DG A–module N

Definition 2.18 Define a left DG A–module

N D
M

�1;�22B

N.�1; �2/;
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where .N.�1; �2/; d.�1; �2// 2 DGP.A/ is defined on a case by case basis as

N.E;E/DN.E;EF /DN.F;F /DN.EF;F /D 0;

N.I; �/DN.�; I/D P .�/ for all � 2 B;

N.E;F /D P .EF /;

N.F;EF /D P .F /˚P .F /f1gŒ1�;

N.EF;E/D P .E/˚P .E/f1gŒ�1�;

N.EF;EF /D P .EF /˚P .EF /f1gŒ1�;

N.F;E/D P .I/˚P .EF /Œ�1�˚P .I/f1gŒ�1�:

We have d.�1; �2/ D 0 for all .�1; �2/ ¤ .F;E/ and d.F;E/ is a map of left
A–modules defined on generators of N.F;E/ by

d.F;E/W N.F;E/!N.F;E/;

mF;E.I/ 7! �.I;EF / �mF;E.EF /;

mF;E.EF / 7! �.EF; I/ �m0F;E.I/;

m0F;E.I/ 7! 0;

where mF;E.I/ 2 P .I/;mF;E.EF / 2 P .EF /Œ�1� and m0
F;E

.I/ 2 P .I/f1gŒ�1�.

Remark 2.19 (1) The left DG A–module N.�1; �2/ is supposed to be a categori-
cal multiplication of DG A–modules P .�1/ and P .�2/. In particular, the class
ŒN.�1; �2/� 2UT is the multiplication �1 ��2 2UT under the isomorphism in
Lemma 2.9.

(2) In the contact category zC0 , the stacking EF �E of dividing sets is the union
of E and a pair of loops. The pair of loops corresponds to tensoring with Z2

up to grading. Correspondingly, the left A–module N.EF;E/ is a direct sum
of two P .E/’s.

(3) The definition of N.F;E/ is motivated from the two distinguished triangles in
zC0 : I !EF !K�1 and K�1! I ! FE as in Figure 3, where the gradings
are ignored. The isomorphisms FE Š .K�1! I/ and K�1 Š .I !EF / give
the isomorphism FE Š .I !EF ! I/ as in the definition of N.F;E/.

Lemma 2.20 We have .N.F;E/; d.F;E// is a t –graded DG A–module.

Proof It suffices to prove that d D d.F;E/ is of degree .1; 0/ such that d2 D 0. We
verify that

d2.mF;E.I//D d.�.I;EF / �mF;E.EF //D �.I;EF / � �.EF; I/ �m0F;E.I/D 0:
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The degrees of the generators of N.F;E/ are

deg.mF;E.I//D .0; 0/; deg.mF;E.EF //D .1; 0/; deg.m0F;E.I//D .1;�1/:

Hence the differential d is of degree .1; 0/, since

deg.d.mF;E.I///D deg.�.I;EF //C deg.mF;E.EF //

D .1; 0/D deg.mF;E.I//C .1; 0/;

deg.d.mF;E.EF ///D deg.�.EF; I//C deg.m0F;E.I//

D .2; 0/D deg.mF;E.EF //C .1; 0/:

This completes the proof.

2.5.2 The right A˝A–module structure on N In this subsection we describe the
right A˝A–module structure on N . Let m� .a˝ b/ denote the right multiplication
for m2N; a˝b 2A˝A and let m �a denote the multiplication in A for m2P .�/�

A; a 2A.

We fix the notation for the generators of N.�1; �2/ as

m�;I .�/ 2 P .�/DN.�; I/ for all � 2 B;

mI;�.�/ 2 P .�/DN.I; �/ for all � 2 B;

mE;F .EF / 2 P .EF /DN.E;F /;

mEF;E.E/ 2 P .E/;m0EF;E.E/ 2 P .E/f1gŒ�1� in N.EF;E/;

mF;EF .F / 2 P .F /;m0F;EF .F / 2 P .F /f1gŒ1� in N.F;EF /;

mEF;EF .EF / 2 P .EF /;m0EF;EF .EF / 2 P .EF /f1gŒ1� in N.EF;EF /;

mF;E.I/ 2 P .I/;mF;E.EF / 2 P .EF /Œ�1�;m0F;E.I/ 2 P .I/f1gŒ�1� in N.F;E/:

We define right multiplications by the generators of A˝A on a case by case basis.
Each right multiplication is a map of left A–modules defined on the generators of N

as follows.

(1) For an idempotent e.�1/˝ e.�2/, define

�.e.�1/˝ e.�2//W N.�
0
1; �
0
2/!N.� 01; �

0
2/;

m 7! ı�1;�
0
1
ı�2;�

0
2
m:
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(2) For generators �.EF; I/˝ e.E/ and �.I;EF /˝ e.E/, define

� .�.EF; I/˝ e.E//W N.EF;E/!N.I;E/;

mEF;E.E/ 7! 0;

m0EF;E.E/ 7!mI;E.E/;

� .�.I;EF /˝ e.E//W N.I;E/!N.EF;E/;

mI;E.E/ 7!mEF;E.E/:

(3) For generators e.F /˝ �.EF; I/ and e.F /˝ �.I;EF /, define

� .e.F /˝ �.EF; I//W N.F;EF /!N.F; I/;

mF;EF .F / 7! 0;

m0F;EF .F / 7!mF;I .F /;

� .e.F /˝ �.I;EF //W N.F; I/!N.F;EF /;

mF;I .F / 7!mF;EF .F /:

(4) For generators e.I/˝a and a˝e.I/, where a 2 f�.I;EF /; �.EF; I/g, define

� .�.EF; I/˝ e.I//W N.EF; I/!N.I; I/;

mEF;I .EF / 7! �.EF; I/ �mI;I .I/;

� .�.I;EF /˝ e.I//W N.I; I/!N.EF; I/;

mI;I .I/ 7! �.I;EF / �mEF;I .EF /;

� .e.I/˝ �.EF; I//W N.I;EF /!N.I; I/;

mI;EF .EF / 7! �.EF; I/ �mI;I .I/;

� .e.I/˝ �.I;EF //W N.I; I/!N.I;EF /;

mI;I .I/ 7! �.I;EF / �mI;EF .EF /:

(5) For generators e.EF /˝ a and a˝ e.EF /, where a 2 f�.I;EF /; �.EF; I/g,
define

� .�.EF; I/˝ e.EF //W N.EF;EF /!N.I;EF /;

mEF;EF .EF / 7! 0;

m0EF;EF .EF / 7!mI;EF .EF /;

� .e.EF /˝ �.EF; I//W N.EF;EF /!N.EF; I/;

mEF;EF .EF / 7! 0;

m0EF;EF .EF / 7!mEF;I .EF /;

� .�.I;EF /˝ e.EF //W N.I;EF /!N.EF;EF /;

mI;EF .EF / 7!mEF;EF .EF /;
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� .e.EF /˝ �.I;EF //W N.EF; I/!N.EF;EF /;

mEF;I .EF / 7!mEF;EF .EF /:

(6) Define the right multiplication to be the zero map for generators e.E/˝�.EF; I/,
e.E/˝�.I;EF /, �.EF; I/˝e.F / and �.I;EF /˝e.F /, since the correspond-
ing domains or ranges are trivial from Definition 2.18.

This concludes the definition of the right multiplications by the generators of A˝A.
In general, define m� .r1 � r2/ WD .m� r1/� r2 for r1; r2 2A˝A and m 2N .

Remark 2.21 (1) The definition is motivated from studying tight contact structures
on the gluing of two zCo ’s in Figure 2. For instance, the right multiplication with
�.EF; I/˝ e.E/ is determined by the corresponding tight contact structure in
Hom zCo

.EF �E; I �E/.

(2) The right multiplication with r on N.F;E/ is nonzero only if r D e.F /˝e.E/.
In that case the right multiplication is the identity from Case (1).

Lemma 2.22 We have that N is a t –graded right A˝A–module:

(1) .m� r1/� r2 D .m� r 0
1
/� r 0

2
, for r1 � r2 D r 0

1
� r 0

2
2A˝A

(2) deg.m� r/D deg.m/C deg.r/

Proof We verify (1) for r1D�.I;EF /˝e.I/; r2D�.EF; I/˝e.I/ and mDmI;I .I/

in Case (4). It suffices to show that .m� r1/� r2 D 0 since r1 � r2 D 0. We have

.m� r1/� r2 D �.I;EF / �mEF;I .EF /� r2 D �.I;EF / � �.EF; I/ �mI;I .I/D 0;

since �.I;EF / � �.EF; I/D 0 2A.

The proofs for other cases are similar and we leave them to the reader.

For (2), the only nontrivial case is m�rDm0
EF;E

.E/�.�.EF; I/˝e.E//DmI;E.E/

in Case (2), where the gradings are given in

deg.m0EF;E.E//C deg.�.EF; I/˝ e.E//D .1;�1/C .�1; 1/

D .0; 0/D deg.mI;E.E//:

This completes the proof.

Since the right multiplications are the maps of left A–modules, a �.m�r/D .a �m/�r ,
for a 2A; r 2A˝A and m 2N . Hence N is a t –graded DG .A;A˝A/–bimodule.

Geometry & Topology, Volume 18 (2014)



1656 Yin Tian

2.6 The categorification of the multiplication on UT

In this section, we categorify the multiplication on UT , ie prove Theorem 1.1. Let

�W DGP.A˝A/
N˝A˝A�

�������! DGP.A/

be a functor given by tensoring with the DG .A;A˝A/–bimodule N over A˝A.

Lemma 2.23 We have that the functor � maps P .�1; �2/ to N.�1; �2/ 2 DGP.A/
for all �1; �2 2 B .

Proof Since N D
L
� 0

1
;� 0

2
2B N.� 0

1
; � 0

2
/ as left DG A–modules, then we have that

N ˝P .�1; �2/ is the quotient of
L
� 0

1
;� 0

2
2B.N.�

0
1
; � 0

2
/�P .�1; �2// by the relations

f.m� r; e.�1/˝ e.�2//D .m; r � .e.�1/˝ e.�2/// jm 2N.� 01; �
0
2/; r 2A˝Ag:

Since f.m; r � .e.�1/ ˝ e.�2/// j m 2 N.� 0
1
; � 0

2
/; r � e.�1/ ˝ e.�2/ ¤ 0g spans

N.� 0
1
; � 0

2
/�P .�1; �2/, N ˝P .�1; �2/ is spanned by

f.m� r; e.�1/˝ e.�2// jm 2N.� 01; �
0
2/; r � .e.�1/˝ e.�2//¤ 0g

ŠN.�1; �2/ 2 DGP.A/:

This completes the proof.

There is an induced exact functor �W HP.A˝A/
N˝A˝A�

�������! HP.A/ between the 0th

homology categories. Let MD � ı� be the composition

MW HP.A/�HP.A/
�
�! HP.A˝A/

�
�! HP.A/:

Proof of Theorem 1.1 We compute the multiplication

K0.M/W K0.HP.A//�K0.HP.A//!K0.HP.A//:

(1) By Lemma 2.23, M.P .�/;P .� 0//D �.P .�; � 0//DN.�; � 0/, for �; � 0 2 B .
Its class ŒN.�; � 0/� agrees with � �� 0 2UT by Remark 2.19.

(2) The class ŒP .I/� is a unit of K0.HP.A//, since P .I/ is a unit under M:

M.P .�/;P .I//D �.P .�; I//DN.�; I/D P .�/

M.P .I/;P .�//D �.P .I; �//DN.I; �/D P .�/
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(3) By Remark 2.16, M.P .�/;P .I/f1g/D �.P .�; I/f1g/D P .�/f1g,

M.P .I/f1g;P .�//D �.P .I; �/f1gŒ2p.�/�/D P .�/f1gŒ2p.�/�:

Although M.P .�/;P .I/f1g/ and M.P .I/f1g;P .�// differ by 2p.�/ in their
cohomological gradings, their classes agree in K0.HP.A//. Hence ŒP .I/f1g�
corresponds to the variable T in the ZŒT˙1�–algebra K0.HP.A//.

Parts (1), (2) and (3) together imply that the following map is an isomorphism of
ZŒT˙1�–algebras:

UT !K0.HP.A//

� 7! ŒP .�/�

T 7! ŒP .I/f1g�

This completes the proof.

Remark 2.24 It is natural to ask whether M is a monoidal functor, ie the following
diagram commutes up to equivalence:

HP.A/�HP.A/�HP.A/
id�M

//

M�id
��

HP.A/�HP.A/

M
��

HP.A/�HP.A/
M

// HP.A/

We believe that the answer is positive and it could be done by verifying some associa-
tivity relation on various DG bimodules.

3 The categorification of the comultiplication on UT .sl.1j1//

To categorify the comultiplication �W UT !UT ˝Z UT , we define the .t1; t2/–graded
DG algebra B and the triangulated category HP.B/ whose Grothendieck group is iso-
morphic to UT˝ZUT . Then we construct the .t1; t2/–graded DG .B;A/–bimodule S

to give an exact functor

ıW HP.A/
S˝A�
����! HP.B/:

The decategorification K0.ı/ agrees with the comultiplication on UT .
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3.1 The .t1; t2/–graded DG algebra B

We define the algebra B via a quiver QB .

Definition 3.1 (Quiver QB D .V .QB/;A.QB//) Let V .QB/D B�B be the set of
vertices. Let �1˝�2 denote a vertex of QB for �1; �2 2 B . Let A.QB/ be the set
of arrows given as follows:

E˝EF

��

EF ˝E

��
E˝ I

OO

// I ˝E

OO
EF ˝F

��

F ˝EF

��
I ˝F

OO

// F ˝ I

OO

E˝F // I ˝EF
//

��

I ˝ Ioo

��
EF ˝EF

OO

//
EF ˝ Ioo

OO

��
F ˝E

Remark 3.2 (1) The quiver has 5 components, QBD
F2

iD�2 QB;i , where a vertex
�1 ˝ �2 is in QB;i if p.�1/C p.�2/ D i . The diagrams on the left are the
components QB;�1 and QB;1 . The diagram on the right is the component QB;0 .
There are no arrows in QB;�2 and QB;2 .

(2) The arrows give all tight contact structures between the corresponding dividing
sets in Soo � I . Most of the arrows are inherited from QA �QA , where QA is
the quiver for the algebra A in Remark 2.5 (3). The extra 4 arrows in red are
given by some tight contact structures which do not exist on .So tSo/� I . For
instance, see Figure 4 for the bypass attachment E˝ I ! I ˝E .

(3) Stackings of contact structures corresponding to compositions E˝F ! I ˝

EF!I˝I and I˝I!EF˝I!F˝E are tight. On the other hand, stackings
of contact structures corresponding to compositions E ˝ F ! I ˝ EF !

EF˝EF and EF˝EF!EF˝I!F˝E are not tight; see relation (iii-3)
in Definition 3.3.

We define the .t1; t2/–graded algebra B D
L2

iD�2 Bi , where Bi is a quotient of the
path algebra F2QB;i of the component QB;i .
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Definition 3.3 The algebra B is an associative .t1; t2/–graded F2 –algebra with a
trivial differential and a grading degD .deghI degt1

; degt2
/ 2 Z3 .

(1) The algebra B has idempotents e.�1˝�2/ for all vertices �1˝�2 2 B�B ,
generators �.�1˝�2; �

0
1
˝� 0

2
/ for all arrows �1˝�2! � 0

1
˝� 0

2
in QB . The

relations consist of the following 4 groups.

(i) Idempotents:

e.�1˝�2/ � e.�
0
1˝�

0
2/D ı�1;�

0
1
ı�2;�

0
2
e.�1˝�2/ for �1; �2; �

0
1; �
0
2 2 B

e.�1˝�2/ � �.�1˝�2; �
0
1˝�

0
2/D �.�1˝�2; �

0
1˝�

0
2/ � e.�

0
1˝�

0
2/

D �.�1˝�2; �
0
1˝�

0
2/

(ii) Relations in B�1 of 2–groups

(A) from the algebra A:

�.E˝ I;E˝EF / � �.E˝EF;E˝ I/D 0

�.I ˝E;EF ˝E/ � �.EF ˝E; I ˝E/D 0

(B) for �.E˝ I; I ˝E/:

�.E˝EF;E˝ I/ � �.E˝ I; I ˝E/D 0

�.E˝ I; I ˝E/ � �.I ˝E;EF ˝E/D 0

(iii) Relations in B0 of 3–groups

(A) from the algebra A:

�.I ˝ I; I ˝EF / � �.I ˝EF; I ˝ I/D 0

�.I ˝ I;EF ˝ I/ � �.EF ˝ I; I ˝ I/D 0

�.I ˝EF;EF ˝EF / � �.EF ˝EF; I ˝EF /D 0

�.EF ˝ I;EF ˝EF / � �.EF ˝EF;EF ˝ I/D 0

(B) commutativity relations:

�.I˝I; I˝EF / ��.I˝EF;EF˝EF /D �.I˝I;EF˝I/ ��.EF˝I;EF˝EF /

�.I˝EF; I˝I/ ��.I˝I;EF˝I/D �.I˝EF;EF˝EF / ��.EF˝EF;EF˝I/

�.EF˝I; I˝I/ ��.I˝I; I˝EF /D �.EF˝I;EF˝EF / ��.EF˝EF; I˝EF /

�.EF˝EF; I˝EF / ��.I˝EF; I˝I/D �.EF˝EF;EF˝I/ ��.EF˝I; I˝I/
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(C) for E˝F and F ˝E :

�.E˝F; I ˝EF / � �.I ˝EF;EF ˝EF /D 0

�.EF ˝EF;EF ˝ I/ � �.EF ˝ I;F ˝E/D 0

(iv) Relations in B1 of 2–groups
(A) from the algebra A:

�.I ˝F;EF ˝F / � �.EF ˝F; I ˝F /D 0

�.F ˝ I;F ˝EF / � �.F ˝EF;F ˝ I/D 0

(B) for �.I ˝F;F ˝ I/:

�.EF ˝F; I ˝F / � �.I ˝F;F ˝ I/D 0

�.I ˝F;F ˝ I/ � �.F ˝ I;F ˝EF /D 0

(2) The grading degD .deghI degt1
; degt2

/ is defined on the generators by

deg.a/D

8̂̂̂<̂
ˆ̂:
.1I 0; 0/ if aD �.E˝ I; I ˝E/; �.E˝F; I ˝EF /;

.1I 1; 0/ if aD �.EF ˝�; I ˝�/ for all � 2 B;

.1I 0; 1/ if aD �.I ˝F;F ˝ I/; �.�˝EF; �˝ I/ for all � 2 B;

.0I 0; 0/ otherwise;

where degh is the cohomological grading and .degt1
; degt2

/ is the .t1; t2/–
grading.

