Large scale geometry of negatively curved $\mathbb{R}^{n} \rtimes \mathbb{R}$

Xiangdong Xie

Abstract

We classify all negatively curved $\mathbb{R}^{n} \rtimes \mathbb{R}$ up to quasi-isometry. We show that all quasi-isometries between such manifolds (except when they are bilipschitz to the real hyperbolic spaces) are almost similarities. We prove these results by studying the quasisymmetric maps on the ideal boundary of these manifolds.

20F65, 30C65; 53C20

1 Introduction

In this paper we study quasi-isometries between negatively curved solvable Lie groups of the form $\mathbb{R}^{n} \rtimes \mathbb{R}$ and quasisymmetric maps between their ideal boundaries.

Given an $n \times n$ matrix A, we let G_{A} be the semidirect product $\mathbb{R}^{n} \rtimes_{A} \mathbb{R}$, where \mathbb{R} acts on \mathbb{R}^{n} by $x \mapsto e^{t A} x$ for $t \in \mathbb{R}, x \in \mathbb{R}^{n}$. Then G_{A} is a solvable Lie group.

Let G_{A} be equipped with any left-invariant Riemannian metric such that the \mathbb{R} direction is perpendicular to the \mathbb{R}^{n} factor. When $A=I_{n}, G_{\boldsymbol{A}}$ is isometric to \mathbb{H}^{n+1}. More generally, if the eigenvalues of A all have positive real parts, then it follows from Heintze's results [12] that $G_{\boldsymbol{A}}$ is Gromov hyperbolic. Hence $G_{\boldsymbol{A}}$ has a well-defined ideal boundary ∂G_{A}. The ideal boundary ∂G_{A} can be naturally identified with (the one-point compactification of) \mathbb{R}^{n}. On \mathbb{R}^{n} (identified with the ideal boundary with one point removed), there is a parabolic visual (quasi)metric D_{A}, which is invariant under Euclidean translations and admits a family of dilations $\left\{\lambda_{t}=e^{t A}\right\}$. See Section 3 for more details.

Given an $n \times n$ matrix A, the real part Jordan form of A is obtained from the Jordan form of A by replacing each diagonal entry with its real part and reordering to make it canonical. Notice that the real part Jordan form is different from the real Jordan form and the absolute Jordan form. It is related to the absolute Jordan form through matrix exponential.

Here are the main results of the paper. See Theorem 5.12 for a more precise statement of Theorem 1.2. Also see Section 2 for basic definitions.

Theorem 1.1 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts. Then $\left(\mathbb{R}^{n}, D_{A}\right)$ and $\left(\mathbb{R}^{n}, D_{B}\right)$ are quasisymmetric if and only if there is some $s>0$ such that A and $s B$ have the same real part Jordan form.

Theorem 1.2 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts. Denote by λ_{1} and μ_{1} the smallest real parts of the eigenvalues of A and B respectively, and set $\epsilon=\lambda_{1} / \mu_{1}$. If the real part Jordan form of A is not a multiple of the identity matrix I_{n}, then for every quasisymmetric map $F:\left(\mathbb{R}^{n}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$, the map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is bilipschitz.

When $A=I_{n}$, the manifold G_{A} is isometric to the real hyperbolic space \mathbb{H}^{n+1}. In this case, the ideal boundary is \mathbb{R}^{n} with the Euclidean metric, and hence the claim in Theorem 1.2 fails: there are nonbilipschitz quasiconformal maps in the Euclidean space \mathbb{R}^{n}. More generally, if the real part Jordan form of A is a multiple of I_{n}, then it follows from the result of Farb and Mosher (see Section 3) that $\left(\mathbb{R}^{n}, D_{A}\right)$ is bilipschitz to $\left(\mathbb{R}^{n},|\cdot|^{\epsilon}\right)$, where $|\cdot|$ denotes the Euclidean metric and $\epsilon>0$ is some constant. Hence the claim in Theorem 1.2 also fails.

There are several consequences of the main results.
Recall that two geodesic Gromov hyperbolic spaces admitting cocompact isometric group actions are quasi-isometric if and only if their ideal boundaries are quasisymmetric with respect to the visual metrics; see Paulin [17] or Bonk and Schramm [2]. Hence Theorem 1.1 yields the quasi-isometric classification of all negatively curved $\mathbb{R}^{n} \rtimes \mathbb{R}$.

Corollary 1.3 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts. Then G_{A} and G_{B} are quasi-isometric if and only if there is some $s>0$ such that A and $s B$ have the same real part Jordan form.

The next three results are consequences of Theorem 1.2.
A map $f: X \rightarrow Y$ between two metric spaces is called an almost similarity if there are constants $L>0$ and $C \geq 0$ such that $L d\left(x_{1}, x_{2}\right)-C \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq$ $L d\left(x_{1}, x_{2}\right)+C$ for all $x_{1}, x_{2} \in X$ and $d(y, f(X)) \leq C$ for all $y \in Y$.

Corollary 1.4 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts. Suppose the real part Jordan form of A is not a multiple of the identity matrix I_{n}. Then every quasi-isometry $f: G_{A} \rightarrow G_{B}$ is an almost similarity.

We view the canonical projection $h_{A}: G_{A}=\mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ as the height function for G_{A}. Let A and B be two $n \times n$ matrices. A quasi-isometry $f: G_{A} \rightarrow G_{B}$ is height-respecting if it maps the fibers of h_{A} to within uniformly bounded Hausdorff distance from the fibers of h_{B}.

Corollary 1.5 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts. Suppose the real part Jordan form of A is not a multiple of the identity matrix I_{n}. Then every quasi-isometry $f: G_{A} \rightarrow G_{B}$ is height-respecting.

Corollary 1.6 Let A be a square matrix whose eigenvalues all have positive real parts. If the real part Jordan form of A is not a multiple of the identity matrix, then G_{A} is not quasi-isometric to any finitely generated group.

A group G of bijections $g: X \rightarrow X$ of a quasimetric space is a uniform quasimöbius group if there is some homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$ such that every element g of G is η-quasimöbius. The following result follows from Theorem 1.2 and a theorem of Dymarz and Peng [6].

Corollary 1.7 Let A be a square matrix whose eigenvalues all have positive real parts. Suppose that the real part Jordan form of A is not a multiple of the identity matrix. Let G be a uniform quasimöbius group of ∂G_{A} (equipped with a visual metric). If the induced action of G on the space of distinct triples of ∂G_{A} is cocompact, then G can be conjugated by a bilipschitz map of $\left(\mathbb{R}^{n}, D_{A}\right)$ into the group of almost homotheties of $\left(\mathbb{R}^{n}, D_{A}\right)$.

When A is a Jordan block, we describe all the quasisymmetric maps on $\left(\mathbb{R}^{n}, D_{A}\right)$. Consequently, we are able to prove a Liouville-type theorem. See Sections 7 and 8.

Theorem 1.2 was established in the diagonal case by Shanmugalingam and the author [20] and in the 2×2 Jordan block case by the author [22]. We believe that Theorem 1.2 holds true for most homogeneous manifolds with negative curvature (HMNs), with only a few exceptions. Recall that HMNs were characterized by Heintze in [12]: each such manifold is isometric to a solvable Lie group S with a left-invariant Riemannian metric and the group S has the form $S=N \rtimes \mathbb{R}$, where N is a simply connected nilpotent Lie group, and the action of \mathbb{R} on N is generated by a derivation whose eigenvalues all have positive real parts. The only exceptions known to the author are (those HMNs that are bilipschitz to) the real and complex hyperbolic spaces: there are quasisymmetric maps in the Euclidean spaces (Gehring and Väisälä [10]) and the Heisenberg groups (Balogh [1]) that change Hausdorff dimensions (of certain subsets), so they can not be bilipschitz.

Our results concern the quasi-isometric rigidity and quasi-isometric classification of negatively curved solvable Lie groups. The first result in this area is Pansu's rigidity theorem [16] for the quarternionic hyperbolic spaces and Cayley plane. Later, by using L^{p} cohomology, Pansu [14, Corollaries 55, 93] established the quasi-isometric
classification theorem for those $G_{\boldsymbol{A}}$ where A is diagonal. This same result also follows from a theorem of Tyson [21, Theorem 15.3]. All these results belong to the larger project of quasi-isometric rigidity and quasi-isometric classification of focal hyperbolic groups; see Conrulier [3]. Dymarz [5] recently extended Theorem 1.2 to the case of mixed type focal hyperbolic groups.

Recently, Eskin, Fisher and Whyte [7; 8] and Peng [18; 19] proved quasi-isometric rigidity and classification theorems for certain solvable Lie groups that admit lattices but do not admit negative curvature. By contrast, the solvable Lie groups we study in this paper have negative curvature but do not admit lattices (except for rank one symmetric spaces). The approaches taken are also very different. Eskin, Fisher and Whyte and Peng work directly on the solvable Lie groups by using coarse differentiation, while we do analysis on the ideal boundary.

Acknowledgments I thank Bruce Kleiner for suggestions and stimulating discussions. I also would like to thank Tullia Dymarz for telling me about her joint paper with Irine Peng [6]. Finally I thank Yves Cornulier for pointing out Pansu's result [14]. The author was supported in part by NSF grant DMS-1265735.

2 Some basic definitions

In this section we recall some basic definitions.
A quasimetric ρ on a set X is a function $\rho: X \times X \rightarrow \mathbb{R}$ satisfying the following three conditions:
(1) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$.
(2) $\rho(x, y) \geq 0$ for all $x, y \in X$, and $\rho(x, y)=0$ if and only if $x=y$.
(3) There is some $M \geq 1$ such that $\rho(x, z) \leq M(\rho(x, y)+\rho(y, z))$ for all $x, y, z \in X$.

For each $M \geq 1$, there is a constant $\epsilon_{0}>0$ such that ρ^{ϵ} is bilipschitz equivalent to a metric for all quasimetric ρ with constant M and all $0<\epsilon \leq \epsilon_{0}$; see [11, Proposition 14.5].

For any quadruple $Q=(x, y, z, w)$ of distinct points in a quasimetric space X, the cross ratio $\operatorname{cr}(Q)$ of Q is

$$
\operatorname{cr}(Q)=\frac{\rho(x, w) \rho(y, z)}{\rho(x, z) \rho(y, w)}
$$

Let $\eta:[0, \infty) \rightarrow[0, \infty)$ be a homeomorphism. A bijection $F: X \rightarrow Y$ between two quasimetric spaces is η-quasimöbius if $\operatorname{cr}(F(Q)) \leq \eta(\operatorname{cr}(Q))$ for all quadruples
$Q=(x, y, z, w)$ of distinct points in X, where $F(Q)=(F(x), F(y), F(z), F(w))$. A bijection $F: X \rightarrow Y$ between two quasimetric spaces is η-quasisymmetric if for all distinct triples $x, y, z \in X$, we have

$$
\frac{\rho(F(x), F(y))}{\rho(F(x), F(z))} \leq \eta\left(\frac{\rho(x, y)}{\rho(x, z)}\right) .
$$

A map $F: X \rightarrow Y$ is quasisymmetric if it is η-quasisymmetric for some η.
Let $K \geq 1$ and $C>0$. A bijection $F: X \rightarrow Y$ between two quasimetric spaces is called a K-quasisimilarity (with constant C) if

$$
\frac{C}{K} \rho(x, y) \leq \rho(F(x), F(y)) \leq C K \rho(x, y)
$$

for all $x, y \in X$. When $K=1$, we say F is a similarity. It is clear that a map is a quasisimilarity if and only if it is a bilipschitz map. The point of using the notion of quasisimilarity is that sometimes there is control on K but not on C.

3 Negatively curved $\mathbb{R}^{n} \rtimes \mathbb{R}$

In this section we first review some basics about negatively curved $\mathbb{R}^{n} \times \mathbb{R}$, then define the parabolic visual (quasi)metric on their ideal boundary and study its properties. We also recall a result of Farb and Mosher and the main results of [22] and [20].

3.1 Ideal boundary and parabolic visual quasimetric

Let A be an $n \times n$ matrix. Let \mathbb{R} act on \mathbb{R}^{n} by

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \\
& (t, x) \mapsto e^{t A^{\prime}} x .
\end{aligned}
$$

We denote the corresponding semidirect product by $G_{A}=\mathbb{R}^{n} \rtimes_{A} \mathbb{R}$. Then G_{A} is a solvable Lie group. Recall that the group operation in G_{A} is given by

$$
\left(x_{1}, t_{1}\right) \cdot\left(x_{2}, t_{2}\right)=\left(x_{1}+e^{t_{1} A} x_{2}, t_{1}+t_{2}\right) .
$$

We will always assume that the eigenvalues of A have positive real parts. An admissible metric on G_{A} is a left-invariant Riemannian metric such that the \mathbb{R} direction is perpendicular to the \mathbb{R}^{n} factor. The standard metric on G_{A} is the left-invariant Riemannian metric determined by the standard inner product on the tangent space of the identity element $(0,0) \in \mathbb{R}^{n} \times \mathbb{R}=G_{A}$. We remark that G_{A} with the standard metric does not always have negative sectional curvature. However, Heintze's result [12]
says that $G_{\boldsymbol{A}}$ has an admissible metric with negative sectional curvature. Since any two left-invariant Riemannian distances on a Lie group are bilipschitz equivalent, G_{A} with any left-invariant Riemannian metric is Gromov hyperbolic. From now on, unless indicated otherwise, G_{A} will always be equipped with the standard metric.

At a point $(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \approx G_{A}$, the tangent space is identified with $\mathbb{R}^{n} \times \mathbb{R}$, and the standard metric is given by the symmetric matrix

$$
\left(\begin{array}{cc}
Q_{A}(t) & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right),
$$

where $Q_{A}(t)=e^{-t A^{T}} e^{-t A}$. Here T denotes matrix transpose.
For each $x \in \mathbb{R}^{n}$, the map $\gamma_{x}: \mathbb{R} \rightarrow G_{A}, \gamma_{x}(t)=(x, t)$ is a geodesic. We call such a geodesic a vertical geodesic. It can be checked that all vertical geodesics are asymptotic as $t \rightarrow+\infty$. Hence they define a point ξ_{0} in the ideal boundary ∂G_{A}. The sets $\mathbb{R}^{n} \times\{t\}(t \in \mathbb{R})$ are horospheres centered at ξ_{0}. For each $t \in \mathbb{R}$, the induced metric on the horosphere $\mathbb{R}^{n} \times\{t\} \subset G_{A}$ is determined by the quadratic form $Q_{A}(t)$. This metric has the distance formula $d_{A, t}((x, t),(y, t))=\left|e^{-t A}(x-y)\right|$. Here $|\cdot|$ denotes the Euclidean norm.

Each geodesic ray in G_{A} is asymptotic to either an upward-oriented vertical geodesic or a downward-oriented vertical geodesic. The upward-oriented vertical geodesics are asymptotic to ξ_{0} and the downward-oriented vertical geodesics are in one-to-one correspondence with \mathbb{R}^{n}. Hence $\partial G_{\boldsymbol{A}} \backslash\left\{\xi_{0}\right\}$ can be naturally identified with \mathbb{R}^{n}.
We next define a parabolic visual quasimetric on $\partial G_{A} \backslash\left\{\xi_{0}\right\}=\mathbb{R}^{n}$. Given $x, y \in \mathbb{R}^{n}=$ $\partial G_{A} \backslash\left\{\xi_{0}\right\}$, the parabolic visual quasimetric is defined as $D_{A}(x, y)=e^{t}$, where t is the smallest real number such that at height t the two vertical geodesics γ_{x} and γ_{y} are at distance one apart in the horosphere; that is,

$$
d_{A, t}((x, t),(y, t))=\left|e^{-t A}(x-y)\right|=1 .
$$

For each $g=(x, t) \in G_{A}$, the Lie group left translation L_{g} is an isometry of G_{A} and fixes the point ξ_{0}. It shifts all the horospheres centered at ξ_{0} in the vertical direction by the same amount. It follows that the boundary map of L_{g} is a similarity of $\left(\mathbb{R}^{n}, D_{A}\right)$. When $g=(z, 0), L_{g}$ leaves invariant all the horospheres centered at ξ_{0}, and the boundary map is the Euclidean translation by z. Hence Euclidean translations are isometries with respect to D_{A},

$$
D_{A}(x+z, y+z)=D_{A}(x, y) \quad \text { for all } x, y, z \in \mathbb{R}^{n} .
$$

When $g=(0, t), L_{g}$ shifts all the horospheres centered at ξ_{0} by t, and the boundary map is the linear transformation $e^{t A}$. Hence $e^{t A}$ is a similarity with similarity
constant e^{t},

$$
D_{A}\left(e^{t A} x, e^{t A} y\right)=e^{t} D_{A}(x, y) \quad \text { for all } x, y \in \mathbb{R}^{n} \text { and all } t \in \mathbb{R} .
$$

We remark that D_{A} in general is not a metric, but merely a quasimetric. See the remark after the proof of Corollary 3.2.

