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K–theory, LQEL manifolds and Severi varieties

OLIVER NASH

We use topological K–theory to study nonsingular varieties with quadratic entry locus.
We thus obtain a new proof of Russo’s divisibility property for locally quadratic entry
locus manifolds. In particular we obtain a K–theoretic proof of Zak’s theorem that
the dimension of a Severi variety must be 2 , 4 , 8 or 16 and so answer a question of
Atiyah and Berndt. We also show how the same methods applied to dual varieties
recover the Landman parity theorem.

14M22; 19L64

1 Introduction

Zak’s celebrated classification of Severi varieties [21] establishes that there are only
four such varieties and that they correspond to projective planes over the four division
algebras. Taking into account the classical results relating K–theory, division algebras
and projective planes, Atiyah and Berndt [2] asked whether there might be a K–theoretic
proof that the dimension of a Severi variety was necessarily 2, 4, 8 or 16.

By taking up an old approach of Fujita and Roberts [6] and Tango [19] but replacing
characteristic classes with K–theory, we are able to provide a K–theoretic proof of
the Severi variety dimension restriction. In fact our results sit naturally in the domain
of Russo’s LQEL manifolds [16] and we provide a new K–theoretic proof of his
divisibility property for LQEL manifolds.

The method we employ is to consider the K–theoretic consequences of the existence
of the generalized Euler sequence associated to a vector bundle. The generalized Euler
sequence of a vector bundle V over a base B is the natural exact sequence on the total
space of the projectivization P .V /,

(1) 0 �!O �! p�V .1/ �! T P .V / �! p�TB �! 0;

where pW P .V /!B is the bundle map, p�V .1/D p�V ˝O.1/ and O.1/ is the dual
of the tautological line bundle on P .V /. In the special case B is a point this is the
familiar Euler sequence on projective space (see eg Hartshorne [8, II.8.13]) and in the
general case as above, it essentially reduces to this since P .V /! B is locally trivial.

Published: 7 July 2014 DOI: 10.2140/gt.2014.18.1245

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14M22, 19L64
http://dx.doi.org/10.2140/gt.2014.18.1245


1246 Oliver Nash

We obtain our results by taking V to be the (extended) tangent bundle of a projective
variety and noting that P .V / also fibres over the secant variety. In the case that the
variety is an LQEL manifold, the irreducible components of a general fibre of the map
to the secant variety are nonsingular quadrics. As a result, the topological K–theory
of such a quadric carries a special relation in K–theory which turns out to be very
restrictive.

The problem of classifying Severi varieties was first posed by Hartshorne in his influ-
ential paper [7] and is closely related to his complete intersection conjecture. Since
Hartshorne’s motivation for this conjecture was partly topological (specifically, the
Barth–Larsen theorems) it is tempting to wonder, in view of the results here and of
Ionescu and Russo’s recent proof [12] of the complete intersection conjecture for
quadratic manifolds, what relevance topological K–theory may have for the complete
intersection conjecture.

2 LQEL manifolds

We recall the basic definitions for the reader’s convenience and to fix notation and
terminology. For examples, further details and proofs of the assertions below we
recommend Russo [15; 16], Fujita and Roberts [6] and of course Zak’s excellent
foundational monograph [21]. Our definitions are slightly simpler because we stick
to nonsingular varieties. We work over C throughout as we will obtain our results by
using topological K–theory.

Definition 2.1 Let Y �PN be a nonsingular irreducible projective variety with secant
variety Sec.Y /� PN and z 2 Sec.Y /�Y . The entry locus of Y with respect to z is
defined to be

†z.Y /D fy 2 Y j the line yz is a tangent or secant of Y g:

The general entry locus is a projective variety with pure dimension equal to the secant
deficiency, ie, for general z ,

dim†z.Y /D ı D 2nC 1� dim Sec.Y /:

Definition 2.2 Let Y �PN be a nonsingular irreducible projective variety. Following
Russo [16] we say Y is a locally quadratic entry locus (LQEL) manifold of type ı if
each irreducible component of a general entry locus is a nonsingular, ı–dimensional
quadric.
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Definition 2.3 Let Y � PN be a nonsingular irreducible projective variety with
tangent variety Tan.Y / � PN and z 2 Tan.Y / � Y . The tangent locus of Y with
respect to z is defined to be

�z.Y /D fy 2 Y j z 2 TyY g;

where TyY � PN is the embedded tangent space of Y at y .

