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The genus 0 Gromov—Witten invariants
of projective complete intersections

ALEKSEY ZINGER

We describe the structure of mirror formulas for genus 0 Gromov—Witten invariants
of projective complete intersections with any number of marked points and provide an
explicit algorithm for obtaining the relevant structure coefficients. As an application,
we give explicit closed formulas for the genus 0 Gromov—Witten invariants of Calabi—
Yau complete intersections with 3 and 4 constraints. The structural description
alone suffices for some qualitative applications, such as vanishing results and the
bounds on the growth of these invariants predicted by R Pandharipande. The resulting
theorems suggest intriguing conjectures relating GW—invariants to the energy of
pseudoholomorphic maps and the expected dimensions of their moduli spaces.

14N35; 53D45

1 Introduction

Gromov—Witten invariants of a smooth projective variety X are certain counts of
curves in X . In many cases, these invariants are known or conjectured to possess rather
amazing structure which is often completely unexpected from the classical point of
view. For example, the genus 0 GW—invariants of a quintic threefold, ie a degree 5
hypersurface in P4, are related by a so-called mirror formula to hypergeometric series.
This relation was explicitly predicted by Candelas, de la Ossa, Green and Parkes in [7]
and mathematically confirmed by Bertram [5], Gathmann [11], Givental [13], Lee [20]
and Lian, Liu and Yau [22]. In fact, the prediction of [7] has been shown to be a
special case of closed formulas for 1—pointed genus 0 GW-invariants (counts of curves
passing through one constraint) of complete intersections of sufficiently small total
multidegree (see Givental [12] and [22]). It is shown by Bertram and Kley in [6]
and the author in [30] that closed formulas for 2—pointed genus 0 GW—-invariants of
hypersurfaces are explicit transforms of the 1—pointed formulas; this is extended to
projective complete intersections by Cherveny in [8] and Popa and the author [27].

The classical localization theorem of Atiyah and Bott [3] reduces the computation of
genus 0 GW-invariants of projective complete intersections to a sum over decorated
graphs. In this paper, we use the method of the author [31] for breaking such graphs at
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special nodes to show that closed formulas for N —pointed genus 0 GW-invariants of
projective complete intersections are explicit transforms of the 1—pointed formulas,
with the key link provided by the transform for the 2—pointed invariants obtained in [27].
We show that closed formulas for N —pointed genus 0 GW—invariants of projective
complete intersections, with N > 3, are linear combinations of N —fold products of
derivatives of 1—pointed formulas with coefficients that are polynomials of total degree
at most N — 3. While we describe two explicit ways of computing the coefficients
of these polynomials, the final formulas become rather complicated as N increases.
Nevertheless, our qualitative description of generating functions for N —pointed GW-
invariants as linear combinations of N —fold products of derivatives leads to some
simple-to-state qualitative results concerning these invariants; see Theorems 1 and 2
below.

Throughout the paper N > 3, n > 2 and / > 0 will be fixed integers and
a = (apk=1,,..1 = (a,....ap)

a tuple of positive integers, with N and a denoting the number of marked points and
the multidegree of a fixed complete intersection X, C P"~! respectively. Let

k=l
[N={1.2,....N}. la|=) ar. va=n—lal.
k=1

k=1 k=1 k=1 k=l
lall =) kar, (a)=]Jar. a®=]]a*. a'=]]a!
k=1 k=1 k=1 k=1

For any nonnegative integer d , we denote by 97?0, N (Xa, d) the moduli space of genus 0
degree d N —marked stable maps to X,. Foreach s =1,..., N, let

evs: Mo N (Xa,d) = Xa, s = c1(L]) € H* (Mo N (Xa, d)),

be the evaluation map and the first Chern class of the universal tangent line bundle at
the s marked point. Denote by H € H?(PP"~!) the hyperplane class.

The main theorem of this paper, Theorem A in Section 2.3, provides a closed formula
for the N —pointed version of the standard (one-pointed) Givental’s J—function. This
is a generating function for genus 0 GW-invariants,

s=N
l_[ (ybs ev® H),

s=1

(1-1) (o, HO... 1y HN) S, E/ |
Do, N (Xa,d)]'"

of a complete intersection X, C P"~! of multidegree @ with |a| < n. In particular, it
encodes the famous big J —function (which allows powers of only one i —class). The
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precise statement of this formula is quite involved and is thus deferred until Section 2.
We instead begin by describing some qualitative corollaries of Theorem A, Theorems 1
and 2 and special cases, Theorems 3 and 4.

Theorem 1 Ifn e Z%, a € (Z1)! and X, Cc P" ! isa complete intersection of
multidegree a, there exists C, € R™ such that

‘ (bylty, HY, ... bylpy HEN )X

N! -

forall N € Z%, d,by,...,by.c1,....,cNEZ.

This bound holds for d = 0, since

X, b b
(TblHC]v""TbNHCN>(),0=(a)(/ B HC1+ +CN+I)(/_ wll...wNN)
pn Mo, N

N -3
= (a)SCI ++CN5n_1_l (bl g e ey bN)

forall ¢q,...,cny =0, where /\710, n is the Deligne-Mumford moduli space of genus 0
curves with N marked points. Theorem 1 implies that for every Calabi—Yau complete
intersection threefold X, C P*~! (|a| =n, [ = n—4) there exists C € R* such that

Xo - VeV

“')O,d _d—N'Cd foralld, N e Z;

for N < 2, this bound also follows from the one-point mirror formulas. According to
Maulik and Pandharipande [23], the X, = P? case of Theorem 1 (Pandharipande’s
conjecture) and Givental [14, Theorem 1] should imply such bounds in all genera via
Maulik and Pandharipande [24]. In turn, the latter imply that generating functions
for GW—invariants of any genus have positive radii of convergence, as expected from
physical considerations. If n; is the number of degree d rational curves passing
through 3d — 1 general points in P2, by Theorem 1

_ M

Bd—-1)! —
for some C > 0. This recovers the bound established in the proof of [9, Proposition 3]
by Di Francesco and Itzykson using Kontsevich’s formula (see Ruan, Yongbin and
Tian [28, Theorem 10.4]).!

Cd

IThis bound for n 4 1s implied by the statement of [9, Proposition 3], but the argument in [9] does not
establish the proposition itself. It only establishes a positive lower bound on lim inf and an upper bound
on lim sup for the sequence {/n;/(3d — 1)! and not even that it converges.
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The rather direct approach of [9] can be used to obtain a bound as in Theorem 1 on
primary GW—invariants (by = 0 for all s in Theorem 1) of P and perhaps of P”.
While the recursions of Lee and Pandharipande [21, (1), (2)] reduce descendant GW—
invariants (bg # 0) to primary GW—invariants, they involve a significant number of
cancellations and do not appear to lead to the bound of Theorem 1, even for P”. We
instead deduce the nontrivial cases (|a| <n, N > 3) of this theorem from Theorem A;
see Section 5.

Theorem 2 Suppose n, N € Z+ with N >3, a € (Z1)!, X, C P! is a complete
intersection of multidegree a and (bs)se[n] and (cs)se[n] are N —tuples of nonneg-
ative integers. If there exists S C [N] such that bg + c¢5 < vq for every s € S and
Y ses bs > N =3, then
(tp, H', ... 1y HN) 4 = 0.

This theorem is an immediate consequence of Theorem A; see Remark 5.1. Because of
the condition on by, the assumptions of this theorem are never satisfied if v, = 0, |
(Calabi—Yau and borderline Fano cases). For the same reason, it is most useful if
|a| = 0 (projective case). For example,

(1-2)  (H"’ . gH"? . =0 forallN>3 b=12....n
N-2

The P!—case of (1-2) follows from the dilaton relation; see Hori, Katz, Klemm,
Pandharipande, Thomas, Vafa, Vakil and Zaslow [17, page 527]. For n > 2, tp H n—b
is not a divisor on 97?0, ~(P", d) and there appears to be no direct geometric reason
for the vanishing (1-2).

Theorems 1 and 2 are potential indications of fundamental properties of GW-invariants
that are out of reach of the current methods. Their statements have natural intrinsic
extensions to more general symplectic manifolds, formulated in the two conjectures
below. The failure of these conjectures would suggest that GW—invariants detect
whether a symplectic manifold is projective or even of some more restricted class (such
as a toric complete intersection); this would perhaps be even more astounding than if the
conjectures were true. Note that in Conjecture 1 the exponent (w, B) is the energy of
the J-holomorphic maps of class 8, while N + (w, ) is essentially the energy of the
induced “graph map”. Theorem 1 establishes the first conjecture for projective complete
intersections X, H; being in the image of the cohomology pullback for the inclusion
map X — P”, and g = 0. The approach of [23] should remove the genus restriction
and establish the dependence of Cx ¢ on g and even on X'. Theorem 2 establishes the
second conjecture for projective complete intersections X and Hy = H.
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Conjecture 1 If (X, w) is a compact symplectic manifold, g € Z and Hi, ..., H; €
H*(X), then there exists Cx ¢ € R™ such that

(b1'th, Hey ... DN oy Hon )X g < oN+oB)
N! - X

forall B € Hy(X), N,bs >0, ¢5 € [k].

Conjecture 2 Let (X, w) be a compact monotone symplectic manifold with minimal
Chern number v.2 If N > 3, (bs)se[n] and (cs)se[n] are N —tuples of nonnegative
integers, and Hy € H*¢(X) for every s € [N], then

(to, Hi, ... T HN)g g =0

if there exists S C [N] such that by + ¢s < v forevery s € S and ) by > N —3.
ses

The genus 0 GW—invariants of a complete intersection X, C P”~! are related to certain
twisted GW—invariants of P~ Let

1 v pr—1

jn

Mo, n (P, d)

be the universal curve over 97?0, ~N(P" 1. d). The GW-invariants of (1-1) then satisfy

(1-3) (tp, H, ... 1y HN) Y,
k=l s=N
= /_ l_[ e(msev® Opn-1(ay)) l_[ (wsbs evy H®).
mO,N(Pn_lyd) k:1 S=1
Since the moduli space 97?0, ~(P"~1 d) is a smooth stack (orbifold) and

k=l

P 7 ev* Opu-1(ag) — Mo.n (P" ' d)

k=1
is a locally free sheaf, that is, the sheaf of sections of a vector orbibundle V; over
Mo, ~(P""1.d), the right-hand side of (1-3) is well-defined; its computation will
be the main focus of this paper. In (2-1), we combine all GW—invariants (1-3) with

2Thus, ¢1(X) = Ajw] € H?(X;R) for some A € RT and v is the minimal value of ¢;(X) on the

homology classes representable by nonconstant J —holomorphic maps S% — X for every w—compatible
almost complex structure on X .
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fixed N into a generating function. We show that for N > 3 this generating function
is a certain transform of the N =1 generating function.

The main splitting principle of this paper described in Section 4.1 is valid for all a,
but the explicit expressions for the transforms apply only for v, > 0. This means that
the main equivariant statement of this paper, ie Theorem B, holds for any a for some
structure coefficients C 3) ; the main nonequivariant statement ie Theorem A along
with (2-34), holds for any a for some structure coefficients (@0 p.b if Ap is replaced by
its geometric analogue or equivalently by the nonequivariant analogue of (3-5). In the
Vg > 0 cases, we specify the structure coefficients c(d 9 and '@
the hypergeometric series

pb completely based on

k=l a)d
wY«® T T (agw +r)
(1-4) Fw,q) =Y ¢! ——==
d=0 T (w4 r)" —w)
r=1

This series also describes the one- and two-pointed GW-invariants of Xj.4 if vg > 0.3
In the remainder of this paper, we assume that v, > 0 for the purposes of all statements
directly related to explicit hypergeometric series.

The power series (1-4) in ¢ is an element of 1 + ¢Q(w)[¢] such that the coefficient of
each power of ¢ is holomorphic at w = 0. The subgroup

P C1+4qQw)g]

of such power series is preserved by the operator

M: 1+ qQ)gl— 1 +qQ)gl.  (MH}w.q) = {1 ; ——}(

H(w, q))
dg '

H(0,9)
We define I, € 14+ ¢qQ[q] for ¢ =0,1,... and J € ¢Q[g] by

if |a| <n,
Ic(q) = c .
{M F}(0.q) if |la] =n,
0 if la| <n -2,
(1-5) alqg if la| =n—1,
J = k=l
@ . § J kl‘[](akd)! (kil a;\id ;
9% | S —") if |a| = n.
fol@) /= @) k=1r=d+1

3For the purposes of Theorems 3 and 4, the term w” can be dropped from the definition of F.
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The power series J(g) is the coefficient of w in the power series expansion of
F(w,q)/Iy(q) at w = 0; thus, I1(q) =1+ q%](q) if |a| # n — 1. Similarly
to the 1— and 2—pointed cases, the explicit expressions of Theorem A for generating
functions for N > 3 involve the power series Ig, I1,...,I,_; and J; see Section 1.1
for some examples.

1.1 The Calabi-Yau case

If |a| =n, X, is a Calabi—Yau (n—1—1/)—fold. The virtual dimension of 97?0’ N(Xg, d)
and of the space of N —marked rational curves in X,

dim"" Mo N (Xg,d) =n—4—1+ N,
is independent of d in this case. If ¢y, ..., cy are nonnegative integers such that
ci+--+ey=n—4—-1+N,

the corresponding genus 0 degree d GW—invariant of X,

(1-6) NdX"(cl,...,cN)E/_ (evy HY) - (eviy HN),
[, N (Xa,d)]'"

is a rational number. These numbers define BPS states of X, via Klemm and Pand-
haripande [19, (2)], that are intended to be virtual counts of curves (rather than maps)
and are conjectured to be integers (see also Footnote 6). For a sufficiently small value
of the degree d, the corresponding BPS number is known to be the number of rational
degree d curves in a general complete intersection of multidegree a that pass through
general linear subspaces of codimensions ¢y, ..., cy.

Theorem A yields fairly simple closed formulas for the numbers (1-6) with N = 3,4.
Theorem 3 below follows immediately from (1-3), (2-1), (2-36), (2-20), (2-18), (2-41),
(2-43), (2-30), (2-37), (2-42), (2-3), (2-23) and (2-25).*

Theorem 3 Suppose n € Z*, X, C P""! is a nonsingular Calabi—Yau complete
intersection of multidegree a, I, and J are given by (1-5) and Q = ¢ -’ @ e qQ[q].
If ¢y, o, c3 are nonnegative integers such that ¢c; + ¢y +c3 =n—1—1, then

(1-7) Z QchgYa (¢1,¢2,¢3) = (a)sz?)c:cs .
d=0 (1—a%q)Iy(q)? ]:[1 ]:[1 I:.(q)

4Equation (2-41) is needed for (1-7) only; (2-43), (2-30), (2-37), (2-42) and (2-25) are needed for (1-8)
only.
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1042 Aleksey Zinger

If ¢y, ¢3, ¢3, c4 are nonnegative integers such that ¢y + ¢y +¢3 + ¢4 =n—1, then

(1-8) ZQdN;("(cl,cz,q,u)
d=0
B (a) {I’l—l—2C4( a’q _2[6(61))
s=4 c=cy 1—a? 1
(—wt ) [T o) i@

§=

Z Se, @ Sei1e, @ S, (@ Styies (q)}
—1 cs (q) SC] +c2 (9) SC] +c3 (q) Scz +c3 (q) ’

where ' denotes the operator q% and S, = If_l IZC_2 19
Since J(gq) € qQ[¢], there exists f(Q) € 0Q[ Q] such that g = Qef(Q). Thus, (1-7)

and (1-8) determine the numbers N(;Y“ (c1,¢2,c3) and N;(“ (c1,c2,c3,c4), respectively.
Since

19 S;(q)_sn_z_c(m_n—z—zc( a‘q 215«1))

Se(@)  Sn1-c(q) 2 \l-a% "Io(g)
forall ¢ =0,1,...,n—1[ by (2-23)—(2-25) and (2-3), (1-8) is equivalent to
o0

(1-10) " QN “(er.ca.¢3,c4)

d=0
(a) {C ( aq Zlé(q))
s=4 c=cy 1 1 —a? N I
(1—avq)13) [T T 1e(q) “a Tl
s=1rc¢
i (@) Siive,(@) 821+c3(q)_821+c4(q)}
Scs(Q) Scl—f—c‘z(Q) SC1+C3(q) SC1+C4(q) .

=1

By (1-9), the right-hand side of (1-8) is symmetric in ¢y, ¢3, ¢3, ¢4, as expected.
By (1-10),
N;("(cl,cz,q,q) =0 if0e{cy,ca,c3,C4},

as expected. By (1-7), (2-23), (2-24) and (2-3),

(@) ifd=0,

if 0 €
0 ifdso, T0€icnene)

N;(“ (c1,¢2,¢3) = {
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Since I1(q) =1+ q%](q), (1-7) and (1-10) immediately give

Xa
de(C23C3’C4) = Nd (lsC29C3’C4)’

as expected from the divisor relation [17, page 527]. By the divisor relation and (1-7),

7S oy Kag oy (@) (Qd_‘i)3
(“”{QdQ} 20N O =gl Gag)

d=0

whenever X, is a Calabi—Yau threefold, which recovers the famous mirror symmetry
formula [7, (5.13)]; see [31, Appendix B] for a comparison of notation. By the divisor
relation, (1-7), (2-23), (2-24) and (2-3),

(aH_Z Qdde“(Cl,Cz)Z(a)Ic}:r—(lq()q) ifeci+c=n—-2—-1,
d=1
(a)-i‘i QddZNX"(n—Ta—l):(a)IZ(‘]);
d=1 4 I1(q)

these identities are [27, Equations (1.5), (1.6)].
The first true cases of (1-7) and (1-8) occur for Calabi—Yau 6—folds and 7—folds:
(n,a,c1,c,¢3) =(8,(8),2,2,2), (n,a,cy,c2,¢3,¢4)=109,09),2,2,2,2).