For any integer $n \geq 2$, let

$$
J_{n}=\left(\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

be the $n \times n$ Jordan matrix with eigenvalue 1 . We write $J_{n}=I_{n}+N$. Here we omit the subscript n for N to simplify the notation. Notice that $e^{-t J_{n}}=e^{-t I_{n}} e^{-t N}=$ $e^{-t} e^{-t N}$. Hence $D_{J_{n}}(x, y)=e^{t}$ if and only if t is the smallest real number satisfying $e^{t}=\left|e^{-t N}(y-x)\right|$. For later use, we notice the following:

$$
e^{t N}=\left(\begin{array}{cccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{n-2}}{(n-2)!} & \frac{t^{n-1}}{(n-1)!} \tag{3-1}\\
0 & 1 & t & \cdots & \frac{t^{n-3}}{(n-3)!} & \frac{t^{n-2}}{(n-2)!} \\
0 & 0 & 1 & \cdots & \frac{t^{n-4}}{(n-4)!} & \frac{t^{n-3}}{(n-3)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & t \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

3.2 Reduction to the real part Jordan form case

Here we state a corollary of a result of Farb and Mosher [9], which implies that the main results in this paper can be reduced to the case when the matrices are already in real part Jordan form.

Let P be a nonsingular $n \times n$ matrix. Define a map $f: G_{A} \rightarrow G_{P A P^{-1}}$ by $f(x, t)=$ ($P x, t$). Then it is easy to check that f is a Lie group isomorphism. Hence f is an isometry if $G_{P A P^{-1}}$ is equipped with the standard metric and G_{A} has the admissible metric in which $P^{-1} e_{1}, \ldots, P^{-1} e_{n}, e_{n+1}$ is orthonormal at the identity element of G_{A}. Here e_{1}, \ldots, e_{n} denote the standard basis of \mathbb{R}^{n}, and e_{n+1} is the standard basis for \mathbb{R}. Hence, G_{A} with any admissible metric is isometric to $G_{P A P^{-1}}$ with the standard metric for some nonsingular matrix P. By Heintze's result [12], there is a nonsingular matrix P such that $G_{P A P^{-1}}$ with the standard metric has negative sectional curvature.

Now we suppose both G_{A} and $G_{P A P^{-1}}$ are equipped with the standard metric. Then it is easy to check that for each $t \in \mathbb{R}$, the restricted map

$$
\left.f\right|_{\mathbb{R}^{n} \times\{t\}}:\left(\mathbb{R}^{n} \times\{t\}, d_{A, t}\right) \rightarrow\left(\mathbb{R}^{n} \times\{t\}, d_{P A P^{-1}, t}\right)
$$

is K-bilipschitz, where $K:=\max \left\{\|P\|,\left\|P^{-1}\right\|\right\}$. Here $\|M\|=\sup \left\{|M x| \mid x \in \mathbb{R}^{n}\right.$, $|x|=1\}$ denotes the operator norm of an $n \times n$ matrix M. We next recall a more general result by Farb and Mosher [9].

Proposition 3.1 [9, Proposition 4.1] Let A and B be two $n \times n$ matrices. Suppose there are constants $r, s>0$ such that $r A$ and $s B$ have the same real part Jordan form. Then there is a height-respecting quasi-isometry $f: G_{A} \rightarrow G_{B}$. To be more precise, there exist an $n \times n$ matrix M and $K \geq 1$ such that for each $t \in \mathbb{R}$, the map $v \rightarrow M v$ is a K-bilipschitz homeomorphism from $\left(\mathbb{R}^{n}, d_{A, t}\right)$ to $\left(\mathbb{R}^{n}, d_{B,(s / r) t}\right)$; it follows that the map $f: G_{A} \rightarrow G_{B}$ given by

$$
(x, t) \longmapsto\left(M x, \frac{s}{r} \cdot t\right)
$$

is bilipschitz with bilipschitz constant $\sup \left\{K, \frac{s}{r}, \frac{r}{s}\right\}$.

Corollary 3.2 Suppose we are in the setting of Proposition 3.1. Assume further that $r=1$ and G_{A} has negative sectional curvature. Then:
(1) The boundary map $\partial f:\left(\mathbb{R}^{n}, D_{A}^{s}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is bilipschitz.
(2) f is an almost similarity.

Proof (1) We observe that the boundary map is given by $\partial f(x)=M x$. Let $x, y \in \mathbb{R}^{n}$ and assume $D_{A}^{s}(x, y)=e^{t}$. Then $D_{A}(x, y)=e^{t / s}$. By the definition of D_{A}, we have $d_{A, t / s}((x, t / s),(y, t / s))=1$. Since G_{A} has pinched negative sectional curvature, there is a constant a depending only on the curvature bounds of G_{A}, such that $d_{A, t^{\prime}}\left(\left(x, t^{\prime}\right),\left(y, t^{\prime}\right)\right)<1 / K$ for $t^{\prime}>t / s+a$ and $d_{A, t^{\prime}}\left(\left(x, t^{\prime}\right),\left(y, t^{\prime}\right)\right)>K$ for $t^{\prime}<t / s-a$. It now follows from Proposition 3.1 that $d_{B, t^{\prime \prime}}\left(\left(M x, t^{\prime \prime}\right),\left(M y, t^{\prime \prime}\right)\right)<1$ for $t^{\prime \prime}>t+s a$ and $d_{B, t^{\prime \prime}}\left(\left(M x, t^{\prime \prime}\right),\left(M y, t^{\prime \prime}\right)\right)>1$ for $t^{\prime \prime}<t-s a$. By the definition of D_{B} we have $e^{-s a} e^{t} \leq D_{B}(M x, M y) \leq e^{s a} e^{t}$. Hence $\partial f:\left(\mathbb{R}^{n}, D_{A}^{s}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is bilipschitz with bilipschitz constant $e^{s a}$.
(2) Let $p=\left(x_{1}, t_{1}\right), q=\left(x_{2}, t_{2}\right) \in G_{A}$ be arbitrary. We may assume $t_{1} \leq t_{2}$. If $x_{1}=x_{2}$, then it is clear from the definition of f that $d(f(p), f(q))=s \cdot d(p, q)$. So we assume $x_{1} \neq x_{2}$ and that $d_{A, t_{0}}\left(\left(x_{1}, t_{0}\right),\left(x_{2}, t_{0}\right)\right)=1$ for some t_{0}. First assume $t_{0} \leq t_{2}$. Then $d\left(\left(x_{1}, t_{2}\right), q\right)<d_{A, t_{2}}\left(\left(x_{1}, t_{2}\right), q\right) \leq 1$ as G_{A} has negative sectional curvature. By the triangle inequality, we have $\left|d(p, q)-\left(t_{2}-t_{1}\right)\right| \leq 1$. By Proposition 3.1,
$d\left(\left(M x_{1}, s t_{2}\right), f(q)\right) \leq d_{B, s t_{2}}\left(\left(M x_{1}, s t_{2}\right), f(q)\right) \leq K$. By the triangle inequality again we have $\left|d(f(p), f(q))-\left(s t_{2}-s t_{1}\right)\right| \leq K$. Hence $|d(f(p), f(q))-s \cdot d(p, q)| \leq s+K$. Next assume $t_{0}>t_{2}$. By [20, Lemma 6.3 (1)] we have $\left|d(p, q)-\left(t_{0}-t_{1}\right)-\left(t_{0}-t_{2}\right)\right| \leq C_{1}$ for some constant C_{1} depending only on the curvature bounds of G_{A}. By [20, Lemma 6.2], the point (x_{1}, t_{0}) is a C_{2}-quasicenter of $x_{1}, x_{2}, \xi_{0} \in \partial G_{A}$ for some constant C_{2} depending only on the curvature bounds of G_{A}. Since f is a quasiisometry, $f\left(x_{1}, t_{0}\right)=\left(M x_{1}, s t_{0}\right)$ is a C_{3}-quasicenter of $M x_{1}, M x_{2}, \eta_{0} \in \partial G_{B}$ (here η_{0} denotes the point in ∂G_{B} corresponding to upward-oriented vertical geodesics), where C_{3} depends only on C_{2}, the quasi-isometry constants of f and the Gromov hyperbolicity constant of G_{B}. Similarly, the point ($M x_{2}, s t_{0}$) is also a C_{3}-quasicenter of $M x_{1}, M x_{2}, \eta_{0} \in \partial G_{B}$. Now consider the geodesic triangle consisting of $\left\{M x_{1}\right\} \times \mathbb{R}$, $\left\{M x_{2}\right\} \times \mathbb{R}$ and a geodesic joining $M x_{1}, M x_{2}$. Notice that $f(p) \in\left\{M x_{1}\right\} \times \mathbb{R}$ lies between $M x_{1}$ and $\left(M x_{1}, s t_{0}\right)$ and $f(q) \in\left\{M x_{2}\right\} \times \mathbb{R}$ lies between $M x_{2}$ and ($M x_{2}, s t_{0}$). It follows that

$$
\begin{aligned}
& \left|d(f(p), f(q))-\left(s t_{0}-s t_{1}\right)-\left(s t_{0}-s t_{2}\right)\right| \\
& \quad=\left|d(f(p), f(q))-d\left(f(p),\left(M x_{1}, s t_{0}\right)\right)-d\left(f(q),\left(M x_{2}, s t_{0}\right)\right)\right| \leq C_{4}
\end{aligned}
$$

for some constant C_{4} depending only on C_{3} and the Gromov hyperbolicity constant of G_{B}. This combined with $\left|d(p, q)-\left(t_{0}-t_{1}\right)-\left(t_{0}-t_{2}\right)\right| \leq C_{1}$ implies $|d(f(p), f(q))-s \cdot d(p, q)| \leq C_{4}+s C_{1}$.

We notice that Corollary 3.2 (1) implies that D_{A} is indeed a quasimetric: by Heintze's result, there is some nonsingular P such that $G_{P A P^{-1}}$ has pinched negative sectional curvature and hence $D_{P A P^{-1}}$ is a quasimetric (this can be proved by the arguments of Coornaert, Delzant and Papadopoulos [4, page 124] or by using the relation between parabolic visual quasimetric and visual quasimetric [20, Section 5]); since (\mathbb{R}^{n}, D_{A}) and $\left(\mathbb{R}^{n}, D_{P A P^{-1}}\right)$ are bilipschitz, D_{A} is also a quasimetric.

3.3 Distance between certain subsets

In this subsection we show that certain subsets of $\left(\mathbb{R}^{n}, D_{A}\right)$ are "parallel." These results will be used in Section 5.

Let A be an $n \times n$ matrix in real part Jordan form with positive eigenvalues

$$
\lambda_{1}<\cdots<\lambda_{k_{A}} .
$$

Let $V_{i} \subset \mathbb{R}^{n}$ be the generalized eigenspace of λ_{i}, and let $d_{i}=\operatorname{dim} V_{i}$.
If $k:=k_{A} \geq 2$, we write A in the block diagonal form $A=\left[A_{1}, \ldots, A_{k}\right]$, where A_{i} is the block corresponding to the eigenvalue λ_{i}; we also denote $A^{\prime}=\left[A_{1}, \ldots, A_{k-1}\right]$.

Correspondingly, \mathbb{R}^{n} admits the decomposition $\mathbb{R}^{n}=V_{1} \times \cdots \times V_{k}$. Hence each point $x \in \mathbb{R}^{n}$ can be written $x=\left(x_{1}, \ldots, x_{k}\right)$, where $x_{i} \in V_{i}$. Observe that, for each $x_{k} \in V_{k}$, if we identify $V_{1} \times \cdots \times V_{k-1} \times\left\{x_{k}\right\}$ with $V_{1} \times \cdots \times V_{k-1}$, then the restriction of D_{A} to $V_{1} \times \cdots \times V_{k-1} \times\left\{x_{k}\right\}$ agrees with $D_{A^{\prime}}$. It is not hard to check that for all $x_{k}, y_{k} \in V_{k}$, the following holds for the distance with respect to the quasimetric D_{A} :

$$
\begin{equation*}
D_{A}\left(V_{1} \times \cdots \times V_{k-1} \times\left\{x_{k}\right\}, V_{1} \times \cdots \times V_{k-1} \times\left\{y_{k}\right\}\right)=D_{A_{k}}\left(x_{k}, y_{k}\right) \tag{3-2}
\end{equation*}
$$

Also, for any $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{n}$ and any $y_{k} \in V_{k}$,

$$
\begin{equation*}
D_{A}\left(x, V_{1} \times \cdots \times V_{k-1} \times\left\{y_{k}\right\}\right)=D_{A_{k}}\left(x_{k}, y_{k}\right) . \tag{3-3}
\end{equation*}
$$

When $k=1$, that is, when A has only one eigenvalue $\lambda:=\lambda_{1}>0$, the matrix A also has a block diagonal form $A=\left[\lambda I_{n_{0}}, \lambda I_{n_{1}}+N, \ldots, \lambda I_{n_{r}}+N\right]$, where $n_{0} \geq 0$ and $\lambda I_{n_{i}}+N$ is a Jordan block. We allow the case $A=\lambda I_{n}$. We write a point $p \in \mathbb{R}^{n}$ as $p=\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)^{T}$, where T denotes matrix transpose, $z \in \mathbb{R}^{n_{0}}$ corresponds to $\lambda I_{n_{0}}$ and $\left(x_{i}, y_{i}\right)^{T} \in \mathbb{R}^{n_{i}}\left(x_{i} \in \mathbb{R}^{n_{i}-1}, y_{i} \in \mathbb{R}\right)$ corresponds to $\lambda I_{n_{i}}+N$. Let $\pi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{0}+r}$ be the projection given by

$$
\pi_{A}(p)=\left(z, y_{1}, \ldots, y_{r}\right)^{T} \quad \text { for } p=\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)^{T} \in \mathbb{R}^{n} .
$$

Set

$$
A(1)=\left[\lambda I_{n_{1}-1}+N, \ldots, \lambda I_{n_{r}-1}+N\right],
$$

where $\lambda I_{1}+N$ is understood to be λI_{1}.
Lemma 3.3 The restriction of D_{A} to the fibers of π_{A} agrees with $D_{A(1)}$. To be more precise, for all $p=\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)^{T}, p^{\prime}=\left(z,\left(x_{1}^{\prime}, y_{1}\right), \ldots,\left(x_{r}^{\prime}, y_{r}\right)\right)^{T}$ we have

$$
D_{A}\left(p, p^{\prime}\right)=D_{A(1)}\left(x, x^{\prime}\right),
$$

where $x=\left(x_{1}, \ldots, x_{r}\right)^{T}$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right)^{T}$.
Proof Assume $D_{A}\left(p, p^{\prime}\right)=e^{t}$ and $D_{A(1)}\left(x, x^{\prime}\right)=e^{s}$. By the definition, s is the smallest real number such that $\left|e^{-s A(1)}\left(x^{\prime}-x\right)\right|=1$. We calculate

$$
e^{-s A(1)}\left(x^{\prime}-x\right)=e^{-\lambda s}\left(e^{-s N_{n_{1}}-1}\left(x_{1}^{\prime}-x_{1}\right), \ldots, e^{-s N_{n r}-1}\left(x_{r}^{\prime}-x_{r}\right)\right)^{T} .
$$

Similarly, t is the smallest real number such that $\left|e^{-t A}\left(p^{\prime}-p\right)\right|=1$. We calculate

$$
e^{-t A}\left(p^{\prime}-p\right)=e^{-\lambda t}\left(\mathbf{0},\left(e^{-t N_{n_{1}-1}}\left(x_{1}^{\prime}-x_{1}\right), 0\right), \ldots,\left(e^{-t N_{n r}-1}\left(x_{r}^{\prime}-x_{r}\right), 0\right)\right)^{T}
$$

It follows that the two equations $\left|e^{-s A(1)}\left(x^{\prime}-x\right)\right|=1$ and $\left|e^{-t A}\left(p^{\prime}-p\right)\right|=1$ are the same. Hence $s=t$.