Remark 3.4 (1) Relations (ii-A), (iii-A) and (iv-A) come from the fact �.I;EF / �

�.EF; I/ D 0 in A. The relations in (iii-B) come from certain isotopies of
tight contact structures. Other relations come from the fact that stackings of the
corresponding contact structures are not tight.

(2) Generators �.E ˝ I; I ˝ E/, �.I ˝ F;F ˝ I/, �.E ˝ F; I ˝ EF / and
�.EF ˝ I;F ˝E/ of B do not inherited from A˝ A. Note that we have
deg.�.EF ˝ I;F ˝E//D .0I 0; 0/.

(3) The algebra B is actually the homology of the strands algebra for a specific
handle decomposition of a twice punctured disk. We refer to Section 5.1 for
more detail.

Definition 3.5 Let DGP.B/ be the smallest full subcategory of DG.B/ which contains
the projective DG B–modules fP .�1˝ �2/ D B � e.�1˝ �2/ j �1; �2 2 Bg and is
closed under the cohomological grading shift functor Œ1�, two .t1; t2/–grading shift
functors f1; 0g and f0; 1g, and taking mapping cones.
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Let m.�1˝�2/2P .�1˝�2/ denote the generator with deg.m.�1˝�2//D .0I 0; 0/.
The 0th homology category HP.B/ of DGP.B/ is a triangulated category and
the Grothendieck group K0.HP.B// has a ZŒT˙1

1
;T˙1

2
�–basis fP .�1 ˝ �2/ j

�1; �2 2 Bg Š B � B , where the multiplication by T1 and T2 are induced by the
.t1; t2/–grading shifts:

ŒM f1; 0g�D T1ŒM �; ŒM f0; 1g�D T2ŒM � 2K0.HP.B//;

for M 2 HP.B/.

Lemma 3.6 There is an isomorphism of free ZŒT˙1
1
;T˙1

2
�–modules K0.HP.B//Š

UT ˝Z UT , where T1 and T2 act on UT ˝Z UT by multiplying T ˝ I and I ˝T ,
respectively.

3.2 The .t1; t2/–graded DG .B;A/–bimodule S

To define a functor ıW DGP.A/!DGP.B/ lifting the comultiplication on UT , we con-
struct a .t1; t2/–graded DG .B;A/–bimodule S in two steps: a left DG B –module S

in Section 3.2.1 and a right A–module S in Section 3.2.2.

3.2.1 The left B –module S

Definition 3.7 Define a .t1; t2/–graded left DG B –module S D
L
�2B S.�/, where

.S.�/; d.�// in DGP.B/ is defined on a case by case basis as follows:

(1) S.I/D P .I ˝ I/I d.I/D 0

(2) S.E/D P .E˝ I/˚P .I ˝E/; d.E/ is a map of left B –modules defined on
the generators by:

d.E/W S.E/! S.E/

m.E˝ I/ 7! �.E˝ I; I ˝E/ �m.I ˝E/

m.I ˝E/ 7! 0

(3) S.F / D P .I ˝ F / ˚ P .F ˝ I/f0; 1g; d.F / is a map of left B–modules
defined by:

d.F /W S.F /! S.F /

m.I ˝F / 7! �.I ˝F;F ˝ I/ �m.F ˝ I/

m.F ˝ I/ 7! 0
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(4) S.EF /DP .E˝F /˚P .I˝EF /˚P .EF˝I/f0; 1g˚P .F˝E/f0; 1gŒ�1�;
d.EF / is a map of left B –modules defined by:

d.EF /W S.EF /! S.EF /

m.E˝F / 7! �.E˝F; I ˝EF / �m.I ˝EF /

m.I ˝EF / 7! �.I ˝EF;EF ˝EF / � �.EF ˝EFEF ˝ I/ �m.EF ˝ I/;

m.EF ˝ I/ 7! �.EF ˝ I;F ˝E/ �m.F ˝E/

m.F ˝E/ 7! 0

Remark 3.8 (1) The DG B–modules S.�/ are supposed to be the categorical
comultiplication of the DG A–modules P .�/, for all � 2 B . In particular, the
classes ŒS.�/�2K0.HP.B// agree with the comultiplication �.�/2UT˝ZUT

under the isomorphism in Lemma 3.6.

(2) The definition of S.E/ is motivated from an isomorphism ı.E/Š .E˝ I !

I ˝E/ in the contact category zCoo as in Figure 4 in Section 1.3. The other
definitions have similar motivations.

Lemma 3.9 We have .S.�/; d.�// is a .t1; t2/–graded DG B –module.

Proof It suffices to prove that d.�/ is of degree .1I 0; 0/ such that d.�/2 D 0. We
verify it for � DEF and leave other cases to the reader:

d2.m.E˝F //D �.E˝F; I ˝EF / � �.I ˝EF;EF ˝EF /

� �.EF ˝EF;EF ˝ I/ �m.EF ˝ I/

D 0 � �.EF ˝EF;EF ˝ I/ �m.EF ˝ I/D 0;

d2.m.I ˝EF //D �.I ˝EF;EF ˝EF / � �.EF ˝EF;EF ˝ I/

� �.EF ˝ I;F ˝E/ �m.F ˝E/

D �.I ˝EF;EF ˝EF / � 0 �m.F ˝E/D 0;

from relation (iii-C) in Definition 3.7. That d2 D 0 is obvious for the other two
generators of S.EF /.

The degrees of the generators of S.EF / are

deg.m.E˝F //D deg.m.I ˝EF //D .0I 0; 0/;

deg.m.EF ˝ I//D .0I 0;�1/; deg.m.F ˝E//D .1I 0;�1/:
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Then d is of degree .1I 0; 0/ since

deg.d.m.E˝F ///D deg.�.E˝F; I ˝EF //C deg.m.I ˝EF //

D .1I 0; 0/D deg.m.E˝F //C .1I 0; 0/;

deg.d.m.EF ˝ I///D deg.�.EF ˝ I;F ˝E//C deg.m.F ˝E//

D .1I 0;�1/D deg.m.E˝F //C .1I 0; 0/;

deg.d.m.I ˝EF ///D deg.�.I ˝EF;EF ˝EF //C deg.�.EF ˝EF;EF ˝ I//

C deg.m.EF ˝ I//

D .1I 0; 0/D deg.m.I ˝EF //C .1I 0; 0/:

This completes the proof.

3.2.2 The right A–module structure on S In this subsection we describe the right
A–module structure on S . Let m�a denote the right multiplication for m 2 S; a 2A

and let m � b denote the multiplication in B for m 2 P .�1˝�2/� B; b 2 B .

Definition 3.10 For m 2 S and a 2A, define the grading of the right multiplication
m� a by

deg.m� a/D deg.m/C .degh.a/I degt .a/; degt .a//;

where deg is the grading in B , degh and degt are the gradings in A.

Remark 3.11 This definition is related to the categorification of �.T /D T ˝T in
the proof of Theorem 1.2 in Section 3.3. Topologically, the definition comes from
the fact that the generator t 2H1.So/ is mapped to t1C t2 2H1.Soo/ under ı as in
Figure 4 in Section 1.3.

The right multiplication is a map of left DG B–modules defined on generators as
follows.

(1) For an idempotent e.�/, define

�e.�/W S.� 0/! S.� 0/;

m 7! ı�;� 0m:

(2) For the generator �.I;EF /, define

��.I;EF /W S.I/! S.EF /;

m.I ˝ I/ 7! �.I ˝ I; I ˝EF / �m.I ˝EF /:
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(3) For the generator �.EF; I/, define

��.EF; I/W S.EF /! S.I/;

m.EF ˝ I/ 7! �.EF ˝ I; I ˝ I/ �m.I ˝ I/;

m.E˝F / 7! 0;

m.I ˝EF / 7! 0;

m.F ˝E/ 7! 0:

In general, define m� .a1a2/ WD .m� a1/� a2 for a1; a2 2A and m 2 S .

Lemma 3.12 The definition above gives a right DG A–module S :

(1) .m� a1/� a2 D .m� a0
1
/� a0

2
for a1 � a2 D a0

1
� a0

2
2A and m 2 S

(2) d.m� a/D d.m/� a for a 2A and m 2M

(3) The right multiplication is compatible with the grading in Definition 3.10

Proof For (1), since the only nontrivial relation in A is �.I;EF / � �.EF; I/ D 0,
it suffices to prove that .m � �.I;EF // � �.EF; I/ D 0, which follows from the
definition.

For (2), we verify the following from relations (iii-A) and (iii-B) in Definition 3.7:

d.m.I ˝ I/� �.I;EF //D �.I ˝ I; I ˝EF / � d.m.I ˝EF //

D �.I˝I; I˝EF / � �.I˝EF; I˝I/ � �.I˝I;EF˝I/

D 0D d.m.I ˝ I//� �.I;EF /:

Similarly, d.m.I ˝EF //� �.EF; I/D 0D d.m.I ˝EF /� �.EF; I//.

For (3), we verify that

deg.m.EF ˝ I/� �.EF; I//D .0I 0;�1/C .1I 1; 1/

D deg.�.EF ˝ I; I ˝ I/ �m.I ˝ I//:

Similarly, deg.m.I ˝ I/� �.I;EF //D deg.�.I ˝ I; I ˝EF / �m.I ˝EF //.

Since the right multiplication is a map of left A–modules, we have: b � .m� a/ D

.b �m/� a, for a 2 A; b 2 B and m 2 S . Hence S is a .t1; t2/–graded DG .B;A/–
bimodule.
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3.3 The categorification of the comultiplication on UT

In this section, we use the bimodule S to categorify the comultiplication on UT , ie
prove Theorem 1.2.

Let ıW DGP.A/
S˝A�
����!DGP.B/ given by tensoring with the DG .B;A/–bimodule S

over A.

Lemma 3.13 The functor ı maps P .�/ to S.�/ 2 DGP.B/ for all � 2 B .

Proof The proof is similar to that of Lemma 2.23.

There is an induced exact functor ıW HP.A/
S˝A�
����! HP.B/ between the homology

categories.

Proof of Theorem 1.2 We compute the map on the Grothendieck groups

K0.ı/W K0.HP.A//!K0.HP.B//:

(1) By Lemma 3.13, ı.P .�// D S.�/, for � 2 B D fI;E;F;EFg. Hence by
Remark 3.8,

K0.ı/ŒP .�/�D ŒS.�/�D�.�/ 2UT ˝Z UT :

(2) By the grading in Definition 3.10, ı.P .�/fng/D S.�/fn; ng for n 2Z. Hence,

K0.ı/.T
nŒP .�/�/DK0.ı/.ŒP .�/fng�/D ŒS.�/fn; ng�D T n

1 T n
2 ŒS.�/�:

Parts (1) and (2) together imply that K0.ı/D�W UT !UT ˝Z UT since the Z–linear
maps K0.ı/ and � agree on the Z–basis fT n� j � 2 B; n 2 Zg of UT .

Remark 3.14 It is interesting to ask whether the properties of the comultiplication in
Lemma 2.3, such as coassociativity, can be lifted to the categorical level. We believe
that the answer is positive since on the topological side .�˝ id/ ı� and .id˝�/ ı�
are both categorified to a functor zC.So;Fo/! zC.Sooo;Fooo/, where Sooo is a triple
punctured disk with Fooo consisting of two points on each boundary component
of @Sooo .

4 The linear action of UT on V ˝n

1

In this section, we give a distinguished basis Bn of V ˝n
1

and express the action in
terms of Bn .
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4.1 The representations V1 and V2

Let V1 be a free ZŒt˙1�–module with a basis B1Dfj0i; j1ig. A parity p is a Z–grading
on V1 given by p.j0i/D 0; p.j1i/D 1. Define an action of UT on V1 by

Ej0i D 0; F j0i D j1i;

Ej1i D .1� t/j0i; F j1i D 0;

T j0i D t j0i; T j1i D t.�1/2j1i:

Note that the factor .�1/2 in T j1i is the shadow of a cohomological grading shift
by 2 on the categorical level. The parities on UT and V1 are compatible with respect
to the action. More precisely, the operators E and F change the parity by �1 and 1,
respectively:

p.F j0i/D p.j1i/D 1D p.F /C p.j0i/; p.Ej1i/D p.j0i/D 0D p.E/C p.j1i/

Let V2 D V1 ˝ZŒt˙1� V1 be a free ZŒt˙1�–module with a basis B0
2
D B1 � B1 D

fj00i; j01i; j10i; j11ig. The action of UT on V2 is induced by the comultiplication
�W a�.v˝w/D�.a/.v˝w/, for a2UT ; v; w2V1 . Note that the action of UT˝ZUT

on V1˝V1 is the graded tensor product: .a1˝a2/.v˝w/D .�1/p.a2/p.v/a1v˝a2w .

Lemma 4.1 The action of UT on V2 is given in the basis B2 as

Ej00i D 0; F j00i D j01iC t j10i;

Ej01i D .1� t/j00i; F j01i D t j11i;

Ej10i D .1� t/j00i; F j10i D �j11i;

Ej11i D .1� t/j01i � .1� t/j10i; F j11i D 0;

T .v/D t2v for all v D v1˝ v2 2 B2; where v1; v2 2 B1:

Proof We verify some of the formulas and leave others to the reader:

T .v/D�.T /.v1˝ v2/D .T ˝T /.v1˝ v2/D T .v1/˝T .v2/D t2v

F j00i D�.F /j00i D .1˝F CF ˝T /j00i D j01iC t j10i

F j10i D�.F /j10i D .1˝F CF ˝T /j10i D .1˝F /j10i D �j11i

This completes the proof.
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4.2 The representations V ˝n

1
D V ˝n

1

There is an action of UT on the nth tensor product V ˝n
1
D V ˝n

1
induced by iterated

comultiplication. Consider a ZŒt˙1�–basis B0n of V ˝n
1

:

B0n D B�n
1 D faD ja1 � � � ani j ai 2 f0; 1gg

We call B0n the tensor product basis of V ˝n
1

. Consider another presentation of the
basis:

Bn D fx D .x1; : : : ;xk/ j 1� x1 < � � �< xk � n; 1� k � ng t f∅g

There is a one-to-one correspondence between Bn and B0n ,

Bn! B0n;

∅ 7! aD j0 � � � 0i;

x D .x1; : : : ;xk/ 7! aD ja1 � � � ani;

where

ai D

�
1 if i D xl ; for some 1� l � k;

0 otherwise:

There is a partition BnD
Fn

kD0 Bn;k , where Bn;k DfxD .x1; : : : ;xk/ j 1�x1< � � �<

xk � ng for 1� k � n and Bn;0D f∅g. Let V ˝n
1
D
Ln

kD0 Vn;k be the corresponding
decomposition of V ˝n

1
, where Vn;k is spanned by the basis Bn;k for 0� k � n.

In the UT –action, F converts a state from j0i to j1i for one factor of the state in B0n .
In particular, F increases the number of j1i states by 1; similarly, E decreases the
number of j1i states by 1:

F W Vn;k ! Vn;kC1; EW Vn;k ! Vn;k�1

We introduce some notation in order to describe the action in terms of Bn . For
xD .x1; : : : ;xk/2Bn;k , let xxD .xx1; : : : ; xxn�k/2Bn;n�k be the increasing sequence
consisting of the complement f1; : : : ; ngnfx1; : : : ;xkg of x in f1; : : : ; ng. Define

ˇ.x; xxj /D jfl 2 f1; : : : ; kg j xl < xxj gjC 2jfl 2 f1; : : : ; kg j xl > xxj gj:

Let x t fxxj g be an increasing sequence obtained by adjoining xxj to x and xnfxig be
an increasing sequence obtained by removing xi from x .
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Lemma 4.2 The UT –action on V ˝n
1

is given for x 2 Bn;k by

I.x/D x; T .x/D tn.�1/2nx;

F.x/D

n�kX
jD1

tn�xxj .�1/ˇ.x;xxj /x t fxxj g;

E.x/D

kX
iD1

..�1/1�ixnfxigC t.�1/2�ixnfxig/:

Proof We only check the action of F :

F.x/D�n.F /.x/D

nX
jD1

.1˝ � � � 1˝ F
j th
˝T � � � ˝T /.x/

D

n�kX
jD1

tn�xxj .�1/ˇ.x;xxj /x t fxxj g;

where the exponent of t comes from .n � xxj /’s T in the j th term of �n.F /; the
exponent of �1 comes from the graded tensor product and the action of T on the state
j1i: T j1i D t.�1/2j1i.