Tables 1-4 show some low-degree BPS counts obtained from (1-7) and (1-8) via [19, (2)]
for all complete intersections X, C P71 with n < 10, of suitable dimensions,
with H¢ indicating that one of the constraints is a general linear subspace of P”~! of
codimension ¢;. All degree 1 and 2 numbers agree with the corresponding lines and
conics counts obtained via classical Schubert calculus computations (the 3—pointed
numbers for hypersurfaces can be found in Katz [18], which also describes the clas-
sical methods). The degree 3 numbers for the hypersurfaces Xg and Xo agree with
Ellingsrud and Strgmme [10]; the remaining degree 3 numbers can be confirmed by
similar computations. Most noteworthy is the agreement of the 4—pointed numbers,
since these do not naturally arise in the physics view of mirror symmetry as originally
presented by Greene, Morrison and Plesser in [15].° There are currently no direct
methods of counting curves of degree 4 or higher on projective complete intersections;
so the numbers in these degrees obtained from (1-7) and (1-8) cannot be compared
to anything. Finally, these BPS counts for ¢ < 100 and all compete intersections
X, c P"1 with n < 10 are integers, as expected.5
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d 1

4

Xs || 59021312
X»7 | 19133912
X36 | 9303984
Xus | 6536800
X206 | 7036416
X35 || 3936600
Xoaa | 3252224
X334 | 2589408

2 3
821654025830400 | 12197109744970010814464
52069545843672 | 150771900962422866056
9656915909184 10669913703022812624
4306289363200 3019921285456823200
4323279882240 2819049510852887040

1091194853400 321105896368043400
699998060544 159942140236292096
396151430400 64359976334347296

186083410628492378226388631552
448721851648931529402358688
12119013327306237518117376
2177140100777199737600000
1889305224389886741405696
97128823290992207460000
37565431180080918822912
10748812573405031454720

Table 1: Low-degree genus 0 BPS numbers (H 2 H®* H Nv for some Calabi—Yau 6—folds

d 1 2 3
(H? H3?, H) 51415320000 | 444475303469701680000 | 4089048226644406809222184680000
(H?, H?, H*) 38922224000 | 295035175517918176000 | 2467449594491156931046837776000
(H?, H? H?, H?) || 75062592000 | 1394799570099498816000 | 20109980886063766606715932224000

Table 2: Low-degree genus 0 BPS numbers for X;o in P°

Geometry & Topology, Volume 18 (2014)
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d 1 2 3
Xg || 1579510449 | 506855012110118424 | 174633921378662035929052320
Xog || 466477056 | 25865899481481216 1538349758855955308748800
X37 || 200848599 3684692607275358 72513809257771729565550
Xae || 122812416 1209608310822912 12780622639872867502080
Xs55 || 104480625 841277146035000 7266883194629367785000
Table 3: Low-degree genus 0 BPS numbers (H 2 H? H 3) for some Calabi—
Yau 7-folds
d 1 2 3
Xo || 2395066806 | 1718927099008463268 | 957208127608222375829677128
Xsg || 702562304 86939314932416512 8348345278919524413816832
X37 || 302321376 12364886269091538 392695531026064094763648
X46 || 184771584 4056318495977472 69156291871338627290112
Xss5 || 157178750 2820556380767500 39310596116635041745000

Table 4: Low-degree genus 0 BPS numbers (H?, H?, H?, H?) for some
Calabi—Yau 7—folds

1.2 The projective case

Throughout the paper, we denote by Z 1 the set of nonnegative integers. If N,d, neZ™,

let =N
_)g— Z7+H\N _
(1-11) PN(d)—{d_(dl,dz,...,dN)e(Z ) s;lds d},

Pr(d) = {d = (dy.d>..

For any p € Py (d), let

...dy) € Pn(d) | ds <nforall s € [N]}.

(p) =min{ps+1.n—1—ps|se[N]}.
If (cs)sernvy € (ZH)N, Tet

<S=N HC‘Y >Pnl
s=1 hs_w 0.d

by,ba,..., bn=0 " s=1

s=N .
= X (T NG

SThis viewpoint is extended to an arbitrary number of marked points in Barannikov [4].

%The genus 0 GW—invariants of CY’s with at least 3 marked points are integers; see McDuff and
Salamon [25, Section 7.3] and [28]. Since the GW-BPS transform of [19, (2)] is always lower-triangular
with 1’s on the diagonal and integers everywhere else if the number of marked points is at least 3, it follows
that the BPS numbers are integers as well in this case.
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Theorem A yields fairly simple closed formulas for the genus 0 GW—invariants of
projective spaces with 3 and 4 insertions. Theorem 4 below follows immediately from
(2-1), (2-36), (2-34), (2-41), (2-45), (2-20), (2-18), (2-14) and (1-4).”

Theorem 4 The 3— and 4—pointed Gromov—Witten invariants of P~ are given by

s=3 Hn_l_Ps ]Pin—l
Z <1_[ —> HP] HPZHPS
— 1 2 3
PlaP2aP320 s=1 hs w O’d

d'=1

s=3
(Hy + dshy)Ps
=2 >  Il— :

d’=0 deP3(d-d’) s=1 n
pEPY ((—d")n-2) hs rl;ll(Hs +rhs)

and
s=4 Hn_l—ps >Pn_l

HPI HPZHPS HP4
hs _ w 1 2 3 4

x|

P1,D2,P3,P4=0 s=1

s=4 - d’'=2 s=4 H, + dyhy)Ps
={ > GpD+(Zhsl)Z > }]_[ (d )
s=1

dep (d—l) d’ =0 deP (d_d,) s=1 K "
pePf(zn—4) IJG'Pg((‘g—d’)n—3) hs rl;ll (Hs + rhs)

0,d

Both identities hold modulo H!" and as power series in h3 ! .

Since the d = 1 Gromov-Witten invariant counts lines in P”~! the d = 1 case of the
4—pointed formula in Theorem 4 gives

(0¢,0¢,0¢,0¢,,G(2,n)) =min{cs +1,n—1—c5 |5 =1,2,3,4}

if g € Zt,Y 52V ¢y = 2n— 4, where o, is the usual codimension ¢ Schubert cycle
on G(2,n). As pointed out to the author by A Buch, this identity can be confirmed by
applying Pieri’s rule (see Griffiths and Harris [16, page 203]) to o, 0, and 0¢,0¢, and
counting pairs of dual cycles in its outputs. The d = 2 case of the 4—pointed formula
gives

(H', H HS H4E ) =0
This is indeed as expected, since every conic lies in a P? [16, page 177] and no P2 meets
general linear subspaces of P”~1 of total codimension 37 (the space of planes meeting

the constraints is the intersection of Schubert cycles in G (3, n) of total codimension
3n — 8 and is thus empty).

In this case, 615?? =30,q48p,s in (2-18) and (2-41); (2-45) is needed for the second identity in
Theorem 4 only.
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2 Main Theorem

In addition to the notation introduced at the beginning of Section 1.2, for any m, [l € Z*
we define
Um|={s€Z" |s<m}, [ml];={selm]]|s=1}

We denote by Py, ([N]) the set of unordered partitions S = {S;};e[m of [N] into
nonempty subsets S; such that one of them is {N}.% If p is an N —tuple of integers,
S C[N]and p’ € Z,let p|s and pp’ denote the S—tuple consisting of the elements
of p indexed by S and the (N + 1)-tuple obtained by adjoining p’ to p at the end,
respectively, and set

pls=1plsI=D_ ps.

seS

If Risaring and x = (x1,...,x) is a tuple of variables, let
R[x] = R[x1,...,xN]

be the ring of polynomials in xy,...,xy. If ® € Rg] and d € Z, let [®],.0 € R
denote the coefficient of ¢ ([®],.4 = 0 if d <0).

Let IP’]’(,_I = P"* )N Foreach s =1,..., N, we set
Hy=nfH e H*Py),

where 7y: ]P’I’\’,_l — P~ s the projection onto the s coordinate. Since 97?0, NP1 d)
is smooth, there is a well-defined cohomology pushforward

evi = {evy X - xevy bt H* Moy (P!, d)) — H*(P ).
With = (hy,....hn), 8" = (h71. ... hy!) and H = (H, ..., Hy), let
> e(Vq)
2-) Zh H Q)= 04 eV*{ =
g L=V (s — )

8More precisely, Py, ([N]) consists of unordered partitions with a choice of some ordering for each of
the partitions.

} e H* @l ol
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By (1-3), this power series encodes all genus 0 GW-invariants of X, with constrains
that arise from P! If b = (by,...,by) € ZV, let

s=N
nt =TT,
s=1

2.1 An asymptotic expansion

The power series F defined by (1-4) admits an asymptotic expansion w — oo which
plays a central role in this paper and which we now describe.

Define
L(g)€1+4¢Qg]l by L(9)"—a"qL(¢)"' =1€Q[q].
(2_2) k=I r=ay i=|al .
Xo-x1:- - xa €Q by ] []@D+r)=a® ) xja-i D' € Z[D].
k=1 r=1 i=0

In the two extremal cases, (2-2) gives

(1+g)t/n if la| =0,
2-3 L(g) =
(2-3) @ {(1—a”q)_1/” if |a| = n.
Setting x; =0if i <0 or i > |a|, we find that

_lal+1
=—5
For m, j € Z, we define H,,,j € Q(u) recursively by

(2-4) xo=1, xi

(2-5) Hm,j =0 unless0=<j=<m, Hoo=1,

u—1 d .
(’W@ +m _])Hm—l,j—l(u)a

Hm,j(u) = Hp—1,j (1) + |a|+—vau

if m>1,0=<j <m. In particular, for m > 0,

m\ u-—1
2-6 =1, H = T Er—
(2-6) Hm,o(u) m,l(u) (2) @] + vau
Finally, we define differential operators £, ..., £, on Q[g] by

k

27 £ = Z [(’:) L" My j—i (L")

i=0 k—i
al—r D}
—(L"-1) E (l |i )Xrﬂla—i—r,k—i—r(Ln):| ’

r=0
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where D = q%. By (2-6), (2-4) and (2-2), the first of these operators is

L"—1 vgnL" H—l)
2-8) & = L)1 D a
(2-8) L1 =(la]+va ){ + || + vg L™ (2(|a| + Vg L") 2

1/2
=(m|+vaLﬁ{((EJ;%TZ;) LU+DM)
¢ " 1/2 -1
D((| I Ln) L(l+1)/2) }
al+v,

Proposition 2.1 The power series F of (1-4) admits an asymptotic expansion

o0
(2-9) F(w,q) ~ f@w Z @b(q)w_b asw — 0o,
b=0

with &, ®1,... € qQ[q] and ¢ € 1 + q@ﬂq]] determined by the first-order ODE’s

(2-10)  1+&(q)=L(g). £1Pp+ 22% 1t L 7 nPb1-n =0,
where ®p, =0 for b < 0.
From (2-8) and (2-10), we immediately find that
i (+1)/
2-11 do(q) = | ———— | L@tV
@1 o= (o) L@

In the extremal cases, this reduces to

() < [L@ 2= 147D i fa] = 0,

(@) = L(q)(l—i-l)/Z =1 _aaq)—(l-i-l)/Zn if a| = n.
Proposition 2.1 in the |a| = n case is proved by Popa in [26, Section 4], building up
on the @ = (n) case contained in [29, Lemma 1.3 and Theorems 1.1, 1.2 and 1.4] by
Zagier and the author. The remaining cases are addressed in Appendix A.

(2-12)

2.2 One- and two-pointed formulas

By the dilaton relation [17, page 527] and [12, Theorems 9.5,10.7,11.8], the generating
function (2-1) with N =1 and the degree 0 term defined to be (a)Hll hq is given by

(2-13) Z(hy. Hy, Q) = (a) Hle™7 @w1p, Flwi,q1)
Io(q1)

where wy = Hy /hy, gyedovat @) = Q/Hlv" . The generating function (2-1) for N =2
is given in [27, Section 2] in terms of certain transforms of F, which we describe next.
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Define
d

(2-14) D: Q(w)[g] — Q(w)l¢l. DH(w,q)={l+ %@}H(u},@a

k=l ajd—1

[T [T (arw+r)
(2-15) Fow.g)= Y wred £ 120 eP,

a0 {1 (o +ryr—w)

r=1

(2-16) Fp=DPFy=MPFyeP forallp=12,...,1.

In particular, F; = F. For v, > 0, we also define c},ds) , Cl(i)p 145 €Q with p,s,d >0
by

/ akd
0o 00 00 (w+d)? l—[ l_[(akw+r)
d k=1r=1
> D v’ Z y
d=0s5=0 d=0 H (w+r)”
r=1

2-17
( ) =wprF(u),q/u)va),
P—vad;
Z Z Cl(-cii-llz l-l—r s‘a;?) = 50,d8p,s for all d,S c Z+,S <p-— Uad.
di+dy=d r=0
dl 7d220

The second equation in (2-17) expresses the numbers Cl(j-)p j4s Withs = p— Vad
l(-i-l)l—i-r with d{ < d, since c§,§ = 0p,s; the numbers Cl(i)p I4s with
s > p —vgd will not be needed. In particular, E,§f’s) =0p,s forall p,s >1. For p>1,

set

in terms of €

MPF(st) ifl)a:()’
2-18 Fy(w,q) =3 o p—l-vad @
19 p(w.4) > > iDsF(w,q) if vg > 0.

wP l—vaqd—s

Thus, F, € P for all p € Z* by (2-17) and F, = DP~'F unless p > [ + v,.
By [27, Theorem 3], the generating function (2-1) with N = 2 and the degree 0
term defined to be the image of ((a) H! H. /hy + hy) (H' ' — HI ) /(H, — Hy)) is
given by

2-19) Z(hy,hy, Hy, Hy, Q)
2
_ @ r@wi-T@w: )3 sl—[ /ACHTY

A1 +h2 DI+ pamt—1+1 5=1 Ips—l(q)

p1,p2=l
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where wy = Hy/hy, gse®vat @) = 0/ HY* .

Remark 2.2 The mismatch in the indexing of [/, and F is unfortunate for the pur-
poses of this section. However, the choice of the indexing for the former is intended to
simplify the explicit formulas for the Calabi—Yau complete intersections in Section 1.1,
while the choice of the indexing for the latter is intended to simplify some of the
formulas in the proof of Theorem A in the rest of the paper.

2.3 Multipointed formulas

Similarly to (2-19), the generating function (2-1) for N > 3 is a linear combination of
the N —fold products

s=N Ds
Hg® F ,
(2-20) Ap (h, H, Q) = hs 1;3 (lws CIS)
s n
s=1 [T 1 (QS)
r=ps—I
= Sova J (@s) — Va i N

where ws = Hy /hy, gse®va = Q/Hg*, with p=(p1, p2,..., pN) € |ln];* and
with coefficients that are polynomials in A7, .. Lhy ! of total degree at most N — 3.

These coefficients are described below 1nduct1ve1y using the coefficients CIE s) defined
above and the asymptotic expansion of F(w,q) provided by Proposition 2.1.

For r <0, we set I,(¢) = 1. By Proposition 2.1, (2-14)—(2-16) and (2-18), there are
asymptotic expansions

Fp(w, p) (9)
(2-21) #Neé(q)w (qo)ém} . E D,.p (@Qw™? asw— oo,
[T Ir(@)
r=p—I ’

with @,.9 € 1 +¢Q[g] and @1, Pp.», ... € ¢Q[g] given by

r=p .

~ ~ ~ I\ ~

Ppt1p = LPpp + (D;);b—l - ( § : f)q)p;b—l
r=0

(2-22) forall p € Z, ®g,p = Pp,

00 p—Vvad JA )
_ > Cp s q Qs 1:b—(p—vad—s)(q) ifvg >0,
q’p;b(ﬂ) = Yd=0 s=0
D,_1:6(q) if vy =0,
where &)p;b =0if b <0, ”C‘IS?Q = §0,48p,s unless p,s >/, and " denotes q% as
before. In the Calabi—Yau case, v, = 0, the recursion (2-22) for the coefficients
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D, = CTDP_;;;, in the asymptotic expansion (2-21) is obtained using the first two
identities in the following lemma.’

Lemma 2.3 [26, Proposition 4.4] If |a| = n, the power series I, defined by (1-4)
and (1-5) satisfy

(2-23) Iy_j—p=1p, forallp=0,1,...,n—1,
(2-24) Ioly -1, ;= L"
(2-25) sl 0 = D)2

For example, by (2-22),

o0 E(d) dq
D.P—Va .
(2-27) M — L(q)p_l d2=:0 L(g)vad if vg > 0,
Do (q) 1 if vy = 0,
and @ J
o0 Sp.p—vadq Pi1(q)
Ya=o “igyrar By
(1)
D, A
(2-28) qf’l((? — L(g)?" ZI- vad(Q))~( )
h + Y= OT"# if vg > 0,
2 1 A0, (g) if vy = 0,
where
Elgiv) =0 ifs+ved > p,
(2-29)

r=p
_ p(p—=1) L’ I

In the two extremal cases, (2-12) gives

_(=pp L’ if |a| =0,

(2-30) AW = 1 ’ ,L
4 (p+l)pL Z(p—r)l if la| = n.

9The last identity in Lemma 2.3 follows from the first two; it was used in Section 1.1.
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fmeZt,d teZ and ¢ = (¢c;),eg+ € (ZT)®, let

Sm(d.t) ={(p.b) € In]|" xZ™ | |p| = |b| =n =2+ (m—=1)( +2)

2:31) ~+ ved + nt},
) P2 © @ cr
O = —2(—1)mtlel I —(——) .
me = 7z (D" +le) ljl —\o T
For any p, p’ € ||n]| and b,b’.d,t € Z, let
80vq (1+0n .
] (1) [ T b= 0.b4b =1 p+ '+
(2-32) 40— = n—141
(p.p"),(b,b") + 1,
0 otherwise.

For any N —tuples p € ||n]|V, b € (Z1)N with N >3 and d,t € Z, we inductively
define

i=m
0 d;.t)
233) W= 3 > > ((Hcms,.p;,ms,.b;)
md' '€l SePy(IN]) b'e(Z )" =l
m=>3 dePy(d—d’) ce(ZT)>®
tEPy (t—t') ” =m—
(0 b)) eSm(d ) 1P T lel=m=3

|[¢ ( )i]:"[n 10(9)2®p§;b§+1+b§/(Q)H )
X -3,c\q ’
e i=1 bIL(g)%0va"®o(q) | giar

-0 (di i) -0 : :
where ®,.;, =0 if b <0 and Cpls, plbls, bl = 0 if b; <0 and |S;| > 2. By induction,

2:34) M £0= 1B <N =3, |pl—|b|+vad +nt=(N-1)(n—2)+2+1.