Lemma 3.4 The following hold for all $y, y^{\prime} \in \mathbb{R}^{n_{0}+r}$:

$$
\begin{equation*}
D_{A}\left(\pi_{A}^{-1}(y), \pi_{A}^{-1}\left(y^{\prime}\right)\right)=\left|y-y^{\prime}\right|^{1 / \lambda} \tag{1}
\end{equation*}
$$

(2) For any $p \in \pi_{A}^{-1}(y)$, we have $D_{A}\left(p, \pi_{A}^{-1}\left(y^{\prime}\right)\right)=\left|y-y^{\prime}\right|^{1 / \lambda}$

Proof Let

$$
\begin{aligned}
p & =\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)^{T} \in \pi_{A}^{-1}(y) \\
p^{\prime} & =\left(z^{\prime},\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \ldots,\left(x_{r}^{\prime}, y_{r}^{\prime}\right)\right)^{T} \in \pi_{A}^{-1}\left(y^{\prime}\right)
\end{aligned}
$$

where y and y^{\prime} are written $y=\left(z, y_{1}, \ldots, y_{r}\right), y^{\prime}=\left(z^{\prime}, y_{1}^{\prime}, \ldots, y_{r}^{\prime}\right)$. Assume $D_{A}\left(p, p^{\prime}\right)=e^{t}$. Then t is the smallest real number such that

$$
\left|\left(z^{\prime}-z, e^{-t N_{n_{1}}}\left(x_{1}^{\prime}-x_{1}, y_{1}^{\prime}-y_{1}\right)^{T}, \ldots, e^{-t N_{n_{r}}}\left(x_{r}^{\prime}-x_{r}, y_{r}^{\prime}-y_{r}\right)^{T}\right)\right|=e^{\lambda t}
$$

Notice that the last entry of $e^{-t N_{n_{i}}}\left(x_{i}^{\prime}-x_{i}, y_{i}^{\prime}-y_{i}\right)^{T}$ is $y_{i}^{\prime}-y_{i}$, which is independent of t. It follows that $e^{\lambda t} \geq\left|\left(z^{\prime}-z, y_{1}^{\prime}-y_{1}, \ldots, y_{r}^{\prime}-y_{r}\right)\right|=\left|y^{\prime}-y\right|$, and hence $D_{A}\left(p, p^{\prime}\right)=e^{t} \geq\left|y^{\prime}-y\right|^{1 / \lambda}$.

Set $t_{0}=\ln \left|y^{\prime}-y\right| / \lambda$. Then $e^{\lambda t_{0}}=\left|y^{\prime}-y\right|$. Now let $p=\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)^{T} \in$ $\pi_{A}^{-1}(y)$ be arbitrary. Since the matrix $e^{-t_{0} N_{n_{i}}}$ is nonsingular, the equation

$$
e^{-t_{0} N_{n_{i}}}\left(u_{i}, v_{i}\right)^{T}=\left(0, \ldots, 0, y_{i}^{\prime}-y_{i}\right)^{T}
$$

has a unique solution $\left(u_{i}, v_{i}\right)^{T}$, where $u_{i} \in \mathbb{R}^{n_{i}-1}$ and $v_{i} \in \mathbb{R}$. Notice that $v_{i}=y_{i}^{\prime}-y_{i}$. Set $x_{i}^{\prime}=u_{i}+x_{i}$ and $p^{\prime}=\left(z^{\prime},\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \ldots,\left(x_{r}^{\prime}, y_{r}^{\prime}\right)\right)^{T}$. Then $p^{\prime} \in \pi_{A}^{-1}\left(y^{\prime}\right)$ and

$$
e^{-t_{0} A}\left(p^{\prime}-p\right)=e^{-t_{0} \lambda}\left(z^{\prime}-z,\left(\mathbf{0}, y_{1}^{\prime}-y_{1}\right), \ldots,\left(\mathbf{0}, y_{r}^{\prime}-y_{r}\right)\right)^{T} .
$$

It follows that t_{0} is a solution of $\left|e^{-t A}\left(p^{\prime}-p\right)\right|=1$ and so $D_{A}\left(p, p^{\prime}\right) \leq e^{t_{0}}=$ $\left|y-y^{\prime}\right|^{1 / \lambda}$. This together with the first paragraph implies $D_{A}\left(p, p^{\prime}\right)=\left|y-y^{\prime}\right|^{1 / \lambda}$. So each point $p \in \pi_{A}^{-1}(y)$ is within $\left|y-y^{\prime}\right|^{1 / \lambda}$ of $\pi_{A}^{-1}\left(y^{\prime}\right)$. Similarly, every point $p^{\prime} \in \pi_{A}^{-1}\left(y^{\prime}\right)$ is also within $\left|y-y^{\prime}\right|^{1 / \lambda}$ of $\pi_{A}^{-1}(y)$. Therefore, (1) holds.

Part (2) also follows from the above two paragraphs.

3.4 Previous results

The following two results will be used in the proof of Theorems 1.1 and 1.2. They are the basic steps in the induction.

Theorem 3.5 [20, Theorem 4.1] Suppose A is diagonal with positive eigenvalues $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{r}(r \geq 2)$. Then every η-quasisymmetry $F:\left(\mathbb{R}^{n}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n}, D_{A}\right)$ is a K-quasisimilarity, where K depends only on η and r.

Theorem 3.6 [22, Theorems 4.1, 5.1] Every η-quasisymmetric map $F:\left(\mathbb{R}^{2}, D_{J_{2}}\right) \rightarrow$ $\left(\mathbb{R}^{2}, D_{J_{2}}\right)$ is a K-quasisimilarity, where K depends only on η. Furthermore, a bijection $F:\left(\mathbb{R}^{2}, D_{J_{2}}\right) \rightarrow\left(\mathbb{R}^{2}, D_{J_{2}}\right)$ is a quasisymmetric map if and only of it has the following form: $F(x, y)=(a x+c(y), a y+b)$ for all $(x, y) \in \mathbb{R}^{2}$, where $a \neq 0, b$ are constants and $c: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz map.

$4 Q$-variation on the ideal boundary

In this section we introduce the main tool in the proof of the main results: Q-variation for maps between quasimetric spaces. It is a discrete version of the notion of capacity. The advantage of this notion is that it makes sense for quasimetric spaces and does not require the existence of rectifiable curves. We remark that, while dealing with ideal boundary of negatively curved spaces, very often either one has to work with quasimetric spaces in which the triangle inequality is not available, or one needs to work with metric spaces that contain no rectifiable curves. Both scenarios are unpleasant from the point of view of classical quasiconformal analysis.

The notion of Q-variation is due to Bruce Kleiner [13].
Let (X, ρ) be a quasimetric space and $L \geq 1$. A subset $A \subset X$ is called an L-quasiball if there is some $x \in X$ and some $r>0$ such that $B(x, r) \subset A \subset B(x, L r)$. Here $B(x, r):=\{y \in X \mid \rho(y, x)<r\}$.

For any ball $B:=B(x, r)$ and any $\kappa>0$, we sometimes denote $B(x, \kappa r)$ by κB.
For a subset E of a quasimetric space (Y, ρ), the ρ-diameter of E is

$$
\operatorname{diam}_{\rho}(E):=\sup \left\{\rho\left(e_{1}, e_{2}\right) \mid e_{1}, e_{2} \in E\right\}
$$

Let $u:\left(X, \rho_{1}\right) \rightarrow\left(Y, \rho_{2}\right)$ be a map between two quasimetric spaces. For any subset $A \subset X$, the oscillation of u over A is

$$
\operatorname{osc}\left(\left.u\right|_{A}\right)=\operatorname{diam}_{\rho_{2}}(u(A)) .
$$

Let $Q \geq 1$. For a collection of disjoint subsets $\mathcal{A}=\left\{A_{i}\right\}$ of X, the Q-variation of u over \mathcal{A}, denoted by $V_{Q}(u, \mathcal{A})$, is the quantity

$$
\sum_{i}\left[\operatorname{osc}\left(\left.u\right|_{A_{i}}\right)\right]^{Q}
$$

For $\delta>0$ and $K \geq 1$, set

$$
V_{Q, K}^{\delta}(u)=\sup \left\{V_{Q}(u, \mathcal{A})\right\},
$$

where \mathcal{A} ranges over all disjoint collections of K-quasiballs in (X, ρ_{1}) with ρ_{1-} diameter at most δ. Finally, the (Q, K)-variation $V_{Q, K}(u)$ of u is

$$
V_{Q, K}(u)=\lim _{\delta \rightarrow 0} V_{Q, K}^{\delta}(u) .
$$

We notice that $V_{Q, K}\left(\left.u\right|_{E_{1}}\right) \leq V_{Q, K}\left(\left.u\right|_{E_{2}}\right)$ whenever $E_{1} \subset E_{2} \subset X$.
There are useful variants of this definition, for instance one can look at the infimum over all coverings. Or one can take the infimum over all coverings followed by the sup as the mesh size tends to zero. As a tool, Q-variation could be compared with Pansu's modulus [15], but seems slightly easier to work with in our context.

Since quasisymmetric maps send quasiballs to quasiballs quantitatively, it is easy to see that Q-variation is a quasisymmetric invariant. To be more precise, we recall the following lemma.

Lemma 4.1 [22, Lemma 3.1] Let X be a bounded quasimetric space and $F: X \rightarrow Z$ an η-quasisymmetric map. Then for every map $u: X \rightarrow Y$ we have $V_{Q, K}(u) \leq$ $V_{Q, \eta(K)}\left(u \circ F^{-1}\right)$.

We next calculate the Q-variation of certain functions defined on the ideal boundary of negatively curved $\mathbb{R}^{n} \rtimes \mathbb{R}$. These calculations will be used in the next section to show that certain foliations on the ideal boundary are preserved by quasisymmetric maps.

For later use we recall that, for any $Q>1$, any integer $k \geq 1$ and any nonnegative numbers a_{1}, \ldots, a_{k}, Jensen's inequality states

$$
\frac{\sum_{i=1}^{k} a_{i}^{Q}}{k} \geq\left(\frac{\sum_{i=1}^{k} a_{i}}{k}\right)^{Q},
$$

and equality holds if and only if all the a_{i} are equal. In our applications, the a_{i} will be the oscillations of a function u along a "stack" of quasiballs.

Let A be an $n \times n$ matrix in real part Jordan form with positive eigenvalues

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{k},
$$

let $V_{i} \subset \mathbb{R}^{n}$ be the generalized eigenspace of λ_{i}, and let $d_{i}=\operatorname{dim} V_{i}$. Then \mathbb{R}^{n} admits the decomposition: $\mathbb{R}^{n}=V_{1} \times \cdots \times V_{k}$. Since $e^{t A}$ is a linear transformation with $\operatorname{det}\left(e^{t A}\right)=e^{t\left(\sum_{i} d_{i} \lambda_{i}\right)}$, for any subset $U \subset \mathbb{R}^{n}$, we have $\operatorname{Vol}\left(e^{t A}(U)\right)=$ $e^{t\left(\sum_{i} d_{i} \lambda_{i}\right)} \operatorname{Vol}(U)$.

There are constants C_{1}, C_{2}, C_{3} depending only on the dimension n with the following properties. If $B:=B(o, 1) \subset \mathbb{R}^{n}$ is the unit ball (in the Euclidean metric), and $t \leq-1$,
then

$$
\begin{equation*}
B\left(o, C_{1} e^{t \lambda_{k}}|t|^{-n+1}\right) \subset e^{t A} B \subset B\left(o, C_{2} e^{t \lambda_{1}}|t|^{n-1}\right), \tag{4-1}
\end{equation*}
$$

while

$$
\begin{equation*}
\operatorname{Vol}\left(e^{t A} B\right)=C_{3} e^{t\left(\sum_{i} d_{i} \lambda_{i}\right)} \tag{4-2}
\end{equation*}
$$

Let $S=\prod_{i=1}^{n}[0,1] \subset \mathbb{R}^{n}$ be the unit cube. We notice that both S and B are $K_{0}{ }^{-}$ quasiballs with respect to D_{A} for some K_{0} depending only on A. Hence there is some $r>0$ such that $B_{A}(o, r) \subset B \subset B_{A}\left(o, K_{0} r\right)$. Here the subscript A refers to D_{A}. Also recall that D_{A} is a quasimetric: there is a constant $M \geq 1$ such that $D_{A}(x, z) \leq M\left(D_{A}(x, y)+D_{A}(y, z)\right)$ for all $x, y, z \in \mathbb{R}^{n}$.

In the following, when we say a subset $E \subset \mathbb{R}^{n}$ is convex, we mean it is convex with respect to the Euclidean metric. The continuity of a function $u: E \rightarrow \mathbb{R}$ is with respect to the topology induced from the usual topology on \mathbb{R}^{n}.

Lemma 4.2 Let $E \subset \mathbb{R}^{n}$ be a convex open subset. If $u:\left(E, D_{A}\right) \rightarrow \mathbb{R}$ is a nonconstant continuous function, then $V_{Q, K}(u)=\infty$ for all $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}$ and all $K \geq K_{0}$.

Proof Let $p, q \in E$ with $u(p) \neq u(q)$. Let $C \subset E$ be a fixed cylinder with axis $\overline{p q}$, such that the minimum of u on one cap of C is strictly greater than its maximum on the other cap. We pack C with translates of $e^{t A} B$, for $t \ll 0$, as follows. First pick a maximal set of lines $\mathcal{L}=\left\{L_{j}\right\}$ in \mathbb{R}^{n} satisfying the following conditions:
(1) Each line is parallel to $\overline{p q}$.
(2) Each line intersects C.
(3) The Hausdorff distance (with respect to D_{A}) between any two of the lines is at least $2 M K_{0} r e^{t}$.

The maximality implies that for each $x \in C$, we have $D_{A}\left(x, L_{j}\right) \leq 2 M K_{0} r e^{t}$ for some j. For each j, consider a translate B_{j} of $e^{t A} B$ centered at some point on L_{j}. Then we move B_{j} along L_{j} (in both directions) by translations until the translates just touch B_{j}. Repeat this and we obtain a "stack" of K_{0}-quasiballs centered on L_{j}. Do this for each j and we obtain a packing $\mathcal{P}=\{P\}$ of C by translates of $e^{t A} B$, after removing those that are disjoint from C.
We claim that the collection \mathcal{P} covers a fixed fraction of the volume of C. To see this, first notice that the D_{A}-distance between the centers x_{1}, x_{2} of two consecutive K_{0}-quasiballs along L_{j} is at most $M\left(K_{0} r e^{t}+K_{0} r e^{t}\right)=2 M K_{0} r e^{t}$, due to the generalized triangle inequality for D_{A}. Assume $D_{A}\left(x_{1}, x_{2}\right)=e^{s}$. Then

$$
e^{(\ln r-s) A}\left(x_{2}-x_{1}\right) \in e^{(\ln r-s) A} \bar{B}_{A}\left(o, e^{s}\right)=\bar{B}_{A}(o, r) \subset \bar{B} \subset \bar{B}_{A}\left(o, K_{0} r\right)
$$

Since \bar{B} is convex, the line segment joining o and $e^{(\ln r-s) A}\left(x_{2}-x_{1}\right)$ is contained in $\bar{B} \subset \bar{B}_{A}\left(o, K_{0} r\right)$. It follows that the segment joining o and $x_{2}-x_{1}$ lies in $e^{(s-\ln r) A} \bar{B}_{A}\left(o, K_{0} r\right)=\bar{B}_{A}\left(o, K_{0} e^{s}\right)$. Hence $\overline{x_{1} x_{2}} \subset \bar{B}_{A}\left(x_{1}, K_{0} e^{s}\right)$. This shows that every point on $L_{j} \cap C$ is within $K_{0} e^{s} \leq K_{1}:=2 M K_{0}^{2} r e^{t}$ of the center of some $P \in \mathcal{P}$. Now the choice of the lines $\left\{L_{j}\right\}$ and the generalized triangle inequality for D_{A} imply that C is covered by D_{A}-balls with radius $K_{2}:=M\left(2 M K_{0} r e^{t}+K_{1}\right)$ and centers at the centers of $\{P\}$. Since the volumes of $e^{t A} B$ and $B_{A}\left(o, K_{2}\right)$ are comparable, the claim follows.