The exponents of .�1/ in the expressions including ˇ.x; xxj / in F.x/ and 2n in T .x/

will be used as cohomological grading shifts in the bimodule Cn in Section 6.1 which
categorifies the UT –action.

5 The t–graded DG algebra Rn through the quiver Qn

We define a family of t –graded DG algebras Rn which are closely related to the strands
algebras associated to an n times punctured disk in bordered Heegaard–Floer homology.
In Section 5.1 we briefly review the definition of the strands algebras and introduce the
decorated rook diagrams as a variant of rook diagrams. In Section 5.2 we construct the
quivers Qn whose arrows are given by the decorated rook diagrams. In Section 5.3
we define Rn as a quotient of the path algebra F2Qn whose differential is given
by resolutions of crossings and markings for the decorated rook diagrams. We show
that Rn is formal and categorify V ˝n

1
through DGP.Rn/ generated by some projective

DG Rn –modules. In Section 5.4 we define a variant A � Rn of A˝Rn which will
be used in the construction of the .H.Rn/;A � Rn/–bimodule Cn in Section 6.
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5.1 Background on the strands algebras and the rook monoid

5.1.1 The strands algebra Lipshitz, Ozsváth and Thurston in [23] introduced the
strands algebra associated to a connected surface with one closed boundary component.
Later on, the strands algebra of any surface with boundary was defined by Zarev [42].
We refer to [42, Section 2] for more detail on the strands algebras associated to an arc
diagram.

Definition 5.1 An arc diagram Z D .Z ; a;M / is a triple consisting of a collection
Z D fZ1; : : : ;Zlg of line segments, a collection a D fa1; : : : ; a2kg of distinct 2k

points in Z , and a matching M of a into k pairs of points.

A surface F.Z/ can be constructed from an arc diagram Z by starting with a collection
of rectangles Œ0; 1��Zj for j D 1; : : : ; l , and attaching a 1–handle with endpoints
on M�1.i/ � f0g for each i D 1; : : : ; k . An n times punctured disk †n can be
parametrized by Z.2n/D .Z ; a;M /:

� Z D fZg is a single vertical line segment.

� aD f1; : : : ; 2ng is a collection of 2n points in Z ordered from bottom to top.

� M matches a into n pairs of adjacent points f2i � 1; 2ig for i D 1; : : : ; n.

We fix the arc diagram Zn D Z.2n/ D .Z ; a;M / throughout this paper; see the
diagram on the left of Figure 8. The associated strands algebra is generated by strands
diagrams.

Definition 5.2 Given the arc diagram Zn , a strands diagram with k strands is a triple
.S;T; �/, where S;T are k –element subsets of a and �W S ! T is a bijection with
i � �.i/ for all i 2 S .

Geometrically, a strands diagram .S;T; �/ with k –strands is an isotopy class of a set
of k strands with a minimal number of crossings which connect the k points in S as
a subset of the 2n points on the left to the k points in T as a subset of the 2n points
on the right. The restriction that � is nondecreasing means that strands stay horizontal
or move up when read from left to right.

The associated strands algebra A.Zn/ D
Ln

kD0 A.Zn; k/, where A.Zn; k/ is F2 –
vector space generated by strands diagrams with k strands with the following two
constraints. The first constraint on a strands diagram .S;T; �/ is jS\f2i�1; 2igj � 1

and jT \ f2i � 1; 2igj � 1 for i D 1; : : : ; n, ie the number of intersection points of
the strands diagram with any pair f2i � 1; 2ig is at most 1. We call it the 1–handle
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1
2
3
4
5
6
7
CD 0

Figure 8: The diagram on the left is the arc diagram Z4 ; the diagram in the
middle gives a primitive idempotent in A.Z3; 1/ according to the idempotent
constraint; the diagram on the right describes a double crossing.

constraint. The second constraint is about horizontal strands: if any generator r 2A.Zn/

contains .S1;T1; �1/ as a summand where �1.i/D i for some i , then r must contain
another summand .S2;T2; �2/, where S2 D S1nfig [ fj g;T2 D T1nfig [ fj g and
�2jS2nfjg D �1jS1nfig , �2.j / D j for j D i � .�1/i . Note that i and j form
a pair in Zn so that j 62 S1;T1 according to the 1–handle constraint. As in the
middle diagram in Figure 8, a primitive idempotent is a sum of two horizontal strands:
.S1;T1; �1/C .S2;T2; �2/, where S1 D T1 D f1g;S2 D T2 D f2g and �1; �2 are the
identities. In particular, each summand .S1;T1; �1/ or .S2;T2; �2/ is not a generator
of A.Z3; 1/. Since horizontal strands represent idempotents in the algebra, we call it
the idempotent constraint.

The product a � b of two strands diagrams is set to be zero if the right side of a does
not match the left side of b ; otherwise, the product is the horizontal juxtaposition of a

and b . If two strands cross each other twice in the juxtaposition, the product is set to
be zero. It is called the double crossing relation; see the right diagram in Figure 8.

The differential of a strand diagram is the sum over all ways of resolving one crossing
of the diagram; see Figure 9 for an example.

d C C

Figure 9: Differential given by resolving crossings
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5.1.2 The generalized rook diagrams Since the matching in the arc diagram Zn

simply identifies 2i � 1 and 2i in each pair, we introduce a generalization of rook
diagrams to describe the strands algebra A.Zn/. We first recall the definition of rook
monoid from [35].

Definition 5.3 Let n be a positive integer and nD f1; : : : ; ng. The rook monoid Rn

is the set of all one-to-one maps � with domain I.�/� n and range J.�/� n. The
multiplication on Rn is given by composition of maps.

There is a diagrammatic presentation of the rook monoid, called rook diagrams, given
in [6]. A rook diagram associated to an element � 2Rn is a graph on two rows of n

vertices such that vertex i in the bottom row is connected to vertex j in the top row
if and only if �.i/D j . The multiplication is given by vertical concatenation of two
rook diagrams.

We define the generalized rook diagrams by adding a new type of diagrams with loops
attached at vertices to the rook diagrams. The strand diagrams in A.Zn/ corresponding
to the loops and the multiplication rule on the loops will be given in Section 5.1.3.

5.1.3 From strands diagrams to generalized rook diagrams We describe the trans-
lation from the strands diagrams in A.Zn/ to the generalized rook diagrams on some
generators of A.Zn/.

In the left diagram in Figure 10, an idempotent in A.Zn/ as a sum of two horizontal
strands is translated to a single vertical rook diagram id from the state j001i to itself.
The translation consists of three steps: rotate a strand diagram counterclockwise by
�=2; replace the identified points f2i � 1; 2ig of i th pair in the strand diagram by
the i th vertex from the right in a rook diagram; combine two horizontal strands in the
strand diagram into a single vertical rook diagram.

In the middle diagram in Figure 10, an upward strand connecting two points in a pair
of Zn is translated to a loop � attached at the corresponding state j1i. Note that the
loop � is nilpotent in A.Zn/: �2 D 0. Correspondingly, the square of any loop is
defined as zero. In the right diagram in Figure 10, a strand connecting two points in
different pairs is translated to a left-veering rook diagram. In general, a strand diagram
with k strands is translated to a generalized rook diagram as a superposition of the
corresponding k generalized rook diagrams.

Since the strands diagrams stay horizontal or move up, the corresponding rook diagrams
always have negative or infinity slopes, ie they stay vertical or move to the left when
read from bottom to top. We call these generalized rook diagrams as left-veering rook
diagrams.
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C D D D0 0 1

0 0 1

0 0 1 0 1 0

0 0 1

id
�

Figure 10: The translation for A.Z3; 1/: the left one is the idempotent id;
the middle one is the nilpotent element � ; the right one is a left-veering rook
diagram.

The differential on A.Zn/ induces a differential d1 on the left-veering rook diagrams.
As in Figure 11 the resolution of such a crossing contains two left-veering rook diagrams
with loops, since a vertical strand in a left-veering rook diagram corresponds to a sum
of two terms in A.Zn/.

d1
C D C D C

1 1 0

0 1 1

1 1 0

0 1 1

1 1 0

0 1 1

Figure 11: The translation for a differential of a crossing

5.1.4 New ingredients We define the decorated rook diagrams as the left-veering
rook diagrams, possibly added with some markings.

The motivation of introducing diagrams with markings is given as follows. There
is a relation in A.Zn/: .S;T; �/ � .S 0;T 0; �0/ D 0, if T \ f2i � 1; 2ig D f2i � 1g

and S 0 \ f2i � 1; 2ig D f2ig for some i since their endpoints do not match; see the
left diagram in Figure 12. But the endpoints of the corresponding decorated rook
diagrams do match. We introduce a new rook diagram with a marking at the position
corresponding to the pair f2i � 1; 2ig. We deform the relation in A.Zn/ to be a
differential d0 of this new diagram with the marking. In general, the differential d0 of
a strand diagram is the sum over all ways of resolving one marking of the diagram.

We define a differential d D d0Cd1 on the decorated rook diagrams. In other words, d

is a combination of the resolutions of crossings and those of markings as in the right
part of Figure 12. For decorated rook diagrams with no crossings and markings, the
differential d is defined to be zero.
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� �0

d
d0

deform0D D C C

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

1 1 0 0

0 1 0 1

1 1 0 0

0 1 1 0

0 1 0 1

1 1 0 0

1 0 0 1

0 1 0 1

1 1 0 0

1 0 0 1

0 1 0 1

Figure 12: The deformation of a relation in A.Zn/ is on the left; a differential
of a decorated rook diagram with one marking and one crossing is on the
right.

Remark 5.4 There are two types of resolutions d0; d1 for the decorated rook diagrams.
On the one hand, d1 is inherited from the strands algebras via studying moduli spaces
of holomorphic curves. On the other hand, the author does not know a moduli space or
contact topological interpretation of d0 . The definition is only used for the algebraic
construction of the bimodule Cn in Section 6.

We introduce the notion of elementary decorated rook diagrams which cannot be
decomposed as a concatenation of two nontrivial pieces. The elementary decorated
rook diagrams will give generators of the algebra Rn in Definition 5.8. Notice that
n–tuples of fj0i; j1ig are elements in the basis Bn of the representation V ˝n

1
. Hence, a

decorated rook diagram can be viewed as a map from one element of Bn in the bottom
row to the other element of Bn in the top row.

Definition 5.5 Elementary decorated rook diagrams consist of two types:

(1) A loop x
i
�! x attached at xi for i D 1; : : : ; k and x 2 Bn;k .

(2) A decorated rook diagram x
i;s1
��! y with s1 crossings and

PiCs1

jDi .xj �yj � 1/

markings associated to a matching � W x D .x1; : : : ;xk/! y D .y1; : : : ;yk/,
where i 2 f1; : : : ; kg, s1 � 0 such that

�.xiCs1
/D yi ;

�.xj /D yjC1 D xj for j 2 fi; : : : ; i C s1� 1g;

�.xj /D yj D xj for j 62 fi; i C 1; : : : ; i C s1g:

The algebraic definition above is technical while the corresponding rook diagrams are
easier to follow as in Figure 13. Given an elementary decorated rook diagram

x
i;s1
��! y ;
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define
v D .xi �yi � 1; : : : ;xiCs1

�yiCs1
� 1/ 2Ns1C1:

The vector v counts the numbers of j0i states between the j th j1i states fxj g in x

and fyj g in y for j D i; : : : ; iCs1 . Let s0.v/D
Ps1

lD0
vl denote the total number of j0i

states between xiCs1
and yi . Then x and y only differ at two positions xiCs1

and yi

which are connected by a left-veering strand. On this strand, there are s1 crossings
with vertical strands and s0.v/ markings, ie all possible crossings and markings must
be on the strand.

x

y

x1 x4

y1 y4

D

1 0 0 1 0 1 1 0 1

0 0 0 1 0 1 1 1 1

1 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 13: The left-hand diagram is an elementary rook diagram x
i;s1;v
���! y ,

where i D 1; s1 D 3; v D .2; 1; 0; 0/; in the right-hand diagram, we use
the left-hand side to denote the composition of elementary diagrams on the
right-hand side.

Although v is determined by

x
i;s1
��! y ;

we will still write the decorated rook diagram as

x
i;s1;v
����! y :

Relations for concatenation of decorated rook diagrams are quite different from those
for the strands diagrams as in Figure 14:

� The double crossing in decorated rook diagrams is not zero.

� An isotopy of a crossing does not give the same decorated rook diagram.

For more detail about the relations, refer to Definition 5.8 of the algebra Rn .

5.2 The quiver Qn

In this section, we construct the quiver Qn D

nF
kD0

Qn;k for n> 0.
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¤¤ 0

1 1 0 0

0 1 1 0

0 0 1 1

1 1 0 0

1 0 1 0

0 1 1 0

0 0 1 1

1 1 0 0

0 1 1 0

0 1 0 1

0 0 1 1

Figure 14: Some relations for decorated rook diagrams

Definition 5.6 (Quiver Qn;k D .V .Qn;k/;A.Qn;k//) (1) Let V .Qn;k/ D Bn;k

be the set of vertices.

(2) Let A.Qn;k/ be the set of arrows consisting of two types:

loops: fx
i
�! x j i D 1; : : : ; kIx 2 Bn;kg

arrows: felementary decorated rook diagrams x
i;s1;v
����! yg

Example 5.7 (Quiver Q4;2 ) We have

V .Q4;2/D f.3; 4/; .2; 4/; .1; 4/; .2; 3/; .1; 3/; .1; 2/g:

For x D .x1;x2/, there exist two loops, one for each xi . There are 6 arrows without
crossings or markings,

f.3; 4/
1;0;.0/
����! .2; 4/; .2; 4/

1;0;.0/
����! .1; 4/; .2; 4/

2;0;.0/
����! .2; 3/;

.1; 4/
2;0;.0/
����! .1; 3/; .2; 3/

1;0;.0/
����! .1; 3/; .1; 3/

2;0;.0/
����! .1; 2/g;

and 6 arrows with crossings or markings,

f.3; 4/
1;0;.1/
����! .1; 4/; .3; 4/

1;1;.0;0/
������! .2; 3/; .3; 4/

1;1;.1;0/
������! .1; 3/;

.1; 4/
2;0;.1/
����! .1; 2/; .2; 3/

1;1;.0;0/
������! .1; 2/; .2; 4/

1;1;.0;1/
������! .1; 2/g:

5.3 The t–graded DG algebra Rn

We define the t –graded DG algebra Rn D
Ln

kD0 Rn;k , where Rn;k D F2Qn;k=� is
a quotient of the path algebra F2Qn;k of the quiver Qn;k with a differential.
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.3; 4/ .2; 4/ .1; 3/ .1; 2/

.1; 4/

.2; 3/

1 0 0 1

0 0 1 1

0 1 1 0

0 0 1 1

1 0 1 0

0 0 1 1

1 1 0 0

1 0 0 1

1 1 0 0

0 1 1 0

1 1 0 0

0 1 0 1

Figure 15: The top diagram describes the quiver Q4;2 , where black lines
denote arrows without crossings or markings and red lines denote arrows with
crossings or markings which are represented in the bottom diagram.

Definition 5.8 (t –graded DG algebra Rn ) The algebra Rn is an associative t –graded
F2 –algebra with a differential d and a grading degD .degh; degt / 2 Z2 .

(A) The algebra Rn has idempotents e.x/ for each vertex x in Qn , generators

�.x
i
�! x/ for each loop x

i
�! x;

r.x
i;s1;v
����! y/ for each arrow x

i;s1;v
����! y ;

in Qn . The relations consist of 4 groups:

(i) Idempotents

e.x/ � e.y/D ıx;y � e.x/ for all x;y

e.x/ � �.x
i
�! x/D �.x

i
�! x/ � e.x/D �.x

i
�! x/ for all �.x

i
�! x/

e.x/ � r.x
i;s1;v
����! y/D r.x

i;s1;v
����! y/ � e.y/D r.x

i;s1;v
����! y/ for all r.x

i;s1;v
����! y/

(ii) nilpotent loops

�.x
i
�! x/ � �.x

i
�! x/D 0 for all �.x

i
�! x/

(iii) commutativity for disjoint diagrams:

�.x
i0

�! x/ � �.x
i
�! x/D �.x

i
�! x/ � �.x

i0

�! x/ if i 0 ¤ i

�.x
i0

�! x/ � r.x
i;s1;v
����! y/D r.x

i;s1;v
����! y/ � �.y

i0

�! y/ if i 0 62 fi; : : : ; i C s1g

r.x
i;s1;v
����! y/ � r.y

i0;s0
1
;v0

�����! z/D r.x
i0;s0

1
;v0

�����!w/ � r.w
i;s1;v
����! z/ if xiCs1

< zi0

Geometry & Topology, Volume 18 (2014)



A categorification of UT .sl.1j1// and its tensor product representations 1677

(iv) sliding over a crossing:

�.x
i0

�! x/ � r.x
i;s1;v
����! y/D r.x

i;s1;v
����! y/ � �.y

i0C1
���! y/

if i 0 2 fi; : : : ; i C s1� 1g; s1 > 0

(B) The differential d D d0C d1 is defined on the generators by the resolutions
of crossings and markings on the corresponding decorated rook diagrams. In
general, the differential is extended by Leibniz’s rule: d.r1 �r2/Ddr1 �r2Cr1 �dr2

for r1; r2 2Rn .