Since ®py—3,c. Ppripr 41457 € qQ[gq] unless ¢ =0 and b; + 1+ 5] =0,

N =3
(2-35) CS{’;) = 3|p|+nt,(N—1)(n—1)+1( b )

Theorem A Suppose n, N € ZT, with N >3, and a € (Z)! is such that ||a| <n.
The generating function (2-1) for N —pointed genus 0 GW-invariants of a complete
intersection X, C P"~! is given by
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s=N

@36 26.1.9) = @eww( - 3 Jaoms )

s=1

o0
XXX Xyt A (0 Q).

pelnl) be(ZH)N d=0

where wy = Hy/hy, gsebvasas) = Q/HY* and ge®var@ = Q.

‘We show in Section 3 that this theorem follows from Theorem B.

By (1-3), (2-1), (2-36), (2-35) and (2-20),

N =3
(fbl(Hcl),...,TbN(HcN))()){‘:):8|c|,n—1—l(a>( b )

whenever b;, ¢; > 0, as expected.

By (2-32), for each p € ||n]|, there exists a unique pair (p,?,) € ||n]] X Z such that

d,tp) ’ .
C(p.).(bb)) # 0 at least for some b,b',d € Z:

m—1+1—p,0) ifp>1,

(2-37) (p.1p) = {(l—l—p,l) if p</.

For any p € ||n||V, let

s=N
(2-38) tp= Y tp,=l{s €[N]| ps <1}l.
s=1

‘We note that

~(d
(2-39) Clg,])?_uad#O:p+vad+(n—l)tpSn—l.

IfN>3, peln||N,be(@ZH)N,deZ" and t € Z satisfy the last property in (2-34)
and |b| = N —3, the only nonzero terms in (2-33) arise from (m, ¢) = (N,0), p; = p;,
b; = —1—b; and b]' = b;. If in addition vg # 0, by (2-27), (2-11) and Lemma B 4,

d’'=d d’ +n(l+1—tp)

@n _(N-3 ~(d—d") [[nL(g)" ’
(2-40) Cp.b —( b ) E C5 |[ »
d’ =0 q;d

la| +vaL(q)"
d'=d
_(N-3 ayd’ (4" 1= 1p\<(d—d')
(%) Zer (T
'=0
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with the binomial coefficients defined as in (B-5) and

~(d) _ ~d) <) _ ~(dy)
Cﬁ = Z CA C = Ca
dePn(d) s=1

If v4 = 0, the last property in (2-34) imposes no restriction on . In this case, we
find that

@0 d N —3\ L(g)"
(2-41) Y iy =( )—
— p;b b Io(q)?

In the vg = 0 case, the last property in (2-34) forces t > 0 and 7, = 0 if 7 =0,
whenever |h| = N — 3. The proof of Theorem A implies that the right-hand side of
(2-40) also vanishes if either # <0 or =0 and 7, > 0. By (2-39) and the last property
in (2-34),

n=D(d +t+1—tp)—(la|-Dd"+1t—1>0

whenever the d’—summand in (2-40) is nonzero; this implies that
1<tp—t=d

whenever the triple product in (2-40) is nonzero and either <0 or =0 and 7, > 0.
The explicit expression on the right-hand side of (2-40) thus provides a direct reason
for the vanishing of c;d’;) in these cases.

If N = 3, the only possibly nonzero coefficients in (2-36) are CS{’(?); these are given

by (2-40) and (2-41). If N = 4, the only possibly nonzero coefficients in (2-36)

are cp’(;) and
’ do)y _ (@do) _ (d0) _ (4,0

€p,1000 = €p,0100 = €p,0010 = €p,0001°

with p € [[n]|*; the latter set of coefficients is given by (2-40) and (2-41) whenever p
satisfies the last property in (2-34) with N =4, |b| =1 and t = 0. We next give a
formula for the former set of coefficients. For p,d € Z, define

(2-42) [pla.[Pla-ta(p).ta(p) €Z by 0=[pla.[pPla <n—1,

[pla +vad +ntg(p)=p, [pla+[pPla +nta(p)=n—1+1.
If p.d € Z*, let
Y(p.d)={p1+pr+tvaldi+ds), p1 + p3+va(di +d3), pr+ p3+va(dr+d3)}.

If v, =0, [pla. [P]la and Z,(p,d) do not depend on d or d, and so we omit
[-]4 and d from the notation in this case. In the v, = 0 case, a direct computation
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from (2-33), (2-41), (2-32), (2-26), (2-27) and (2-28) gives

o (d.0) L(g)"*! (1) - W
,0) d _ 1 1
(2-43) Cpo 4 = 10(q)? { E Aﬁr_;(‘])_ E A [(q)}
d=0 p'—1€X,(p) s=1

whenever p satisfies the last property in (2-34) with N =4, |b| =0 and 1 = 0.

Ifve#0,d,d,peZt andt=0,1, let

ad’+n(1—t)
~dp) _ [nL(g)” (d) ) £ @
' L(g)A},
Cp’d H la| +vaL(q)" ( psp—vad @ ~I=va d(q)+ PP uad—l) q:d’

Pr=vad [ al v Ligyr P ed

d' —t 4z ()
ad~
+( d/ )(a ) pp Vad 17

the equality above holds by Lemma B.4. On the other hand, by the second equation
in (2-29), (2-11), (2-2) and Corollary B.5,

la| + va L(g)" gid’
d/
p—1(a® /
- —(7) @ial ~=p) Y lal - var)®

2
di+dr=d —1
dy,d>»>0

—(d' =1+ 80 g)tplald ™)

whenever ¢ = 0, 1. In particular, we have that c(0 ) = 0. For d , p € ZF such that
p=<2n—1,let

ED = T (anys (ds + Tdy+ds (P) — tdy+ds (P))

d ePy(d) ds

<(d2) E(dl sTdy+d3 (D))
[[P]]d2+d3 [Play+d;—vada~ [Play+as.da

Since 0 < p <2n-1,

(d3 + Tay+d; (P) — ldy+d; (P))~(d2) L0 14 a.(p) €10.1)
2 3 ’

ds [Play+as 1Play+a3—vad2
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by (2-39), and so (hfg,d) is well-defined. For example, 61(,0) =0.Ifv, #0,7, =0
and p satisfies the last property in (2-34) with N =4, |h| =0 and ¢ = 0, then

R Y (D . .

=0 d ePs(d—d’) “2n—2+I—p'eZ(p.d)

(T S )

r=1 "sel4]—r

This is obtained by a direct computation from (2-33), (2-40), (2-32), (2-26), (2-27)
and (2-28) except the vanishing of the coefficient of ®(¢) follows from Corollary B.8.
If ”c'l(;’ ) £0 in (2-44), then

| < ps+veds <n—1 foralls €[4
by the assumption that 7, = 0 and (2-39), and so
[<p' <2n—-2—1 if2n—241—p €Zy(p.d);

thus, the right-hand side of (2-44) is well-defined. In the case of a projective space,
a = J, the above formulas give

_2@=D) g —=0.d' > 0.t =0,

2n __[plo(m—=[rlo) - d>0
D _ ) _peep) if (g d' )= (0.1,1), CW@ = mo Td=0.
pd/ 2n 1(’ .’) (’ k) )’ p 0 lfdzo’
0 otherwise;
(2-45) @0 [0 ifd =02,
2 min{ps + 1, n—1—ps} ifd=1;

the last statement holds under the assumption that | p| + nd = 3n —4.

The N —pointed formula of Theorem A takes the simplest form in the two extremal
cases, vy = 0 (Calabi-Yau) and v, = n (projective space), as EIS?;) = 80,40p,s in these
two cases. However, it is also straightforward to compute all the relevant coefficients in
the intermediate cases. For example, for a cubic threefold X3 C P4, the only nontrivial
coefficients clgds) are

~(1) _~(1)

€31 = C4,1
as computed in [27, Section 2].19 From this, (2-40) and (2-44), we find that the only
nonzero coefficients in the N = 3,4 cases of (2-36) with d € Z* and b = 0 are

101y this paper, the subscripts on € are shifted up by / from [27].

Geometry & Topology, Volume 18 (2014)



1058 Aleksey Zinger

=6, O =15 =36 D =126, 30 =216

Ci133,0 = €230 = 113,0 — 122.0 = 11,0 —
(1,00 _ 1,0 _ 2,00 _ 2,00 _ 3,00 _
C1333,0 = 0. Cp330 =13 €330 =72,  Ciph3 =252,  Cyyp;39 = 048,

(2,00 _ (3,00 _ 4,00
Crpan0 = 129, Ciipp 0 =2484, ¢y o =>5184,

where 133 denotes any of the tuples (1, 3, 3), (3,1, 3) and (3, 3, 1) and similarly with
the other subscripts. From (2-36), we then find that

(H* H. H)) = (H>.H.H,H)}3 = 18,
(H? H? H)) = (H* H* H H)), =45,
(H3. H* H)g3 = (H* H* H, H) =108,
2 12 g2 opg2\Xz _
(H? H? H? H?*) =2187,
X X
(H?, H? H*)33 = 3(H*, H?, H? , H)33 = 378,
(H®, H3 H? H?)}} = 7452,
X X
(H, H?, H*)§3 = 5(H>, H?, H’, H)§ = 648,
(H3, H H3 H*)}3 = 15552,

These conclusions are consistent with the divisor relation. The above invariants are
enumerative at least for d = 1,2,3. The degree 1 and 2 numbers agree with the
classical Schubert calculus computations on G(2,5) and G(3, 5), respectively. The
approach of [10] can be used to test the two degree 3 numbers.

Based on (2-33), the coefficient c(d 9 in (2- 36) w1th p € ||n]]N involves the power
series @, of Proposition 2.1 with r =0,1,. —|b| only. By (2-43) and (2-44),
only the power series ®¢ enters in the N = 4 case. For N =5, the power series @
and ®, do enter in the final expression for c(d(;) ) However, at least for a = (n),
ie when X, is a Calabi—Yau hypersurface, ®, cancels with <I>2 / ®o (these two power

series are equal in this case).

2.4 Alternative description of the structure constants

G b) defined above as sums over N —marked trivalent

We now describe the constants ¢
trees.!! It is fairly stralghtforward to see that the two descriptions are equivalent; this

also follows from the two variations of the main localization computation in Section 4.

(d.1)

The constants p p With £ >0 can be described in the same way as well, but they are not needed in
this approach.
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A graph consists of a set Ver of vertices and a collection Edg of edges, ie of two-
element subsets of Ver. In Figure 1, the vertices are represented by dots, while each
edge {v1, v} is shown as the line segment between vy and v,. For such a graph T’
and v € Ver, let

Ey(I') ={e €Edg|vee}

be the set of edges leaving v. A graph (Ver, Edg) is a tree if it is connected and contains
no loops, ie for all v, v’ € Ver with v # v’ there exists a unique ordered collection

V] =V, V2, ..., U;—1,Um =V € Ver,
with m > 2, such that

Hvr,vad vz, v3}, ..o {Um—1, vm }} C Edg.

An N —marked graph is a tuple I' = (Ver, Edg; n), where (Ver, Edg) is a graph and
n: [N]— Ver is a map. In Figure 1, which shows examples of 4-marked graphs, the
elements of the set [V] = [4] are shown in bold face and are linked by line segments to
their images under 1. An N —marked graph I' = (Ver, Edg; n) is called trivalent if

my = valp(v) — 3 = [Ey(D)| + |7 (v)| =3 >0

for every vertex v € Ver. There is a unique trivalent 3-marked tree; the four trivalent
4-marked trees are shown in Figure 1. For any N —marked tree,

(2-46) > my+|Edg| =N -3.

VE Ver
2 >< 3 2: :3 3 : :2 4 : : 3
1 4 1 4 1 4 1 2
Figure 1: The trivalent 4—marked trees

We will call a partial ordering < on a set Ver linear if for any pair of distinct incompa-
rable elements vy, vy € Ver there exists a third element v € Ver such that v < vq, v;.
A finite linearly ordered set Ver has a unique minimal element vy € Ver. For each
trivalent N —marked tree I' = (Ver, Edg; 1), we fix a linear partial ordering < on Ver
so that if v < v, then there exist

V1,...,Unm € Versuch that v;_; < v;, {vj_1,v;} € Edgforall i € [m + 1],
where vo = v, Vyp =012

128uch a partial ordering is determined by the minimal vertex vg, which could be taken to be n(N),
for example.
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For every edge e € Edg, let v, , v} € Ver be the elements of e C Ver with v;” < v}.
For each v € Ver, let
E, () = {e € Edg | v; = v}

be the set of edges descending to v. If v # v, let e, € Edg be the unique edge
descending from v.

Let (p,b,d) € unﬂfv x (Z1t)N x Z7* be a tuple satisfying the two properties on the
right-hand side of (2-34) with ¢t = 0, I" = (Ver, Edg; n) be a trivalent N —marked tree,
and

d = (dy)vever € Pr(d) = Pver(d)
be a partition of d into nonnegative integers. We denote by
Sr(p.b.d) C ||n|/B% x (ZT)Ede x zVer
the subset of triples (p’, b’,t) such that
247y Y (Bs+b)+ Y (Po—1-b)+(pl, +bl)

sen—1(v) ecE, (IN)
=n—34 my+2)( +1)+vedy + nty

for all v € Ver, where p is as in (2-37) and we set p;v + be, = 0 if v = vy. Each
choice of b’ determines p’ and t uniquely by solving (2-47) for p, and t, starting
with maximal elements of Ver and moving down; the equation for v = vy will then be
automatically solvable for #, because of the last property in (2-34). Furthermore, for
every (p'.b’,t) € Sr(p.b.d),

with 7,/ as in (2-38).
If (p,b) € Hnﬂ;\’ x (ZT)N, d e Z satisfy the last property in (2-34) with ¢ = 0, set

248) D=3 N (iR 3 I1 |[<I>mv,cv(q)

T dePr(d) b//e(z+)N;b—’b+E(Z+)Edg VEVer
(p"b".)ESr (p.b.d) ()vever€((Z )

16”11 () + 1B |y (o) +b25 +llew =y

Sovgnt,/
(O ”_ L A" Pe P arp— ’
< 1] poiby=bs (D) I (q) Puibs +1+6,(q)
bi'do(q) b7 !1®o(q)

sen—1(v) ecEy, ()

IO(Q)Zchév;bj;_bév (Q)ﬂ
b IL(q)%va"®o(q) g,
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where b;'; s 0, the last fraction is defined to be 1 for v = vy, and the outer sum is taken
over all trivalent N —marked trees I" = (Ver, Edg; n). For example, the contribution of
the one-vertex N —marked tree is

b el PN ()

=D Z cI>N—3,c(€() l_[ W -

b"e(@ )N, ce(ZT)> s=1 s q;d
[5”|+lc|=N-3

If |b| = N — 3, this gives (2-40) and (2-41) with #,7, = 0.
For a nonzero summand in (2-48),
bs < b} foralls €[N], |b"|<N —3—|Edg|;

the latter inequality follows from (2-46). This implies the bound on b in (2-34). If
deZ" and (p,b) € |n] fv x (ZT)N do not satisfy the last condition in (2-34) with

J— ’0 —_—
t =0, set Cpb = 0.

In the Calabi—Yau case, v, =0, the collection St(p, b) =Sr(p, b, d) does not depend
on d . In the projective case, v, = n, the collection of pairs (p’, b") does not depend
on d. As t, in (2-47) is determined by b’, we abbreviate the elements of Sr(p, b)
as (p’,b’) in either case. In these extremal cases, (2-31) and (2-12) reduce (2-48) to

d,0 ’ )
Cop =D, 2 (HPHY 2 L@ O ¢, )
T (p/b)EST(pb)  b/e(@H)N b= b+ e(Z+)me
(cv)veVere((ZJr)oo)velr

1B”1,—1 )y +1b ™ ez ) +b, +llewll=my

s=N q’ﬁs;bé’—bs (q) ®ﬁé;b;+1+bg (Q)Cppé;bj_bé (q)
Iy > 11 :
q;d

b1®4(q) b7 b 1D (q)>

s=1 ecEdg

where

(Dra(cv)UEVer

L lal—@—1-D) Ver| o o, \eur
= _1 mv+‘cv| | r .
~ T (( e+l TT — (55500

0 vEVer r=1

The coefficients c;d’bo) must be invariant under the permutations of [N] (same permu-

tations in the components of p and b). For N > 4, this is not apparent from either of
the above two descriptions of these coefficients, even in the extremal cases; thus, this
is a consequence of the proof of Theorem A below. In the case of (1-8), this invariance
can be seen directly using Lemma 2.3, as indicated in Section 1.1.
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3 Equivariant GW-invariants

In this section we first review the relevant aspects of equivariant cohomology; a more
detailed discussion can be found in [31, Section 1.1]. We then state an equivariant
version of Theorem A and use it to obtain Theorem A.

We denote by T the n—torus (C*)". Its group cohomology is the polynomial algebra
on 7 generators:

Hy = H*(BT;Q) = Q] = Q[ . . ., an],
where o = (@1, ..., 0,) and ; = ¢y (y*) if
7i: BT - BC*=P* and y — P

are the projection onto the i component and the tautological line bundle, respectively.
Let
HE = Qa=Q(aq,...,00) and Z CQley,...,0n] CHT

be the field of fractions of Hy and the ideal in Q[a] generated by the elementary

symmetric polynomials 01,03, ...,0,—1 in ay,a7,...,0,, respectively. Let
& =(-1)""0,€Qq. r=0.1.2..... Dy=]](ej—a).
J#k

where g = 1.
If T is acting on a topological space M , let
Hy(M)= H*(BM:Q), where BM = ET x1 M,

be the equivariant cohomology of M . The projection map BM — BT induces an
action of Hy on Hy(M). We define

HT (M) = Hp (M) O HT.
If the T —action on M lifts to an action on a (complex) vector bundle V — M, let
e(V)=e(BV)e Hp (M) CHp (M)
denote the equivariant euler class of V.
Throughout the paper we work with the standard action of T on P”~!:
@0, )z, oz =€z, ez,
it has n fixed points

Py =[1,0,...,0, P, =[0,1,0,...,0],..., P, =[0,...,0,1].
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The T —equivariant cohomology of P ]’\’,_1 with respect to the induced diagonal T —action
on P#~! is given by

(3-1) HFf(PH ) = Qlo, x]/{(xs—ay) -+ (xs—ap) s =1,..., N},

where x = (x1,...,x,) and xy = 7fx if wg: P41 — P! is the projection onto
the s component and x € Hy (P"~1) is the equivariant hyperplane class. For each
peln|V,let

i=N
xP =[] xt e HF @}
e

these elements form a basis for Hr, (IP’]’@_I) as a module over H7 = Q[«].