The number of K_{0}-quasiballs in \mathcal{P} along each line L_{j} is $\lesssim e^{-t \lambda_{k}}|t|^{n-1}$ in view of the estimate (4-1). By Jensen's inequality, the Q-variation of u for the K_{0}-quasiballs along L_{j} is at least as large as the Q-variation when the oscillations of u on these quasiballs are equal. This common oscillation is $\gtrsim e^{t \lambda_{k}}|t|^{-n+1}$. Since \mathcal{P} covers a fixed fraction of C, the cardinality of \mathcal{P} is $\gtrsim e^{-t\left(\sum_{i} d_{i} \lambda_{i}\right)}$. Hence the Q-variation of u on \mathcal{P} is

$$
\gtrsim e^{-t\left(\sum_{i} d_{i} \lambda_{i}\right)}\left(e^{t \lambda_{k}}|t|^{-n+1}\right)^{Q}=e^{t\left(Q \lambda_{k}-\sum_{i} d_{i} \lambda_{i}\right)}|t|^{(-n+1) Q},
$$

which tends to ∞ as $t \rightarrow-\infty$ for $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}$. Hence $V_{Q, K}(u)=\infty$.

Notice that $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}<n$ if $k \geq 2$ and $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}=n$ if $k=1$. Hence we have the following corollary.

Corollary 4.3 Suppose $k=1$. Let $E \subset \mathbb{R}^{n}$ be a convex open subset. If $u:\left(E, D_{A}\right) \rightarrow \mathbb{R}$ is a nonconstant continuous function, then $V_{Q, K}(u)=\infty$ for all $Q<n$ and all $K \geq K_{0}$.

Lemma 4.4 Let $E \subset \mathbb{R}^{n}$ be a convex open subset. Let $u:\left(E, D_{A}\right) \rightarrow \mathbb{R}$ be a continuous function. Suppose there is an affine subspace W parallel to the subspace $\prod_{i \leq l} V_{i}$ such that $\left.u\right|_{W \cap E}$ is not constant. Then $V_{Q, K}(u)=\infty$ for all $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{l}$ and all $K \geq K_{0}$.

Proof Note that in the proof of Lemma 4.2, if $\overline{p q}$ is parallel to the subspace $\prod_{i \leq l} V_{i}$, then the number of quasiballs in \mathcal{P} along a line L_{j} is $\lesssim e^{-t \lambda_{l}}|t|^{n-1}$, so the lower bound on Q-variation becomes

$$
C e^{t\left(Q \lambda_{l}-\sum_{i} d_{i} \lambda_{i}\right)}|t|^{(-n+1) Q},
$$

which tends to ∞ as $t \rightarrow-\infty$ if $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{l}$.

Let $\pi: \mathbb{R}^{n}=V_{1} \times \cdots \times V_{k} \rightarrow V_{k}$ be the natural projection.

Lemma 4.5 Let $\pi^{\prime}: V_{k} \rightarrow \mathbb{R}$ be a coordinate function on V_{k}, and set $u=\pi^{\prime} \circ \pi$. Then $V_{Q, K}\left(\left.u\right|_{E}\right)=0$ for all $Q>\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}$, all $K \geq K_{0}$ and all bounded subsets $E \subset \mathbb{R}^{n}$.

Proof Let E be a bounded open subset. Let $0<\delta \ll 1$ and $\left\{B_{j}\right\}_{j \in I}$ be a packing of E by K-quasiballs with size less than δ. Then for each j there is some $x_{j} \in \mathbb{R}^{n}$ and some t_{j} such that

$$
B_{A}\left(x_{j}, e^{t_{j}}\right) \subset B_{j} \subset B_{A}\left(x_{j}, K e^{t_{j}}\right)
$$

Since $B_{A}(o, r) \subset B \subset B_{A}\left(o, K_{0} r\right)$, we have $e^{t_{j}^{\prime} A} B \subset B_{A}\left(o, e^{t_{j}}\right)$ and $B_{A}\left(o, K e^{t_{j}}\right) \subset$ $e^{t_{j}^{\prime \prime} A} B$, where $t_{j}^{\prime}=t_{j}-\ln r-\ln K_{0}$ and where $t_{j}^{\prime \prime}=t_{j}-\ln r+\ln K$. Set $B_{j}^{\prime}=$ $x_{j}+e^{t_{j}^{\prime} A} B$ and $B_{j}^{\prime \prime}=x_{j}+e^{t_{j}^{\prime \prime} A} B$. Then $B_{j}^{\prime} \subset B_{j} \subset B_{j}^{\prime \prime}$. It follows that

$$
\begin{gathered}
\operatorname{osc}\left(\left.u\right|_{B_{j}}\right) \leq \operatorname{osc}\left(\left.u\right|_{B_{j}^{\prime \prime}}\right) \lesssim e^{t_{j}^{\prime \prime} \lambda_{k}}\left|t_{j}^{\prime \prime}\right|^{d_{k}-1} \\
\left(\operatorname{osc}\left(\left.u\right|_{B_{j}}\right)\right)^{Q} \lesssim e^{t_{j}^{\prime \prime}\left(Q \lambda_{k}\right)}\left|t_{j}^{\prime \prime}\right|^{Q\left(d_{k}-1\right)} \lesssim e^{t_{j}^{\prime}\left(Q \lambda_{k}\right)}\left|t_{j}^{\prime}\right| Q\left(d_{k}-1\right)
\end{gathered}
$$

If we have $Q>\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}$, then this will be $\lesssim\left(\operatorname{Vol}\left(B_{j}^{\prime}\right)\right)^{s} \leq\left(\operatorname{Vol}\left(B_{j}\right)\right)^{s}$ for $s=$ $\left(Q \lambda_{k}+\sum_{i} d_{i} \lambda_{i}\right) /\left(2 \sum_{i} d_{i} \lambda_{i}\right)>1$, which implies that the Q-variation is zero.

For the rest of this section, we will assume $k=1$ and use the notation introduced before Lemma 3.3.

Lemma 4.6 Suppose A has only one eigenvalue $\lambda>0$. Let $\pi^{\prime}: \mathbb{R}^{n_{0}+r} \rightarrow \mathbb{R}$ be a coordinate function and $u=\pi^{\prime} \circ \pi_{A}$. Then for any bounded open subset E :
(1) $V_{Q, K}\left(\left.u\right|_{E}\right)=0$ for all $Q>n$ and all $K \geq K_{0}$
(2) $0<V_{n, K}\left(\left.u\right|_{E}\right)<\infty$ for all $K \geq K_{0}$

Proof Let P be a K-quasiball. Then there is a D_{A}-ball U with $U \subset P \subset K U$. Let $t_{0}=\ln \left(K K_{0}\right)$. For some $t \in \mathbb{R}$ there is a translate $S(t)$ of $e^{t A} S$ and a translate $S\left(t+t_{0}\right)$ of $e^{\left(t+t_{0}\right) A} S$ such that $\left(1 / K_{0}\right) U \subset S(t) \subset U$ and $K U \subset S\left(t+t_{0}\right) \subset K K_{0} U$. Observe that for any translate S^{\prime} of $e^{t A} S$, we have $\operatorname{osc}\left(\left.u\right|_{S^{\prime}}\right)=e^{\lambda t}$. It follows that

$$
\operatorname{osc}\left(\left.u\right|_{P}\right) \geq \operatorname{osc}\left(\left.u\right|_{S(t)}\right)=\frac{1}{\left(K K_{0}\right)^{\lambda}} \operatorname{osc}\left(\left.u\right|_{S\left(t+t_{0}\right)}\right) \geq \frac{1}{\left(K K_{0}\right)^{\lambda}} \operatorname{osc}\left(\left.u\right|_{P}\right) .
$$

Also notice that $\operatorname{osc}\left(\left.u\right|_{S(t)}\right)=(\operatorname{Vol}(S(t)))^{1 / n} \leq(\operatorname{Vol}(P))^{1 / n}$.
Now let E be a bounded open subset and $\left\{P_{i}\right\}$ a packing of E by a disjoint collection of K-quasiballs with size less than δ. For each P_{i}, let U_{i} be a D_{A}-ball with $U_{i} \subset$
$P_{i} \subset K U_{i}$ and let S_{i} be a translate of some $e^{t_{i} A} S$ with $\left(1 / K_{0}\right) U_{i} \subset S_{i} \subset U_{i}$. Then the preceding paragraph implies

$$
\sum_{i} \operatorname{osc}\left(\left.u\right|_{P_{i}}\right)^{Q} \leq\left(K K_{0}\right)^{Q \lambda} \sum_{i} \operatorname{osc}\left(\left.u\right|_{S_{i}}\right)^{Q} \leq\left(K K_{0}\right)^{Q \lambda} \sum_{i} \operatorname{Vol}\left(P_{i}\right)^{Q / n} .
$$

From this it is clear that $V_{Q, K}\left(\left.u\right|_{E}\right)=0$ if $Q>n$ and $V_{n, K}\left(\left.u\right|_{E}\right)<\infty$ since $\left\{P_{i}\right\}$ is a disjoint collection in E.

Now consider a particular packing $\left\{P_{i}\right\}$ of E by the images of the integral unit cubes in \mathbb{R}^{n} under $e^{t A}$. Then $\operatorname{osc}\left(\left.u\right|_{P_{i}}\right)=e^{\lambda t}$. The cardinality of $\left\{P_{i}\right\}$ is approximately $\operatorname{Vol}(E) / e^{n \lambda t}$. Hence $V_{n, K}^{\delta}\left(\left.u\right|_{E}\right) \geq \sum_{i} \operatorname{osc}\left(\left.u\right|_{P_{i}}\right)^{n} \approx \operatorname{Vol}(E)$. Hence we have $0<V_{n, K}\left(\left.u\right|_{E}\right)<\infty$.

Lemma 4.7 Suppose A has only one eigenvalue $\lambda>0$. Let $E \subset \mathbb{R}^{n}$ be a rectangular box whose edges are parallel to the coordinate axes. Let $u:\left(E, D_{A}\right) \rightarrow \mathbb{R}$ be a continuous function. Suppose there is some fiber H of $\pi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{0}+r}$ such that $\left.u\right|_{H \cap E}$ is not constant. Then $V_{Q, K}(u)=\infty$ for all $Q \leq n$ and all $K \geq K_{0}$.

Proof Suppose there is some fiber H of π_{A} such that $\left.u\right|_{H \cap E}$ is not constant. Then there is some Jordan block J in A with the following property: if we denote by $x=\left(x_{1}, \ldots, x_{m}\right)$ the coordinates corresponding to J, then there is some index k, $1 \leq k \leq m-1$, such that u is constant along every line parallel to the x_{j}-axis for $j \leq k-1$, but is not constant along some line L parallel to the x_{k}-axis. We write $\mathbb{R}^{n}=\mathbb{R}^{k-1} \times \mathbb{R} \times \mathbb{R}^{n-k}$, where the \mathbb{R} corresponds to the x_{k}-axis and the \mathbb{R}^{k-1} is spanned by the x_{j}-axes $(j \leq k-1)$. After composing u with an affine function, we may assume that for some rectangular box $C=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \subset E$, we have $u \leq 0$ on the codimension-1 face $F_{0}:=\left\{x \in C \mid x_{k}=a_{k}\right\}$ of C and $u \geq 1$ on the codimension-1 face $F_{1}:=\left\{x \in C \mid x_{k}=b_{k}\right\}$ of C. We will induct on k.
Recall that for a Jordan block $J=\lambda I_{m}+N$, we have $e^{t J}=e^{\lambda t} e^{t N}$. See (3-1) for an expression of $e^{t N}$.

We first assume $k=1$. For $t \ll 0$, consider the images of the integral unit cubes under $e^{t A}$. Let $\left\{B_{i}\right\}$ be the collection of all those images that intersect the box C. Notice that a vertical stack (ie parallel to the x_{m}-axis) of integral cubes is mapped by $e^{t A}$ to a sequences of K_{0}-quasiballs which is almost parallel to the x_{1}-axis. We divide $\left\{B_{i}\right\}$ into such sequences which join F_{0} and F_{1}. Note that the projection of each B_{i} to the x_{1}-axis has length comparable to $e^{\lambda t}|t|^{m-1}$. Hence the cardinality of each sequence is comparable to $e^{-\lambda t}|t|^{1-m}$. The Q-variation of u along each sequence is at least the Q-variation of u when oscillations of u on the members of the sequence are equal. Since $u \leq 0$ on F_{0} and $u \geq 1$ on F_{1}, this common oscillation
is at least comparable to $e^{\lambda t}|t|^{m-1}$. Since each B_{i} has volume $e^{n \lambda t}$, the cardinality of $\left\{B_{i}\right\}$ is comparable to $e^{-n \lambda t}$. It follows that the Q-variation of $\left.u\right|_{C}$ is at least comparable to

$$
e^{-n \lambda t} \cdot\left(e^{\lambda t}|t|^{m-1}\right)^{Q}=e^{\lambda t(Q-n)}|t|^{Q(m-1)},
$$

which tends to ∞ as $t \rightarrow-\infty$ if $Q \leq n$. Hence $V_{Q, K}\left(\left.u\right|_{C}\right)=\infty$ for $Q \leq n$.
Now we assume $m-1 \geq k \geq 2$. Then u is constant along affine subspaces parallel to $\mathbb{R}^{k-1} \times\{0\} \times\{0\} \subset \mathbb{R}^{n}$. Let

$$
U=\left\{x \in F_{0} \mid\left(3 a_{i}+b_{i}\right) / 4 \leq x_{i} \leq\left(a_{i}+3 b_{i}\right) / 4 \text { for all } i \neq k\right\} \subset F_{0}
$$

For $t \ll 0$, denote by

$$
v(t)=(-1)^{m-k} e^{-\lambda t} e^{t A} \vec{e}_{m}
$$

where \vec{e}_{m} is the $m^{\text {th }}$ vector in the standard basis for \mathbb{R}^{n}. Notice that the components of $v(t)$ corresponding to the Jordan block J is

$$
(-1)^{m-k}\left(\frac{t^{m-1}}{(m-1)!}, \frac{t^{m-2}}{(m-2)!}, \ldots, t, 1\right)
$$

and all other components are 0 . Hence for $t \ll 0$, lines parallel to $v(t)$ travel much faster in the $x_{i}(1 \leq i \leq m-1)$ direction than in the x_{i+1} direction. Let $Z \subset \mathbb{R}^{n}$ be the subset given by

$$
Z=\left\{f+\operatorname{sv}(t) \mid f \in U, 0 \leq s \leq \frac{(m-k)!}{|t|^{m-k}}\left(b_{k}-a_{k}\right)\right\}
$$

Note that for each fixed f, the segment $\left\{f+s v(t) \mid 0 \leq s \leq\left((m-k)!/|t|^{m-k}\right)\left(b_{k}-a_{k}\right)\right\}$ joins the two hyperplanes $x_{k}=a_{k}$ and $x_{k}=b_{k}$. Also notice that these segments are parallel to the images of vertical stacks (ie, parallel to the x_{m}-axis) of integral cubes under $e^{t A}$. Hence Z has a packing \mathcal{P} that can be divided into sequences such that each sequence joins $x_{k}=a_{k}$ and $x_{k}=b_{k}$ and is the image (under $e^{t A}$) of a vertical stack of integral cubes.

For $p=(x, y, z), q=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{k-1} \times \mathbb{R} \times \mathbb{R}^{n-k}$, define $p \sim q$ if $y^{\prime}=y, z^{\prime}=z$ and $x_{i}^{\prime}-x_{i}$ is an integral multiple of $b_{i}-a_{i}$ for $1 \leq i \leq k-1$. Set $Y=\mathbb{R}^{n} / \sim$ and let $\pi: \mathbb{R}^{n} \rightarrow Y$ be the natural projection. Also let $\pi_{C}: C \rightarrow Y$ be the composition of the inclusion $C \subset \mathbb{R}^{n}$ and π. It is clear that π_{C} is injective on the interior of C. It is also easy to check that $\left.\pi\right|_{Z}$ is injective. Now the packing \mathcal{P} of Z projects onto a packing of Y, which can then be pulled back through π_{C} to obtain a packing \mathcal{P}^{\prime} of C (since $\left.\pi(Z) \subset \pi_{C}(C)\right)$. A sequence in \mathcal{P} gives rise to a broken sequence in \mathcal{P}^{\prime} : the broken sequence will first hit the boundary of C at a point of $\partial\left(\prod_{i=1}^{k-1}\left[a_{i}, b_{i}\right]\right) \times \prod_{k}^{n}\left[a_{i}, b_{i}\right] \subset \partial C$, it continues after a translation by an element of
the form $\left(\sum_{i=1}^{k-1} m_{i}\left(b_{i}-a_{i}\right), 0,0\right) \in \mathbb{R}^{n}$, where $m_{i} \in \mathbb{Z}$; this can be repeated until the sequence hits $x_{k}=b_{k}$. Note that we can apply Jensen's inequality to each broken sequence while considering Q-variations of u since by assumption u is constant along affine spaces parallel to $\mathbb{R}^{k-1} \times\{0\} \times\{0\}$.