(C) The grading degD .degh; degt / is defined on generators by

deg.e.x//D .0; 0/;

deg.�.x
i
�! x//D .�1;�1/;

deg.r.x
i;s1;v
����! y//D .1� s1; 1C s0/:

Remark 5.9 The relations in (iii) are from isotopies of stackings of disjoint decorated
rook diagrams.

x

y

z

x

w

z

xiCs1
xi0Cs0

1
xiCs1

xi0Cs0
1

zi zi0 zi zi0

D D

1 1 1 0

1 0 1 1

1 1 1 0

1 0 1 1

1 0 0 1 0 1 1 0 0

1 0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0 1

1 0 0 1 0 1 1 0 0

0 0 0 1 1 1 1 0 0

0 0 0 1 1 0 1 0 1

Figure 16: The diagrams for the second and third relations in (iii) on the left
and right, respectively

Lemma 5.10 We have that d is well defined and is a differential on Rn .

Proof We use the geometric description of d in terms of resolving crossings and
markings.

We show that d is well defined under the relations of Rn . Since the commutativity
relations correspond to isotopies of stackings of disjoint rook diagrams, their resolutions
commute as well. The pictorial proof of the invariance of the differential under the
sliding relation (relation (iv)) is given in Figure 17. Resolutions of both sides are
obviously the same under the sliding relation except for the resolution of the crossing
over which the loop slides.
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d

d

C C

C C

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

Figure 17: Differentials of both sides in the sliding relation

Next we verify that d is a differential. It is easy to check that d is of degree .1; 0/.
We have to show that d2.r/D 0 for any generator r 2Rn . In the expansion of d2.r/,
any term comes from a resolution of two of crossings and markings. If r has at least
two crossings or markings, then the coefficient of each term is even since there are two
ways to resolve them depending on the different orders of resolutions. Hence, d2 D 0

since we are working in F2 . If r has only one crossing or marking, then dr has no
crossings or markings and d.dr/D 0.

Lemma 5.11 The cohomology H.Rn/ is generated by idempotents e.x/, loops

�.x
i
�! x/

and arrows

r.x
i;s1;v
����! y/

without crossings or markings, ie s1 D s0.v/D 0.

Proof It is easy to see that RnD
L

x;y2Bn
Rn.x;y/, where Rn.x;y/ is the subspace

of Rn generated by all the arrows from x to y . It suffices to prove the lemma for
Rn.x;y/. Since the differential d D d0Cd1 can be decomposed into two differentials,
we have a double complex C D

L
p;q Rn.x;y/p;q , where Rn.x;y/p;q is the subspace

of Rn.x;y/ generated by all

r.x
i;s1;v
����! y/
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with s1 D p; s0 D q , and the horizontal and vertical differentials are d1 and d0 ,
respectively:

Rn.x;y/0;2

d0

��

Rn.x;y/1;2
d1
oo

d0

��

� � �
d1
oo

d0

��
Rn.x;y/0;1

d0

��

Rn.x;y/1;1
d1
oo

d0

��

� � �
d1
oo

d0

��
Rn.x;y/0;0 Rn.x;y/1;0

d1
oo � � �

d1
oo

Then the differential in the total complex Tot.C / is d D d0Cd1 in Rn . Note that the
double complex C is finite since there are at most n crossings and markings in any arrow.
Consider the two spectral sequences of C from the two filtrations which converge
to the homology of Tot.C /; see Weibel [40, Section 5.6]. Let E1

p;q D H v
q .Cp;�/

and 0E1
p;q D H h

p .C�;q/ be the first pages by taking the homology of the vertical
differential d0 and the horizontal differential d1 , respectively. We will show that

E1
p;q D 0 for q > 0; 0E1

p;q D 0 for p > 0:

Therefore, HpCq Tot.C / D 0 for p C q > 0, ie H.Rn/ is generated by loops and
arrows without crossings or markings.

For E1
pq with q > 0, suppose d0r D 0, where r D

P
i ri 2 Cp;q of a finite sum and

each ri is a product of elementary decorated rook diagrams given by a path �i in Qn :

x! zi1 ! � � � ! zij.i/ ! y

Assume further that r is primitive, ie any nontrivial partial sum of
P

i ri is nonclosed.
A path consisting of elementary decorated rook diagrams is called a composition path.

The key observation is that d0 only locally changes a decorated rook diagram by
replacing the marking ˛ with the gap ˇ , as shown in Figure 18. For each ri.s/ in
d0ri D

P
s ri.s/, the corresponding path �i.s/ is given by inserting one vertex of Qn

to �i . A composition path � is called a quotient path of �0 if the set of vertices V .�/

in � is a proper subset of V .�0/. In particular, �i is a quotient path of �i.s/ for all s .
The goal is to find a universal path �r for r which is a quotient path of �i for all i .

We start from r1.1/ which must be equal to rj .s/ as a summand of d0rj for some
j ¤ 1 since r is d0 –closed. Without loss of generality, assume r1.1/D r2.1/. The
composition path for any element in Rn is uniquely determined up to isotopies of dis-
joint diagrams and slides of loops over crossings. We choose a composition path �1.1/

for r1.1/ which in turn determines the composition paths �1 for r1 and �1.s/ for r1.s/
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for s > 1. Since r2.1/ D r1.1/, we choose �2.1/ D �1.1/ as the composition path
for r2.1/ which determines the composition paths �2 for r2 and �2.s/ for r2.s/ for
s > 1. Then both �1 and �2 are quotient paths of �1.1/ D �2.1/ . Let �1;2 be the
unique composition path such that V .�1;2/D V .�1/\V .�2/.

We repeat the same procedure for r1.2/. If r1.2/D r2.s/ for some s , then we move on
to r1.3/. Otherwise, assume r1.2/D r3.1/. We choose �1.2/ as the composition path
for r3.1/. Then �3 and �1;2 are both quotient paths of �1.2/ since �1 is a quotient
path of �1.2/ . Let �1;2;3 be the unique composition path such that V .�1;2;3/ D

V .�1;2/ \ V .�3/. Since we assume r is primitive, by iterating this procedure we
can finally find a universal path �r for r such that �r is a quotient path of �i for
all i . More precisely, there exists a decorated rook diagram �.r/ corresponding to �r

such that each ri is represented by a diagram �.ri/ which is obtained from �.r/ by
changing some of the markings to gaps.

d0

˛ ˇ

d1

˛1 ˇ1

d1

˛2 ˇ2

C

ˇ3

ˇ4

Figure 18: The left picture is W0 ; the middle is W1 ; the right is W1˝O W1 .

We construct a chain complex of markings C0.r/ for r 2Rn such that d0.r/D 0 as
follows. Let

W0 D h˛i
d0
�! hˇi

be a chain complex of F2 –vector spaces generated by a marking ˛ and a gap ˇ ,
where h˛i and hˇi are in degree 1 and 0, respectively. The differential d0 resolves a
marking ˛ and yields a gap ˇ . The homology of .W0; d0/ is zero. Note that .W0; d0/

is the local model for one marking in �.r/. Let I be a finite set indexed by all markings
in �.r/. Define the chain complex of markings C0.r/ by jIjth tensor product W ˝jIj

0

of W0 over F2 . In other words, C0.r/ encodes the information of all markings in �.r/.
Then each ri 2Rn corresponds to a generator in the chain complex. The differential d0

in Rn corresponds to the differential in W
˝jIj

0
.
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We compute the homology of W
˝jIj

0
in the following. Recall the Künneth formula

from [40, Theorem 3.6.3]: If P and Q are right and left complexes of R–modules
such that Pn and d.Pn/ are flat for each n, then there is an exact sequence

0!
M

pCqDn

Hp.P /˝Hq.Q/!Hn.P ˝R Q/!
M

pCqDn�1

TorR
1 .Hp.P /;Hq.Q//! 0:

The homology of .W ˝jIj
0

; d0/ is zero by taking RD F2 and P DQDW0 . It is easy
to see that r D

P
i ri corresponds a closed element in W ˝jIj . Then there exists another

element w 2W ˝jIj such that d0.w/D r since the homology of .W ˝jIj
0

; d0/ is zero.
Hence, there exists a corresponding element w in Rn such that d0.w/D r 2Rn .

For 0E1
pq , the proof is similar to that for E1

pq . A key difference is that the collection of
local diagrams consists of 6 patterns f˛i I ǰ j i D 1; 2I j D 1; 2; 3; 4g as in Figure 18.
Let .W1; d1/ be the chain complex of F2 –vector spaces given by locally resolving a
crossing,

h˛1; ˛2i
d1
�! hˇ1; ˇ2; ˇ3; ˇ4i;

˛1 7! ˇ1;

˛2 7! ˇ2Cˇ3;

where ˛i ’s are in degree 1 and ǰ ’s are in degree 0. Then .W1; d1/ is the local
model for one crossing. Notice that .W1; d1/ can be viewed as a chain complex of
O –bimodules, where the ring O D h1; � j �2 D 0i acts on W1 by attaching a loop �
to the decorated rook diagrams along the middle column:

�˛2 D ˛2�D ˛1; �ˇ4 D ˇ2; ˇ4�D ˇ3; �ˇ4�D ˇ1

Similarly, we construct a chain complex of crossings C1.r
0/ as a tensor product of W1 ’s

for any element r 0 2Rn such that d1.r
0/D 0. The chain complex C1.r

0/ is supposed
to encode the information of all crossings in � 0 associated to r 0 . There are two types
of tensor products in C1.r

0/. The first one is a tensor product of two W1 ’s over O if
the corresponding two crossings can be connected by a vertical strand as in Figure 18
since the loop � could slide over a crossing and along a vertical strand. Otherwise, we
use a tensor product over F2 .

It is easy to verify the conditions for W1 ˝O W1 and W1 ˝F2
W1 in the Künneth

formula. The homology H1.W1/ is zero at degree 1 and H0.W1/ is isomorphic to
the ring O . Hence, H0.W1/ is free as left and right O modules and the Tor group in
the Künneth formula vanishes. We have

Hn.W1˝R W1/Š
M

pCqDn

Hp.W1/˝R Hq.W1/;
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where R is either O or F2 depending on the type of the tensor product. It follows that
the homology of C1.r

0/ is zero at degree greater than 0. Hence, 0E1
pq D 0 for p > 0

and we conclude the proof.

Remark 5.12 The first page E1
pq given by the differential d0 for resolving markings

is very close to the strands algebra A.2n/. They only differ at the relation of a double
crossing which is set to be zero in the strands algebra.

Let r.x
i
�!y/ denote the class Œr.x

i;s1;v
����!y/� with s1D s0.v/D 0 in the cohomology

H.Rn/.

Proposition 5.13 The cohomology H.Rn/ is an associative t –graded DG algebra
with a trivial differential. It has idempotents e.x/ for each vertex x in Qn , generators

�.x
i
�! x/ for each loop x

i
�! x;

r.x
i
�! y/ for each arrow x

i;s1;v
����! y ;

with s1C s0.v/D 0 in Qn . The relations consist of 4 groups:

(i) idempotents

e.x/ � e.y/D ıx;y � e.x/ for all x;y

e.x/ � �.x
i
�! x/D �.x

i
�! x/ � e.x/D �.x

i
�! x/ for all �.x

i
�! x/

e.x/ � r.x
i
�! y/D r.x

i
�! y/ � e.y/D r.x

i
�! y/ for all r.x

i
�! y/

(ii) unstackability relations .R1/

�.x
i
�! x/ � �.x

i
�! x/D 0(R1-1)

r.x
i
�! y/ � r.y

i
�! z/D 0(R1-2)

(iii) commutativity relations .R2/

�.x
i0

�! x/ � �.x
i
�! x/D �.x

i
�! x/ � �.x

i0

�! x/ if i 0 ¤ i(R2-1)

�.x
i0

�! x/ � r.x
i
�! y/D r.x

i
�! y/ � �.y

i0

�! y/ if i 0 ¤ i(R2-2)

r.x
i
�! y/ � r.y

i0

�! z/D r.x
i0

�!w/ � r.w
i
�! z/ if xi < zi0(R2-3)

(iv) relation .R3/ from the differential of a crossing:

(R3) �.x
i
�! x/ � r.x

i
�! y/ � r.y

iC1
��! z/D r.x

i
�! y/ � r.y

iC1
��! z/ � �.z

iC1
��! z/

if ziC1 D xi
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The t –graded DG algebra Rn is formal since its cohomology H.Rn/ is concentrated
along the line degh� degt D 0 by Lemma 5.11.

Lemma 5.14 The t –graded DG algebra Rn is quasi-isomorphic to its cohomol-
ogy H.Rn/.

Proof A quasi-isomorphism is given by

gnW Rn!H.Rn/;

e.x/ 7! e.x/;

�.x
i
�! x/ 7! �.x

i
�! x/;

r.x
i;s1;v
����! y/ 7! r.x

i
�! y/ if s1 D s0.v/D 0;

r.x
i;s1;v
����! y/ 7! 0 otherwise:

Definition 5.15 (1) Let DGP.Rn/ be the smallest full subcategory of DG.Rn/ which
contains the projective DG Rn –modules fP .x/DRn � e.x/ j x 2 Bng and is closed
under the cohomological grading shift functor Œ1�, the t –grading shift functor f1g and
taking mapping cones.

(2) Let DGP.H.Rn// be the smallest full subcategory of DG.H.Rn// which contains
the projective DG H.Rn/–modules fPH.x/DH.Rn/ � e.x/ j x 2 Bng and is closed
under the cohomological grading shift functor Œ1�, the t –grading shift functor f1g and
taking mapping cones.

Let HP.Rn/;HP.H.Rn// denote 0th homology categories of DGP.Rn/;DGP.H.Rn//,
respectively. Then HP.Rn/;HP.H.Rn// are triangulated categories. Since Rn is
formal, it is easy to see the following equivalence of triangulated categories.

Lemma 5.16 The triangulated categories HP.Rn/ and HP.H.Rn// are equivalent.
Thus there are isomorphisms of ZŒt˙1�–modules: K0.HP.Rn//ŠK0.HP.H.Rn///Š

ZŒt˙1�hBni Š V ˝n
1

.

5.4 The t–graded DG algebra A � Rn

Ideally, we want to use DGP.A˝Rn/ of DG projective A˝Rn –modules to categorify
UT ˝V ˝n

1
and construct a .Rn;A˝Rn/–bimodule to categorify the UT –action. But

this ideal approach does not work. We have to modify A˝Rn to a DG algebra A�Rn

by adding an extra differential which enables us to construct the DG .H.Rn/;A�Rn/–
bimodule Cn in Section 6. We show that A�Rn is formal, hence it is quasi-isomorphic
to A˝H.Rn/. The definition of A�Rn is rather technical and the reader can pretend
it is A˝Rn at a first reading.

Geometry & Topology, Volume 18 (2014)



1684 Yin Tian

Definition 5.17 The algebra A � Rn is an associative t –graded DG F2 –algebra with
a differential d and a grading degD .degh; degt / 2 Z2 .