The action of T on P”~! naturally lifts to the tautological line bundle y, the vector
bundle

k=l k=l
L= y @k = @ Opn—i(ag) — P71,
k=1 k=1

and the tangent bundle 7P"~! so that
(3-2) e(D)|p = (@)}, e(@P" Np = [] (@—a) foralli=1.2.....n.
1<k=n

k#i

Via composition of maps, the action of T on P”~! and £ induces actions on the
moduli spaces 9y v (P!, d) and

Vi =Mon(L.d) = Mo n(P".d)
so that the evaluation maps
ev=evy x---xevy: Moy (P d) - Pl & Mo n(L,d) —eviL,
are T —equivariant. In particular, V; has a well-defined equivariant euler class
e(Va) € Hf (Mo, n (P"~', d)).

Since the bundle homomorphisms €V are surjective, their kernels are again equivariant
vector bundles. Let
V] =keré&v, — Mo, (P"~ 1, d).

With A and ﬁ_l as in (2-1) and x as in (3-1), let

33  Zhx Q=) 0% {#} € Hy (P D" Q1.
d=0

[T (s =)

s=1
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where ev: ﬁo,N(P”_l,d) — P]’(,_l : for N = 1,2, we define the coefficient of Q°
to be

[
(a)x
(a)x{ and —7 +7; Z Orxflxé’{
Lt patr=n—1
PlaPZJZO

respectively. For each p € ||n]], let

G4 Zphx.Q)=x"+) 0%evi, {%} € Hp(P" O™, 01

d=1
where evy, evy: 9710,2(]?”_1 ,d) — P"1_ Similarly to (2-20), let

s=N
_ 1 Z, (h, x5, Q)
(3-5) Zphx. Q)= [] ry—— :
s=1 H 1) (g5)
r=ps—I+1

Theorem B Suppose n, N € Zt, with N > 3, and a € (Z1)! is such that ||a| <n.
The generating function (3-3) for equivariant N —pointed genus 0 GW-invariants of a
complete intersection X, C P"~! is given by

36  Zhx.Q=( Y. Y. Y g Z,0.x. 0)

pe|n|N pe(z+)N d=0

for some CI(;?, € Q[«] such that

(3_7) C(d) Zc(d t)’\t

(d.1)

where ¢ b € Q are the numbers defined above Theorem A.

Setting &« = 0 in Theorem B and using [27, Theorem 3], we obtain

s=N

39 2 12.0) = (wewp( - L g

s=1

oo
x DY ey et h T Ay HO).

pe(n|IN be(Z+)N d=0

This implies Theorem A provided c; ’b) =0 if pg </ for some s € [N]; this is shown

in the next paragraph.
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Suppose instead cfi’bo) # 0 for some triple (p,b,d) with p; </. Choose (p,b,d)
minimizing pp, as well as minimizing d for the smallest possible p;. We show that

_1— 1 Xa d.,0
(3-9) (o, H'17P1 gy HP PN X = (a)c D)
By (1-3) and (2-1), this GW-invariant is the coefficient of

s=N

Qd 1_[ hs_(bs +1) HsPs

s=1

of the right-hand side of (3-8). Suppose a triple (p’, b’,d’), with c;d,i’bo,) # 0, contributes

to this coefficient. Since the lowest power of H in the coefficient of a product of
powers of ¢ and A~ ! in H? Fy(w, q) is min(p, /), Py = p1 by the minimality of p;
and thus d’ = d by the minimality of . Since the coefficient of ¢° in H? F,(w, q)
is H?, p; = ps forall s € [N] and thus b = by for all s € [N]; this gives (3-9). Since

H""1=Pi|y =0 for p; <!/, we conclude that c;d’bo) =0.

The proof of Theorem B below provides an algorithm for computing the structure
coefficients Cg{z completely. On the other hand, they may be irrelevant in many
applications. For example, the one- and two-point equivariant generating functions (3-3)
play a key in the localization computation of the genus 1 GW-invariants of Calabi—
Yau complete intersections in [31; 26], but the structure coefficients lying in Z are
ignored. Similarly, the equivariant generating functions with N < g with the structure
coefficients lying in Z ignored should play a key role in computing genus g > 2
GW-invariants of complete intersections.

4 Proof of Theorem A

4.1 Localization setup

If T acts smoothly on a smooth compact oriented manifold M , there is a well-defined
integration-along-the-fiber homomorphism

/ . HE(M) — HE
M

for the fiber bundle BM — BT . The classical localization theorem of [3] relates it
to integration along the fixed locus of the T —action. The latter is a union of smooth
compact orientable manifolds F and T acts on the normal bundle N'F of each F.
Once an orientation of F is chosen, there is a well-defined integration-along-the-fiber
homomorphism

/:H{'f(F)—>HE.
F
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The localization theorem states that

(4-1) /w=2/ il e HE forall y € HE(M),
M F F

e(NF)

where the sum is taken over all components F of the fixed locus of T . Part of the
statement of (4-1) is that e (N F) is invertible in HT.(F).
The standard T —action on PK,‘I has n™V fixed points

P; P x--ox Py,

1...l'N =

The restriction maps on the equivariant cohomology induced by P;,...;n, — PZ’\’I_I are
the homomorphisms

4-2) Hj“f(P]’(,_l)—)Q[al,...,an], xs—>o, s=1,...,N.
By (3-1) and (4-2),
n=0e Hy(Py") & nlp, ., =0€Hf forallij=1,2,....n,s=1,....N,

ie an element of H (P ]’(,_1) is determined by its restrictions to the n”V T —fixed points.

Foreach i = 1,2, ...,n, the equivariant Poincaré dual of P; in P”~! is given by
(4-3) ¢i = [ [(x —ew) € HF(@"71).13
k#i

Thus, by the defining property of the cohomology pushforward [31, (1.11)], the power
series Z(h, x, Q) in (3-3) is completely determined by the n’V power series

o) s=N
s bi
4-4) Z(h, o, in. Q) = Qd/ e(Vyg) (evs—s)
N ; Mo N (B—1,d) d SEII hs — s

where o, ..iny = (®iy, ..., Qiy)-

A_s described in detail in [17, Section 27.3], the fixed loci Zr of the T —action on
Mo n (P"~1, d) are indexed by N —marked decorated trees T'. An N —marked deco-
rated tree is a tuple

(4-5) I' = (Ver, Edg; i, 0, 1),
where (Ver, Edg) is a tree and

w: Ver—[n]={1,...,n}, 0:Edg—Z%, n:[N]— Ver,

1311 other words, if 1 € Hq"f (P"~1), then nlp, = fPi nlp, = Jpn—1 ;.
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are maps such that
(4-6) w(vy) # pn(vy) if {vy, v} € Edg.

In the first diagram of Figure 2, the value of the map p on each vertex is indicated
by the number next to the vertex. Similarly, the value of the map © on each edge is
indicated by the number next to the edge. By (4-6), no two consecutive vertex labels

are the same. Let
ITI= )" de).
ecEdg

For each e = {v,v'} € Ey(T), let uy(e) = (V') € [n].

Figure 2: A decorated tree, with special vertices indicated by larger dots, and

its decorated core

If T is a decorated tree as in (4-5) and v € Ver, let

valp (v) = [Ey(D)[ + 77! (v)]
be the valence of v in I'. If in addition we have that N > 3, the core of T" is the tuple
' = (Ver, Edg; j1,7) such that

(R1) (Ver, Edg) is a tree, Ver = {v € Ver | valr(v) >3} and i = ] vers

(R2) {v,v'} e Edg if and only if v, v’ € Ver, v # v’ and for some m > 0 there exist
distinct

Vi,...,Um € Ver—Ver such that {v;_;,v;} € Edg forall i € [m + 1],

— — /.
where vg = v and v+ =V,

(R3) if s e n~1(Ver) C [N], 5(s) = n(s); if s € n~!(Ver —Ver), there exist distinct
elements

Vi,...,Um € Ver—Ver such that {v;_;,v;} € Edg forall i € [m + 1],

where vy = 7(s) and vy, = 1(s).
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The core of a graph with N > 3 is obtained by repeatedly collapsing all vertices with
valence less than 3 onto their neighbors, until no such vertices are left; see Figure 2.
We will call the vertices Ver of the core I the special vertices of .

The localization formula (4-1) reduces the restriction of (3-3) to each fixed point
Pi..iy € IP’I’:,_I to a sum over decorated trees. This sum can be computed by breaking
each such tree I' at its special vertices into strands, with each of the strands keeping a
copy of the special vertex, with its label, which will have a new marked point attached;
see Figure 3. There are three types of strands:

(S1) one-marked strands
(S2) strands with two new marked points

(S3) strands with one new marked points and one of the original N marked points

’—‘\ e e 1
. e1 2 4 3 3 3 4
1 1 2 4
N 3 N2 o1 S
3 2 1 2 3 2 4 3

Figure 3: The strands of the graph in the first diagram in Figure 2.

By (4-1), each one-pointed strand at a special vertex v € Ver C Ver contributes to

'3
eV1 ¢j

4-7 Z*(h,a;, Q) = ”’/ v :

where j = u(v) € [n] is the label of the vertex v of I' and

V;v — ﬁo,l(Pn_l, d)

is the kernel of the surjective vector bundle homomorphism €v;: V; — ev} L. By the
dilaton relation [17, page 527],

Ztha. 0= 0 [ eoz:,)(evT U)=i2 . 0)
d=1

Mo »(P—1,d) h—1

Each of the two-pointed strands contributes to

eVT b, eV; bj»

e(Vy) )
/ﬁzo,z(Pnl,d) Dy — Y1 hy— V2

00
Z*(hl,h2aaj1’ajz’ Q)= Z Qd
d=1
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where ji, j» € [n] are the labels of the vertices to which the marked points are attached.
Thus, the power series Z (%, x, Q) in (3-3) is determined by the previously computed
power series for one- and two-pointed GW-invariants.

While the number of one-marked strands at each node can be arbitrary large, as indicated
in [31, Sections 2.1,2.2] it is possible to sum over all possibilities for these strands
at each special vertex; see Corollary 4.3 below. On the other hand, the number of
special vertices, the number of two-pointed strands of type (S2), and the number of
two-pointed strands of type (S3), are bounded (by N —2, N —3 and N, respectively).
Using the Residue Theorem for S2, one can then sum up over all possibilities of the
markings for each of the distinguished nodes. Thus, the approach of breaking trees
at special vertices reduces (3-3) to a finite sum, with one summand for each trivalent
N —marked tree.

The description of the structure constants c(d’bt) in Section 2.4 is obtained by breaking

the trees at all special vertices. On the other hand, the description in Section 2.3 is
obtained by breaking at the special vertex 7(/N) only. In addition to the strands (S1),
we would then obtain strands with marked points indexed by the sets S; LI {0}, for a
partition {S;};e[m] of [V] so that one of the sets S; is { NV }. With either approach, the
main step is summing over all possibilities for the strands (S1), as done in Corollary 4.3.

4.2 Notation and preliminaries
If £ = f(h) is a rational function in % and ho € S?, let

R {f(h) = gﬁf(h)dh

h=hg
where the integral is taken over a positively oriented loop around # = ¢ containing

no other singular points of f, denote the residue of f(%)dA at A = hy. With this
definition,

RS0} == R (w2 fw ),

If f involves variables other than 7, JRy—p,{ f (%)} will be a function of such variables.
If f is a power series in ¢ with coefficients that are rational functions in # and possibly
other variables, denote by Ry, —z,{ (%)} the power series in ¢ obtained by replacing
each of the coefficients by its residue at A =hq. If #1, ..., Ay is a collection of distinct
points in S 2 et

_ {f(h>}=Z R A0
Toeees l—l =h;

be the sum of the residues at the specified values of #.
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We denote by
Qy =Qler.0, . D' C Qo

the subring of rational functions in «jq, ..., ®, with denominators that are products
of 0, and D, . Let

/ —n/ +1
Qa;h,x = Qq[h, x ]((x+rh)"—x” [TE=" (x—ase +rm)—[1K = (x—a) [reZt) C Qu (7, x)

be the subring of rational functions in «y,...,®,, # and x with numerators that are
polynomials in «q,...,«,, h and x and with denominators that are products of

on, Do, x, (x+rh)"—x", H(x—ozk—l—rh)—l—[(x—ak), with r e ZT.

If R is one of the rings Q/,, Q. [x*!], or Q,,.; . and fi and f; are elements of R
or R[Q], we will write f; ~ f5 if f; — f3 liesin Z- R or Z- R[Q], respectively. By
the next lemma, certain operations on these rings respect these equivalence relations.

Lemmad4.l (1) If f€Q).., ., thereexists g € QL [x*1] such that
hﬁ% {f(h,x =aj)} =g(x =aj) foralljcn]
=0

9(? { g(x) }EQ&.
H(x o)

() IfgeQ[x*],

(3) Forevery peZ,

_ 3 { x? }N{G,z itp=n—1+nt witht € Z,
0 ifp+1¢nZ.
H(x k)

x=0,00

Proof If f € Q:x;h,x , then
4-8) R {f(hx =aj)}= (R {f0h0)})]x=;,
RS x)} € Qo™ 0y (1) 7],

where 0,_1(x) = Zl_l Hk;éz (x — o). The first claim of this lemma thus follows
from the observation that

1

op—1(x)

(B (e e),

X =0j i=1 k#i
k;él

for all j €[n].

_(xj
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The second claim is immediate from the third. The third claim of this lemma follows
from the power series expansions

1 o0 o
~—r—1 X" &' w
— —_— O’ s —_—
5, = o 2o
r=0 r=0
around x = 0 and w = 0, respectively. |

We will also use the residue theorem on S2:

> R A=0

X0ES 2
for every rational function /' = f(x) on S2 D C.
4.3 Equivariant one- and two-pointed formulas

The most fundamental generating function for GW-invariants in the mirror symmetry
computations following [12] is

49 Zh,x,0) =1+ Z*H,x,0)

=1+ 0% {; (_V;’f) } € Hy (P""H[~". 0],
d=1 !

where ev;: 9710,2(?’”_1,61) — P71 and V:i — Dﬁogz(P”_l,d) is the kernel of the
surjective vector bundle homomorphism &év;: Vg — evy £. By [12],

Z(h.,aj, Q) € Qq(h) forall j €n).
Thus, we can define {(¢j, Q) € O -Qq[Q] and Z, p(e;, Q) € Qu[Q] by
{(aj, Q)= R {In(1+ Z"(h,a;, )},

~ ad ! !
Zppley0)= Y LM

m’!

k=m’ ( l)bk b
Sy (1_[ AR A (h’aj,Q)}),

beP,, (m—B+m’) ~ k=1

m'=0

for m, B € Z7T. Since the power series Z* (h,x, Q) has no Q—constant term, the
above sum is finite in each Q—degree. It is shown Section 4.4 that the power series
gm, B(x, Q) describe the contributions of the strands (S1) at a vertex v of the core of
a tree with m, = m (with m, computed with respect to the core). Define

(a)x}
hy 4+ hy

Z(hi,hy,x1,x2,0) € — + Hy Py Hin ' ny ' 0]
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by
o0
V)
Z*(hy, by, x1,X2,0) = d oy { e }
ka2, 0) = 2 0% e \ Gy G, =)
; (a)x!
“-10) Z(h, o, x1,00,0) = — H; Y Gxlxp?
! 2p1+p2+r=n 1

P1,P2,r=0
—{—Z*(fll,hz,xl,xb Q)’

where ev: 97?0,2(]?”_1 ,d) — IP’;_I is the total evaluation map.