Each broken sequence joins F_{0} to F_{1}. Since the projection of $e^{t A} S$ to the x_{k}-axis has length comparable to $e^{\lambda t}|t|^{m-k}$, the cardinality of each sequence is comparable to $e^{-\lambda t}|t|^{k-m}$. The Q-variation of u along the sequence is at least the Q-variation when the oscillations of u are the same on all members of the sequence. The common oscillation is at least comparable to $e^{\lambda t}|t|^{m-k}$. Hence the Q-variation of u is at least comparable to

$$
\frac{1}{e^{n \lambda t}} \cdot\left(e^{\lambda t}|t|^{m-k}\right)^{Q}=|t|^{Q(m-k)} e^{(Q-n) \lambda t}
$$

which tends to ∞ when $t \rightarrow-\infty$ if $Q \leq n$. Hence $V_{Q, K}\left(\left.u\right|_{C}\right)=\infty$ for $Q \leq n$.

5 Proof of the main theorems

In this section we prove the main results of the paper. The main tools are the notion of Q-variation (Section 4) and the arguments from [22, Section 4] and [20]. The main results of [20] and [22] are the basic steps in the induction.

We first fix the notation. Let A be an $n \times n$ matrix in real part Jordan form with positive eigenvalues

$$
\lambda_{1}<\cdots<\lambda_{k_{A}} .
$$

Let $V_{i} \subset \mathbb{R}^{n}$ be the generalized eigenspace of λ_{i}, and set $d_{i}=\operatorname{dim} V_{i}$. If $k_{A} \geq 2$, we write A in the block diagonal form $A=\left[A_{1}, \ldots, A_{k_{A}}\right]$, where A_{i} is the block corresponding to the eigenvalue λ_{i}; we also denote $A^{\prime}=\left[A_{1}, \ldots, A_{k_{A}-1}\right]$. If $k_{A}=1$, that is, if A has only one eigenvalue $\lambda=\lambda_{1}$, we also write $A=\left[\lambda I_{n_{0}}, \lambda I_{n_{1}}+N, \ldots, \lambda I_{n_{r}}+N\right]$ in the block diagonal form, and we let $\pi_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{0}+r}$ be the projection defined before Lemma 3.3. If $k_{A}=1$ and $r \geq 1$, we set $l_{A}=\max \left\{n_{1}, \ldots, n_{r}\right\}$.

Similarly, let B be an $n \times n$ matrix in real part Jordan form with positive eigenvalues

$$
\mu_{1}<\cdots<\mu_{k_{B}}
$$

Let $W_{j} \subset \mathbb{R}^{n}$ be the generalized eigenspace of μ_{j}, and set $e_{j}=\operatorname{dim} W_{j}$. If $k_{B} \geq 2$, we write B in the block diagonal form $B=\left[B_{1}, \ldots, B_{k_{B}}\right]$, where B_{j} is the block corresponding to the eigenvalue μ_{j}; we also denote $B^{\prime}=\left[B_{1}, \ldots, B_{k_{B}-1}\right]$. If $k_{B}=1$, that is, if B has only one eigenvalue $\mu=\mu_{1}$, we write $B=\left[\mu I_{m_{0}}, \mu I_{m_{1}}+N, \ldots, \mu I_{m_{s}}+N\right]$
in the block diagonal form, and we let $\pi_{B}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{0}+s}$ be the projection defined before Lemma 3.3. If $k_{B}=1$ and $s \geq 1$, we set $l_{B}=\max \left\{m_{1}, \ldots, m_{s}\right\}$.

Suppose there is an η-quasisymmetric map $F:\left(\mathbb{R}^{n}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$.
Lemma 5.1 $k_{A}=1$ if and only if $k_{B}=1$.
Proof Suppose $k_{A}=1$ and $k_{B} \geq 2$. Fix any Q with $\left(\sum_{j} \mu_{j} e_{j}\right) / \mu_{k_{B}}<Q<n$. Let $\pi:\left(\mathbb{R}^{n}, D_{B}\right) \rightarrow W_{k_{B}}$ be the projection onto $W_{k_{B}}$, and $\pi^{\prime}: W_{k_{B}} \rightarrow \mathbb{R}$ a coordinate function on $W_{k_{B}}$. Set $u=\pi^{\prime} \circ \pi$. Then Lemma 4.5 implies $V_{Q, \eta(K)}\left(\left.u\right|_{F(E)}\right)=0$ for all sufficiently large K and all bounded subsets $E \subset\left(\mathbb{R}^{n}, D_{A}\right)$. By Lemma 4.1 $V_{Q, K}\left(\left.u \circ F\right|_{E}\right)=0$. But this contradicts Corollary 4.3.

Lemma 5.2 Suppose $k_{A}=1$. Then $A=\lambda_{1} I_{n}$ if and only if $B=\mu_{1} I_{n}$.
Proof Suppose $B=\mu_{1} I_{n}$. Let $\pi_{i}(i=1,2, \ldots, n)$ be the coordinate functions on $\left(\mathbb{R}^{n}, D_{B}\right)$. Then by Lemma 4.6 we have $V_{n, \eta(K)}\left(\left.\pi_{i}\right|_{F(E)}\right)<\infty$ for all i, all sufficiently large K and all rectangular boxes $E \subset\left(\mathbb{R}^{n}, D_{A}\right)$. Hence $V_{n, K}\left(\left.\pi_{i} \circ F\right|_{E}\right)<\infty$ by Lemma 4.1. Now Lemma 4.7 implies that $\pi_{i} \circ F$ is constant on the fibers of π_{A}. Since this is true for all $1 \leq i \leq n$, the fibers of π_{A} must have dimension 0 . Hence A must also be a multiple of I_{n}.

Lemma 5.3 Suppose $k_{A}=1$ and $r \geq 1$. Then F maps each fiber of π_{A} onto some fiber of π_{B}.

Proof Lemmas 5.1 and 5.2 imply that $k_{B}=1$ and $s \geq 1$. Notice that it suffices to show that each fiber of π_{A} is mapped by F into some fiber of π_{B} : by symmetry each fiber of π_{B} is mapped by F^{-1} into some fiber of π_{A} and hence the lemma follows. We shall prove this by contradiction and so assume that there is some fiber H of π_{A} such that $F(H)$ is not contained in any fiber of π_{B}. Then there is some coordinate function $\pi^{\prime}: \mathbb{R}^{m_{0}+s} \rightarrow \mathbb{R}$ such that $u \circ F$ is not constant on H, where $u:=\pi^{\prime} \circ \pi_{B}$. Now Lemma 4.6 implies that $V_{n, \eta(K)}\left(\left.u\right|_{F(E)}\right)<\infty$ for all sufficiently large K and all rectangular boxes $E \subset\left(\mathbb{R}^{n}, D_{A}\right)$. By Lemma 4.1 we have $V_{n, K}\left(\left.u \circ F\right|_{E}\right)<\infty$. This contradicts Lemma 4.7 since we can choose E such that $u \circ F$ is not constant on $H \cap E$.

It follows from Lemma 5.3 that F induces a map $G: \mathbb{R}^{n_{0}+r} \rightarrow \mathbb{R}^{m_{0}+s}$ such that $F\left(\pi_{A}^{-1}(y)\right)=\pi_{B}^{-1}(G(y))$ for all $y \in \mathbb{R}^{n_{0}+r}$. Define

$$
\tau_{A}: \mathbb{R}^{n}=\mathbb{R}^{n_{0}} \times \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{r}} \longrightarrow \mathbb{R}^{n}=\mathbb{R}^{n-n_{0}-r} \times \mathbb{R}^{n_{0}+r}
$$

by

$$
\tau_{A}\left(z,\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right)=\left(\left(x_{1}, \ldots, x_{r}\right),\left(z, y_{1}, \ldots, y_{r}\right)\right),
$$

where $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{n_{i}}=\mathbb{R}^{n_{i}-1} \times \mathbb{R}$. Similarly, there is an identification

$$
\tau_{B}: \mathbb{R}^{n}=\mathbb{R}^{m_{0}} \times \mathbb{R}^{m_{1}} \times \cdots \times \mathbb{R}^{m_{s}} \longrightarrow \mathbb{R}^{n}=\mathbb{R}^{n-m_{0}-s} \times \mathbb{R}^{m_{0}+s}
$$

With the identifications τ_{A} and τ_{B}, we have $\pi_{A}^{-1}(y)=\mathbb{R}^{n-n_{0}-r} \times\{y\}, \pi_{B}^{-1}(G(y))=$ $\mathbb{R}^{n-m_{0}-s} \times\{G(y)\}$, and $F\left(\mathbb{R}^{n-n_{0}-r} \times\{y\}\right)=\mathbb{R}^{n-m_{0}-s} \times\{G(y)\}$. Hence for each $y \in \mathbb{R}^{n_{0}+r}$, there is a map

$$
H(\cdot, y): \mathbb{R}^{n-n_{0}-r} \rightarrow \mathbb{R}^{n-m_{0}-s}
$$

such that $F(x, y)=(H(x, y), G(y))$ for all $x \in \mathbb{R}^{n-n_{0}-r}$.
In the following $|\cdot|$ denotes the Euclidean norm.
Lemma 5.4 Suppose $k_{A}=1$ and $r \geq 1$. Then:
(1) The map $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|^{1 / \lambda}\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|^{1 / \mu}\right)$ is η-quasisymmetric.
(2) For each $y \in \mathbb{R}^{n_{0}+r}$, the map $H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$ is η-quasisymmetric.

Proof Statement (1) follows from Lemma 3.4 and the arguments in [22, page 10]. Statement (2) follows from Lemma 3.3.

Suppose $k_{A}=1$. Set $\epsilon=\lambda / \mu$ and $\eta_{1}(t)=\eta\left(t^{1 / \epsilon}\right)$. We notice that all the following maps are η_{1}-quasisymmetric:
(1) $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$
(2) $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|^{1 / \mu}\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|^{1 / \mu}\right)$
(3) $H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$, for each $y \in \mathbb{R}^{n_{0}+r}$

Let $g:\left(X_{1}, \rho_{1}\right) \rightarrow\left(X_{2}, \rho_{2}\right)$ be a bijection between two quasimetric spaces. Suppose g satisfies the following condition: for any fixed $x \in X_{1}, \rho_{1}(y, x) \rightarrow 0$ if and only if $\rho_{2}(g(y), g(x)) \rightarrow 0$. We define for every $x \in X_{1}$ and $r>0$,

$$
\begin{aligned}
L_{g}(x, r) & =\sup \left\{\rho_{2}\left(g(x), g\left(x^{\prime}\right)\right) \mid \rho_{1}\left(x, x^{\prime}\right) \leq r\right\}, \\
l_{g}(x, r) & =\inf \left\{\rho_{2}\left(g(x), g\left(x^{\prime}\right)\right) \mid \rho_{1}\left(x, x^{\prime}\right) \geq r\right\},
\end{aligned}
$$

and set

$$
L_{g}(x)=\limsup _{r \rightarrow 0} \frac{L_{g}(x, r)}{r}, \quad l_{g}(x)=\liminf _{r \rightarrow 0} \frac{l_{g}(x, r)}{r} .
$$

Lemma 5.5 Consider the map $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|^{1 / \mu}\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|^{1 / \mu}\right)$ and the map $H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$. The following hold for all $y \in \mathbb{R}^{n_{0}+r}, x \in \mathbb{R}^{n-n_{0}-r}:$

$$
\begin{align*}
& L_{G}(y, r) \leq \eta_{1}(1) l_{H(\cdot, y)}(x, r) \text { for any } r>0 \tag{1}\\
& \eta_{1}^{-1}(1) l_{H(\cdot, y)}(x) \leq l_{G}(y) \leq \eta_{1}(1) l_{H(\cdot, y)}(x) \tag{2}\\
& \eta_{1}^{-1}(1) L_{H(\cdot, y)}(x) \leq L_{G}(y) \leq \eta_{1}(1) L_{H(\cdot, y)}(x) \tag{3}
\end{align*}
$$

Proof The proof is very similar to that of [22, Lemma 4.3]. Let $y \in \mathbb{R}^{n_{0}+r}$, $x \in \mathbb{R}^{n-n_{0}-r}$ and $r>0$. Let $y^{\prime} \in \mathbb{R}^{n_{0}+r}$ with $\left|y-y^{\prime}\right|^{1 / \mu} \leq r$ and $x^{\prime} \in \mathbb{R}^{n-n_{0}-r}$ with $D_{A(1)}^{\epsilon}\left(x, x^{\prime}\right) \geq r$. Set $t_{0}=\ln \left|y^{\prime}-y\right| / \lambda$. Let $\left(u_{i}, v_{i}\right)\left(u_{i} \in \mathbb{R}^{n_{i}-1}, v_{i} \in \mathbb{R}, 1 \leq i \leq r\right)$ be the unique solution of $e^{-t_{0} N_{n_{i}}}\left(u_{i}, v_{i}\right)^{T}=\left(0, \ldots, 0, y_{i}^{\prime}-y_{i}\right)^{T}$. Let $x_{i}^{\prime \prime}=u_{i}+x_{i}$ and $x^{\prime \prime}=\left(x_{1}^{\prime \prime}, \ldots, x_{r}^{\prime \prime}\right)$. Then $D_{A}^{\epsilon}\left((x, y),\left(x^{\prime \prime}, y^{\prime}\right)\right)=\left|y-y^{\prime}\right|^{1 / \mu} \leq r \leq D_{A}^{\epsilon}\left((x, y),\left(x^{\prime}, y\right)\right)$. Since $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is η_{1}-quasisymmetric, we have

$$
\begin{aligned}
\left|G(y)-G\left(y^{\prime}\right)\right|^{1 / \mu} \leq D_{B}\left(F\left(x^{\prime \prime}, y^{\prime}\right), F(x, y)\right) & \leq \eta_{1}(1) D_{B}\left(F(x, y), F\left(x^{\prime}, y\right)\right) \\
& =\eta_{1}(1) D_{B(1)}\left(H(x, y), H\left(x^{\prime}, y\right)\right)
\end{aligned}
$$

Since y^{\prime} and x^{\prime} are chosen arbitrarily, (1) follows.
The proofs of (2) and (3) are exactly the same as those in [22, Lemma 4.3].
Recall that, when A has only one eigenvalue $\lambda=\lambda_{1}$ and is written in the block diagonal form $A=\left[\lambda I_{n_{0}}, \lambda I_{n_{1}}+N, \ldots, \lambda I_{n_{r}}+N\right]$ with $r \geq 1$, we denote $l_{A}=\max \left\{n_{1}, \ldots, n_{r}\right\}$.

Lemma 5.6 Suppose $k_{A}=1$ and $l_{A}=2$. Then $l_{B}=2$ and for $\epsilon=\lambda / \mu$:
(1) A and ϵB have the same real part Jordan form.
(2) The map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K-quasisimilarity, where K depends only on A, B and η.