(A) The algebra A � Rn has generators of 3 types:

(1) e.�/� r and a � e.x/ for � 2 B; r 2Rn; a 2A;x 2 Bn

(2) �.Ix
i
�!EFx/ for 1� i � k < n and x 2 Bn;k such that xi D n� kC i

(3) �.EFx
j
�! Ix/ for 1� j � k < n and x 2 Bn;k such that xj D j

(B) The relations consist of 5 groups:

(1) relations from A and Rn : for � 2 B; r1; r2 2Rn; a1; a2 2A;x 2 Bn ,

e.�/� .r1C r2/D e.�/� r1C e.�/� r2

e.�/� .r1r2/D .e.�/� r1/ � .e.�/� r2/

.a1C a2/� e.x/D a1 � e.x/C a2 � e.x/

.a1a2/� e.x/D .a1 � e.x// � .a2 � e.x//

(2) commutativity relation from A˝Rn : .a�e.x//�.e.�2/�r/D .e.�1/�r/�

.a � e.y// for e.�1/ � a � e.�2/D a 2 A; e.x/ � r � e.y/D r 2Rn , except
when

(��) .a; r/D

(
.�.I;EF /; �.x

k
�! x// if xk D n

.�.EF; I/; �.x
1
�! x// if x1 D 1

(3) relations for �.Ix
i
�!EFx/:

.e.I/� e.x// � �.Ix
i
�!EFx/D �.Ix

i
�!EFx/ � .e.EF /� e.x//

D �.Ix
i
�!EFx/

�.Ix
i
�!EFx/ � .e.EF /� �.x

i0

�! x//D .e.I/� �.x
i0

�! x// � �.Ix
i
�!EFx/(�)

if i ¤ i 0C 1 or xi0 ¤ n� kC i 0

�.Ix
i
�!EFx/ � .e.EF /� r.x

i0;s1;v
����! y//D .e.I/� r.x

i0;s1;v
����! y// ��.Iy

i
�!EFy/

if i 0C s1 < i and

�.Ix
i
�!EFx/ � .�.EF; I/� e.x//D 0
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(4) relations for �.EFx
j
�! Ix/:

.e.EF /� e.x// ��.EFx
j
�! Ix/D �.EFx

j
�! Ix/ � .e.I/� e.x//D �.EFx

j
�! Ix/

�.EFx
j
�! Ix/ � .e.I/� �.x

j 0

�! x//D .e.EF /� �.x
j 0

�! x// � �.EFx
j
�! Ix/

if j ¤ j 0� 1 or xj 0 ¤ j 0

�.EFx
j
�! Ix/ �.e.I/�r.x

j 0;s1;v
����!y//D .e.EF /�r.x

j 0;s1;v
����!y// ��.EFx

j
�! Ix/

if j < j 0 and

.�.I;EF /� e.x// � �.EFx
j
�! Ix/D 0

(5) relations for �.Ix
i
�!EFx/ and �.EFx

j
�! Ix/:

�.Ix
i
�!EFx/ � �.EFx

j
�! Ix/D 0

(C) The differential is defined on generators in the following and extended by the
Leibniz rule:

d.a � e.x//D 0 for a 2A;x 2 Bn(1)

d.e.�/� r/D e.�/� d.r/ for � 2 B; r 2Rn(2)

d.�.Ix
k
�!EFx//D .�.I;EF /� e.x// � .e.EF /� �.x

k
�! x//(3)

C .e.I/� �.x
k
�! x// � .�.I;EF /� e.x//

d.�.Ix
i
�!EFx//D �.Ix

iC1
��!EFx/ � .e.EF /� �.x

i
�! x//(4)

C .e.I/� �.x
i
�! x// � .�.Ix

iC1
��!EFx// for i < k

d.�.EFx
1
�! Ix//D .�.EF; I/� e.x// � .e.I/� �.x

1
�! x//(5)

C .e.EF /� �.x
1
�! x// � .�.EF; I/� e.x//

d.�.EFx
j
�! Ix//D �.EFx

j�1
���! Ix/ � .e.I/� �.x

j
�! x//(6)

C .e.EF /� �.x
j
�! x// � �.EFx

j�1
���! Ix/ for j > 1
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(D) The grading degD .degh; degt / is defined for a 2A; r 2Rn;k and x 2 Bn;k by

degh.a � r/D degh.a/C degh.r/C 2k degt .a/;

degt .a � r/D n degt .a/C degt .r/;

deg.�.Ix
i
�!EFx//D .�2.k � i C 1/;�.k � i C 1//;

deg.�.EFx
j
�! Ix//D .2kC 1� 2j ; n� j /:

Remark 5.18 (1) Equations (1) and (2) in part (C) are inherited from the differential
on A˝Rn . Equations (3) and (5) correspond to the conditions in (��) in part
(B-2) where the commutativity relation fails. Equations (4) and (6) are higher
homotopies.

(2) The condition xi D n� k C i for �.Ix
i
�! EFx/, where x 2 Bn;k , implies

that xj D n� k C j for all i � j � k . In other words, all states between the
.n�kC i/th state and the last state are j1i. Similarly, the condition xj D j for

�.EFx
j
�! Ix/

implies that all states between the first state and j th state are j1i; see the proof
of Lemma 5.20 for an example.

(3) The new ingredients �.Ix
i
�!EFx/; �.EFx

j
�! Ix/ are only used in the con-

struction of the .H.Rn/;A � Rn/–bimodules Cn in Section 6.4. A contact
topological interpretation of them is still missing.

Lemma 5.19 We have that d is well defined: d preserves the relations d2 D 0,
deg.d/D .1; 0/.

Proof There is a decomposition of the differential d D d1C d2 , where d1 is defined
by Equations (1), (2) and extended to the other cases by zero, and d2 is defined
by Equations (3)–(6) and extended to the other cases by zero. It is easy to see that
d2

1
D d2

2
D d1d2C d2d1 D 0. Since d1 is inherited from the differential on Rn , it

suffices to prove the lemma for d2 .

We verify that d2 preserves (�) in relation (B-3). Fixing x 2 Bn;k , we set

x�kC1 WD �.I;EF /� e.x/; x�i WD �.Ix
i
�!EFx/ if xi D n� kC i;

�.�; i/ WD e.�/� �.x
i
�! x/ for � D I;EF:

Then the differential is given by d2.x�i/ D x�iC1�.EF; i/C �.I; i/x�iC1 for i � k .
Equation (�) reads as x�i�.EF; i 0/ D �.I; i 0/x�i if i ¤ i 0C 1. We apply d2 to both
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sides and get

d2.x�i�.EF; i 0//D x�iC1�.EF; i/�.EF; i 0/C �.I; i/x�iC1�.EF; i 0/;

d2.�.I; i
0/x�i/D �.I; i

0/x�iC1�.EF; i/C �.I; i 0/�.I; i/x�iC1:

Case 1 If i ¤ i 0 , then x�iC1�.EF; i 0/D �.I; i 0/x�iC1 from (�). We have

d2.x�i�.EF; i 0//D x�iC1�.EF; i/�.EF; i 0/C �.I; i/�.I; i 0/x�iC1 D d2.�.I; i
0/x�i/:

Case 2 If i D i 0 , then �.EF; i/�.EF; i 0/D �.I; i 0/�.I; i/D 0 from relation (B-1).
We have

d2.x�i�.EF; i 0//D �.I; i/x�iC1�.EF; i/D d2.�.I; i
0/x�i/:

In either case, we proved that d2 preserves (�).

The proofs for other relations are similar and we leave it to the reader.

It suffices to show that d2
2
.r/D 0 for any generator r 2A � Rn . The computation is

similar to that above.

By definition, deg.e.�/��.x
j
�! x//D .�1;�1/ for � D I;EF from Definition 5.8.

For �.Ix
i
�!EFx/, i < k we have

deg.d/D .�1;�1/C deg.�.Ix
iC1
��!EFx//� deg.�.Ix

i
�!EFx//

D .�1;�1/C .2; 1/D .1; 0/:

We have similar computations for other generators.

We compute the cohomology H.A � Rn/ and show that A � Rn is formal.

Lemma 5.20 The t –graded DG algebra A�Rn is quasi-isomorphic to its cohomology
A˝H.Rn/.

Proof We first compute H.A � Rn/. Note that A � Rn is a finite double complex
with respect to d D d1Cd2 in previous lemma. Since the cohomology Hd1

.A˝Rn/

with respect to d1 is A˝H.Rn/, the following claim implies that the cohomology
Hd .A � Rn/ is A˝H.Rn/.

Claim The cohomology Hd2
.A � Rn/ with respect to d2 is A˝Rn .

There is a decomposition

A � Rn D

M
�1;�22B;x;y2Bn

L.�1; �2Ix;y/

D

M
�1;�22B;x;y2Bn

.e.�1/� e.x// �A � Rn � .e.�2/� e.y//:
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Since d2 is nontrivial only on

�.Ix
i
�!EFx/; �.EFx

j
�! Ix/;

it suffices to prove the claim for summands L.�1; �2Ix;y/ where we have that
.�1; �2/D .I;EF /; .EF; I/ and x D y .

We compute Hd2
.L/, where we have LD L.�1; �2Ix;y/ for .�1; �2/D .EF; I/,

x D y D j1101i. By definition there exist

x�2 WD �.EF j1101i
2
�! I j1101i/; x�1 WD �.EF j1101i

1
�! I j1101i/:

Let

x�0 WD �.EF; I/� e.j1101i/; �.�; i/ WD e.�/� �.j1101i
i
�! j1101i/

for � D I;EF and i D 1; 2; 3. The nontrivial differential on the generators is given by

d2.x�2/D �.EF; 2/x�1C x�1�.I; 2/; d2.x�1/D �.EF; 1/x�0C x�0�.I; 1/:

From relations in (B-4), we have

�.EF; i/x�2 D x�2�.I; i/ for i D 1; 2; 3;

�.EF; i/x�1 D x�1�.I; i/ for i D 1; 3;

�.EF; i/x�0 D x�0�.I; i/ for i D 2; 3:

Then L is a complex L2

d2
�! L1

d2
�! L0 , where Li D .A � Rn/x�i.A � Rn/. A

direct computation shows that L2 is a 8–dimensional F2 –vector space, L1 and L0

are 16–dimensional F2 –vector spaces. Moreover, the complex is exact except at L0

and Hd2
.L/ is isomorphic to �.EF; I/˝ e.x/Ae.x/ in A˝Rn for x D j1101i.

The proof of the claim in general is similar and we leave it to the reader.

It is easy to see that the following map gives a quasi-isomorphism:

A � Rn!A˝Rn

e.�/� r 7! e.�/˝ r

a � e.x/ 7! a˝ e.x/

�.Ix
i
�!EFx/ 7! 0

�.EFx
i
�! Ix/ 7! 0

Then A � Rn is quasi-isomorphic to A˝H.Rn/ since Rn is formal.
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Consider projective DG A�Rn –modules given by fP .�;x/D .A�Rn/.e.�/�e.x// j

� 2 B;x 2 Bng, and projective DG A˝H.Rn/–modules given by fPH.�;x/ D
.A˝H.Rn//.e.�/˝ e.x// j � 2 B;x 2 Bng.

Definition 5.21 (1) Let DGP.A � Rn/ denote the smallest full subcategory of
DG.A � Rn/ which contains the projective DG A � Rn –modules fP .�;x/ j
� 2 B;x 2 Bng and is closed under the cohomological grading shift functor Œ1�,
the t –grading shift functor f1g and taking mapping cones.

(2) Let DGP.A˝H.Rn// denote the smallest full subcategory of DG.A˝H.Rn//

containing the projective DG A˝H.Rn/–modules fPH.�;x/ j � 2B;x 2Bng

and is closed under the cohomological grading shift functor Œ1�, the t –grading
shift functor f1g and taking mapping cones.

Let HP.A�Rn/ and HP.A˝H.Rn// denote 0th homology categories of DGP.A�Rn/

and DGP.A˝H.Rn//, respectively. Then HP.A � Rn/ and HP.A˝H.Rn// are
triangulated categories. Since A � Rn is formal, we have the following equivalence of
triangulated categories.

Lemma 5.22 The triangulated categories HP.A � Rn/ and HP.A˝H.Rn// are
equivalent. Hence, there are isomorphisms of ZŒt˙1�–modules:

K0.HP.A � Rn//ŠK0.HP.A˝H.Rn///ŠUT ˝fTDtng V
˝n

1

Proof It is easy to see that K0.HP.A � Rn// is isomorphic to a quotient of

ZŒT˙1�hBi �ZŒt˙1�hBni

by the relation .� � T;x/ D .�; tnx/ for � 2 B and x 2 Bn from the t –grading in
A � Rn :

degt .a � r/D n degt .a/C degt .r/

Definition 5.23 Define a tensor product functor

�nW HP.A/�HP.H.Rn//! HP.A˝H.Rn//;

M;M 0
7!M ˝M 0;

where the grading of M ˝M 0 is given by

degt .m˝m0/D n degt .m/C degt .m
0/;

degh.m˝m0/D degh.m/C degh.m
0/C 2k degt .m/

for m 2M and m0 2M 0 in HP.H.Rn;k//.
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Remark 5.24 The grading on M ˝M 0 makes it into a t –graded DG A˝H.Rn/–
module.

6 The t–graded DG .H.Rn/;A � Rn/–bimodule Cn

In order to define a functor DGP.A�Rn/!DGP.H.Rn//, we construct the t –graded
DG .H.Rn/;A � Rn/–bimodule Cn in four steps.

(1) We define the first part of the left H.Rn/–module Cn corresponding to the
categorical action of I;E;F on the objects of DGP.Rn/ in Section 6.1.

(2) We define the first part of the right A � Rn –module structure on Cn corre-
sponding to the categorical action of I;E;F on the morphisms of DGP.Rn/ in
Section 6.2.

(3) We finish the construction of the left H.Rn/–module Cn corresponding to the
action of EF in Section 6.3.

(4) We finish the definition of the right A�Rn –module structure on Cn correspond-
ing to the action of EF in Section 6.4.

The algebraic construction is quite technical, but the geometric presentation in terms
of decorated rook diagrams is easy to follow.

6.1 The left DG H.Rn/–module Cn , Part I

As a left DG H.Rn/–module,

Cn D

M
�2B;x2Bn

Cn.�;x/:

In this subsection we define Cn.�;x/ for � 2 fI;E;Fg and x 2 Bn . We fix some
n> 0 throughout this section and omit the subscript n.

6.1.1 The case � D I Define C.I;x/D PH.x/ 2 DGP.H.Rn// for all x 2 Bn .

6.1.2 The case � DF For x 2Bn;k , recall the linear action F.x/ from Lemma 4.2.
Define

C.F;x/D

n�kM
jD1

Cj .F;x/D

n�kM
jD1

PH..Fx/j /fn� xxj gŒˇ.x; xxj /�;
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where .Fx/j denotes x t fxxj g in Bn;kC1 . Define a differential

d.F;x/D

n�kX
jD2

dj .F;x/;

where dj .F;x/W Cj .F;x/
�rF .xIj/
������! Cj�1.F;x/ is defined below for 2� j � n� k .

Let qj D jfl 2 f1; : : : ; kg j xl < xxj gj, for 1� j � n�k . Then the number of states j1i
between xxj�1 and xxj is qj � qj�1 . Recall that x

i
�!y is the shorthand for the arrow

x
i;s1;v
����!y with s1 D s0.v/D 0 in the quiver Qn . Then there exists a path

.Fx/j
qj�1C1
�����! z1

qj�1C2
�����! � � �

qj

�! zqj�qj�1
qjC1
���! .Fx/j�1:

Define rF .xI j / 2 H.Rn;kC1/ as the product of the corresponding qj � qj�1 C 1

generators:

rF .xI j /D r..Fx/j
qj�1C1
�����! z1/ � � � r.zqj�qj�1

qjC1
���! .Fx/j�1/I

see Figure 19 for an example.

xxj�2 xxj�1 xxj

F
rF .xI j � 1/

rF .xI j /

.Fx/j�2

.Fx/j�1

.Fx/j

0 1 1 0 1 0

1 1 1 0 1 0

0 1 1 1 1 0

0 1 1 0 1 1

Figure 19: A local diagram of rF .xI j /�rF .xI j�1/ equals 0 since a product
of two red strands is zero in H.Rn/ .

Definition 6.1 The differential dj .F;x/W Cj .F;x/
�rF .xIj/
������! Cj�1.F;x/ is a map of

left H.Rn/–modules defined by right multiplication with rF .xI j /:

dj .F;x/.m..Fx/j //D rF .xI j / �m..Fx/j�1/

Here m..Fx/j / 2 Cj .F;x/ D PH..Fx/j /fn� xxj gŒˇ.x; xxj /� is the generator of the
left projective H.Rn/–module for 1� j � n� k .

Remark 6.2 The definition of the left H.Rn/–module C.F;x/ comes from a pro-
jective resolution of the left H.Rn/–module which corresponds to the dividing set
F � x 2 zCn ; see Figures 2, 4 and 5 in Section 1.3 for the dividing sets. For instance,
there is a distinguished triangle F j010i ! j011i ! j110i in zC3 as in Figure 20 which
gives an isomorphism F j010i Š .j011i ! j110i/.
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F j010i j011i

j110i

Figure 20

Lemma 6.3 We have dj .F;x/ is a map of degree .1; 0/ and dj�1 ı dj D 0.

Proof The degrees of the generators are as follows:

deg.m..Fx/j //D .�ˇ.x; xxj /; xxj � n/

deg.m..Fx/j�1//D .�ˇ.x; xxj�1/; xxj�1� n/

deg.rF .xI j //D .qj � qj�1C 1; qj � qj�1C 1/

Since ˇ.x; xxj�1/�ˇ.x; xxj /D qj � qj�1 and .n� xxj�1/� .n� xxj /D qj � qj�1C1,

deg.m..Fx/j //� deg.m..Fx/j�1//D deg.rF .xI j //� .1; 0/;

which implies that dj .F;x/ is a map of degree .1; 0/.