Proposition 4.2 The power series (4-9) and (3-4) admit expansions

(4-11) Z(h.aj. Q) =@ DN " wy (o), Q)P
b=0
(4-12) W = E@ DS o, 0)A,
1 1@ b=0
r=p—I+1
for some ¢, W, W, € QL[xE1[Q] such that
Dp(q) lIo(@)Ppip(q) , 4
4-1 v, LA Ca LAY
(4-13) Yy (x, Q) ~ To@) x77 Wyp(x, Q) ~ Liq)ie" :

where ge®val@ = Q /xVa

Proof The existence of the expansion (4-11) follows from [31, Lemmas 2.2 and 2.3],
but a direct argument is provided below and in Appendix A. Let

k=l r=ayd
N T T G 1)
= =1
Vhx.g)= gt =L =

0 ( & —ap + - T1 (x—ak>)
r=1 k=1 k=1

€ (Qp.x NQalx)lA~'DIOL-

By [17, Section 29.1],

xbov Y(h.x.q)

To(q)

@14 Zhx.0) =exp( T 4 1 )—)
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for some f € ¢Q[g¢] (which is 0 unless vy = 0), where ge®va’ @ = Q. Since

hod)!
Yhx.q) = {1+ Lag | Yolh.x.0)

with Vo (%, x, q) given by (A-1), Lemma A.1 implies that Y(#, x, ¢) admits an expan-
sion of the form

o
(4-15) V(h,x,q) = SN "0y (x, g)h”
b=0

with £(x,q), Po(x,q), P1(x,q),... € Qu(x)[g]. Since
§(x.q)= R AnY(.x.q)},

By (x,q) = R 71 EEDEY G, x, ),

V(h.x.q) = F(w.q) €q-IQl ..

where w = x /#, Proposition 2.1 and the first statement of Lemma 4.1 imply that there
exist

E(x,q), Do(x,q), D1(x,q), ... € QulxEq]

such that
~ m ~

V(h,aj.q) = cE@DMN" By (aj, q)h  forall j € [n],

(4-16) h—0
Ex.q) ~E(@)x, Pp(x.q) ~ Pplg)x" forall bez?t.
By (4-14) and (4-16), (4-11) and the first statement in (4-13) hold with
Dp(x,q) _ Dp(x.q)
Io(q) Io(q)

The existence of the expansion (4-12) follows from the existence of the expansion (4-11)
and the description of Z,(%,x, Q) as a linear combination of the derivatives of
Z(h,x, Q) in [27, Theorem 4]. By [27, Theorem 4],

{(x,0) =E(x,q)—J(@)x + f(@)o1, ¥p(x,0) =

F )
Z,(h,x, Q) ~ e—J(q)wxPM‘
I p—I (q)
Along with the first statement in Lemma 4.1 and (2-21), this gives the second claim
in (4-13). o
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Corollary 4.3 For all m € ZT and ¢ € (Z+)™, there exists Uy, . € QL[xT|[Q]
such that

4-17) Zpm (o), Q)

B
. ((—1)’”‘"“”(m_”c”)s‘(oej,Q)B‘("’"'“”)\Ifm,c(aj,Q))

ce(Zt)oe

forall Be Z% and j € [n] and

m+3
(4+-18) e (x, Q) ~ (%) e (g1,

where ge®val@ = @ /xVa
Proof By Lemma B.2 and (4-11), (4-17) holds with

(4-19) Wpe(x, Q)

I ; o0 L 1 \Ilr(x, Q))Cr
=(-1) (m+|0|)!%(x’Q)m+1rl:[lc,z((rﬂ)!%(x,Q) '

Along with the first statement in (4-13) and (2-31), this implies (4-18). O

Lemma 4.4 There exists a collection {Cp_p, }p, e|n) C Qo][Q] such that

1 1 (). Q)
(4-20) mhﬁo{h}:_bjLeXp(—Jh%)Z(h_,h_F,Otj_,O{j_i_,Q)}
b—=by (—l)b—
- Z ( ho— Z Co_ps (Db, —b (. Q)
b_=0 - P+,p—€[ln]
Zp_(h—.aj_, Q) )
n—I—1
h ]_[ Iy (q)
r=p_—Il+1

forallby € Z% and j_, jy €[n] and

L(g)ovat0Dn o .
(4_21) Cpp (Q)N WQ’,’ 1fp_+p++nl‘=n—1+l,t=0,l,
- 0 otherwise,

where geb0vat (@ = Q.
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Proof By [27, Theorem 4],

h_ +nh
@2) =z by x x4, 0)

(a)
SERD SRR M
p—+pr+r=n—1+l p_+pr+r=n—1+I

p—.p+€|n|,reZ* p—.p+€|n).rezt
p—,p+=l p—,p+<l

X6y Zp (h-.x—. Q)Zp, (hs.x4.0).

Combining this identity with (4-12), we find that (4-20) holds with

n—I[—1 n—I[—1

(4-23) cp_p+(Q)=( ] Ir(q))( I1 Ir(q))8n_1+z_p__,,+

r=py—I+1 r=p_—l+1
1 if p_, p4+ </,
xq—1 if p_, py >1,
0 otherwise.
Along with the first two statements in Lemma 2.3, this implies (4-21). m|

4.4 Main localization computation

We now prove Theorem B, with each of the two definitions of the structure con-
stants c;d ’If)’ by summing up the contributions of the T —fixed loci Zr of

Mo,n (P, d),

with d € Z*t. As outlined in Section 4.1, this will be done by breaking each T (and
correspondingly each fixed locus Zr) at either one special vertex, v = t(N), or at
every special vertex of I".

Let " be a decorated tree with N marked points as in (4-5). Let

I = (Ver, Edg; i, )

be the core of I' as in Section 4.1 and v = 1(V). Similarly to Figure 3, we break I'" at
the vertex v € Ver C Ver into strands ', indexed by the set E,(T") of the edges with
vertex v in I'; each strand I'. keeps a copy of the vertex v and gains an extra marked
point, which will be labeled e, attached at v. For each e € Ey,(I"), denote by S, C [N]
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the subset of the original marked points carried by the strand I'.. Let
Ey(I) ={e € Ey(I) | Se # @} U~ (v).
Ey(I') ={e € Ey(I") | S, = &},
Ey(T) = EX(I) UE}(T) C Ey(") U[N].

Thus, |E,(T)| > 0, |[EX(T")| > 3 (because T is a trivalent tree) and {Setecrr () €
Pex@)((N]), where S, = {e} if e € 1 (v).

The fixed locus Zr corresponding to I', the restriction of e()) to Zr, and the euler
class of the normal bundle of Zr are given by

Zr=Mog,mx [ 2r.

ecE, (")
e(V) mge(V)
(4-24) e(Lyuw) ecE, ) ¢ (Luw)

e(Tu(v)P”_l) _ 1—[ e(TM(v)]P’”_l)
e(N2Zr) e(NZr,) (B, —mtve)

ecE, (")

where MO,EU(I‘) ~ MO,IEU (T)|+|n—1(v) 1S the moduli space of stable rational E,(T)-
marked curves,

h, = ci(Ly) € H* (Mg g, )

is the first Chern class of the universal tangent line bundle for the marked point
corresponding to the edge e, and

o0
Te: Zr — Z]“'e C U ﬁto,seu{e}(Pn_l,de)
de=1
is the projection map. By [17, Section 27.2],

_ %uy(e) — %u(v)

1ﬂe|2?re - b(e)

Thus, by [17, Exercise 25.2.8],

1 1
4-25 0
( . Mo 5, {( l_[ hé_”ékwe)( 1_[ he—‘/fe)}

e€E, (") een—1(v)
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— (_1)|EU(F)| / {(
Mo By ()

1_[ w—be—lh/bg)

be(Z+)Ev(F) e€E,(T)
(1)
een—l(v)
- ¥ [Ey()| -3 I Uu) = %)\
— b o(e)
be(Z1)Ev@) e€E, ()

X ( 1_[ he_be_l)}.
een=!(v)
Combining this with (4-24), (3-2) and (4-3), we obtain

]_[ (a,u(v) —ag)

kAR() e(V) FN(@V? %)
4-26
( : (a>ai(v) - e(N2r) SI:II hs — Vs
Ey(I)| -3 L
= 2 {(| (b)l ) I (hsbs 1 n(“u(v)_“k))
be(Z+)Ev(@™ sen—1(v) ki
< 1 ((O‘M(v)_O‘Mv(e))_bg_1
¢€Ey(T) o(e)
x/ e(V)ev; bu(v) l_[ (ev;‘ bi, ))}
Zr, (a)aL(v)e(NZFe) ses, hs — s

The equality holds after dividing the right-hand side by the order of the appropriate
group of symmetries; see [17, Section 27.3]. This group is taken into account in the
next paragraph.

We now sum up (4-26) over all possibilities for T". If e € E/(T"),
eV) _

1%
(@l e(V),
with V' = Vlll“el as in (4-7). Thus, in this case, by [31, Section 2.2]
—be—1
4-27) Z Q|r6| (O‘uv(e) _“u(v)) / e(V)evy duw) 1—[ (CV: bi, )
T, 0(6) Zr, (a)ozl e(NZre) seS, hs_Ws

u(v)

_Zere (O{l‘«v(e) “u(v)) het / e(V)evy duw)
a(e) s, ¢NZr,)

- _hgio{he be Z¥ (he» u(w), O}
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where the sum is taken over all possibilities for the strand I'., leaving the vertex v,
with p(v) fixed. By a similar reasoning, if e € E}(I"),

—be—1 * *
4-28 Tl (“uuw) - “u(v)) e(V)eve Puw) ( ev; ¢i, )
( ) Z 0 0(e) LFe (a) e(NZpe) 1_[ hs — Vs

[
Te ) s€Se

X Z*((hs)sese’ he, (x5 = Olis)seSeaxe =CUu(v), 0)}.

where the sum is taken over all possibilities for the strand I, leaving the vertex v,
with p(v) fixed, |Te| > 0, and carrying the marked points S, C [N], and Z* is the
positive-degree part of the power series (4-4) with [N] replaced by S, Li{e} if | S| > 2
(for |S,| =1, Z* is defined in (4-10)).'* Finally, if s € n~!(v),

4-29) A7 T T @) — o)

k#is
(—D)bs —by—1
= th)io{he THE s he, iy, o), D] @s0}-
n() "¢

This corresponds to the strand I'e in (4-28) with |I'.| = 0 whenever S, = {s} is a
single element set. On the other hand, if |S.| > 2,

hfﬁo{he_be_l [Z((As)ses, he, (X5 = ttiy)seS,  Xe = 0y ), Q)] 00} = 0.

Putting this all together, taking into account the group of symmetries (permutations of
the one-marked strands), and summing over all possibilities for m’ = |E; (I')|, while
keeping

m = [E5(T)| > 3,

1Sitiepm) = {Setecks ) € Pm(IN)),
Jj=n() €[n],

14By the proof of [17, Chapter 30, (3.21)], the left-hand side of (4-27) summed over [, with
o(e) = d and py(e) =i fixed is the residue of h_bg*(h,au(v), 0) at h = (a; —ay))/d; see
also [31, Section 2.2]. Since Z* (%, Ay (v) 0) vagishes to second order at # =00, Kb Z* (A, Ay (v)> Q)dn
has no residue at 7 = oo forall » € ZT . Since Z*(#, oy (v)» @)dh has poles only at /1 = (a; —ay))/d
with i € [n]—pu(v) and d € ZT, and at h = 0, (4-27) follows from the residue theorem on S2. By (4-22),
the same reasoning applies to A~ Z* (hy, F, g, 0y (v), @), giving the |Se| = 1 case of (4-28). Since
[E¥(I')| = 3, |Se L {e}| < N; by Theorem B and induction on N, the same reasoning is applicable to
(4-28) for |Se| > 2 as well.
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fixed, we find that

k];['(aj_ak) e(V) s=N evy ¢
- 7y T _o\7 is
(4-30) (a)ajl. ; 0 /Zp e(NZr) SI:[ ( 1ﬁs)
1 1)bi
= Z { m—3,1b] (@), O) 1_[ ( ,( b~)'
beZ+)ym aj

X SR {h,_ ._IZ((h )SESl’hli(alg)SESl7a] Q)})}

By (4-17) and the first statement of Lemma B.1, the right-hand side of this expression
reduces to

2 ] (A0

be(Ztyn b'e@ZT)m
ce(Z >
6" +llcl|=m—3

7 . bi—bt/'/
_— {h -, ‘1(—“0‘1—’9)) Z((hs>ses,.,h;-,(al-s)sesi,aj,Q)})}

=0 i

which is equal to

1 1
Z {m3c(aj Q)l_[(a lb//'

b"e(@ )" i=1
ce(Zt)™
" —(&(j,Q)/ 1)
[6”+llell=m—3 e /
‘ " Xflm(){ hb;/+1 Z((hS)SGSiahv(al's)SES,"O{ja Q)})}

Since m > 3, |S;| < N — 2 for every i € [m]. Thus, each of the power series Z
appearing in the last expression above is given either by (4-22) or Theorem B with N
replaced by |S;| + 1 < N (which we can assume to hold by induction). By the last
expression for the left-hand side of (4-30), Lemma 4.4, (3-6) with N replaced by
|Si| +1 < N whenever |S;| > 2, and (4-12), the sum on the left-hand side of (4-30)
equals

hbz h, Oy iy s
{a) Z _l(m—f)L - 2 Z Z qldlq’m—Lc (o, Q)

peinﬂN aj kl_[(aj —Olk) dE(Z+)’n b//e(_z—i-)m
be@ )N 7~ pelnl™ ety
B'EZ™ |b|+lcl=m—3

(d)
=mCols plbls bf‘ppf;b,f+1+b£’(“j’Q)}

« 1—[ 17|S P, i 0i t//'
by

i=1
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with W,., = 0 if b < 0. In the two-pointed case (for |S;| = 1), the above structure
constants are given by

oo
d
(4-31) Z qdczgpz,bb/ = Ob+b/,-1 (—l)bcpp/(Q)’
d=0

with Cpp as in (4-23). Summing over all

Jelnl. 8§ ={Sitetm € Pu(N]D, m=3,

and using the residue theorem on S2, we obtain a recursion for the coefficients C;d;)
in Theorem B:

@ dh=—— Y Y Y

- — x=0,00
m,d’eZt  S€Pn(IN]) b’e(Zt)m
m=>3 d ePp(d—d’) ce(Z+)™
(p’,b’)e[LnJJm x 7'M |b//|+||c ”:m_3

i (di) ,
Yy_3.c(x, Q) ll—’[n Cp\s,.p,f,b|sib;‘Dpi;b;+1+b;/(X, 0)
k=n b
xlm—1) T (x —ax) i=1 l q;d’
k=1

By (3-6) and (3-4), if b € (ZT)N and d € Z, the coefficient of

s=N
qd 1_[ ((h;l)bs+1)

s=1

in the power series Z(#, x, Q) is
(4-33) [Z(h,x, Q)]]E_l,q;b+1,d

DI E: S D DEND DD DRt

pen|N d'eld] pe|n|N be(ZHN
dePn(d—d’) b <by

s=N
X l_[ [[Z(ps)(hs,xs’ Q)]]hs—l,q;bs—b§,ds’
s=1

where [Z(,)(h, x, Q)41 4:p.4’ 1 the coefficient of qd/(h_l)b in

Z,(h.x., Q)
n—Il—1

]_[ I (gs)

r=ps—I+1

Zpy(h,x, Q) = e HE(P" H[n~". 0l = Hy " H[n~", 0.
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Since Hf (P"=1) and Hy (IP’]’(,_I) are free modules over Q[a] with bases {x?},¢|n
and {x?} ¢, , respectively, and

[[Z(p)(h,x’ Q)]]h—l,q;b,d’ € H;f (Pn_l)’ [[Z(h Q)]]h— ,4:b+1,d € HT (P s

by (3-4) and (3-3), (4-33) and induction on d imply that C\¢} € Q[a] as claimed in
Theorem B.

We now confirm (3-7) by induction on N . For N =2, (3-7) holds by (4-31), (4-21)
and (2-32). On the other hand, by (4-32), (4-18), the second statement in (4-13), the
inductive assumption (3-7) and the last two statements in Lemma 4.1, we have:

|p'|=1b"|—(I+2)(m—1)+1
) Gt Y
@-r oy oy g
,d'eZ+ SEPm([N]) b’e(Z )" ’ —
mm>3 der( —d’) ce((Z'F))Do kl;ll(x ak)

p’, e n||"x

2

x o ( )1_[ it Lo(q)" Py 41457 (4)
m—3,c(q Cpls; pjbls, b, b\ L(g)%0va" ®y(q) d
l .

i=1

Since ¢ = g/x"«, by the last statement of Lemma 4.1 the negative of the expression
on the last line is equivalent to

2
[[ e ( i) Iy(q) q’p,‘;b;+1+b;f(61))ﬂ 5
/ n
zI—Il pls p;:bls; b blf/!L(q)8°V“”<D0(Q) a:d’

with ¢/ € Z defined by

1P/ —=1b|—(U+2)(m—=1)+1—ved =n—1+nt' & (p'.b') € Su(d’.1);

if such an integer ¢’ does not exist, the above residue is equivalent to 0. Since
C;ag € QJ«] by the previous paragraph, we conclude that

o0
(d) At (dl 5tl
Con™~D 0n Y. > > (( 1_[ “pls; 2} b|sib;)
t=0 m,d t'€eZ SeP,(N]) b"e(@tym i=1
m=>3 deP,,(d-d) ce(Zt)>®

o L)y e

" Io(q)* Dby +1+b7 ()
H m=3e (@) H by/1L(g)%0va" D (q) L-d/)'

Geometry & Topology, Volume 18 (2014)



1082 Aleksey Zinger

Comparing this expression with (2-33), we conclude that (3-7) holds. 15

We next show that (3-7) holds with the coefficients c( bt as defined in (2-48). Let T’
be an N —marked decorated tree and T its core as before with a partial ordering < as
in Section 2.4. This time, we break " and Zr at all vertices Ver C Ver of I, adding a
marked point to each of the strands; see Figure 3. There are now three types of strands,
(S1)—(S83), described in Section 4.1. Each strand of type (S3) carries one of the original
marked points s € [N] and an added marked point s’, which we associate with the
element of E,(I") that leaves v in the direction of 7(s). These strands are thus naturally
indexed by the complement of the subset ™! (Ver) C [N] of the marked points attached
to a vertex of the core in I'. Each strand of type (S2) runs between vertices in Ver C Ver
in I' that are joined by an edge e = {v,, +} in T, with v, < v}, It carries two
added marked points, which we label ¢~ and e, attached to the vertices v, and v},
respectively, in the strand T'.. We associate the marked point e~ (resp. e+) with the
element of E,~(I") (resp. E +(F)) that leaves v, (resp. v}) in the directions of v}
(resp. v, ). Similarly to the ﬁrst approach, for each v € Ver, denote by E, (I") C Ey(I)
the set of one-marked edges at v and set

Ey(I') =E,(I) Un~" (v) UE,(T') C Ey(T") U[N],
EM) = | | E.(D).

vEVer

As before, this set indexes the marked points on the contracted component.
The analogues of the decompositions (4-24) in this case are

zr= ] (Fommx T] 2n)x I 2n

vEVer ecE,(I") ecEdg

e(V) _ Je (V) mye(V)
[T e(Law) 1_[ l_[ (ﬁu(v)) el;[ m

veVar e€E, (T) Eiz e(ﬁllv(ve_))e (Eﬁ(v;‘r))

vEVer
[T e(TaewP™™)
veVer _ 1—[ l_[ e(T;L(v)P )X 1—[ 1 )
_ *
e(NZF) veVer EEEU(F) jT we eeE;(F) e(NZFE)
1
X
1_[ e(NZF)
ecEdg

15 As can be seen by induction on #, IQ,, N Q] = Z. Since C;,‘{z is a symmetric function in
Apsenes an, it is even sufficient to check that the symmetric polynomials in ZQ}, N Q[e] are contained
in Z; this is immediate from the algebraic independence of the elementary symmetric functions.
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For each v € Ver, (4-25) still applies. The analogue of (4-26), but weighted by the
automorphism group, is then

l_[ (aﬁ(v) — o) s=N
k£E(v) e(V) ( evy Pig )
4-34
- (vl;[er (@)oo ) /ZF ¢WZ2r) s=l_[1 s = Vs
_ (|Ey ()| —3)!
- ;m) { H( [, (D))t
be(Z™) vEVer

1615, r)y=IEv(@)|-3

—b.—1 *
Q) — () © e(V)evy du) )
< 1 ( ( o(e) ) /Zre (a)al  e(NZr,)

e€E}, (T) ()

—by—1
< T] (L(aﬁ(v)—%vm
by!! o(s')

sen—!(v)
" / e(V) evy P evs Pi ))
Zry, (a)al—(v)e(NZFS/)(hs —¥s)

1 I O(vE) = gy () | TP
'b et oy (e*)

eeEd

/ e(V)eve- dpwr) vy Pz wh) )}
X )
Zr, (a)zo{lli (v;)“fz " j)e(/\/ 2r,)
where

! (%(v) ) )_b"’_l / e(V) evg duw) evs i,

by'! o(s") Zr, <a>afj(v)e(NZI‘S/)(hs —Vs)

Lo
= o507 [ (e — )
* ki

if s en~(v).