The general tangent locus is a projective variety with pure dimension equal to the
tangent deficiency, ie, for general z ,

dim �z.Y /D ı� D 2n� dim Tan.Y /:

We recall Zak’s theorem that ı > 0 if and only if Tan.Y /D Sec.Y / so that in this case
we have ı� D ı� 1.

Lemma 2.4 Let Y � PN be an LQEL manifold of type ı > 0 and z 2 Sec.Y /�Y a
general point. For each irreducible component Q of the entry locus †z.Y /, the polar
of z with respect to Q determines a nonsingular hyperplane section F of Q. These
nonsingular .ı � 1/–dimensional quadrics F are the irreducible components of the
tangent locus �z.Y /.

Proof Let F be an irreducible component of �z.Y /. Since �z.Y /�†z.Y / we must
have F �Q for some irreducible component Q of †z.Y /. Since any tangent line
of Y passing through z can be obtained as a limit of secants of passing through z we
have

F D fy 2Q j z 2 TyY g D fy 2Q j z 2 TyQg DQ\Hz;

where Hz D fx 2M j q.x; z/D 0g is the polar of z with respect to Q, M � PN is
the .ıC 1/–dimensional linear span of Q and q is the quadratic form on M cutting
out Q.

Our key observation is that an irreducible component of a general tangent locus supports
some rather special topology as a result of the ambient LQEL geometry.

Proposition 2.5 Let Y � PN be an n–dimensional LQEL manifold of type ı > 0

and let F � Y be an irreducible component of a general tangent locus. Then

1CO.1/ j 2.n� ı/

in K.F /, where K.F / is the topological (complex) K–theory of F (with its analytic
topology) and O.1/ is the class in K.F / represented by the restriction of the hyperplane
section bundle to F .
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Proof We take up the ideas of Fujita and Roberts [6] and Tango [19] except that
instead of computing Chern classes, we derive a relation in K–theory. Thus let

‚D f.y; z/ 2 Y �Sec.Y / j z 2 TyY g:

Recall that the embedded tangent space TyY �PN used above is related to the intrinsic
tangent space TY by the exact sequence of bundles

(2) 0 �!O �! yTY .1/ �! TY �! 0;

where we have that yTyY �CNC1 is the vector subspace lying over TyY � PN and
yTY .1/D yTY ˝O.1/. We thus see that1 ‚D P .yTY /.

Note that we have natural maps

(3)

‚
f

��

g

##
Y Sec.Y /

and that the fibre of g above a point z 2 Sec.Y /�Y is naturally identified by f with
the corresponding tangent locus in Y .

With this setup in place, the proof is mostly formal. The result is a consequence of
the relation that exists in K.F / as a result of the generalized Euler sequence (1) with
V D yTY restricted to F together with the fact that F is a quadric. We thus consider
the following exact sequence on ‚:

(4) 0 �!O �! f � yTY .1/ �! T‚ �! f �TY �! 0

Furthermore there is a natural isomorphism O‚.1/' g�O.1/ and so when we restrict
(4) to an irreducible component F of a fibre of the map g we have

(5) f � yTY .1/jF ' yTY jF :

Now we simply collect up all the natural exact sequences to hand and interpret them as
relations in K.F / (forgetting the holomorphic structures). At the risk of being overly
explicit, we list all the exact sequences we need below. We use the notation P ı to

1Those comparing with [6] should note that the authors realize ‚ as P .E�/ , where E D yT�Y .�1/

(though they use Grothendieck’s convention for projectivization so the dual on E does not appear). It is
slightly simpler to realize ‚ as we do since then the tautological bundle O‚.�1/ (which appears later) is
not twisted.
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denote the linear subspace of PN that is the span of the quadric F :

0 // OPı
// OPı .1/ıC1 // T P ı // 0

0 // TF // T P ıjF // OF .2/ // 0

0 // TF // T‚jF // O2nC1�ı
F

// 0

Regarding these three sequences together with (2) and (4) as five equations in K.F /

in five unknowns we can solve for the class of yTY . Bearing in mind (5) we get the
following equation in K.F /:

yTY .1CO.1//D 2nC 2� ıC .ıC 1/O.1/�O.2/
D 2.n� ı/C .2C ı�O.1//.1CO.1//

Thus, letting W D yTY � 2� ıCO.1/ we have

(6) .1CO.1//W D 2.n� ı/;

which proves the result.