For a diagrammatic proof of dj�1 ıdj D 0, see Figure 19. The composition dj�1 ıdj

is right multiplication by rF .xI j / � rF .xI j � 1/ and is induced by the path

.Fx/j
qj�1C1
�����! z1

! � � � ! zqj�qj�1
qjC1
���! .Fx/j�1

qj�2C1
�����!w1

! � � �

!wqj�1�qj�2
qj�1C1
�����! .Fx/j�2:

By using the commutation relation Equation (R2-3) to rearrange the arrows, the path
above can be written as

.Fx/j
qj�2C1
�����! u1

! � � � ! uqj�1�qj�2
qj�1C1
�����! v0

qj�1C1
�����! v1

! � � �

! vqj�qj�1
qjC1
���! .Fx/j�2:

Hence, rF .xI j /�rF .xI j�1/D� � � r.uqj�1�qj�2
qj�1C1
�����!v0/�r.v0

qj�1C1
�����!v1/ � � �D0

by (R1-2). Here the product

r.uqj�1�qj�2
qj�1C1
�����! v0/ � r.v0

qj�1C1
�����! v1/D 0

is given by a product of two red strands in Figure 19. Then we have dj�1 ıdj D 0.
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6.1.3 The case � DE For x 2Bn;k , recall the linear action E.x/ from Lemma 4.2.
Define

C.E;x/D

kM
iD1

.C i.E;x/˚C i.E;x/0/

D

kM
iD1

.PH..Ex/i/Œ1� i �˚PH..Ex/i/f1gŒ2� i �/;

where .Ex/i denotes xnfxig in Bn;k�1 . Define a differential

d.E;x/D

k�1X
iD1

d i.E;x/;

where d i.E;x/W C i.E;x/ ˚ C i.E;x/0 ! C iC1.E;x/ ˚ C iC1.E;x/0 is defined
below.

Consider a path .Ex/i
i
�! z1 i

�! � � �
i
�! zxiC1�xi�1 i

�! .Ex/iC1 in Qn;k�1 . Define
rE.xI i/ 2H.Rn;k�1/ as the product of the generators corresponding to the xiC1�xi

arrows in the path and the xiC1�xi � 1 loops attached at the vertices zs :

rE.xI i/D r..Ex/i
i
�! z1/ � �.z1 i

�! z1/ � r.z1 i
�! z2/ � � �

� r.zxiC1�xi�2 i
�! zxiC1�xi�1/ � �.zxiC1�xi�1 i

�! zxiC1�xi�1/

� r.zxiC1�xi�1 i
�! .Ex/iC1/:

Define loops

�.xI i/D �..Ex/i
i
�! .Ex/i/; �.xI i/D �..Ex/iC1 i

�! .Ex/iC1/I

see Figure 21 for an example. Let m..Ex/i/ 2 C i.E;x/ D PH.xnfxig/Œ1� i � and
m0..Ex/i/ 2 C i.E;x/0 D PH.xnfxig/f1gŒ2� i � be the generators of the left H.Rn/

modules for 1� i � k .

x

E

.Ex/1 .Ex/1

.Ex/2 .Ex/2

r D rE.xI 1/ � D �.xI 1/

� D �.xI 1/
� r

r

� r�
r�1 0 1

1 0 0 1 0 00

0 0 1 0 0 10

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

Figure 21: We have C.E;x/ for x D j101i , where 4 upward arrows denote
the differential.
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Definition 6.4 The differential d i.E;x/W C i.E;x/˚C i.E;x/0 ! C iC1.E;x/˚

C iC1.E;x/0 is a map of left H.Rn/–modules defined on the generators by

d i.E;x/.m..Ex/i//D �.xI i/ � rE.xI i/ �m..Ex/iC1/C rE.xI i/ �m
0..Ex/iC1/;

d i.E;x/.m0..Ex/i//D �.xI i/ � rE.xI i/ � �.xI i/ �m..Ex/iC1/

C rE.xI i/ � �.xI i/ �m
0..Ex/iC1/:

Lemma 6.5 We have d.E;x/ is a map of degree .1; 0/ and d iC1 ı d i D 0.

Proof It is easy to verify that d.E;x/ is a map of degree .1; 0/ since

deg.rE.xI i//D .1; 1/; deg.�.xI i//D .�1;�1/; deg.�.xI i//D .�1;�1/:

We show that d iC1.d i.m..Ex/i/// D 0 and leave the case of m0..Ex/i// to the
reader:

d iC1.d i.m..Ex/i///

D d iC1.�.xI i/ � rE.xI i/ �m..Ex/iC1/C rE.xI i/ �m
0..Ex/iC1//

D �.xI i/ � rE.xI i/ � d
iC1.m..Ex/iC1//C rE.xI i/ � d

iC1.m0..Ex/iC1//

D .�.xI i/ � rE.xI i/ � rE.xI i C 1/C rE.xI i/ � rE.xI i C 1/ � �.xI i C 1//

�m0..Ex/iC2/C �.xI i/ � rE.xI i/ � �.xI i C 1/ � rE.xI i C 1/ �m..Ex/iC2/

C rE.xI i/ � �.xI i C 1/ � rE.xI i C 1/ � �.xI i C 1/ �m..Ex/iC2/

We compute the coefficient of m0..Ex/iC2/ in Figure 22. The coefficient is zero by
(R3). Similarly, we can prove that the coefficient of m..Ex/iC2/ is zero by (R2-1),
(R2-2) and (R3). Hence d iC1.d i.m..Ex/i///D 0.

6.2 The right A � Rn–module Cn , Part I

In this subsection we define the right multiplication with the idempotents e.�/� e.x/

and generators e.�/� �.x
i
�!x/; e.�/� r.x

i;s1;v
����!y/ of A � Rn for � 2 fI;E;Fg

and x 2 Bn . Let m � r denote the right multiplication for m 2 C and generators
r 2 A � Rn . The definition of right multiplication in general is extended by the
associativity: m � .r1 � r2/ D .m � r1/ � r2 . We will check this is well defined in
Proposition 6.25. The case by case definition will be labeled by (M�). Let m �r 0 denote
the multiplication in H.Rn/ for m 2 PH.x/�H.Rn/ and r 0 2H.Rn/. Let j .x; i/

be the number in f0; 1; : : : ; n� kg such that xxj.x;i/ < xi < xxj.x;i/C1 for x 2 Bn;k .
Let j0 denote j .x; i/ when x and i are understood.
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xi xiC1 xiC2

E

rE.xI i C 1/

rE.xI i/

.Ex/iC2

.Ex/iC1

.Ex/i

1 0 0 1 0 1

1 0 0 1 0 0

1 0 0 0 0 1

0 0 0 1 0 1

1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 0 1 0 0 0 1 0 1

C D 0

Figure 22: The top diagram describes .Ex/i and the bottom diagram repre-
sents the coefficient �.xI i/ � rE.xI i/ � rE.xI iC1/C rE.xI i/ � rE.xI iC1/ �

�.xI i C 1/ . Here, the diagrams representing rE.xI i/’s are defined in
Figure 13 in Section 5.1.4.

6.2.1 Idempotents Let a � r D e.�/� e.x/ be an idempotent. Then define for
m 2 C.� 0;x0/

(M1) m� .e.�/� e.x//D ı�;� 0ıx;x0m:

6.2.2 The case aDe.I/ For a�rD e.I/�r , where r 2f�.x
i
�!x/; r.x

i;s1;v
����!y/g,

define

(M2) m� .e.I/� r/D

8̂<̂
:

m � �.x
i
�! x/ if r D �.x

i
�! x/;

m � r.x
i
�! y/ if r D r.x

i;s1;v
����! y/; s1 D s0.v/D 0;

0 otherwise,

for m 2 C.I;x/D PH.x/. We view
L

x2Bn
C.I;x/DH.Rn/ as an .H.Rn/;Rn/–

bimodule, where Rn acts from right via the quasi-isomorphism gn WRn!H.Rn/ in
Lemma 5.14.

6.2.3 The case aD e.F / Let a � r D e.F /� �.x
i
�! x/. The right multiplication

is a map of left H.Rn/–modules C.F;x/! C.F;x/ defined on the generators by

(M3-1) m..Fx/j /� .e.F /� �.x
i
�! x//

D

(
�..Fx/j

i
�! .Fx/j / �m..Fx/j / if j > j0;

�..Fx/j
iC1
��! .Fx/j / �m..Fx/j / if j � j0:
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Remark 6.6 The morphism

e.F /� �.x
i
�! x/ 2 Hom zCn

.F �x;F �x/

represents a tight contact structure from the dividing curve F �x to itself. Recall from
Remark 6.2 that .C.F;x/; d.F;x// is the “projective resolution” of F �x . Then the
right multiplication C.F;x/!C.F;x/ defined above is the corresponding morphism
between their projective resolutions.

Lemma 6.7 The right multiplication with uD e.F /� �.x
i
�! x/ is compatible with

the relation in A � Rn : .m�u/�uD 0Dm� .u �u/D 0.

Proof It follows from (M3-1) and �..Fx/j
i
�! .Fx/j / � �..Fx/j

i
�! .Fx/j /D 0 for

all i and j .

Lemma 6.8 The right multiplication by e.F /� �.x
i
�! x/ commutes with the differ-

ential.

Proof The commutativity for each square which is not in the diagram below follows
from the commutativity relation (R2-2) since the corresponding decorated rook diagrams
are disjoint:

� � � // PH..Fx/j0C1/
d
// PH..Fx/j0

/ // � � �

� � � // PH..Fx/j0C1/
d
//

��..Fx/j0C1

i

�!.Fx/j0C1/

OO

PH..Fx/j0
/

��..Fx/j0

iC1

��!.Fx/j0
/

OO

// � � �

The commutativity for the square follows from (R3) since the sum of maps is a resolution
of a crossing in Rn , hence zero in H.Rn/; see Figure 23.

Remark 6.9 The right multiplication with e.F / � �.x
i
�! x/ as in the left-hand

diagram in Figure 23 can be viewed as the functor F applying to the morphism
�.x

i
�!x/ in Hom.x;x/. From now on, we will omit labels x; .Fx/j ; rF .xI i/’s in

this type of diagram to express right multiplications.

Let a � r D e.F /� r.x
i;s1;v
����! y/ with s1 D s0.v/D 0 for x;y 2 Bn;k . Note that

xyj0
D xxj0

C 1; xyj D xxj for j ¤ j0:

Then we have .Fx/j0
D .Fy/j0

2 Bn;kC1 and there exist arrows in Qn;kC1 ,

.Fx/j
i
�! .Fy/j for j > j0; .Fx/j

iC1
��! .Fy/j for j < j0:
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F
� � � 2H.Rn/

rF .xI 2/

rF .xI 2/

x

x

.Fx/2

.Fx/2

.Fx/1

.Fx/1

0 1 0 0 1 1 1 1 0 1 1 0 1 1 0

0 1 0 0 1 1 1 1 0 0 1 1 0 1 1

D

Figure 23: In the left-hand diagram, the upward arrow on the left is �.x
1
�!x/

for x D j010i . The horizontal arrows in j011i ! j110i are the differential
in C.F; j010i/ given by the right multiplication with rF .x; 2/ . Two upward
arrows between j011i ! j110i’s are the right multiplication with e.F /�
�.x

i
�! x/ . The right-hand diagram shows that the right multiplication and

differential commute.

The right multiplication is a map of left H.Rn/–modules: C.F;x/!C.F;y/ defined
on the generators by

(M3-2) m..Fx/j /� .e.F /� r.x
i;s1;v
����! y//

D

8̂̂<̂
:̂

r..Fx/j
i
�! .Fy/j / �m..Fy/j / if j > j0;

m..Fy/j / if j D j0;

r..Fx/j
iC1
��! .Fy/j / �m..Fy/j / if j < j0I

see the left-hand diagram in Figure 24 for an example.

F idF
r0

r1

r2

d

d

d

d

d

j D 2 j D 1

j D 2 j D 1

1 0 0

0 1 0

0 0 1

1 0 1 1 1 0

0 1 1 1 1 0

0 1 1 1 0 1

1 0 0

0 0 1

1 0 1 1 1 0

0 1 1 1 0 1

Figure 24: The right multiplications with e.F /� ri for i D 1; 2 on the left,
and for i D 0 on the right.

Lemma 6.10 The right multiplication with e.F /� r.x
i;s1;v
����! y/ such that s1 D

s0.v/D 0 commutes with the differential.
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Proof We have the following diagram:

PH..Fy/j0C1/
d // PH..Fy/j0

/
d // PH..Fy/j0�1/

PH..Fx/j0C1/
d //

�r..Fx/j0C1

i
�!.Fy/j0C1/

OO

PH..Fx/j0
/

d //

id

OO

PH..Fx/j0�1/

�r..Fx/j0�1

iC1
��!.Fy/j0�1/

OO

The commutativity follows from the commutativity relation (R2-3).

Let a � r D e.F /� r.x
i;s1;v
����! y/ with s1 D 0; s0.v/ > 0 for x;y 2 Bn;k . Let s0

denote s0.v/ for simplicity. Note that .Fx/j0�s0
D .Fy/j0

2 Bn;kC1 . Then the right
multiplication is a map of left H.Rn/–modules defined on the generators by

(M3-3) m..Fx/j /� .e.F /� r.x
i;s1;v
����! y//D

�
m..Fy/jCs0

/ if j D j0� s0;

0 otherwise:

Note that m..Fy/jCs0
/ D m..Fy/j0

/ D .Fx/j if j D j0 � s0 ; see the right-hand
diagram in Figure 24 for an example when s0 D 1.

We verify that the definition is compatible with the DG structure on A � Rn .

Lemma 6.11 We have d.m�r/Ddm�rCm�dr holds for rD e.F /�r.x
i;0;v
���!y/.

Proof The case for s0 D 0 is proved in Lemma 6.10.

If s0 D 1, there is only one marking in r D e.F /� r.x
i;0;.1/
����! y/. Let

dr D e.F /� r.x
i;0;.0/
����! z/ � e.F /� r.z

i;0;.0/
����! y/

for some z .

We first discuss m 2 Cj .F;x/ for j < j0� 1 or j > j0 , where the j th vertical strand
is disjoint from the marking. We have m� r D dm� r D 0 from (M3-3). The lemma
follows from

m� dr D

8̂̂̂<̂
ˆ̂:

m � r..Fx/j
i
�! .Fz/j / � r..Fz/j

i
�! .Fy/j /

Dm � 0D 0 2H.Rn/ if j > j0;

m � r..Fx/j
iC1
��! .Fz/j / � r..Fz/j

iC1
��!.Fy/j /

D 0 2H.Rn/ if j < j0� 1:

From the above we can reduce to the local model: j D j0� 1; j0 where the marking
lives. A diagrammatic proof for

r0 D e.F /� r.x
1;0;.1/
����! y/
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is given in Figure 24, where x D .3/D j001i;y D .1/D j100i 2 B3;1 . Recall that

d.r0/D e.F /� r.x
1;0;.0/
����! z/ � e.F /� r.z

1;0;.0/
����! y/D r1 � r2;

where z D .2/ D j010i. In Figure 24, the right multiplications by r1; r2 and r0 are
given in the left-hand and right-hand diagrams, respectively.

We verify the equation for mDm.j011i/ 2 C.F; j001i/ by chasing the diagrams and
leave other cases to the reader. The right-hand side of the equation is zero since

d.m.j011i//� r0 D r.j011i
1
�! j101i/ � .m.j101i/� r0/

D r.j011i
1
�! j101i/ �m.j101i/ 2 C.F; j100i/;

m.j011i/� d.r0/D .m.j011i/� r1/� r2 Dm.j011i/� r2

D r.j011i
1
�! j101i/ �m.j101i/ 2 C.F; j100i/:

The left-hand side is obviously zero since m.j011i/� r0 D 0. Hence we proved

d.m.j011i/� r0/Dm.j011i/� dr0C dm.j011i/� r0:

If s0 > 1, for m 2Cj .F;x/, j < j0� s0 or j > j0 we have m� r D dm� r D 0 and
m� dr D 0 from (M3-3) since dr contains at least one marking.

Hence we reduce to the local model: j0�s0� j � j0 , ie r0D e.F /�r.x
1;0;.s0/
�����!y/,

where xD .s0C2/D j0 � � � 01i;y D .1/D j10 � � � 0i 2Bs0C2;1 . A diagrammatic proof
for s0 D 2 is given in Figure 25 by chasing the diagram. The proof for the case s0 > 1

in general is similar and we leave it to the reader.

d

1000

0001
r0 r1 r2

1000

0010

0001

D C

1000

0100

0001

1000

0001

id

id

id

F

F

F

dd

dd

1001 1010 1100

0011 0101 1001
jD3 jD2 jD1

1000 1001 1010 1100

0010 0011 0110 1010

0001 0011 0101 1001

1000 1001 1010 1100

0100 0101 0110 1100

0001 0011 0101 1001

jD3 jD2 jD1

Figure 25: The right multiplications with e.F /� ri for i D 0 on the left,
and for i D 1; 2 on the right
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Let a�r D e.F /�r.x
i;s1;v
����!y/ with s1> 0 for x;y 2Bn;k . The right multiplication

is defined as the zero map

(M3-4) m� .e.F /� r.x
i;s1;v
����! y//D 0:

This completes the proof.

6.2.4 The case aD e.E/ Let a � r D e.E/� �.x
i0
�! x/. The right multiplication

is a map of left H.Rn/–modules: C.E;x/! C.E;x/ defined on the generators by

m..Ex/i/� .e.E/� �.x
i0
�! x//(M4-1)

D

8̂̂<̂
:̂
�..Ex/i

i0�1
���! .Ex/i/ �m..Ex/i/ if i < i0;

m0..Ex/i/ if i D i0;

�..Ex/i
i0
�! .Ex/i/ �m..Ex/i/ if i > i0I

m0..Ex/i/� .e.E/� �.x
i0
�! x//(M4-1)

D

8̂̂<̂
:̂
�..Ex/i

i0�1
���! .Ex/i/ �m0..Ex/i/ if i < i0;

0 if i D i0;

�..Ex/i
i0
�! .Ex/i/ �m0..Ex/i/ if i > i0:

An example is given in Figure 26; j011i denotes the first summand PH..Ej111i/1/

and j011i0 denotes the second summand PH..Ej111i/1/f1gŒ1� in C.E; j111i/.