For each v € Ver, (4-27) still reduces the summation of the factor on the second
line in (4-34) over all possibilities for I, with e € E (T") and for m/, = |E(T")| to
Zmo,bo]l (¢, @), where

my =my(T) = [T ()| + [Ey(T)| =3, by = b|ﬁ—1(v)UEv(f)’ Jo = i (v).

For each s € 77 1(v), (4-28) and (4-29) with v = 7j(s) and S, = {s} still compute the
sum of the factors on the third line in (4-34) over all possibilities for I'y» of positive and

Geometry & Topology, Volume 18 (2014)



1084 Aleksey Zinger
zero degree, respectively. By a similar reasoning (see Footnote 14), for each e € Edg

Xz (e7) — Yoy —be -1 altve-j— (e _O‘J'U;s- —bd—1
FZ (( o(e) ) ( d(e™) )

e(V)eve- $ju; Vs $j 4
/zre e(NZr,) )

is equal to

—1a—bS—
h”io{h?o{h T 2 by, O)Y).

where the sum is taken over all possibilities for the strand I', between the vertices ve—
and v,+ in I with u(v;) = jy; and p(v}) = J,+ fixed. Since

l
_ L+, (a)ai— R
h_=0|hy=0 —+ng Pt prtr=n—i e Ty
P—aP—i—arZO

for all b, b} € Zt, we can replace Z* in the previous expression by Z.

Putting this all together, we obtain a replacement for (4-30), involving products over
veVerand e € Edg, which (4-17) and the first statement of Lemma B.1, reduce to

[T (@), — )
I1 g Z |r|/ e(V) N (ev;k %)
veVer ( Zr e(NZI') hs — Vs
= Z { 1_[ v (o Q)xsﬁv(Li
b e(ZT)N veVer ven =1 (a)oz]l,s by!

b—bte(@t)Fe
(cv)peva€((ZT)oe)Ver
16”11 (1 F1B ™ |- () +b&, Hllewll=my

— ()5, @)/ h) 1
e
< 2t e 0} )< T1 (W

ecEdg Y ve

(), Q) f(“w’Q)

| exp| — —¢
X — - R R T
be !be .h—:() h+=0 hé;_}_]hﬁf +1

T Q)}})}
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where bev = 0 for the minimal element vy € Ver, js = Jii(#(s))» and the sum is taken
over all p0s31b111t1es for I with the core T = (Ver, Edg; j1, 77) fixed. Using Lemma 4.4
and (4-12) to compute the residues, we find that the sum on the left-hand side of the
above expression equals

(a) Z {E‘pr(E,ail...,-N, 0) Z (_1)|b|+|b’\ Z

pelln|N pellnN b e(@hHN
bG(Z+)N p/’i/eunJLEdg b_,b+€(%+)Edg7
b'e(Z )k (cv)peva€((ZT)>)Ver

16" |,—1 4y 10 | () +b 2 Hllew | =my

1_[ mv,cu(a’ju’ Q) % =y CpsﬁS(Q)leﬁs;bé/_bs (ajs’ Q)

l(m +2) T
vEVer ju ’ kn (Oljv—ak) s=1 bs-
#jv
Co. (Q)\ijg;bj—bg (O‘jvgw OVp,:b7+1+4b, (X Q)
: 11 by b '
e€Edg e Ve

For each v € Ver, we now sum up the product of the corresponding factors above over
all p0551b111tles for jy € [n] (which also determines js and j + whenever n(s) = v
and v = v). Using the residue theorem on S?, we now obtam an explicit formula
for the coefficients C d;} in Theorem B:

@9 =Y Y Y ey

T dePr(d) pe|nN b e(@HN
p'.p'en]> b .bre(ZT)ke
b'e(Z)Be (cv)vever€((ZT)%°)Ver

b1, 1 0y 1B Iy () +b&, Fllewll=m,y

Yiny,en (X, Q)
vEVer x !l (my—+2) 1_[ (x_ak)
k=1

I Cp 5, (D V5, .b0—p, (X, Q)
b

sen~!(v)

1—[ Co 5. (Db +1+5, (X, Q)

-1
ecEy (D) be ’

J’_
bt

‘ijév ;b;’; —b}, (x, Q)m
X
q’dv
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where the outer sum is taken over all N —marked trivalent trees I' = (Ver, Edg; n) and
Q’ + , (x,
R TCN )

+
b,

Il
—_

for the minimal element vy € Ver. Using (4-18), (4-21), the second statement in (4-13)
and the last two statements in Lemma 4.1 as before, we conclude that

d Nalp+t, +lt|
DM M >

r dePr(d) b"e(Z )N b~ ,bHe(ZT)He
pElln|™e.b e(Z )R (cv)vever€((ZT)>)Ver
1B7],—1 ) 1B Iy () +b&, Flievll=my

L(g)%ovaos 5 pn_p (q)
l_[ chmv,cv(Q)X l_[ -

!
vEVer sen—1(v) b;‘,qDO(CI)
Sovant,
I1 L(q)™" "% D0 1114, (q) x Lo(@)*®,, oty (Q)ﬂ
bg!®o(q) bj;!L(q)Bann@O(q) aido

ecE, (IN)

with the last fraction above set to 1 for v = vy and ¢ € (Z )" defined by (2-47); if an
integer t, satisfying (2-47) does not exist for some v € Ver, the corresponding summand
above is defined to be 0. This confirms (3-7) with c( b) as defined in Section 2.4 (and
describes c(db) with z € ZT as well).

Remark 4.5 The recursion (4-32) and separately the closed formula (4-35) compute
the coefficients C;‘?’ in (3-6) and thus provide a straightforward algorithm for computing
the equivariant N —pointed generating function (3-3). Following the proof of the
first statement in Lemma 4.1, the power series Wy, ¢ (x, Q) and W,.;(x, Q) can be
computed directly from the power series ®p(x, g) appearing in (4-15). The latter can
be computed similarly to the power series ®p(g) appearing in Proposition 2.1; see
Appendix A. For example, we first find that the power series £ appearing in (4-15) is
given by

Eexq Qo x,05—1(x) 'llgl. x+&(x.q)=L(x.q).

where / denotes q% as before; L(x,q) is defined by

4-36) L(x,q) €x +x'"g-Qlo, x, 05— (x)[x!"" ],
on(L(x,9)) —qa®L(x,q)"" = 0,(x),

with 0, () defined analogously to (4-8); setting « = 0 and x = 1 above gives (2-2).
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‘We then find that

Do(x,q)

_ ( X 01 (x) )”2(L<x,q>)(’+”/2.
L(x,q)on—1(L(x,q)) — |a|(on(L(x,q)) — on(x)) x ’
setting « = 0 and x = 1 above gives (2-11). This suffices for the N = 3 case of (3-6).

5 Proof of Theorem 1

In this section we prove the bound of Theorem 1 for d € ZT by considering four
separate cases: |a| > n and |a| < n with N = 1,2,34. The first case is fairly
straightforward, since there are only finitely many nonzero GW-invariants modulo the
string, dilaton and divisor relations [17, page 527]. In the |a| <n cases, we use explicit
mirror formulas. For N = 1,2, (2-13) and (2-19) reduce Theorem 1 to extracting the
coefficients of w? qd from the power series F(w,q) and Fy,(w,q) defined in (1-4)
and (2-18); Corollary 5.3 below presents them in a convenient form. For N > 3,
the coefficients cg{ ;,0) in Theorem A must also be suitably bounded. This is done by
Proposition 5.4; its proof constitutes most of this section.

We begin by considering the |a| > n case. Let
dmax =max{d € Z | (la| —n)d =n—4—1}.

If d > dpnax, the virtual dimension of ?ﬁo,o(Xa, d) is negative, and so all genus 0
degree d GW—invariants vanish. Thus, we can assume that dp,x € Zt.Let C e Rt
be such that

[(b1lzp, HO.... by HN) | < C

whenever by + ¢g > 2 for all s or N < dpay; the number of nonzero invariants of this
form is finite. Let b« be the largest of the sums by + - - -+ b for nonzero invariants
of this form. It then follows by induction via the dilaton, string and divisor relations
that

‘(b]!‘[bchl,...,bN!‘L’bNHCN,‘L’()Hl,...,‘E()HI,T()HO,...,‘C()HO,
k1 k>
‘ClHO,...,TlHO)OX::i
k3
bmax +k2)! (N + ki + ko + k3)!
SC(bmaX+dmaX)k1'( i '2) ( 1 2 3)
bmax! (N + k1 +ky)!

<C.-C* bt (N 4y 4 kg + k).
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This implies the bound in Theorem 1.

In the remainder of this section, we treat the |a| < n cases.

5.1 Outline of proof

By (1-3) and (2-1), the GW—invariant in Theorem 1 is the coefficient of
s=N
Q“HPr b1 = o 1_[ HPsh;2571 where pg=n—1—cy,
s=1
of the right-hand side of the identity in (2-13) if N =1, in (2-19) if N = 2 and
in (2-36) if N > 3. In particular, we need to bound the growth of the coefficients of
—J(q)H/thF (H/h,q)
p l( )
By (1-4), (2-14)—(2-18), for every p € Z™ there exists ﬁp € Q(w)[¢] such that
—J(q)H/thF (H/h,q)
p ~1(q)
and the coefficient of each power of ¢ is holomorphic at w = 0.

If by +c1 = vad +n—3—1, (1-3), (2-1), (2-13) and (5-1) give

(tp, H ') ff‘; =[2G, By, Dl g:allp=1.p, 41 1H:p0 = (@) [1F1 (w. )] g:alw:p:

where p; =n—1—c; as before. Thus, by Corollary 5.3 below,

(&1 a b vad+n_3_l
[(b1lzp, H) o4 | < () f( ld),—( a)Cq (n =3 ‘l)'( vad )

<(n—3-Dla)CZ - 2vadtn=31,
this confirms the statement of Theorem 1 for N = 1.

If by +c1+by+cy=ved +n—-3-1,(1-3), 2-1), (2-19) and (5-1) give

X,
Z (Tb1+51 HCI7‘L—b2+52HC2>0"Z[

81+62=1
81,62=>0

€ Q[H][A™', Q]. where gedova’@ = 0 /HVa,

(5-1) = hP Fp(H/h, Q/h"),

> MZG H. Q)] sty 4115, byt 148 | H: o102

§1+8>=1
§1,62=0

§s=2
= (a) Z 1_[[[[[ﬁvads+ps—bs—l(w’Q)]]q;dsﬂw;psv

di+dr=d s=1
di,d>»>0
vads=l+1+bs—py
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with ps =n—1—c¢s, i = (hy,hy) and H = (Hy, H,). This gives

(Tb1+1H61’ szch)Xa

0,d
s=2
= - B Vads+ ps—bj ’ sdslw; ps -
@ D =0 Y [ Evdet pe—t, @0, Dlgia,]
bi+b’2=b1+b2+2 di+dr=d s=1
0<b,<b> dy,d>20
Vads=Il+b,—py
Thus, by Corollary 5.3 below,
di=d
by + 1)1b,! Vad
| €1 | ¢\ Xa d(l—Z a
(@1 Dl H bty H2)o g < (@) (b2 4+ DCF == 2_)0 (Ua dl)
d —1-/
s(a)c;’-(n—l—l)!(”“ o )-2Vad
Vad

< (n -1 —l)'(a)Cf .22vad+n—1—l;
this confirms the statement of Theorem 1 for N = 2.

Finally, we consider the N > 3 case. For each p € ||n]);, let

Fp(w’Q)
n—I[—1

1—[ Iy (q)

r=p—I+1

(5-2) Fpy(w.q) =

Itis sufficient to assume that the tuples b = (bs)se[n] and ¢ = (¢s)ge[n7 in the statement
of Theorem 1 satisfy

|b|+|c|=vegd +n—4—1+ N, bs,cs>0, cs<n—1-—1.
Let ps=n—1—c.If d, b’ € (Z1)N, define
p'd.b)e@ZHN by pl(d.b)=vads+ ps—bs+Db..
By (1-3), (2-1), (2-36), (2-20) and (5-1),

(5-3) (mp, H' ...t HN) 3,

s=N
d/ao I .
= (a) Z C(p’(d?b’),b’ l_[ [IF a6 @ D]gidJw:ps
0<d’'=<d s=1
dePn(d—d’)
b'e(ZzH)N
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the above summand vanishes unless / < pj(d.,b’) < n—1 for all s € [N]. Since

c;d bo/) =0 unless |b’| < N — 3, Corollary 5.3 and Proposition 5.4 thus give

Xa
|<b1!fb1 Hcl, . ,bN!‘[bNHCN>0’d
s=N b |
N+d
= (a)N!Ca Z Z l_[ (Ps b”(l)ad )'Ps )
=d'=d be@ZHN s=1

dE'PN(d d’) |b'|<N=3
b =bs—vads—ps

s=N
<(a)NICNT Y > [ @3

0<d’'<d ye@ZHN  s=1
dePn(d-d’) |b/|<N—3
b =bs—vads—ps

< (@) NICNF4 . ()N 3vad+ntN . (d ;LVN) (N —i]+ N)

< N'C1N+d . 2d+N . 22N—3
=NIC, .
This confirms the statement of Theorem 1 for N > 3.

Remark 5.1 For any nonvanishing summand on the right-hand side of (5-3),
pi(d,b') <n—1= bs+cs > v4ds.

Thus, dy = 0 if by + ¢5 < V4. Since the coefficient of ¢° in ﬁ(p)(w,q) is w?, it
follows that p(d,b’) = ps and b; = by in such a case. Since |b’| < N — 3, this
implies Theorem 2.

5.2 Bounds on the coefficients of generating functions

In this section, we obtain the bounds on the coefficients of the series F), F » € Q(w)[q]
defined in (5-1) and (5-2) that are used in the proof of Theorem 1 above.

Lemma 5.2 There exists C, € RT such that
Cd
~ (vad)!

H[[[F (w, q)]]qd]]wvad p+p}
forall p,p’ =0,1,....n—1andd € Z%.
P> D

Proof By (1-4), (2-14)—(2-16) and (2-18), it is sufficient to show that there exists
C € R such that
Cd
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forall p=0,1,...,n—1 and d € Z*. Both numbers on the left-hand side vanish for
p <1 (unless d, p = 0 in the case of the first number). If / < p <n,
! [ akd
[T@d)! r IT TTA+ (ak/r)w)]]
w;p—I

H[[[F(vaI)]]q;d]]w;vad—l+p‘ = k=(ld!)n

k=1r=1

d
[TA+w/r)"
r=1

<nnd(|a|d)' —(1+|a|w)(|a|—l)dﬂ
< (nd)! | (1—w)e=Dd | .,

nd —Iyd +r— —Iyd
g, ()

" rts=p-I

d

" 2(n=Dd+p=l (4] 4 1)(lal=Dd

T (vgd)!
The first inequality follows from Stirling’s formula (see Apostol [1, Section 15.22]),

ed
(5-4) l<———dl<e'/®D foralld e 2,

V2rddtz

the following statement uses the binomial theorem. The desired bound for Fy(w, g) is
obtained similarly. a

Corollary 5.3 There exists C; € Rt such that

d

7 C
NEpy (. D] gsalwip| < —*

[Ty (. )] gsallw:p (Vad)!

forall p,p’=0,1,....n—1andd e Z+.

Proof If v, >2,
[[[[Fp’(w7Q)]]q;d]]w;P = [[[[Fp’(w’Q)]]q;dﬂw;vad—p”rpv

and the claim follows immediately from Lemma 5.2. If v, = 1, by (1-5)

. (—ah)?
[[Fp (w, @) g:alw;p = Z [Fp (w. )gsa>lwsd—pr+p

|
dy+dr=d d!
dy,d>»>0
implying J
A~ (a!+ Cp)
|[[[[Fp’(w’ Q)]]q;d]]w;ll‘ = Ta’
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where C, is as in Lemma 5.2. Finally, suppose v, = 0. Define

Te0-QIo] by ¢=0 @
By Lemma 5.2,

|[[10(‘])]]q;d

implying

<cd

[11 (Q)]]q;d|’ S H[In—l (Q)]]q;d}’ |[[J(‘])]]q;d

’

[T (@] gsal = €
the last implication follows from the inverse function theorem. Since

i f PrTF (w, w:
By, Qlup= Y LD @ 0wy

’

N p1! n—Il—1

pi+p2=p—p’ 1

p1,p2=0 rzl;[_l " (C])

the claim again follows from Lemma 5.2. O

5.3 Bounds on the structure constants in Theorem A

In this section, we obtain an upper bound for the coefficients cg’%)) in Theorem A.

This is one of the two key ingredients in the proof of Theorem 1.

Proposition 5.4 Ifn, N € Z+ with N >3 and a € (Z1)! with |a| < n, there exists
C, € RT such that

N! _ _
;d,bo) < FCaN"'d foralld e ZT, p € HnJJN,b e (ZMHN.

|c
Lemmas5.5 IfneZ%,ac(0,n) and L € 1+ qQ[q] is defined by

(5-3) L(@)"—qL(g)* =1,

then there exists C, € R™ such that

L(q)l—n+k
<C
‘ H(l —q)(a+(n —a)L(q)”)k’Hq;d
forall k. k' €eZt, k<2n?, k' <2n+1,8=0,1.