We can already extract useful information from this proposition using characteristic
classes. Taking the first Chern class of the identity (6) we get

2c1.W /D�.n� ı/c1.O.1//:

Thus if dim F � 3 since c1.O.1// 2 H 2.F;Z/ ' Z is a generator we must have
2 j n� ı as integers.2 However as we shall see a much stronger relationship holds.

Fujita and Roberts [6] and Tango [19] essentially pursued this characteristic class
approach (for Severi varieties) but only obtained partial results. To bring this approach
to fruition it would be necessary to fully characterize the image of K.F / under the
Chern character, as a maximal-rank lattice in H�.F;Q/. In fact it is easier to dispense
with ordinary cohomology entirely and stay in K–theory.

Thus to take full advantage of the result of Proposition 2.5 we need to know the ring
structure of K.F / explicitly. We have relegated a discussion of this purely topological
result to Proposition A.1 in the Appendix. With this in hand we can state the following.

Corollary 2.6 Let Y � PN be an n–dimensional LQEL manifold of type ı � 3 then

(7) 2Œ.ı�1/=2�
j n� ı

in Z.
2In fact although H 2.F;Z/ is not cyclic for dimC F D 2 we can still deduce that 2 j n� ı in this

case since c1.O.1// is not even and thus the relation holds as long as ı � 3 .
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Proof This corollary is an immediate consequence of Proposition 2.5 together with
Corollary A.2.

In other words, we have a new proof of Russo’s divisibility property for LQEL manifolds
(see [16, Theorem 2.8 (2)]) showing that it holds for topological reasons.

Remark 2.7 In fact Proposition 2.5 can be refined slightly: the class in K.F / de-
noted W in (6) can be represented by the normal bundle of the entry locus (restricted
to the tangent locus). Indeed if F �Q� Y is the inclusion of a (general) tangent locus
in an entry locus of Y then we have the following natural exact sequences involving
normal bundles:

0 // yTY // ONC1 // NY jPN .�1/ // 0

0 // NF jY
// NF jPN

// NY jPN
// 0

0 // NF jPı
// NF jPN

// NPı jPN
// 0

0 // NF jQ
// NF jY

// NQjY
// 0

Since NF jQ 'O.1/, NF jPı 'O.2/, NPı jPN 'O.1/N�ı we get

W DNQjY .�1/

in K.F /. In other words, we can refine Proposition 2.5 to

NQjY ˚NQjY .�1/ is topologically stably trivial restricted to F .

Also, there is presumably a holomorphic counterpart of this statement, just as there is
for the analogous statement (11) discussed in the next section (though it is certainly
not that the above holds as holomorphic bundles).

Finally we wish to comment on Severi varieties. We thus recall the following.

Definition 2.8 A Severi variety is a nondegenerate nonsingular irreducible variety
Y � PN of dimension n such that 3nD 2.N � 2/ and Sec.Y /¤ PN .

As we have noted, Zak [21] provided a beautiful classification of Severi varieties
showing that there are just four and that they correspond to projective planes over the
four division algebras. The hard part of the classification is proving that n2f2; 4; 8; 16g.

The first step toward understanding Severi varieties is the following result of Zak.
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Proposition 2.9 A Severi variety is an LQEL3 manifold of type ı D n=2.

Proof See Zak [21, Proposition 2.1] or Russo [15, Proposition 3.2.3].

Our motivation for this work was the remark of Atiyah and Berndt [2, pages 25, 26],
concerning a possible K–theoretic proof of the dimension restriction for Severi varieties:

“There is a striking resemblance between Zak’s theorem in complex algebraic
geometry and the classical results about division algebras and projective planes
Œ: : :� One is therefore tempted to expect a K–theory proof of Zak’s theorem.”

For emphasis we thus explicitly state the following.

Corollary 2.10 If Y � PN is an n–dimensional Severi variety, then n 2 f2; 4; 8; 16g.