E
� � � id � �

d d

d d

i D 1 i D 2 i D 3

1 1 1 0 1 1 ˚ 0 1 10 1 0 1 ˚ 1 0 10 1 1 0 ˚ 1 1 00

1 1 1 0 1 1 ˚ 0 1 10 1 0 1 ˚ 1 0 10 1 1 0 ˚ 1 1 00

Figure 26: The 5 upward arrows on the right are the right multiplication with
e.E/� �.x

2
�! x/ for x D j111i .

Lemma 6.12 The right multiplication with uD e.E/��.x
i0
�! x/ is compatible with

the relation in A � Rn : .m�u/�uD 0Dm� .u �u/.

Proof For m2C i.E;x/, it follows from �..Ex/i
i0

�! .Ex/i/��..Ex/i
i0

�! .Ex/i/D0

and (M4-1) if i ¤ i0 . If i D i0 , it follows from the local model as in Figure 26.

Lemma 6.13 The right multiplication by e.E/ � �.x
i0
�! x/ commutes with the

differential.
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Proof It suffices to prove that

d.m� .e.E/� �.x
i0
�! x///D d.m/� .e.E/� �.x

i0
�! x//;

for m D m..Ex/i/;m0..Ex/i/ for 1 � i � k . The equation is obviously true for
i ¤ i0� 1; i0 from the commutativity relations (R2-1) and (R2-2) since the decorated
rook diagrams in the differential and right multiplication are disjoint.

We verify the equation for mDm..Ex/i0/:

d.m..Ex/i0/� .e.E/� �.x
i0
�! x///

D d.m0..Ex/i0//

D �.xI i0/ � rE.xI i0/ ��.xI i0/ �m..Ex/i0C1/C rE.xI i0/ ��.xI i0/ �m
0..Ex/i0C1/

D d.m..Ex/i0// � �..Ex/i0C1 i0
�! .Ex/i0C1/

D d.m..Ex/i0//� .e.E/� �.x
i0
�! x//

The proof for other cases is similar and we leave it to the reader.

Let a � r D e.E/� r.x
i0;s1;v
����! y/ with s1 D s0.v/D 0 for x;y 2 Bn;k . Note that

yi0
D xi0

� 1; yi D xi for i ¤ i0:

We have .Ex/i0 D .Ey/i0 2 Bn;k�1 and there exist arrows

.Ex/i
i0�1
���! .Ey/i for i < i0; .Ex/i

i0
�! .Ey/i for i > i0:

Then the right multiplication is a map of left H.Rn/–modules defined on the genera-
tors by

m..Ex/i/� .e.E/� r.x
i0;s1;v
����! y//(M4-2)

D

8̂̂<̂
:̂

r..Ex/i
i0�1
���! .Ey/i/ �m..Ey/i/ if i < i0;

0 if i D i0;

r..Ex/i
i0
�! .Ey/i/ �m..Ey/i/ if i > i0;

m0..Ex/i/� .e.E/� r.x
i0;s1;v
����! y//(M4-2)

D

8̂̂̂<̂
ˆ̂:

r..Ex/i
i0�1
���! .Ey/i/ �m0..Ey/i/ if i < i0;

m..Ey/i/ if i D i0;

r..Ex/i
i0
�! .Ey/i/ �m0..Ey/i/ if i > i0:

An example is given in Figure 27.
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E id
d d

d d

i D 1 i D 2 i D 3

1 1 0 1 0 1 0 1 ˚ 0 1 0 10 1 0 0 1 ˚ 1 0 0 10 1 1 0 0 ˚ 1 1 0 00

1 0 1 1 0 0 1 1 ˚ 0 0 1 10 1 0 0 1 ˚ 1 0 0 10 1 0 1 0 ˚ 1 0 1 00

Figure 27: The 5 diagrams on the right represent the right multiplication
with e.E/� r.j1011i

2;0;.0/
����! j1101i/ .

Lemma 6.14 The right multiplication by e.E/ � r.x
i0;s1;v
����! y/ such that s1 D

s0.v/D 0 commutes with the differential.

Proof It suffices to prove that

d.m� .e.E/� r.x
i0;s1;v
����! y///D d.m/� .e.E/� r.x

i0;s1;v
����! y//;

where mDm..Ex/i/;m0..Ex/i/ for 1� i � k . The equation is obviously true for
i ¤ i0� 1; i0 from the commutativity relations (R2-2) and (R2-3) since the decorated
rook diagrams in the differential and right multiplication are disjoint.

We verify the equation for mDm0..Ex/i0/:

d.m0..Ex/i0/� .e.E/� r.x
i0;s1;v
����! y///

D d.m..Ey/i0//

D �.y I i0/ � rE.y I i0/ �m..Ey/i0C1/C rE.y I i0/ �m
0..Ey/i0C1/

D d.m0..Ex/i0// � r..Ex/i0C1 i0
�! .Ey/i0C1/

D d.m0..Ex/i0//� .e.E/� r.x
i0;s1;v
����! y//

The proof for other cases is similar and we leave it to the reader.

Let a � r D e.E/� r.x
i0;s1;v
����! y/ with s1 > 0; s0.v/ D 0 for x;y 2 Bn;k . Note

that .Ex/i0Cs1 D .Ey/i0 2 Bn;k�1 . The right multiplication is a map of left H.Rn/–
modules defined on the generators by

(M4-3) m� .e.E/� r.x
i;s1;v
����! y//D

�
m..Ey/i�s1/ if mDm0..Ex/i0Cs1/;

0 otherwiseI
see the right-hand diagram in Figure 28 for an example.

We verify that the definition is compatible with the DG structure on A � Rn .

Lemma 6.15 We have d.m�r/Ddm�rCm�dr holds for rDe.E/�r.x
i0;s1;v
����!y/

with s0.v/D 0.
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� � �

� � �

id

id

id

id

r0
E idE

r1

r2

r3

r4

1 1 0 0 1 0˚ 0 1 00 1 0 0˚ 1 0 00

1 1 0 0 1 0˚ 0 1 00 1 0 0˚ 1 0 00

1 0 1 0 0 1˚ 0 0 10 1 0 0˚ 1 0 00

0 1 1 0 0 1˚ 0 0 10 0 1 0˚ 0 1 00

0 1 1 0 0 1˚ 0 0 10 0 1 0˚ 0 1 00

1 1 0

0 1 1

0 1 0˚ 0 1 00 1 0 0˚ 1 0 00

0 0 1˚ 0 0 10 0 1 0˚ 0 1 00

Figure 28: The right multiplication with e.E/� ri for i D 1; 2; 3; 4 on the
left and for i D 0 on the right, where dr0 D r1r2r3C r2r3r4 .

Proof The case for s1 D 0 is proved in Lemma 6.14.

Suppose s1 > 0. For m 2 C i.E;x/ or C i.E;x/0 , m� r D dm� r Dm� dr D 0 if
i < i0� s1 or i > i0 from (M4-2) and (M4-3).

If i0�s1 � i � i0 , we reduce to the local model: r D e.E/�r.x
1;s1;v.s1/
�������!y/, where

x D .2; : : : ; s1C 2/D j01 � � � 1i; y D .1; : : : ; s1C 1/D j1 � � � 10i 2 Bs1C2;s1C1 , and
v.s1/D .0; : : : ; 0/ 2Ns1C1 . A diagrammatic proof for s1 D 1 is given in Figure 28.
Recall that d.r0/D r1 � r2 � r3C r2 � r3 � r4 , where

r1 D e.E/� �.x
1
�! x/; r2 D e.E/� r.x

1;0;.0/
����! z/;

r4 D e.E/� �.y
2
�! y/; r3 D e.E/� r.z

2;0;.0/
����! y/;

and zD .1; 3/D j101i. In Figure 28, the right multiplications by r1; r2; r3; r4 and r0

are given in the left-hand and right-hand diagrams, respectively.

We verify the equation for mDm.j001i/ 2 C.E; j011i/ by chasing the diagrams and
leave other cases to the reader. The right-hand side of the equation is zero since

d.m.j001i//� r0

D .�.j001i
1
�!j001i/�r.j001i

1
�!j010i/�m.j010i/Cr.j001i

1
�!j010i/�m0.j010i//�r0

D r.j001i
1
�! j010i/ � .m0.j010i/� r0/

D r.j001i
1
�! j010i/ �m.j010i/ 2 C.E; j110i/

is the same as

m.j001i/�d.r0/Dm.j001i/�.r1 � r2 � r3C r2 � r3 � r4/D ..m.j001i/�r1/�r2/�r3

D r.j001i
1
�! j010i/ �m.j010i/ 2 C.E; j110i/:
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The left-hand side is obviously zero since m.j001i/� r0 D 0.

The proof for the case s1 > 1 is similar.

Let a � r D e.E/ � r.x
i;s1;v
����! y/ with s0.v/ > 0 for x;y 2 Bn;k . The right

multiplication is defined as the zero map

(M4-4) m� .e.E/� r.x
i;s1;v
����! y//D 0:

6.3 The left DG H.Rn/–module Cn , Part II

We finish the definition of the left H.Rn/–module structure on C.�;x/ for � DEF

and x 2 Bn;k . The module C.EF;x/ is constructed through the action of E on the
module C.F;x/. Let .EFx/ij denote .E.Fx/j /

i 2 Bn;k , ie

.EFx/ij D

8̂<̂
:

x t fxxj gnfxig if i < qj C 1;

x if i D qj C 1;

x t fxxj gnfxi�1g if i > qj C 1:

Define

C.EF;x/D

n�kM
jD1

C.E; .Fx/j /fn� xxj gŒˇ.x; xxj /�

D

n�kM
jD1

kC1M
iD1

.PH..EFx/ij /fn� xxj gŒˇ.x; xxj /C 1� i �

˚PH..EFx/ij /fn� xxj C 1gŒˇ.x; xxj /C 2� i �/:

Recall that rF .xI j / 2H.Rn;kC1/ is given by the path from .Fx/j to .Fx/j�1 . It
can also be viewed as an element in Rn;kC1 which is still denoted by rF .xI j /. The
right multiplication with e.E/� rF .xI j / defines a chain map

� .e.E/� rF .xI j //W C.E; .Fx/j /! C.E; .Fx/j�1/:

We view C.EF;x/ as a double complex with .i; j /th entry C i
j .EF;x/ equal to

PH..EFx/ij /fn� xxj gŒˇ.x; xxj /C1� i �˚PH..EFx/ij /fn� xxjC1gŒˇ.x; xxj /C2� i �:

Let m..EFx/ij / and m0..EFx/ij / be the generators of the first and the second sum-
mand of C i

j .EF;x/.
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Definition 6.16 The differential d.EF;x/ is defined by

d.EF;x/D

n�kX
jD1

kC1X
iD1

d i
j .EF;x/D

n�kX
jD1

kC1X
iD1

.d i
j jver.EF;x/C d i

j jhor.EF;x//;

where

d i
j jver.EF;x/D d i.E; .Fx/j /W C

i
j .EF;x/! C iC1

j .EF;x/;

d i
j jhor.EF;x/D .�e.E/� rF .xI j //W C

i
j .EF;x/! C i

j�1.EF;x/:

We have the following double complex .C.EF;x/; d.EF;x//:

(1)

C kC1
n�k

.EF;x/ // C kC1
n�k�1

.EF;x/ // � � � // C kC1
1

.EF;x/

::: //

OO

:::

OO

// :::

OO

// :::

OO

C 1
n�k

.EF;x/ //

d1.E;.Fx/n�k/

OO

C 1
n�k�1

.EF;x/ //

d1.E;.Fx/n�k�1/

OO

� � �

OO

// C 1
1
.EF;x/

d1.E;.Fx/1/

OO

Lemma 6.17 The differential d.EF;x/ is well defined.

Proof Since rF .xI j / is a product of the generators which satisfy s1D s0.v/D 0, the
horizontal differential d i

j jhor.EF;x/, ie the right multiplication by e.E/� rF .xI j /,
commutes with the vertical differential d i

j jver.EF;x/ by Lemma 6.14. Therefore,
d.EF;x/ ı d.EF;x/D 0.

This concludes the construction of the left H.Rn/–module Cn .

The following lemma is immediate:

Lemma 6.18 If � 2B and x2Bn , then ŒC.�;x/�D�.x/ when viewed as elements in

K0.HP.H.Rn///Š V ˝n
1
:

6.4 The right A � Rn–module Cn , Part II

We finish the definition of the right multiplication with generators in

fe.EF /� �.x
i
�! x/; e.EF /� r.x

i;s1;v
����! y/g;

f�.I;EF /� e.x/; �.EF; I/� e.x/g;

f�.Ix
i
�!EFx/; �.EFx

j
�! Ix/g:
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6.4.1 The right multiplication by e.EF /�r The right multiplication by e.EF /�r

corresponds to applying the functor EF to r as a morphism in DGP.Rn/. It can be
decomposed into two steps: first applying F to r to obtain a morphism, then applying E

to the resulting morphism.

Let a � r D e.EF /� �.x
i
�! x/. The right multiplication is a map C.EF;x/!

C.EF;x/ of left H.Rn/–modules. Recall that

C.EF;x/D

n�kM
jD1

C.E; .Fx/j /fn� xxj gŒˇ.x; xxj /�;

and the right multiplication

�.e.F /� �.x
i
�! x//W PH..Fx/j /! PH..Fx/j /

is given in (M3-1). Then the right multiplication by e.EF /� �.x
i
�! x/ is defined by

(M5-1) m� .e.EF /� �.x
i
�! x//

D

(
m� .e.E/� �..Fx/j

i
�! .Fx/j // if j > j0;

m� .e.E/� �..Fx/j
iC1
��! .Fx/j // if j � j0;

where m 2 C.E; .Fx/j /fn� xxj gŒˇ.x; xxj /�� C.EF;x/.

Now let a � r D e.EF /� r.x
i;s1;v
����! y/. Recall that the right multiplication

�.e.F /� r.x
i;s1;v
����! y//W PH..Fx/j /! PH..Fy/jCs0

/

is given in (M3-2), (M3-3) and (M3-4).

If s1C s0.v/D 0, the right multiplication by e.EF /� r.x
i;0;.0/
����! y/ is defined by

(M5-2) m� .e.EF /� r.x
i;0;.0/
����! y//

D

8̂̂<̂
:̂

m� .e.E/� r..Fx/j
i;0;.0/
����! .Fy/j // if j > j0;

m� .e.E/� e..Fy/j // if j D j0;

m� .e.E/� r..Fx/j
iC1;0;.0/
������! .Fy/j // if j < j0;

where m 2 C.E; .Fx/j /fn� xxj gŒˇ.x; xxj /�� C.EF;x/.

If s1D 0 and s0.v/ > 0, the right multiplication by e.EF /�r.x
i;0;.s0/
�����!y/ is defined

by
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(M5-3) m� .e.EF /� r.x
i;0;.s0/
�����! y//

D

�
m� .e.E/� e..Fy/jCs0

// if j D j0� s0;

0 otherwise;

where m 2 C.E; .Fx/j /fn� xxj gŒˇ.x; xxj /�� C.EF;x/.

If s1 > 0, the right multiplication by e.EF /� r.x
i;s1;v
����! y/ is defined as the zero

map

(M5-4) m� .e.EF /� r.x
i;s1;v
����! y//D 0:

6.4.2 The right multiplication by �.I;EF /�e.x/ We discuss .EFx/kC1
n�k
2Bn;k

shown in the top left corner C kC1
n�k

.EF;x/ of the double complex (1) depending on
xxn�k D n or xxn�k < n.

Case 1 Suppose xxn�k D n, ie the last state is j0i. Then we have .EFx/kC1
n�k
D x ,

ˇ.x; xxn�k/D k and C kC1
n�k

.EF;x/D PH.x/˚PH.x/f1gŒ1�. The right multiplication

(M6-1-1) �.�.I;EF /� e.x//W C.I;x/! C.EF;x/

is defined by the identity map from PH.x/D C.I;x/ to PH.x/� C kC1
n�k

.EF;x/. An
example is given in Figure 29.

( (
id

id

d jver d jver

d jhor

d jhor iD1

iD2

jD2 jD1

jD2 jD1

C.I; 010/D 010

C.I; 010/D 010

C.EF; 010/DC.E; 011/ C.E; 110/D

0 1 0˚ 0 1 00 1 0 0˚ 1 0 00

0 0 1˚ 0 0 10 0 1 0˚ 0 1 00

Figure 29: The identity map from C.I; 010/ to the top left corner is the
right multiplication by �.I;EF / � e.x/ when xxn�k D n . The identity
map from the bottom right corner to C.I; 010/ is the right multiplication by
�.EF; I/� e.x/ when xx1 D 1 .

Lemma 6.19 The right multiplication by �.I;EF / � e.x/ in Case 1 commutes
with d .