Proof (1) By Lemma $5.4(2), H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$ is η-quasisymmetric for each $y \in \mathbb{R}^{n_{0}+r}$. Since $l_{A}=2$, all Jordan blocks of A have size 2 and $A(1)=\lambda I_{r}$. Now Lemma 5.2 applied to $H(\cdot, y)$ implies that $B(1)=\mu I_{r}$. It follows that all Jordan blocks of B also have size 2, and hence $l_{B}=2$ and $B(1)=\mu I_{s}$. So we have $r=s$. That is, A and B have the same number of 2×2 Jordan blocks. Now (1) follows.
(2) The proof of (2) is very similar to the arguments in [20, Section 4] and [22]. We will only indicate the differences here. First we notice that $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|\right)$ is also quasisymmetric, and hence is differentiable ae. Since $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$
is η_{1}-quasisymmetric, the arguments in [20, Section 4] and [22] imply that there is a constant K_{1} depending only on η_{1}, such that for every $y \in \mathbb{R}^{n_{0}+r}$ where $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|\right)$ is differentiable, we have $0<l_{G}(y)<\infty$ and the map

$$
H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)
$$

is a K_{1}-quasisimilarity with constant $l_{G}(y)$.
Now let $y, y^{\prime} \in \mathbb{R}^{n_{0}+r}$ be two points where G is differentiable. We will show that $l_{G}(y)$ and $l_{G}\left(y^{\prime}\right)$ are comparable. Let $x \in \mathbb{R}^{n-n_{0}-r}$ and choose $x^{\prime} \in \mathbb{R}^{n-n_{0}-r}$ so that $D_{A(1)}\left(x, x^{\prime}\right) \gg\left|y^{\prime}-y\right|^{1 / \lambda}$. Let $\left(u_{i}, v_{i}\right)$ be as in the proof of Lemma 5.5. Let $x_{i}^{\prime \prime}=x_{i}+u_{i}, x_{i}^{\prime \prime \prime}=x_{i}^{\prime}+u_{i}(1 \leq i \leq r)$, and set $x^{\prime \prime}=\left(x_{1}^{\prime \prime}, \ldots, x_{r}^{\prime \prime}\right), x^{\prime \prime \prime}=\left(x_{1}^{\prime \prime \prime}, \ldots, x_{r}^{\prime \prime \prime}\right)$. Then

$$
D_{A}\left((x, y),\left(x^{\prime \prime}, y^{\prime}\right)\right)=D_{A}\left(\left(x^{\prime}, y\right),\left(x^{\prime \prime \prime}, y^{\prime}\right)\right)=\left|y^{\prime}-y\right|^{1 / \lambda} .
$$

Now the generalized triangle inequality implies

$$
\begin{aligned}
D_{A}\left(\left(x^{\prime \prime}, y^{\prime}\right),\left(x^{\prime}, y\right)\right) & \leq M\left\{D_{A}\left(\left(x^{\prime \prime}, y^{\prime}\right),(x, y)\right)+D_{A}\left((x, y),\left(x^{\prime}, y\right)\right)\right\} \\
& \leq 2 M D_{A}\left((x, y),\left(x^{\prime}, y\right)\right) .
\end{aligned}
$$

By the quasisymmetry condition we have

$$
D_{B}\left(F\left(x^{\prime \prime}, y^{\prime}\right), F\left(x^{\prime}, y\right)\right) \leq \eta(2 M) D_{B}\left(F(x, y), F\left(x^{\prime}, y\right)\right) .
$$

Similarly, $D_{B}\left(F\left(x^{\prime \prime}, y^{\prime}\right), F\left(x^{\prime \prime \prime}, y^{\prime}\right)\right) \leq \eta(2 M) D_{B}\left(F\left(x^{\prime \prime}, y^{\prime}\right), F\left(x^{\prime}, y\right)\right)$. So we have

$$
D_{B}\left(F\left(x^{\prime \prime}, y^{\prime}\right), F\left(x^{\prime \prime \prime}, y^{\prime}\right)\right) \leq(\eta(2 M))^{2} D_{B}\left(F(x, y), F\left(x^{\prime}, y\right)\right) .
$$

This together with the quasisimilarity properties of $H(\cdot, y)$ and $H\left(\cdot, y^{\prime}\right)$ mentioned above implies that

$$
l_{G}\left(y^{\prime}\right) D_{A(1)}^{\epsilon}\left(x^{\prime \prime}, x^{\prime \prime \prime}\right) \leq K_{1}^{2}(\eta(2 M))^{2} l_{G}(y) D_{A(1)}^{\epsilon}\left(x, x^{\prime}\right) .
$$

Since $D_{A(1)}\left(x^{\prime \prime}, x^{\prime \prime \prime}\right)=D_{A(1)}\left(x, x^{\prime}\right)$, we have $l_{G}\left(y^{\prime}\right) \leq K_{1}^{2}(\eta(2 M))^{2} l_{G}(y)$. By symmetry, we also have $l_{G}(y) \leq K_{1}^{2}(\eta(2 M))^{2} l_{G}\left(y^{\prime}\right)$. Now fix y and set $C=l_{G}(y)$. Then at every y^{\prime} where G is differentiable, $H\left(\cdot, y^{\prime}\right)$ is a K_{2}-quasisimilarity with constant C, where $K_{2}=K_{1}^{3}(\eta(2 M))^{2}$. Now a limiting argument shows that this is true for every $y^{\prime} \in \mathbb{R}^{n_{0}+r}$. The arguments in [22, Section 4] (using Lemma 5.5 from above instead in [22, Lemma 4.3]) then show that there is a constant $K_{3}=K_{3}\left(K_{2}, \eta_{1}\right)$ such that $G:\left(\mathbb{R}^{n_{0}+r},|\cdot|^{1 / \mu}\right) \rightarrow\left(\mathbb{R}^{m_{0}+s},|\cdot|^{1 / \mu}\right)$ and all $H(\cdot, y)$ are K_{3}-quasisimilarities with constant C.

The final difference is in finding a lower bound for $D_{B}\left(F(x, y), F\left(x^{\prime}, y^{\prime}\right)\right)$. If

$$
D_{A}^{\epsilon}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \leq(2 M)^{\epsilon}\left|y^{\prime}-y\right|^{1 / \mu},
$$

then

$$
\begin{aligned}
D_{B}\left(F(x, y), F\left(x^{\prime}, y^{\prime}\right)\right) \geq\left|G\left(y^{\prime}\right)-G(y)\right|^{1 / \mu} & \geq \frac{C}{K_{3}}\left|y^{\prime}-y\right|^{1 / \mu} \\
& \geq \frac{C}{(2 M)^{\epsilon} K_{3}} D_{A}^{\epsilon}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

Now assume $D_{A}^{\epsilon}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \geq(2 M)^{\epsilon}\left|y^{\prime}-y\right|^{1 / \mu}$. Let $\left(u_{i}, v_{i}\right)$ be as in the above paragraph. Let $x_{i}^{\prime \prime}=x_{i}^{\prime}-u_{i}$ and set $x^{\prime \prime}=\left(x_{1}^{\prime \prime}, \ldots, x_{r}^{\prime \prime}\right)$. Then $D_{A}^{\epsilon}\left(\left(x^{\prime \prime}, y\right),\left(x^{\prime}, y^{\prime}\right)\right)=$ $\left|y^{\prime}-y\right|^{1 / \mu}$. The generalized triangle inequality implies

$$
\frac{1}{2 M} \leq \frac{D_{A}\left((x, y),\left(x^{\prime \prime}, y\right)\right)}{D_{A}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)} \leq 2 M
$$

Now the quasisymmetric condition implies

$$
\begin{aligned}
D_{B}\left(F(x, y), F\left(x^{\prime}, y^{\prime}\right)\right) & \geq \frac{1}{\eta(2 M)} D_{B}\left(F(x, y), F\left(x^{\prime \prime}, y\right)\right) \\
& \geq \frac{C}{K_{3} \eta(2 M)} D_{A}^{\epsilon}\left((x, y),\left(x^{\prime \prime}, y\right)\right) \\
& \geq \frac{C}{(2 M)^{\epsilon} K_{3} \eta(2 M)} D_{A}^{\epsilon}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

So we have found a lower bound for $D_{B}\left(F(x, y), F\left(x^{\prime}, y^{\prime}\right)\right)$. The rest of the proof is the same as in [22, Section 4]. We notice that the constant M depends only on A, and ϵ depends only on A and B. Hence F is a K-quasisimilarity with K depending only on A, B and η.

Lemma 5.7 Suppose $k_{A}=1$ and $l_{A} \geq 2$. Then for $\epsilon=\lambda / \mu$:
(1) A and ϵB have the same real part Jordan form.
(2) The map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K-quasisimilarity, where K depends only on A, B and η.

Proof We induct on l_{A}. The basic step $l_{A}=2$ is Lemma 5.6. Now assume $l_{A}=l \geq 3$ and that the lemma holds for $l_{A}=l-1$. For any $y \in \mathbb{R}^{n_{0}+r}$, the induction hypothesis applied to the η-quasisymmetric map $H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$ implies that for $\epsilon=\lambda / \mu$:
(a) $A(1)$ and $\epsilon B(1)$ have the same real part Jordan form.
(b) $H(\cdot, y):\left(\mathbb{R}^{n-n_{0}-r}, D_{A(1)}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n-m_{0}-s}, D_{B(1)}\right)$ is a K-quasisimilarity with K depending only on $A(1), B(1)$ and η.

Now (1) follows from (a), and (2) follows from (b), Lemma 5.5 and the arguments in [22, Section 4]; see the proof of Lemma 5.6 (2).

Lemma 5.8 Suppose $k_{A} \geq 2$. Then $k_{B} \geq 2$ and $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k_{A}}=\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k_{B}}$.
Proof Lemma 5.1 implies $k_{B} \geq 2$. Suppose $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k_{A}}>\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k_{B}}$. Pick any Q with $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k_{A}}>Q>\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k_{B}}$. Let $\pi:\left(\mathbb{R}^{n}, D_{B}\right) \rightarrow W_{k_{B}}$ be the projection onto $W_{k_{B}}$, and $\pi^{\prime}: W_{k_{B}} \rightarrow \mathbb{R}$ a coordinate function on $W_{k_{B}}$. Set $u=\pi^{\prime} \circ \pi$. By Lemma 4.5 we have $V_{Q, \eta(K)}\left(\left.u\right|_{F(E)}\right)=0$ for all sufficiently large K and all Euclidean balls $E \subset\left(\mathbb{R}^{n}, D_{A}\right)$. Lemma 4.1 implies $V_{Q, K}\left(\left.u \circ F\right|_{E}\right)=0$. This contradicts Lemma 4.2 since $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k_{A}}$ and the function $u \circ F$ is nonconstant. Similarly there is a contradiction if $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k_{A}}<\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k_{B}}$. The lemma follows.

Recall that (see Section 3), if $k_{A} \geq 2$, then the restriction of D_{A} to each affine subspace H parallel to $\prod_{i<k_{A}} V_{i}$ agrees with $D_{A^{\prime}}$, where $A^{\prime}=\left[A_{1}, \ldots, A_{k_{A}-1}\right]$.

Lemma 5.9 Denote $k=k_{A}$ and $k^{\prime}=k_{B}$. Suppose $k \geq 2$. Then each affine subspace H of \mathbb{R}^{n} parallel to $\prod_{i<k} V_{i}$ is mapped by F onto an affine subspace parallel to $\prod_{j<k^{\prime}} W_{j}$. Furthermore, $\left.F\right|_{H}:\left(H, D_{A^{\prime}}\right) \rightarrow\left(F(H), D_{B^{\prime}}\right)$ is η-quasisymmetric, and F induces an η-quasisymmetric map $G:\left(V_{k}, D_{A_{k}}\right) \rightarrow\left(W_{k^{\prime}}, D_{B_{k^{\prime}}}\right)$ such that $F\left(\left(\prod_{i<k} V_{i}\right) \times\{y\}\right)=\left(\prod_{j<k^{\prime}} W_{j}\right) \times\{G(y)\}$.

Proof As in the proof of Lemma 5.3, to establish the first claim it suffices to show that each affine subspace parallel to $\prod_{i<k} V_{i}$ is mapped into an affine subspace parallel to $\prod_{j<k^{\prime}} W_{j}$. By Lemma 5.8 we have $\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k}=\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k^{\prime}}$. Pick any Q with

$$
\frac{\sum_{i} d_{i} \lambda_{i}}{\lambda_{k}}<Q<\min \left\{\frac{\sum_{i} d_{i} \lambda_{i}}{\lambda_{k-1}}, \frac{\sum_{j} e_{j} \mu_{j}}{\mu_{k^{\prime}-1}}\right\}
$$

Suppose there is an affine subspace H parallel to $\prod_{i<k} V_{i}$ such that $F(H)$ is not contained in any affine subspace parallel to $\prod_{j<k^{\prime}} W_{j}$. Let $\pi: \prod_{j} W_{j} \rightarrow W_{k^{\prime}}$ be the canonical projection. Then there is some coordinate function $\pi^{\prime}: W_{k^{\prime}} \rightarrow \mathbb{R}$ such that $u \circ F$ is not constant on H, where $u=\pi^{\prime} \circ \pi$. As $Q>\left(\sum_{j} e_{j} \mu_{j}\right) / \mu_{k^{\prime}}$, Lemma 4.5 implies $V_{Q, \eta(K)}\left(\left.u\right|_{F(E)}\right)=0$ for all sufficiently large K and all rectangular boxes $E \subset\left(\mathbb{R}^{n}, D_{A}\right)$. By Lemma 4.1 $V_{Q, K}\left(\left.u \circ F\right|_{E}\right)=0$. This contradicts Lemma 4.4 since $Q<\left(\sum_{i} d_{i} \lambda_{i}\right) / \lambda_{k-1}$ and we can choose a rectangular box E such that $u \circ F$ is not constant on $H \cap E$.

Since by assumption F is η-quasisymmetric, it follows from the remark preceding the lemma that $\left.F\right|_{H}:\left(H, D_{A^{\prime}}\right) \rightarrow\left(F(H), D_{B^{\prime}}\right)$ is η-quasisymmetric.

The first claim implies there is a map $G: V_{k} \rightarrow W_{k^{\prime}}$ such that $F\left(\left(\prod_{i<k} V_{i}\right) \times\{y\}\right)=$ $\left(\prod_{j<k^{\prime}} W_{j}\right) \times\{G(y)\}$ for any $y \in V_{k}$. That $G:\left(V_{k}, D_{A_{k}}\right) \rightarrow\left(W_{k^{\prime}}, D_{B_{k^{\prime}}}\right)$ is $\eta-$ quasisymmetric follows from (3-2), (3-3) and the arguments of [22, page 10].

Lemma 5.10 Suppose $k_{A}=2$. Then $k_{B}=2$ and for $\epsilon=\lambda_{1} / \mu_{1}$:
(1) A and ϵB have the same real part Jordan form.
(2) The map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K-quasisimilarity, where K depends only on A, B and η.

Proof Let H be an affine subspace of \mathbb{R}^{n} parallel to $\prod_{i<k_{A}} V_{i}$. By Lemma 5.9 $F(H)$ is an affine subspace parallel to $\prod_{j<k_{B}} W_{j}$, and $\left.F\right|_{H}:\left(H, D_{A^{\prime}}\right) \rightarrow\left(F(H), D_{B^{\prime}}\right)$ is η-quasisymmetric. Since $k_{A}=2$, we have $k_{A^{\prime}}=1$. Now Lemma 5.1 applied to $\left.F\right|_{H}$ implies $k_{B^{\prime}}=1$, so $k_{B}=k_{B^{\prime}}+1=2$. Now the η-quasisymmetric map $\left.F\right|_{H}:\left(H, D_{A^{\prime}}\right) \rightarrow\left(F(H), D_{B^{\prime}}\right)$ becomes $\left(V_{1}, D_{A_{1}}\right) \rightarrow\left(W_{1}, D_{B_{1}}\right)$, and Lemmas 5.7 and 5.2 imply that A_{1} and $\epsilon_{1} B_{1}$ have the same real part Jordan form, where $\epsilon_{1}=\lambda_{1} / \mu_{1}$. By Lemma 5.9 F induces an η-quasisymmetric map $G:\left(V_{2}, D_{A_{2}}\right) \rightarrow\left(W_{2}, D_{B_{2}}\right)$, and hence Lemmas 5.7 and 5.2 again imply that A_{2} and $\epsilon_{2} B_{2}$ have the same real part Jordan form, where $\epsilon_{2}=\lambda_{2} / \mu_{2}$. Lemma 5.9 also implies $d_{1}=e_{1}$ and $d_{2}=e_{2}$. Now Lemma 5.8 implies $\lambda_{1} / \mu_{1}=\lambda_{2} / \mu_{2}$. Hence (1) holds.