Proof By definition n is even and if n> 4 then by (7) with ı D n=2 we immediately
find 4 j n and thence 2n=4 j n from which the result follows.

We thus answer Atiyah and Berndt’s implied question affirmatively. Moreover, granting
the purely topological result Proposition A.1 describing the ring structure of the K–
theory of the quadric, our methods provide an extremely short (and easy) proof that the
dimension of a Severi variety must be as above.

For the sake of completeness we provide the chronology of proofs of this result. It has
been proved by

� Zak (1982) [21] (see also Lazarsfeld and Van de Ven [14]) who used a detailed
algebro-geometric study of the entry loci and their mutual intersection properties,

� Landsberg (1996) [13] who studied the local differential geometry via the second
fundamental form and appealed to classification of Clifford modules,

� Chaput (2002) [4] who showed how to see a priori that a Severi variety is
projectively homogeneous,

� Russo (2009) [16] who established Corollary 2.6 by inductively studying the
variety of lines through a point in an LQEL manifold,

� Schillewaert, Van Maldegham (2013) [18] who show how to obtain the classifi-
cation over arbitrary fields using only the axioms of what they call a Mazzocca–
Melone set.

3In fact Zak’s result is slightly stronger: a Severi variety is a QEL manifold (in the terminology of [16])
ie, the entry loci are irreducible.
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3 Dual varieties

Proposition 2.5 is really just an examination of the consequences that exist in K–theory
as a result of the relation obtained from the generalized Euler sequence on the bundle
of embedded tangent spaces.

However there is another bundle of embedded linear spaces associated to any nonsin-
gular variety, the (twisted) conormal bundle, ie, if NY jPN is the normal bundle of a
nonsingular variety Y � PN and y 2 Y then there is a natural embedding of the fibre

P
�
N �

Y jPN .1/
�
y
� PN �:

It is thus natural to examine what consequences the generalized Euler sequence for the
projectivized conormal bundle has in K–theory.

Unsurprisingly, we will end up recovering known results (the Landman parity theorem
and a weak version of a result due to Ein) but it is instructive to see the parallels with
Section 2 and to obtain these results with such ease.

We thus define ˆD P .N �
Y jPN .1// and note that naturally ˆ� Y �Y � � PN �PN � ,

where Y � is the dual variety of Y . The analogue of the diagram (3) in this case is
then:

(8)

ˆ
f

��

g

  
Y Y �

This time the fibre of g above a general point H 2 Y � is the contact locus CH .Y /.
Identifying this fibre with its image under f we have

CH .Y /D fy 2 Y j TyY �H g:

The contact locus is well known to be a linear space of dimension kDN �1�dim Y � ,
the dual deficiency of Y . Since we will obtain a relation in K.CH .Y // we must
assume k > 0 in order to have nontrivial content.

Proposition 3.1 Let Y � PN be an irreducible nonsingular variety of dual deficiency
k > 0, let H 2 Y � be a general point and let NC jY be the normal bundle of the contact
locus CH .Y / in Y then we have

NC jY DN �C jY .1/

in K.CH .Y //.

Geometry & Topology, Volume 18 (2014)



K–theory, LQEL manifolds and Severi varieties 1253

Proof Referring to (8), we have the generalized Euler sequence for ˆ,

(9) 0 �!O �! f �N �
Y jPN .1/˝g�O.1/ �! Tˆ �! f �TY �! 0;

where we have used OP.N�
Y jPN

.1//.1/' g�O.1/ naturally.

Restricting to the fibre CH .Y / of g as in the proof of Proposition 2.5 and bearing in
mind that CH .Y / is a linear space we thus have the following natural exact sequences:

0 // O // O.1/kC1 // T CH .Y / // 0

0 // TY // T PN jY
// NY jPN

// 0

0 // O // O.1/NC1 // T PN // 0

0 // T CH .Y / // TˆjCH .Y /
// ON�1�k // 0

Regarding these four exact sequences together with (9) as relations in K.CH .Y // we
thus obtain

(10) N �
Y jPN .1/�NY jPN D .k �N /.O.1/� 1/

in K.CH .Y //. Since we are restricting to CH .Y / � Y we can instead express this
in terms of the normal bundle NC jY of CH .Y / in Y instead of NY jPN . These are
related by the natural exact sequence of bundles on CH .Y /

0 �!NC jY �!NC jPN �!NY jPN jCH .Y / �! 0;

and since CH .Y /� PN is linearly embedded NC jPN 'O.1/N�k . Thus eliminating
NY jPN the identity (10) becomes

(11) NC jY DN �C jY .1/

in K.CH .Y //. This completes the proof.