Proof Since the differential on C.I;x/ is trivial, and

Geometry & Topology, Volume 18 (2014)



1708 Yin Tian

d.m.Ix/� .�.I;EF /� e.x///D dkC1
n�k
jhor.EF;x/.m..EFx/kC1

n�k
//

Dm..EFx/kC1
n�k

/� .e.E/� rF .xI n� k//;

it suffices to prove that m..EFx/kC1
n�k

/� .e.E/� rF .xI n� k//D 0.

Recall from Section 6.1.2 that rF .xI n� k/D r0 � r.z
qn�kC1
�����! .Fx/n�k�1/ for some

r0 2 Rn;kC1 and z 2 Bn;kC1 , where qn�k D jl 2 f1; : : : ; kg j xl < xxn�k D ngj D k .
Moreover, .Ez/kC1D .E.Fx/n�k�1/

kC1 2Bn;k . Hence, there exists r1 2Rn;k such
that

m..EFx/kC1
n�k

/� .e.E/� rF .xI n� k//

D .m..EFx/kC1
n�k

/� .e.E/� r0//� .e.E/� r.z
kC1
���! .Fx/n�k�1//

D .r1 �m..Ez/
kC1//� .e.E/� r.z

kC1
���! .Fx/n�k�1//

D r1 � .m..Ez/
kC1/� .e.E/� r.z

kC1
���! .Fx/n�k�1///

D r1 � 0D 0;

where in the last step, m..Ez/kC1/� .e.E/� r.z
kC1
���! .Fx/n�k�1// D 0 is from

(M4-2).

Case 2 Suppose xxn�k < n. Then ˇ.x; xxn�k/D kC n� xxn�k and C kC1
n�k

.EF;x/ is

PH..EFx/kC1
n�k

/fn�xxn�kgŒn�xxn�k �˚PH..EFx/kC1
n�k

/fn�xxn�kC1gŒn�xxn�kC1�:

Note that .EFx/
qn�kC1

n�k
D x and there is a path from x to .EFx/kC1

n�k
in Qn;k :

x D .EFx/
qn�kC1

n�k

qn�kC1
�����! .EFx/

qn�kC2

n�k

qn�kC2
�����! � � �

k
�! .EFx/kC1

n�k

Let rI;EF .x/ be a product of the corresponding n� xxn�k D k � qn�k generators in
H.Rn;k/. The right multiplication is a map C.I;x/! C.EF;x/ of left H.Rn/–
modules defined on the generators by

(M6-1-2) m.Ix/� .�.I;EF /� e.x//D rI;EF .x/ �m..EFx/kC1
n�k

/:

An example is given in Figure 30.

Lemma 6.20 The right multiplication by �.I;EF / � e.x/ in Case 2 commutes
with d .

Proof Let rEF .xI n� k; k C 1/ be a product of qn�k � qn�k�1C 1 generators in
H.Rn;k/ induced by the path in Qn;k :

.EFx/kC1
n�k

qn�k�1C1
�������! � � �

qn�kC1
�����! .EFx/kC1

n�k�1
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iD1

iD2

iD3

jD2 jD1

jD2 jD1

C.I; 1001/D 1001

C.I; 1001/D 1001

C.EF; 1001/DC.E; 1001/ C.E; 1101/D

1 0 1 0˚ 1 0 1 00 1 1 0 0˚ 1 1 0 00

1 0 0 1˚ 1 0 0 10 1 0 0 1˚ 1 0 0 10

0 0 1 1˚ 0 0 1 10 0 1 0 1˚ 0 1 0 10

Figure 30: The map from C.I; 1010/ to the top left corner is the right
multiplication by �.I;EF /�e.x/ when xxn�k <n . The map from the bottom
right corner to C.I; 1010/ is the right multiplication by �.EF; I/� e.x/

when xx1 > 1 .

Since the differential on C.I;x/ is zero, and

dkC1
n�k
jhor.EF;x/.m.Ix/� .�.I;EF /� e.x///

D .rI;EF .x/ �m..EFx/kC1
n�k

//� .e.E/� rF .xI n� k//

D rI;EF .x/ � rEF .xI n� k; kC 1/;

it suffices to prove that rI;EF .x/ � rEF .xI n� k; kC 1/D 0.

The product rI;EF .x/ � rEF .xI n� k; k C 1/ is induced by the concatenation of the
two paths

x
qn�kC1
�����! � � �

k
�! .EFx/kC1

n�k

qn�k�1C1
�������! � � �

qn�kC1
�����! .EFx/kC1

n�k�1
:

By using the commutation relations to rearrange the arrows, the path above can be
written as

x
qn�k�1C1
�������! � � �

qn�k
���! z0 qn�kC1

�����! z1 qn�kC1
�����! z2 qn�kC2

�����! � � �
k
�! .EFx/kC1

n�k�1
:

Hence, rI;EF .x/�rEF .xI n�k; kC1/D� � � r.z0
qn�kC1
�����!z1/�r.z1

qn�kC1
�����!z2/ � � �D0

from (R1-2).

6.4.3 The right multiplication by �.Ix
i
�!EF x/ Because the right multiplication

with

.�.I;EF /� e.x// � .e.EF /� �.x
k
�! x//C .e.I/� �.x

k
�! x// � .�.I;EF /� e.x//

is possibly nonzero, we represent the above as the differential of �.Ix
k
�!EFx/ for

x 2 Bn;k with xk D n in Definition 5.17; see Figure 32 for an example.

Geometry & Topology, Volume 18 (2014)



1710 Yin Tian

Recall from Definition 5.17 that �.Ix
i
�! EFx/ exists if and only if 1 � i � k < n

and x 2 Bn;k such that xi D n�kC i . Note that the condition xi D n�kC i implies
that xl D n� kC l for all i � l � k , ie each of the last k � i C 1 states in x is j1i.
We are interested in .i; n� k/th entry C i

n�k
.EF;x/ of the double complex (1):

PH..EFx/in�k/fn� xxn�kgŒn� xxn�k C k � i C 1�

˚PH..EFx/in�k/fn� xxn�k C 1gŒn� xxn�k C k � i C 2�

Note that .EFx/
qn�kC1

n�k
D x and qn�k C 1 � i . Hence, there is a path from x to

.EFx/kC1
n�k

through .EFx/i
n�k

in Qn;k :

x D .EFx/
qn�kC1

n�k

qn�kC1
�����! � � �

i�1
��! .EFx/in�k

i
�! � � �

k
�! .EFx/kC1

n�k

Let rI;EF .xI i/ be the product of i � qn;k � 1 generators in H.Rn;k/ corresponding
to the path from x to .EFx/i

n�k
. Then the right multiplication is a map C.I;x/!

C.EF;x/ of left H.Rn/–modules defined on the generators by

(M6-2) m.Ix/� .�.Ix
i
�!EFx//D rI;EF .xI i/ �m..EFx/in�k/;

where m..EFx/i
n�k

/ 2 C i
n�k

.EF;x/.

Example 6.21 Let x D .2; 3/D j011i 2 B3;2 , then xi D n� kC i for i D 1; 2 and
nD 3; k D 2. Hence there exist

r1D�.I j011i
1
�!EF j011i/; r2D�.I j011i

2
�!EF j011i/; r3D�.I;EF /�e.j011i/:

The right multiplications by r1; r2 and r3 are described in Figure 31. More precisely,

m.I j011i/� r3 D r.j011i
1
�! j101i/ � r.j101i

2
�! j110i/ �m.j110i/ 2 C.EF; j011i/;

m.I j011i/� r2 D r.j011i
1
�! j101i/ �m.j101i/ 2 C.EF; j011i/;

m.I j011i/� r1 Dm.j011i/ 2 C.EF; j011i/:

We verify that the definitions (M6-1-1), (M6-1-2) and (M6-2) are compatible with the
DG structure on A � Rn .

Lemma 6.22 For 1� i � k and x 2 Bn;k with xi D n� kC i ,

d.m.Ix/� .�.Ix
i
�!EFx///Dm.Ix/� d.�.Ix

k
�!EFx//:
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iD1

iD2

iD3

jD1

� r3

� r2

� r1

C.I; 011/D011 DC.E; 111/DC.EF; 011/

1 1 0 ˚ 1 1 00

1 0 1 ˚ 1 0 10

0 1 1 ˚ 0 1 10

Figure 31: The right multiplication with ri from C.I; j011i/ to the sum-
mands of C.EF; j011i/ with red lines underlying

Proof For i D k , we can reduce the case in general to the local model. We give a
diagrammatic proof for the local model

r1 D �.I j01i
1
�!EF j01i/

in Figure 32. Let � D �.j01i
1
�!j01i/ and r0 D r.j01i

1
�!j10i/. Recall that d.r1/ D

r2 � r3C r4 � r2 , here

r2 D �.I;EF /� e.j01i/; r3 D e.EF /� �; r4 D e.I/� �:

In Figure 32, the right multiplications by r1; r2 and r3; r4 are given in the left-hand
and right-hand diagrams, respectively.

( ( id

r0

� r1

� r2

�r0 r0

� r2

� r4

� r3

� r2�

r0

C.I; 01/D01

C.EF; 01/DC.E; 11/D

C.I; 01/D01

1 0˚ 1 00

0 1˚ 0 10

1 0� C.EF; 01/

0 1� C.I; 01/

0 1� C.I; 01/

1 00 � C.EF; 01/

1 0� C.EF; 01/

0 1� C.I; 01/

Figure 32: The map from C.I; 01/ to the bottom left corner is the right
multiplication by �.I j01i

1
�! EF j01i/ . The right-hand diagram gives the

right multiplications by d.�.I j01i
1
�!EF j01i// .

The right-hand side of the equation is

m.I j01i/� d.r1/D .m.I j01i/� r4/� r2C .m.I j01i/� r2/� r3

D � � r0 �m.j10i/C r0 �m
0.j10i/ 2 C.EF; j01i/;

which agrees with the left-hand side: d.m.I j01i/� r1/D d.m.j01i// 2 C.EF; j01i/.

The proof for the case i < k is similar.
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6.4.4 The right multiplication by �.EF; I/� e.x/ The construction in this sub-
section is dual to that in Section 6.4.2. We discuss .EFx/1

1
2Bn;k shown in the bottom

right corner C 1
1
.EF;x/ of the double complex (1) depending on xx1 D 1 or xx1 > 1.

Case 1 Suppose xx1 D 1, ie the first state in the tensor product presentation is j0i.
Then we have .EFx/1

1
D x , ˇ.x; xx1/D 2k and C 1

1
.EF;x/D PH.x/fn� 1gŒ2k�˚

PH.x/fngŒ2kC 1�. The right multiplication

(M7-1-1) � .�.EF; I/� e.x//W C.EF;x/! C.I;x/

is defined by the identity map from PH.x/fngŒ2k C 1� � C 1
1
.EF;x/ to PH.x/ D

C.I;x/; see Figure 29 for an example.

Case 2 Suppose xx1 > 1, then ˇ.x; xx1/D 2k � xx1C 1 and C 1
1
.EF;x/ is

PH..EFx/11/fn� xx1gŒ2k � xx1C 1�˚PH..EFx/11/fn� xx1C 1gŒ2k � xx1C 2�:

Note that .EFx/
q1C1
1

D x and there is a path from .EFx/1
1

to x in Qn;k :

.EFx/11
1
�! .EFx/21

2
�! � � �

q1
�! x

Let rEF;I .x/ be a product of the corresponding q1 D xx1� 1 generators in H.Rn;k/.
The right multiplication is a map of left H.Rn/–modules: C.EF;x/ ! C.I;x/

defined on the generators by

(M7-1-2) m� .�.EF; I/� e.x//D

�
rEF;I .x/ �m.Ix/ if mDm0..EFx/1

1
/;

0 otherwise:
An example is given in Figure 30.

Lemma 6.23 In both cases the right multiplication by �.EF; I/� e.x/ commutes
with d .

Proof The proof is similar to those of Lemmas 6.19 and 6.20.

6.4.5 The right multiplication by �.EF x
j
�! Ix/ The construction in this subsec-

tion is dual to that in Section 6.4.3. Recall from Definition 5.17 that

�.EFx
j
�! Ix/

exists if and only if 1 � j � k < n and x 2 Bn;k such that xj D j . Note that the
condition xj D j implies that xl D l for all 1 � l � j , ie each of the first j states
in x is j1i. We are interested in the .j C 1; 1/th entry C

jC1
1

.EF;x/ of the double
complex (1):

PH..EFx/
jC1
1

/fn�xx1gŒ2k�xx1Cj �1�˚PH..EFx/
jC1
1

/fn�xx1C1gŒ2k�xx1Cj �
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Note that .EFx/
q1C1
1

D x . Hence, there is a path from .EFx/1
1

to x through
.EFx/

jC1
1

in Qn;k :

.EFx/11
1
�! � � �

j
�! .EFx/

jC1
1

jC1
���! � � �

q1
�! .EFx/

q1C1
1

D x

Let rEF;I .xI jC1/ be a product of q1�j generators in H.Rn;k/ corresponding to the
path from .EFx/

jC1
1

to x . Then the right multiplication is a map C.EF;x/!C.I;x/

of left H.Rn/–modules defined on the generators by

(M7-2) m� .�.EFx
j
�! Ix//

D

�
rEF;I .xI j C 1/ �m.Ix/ if mDm0..EFx/

jC1
1

/;

0 otherwise:

Lemma 6.24 The right multiplication is compatible with the DG structure on A�Rn :

d.m0..EFx/
jC1
1

//� .�.EFx
j
�! Ix//Dm0..EFx/

jC1
1

/� d..�.EFx
j
�! Ix///

for 1� j � k < n and x 2 Bn;k such that xj D j .

Proof The proof is similar to that of Lemma 6.22.

This concludes the definition of the right A � Rn –module structure on Cn .

Proposition 6.25 The definitions of the right multiplications by A � Rn are well
defined.

Proof For the relations in A � Rn , we need to verify that

.m� r1/� r2 D .m� r 01/� r 02

if r1 � r2 D r 0
1
� r 0

2
2 A � Rn for m 2 C and generators r1; r2; r

0
1
; r 0

2
2 A � Rn . We

checked the relations
.e.�/� �.x

i
�! x//2 D 0

for � DE;F in Lemmas 6.7 and 6.12. The commutation relations which come from
isotopies of stackings of disjoint rook diagrams are easily verified since the definition
of the right multiplication only depends on local properties of the rook diagrams.

For the DG structure, we need to verify that

d.m� r/D dm� r Cm� dr
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for m 2 C and any generator r 2A � Rn . We proved it when we showed that

� d.r/D 0 in Lemmas 6.8, 6.10, 6.13, 6.14, 6.19, 6.20 and 6.23,

� r D e.F /� r.x
i;s1;v
����! y/ with s1 D 0 in Lemma 6.11,

� r D e.E/� r.x
i;s1;v
����! y/ with s0.v/D 0 in Lemma 6.15,

� r D �.Ix
i
�!EFx// and �.EFx

j
�! Ix/ in Lemmas 6.22 and 6.24, respectively.

The proofs for other cases are similar and we leave them to the reader.

Since the right multiplications are defined as maps of left H.Rn/–modules, we have

a � .m� r/D .a �m/� r;

for a2H.Rn/; r 2A�Rn and m2Cn . Hence Cn is a t –graded DG .H.Rn/;A�Rn/–
bimodule.

7 The categorical action of HP.A/ on HP.H.Rn//

In this section, we use the .H.Rn/;A � Rn/–bimodule Cn to categorify the action of
UT on V ˝n

1
. Let

�nW DGP.A � Rn/
Cn˝A�Rn

�

��������! DGP.H.Rn//

be a functor of tensoring with the DG .H.Rn/;A � Rn/–bimodule Cn over A � Rn .

Lemma 7.1 For all � 2 B and x 2 Bn , �n.P .�;x//D Cn.�;x/ 2 DGP.H.Rn//.

Proof The proof is similar to that of Lemma 2.23.

There is an induced exact functor

�nW HP.A � Rn/
Cn˝A�Rn

�

��������! HP.H.Rn//

between the 0th homology categories. From Lemma 5.22, we choose an equivalence
FnW HP.A˝H.Rn//!HP.A�Rn/ of triangulated categories. Let MnD�nıFnı�n

be the composition

HP.A/�HP.H.Rn//
�n
�! HP.A˝H.Rn//

Fn
��! HP.A � Rn/

�n
�! HP.H.Rn//;

where �n is given in Definition 5.23, inducing the tensor product on the Grothendieck
groups.
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Proof of Theorem 1.3 We use fŒP .�;x/�g as a basis of K0.HP.A�Rn// to compute
K0.�n/. By Lemma 6.18,

K0.�n/.�˝x/DK0.�n/.ŒP .�;x/�/D ŒC ˝P .�;x/�D ŒC.�;x/�D �.x/ 2 V ˝n
1
:

Hence the ZŒt˙1�–linear map

K0.Mn/W K0.HP.A//�K0.HP.H.Rn///!K0.HP.H.Rn///

agrees with the action of UT on V ˝n
1
W UT �V ˝n

1
! V ˝n

1
.

Remark 7.2 It is natural to ask whether the categorical action is associative up to
equivalence:

HP.A/�HP.A/�HP.H.Rn//
id�Mn

//

M�id
��

HP.A/�HP.H.Rn//

Mn

��
HP.A/�HP.H.Rn//

Mn
// HP.H.Rn//

The question is equivalent to verifying some associativity relation on various DG
bimodules. The computation is quite technical and we leave it to future work.
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