To prove (2), we consider two cases. First assume that $A_{1}=\lambda_{1} I$ and $A_{2}=\lambda_{2} I$. In this case, (2) follows from (1) and Theorem 3.5. Next we assume that either $A_{1} \neq \lambda_{1} I$ or $A_{2} \neq \lambda_{2} I$ holds. Then Lemma 5.7 implies that either $\left.F\right|_{H}:\left(H, D_{A_{1}}^{\epsilon}\right) \rightarrow$ $\left(F(H), D_{B_{1}}\right)$ is a K_{1}-quasisimilarity with K_{1} depending only on A_{1}, B_{1} and η, or $G:\left(V_{2}, D_{A_{2}}^{\epsilon}\right) \rightarrow\left(W_{2}, D_{B_{2}}\right)$ is a K_{2}-quasisimilarity with K_{2} depending only on A_{2}, B_{2} and η. Then the arguments similar to those in the proof of Lemma 5.6 (2) (also compare with [20, Section 4]) show that $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K quasisimilarity with K depending only on A, B and η.

Lemma 5.11 Suppose $k_{A} \geq 2$. Then for $\epsilon=\lambda_{1} / \mu_{1}$:
(1) A and ϵB have the same real part Jordan form.
(2) The map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K-quasisimilarity, where K depends only on A, B and η.

Proof We induct on k_{A}. The basic step $k_{A}=2$ is Lemma 5.10. Now we assume $k_{A}=k \geq 3$ and that the lemma holds for $k_{A}=k-1$. For each affine subspace H of \mathbb{R}^{n} parallel to $\prod_{i<k_{A}} V_{i}$, the induction hypothesis applied to $\left.F\right|_{H}:\left(H, D_{A^{\prime}}\right) \rightarrow$ ($F(H), D_{B^{\prime}}$) implies that for $\epsilon=\lambda_{1} / \mu_{1}$:
(a) A^{\prime} and ϵB^{\prime} have the same real part Jordan form.
(b) The map $\left.F\right|_{H^{\prime}}:\left(H, D_{A^{\prime}}^{\epsilon}\right) \rightarrow\left(F(H), D_{B^{\prime}}\right)$ is a K-quasisimilarity, where K depends only on A^{\prime}, B^{\prime} and η.

The statement (a) implies in particular $k_{A}-1=k_{B}-1$ (hence $k_{A}=k_{B}$), $\lambda_{i}=\epsilon \mu_{i}$ and $e_{i}=d_{i}$ for $i<k_{A}$. Now it follows from Lemma 5.8 that $\lambda_{k_{A}}=\epsilon \mu_{k_{A}}$. If $A_{k_{A}}$ is a multiple of I, then (1) follows from Lemmas 5.9 and 5.2. If $A_{k_{A}}$ is not a multiple of I, then Lemmas 5.9 and 5.7 (1) imply that $A_{k_{A}}$ and $\epsilon B_{k_{B}}$ have the same real part Jordan form. Hence (1) holds as well in this case.

If $A_{k_{A}}$ is a multiple of I, then (2) follows from the statement (b) above and the arguments in the proof of Lemma 5.6 (2). If $A_{k_{A}}$ is not a multiple of I, then Lemma 5.7 (2) implies that $G:\left(V_{k}, D_{A_{k}}^{\epsilon}\right) \rightarrow\left(W_{k^{\prime}}, D_{B_{k^{\prime}}}\right)$ is a K_{1}-quasisimilarity with K_{1} depending only on $A_{k_{A}}, B_{k_{B}}$ and η. In this case, (2) follows from this, (b) and the arguments in the proof of Lemma 5.6 (2).

Next we will finish the proofs of the main theorems. So let A, B be two arbitrary $n \times n$ matrices whose eigenvalues have positive real parts. Let G_{A}, G_{B} be equipped with arbitrary admissible metrics. Then there are nonsingular matrices P, Q such that G_{A} is isometric to $G_{P A P^{-1}}$ (equipped with the standard metric) and G_{B} is isometric to $G_{Q B Q^{-1}}$ (equipped with the standard metric). Hence below in the proofs we will replace $\left(\mathbb{R}^{n}, D_{A}\right)$ and $\left(\mathbb{R}^{n}, D_{B}\right)$ with $\left(\mathbb{R}^{n}, D_{P A P^{-1}}\right)$ and $\left(\mathbb{R}^{n}, D_{Q B Q^{-1}}\right)$ respectively. There also exist nonsingular matrices P_{0}, Q_{0} such that $G_{P_{0} A P_{0}^{-1}}$ and $G_{Q_{0} B Q_{0}^{-1}}$ have pinched negative sectional curvature. We may choose the same $P_{0} A P_{0}^{-1}$ for all conjugate matrices A. Denote by J and J^{\prime} the real part Jordan forms of A and B respectively. By Proposition 3.1, there are bilipschitz maps $f_{J}: G_{P_{0} A P_{0}^{-1}} \rightarrow G_{J}$ and $f_{P}: G_{P_{0} A P_{0}^{-1}} \rightarrow G_{P A P^{-1}}$. Then Corollary 3.2 implies their boundary maps $\partial f_{J}:\left(\mathbb{R}^{n}, D_{P_{0} A P_{0}^{-1}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J}\right)$ and $\partial f_{P}:\left(\mathbb{R}^{n}, D_{P_{0} A P_{0}^{-1}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{P A P^{-1}}\right)$ are also bilipschitz. Similarly, there are bilipschitz maps $f_{J^{\prime}}: G_{Q_{0} B Q_{0}^{-1}} \rightarrow G_{J^{\prime}}$ and $f_{Q}: G_{Q_{0} B Q_{0}^{-1}} \rightarrow G_{Q B Q^{-1}}$, whose boundary maps $\partial f_{J^{\prime}}:\left(\mathbb{R}^{n}, D Q_{0} B Q_{0}^{-1}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J^{\prime}}\right)$ and $\partial f_{Q}:\left(\mathbb{R}^{n}, D_{Q_{0} B Q_{0}^{-1}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{Q B Q^{-1}}\right)$ are also bilipschitz.

Completing the proof of Theorem 1.1 The "if" part follows from Proposition 3.1 since the boundary map of a quasi-isometry between Gromov hyperbolic spaces is quasisymmetric. We will prove the "only if" part. So we suppose ($\mathbb{R}^{n}, D_{P A P^{-1}}$) and $\left(\mathbb{R}^{n}, D_{Q B Q^{-1}}\right)$ are quasisymmetric. Since the four maps $\partial f_{P}, \partial f_{J}, \partial f_{Q}$ and $\partial f_{J^{\prime}}$ are bilipschitz, we see that $\left(\mathbb{R}^{n}, D_{J}\right)$ and $\left(\mathbb{R}^{n}, D_{J^{\prime}}\right)$ are quasisymmetric. Now it follows from Lemmas 5.2, 5.7 (1) and 5.11 (1) that J and ϵJ^{\prime} have the same real part Jordan form, where $\epsilon=\lambda_{1} / \mu_{1}$. Hence A and ϵB also have the same real part Jordan form.

Theorem 5.12 Let A and B be $n \times n$ matrices whose eigenvalues all have positive real parts, and let G_{A} and G_{B} be equipped with arbitrary admissible metrics. Denote by λ_{1} and μ_{1} the smallest real parts of the eigenvalues of A and B respectively, and set $\epsilon=\lambda_{1} / \mu_{1}$. If the real part Jordan form of A is not a multiple of the identity matrix I_{n}, then for every η-quasisymmetric map $F:\left(\mathbb{R}^{n}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$, the map $F:\left(\mathbb{R}^{n}, D_{A}^{\epsilon}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$ is a K-quasisimilarity, where K depends only on η, A, B and the metrics on G_{A}, G_{B}.

Completing the proof of Theorem 5.12 Let $F:\left(\mathbb{R}^{n}, D_{P A P^{-1}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{q b q^{-1}}\right)$ be an η-quasisymmetric map. Notice that the bilipschitz constant of the map ∂f_{J} depends only on A (actually the conjugacy class of A) as the same $P_{0} A P_{0}^{-1}$ is chosen for all matrices A in the same conjugate class. However, the bilipschitz constant of ∂f_{P} depends on P and hence on the admissible metric on G_{A}. Hence $\partial f_{J} \circ \partial f_{P}^{-1}$ is L_{1}-bilipschitz for some constant L_{1} depending only on A and the admissible metric on G_{A}. Similarly, $\partial f_{J^{\prime}} \circ \partial f_{Q}^{-1}$ is L_{2}-bilipschitz for some constant L_{2} depending only on B and the admissible metric on G_{B}. It follows that

$$
G:=\left(\partial f_{J^{\prime}} \circ \partial f_{Q}^{-1}\right) \circ F \circ\left(\partial f_{J} \circ \partial f_{P}^{-1}\right)^{-1}:\left(\mathbb{R}^{n}, D_{J}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J^{\prime}}\right)
$$

is η_{1}-quasisymmetric, where η_{1} depends only on L_{1}, L_{2} and η. Now Lemmas 5.7 (2) and 5.11 (2) imply that G is a K-quasisimilarity, where K depends only on J, J^{\prime} and η_{1}. Consequently, F is a $K L_{1} L_{2}$-quasisimilarity.

6 Proof of the corollaries

In this section we prove the corollaries from the introduction and also derive a local version of Theorem 1.1.

Let M be a Hadamard manifold with pinched negative sectional curvature, $\xi_{0} \in \partial M$, and $x_{0} \in M$ a base point. Let γ be the geodesic with $\gamma(0)=x_{0}$ and $\gamma(\infty)=\xi_{0}$. Let $h_{M}=-B_{\gamma}: M \rightarrow \mathbb{R}$, where B_{γ} is the Busemann function associated with γ. Set $H_{t}=h_{M}^{-1}(t)$. A parabolic visual quasimetric $D_{\xi_{0}}$ on $\partial M \backslash\left\{\xi_{0}\right\}$ is defined as follows. For $\xi, \eta \in \partial M \backslash\left\{\xi_{0}\right\}, D_{\xi_{0}}(\xi, \eta)=e^{t}$ if and only if $\xi \xi_{0} \cap H_{t}$ and $\eta \xi_{0} \cap H_{t}$ have distance 1 in the horosphere H_{t}.

Let N be another Hadamard manifold with pinched negative sectional curvature, and $f: M \rightarrow N$ a quasi-isometry. For any $\xi \in \partial M$ and $x \in M$, we set $\xi^{\prime}=\partial f(\xi)$ and $x^{\prime}=f(x)$. Let γ^{\prime} be the geodesic with $\gamma^{\prime}(0)=x_{0}^{\prime}$ and $\gamma^{\prime}(\infty)=\xi_{0}^{\prime}$. Set $h_{N}=-B_{\gamma^{\prime}}$, where $B_{\gamma^{\prime}}$ is the Busemann function associated with γ^{\prime}. Denote $H_{t}^{\prime}=h_{N}^{-1}(t)$. Let $D_{\xi_{0}^{\prime}}$ be the parabolic visual quasimetric on $\partial N \backslash\left\{\xi_{0}^{\prime}\right\}$ with respect to the base point x_{0}^{\prime}.

Lemma 6.1 Let $s>0$. Then the following three conditions are equivalent.
(1) There is a constant $C \geq 0$ such that the Hausdorff distance $H D\left(f\left(H_{t}\right), H_{s t}^{\prime}\right) \leq C$ for all t.
(2) The boundary map $\partial f:\left(\partial M \backslash\left\{\xi_{0}\right\}, D_{\xi_{0}}^{s}\right) \rightarrow\left(\partial N \backslash\left\{\xi_{0}^{\prime}\right\}, D_{\xi_{0}^{\prime}}\right)$ is bilipschitz.
(3) There exists a constant $C \geq 0$ such that $s \cdot d(x, y)-C \leq d(f(x), f(y)) \leq$ $s \cdot d(x, y)+C$ for all $x, y \in M$.

Proof The arguments in the proof of [20, Lemma 6.4] shows $(2) \Rightarrow(1)$, while the arguments at the end of [20, proof of Corollary 1.2$]$ yield $(1) \Rightarrow(3)$. We shall prove $(3) \Rightarrow(1)$ and $(1) \Rightarrow(2)$.
$(1) \Rightarrow(2)$: Suppose (1) holds. Let $\xi \neq \eta \in \partial M \backslash\left\{\xi_{0}\right\}$. Assume $D_{\xi_{0}}(\xi, \eta)=e^{t}$ and $D_{\xi_{0}^{\prime}}\left(\xi^{\prime}, \eta^{\prime}\right)=e^{t^{\prime}}$. Let γ_{ξ} be the geodesic joining ξ and ξ_{0} with $\gamma \xi(0) \in H_{0}$ and $\gamma_{\xi}(\infty)=\xi_{0}$. By [20, Lemma 6.2], $\gamma_{\xi}(t)$ is a C_{1}-quasicenter of ξ, η, ξ_{0}, and $\gamma_{\xi^{\prime}}\left(t^{\prime}\right)$ is a C_{1}-quasicenter of $\xi^{\prime}, \eta^{\prime}$, ξ_{0}^{\prime}, where C_{1} depends only on the curvature bounds of M and N. Since f is a quasi-isometry, $f(\gamma \xi(t))$ is a C_{2}-quasicenter of $\xi^{\prime}, \eta^{\prime}, \xi_{0}^{\prime}$, where C_{2} depends only on C_{1}, the quasi-isometry constants of f and the curvature bounds of N. It follows that $d\left(f\left(\gamma_{\xi}(t)\right), \gamma_{\xi^{\prime}}\left(t^{\prime}\right)\right) \leq C_{3}$, where C_{3} depends only on C_{1}, C_{2} and the curvature bounds of N. By condition (1), the point $f\left(\gamma_{\xi}(t)\right)$ is within C of $H_{s t}^{\prime}$. It follows that $\gamma_{\xi^{\prime}}\left(t^{\prime}\right) \in H_{t^{\prime}}^{\prime}$, is within $C+C_{3}$ of $H_{s t}^{\prime}$ so $\left|t^{\prime}-s t\right| \leq$ $C+C_{3}$. Therefore, $e^{-\left(C+C_{3}\right)} e^{s t} \leq D_{\xi_{0}^{\prime}}\left(\xi^{\prime}, \eta^{\prime}\right)=e^{t^{\prime}} \leq e^{C+C_{3}} e^{s t}$.
$(3) \Rightarrow(1)$: Suppose (3) holds. Let $\omega: \mathbb{R} \rightarrow M$ be any geodesic with $\omega(0) \in H_{0}$ and $\omega(\infty)=\xi_{0}$. Then $f \circ \omega$ is a $\left(L_{1}, C_{1}\right)$-quasigeodesic in N, where L_{1} and C_{1} depend only on s and C. By the stability of quasigeodesics in a Gromov hyperbolic space, there is a constant C_{2} depending only on L_{1}, C_{1} and the Gromov hyperbolicity constant of N, and a complete geodesic ω^{\prime} in N with one endpoint ξ_{0}^{\prime} such that the Hausdorff distance between $\omega^{\prime}(\mathbb{R})$ and $f \circ \omega(\mathbb{R})$ is at most C_{2}. Let $t_{1}<t_{2}$. Then it follows from condition (3) and the triangle inequality that

$$
\left|h_{N}\left(f\left(\omega\left(t_{2}\right)\right)\right)-h_{N}\left(f\left(\omega\left(t_{1}\right)\right)\right)-s\left(t_{2}-t_{1}\right)\right| \leq C_{3},
$$

where C_{3} depends only on C, C_{2} and the Gromov hyperbolicity constant of N. In particular, this applied to $\omega=\gamma, t_{2}=t$ and $t_{1}=0$ (or $t_{2}=0$ and $t_{1}=t$ if $t<0$) implies $\left|h_{N}(f(\gamma(t)))-s t\right| \leq C_{3}$.