Corollary 3.2 Let Y � PN be an n–dimensional nonsingular irreducible projective
variety with dual deficiency k > 0 then

2 j n� k:

Proof Take first Chern classes of each side in (11). Since rank NC jY D n�k , we get

2c1.NC jY /D .n� k/c1.O.1//:

The result then follows since c1.O.1// 2H 2.CH .Y /;Z/' Z is a generator.
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The above corollary is known as the Landman parity theorem and was first proved by
Landman using Picard–Lefschetz theory (though not published). Subsequently Ein [5]
(using a result of Kleiman) provided a proof in which he established that (11) in fact
holds as holomorphic bundles rather than just as stable topological bundles as we have
shown (see also Tevelev [20, Theorem 7.1] and Ionescu and Russo [11, Proposition 3.1]).

We note that in contrast to Proposition 2.5, the fact that there exists a bundle satisfying
(11) in K.CH .Y // does not contain more information than we have obtained by noting
that c1.NC jY / is integral. For example the bundle V D .1˚O.1//˝O.n�k/=2 has
rank n�k and satisfies V ' V �.1/ for any n; k as long as 2 j n�k . There is thus no
analogue of the stronger Corollary 2.6 in this context.

On the other hand, the fact that it is not just any bundle but NC jY that appears in (11)
does of course contain more data. For example if Y is a nonsingular scroll of fibre
dimension l and base dimension m< l we can use it to calculate k .

Indeed since the contact locus for a scroll is necessarily contained in a fibre, ie,
CH .Y /�L� Y for a fibre L, we have the natural exact sequence of normal bundles

0 �!NC jL �!NC jY �!NLjY jCH .Y / �! 0;

but of course NC jL 'O.1/l�k and NLjY 'Om and so in K.CH .Y // we have

NC jY DmC .l � k/O.1/

in K.CH .Y //. The only way this is compatible with (11) is if k D l �m.

Appendix: K–theory of the quadric

To take full advantage of Proposition 2.5 we need to know the ring structure of the
K–theory of a nonsingular quadric. Surprisingly, this does not seem4 to appear in the
literature so we provide the necessary results here.

The calculation falls into two cases depending on whether the dimension of the quadric
is odd or even. As a CW–complex, the quadric has a cell decomposition with no odd-
dimensional cells and one cell in each even dimension except for the middle dimension

4We should qualify this remark by saying that since the n–dimensional complex quadric is diffeomor-
phic to the oriented real Grassmannian zG.2; nC2/ , it might be possible to extract the result we need from
Sankaran and Zvengrowski [17]. However as zG.2; nC 2/ is an edge case for the calculations in [17], it
was difficult to be certain if it was really covered. Furthermore the polynomial ring representation of the
K–theory given in [17] is not perfectly suited to our needs. For these reasons and because we needed to be
sure of the correctness of this crucial result, we decided to work from first principles.

Geometry & Topology, Volume 18 (2014)



K–theory, LQEL manifolds and Severi varieties 1255

in the case of the even-dimensional quadric where there are two cells. Thus5 if F is
our quadric then K1.F / vanishes and K0.F /DK.F / is free abelian with rank equal
to the number of cells, ie

(1) rank K.F /D

�
1C dim F for dim F odd,
2C dim F for dim F even.

To determine the ring structure of K.F /, we need to use more sophisticated techniques.
We shall represent F as a homogeneous space so that we can use the methods of Atiyah
and Hirzebruch [3] and Hodgkin [9]. Thus let dim F Dm� 1 and recall that there is a
natural diffeomorphism

F '
SO.mC 1/

SO.2/�SO.m� 1/
;

where of course by SO.k/ we mean the real Lie group. In fact we need F to be a
homogeneous space of a simply connected group. Thus we lift to the double-cover and
so regard6

(2) F '
Spin.mC 1/

Spinc.m� 1/
:

(We need to be a little careful with the above for mD 2; 3 but there is no real problem.)