Proof Let v =n—a. We show that (5-5) defines a holomorphic map ¢ — L(g) on a
neighborhood of the closed unit disk D C C such that

L(q),a+vL(q)#0 forallqe D.
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Thus, the radius of convergence of the Cauchy series around ¢ = 0 for the holomorphic
function .
L(g)

% —
T @ L@k
is greater than 1. Let
S={(q.z)eC?|z"—qz" = 1}.

Since the differential of the defining equation is surjective for z # 0, S is a smooth
curve in C2. The projection map 7;: S — C to the first coordinate is an n—fold cover
branched at the points (¢, z) € S such that

nz" 1 —qaz" '=0=¢q= 22V =" =12

= gl =5-()"" > ()" > 1.

Thus, 771 is an unramified cover of an open neighborhood U of D, and its restriction
to the component of 7~!(0) containing (0, 1) induces a holomorphic map

U—-C, q¢qg— L(g),

solving (5-5). It is immediate from (5-5) that L(g) # 0 for all ¢, if @ > 0. On the
other hand,
1+ 2gL(q)* =0=qg=-"L(g9) "= L(q)" =2

= gl =57 > V"> 1,

as claimed. O

Lemma 5.6 Let ®y, ®,... € Q[q] be as in Proposition 2.1. There exists C;, € R
such that

H[%(q)ﬂ
CDO(q) q;d
Proof For k =1,2,...,n, define

Lk Qgl - Qlgl by £k (@) =

<BDICE[(1 — Caq) ) ya forallb,d e Z.

1

L(q)*1®¢(q)(la| + vaL(g)")

with £; and ®( given by (2-7) and (2-11), respectively. These differential operators
are of the form

L (Po @),

i=k

(5-6) S =Y hpp—i(q)D"  with iy ; € Q[q].
i=0
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Note that by (2-2),

L' L"—1 _ a%L(¢q)"
L |a|+vaL"  |a| + v L"

(5-7)
We now consider three separate cases.

(1) Suppose 0 < |a| < n. We show that there exists C, € R™ such that

] CI919(61)}]
©-9 ‘ H%(q) »

By (2-11) and (5-7), for each j € Z™T there exists p; € Q[u] such that

<bICE[(1—aq) ) yq forallb,d e ZT.

Didy  (L"—1)p;(L") _ a%qL(q)" p;j(L")

5-9 = ~ = -
O e T (a1 valmd T (lal+ vaL")

, degpj <2j—1.

By (2-5), for each j € Z™ there exist pm,; € Q[u] such that
(u—1) pm,j(u)
(@] + vqu)2i=1"
where H,,,; € Q(u) is the function defined in Section 2.1. Thus, by (2-7) and (5-9),
there exist px ; € Q[u] such that
Fo_ L @Rl
ST LT (] va LA

Hom,j(u) = deg pm,j =2j -2,

deg ﬁk,i <2i+1 _Si,k'

Let C > 1 be the maximum of the absolute values of the coefficients of the polynomials
(2i + 1) pg,i, withi =0,1,...,k and k =2,3,...,n. Thus,
(5-10) 11— aq) Pl i (@] gsa| < CClailg®* (1 —a"q) ] gsa
forall 2<k <n, beZ™", where Clq| 1s as in Lemma 5.5. We show that (5-8) holds
with

Cq =n*CClyja”.

This is indeed the case for b = 0. Suppose b* > 1 and the bound holds for all b < b*.
By (2-10), (5-6), (5-10) and the inductive assumption,

<I>b*(q>ﬂ = |[~ q’b*—k+1(4)ﬂ
D Lir(——————
| P Sl W

<n?CCl- CE "% (@) [q(1 —a"9) ™" gea-

Integrating this inequality, we find that (5-8) holds for b = b* as well.
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(2) Suppose next that |a| =n. We show that (5-8) still holds. Since nDL/L = (L"—1)

in this case, for each j € ZT there exists p; € Q[u] such that
X 0
@y

On the other hand, by (2-5) for each j € Z* there exist pm,; € Q[u] such that

(5-11)

=(L"=1)p;j(L") =aqL(q)"p;j(L"), degp; <j—1.

Hm,jw) = u—1)pm,jw), degpm;=j—1

It follows that there exists py ; € Q[u] such that

~ 1 o ~ .
(5-12) hiei = Ty @L@)" " Pei (L"), deg i =i =i

Let C > 1 be the maximum of the absolute values of the coefficients of the polynomials
(i +1)pgi,withi=0,1,...,k and k =2,3,...,n. Thus,

(5-13) (1 —aq) 2 hy i (D] g:a

forall 2 <k <n, b € Z™"; see (2-3). The same inductive argument as at the end of (1)
now shows that (5-8) holds with C, = n2Ca®.

<Clg%*(1—a®q) 7 ] .a

(3) Finally, suppose |a| =0, ie @ = (-). We show that there exist Cg, Cp , € Q for
b,r € Z such that

(n+1)b (n+1)b
b _
(5-14) o ;—o: Cp, L7, r§_0 |Cp.r| <bICE forallb ezt

This implies the claim, since

L@ Tl = [[L@) "] ga] = '(_jb)' _ (2b +dd - 1)

forall »r <2nb and b e Z7T.

Since nDL/L = (1 — L™") in this case, there exist Cr(.J;.) € Q such that

por _ pr DL e S W] <ot T T
D'L™" =L ’T Z(r+n])Cr;iL ", Z‘Cr;i <2 1_[
j=0 j=0 j=0

n

forall r € R* and i € Zt. On the other hand, by (2-5) for each j € Z7 there exist
Pm.j € u-Q[u]

Hm,j () = u—1) pm,j(1/u), degpm,j =< J.
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It follows that there exist py ; € Q[u] such that
8
- 1 DL\ * _ _
(5-15) i = g Pra(L —")( ) . deg pr; <i—8;x. forallieZ*.

Thus, there exist 67'(jk) € QQ such that
k-1 . .
L =LK DL (r+nj + )C L™,
j=0

k—1 k—1 r +I’l]
~(j) k
Z ‘Cr;k} =2°C l_[ n ’
j=0 j=1
forall » e Rt and k € ZT, where C > 1 is the maximum of the absolute values of the

coefficients of the polynomials (k 4+ 1)pg; withi =0,1,...,kand k =1,2,...,n
We show that (5-14) holds with

(5-16)

— 4(2n+2
Co = 4(222)1C
This is indeed the case for 5 = 0. Suppose b* > 1 and the claim holds for all b < b*.
By (2-10), the inductive assumption and (5-16), there exist C;, , € Q such that

(n+1)b*

Dy DL
(5-17) D( ) Zs( b "“) - SN Gy, L7

r=1
(n+1)b* n (n+1D)(*—1+k) k—1

> |G =C )] Z > 1CRNICorterr,r |
r=1 k=2 r=0 j=0
<CZ( ﬁ((n—i—l)(b* nk—i—l)—i—n])
j=1

S(b* —k + 1)!cg*—k+1)

k—1k—1
<acch —IZ(( ("H)) [Je*—k+1+))

j=1
-(b*—k+1)!)

b*
< 22 _p*

Thus, integrating (5-17) and using @+ € ¢-Q[q¢], we find that (5-14) holds for b = b*
as well. a
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Remark 5.7 In the above argument, we use that all coefficients of (1 —¢)™* are
nonnegative (actually positive) if o > 0, nondecreasing with «, nondecreasing with d
if @ > 1 and at least as large in the absolute values as the coefficients of (1 &= ¢)%.

Corollary 5.8 Let ®,.5, Pp,c(q) € Q[q] be as in (2-21) and (2-31). There exists
C, € RT such that

q)p;b(CI)ﬂ pchi — —b—1
H:|: ®0(q) q;d S 'Ctl [[(1 CaQ) ]]q;d,
mA1eD (el T1 (1 " Alelryy o aliel-1
[@me@lgal ===, ) [T{;57) G10-Can™ o
’ r=1

forallb,d € Z%, p € ||n| and ¢ € (Z*)>°.

Proof It is sufficient to obtain the first bound for the power series
®,p€Qlgl, —I<p=<n—1-1,
defined in (2-22). If 0 < |a| < n, it follows by induction on b € ZT and p (from 0

up to n — 1 —/ and down to — —/) from Lemma 5.6, the j = 1 case of (5-9) and
Lemma 5.5. For |a| = n, Lemma 5.2 implies that there exists C € R such that
(5-18) 0@ 11 ()" -+ L (@) "] g:a] < C7

forall d € Z1, ko, ky, ..., ky—; € {0, £1}. By induction on b and | p| (with the base
case being Lemma 5.6) along with (2-3) and the j = 1 case of (5-11), this implies that

‘ |[&>,+p;b(q>ﬂ
CDO(q) q;

for all b,d € Z*, for some Ca:p € RT. The same estimate holds if |a| = 0, by
Lemma 5.6 and (2-3). The second bound follows directly from Lemma 5.6 and (2-11),
along with Lemma 5.5 if 0 < |a| < n and (5-18) if |a| = n. O

< C:;pb![[(l - Ca;pQ)_b_m/nﬂq;d

Proof of Proposition 5.4 By Corollary 5.8, the absolute value of each nonzero fac-
tor [-] in (2-48) is bounded above by

(my + [eo)! [ lev] ﬁ AN T
|cwl! v r+1 by!
r=1 sen—l(v)

< I (by +1+b))! (b, —bg,)!

Ay (b’ — Ay (b’
— G0 - Caay Pl
e’ ey

ecEy, ()
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1098 Aleksey Zinger

where
Av(b/) =4my + 8 — |b|r]—1(v) + |b/|E,7(I‘) — b;v

Thus, by (2-46), the absolute value of each nonzero summand (product of factors over
v € Ver) in (2-48) is bounded above by

C:N[[(l - CaCI)_SN]]q;d (my + |co))! (|ev] ad 1 (S
b! 1_[ ( e ]! (Cv)E(V+1) )

vEVer

(b + 1+ b)bS —b)!
<[]

+
ecEdg be'be!
Note that
3 (by + 14 b)\(bS —bL)!
+1
by +bF =bF betbe
(bg +1+b0) (e o +, abE — gbE
< - - e < e
< > ey =0F+D Y = (bF + 1)20e < 4P
by +bf=bE € by +b =bF

Since each tuple 4" is a partition of N —3—|Edg|—|b~|—|b"|—|c]|| into N ordered

parts, where
lel =" llell.

V€ Ver
the number of such tuples with |~ |+ |b| and ||¢|| fixed is at most
(N —3—|Edg|—[b~|=[b*|—cll+ N - 1) < 22(N=2)—[b= =[BT |~ e
N -1 - '

Thus, the absolute value of the sum in (2-48) with T", (p’, b’,t) and ¢ fixed is bounded
above by

C‘;SN[[(I—CaQ) ﬂqd llell (mv+|cv|)1 |cv| o) 1 Cuir
b! 2 1_[ ( leo]! (cv)rl:[l(m) )

vEVer

Since |1 —21In2| < 1, by the binomial theorem

3 2l T ((’"%W(t:') 10‘0[ (ﬁ)c)

V-

(€)vever €(ZT)o0)Ver VEVer r—1
o0 roN\ —my—1 —(N-2)
w In(1 —w)
= le_V[ (l_zlr+1) |w:1/2=(2+—w ) lw=1/2
v er r=

= (2(1-1n2)VN 2.
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Since b, < b} for e € Edg and nonzero summands in (2-48), |b’| < N —3 — | Edg .
The number of such tuples is

(N 3—|Edg|+|Edg|) N—3
| Edg | - '
Thus, the absolute value of the contribution of each trivalent N —marked tree I" to

c(d bo) is bounded above by

C (8N ~a CN (8N +d—1
(o et Tma= S (M et T

vEVer vEVer

C
= 28N+dcd l_[ mv

vEVer

Combining this with Lemma 5.10 below, we obtain the claimed bound for c;d’;). O

Remark 5.9 1Inthe |a| = 0 case (projective space), we can obtain a bound of the form
(N'1/b))CN=3-1bl ysing the last description of c;d;;)) in Section 2.4 and (5-14).

Lemma 5.10 There exist C € RT such that
an—1=)_ [] m!<CVN! forallN >3,
' veVer
where the sum is taken over all trivalent N —marked trees.

Proof Let a; =1 and

o0
_ AN N
S@ =2 34" €Qlql.
N=1
Considering the vertex of an (N + 1)—marked tree I" to which the last marked point is
attached, we observe that

1 N
an = o Z (Nl,...,Nk)(k_z)!aNl'”aNk
k=2 (N1, Nk )EPK (N)

k=N 1 1 aN an;
-y (1) T LN
k—1 k Nyl !
- Mrodmepeny V1E Nk
This recursion is equivalent to the condltlon that
0 ro vk
AC))
G-19) f@=q+/@+f@-D ) =
k=1

& (1= /(@) (1~ f(q) =~
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1100 Aleksey Zinger

By the inverse function theorem, f(¢) is an analytic function on a neighborhood of
g=0andso ay/N!<CV forsome C eRT. a

Remark 5.11 As noticed by the author for small values of N and confirmed in general
by P Johnson on Math Overflow, an—; = (N —2)N~2. By (5-19),

(5-20) flg)=1-e"CD,

where W € Q[¢] is the Lambert W function, ie the analytic function on a neighborhood
of 0 € C defined by
W(@e" @ =q. WO =0.

As can be seen from the Lagrange inversion formula,

_ 1H(N=1)
(5-21) D =11 g Z (N 1) W=D N,

Along with (5-20), this implies the clalm.

Appendix A: Existence of asymptotic expansions

In this appendix, we show that power series

k=l ajd—1

[T TII (agx+rh)

k=1 r=0

A-D) Volhx.q)= Y ¢l =
Il (kH (x — o +Vh)—kl_[ (x —ak))
r=1 =1 =1

€ Qu(x.7)[q]

admits an expansion of the form (4-15) and then prove Proposition 2.1. The arguments
here are motivated by [29, Section 2].

Lemma A.1 The power series Vo (#, X, q) admits an expansion of the form

o0
(A-2) Vot x,q) = DN " Do (x, g
b=0

with &, @g.1, o2, ... € ¢Qqu(x)[¢] and S0 € 1 +gQq(x)[q].

Proof Since )y € 1 + ¢Qu (%, x)[¢], there is an expansion

o 0
(A-3) mYo(hx.q) =Y > Cap(x)h’q?
d=1 b:bmin(d)
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around 2 =0, with Cy p(x) € Qg (x); we can assume that Cy 5 (4) 7 0 if bin(d) <O0.
The claim of Lemma A.1 is equivalent to the statement byin(d) > —1 forall d € ZT;
in such a case

o
E(x.q) =) Cq-1(x)q".
d=1
Suppose instead byin(d) < —1 for some d € Z. Let

(A-4) d* =min{d € Z" | byin(d) < =1} = 1,  b* = bpin(d™) < 2.
The power series ) satisfies the differential equation

k=n I=1a;—1

(A-5) { [[c—ax+mD)—q ] [] (arx +akh1)+rh)}y0(h,x,q)

k=1 k=1 r=0
k=n
=[] —) - Yo(h.x.q).
k=1
where D = q%. By (A-3), (A-4) and induction on the number of derivatives taken,

k=n
{ [T (x—ox+ hD)}yo(h,x,q)

k=1
k=n

kl_[ (x —og) - Yo(h, x.q)
=1

: C * * * *
(A-6) = Z b e M Al x ),

I=1ar—1
{ [T II (akx +ath+rh)}y0(h,x,(])
k=1 r=0
I=1ar—1

1_[ 1_[ (akx+rh)-y0(h,x,q)

k=1 r=0

= B(h,x,q),

for some

A, B € qQq(h, x)olg] + ¢ 7P 2Qq (B, x)olg] + ¢% T Qu (B, x)[4].

where Qg (%, x)o C Qg (%, x) is the subring of rational functions in «, # and x that are
regular at 7 = 0. Combining (A-5) and (A-6), we conclude that Cg= 5+ = 0, contrary
to the assumption. |

Corollary A.2 The power series Fy € Q(w)[q] defined by (2-15) admits an asymp-
totic expansion of the form (2-9).
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Proof The existence of an asymptotic expansion (2-9) is equivalent to the existence
of an expansion of the form (4-15) for

Fo(h™'.q) = Yo(h.1.9)|4=0.
Thus, Corollary A.2 follows from Lemma A.1. a

Remark A.3 It is possible to give a somewhat different proof of Corollary A.2,
without using Lemma A.1, which is more in line with [29]. By [29, Lemma 1.3], an
element H € P admits an asymptotic expansion (2-9) if M kH = H forsome k e Z* .
By [26, Lemma 4.1], M"F = F if |a| = n. In the v, > 0 case, the coefficients '61%)
in (2-18) with d > 1 and v,d < p — s are determined by the requirement that the
resulting function Fj(w, g) is holomorphic at w = 0 with value 1 € Q[q]; see (2-17).

On the other hand, F,, = F| if these coefficients are given by

|a|—1 k=l a;—1
Z ~r§11)+sws = —(a) 1_[ 1_[ (arw +r), Eé’ds) =0 foralld > 2.
k=1 r=1

Since Fj is holomorphic at w = 0 with value 1 € Q[q¢], it follows that indeed F;, = Fj.
The proof of [29, Lemma 1.3] can be adjusted to show that this in turn implies that Fy
admits an asymptotic expansion of the form (2-9).

In the remainder of this appendix, we prove Proposition 2.1. Since F' = D! Fy and F,
admits an asymptotic expansion of the form (2-9), so does F. The function F(w, q)
defined by (1-4) satisfies the ODE

k=l r=ay
{D%—w”—qw”“ l—[ 1_[ (ag Dy +r)}F—

k=1 r=1

where Dy, = w + q%. Therefore, the power series &, g, ®y,... introduced in
Proposition 2.1 satisfy

k=l r=ay
(A7) {5ﬁ,—w” e 11 l'l(aka+r)}Zd>b<q)w =0,

k=1 r=1

where Dy, = (1 + E(@)w + qa. The resulting equation for the coefficient of w”
gives

(A-8) {(1+E @) —1—a"q(1 +E (@)} ®o(g) = 0.