In view of (2) we see that representations of Spinc.m� 1/ give vector bundles on F .
We wish to highlight the bundles corresponding to certain special representations.

Thus consider the double cover Spin.2/� Spin.m� 1/ of Spinc.m� 1/ and suppose
for now that m is even. If we let ZŒt; t�1� be the representation ring of SO.2/,
then R Spin.2/ D ZŒt1=2; t�1=2�. In addition there is the unique irreducible spin
representation ı of Spin.m� 1/ since m� 1 is odd. Neither t1=2 nor ı descends to
Spinc.m� 1/ but their product does. We thus let

X D bundle on F obtained from representation t�1=2ı of Spinc.m� 1/.

Similarly for m odd we define the bundles XC;X� by

X˙ D bundle on F obtained from representation t�1=2ı˙ of Spinc.m� 1/,

where ı˙ are the irreducible components of the spin representation (since m� 1 is
even). Note that rank X D 2m=2�1 and rank X˙ D 2.m�1/=2 .

5See eg Atiyah [1, Proposition 2.5.2].
6We often define Spinc.k/ as S1 �˙1 Spin.k/ . Fixing S1 ' Spin.2/ , it is clear that Spinc.k/ is

naturally the double cover of SO.2/�SO.k/ as we have defined it.
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Proposition A.1 Let F �Pm be an .m�1/–dimensional nonsingular quadric, m� 3.
Let LDO.1/� 1 2K.F /. Suppose m is even and let X be the bundle defined above,
then

� 1;L;L2; : : : ;Lm�2;X are a Z–basis for the torsion-free ring K.F /,

� Lm D 0 (obviously, for dimensional reasons),

� LX D 2m=2� 2X ,

� 2m=2X D 2m�1�2m�2LC� � �C2Lm�2�Lm�1 (this is equivalent to previous
bullet but shows why we need X instead of Lm�1 ).

Similarly if m is odd and X˙ are the bundles defined above, then

� 1;L;L2; : : : ;Lm�2;XC;X� are a Z–basis for the torsion-free ring K.F /,

� Lm D 0,

� LX˙ D 2.m�1/=2�X˙�X� ,

� 2.m�1/=2.XCCX�/D 2m�1� 2m�2LC � � � � 2Lm�2CLm�1 .

Proof For brevity, let G D Spin.mC 1/ and H D Spinc.m� 1/. We will use the
methods of Atiyah and Hirzebruch [3, Section 5] as well as Hodgkin [9] to compute
K.G=H /. Indeed as pointed out by Atiyah and Hirzebruch, there is a natural map

RH �!K.G=H /:

(This is simply the map induced by associating a vector bundle to a representation
of H and then extending to the full representation ring.) Now H is a maximal-rank
subgroup of G and so RG� RH . The restriction to RG gives only trivial bundles so if
we let RG act on Z by dimension then we have a natural map

RH˝RG Z �!K.G=H /:

Hodgkin [9, page 71] proves this map is an isomorphism since �1.G/D 1 and H has
maximal rank. Furthermore there is a natural exact sequence of RH–modules

0 �! RH � I �! RH �! RH˝RG Z �! 0;

where I � RG� RH is the augmentation ideal of RG (ie, the kernel of the dimension
map RG!Z). In other words for general reasons we have a natural ring isomorphism

(3) K.F /' RH=RH � I:
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To put this to use we need an explicit realization of three things:

� RG and the dimension map RG! Z with kernel I

� RH

� the inclusion RG ,! RH

We must now separately consider the two cases m even and m odd. We consider first
the slightly simpler case m even.

We shall follow the notation of Husemoller [10]; by his Theorem 10.3 we have that RG
is a polynomial ring:

RG' ZŒƒ1; ƒ2; : : : ; ƒm=2�1; ��;

and �2 D 1Cƒ2
1
C � � �Cƒ2

m=2�1
Cƒ2

m=2
.