Since ®((0) = 1, combining (A-8) with the condition &£’(0) = 0 and comparing with
(2-2), we obtain the first equation in (2-10).
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By the above, Dy = L(g)w+ q%. Proceeding as in [29, Section 2.4], but using (5-7),

we find that
k=si=k

Dy=322 (f)Hs_i,k_i(L")(wa—kD",

k=0i=0
where H,,,; are the rational functions defined by (2-5). Thus,

k=l r=ay

L(q)”{ﬁﬁ —w"—qu" [T [T (axDw +r)} = (Lw)" &,

k=1 r=1 k=1

where £ is the differential operator of order k& given by (2-7). It follows that the second
equation in (2-10) is the coefficient of (Lw)"*'~? in (A-7) multiplied by L(q)".

Appendix B: Some combinatorics

Lemma B.1 The following identities hold:

5, 0-07)

b'ePy (b)) i=1 1
00 t=B B
}:c—nb(p) I1 (f+b)=(—DPﬂ( )
b s—p
b=0 t=B—s+1
o0
1
Z(_l)p (m +P)\I,p = arw
p=0 P
forallmeZ%Y,by,....by,b' €Z%, B, p,s€Zt and m € ZF, respectively.

The first two statements of this lemma are proved in [31, Appendix A]. The last
statement is a special case of the binomial theorem; here is a direct argument:

S ("= ) Do

p=0
:(_,,,3 {%} Z(_l)P\yP

C=pmd\™ 1 1
om! \dY ) 1+v (14 wymtlT
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Lemma B.2 If¢, Wy, Vy,...€ QQu(A)[Q] and

(B-1) 14+ Z*(h, Q) = e?(Q)/”(l +> \IJb(Q)hb),
b=0
then
00 , k=m’' b
(m" +m)! (—1)° by ok
(B-2) Z P Z (H be! hgjo{h Kz (h,Q)})
m’'=0 beP,, (m—B+m’) ~ k=1

B-mtlel ,
_ el el 49 ( )
ce(;)oo(( O @ e

=3 v, (Q)
xﬂa(mm(lwo(g))) )

forallm,Be 7.

Proof If ¢ € (Z1)*®, let

o0

e =[] o, ok =]]w+DHe.

r=1 r=1

We show that each \l’f)" W€ | with ¢g € 771, enters with the same coefficient on the two
sides of (B-2).

For co € Z1 and ¢ € (Z )™, let
S(co.¢)={(r,j) € ZT xZ | (r,j) € {r} x[c,] forall r € ZT}.
This is a finite set of cardinality co + |¢|. By (B-1), for all b € Z*

§(Q) ifh=0,

R )
Z 0 if b > 0.

—b 7% _
hgjo{h 2. 0)) = (r +1—b)!

%(Q)+{

r=max(b—1,0)

Thus, for each b € (Z1)50:€) and every choice of disjoint subsets S, St ... of [m’],
where

m' =B —m+|b|,
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of cardinalities co, ¢, . .., the term W° W€ appears in the m"™ summand on the left-
hand side of (B-2) with the coefficient

é"‘H—br,j

/ —1)bri
B3 UM a0 (D )

" (r.j)€S(co.¢) brjt (r+1=byj)!

_ Bl 1yb (m' + m)! I (r + 1)_16

1 .
wle) M et N PP

Since the number of above choices is

m’ m'!
(co, c,m' —co— |c|) = colel(m —co— e
it follows that the coefficient of \I—'go W€ on the left-hand side of (B-2) is

é—B—m-l-IIc I

B =5 V+1
B e 2 (v T exed [T (7))

be(Z+)S«o-© t=B—m—co—le|+1  (r,j)eS(coc) ~ 7

If (co,¢) = (0, 0) and thus (Z1)S(€0-€) = {0}, this expression reduces to m!(i)é‘B_m.
Otherwise, (B-4) becomes

B-—m+|c| &° =B
;Z((_l)b(cmcuncn) m (t+b))

le!
colclw(c) beo b t=B—m—co—|c|+1
B—m+|c||
colelw(e) m— el

by the first two statements of Lemma B.1. Lemma B.2 now follows from the last
statement of Lemma B.1. a

Forany d € Zt and t € Z, let

d—

1
[TG—r)

t _r=0
(B-5) (d)_ d!

16 The factors in the m’—fold product in (B-2) that contribute ¥, are indexed by the elements of S; ;
the j™ such factor arises from 9y_q{h~0rJ Z*(h, Q)} with r > by, j — 1. This leaves m’ —c¢o — |¢|
factors that contribute ¢(Q) from Ry_g{Z* (%, Q)}. The first expression in (B-3) is defined to be 0 if
by, j >r +1 for some (r, j) € S(cp. ).
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Forr € Zt and p € (Z+)”, define w, € Q[a] and Cy.p € Q by

_ r_ GP\6P2 ... 5Pn
_E ,_E Cr;p0] 0, op".

pe(ZHy
If rq,r, € [n] with r{ # r, and by, by € Z7F, let

bi ifr = ri, (b1,b2)
B-6) p=(pi1.---.Pn), DPr= {O otherwise, Crl,lrz 2= Cpyry+baraip-

Thus, Cr(lblr’ZbZ) is the coefficient of 8,1)11 8;’22 in the expansion of wyp, ri+bars in terms
of products of the modified (by sign) elementary symmetric polynomials 6, . If by <0
or by <0, set Crl ,Zb 2 — .

Lemma B.3 Ifr,r, €[n] with ry # r, and by, by € ZT with by + by #0,

by +by—1 by +by—1
Cr(1blr2b2) ( b, )rl + ( by Fa.

Proof If by € Z™ and «y,...,ay, are the n roots of the polynomial a” — "~ "1 =
" (" —1),
i=n
COR =3 b = r 10 ()00 = 1y
i=1
thus, the claim holds when either by =0 or b, = 0. If by, by € ZT,
biri+brra—1

wb1r1 +brry = Z 8" wblrl +brry—r + (bll"l + b2r2)8b1r1 +brry
r=1
by Newton’s identity; see Artin [2, page 577]. This gives
Cb1:62) _ o (bi—=1,b2) + C(bl,bz D for all by, b, € 7+

ri,r2 ri,r2

Along with the b; = 0 or b, = 0 case, this implies the claim by induction. a

Lemma B.4 The power series L € 1 + qQ[q] defined by (2-2) satisfies

nL(g)vedtnt H avd (d +1— 1)
B-7 _ =
( ) |:|:|a| + VaL(q)n q;d (a ) d

foralld € Z1 and t € 7.

Proof In the two extremal cases, by (2-3)

nL(g)"ad*m (1 4+¢)@*+=1 if|a] =0,
la| +vaL(g)"  \(1—a%q)™"  ifla|=n.
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Thus, the claim in these two cases follows from the binomial theorem; so, we can
assume that 0 < |a| < n. Replacing a%g by ¢ in (2-2), we observe that it is sufficient
to prove (B-7) with L defined by (2-2) with a® replaced by 1 and |a| by some a € Z™*
with a <n;thus, vy =v=n—a.

With these reductions, for each n™ root of unity ¢ € C let

L¢(q) = ¢L(q) € Q[4].
Then,
1 L@
a+vLe(q)"  qLe(q)et!’

vd+nt (ra vd _ d nL(q)vd—i-nt B L;(q)WH_m
¢ ) =q"=|— T = ——
a+ v L@ g~ 2= LlavLe@r] g

Le(@)"—qLe(q) =1=

where ’ denotes q% as before. Combining these two conclusions, we find that:

nL(Q)”“’”ﬂ |[ v(d+1)+n(—1) L/E(Q)H
B-8 _ = L _5 7
®9 |[ a+vL(@)" | g:a é‘”2=:1 @ Le(@)  gsa+1

If v(d + 1) +n(t — 1) = 0, this gives

nL(q)vd—i-nt B
Hmﬂq . (d+1) ;El [In Le(@)]gza+1
=(d+1) Hln( I1 L;(q))ﬂ
=1 q;d+1
=(d+1) Hln(—l)”_lﬂ =0,
q;d+1

since {L¢}¢n—1 is the set of the roots of £ —g{% —1=0. Since v <n, our assumption
on (d,t) implies that 0 < d 4+ ¢ —1 < d, and so the right-hand side of (B-7) also
vanishes. If v(d + 1) +n(t —1) > 0, (B-8) and Lemma B.3 give

d
nL(q)vd+nt _ d+1 Z [[Lg(q)v(d+1)+n(t_l)ﬂq-d+1
a+vL(@Q)" [l g.q vd+1D+n@E—1) o ’
vd+1)+n@—-1) " d '

Geometry & Topology, Volume 18 (2014)



1108 Aleksey Zinger

as claimed (the last equality holds even if ¢t <0). If v(d +1)+n(t—1) <0, (B-8)
and Lemma B.3 give

[[nL(q)“dJr”’H B d+1 5 [K i )a(d+1)—n(d+t)ﬂ
a+vL(@)" lgg v(d+1D+n—=1) P L¢(q) gd+1

d+1 (d+1,—(d+1)) d+1 df—t
— ) _1 = —1
v(d—{—l)—i—n(l—l)ca’" =D =D d)

since {1/L¢}¢n— is the set of the roots of £" + g€” — 1 = 0; the last equality holds

evenif d +1¢ > 0. Since
—t d+1t—1
_n4 —
()(d) ( d )

(B-7) holds in this last case as well. a

Corollary B.5 The power series L € 1 + qQ[q] defined by (2-2) satisfies

nL(q)vad—i-nt . L/(q)ﬂ
(la] +va L()M*  L(9) | g:a

@S (k=14 (d—1 41 va\"
- (6L

r=0

(B-9) [{

foralld € Zt and k,t € Z.

Proof For d = 0, both sides of (B-9) vanish. By (5-7), the k = 0 case of (B-9)
reduces to Lemma B.4. For k # 0, by (5-7) and the binomial theorem

H nL(g) e+ .L’(q)ﬂ
(la| +va L(M* L(9) I g:a

_ 4 |[nL(q)va(d—1)+n(z+1) 1 ﬂ
la| +vaL(g)" (n+vaa®qL(g)leNc || g

a® di:l (—k) |[nL(q)va(d—1—r)+n(t+l+r)ﬂ (Va a)r
= — —a .
nk —\r la| +vaL(g)" gid—1—r\ 7

The claim now follows from Lemma B.4. O

For p,d € Z, let [pla. [Plas ta(p).ta(p) € Z be as in (2-42). In particular,
(B-10) (ta—1(p) —wa(p). ta(p)) € {(0,0).(1,0), (0, 1)},
(B-11) 1= 1,(p) —to(p) +11(p) = {1 if #;(p) = 0 and 7o (p) = 11 (p),

0 otherwise.
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Let A = a® for the remainder of this section.

LemmaB.6 Foralld € Zt, peZ and f: 7Z* - R,

~(d1) ~(d2)
B-12) D o Lplay vads Lty [Py —vads | (T (P): 12 (P))

di+dr=d
dy,d>>0
Sf(zo(p).t0(p)) ifd =0,
= 1—A(l =19(p) + 1 (p) —t1(p)) f(r1(p). t1(d)) ifd =1,
0 ifd > 2.

Proof The d = 0 case of (B-12) is immediate from 615?3 =0p,s. If T0(p) = ta(p)
and 74(p) = 0, (B-12) reduces to [27, (2.9)]. In general, let d, ..., d; € Zt be such
that

20(p) = tar—1(p) > a3 (p) = taz—1(p) > taz (p) = 1437-1(p)
> > 10 (p) = 1a(p):

if ©o(p) = t4(p), k=0. Letdf =0 and d,, =d+ 1. If 1 =i <k, then

~ k+1
[[Pﬂdi*—l <Va, [[p]]di* <[l +vg4,and so
(d—d>)

Gy 2dy<df = [ple—vad=d) <0 = To@ =0
~ ~(d
di <d, <di |, = [Pla, —vada <1 = C[[(ﬁﬁjz,[[ﬁ]]dz—vadz =0.

Thus, all summands on the left-hand side of (B-12) vanish if £ 7 0. Finally, if d > 0
and k =0, but t;(p) =1, then [p]4,[P]a <!, and so

~(d) _
C1p1a.[Pla—vad = 0, [pla, —va(d—dr) <I,
implying
~(d—d>)
Hp]]dzaﬂpﬂdz_va(d_dz
Thus, all summands on the left-hand side of (B-12) vanish in this case as well. In light
of (B-11), this confirms (B-12). a

)=O foralld, =0,1,...,d —1.

LemmaB.7 Foralld €Z% and p€Z,

} ~(d1) ~(d2) d3
(B-13) Z {C[[p]]d2+d3s[[17]]d2+d3—vadlc[[ﬁ]]d2+d3,[[17]](12+d3—vad2A
d eP4(d)
y (d3 + Ty s (P) ~ Ly ds (p)) HnL(q)”ad‘*—"’dM “”H } 5.
ds la| +va L(q)" q:dy ’
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Proof The d = 0 case is clear; so we assume d > 0. Using Lemma B.6 to sum over
di +d> = d’ with d’ fixed, we find that the left-hand side of B.7 equals

ﬂL(Q)va ol ):|:| z : d (d3 1+ Uds (P) tdg(p))
+ A 3 N h
H q;d

@l +vaL(g)" it dy—1
1<d;<d
o B37ay—1(p) + (d3 — D(tay (p) — 7ay(P)) |[nL(q)”“d4_”’d3 (p)ﬂ
d3 |a| + VaL(CI)n q;d4.

By (B_10)7

(ds — 1+ 7a,(p) — ta; (P)) d3tas—1(p) + (d3 = D(ta; (P) — 4, (p))
d3 —1 d3

B (da -1+ Td3—1(P))
= i, .

It follows that the left-hand side of (B-13) equals
d—1— d;—1 _ di—1—
(B-14) Ad( TO(p))+Ad Z ( 3 + T4, 1(p))( 4 ‘L'd3(p));

d dytdaed d dy
1<d3;=<d
see also Lemma B.4. By inductionon s =0,1,...,d —1,

d3 —1+714,-1(p)\ (ds —1—714,(P)
Z ( d3 )( dy )

di+dy=d
_ (_l)s(d - 1) (d S rd_l_s(p))'
s d

d—s=<d3=<d
Setting s = d — 1 in the last identity, we conclude that the sum in (B-14) vanishes. O
Corollary B.8 Foralld € Zt, p,t € Z and f € R[q],

~(d)) ~(d>) a\d;
Z {C[[P]]d2+d3’[[Pﬂd2+d3_vad1C[[ﬁﬂd2+d3=[[ﬁ]]d2+d3—Vadz(a)

d €P4(d)
d3 + tdy+d; (P) —lay+d;(P) — 1
ds
§ |[nL(‘1)vad4+n(t—fd2+d3 (P) f(q)ﬂ } HnL(q)““d f (q)ﬂ
la| +va L(q)" g:dy) L@l +vaL(@)" || 4;a

Geometry & Topology, Volume 18 (2014)
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Proof Replacing p with p —nt, we can assume that 1 = 0. The d = 0 case is clear;
so we assume that d > 1 and that the above identity holds with d replaced by any
nonnegative integer d’ < d. The left-hand side of this identity is given by

LHS; = Y Caarl/@lgar
d'+d"=d

d/,d//ZO

where
— ~(dy) ~(d>2) a\ds
Cd/,d// B Z {C[[p]]d2+d3 ’[[p]]d2+d3_vadlcﬂﬁ]]d2+d3 9[ﬁﬂd2+d3_vad2(a )
dePy(d’)
X (d3 + Tdy+ds (p) - td2+d3 (p)) [[nL(Q)va(d4+d )_nrd2+d3 (p)ﬂ }
ds ]+ vaL(q)" vide
So, it is sufficient to show that
nL(g)"?
Cd/’d// = —n
|a| + VaL(f]) q;d’

for d’=0,1,...,d. For d’ < d, this is the case by the inductive assumption applied
with /= LYa?" For d’ = d, this is the case by Lemmas B.7 and B.4. O

Appendix C: Summary of important notation

a (ai,...,ap)

la|, {a), etc. ay+---+ay,ay---ag: page 1036

cﬁi’;) main nonequivariant structure coefficients: (2-34), (2-36), (2-48)
CI(;?, main equivariant structure coefficients: (3-6), (4-32), (4-35)
Ap normalized products of Fj: (2-20)

F hypergeometric series (1-4)

F, linear combinations of derivatives of F: (2-16), (2-18)

I.(q) w = 0 reduction of derivatives of F: (1-5)

J(q) mirror map power series: (1-5)

[m] {1,2,...,m}

]|, [[m]]; 0,1,....m—1L{,I+1,....,m—1}

L(g) power series in ¢ related to F: (2-2)

L(x.q) equivariant version of F: (4-36)

9710! N(P" 1 d) moduli of stable N-marked genus 0 degree d morphisms

to CPP"—1

Geometry & Topology, Volume 18 (2014)



1112 Aleksey Zinger

P]r\z[—l (Pn—l)N )

Pn(d) set of ordered partitions of d € Z* into nonnegative integers:
(1-11)

Pm(N]) set of partitions of [/V] into m nonempty subsets: page 1047

Pn—l (CPn_l

[®]4:a coefficient of ¢? in ® € R[[¢]

®,(q) coefficients of expansion of F(w, g)around w = oo: (2-9)

®,.5(q) Fp(w, q) around w = oo: (2-21)

Dy e product of ®p’s: (2-31)

qu (q)’ \Ilp;b (Q)
\Ijm,c

equivariant versions of ®5(q), ®,.5(q): (4-11), (4-12)

equivariant version of ®,, ¢: (4-19)

zt,zt {1,2,...3,{0,1,2,..}

Z(, -, ) generating functions for genus 0 invariants: (2-1)

Z(-, -, ) equivariant version of Z(-, -, -): (3-3)

Zp(-, -, ) a coefficient of N = 2 case of Z(-, -, -): (3-4)

Zp equivariant geometric version of A p: (3-5)
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