Now H D .Spin.2/�Spin.m� 1//=f˙1g and so we have

RH ' .R Spin.2/˝R Spin.m� 1//Z=.2/:

If we let7

R Spin.2/D ZŒt1=2; t�1=2�;

R Spin.m� 1/D ZŒ�1; : : : ; �m=2�2; ı�;

then as above ı2D 1C�2
1
C� � �C�2

m=2�1
. The Z=.2/ action fixes the �i and changes

the sign of ı as well as the half-integral powers of t . We thus obtain

(4) RH ' ZŒt; t�1; �1; : : : ; �m=2�1;X �;

where X D t�1=2ı . Note that the above ring is not quite a polynomial ring, it is a
quotient by the ideal generated by the relation

(5) X 2
D t�1.1C�2

1C � � �C�
2
m=2�1/:

Finally the map RG ,! RH is described by

�D .t1=2
C t�1=2/ı D .1C t/X;

ƒi D �i C .t C t�1/�i�1C�i�2;

7We need to be a little careful for the case mD 4 below but there is no real problem. However the
statement clearly does not hold for mD 2 ; hence the assumption m� 3 in the proposition statement.
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for 1� i �m=2� 1 provided �0 D 1 and ��1 D 0. (These equations follow from the
expressions given by Husemoller in [10, Chapter 14, Sections 9.4 and 9.2].) By (3) we
thus have the following relations between the images of elements of RH in K.G=H /:

.1C t/X D dim�D 2m=2;(6)

�i C .t C t�1/�i�1C�i�2 D dimƒi :(7)

Using (7) inductively we remove the �i from any polynomial expression in RH given
by (4) and have only expressions involving t; t�1 instead. In other words we thus have
a surjection from ZŒt; t�1;X � to K.F /.

Now it is easier to work with nilpotent elements so let L D t � 1. Note that t

corresponds to O.1/ so this is indeed the L in the proposition statement. Then LmD 0

for dimensional reasons (its image under the Chern character would lie in cohomology
of degree at least 2m and dimR F D 2m� 2) and so we have

t�1
D 1�LCL2

� � � � �Lm�1:

We thus have a surjection ZŒL;X � to K.F /. Combining this with the relation (5) we see
that K.F / is spanned over Z by the classes represented by Li ;XLi for 0� i �m�1.
From here using (6) we see that K.F / is spanned by Li ;X for 0 � i � m� 1 and
then finally elementary computation reveals

2m=2X D 2m�1
� 2m�2LC � � �C 2Lm�2

�Lm�1:

Thus we can omit Lm�1 and still have a spanning set. Since there are m elements in
this set and we know by (1) that the rank of K.F / is m, this must be a Z–basis as
required. This deals with the case m even.

The argument for the case m odd is extremely similar. For the methods below we need
to assume m� 5 but the result for the case mD 3 is easily verified since in this case
F ' S2 �S2 .

This time we have

RG' ZŒƒ1; : : : ; ƒ.m�3/=2; �
C; ���;

R Spin.m� 1/' ZŒ�1; : : : ; �.m�5/=2; ı
C; ı��;

.�˙/2 Dƒ˙Cƒ.m�3/=2Cƒ.m�7/=2C � � � ;

�C�� Dƒ.m�1/=2Cƒ.m�5/=2C � � � ;

where ƒ.mC1/=2 DƒCCƒ� and the series end in 1 or ƒ1 according to parity (and
similarly for ı˙ and �˙ ). Then similarly to the case m even we have

RH ' ZŒt; t�1; �1; : : : ; �.m�5/=2; �C; ��;X
C;X��;
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where X˙ D t�1=2ı˙ and the map RG ,! RH is given by the same relation between
the �i and ƒi as for m even but

�C D t1=2ıCC t�1=2ı�;

�� D t1=2ı�C t�1=2ıC:

Using these formulae, the same argument goes through just as for m even to yield the
stated results.

Corollary A.2 Let F � Pm be a nonsingular quadric hypersurface, m � 3, and
suppose 1CO.1/ divides l in K.F / for some l 2 Z then

2Œ.mC1/=2�
j l

in Z. (The brackets in the power denote the integer part.)

Proof Set L D O.1/ � 1 as in the proposition. If m is even, let X be as in the
proposition and if m is odd, let X DXCCX� . Note that in either case we then have

.1CO.1//X D .2CL/X D 2Œ.mC1/=2�:

Since 2CL is not a zero divisor and X is part of a Z–basis the result follows.
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