Let $x \in H_{t}$ be arbitrary. Let ω_{1} be the geodesic with $\omega_{1}(t)=x$ and $\omega_{1}(\infty)=\xi_{0}$. Pick any $t_{2} \geq t$ with $d\left(\gamma\left(t_{2}\right), \omega_{1}\left(t_{2}\right)\right) \leq 1$. By condition (3),

$$
\left|h_{N}\left(f\left(\gamma\left(t_{2}\right)\right)\right)-h_{N}\left(f\left(\omega_{1}\left(t_{2}\right)\right)\right)\right| \leq d\left(f\left(\gamma\left(t_{2}\right)\right), f\left(\omega_{1}\left(t_{2}\right)\right)\right) \leq s+C .
$$

The discussion from the preceding paragraph implies

$$
\begin{gathered}
\left|h_{N}\left(f\left(\omega_{1}\left(t_{2}\right)\right)\right)-h_{N}\left(f\left(\omega_{1}(t)\right)\right)-s\left(t_{2}-t\right)\right| \leq C_{3} \\
\left|h_{N}\left(f\left(\gamma\left(t_{2}\right)\right)\right)-h_{N}(f(\gamma(t)))-s\left(t_{2}-t\right)\right| \leq C_{3}
\end{gathered}
$$

These inequalities together with the one at the end of last paragraph imply

$$
\left|h_{N}\left(f\left(\omega_{1}(t)\right)\right)-s t\right| \leq C_{4}:=3 C_{3}+s+C
$$

Hence $f(x)=f\left(\omega_{1}(t)\right)$ is within C_{4} of $H_{s t}^{\prime}$. This shows $f\left(H_{t}\right)$ lies in the $C_{4}-$ neighborhood of $H_{s t}^{\prime}$. By considering a quasi-inverse of f, we see that the Hausdorff distance $H D\left(f\left(H_{t}\right), H_{s t}^{\prime}\right) \leq C_{5}$, where C_{5} depends only on s, C and the Gromov hyperbolicity constants of M and N.

A local version of Theorem 1.1 also holds.

Theorem 6.2 Let A, B be $n \times n$ matrices whose eigenvalues have positive real parts, and let G_{A} and G_{B} be equipped with arbitrary admissible metrics. Let $U \subset\left(\mathbb{R}^{n}, D_{A}\right)$, $V \subset\left(\mathbb{R}^{n}, D_{B}\right)$ be open subsets, and $F:\left(U, D_{A}\right) \rightarrow\left(V, D_{B}\right)$ an η-quasisymmetric map. Then A and $s B$ have the same real part Jordan form for some $s>0$.

Proof By Corollary 3.2 and the discussion before the proof of Theorem 1.1 we may assume A and B are in real part Jordan form. Fix a base point $x \in U$. We may assume both x and $F(x)$ are the origin o. Then there is some constant $a>1$ and a sequence of distinct triples $\left(x_{k}, y_{k}, z_{k}\right)$ from U satisfying $x_{k}=o, D_{A}\left(x_{k}, y_{k}\right) \rightarrow 0$ and

$$
\frac{D_{A}\left(x_{k}, y_{k}\right)}{D_{A}\left(x_{k}, z_{k}\right)}, \frac{D_{A}\left(y_{k}, x_{k}\right)}{D_{A}\left(y_{k}, z_{k}\right)}, \frac{D_{A}\left(z_{k}, x_{k}\right)}{D_{A}\left(z_{k}, y_{k}\right)} \in(1 / a, a) .
$$

Such a triple can be chosen from the eigenspace of λ_{1} (the smallest eigenvalue of A) so that $x_{k}=o$ is the middle point of the segment $y_{k} z_{k}$. Since F is η-quasisymmetric, there is a constant $b>0$ depending only on a and η such that

$$
\frac{D_{B}\left(F\left(x_{k}\right), F\left(y_{k}\right)\right)}{D_{B}\left(F\left(x_{k}\right), F\left(z_{k}\right)\right)}, \frac{D_{B}\left(F\left(y_{k}\right), F\left(x_{k}\right)\right)}{D_{B}\left(F\left(y_{k}\right), F\left(z_{k}\right)\right)}, \frac{D_{B}\left(F\left(z_{k}\right), F\left(x_{k}\right)\right)}{D_{B}\left(F\left(z_{k}\right), F\left(y_{k}\right)\right)} \in(1 / b, b) .
$$

Assume $D_{A}\left(x_{k}, y_{k}\right)=e^{-t_{k}}$ and $D_{B}\left(F\left(x_{k}\right), F\left(y_{k}\right)\right)=e^{-t_{k}^{\prime}}$. Then we have that $e^{t_{k} A}:\left(U, e^{t_{k}} D_{A}\right) \rightarrow\left(e^{t_{k} A} U, D_{A}\right)$ is an isometry. Hence the sequence of pointed metric spaces $\left(U, e^{t_{k}} D_{A}, o\right)$ converges (as $\left.k \rightarrow \infty\right)$ in the pointed Gromov-Hausdorff topology towards $\left(\mathbb{R}^{n}, D_{A}\right)$. Similarly, the sequence of pointed metric spaces $\left(V, e^{t_{k}^{\prime}} D_{B}, o\right)$ converges (as $k \rightarrow \infty$) in the pointed Gromov-Hausdorff topology towards $\left(\mathbb{R}^{n}, D_{B}\right)$. On the other hand, the sequence of maps $F_{k}=F:\left(U, e^{t_{k}} D_{A}\right) \rightarrow\left(V, e^{t_{k}^{\prime}} D_{B}\right)$ are all $\eta-$ quasisymmetric, and the triples $\left(x_{k}, y_{k}, z_{k}\right) \in\left(U, e^{t_{k}} D_{A}\right),\left(F\left(x_{k}\right), F\left(y_{k}\right), F\left(z_{k}\right)\right) \in$
$\left(V, e^{t_{k}^{\prime}} D_{B}\right)$ are uniformly separated and uniformly bounded. Now the compactness property of quasisymmetric maps implies that a subsequence of $\left\{F_{k}\right\}$ converges in the pointed Gromov-Hausdorff topology towards an η-quasisymmetric map $F^{\prime}:\left(\mathbb{R}^{n}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n}, D_{B}\right)$. Now the theorem follows from Theorem 1.1.

Lemma 6.3 Let $F: \partial G_{A} \rightarrow \partial G_{B}$ be a quasisymmetric map, where ∂G_{A} and ∂G_{B} are equipped with visual metrics. Let $\xi_{0} \in \partial G_{A}, \xi_{0}^{\prime} \in \partial G_{B}$ be the points corresponding to upward-oriented vertical geodesic rays. If the real part Jordan form of A is not a multiple of the identity matrix, then $F\left(\xi_{0}\right)=\xi_{0}^{\prime}$.

Proof The proof is similar to that of [22, Proposition 3.5]. Suppose $F\left(\xi_{0}\right) \neq \xi_{0}^{\prime}$. By the relation between visual metrics and parabolic visual metrics [20, Section 5], the map

$$
F:\left(\mathbb{R}^{n} \backslash\left\{F^{-1}\left(\xi_{0}^{\prime}\right)\right\}, D_{A}\right) \rightarrow\left(\mathbb{R}^{n} \backslash\left\{F\left(\xi_{0}\right), D_{B}\right)\right.
$$

is locally quasisymmetric. By Theorem 6.2, A and $s B$ have the same real part Jordan form for some $s>0$. In particular, we have $k_{B}=k_{A}$; the fibers of π_{A} and π_{B} have the same dimension if $k_{A}=1$, and the subspaces $\prod_{i<k_{A}} V_{i}$ and $\prod_{j<k_{B}} W_{j}$ have the same dimension if $k_{A} \geq 2$. If $k_{A}=1$, let H be a fiber of π_{A} not containing $F^{-1}\left(\xi_{0}^{\prime}\right)$; if $k_{A} \geq 2$, then let H be an affine subspace parallel to $\prod_{i<k_{A}} V_{i}$ and not containing $F^{-1}\left(\xi_{0}^{\prime}\right)$. Let m be the topological dimension of H. Then $H \cup\left\{\xi_{0}\right\} \subset \partial G_{A}$ is an m-dimensional topological sphere. Since $F\left(\xi_{0}\right) \neq \xi_{0}^{\prime}$ and $F^{-1}\left(\xi_{0}^{\prime}\right) \notin H$, the image $F\left(H \cup\left\{\xi_{0}\right\}\right)$ is a m-dimensional topological sphere in $\mathbb{R}^{n}=\partial G_{B} \backslash\left\{\xi_{0}^{\prime}\right\}$. In particular, $F\left(H \cup\left\{\xi_{0}\right\}\right.$) (and hence $F(H)$) is not contained in any fiber of π_{B} (if $k_{A}=1$) or any affine subspace parallel to $\prod_{j<k_{B}} W_{j}$ (if $k_{A} \geq 2$). Now the arguments of Lemmas 5.3 and 5.9 yield a contradiction. Hence $F\left(\xi_{0}\right)=\xi_{0}^{\prime}$.

Now Corollary 1.3 follows from Proposition 3.1, Lemma 6.3, Theorem 1.1 and the fact that a quasi-isometry between Gromov hyperbolic spaces induces a quasisymmetric map between the ideal boundaries.

Proofs of Corollaries 1.4 and 1.5 We use the notation introduced before the proof of Theorem 1.1. Let $f: G_{P A P^{-1}} \rightarrow G_{Q B Q^{-1}}$ be a quasi-isometry. By Lemma $6.3, f$ induces a boundary map $\partial f:\left(\mathbb{R}^{n}, D_{P A P^{-1}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{Q B Q^{-1}}\right)$, which is quasisymmetric. By Theorem 1.2, there is some $s>0$ such that $\partial f:\left(\mathbb{R}^{n}, D_{P A P^{-1}}^{s}\right) \rightarrow\left(\mathbb{R}^{n}, D_{Q B Q^{-1}}\right)$ is bilipschitz. Since ∂f_{P} and ∂f_{Q} are also bilipschitz, we have that the boundary map $\partial\left(f_{Q}^{-1} \circ f \circ f_{P}\right):\left(\mathbb{R}^{n}, D_{P_{0} A P_{0}^{-1}}^{S}\right) \rightarrow\left(\mathbb{R}^{n}, D Q_{0} B Q_{0}^{-1}\right)$ of $f_{Q}^{-1} \circ f \circ f_{P}: G_{P_{0} A P_{0}^{-1}} \rightarrow$ $G_{Q_{0} B Q_{0}^{-1}}$ is bilipschitz. Since $G_{P_{0} A P_{0}^{-1}}$ and $G_{Q_{0} B Q_{0}^{-1}}$ have pinched negative sectional curvature, Lemma 6.1 implies the map $f_{Q}^{-1} \circ f \circ f_{P}$ is height-respecting and is an almost similarity. By Proposition 3.1 and Corollary 3.2 the two maps f_{P} and f_{Q}
are height-respecting and are almost similarities. Hence f is height-respecting and is an almost similarity.

The proof of Corollary 1.6 is the same as in [20, Corollary 1.3].
Next we give a proof of Corollary 1.7. Recall that a group G of quasisimilarity maps of $\left(\mathbb{R}^{n}, D_{A}\right)$ is a uniform group if there is some $K \geq 1$ such that every element of G is a K-quasisimilarity. Dymarz and Peng have established the following theorem; see [6] for the definition of almost homotheties.

Theorem 6.4 [6] Let A be a square matrix whose eigenvalues all have positive real parts, and G be a uniform group of quasisimilarity maps of $\left(\mathbb{R}^{n}, D_{A}\right)$. If the induced action of G on the space of distinct couples of \mathbb{R}^{n} is cocompact, then G can be conjugated by a bilipschitz map into the group of almost homotheties.

Proof of Corollary 1.7 Let G be a group of quasimöbius maps of $\left(\partial G_{A}, d\right)$ such that every element of G is η-quasimöbius, where d is a fixed visual metric on ∂G_{A}. Let $\xi_{0} \in \partial G_{A}$ be the point corresponding to vertical geodesic rays. Since the real part Jordan form of A is not a multiple of the identity matrix, Lemma 6.3 implies that the point ξ_{0} is fixed by all quasisymmetric maps $\partial G_{A} \rightarrow \partial G_{\boldsymbol{A}}$. Hence G restricts to a group of quasisymmetric maps of $\left(\mathbb{R}^{n}, D_{A}\right)$. For any three distinct points $\xi_{1}, \xi_{2}, \xi_{3} \in \mathbb{R}^{n}=$ $\partial G_{A} \backslash\left\{\xi_{0}\right\}$, the quasimöbius condition applied to the quadruple $Q=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{0}\right)$ implies that every element of G is an η-quasisymmetric map of $\left(\mathbb{R}^{n}, D_{A}\right)$. Now Theorem 1.2 implies that there is some $K \geq 1$ such that every element of G is a $K-$ quasisimilarity. In other words, G is a uniform group of quasisimilarities of $\left(\mathbb{R}^{n}, D_{A}\right)$.
Since the induced action of G on the space of distinct triples of $\left(\partial G_{A}, d\right)$ is cocompact, there is some $\delta>0$ such that for any distinct triple $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$, there is some $g \in G$ such that $d\left(g\left(\xi_{i}\right), g\left(\xi_{j}\right)\right) \geq \delta$ for all $1 \leq i \neq j \leq 3$. Now let $\xi \neq \xi_{2} \in \mathbb{R}^{n}=\partial G_{\boldsymbol{A}} \backslash\left\{\xi_{0}\right\}$ be any distinct couple. Then there is an element $g \in G$ as above corresponding to the triple $\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$. Since $g\left(\xi_{0}\right)=\xi_{0}$, there are two constants $a, b>0$ depending only on δ such that $D_{A}\left(g\left(\xi_{1}\right), o\right) \leq b, D_{A}\left(g\left(\xi_{2}\right), o\right) \leq b$ and $D_{A}\left(g\left(\xi_{1}\right), g\left(\xi_{2}\right)\right) \geq a$. This shows that G acts cocompactly on the space of distinct couples of $\left(\mathbb{R}^{n}, D_{A}\right)$.

Now the corollary follows from the theorem of Dymarz and Peng.

7 QS maps in the Jordan block case

In this section we describe all the quasisymmetric maps on the ideal boundary in the case when A is a Jordan block.

Theorem 7.1 Let $J_{n}=I_{n}+N$ be the $n \times n(n \geq 2)$ Jordan block with eigenvalue 1 . Then a bijection $F:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right)$ is a quasisymmetric map if and only of there are constants $a_{0} \neq 0, a_{1}, \ldots, a_{n-2} \in \mathbb{R}$, a vector $v \in \mathbb{R}^{n}$ and a Lipschitz map $C: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F(x)=\left(a_{0} I_{n}+a_{1} N+\cdots+a_{n-2} N^{n-2}\right) x+v+\widetilde{C}(x)
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, where $\widetilde{C}(x)=\left(C\left(x_{n}\right), 0, \ldots, 0\right)^{T}$. Here T indicates matrix transpose.

We first prove that every map of the indicated form is actually bilipschitz. Notice that the map F described in the theorem decomposes as $F=F_{1} \circ F_{2} \circ F_{3}$, with $F_{1}(x)=x+v$, $F_{2}(x)=x+\widetilde{C}_{1}(x)$ and $F_{3}(x)=\left(a_{0} I_{n}+a_{1} N+\cdots+a_{n-2} N^{n-2}\right) x$, where $C_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $C_{1}(t)=C\left(t / a_{0}\right)$. Since $D_{J_{n}}$ is invariant under Euclidean translations, F_{1} is an isometry. We shall prove that F_{2} and F_{3} are bilipschitz in the next two lemmas. For an $n \times n$ matrix $M=\left(m_{i j}\right)$, set $Q(M)=\sum_{i, j} m_{i j}^{2}$. We will use the fact $\|M\| \leq Q(M)^{1 / 2}$, where $\|M\|$ denotes the operator norm of M.

Lemma 7.2 Suppose $C: \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz for some $L>0$. Then we have $F_{2}:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right), F_{2}(x)=x+\widetilde{C}(x)$ is L^{\prime}-bilipschitz, where L^{\prime} depends only on L and the dimension n.

Proof Let $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)^{T}$ be two arbitrary points in \mathbb{R}^{n}. Then $F_{2}(x)=\left(x_{1}+C\left(x_{n}\right), x_{2}, \ldots, x_{n}\right)^{T}$ and $F_{2}\left(x^{\prime}\right)=\left(x_{1}^{\prime}+C\left(x_{n}^{\prime}\right), x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)^{T}$. Assume $D_{J_{n}}\left(x, x^{\prime}\right)=e^{t}$ and $D_{J_{n}}\left(F_{2}(x), F_{2}\left(x^{\prime}\right)\right)=e^{s}$. We need to show that there is some constant a depending only on L and n such that $|t-s| \leq a$.

Since $D_{J_{n}}\left(x, x^{\prime}\right)=e^{t}$, we have $e^{t}=\left|e^{-t N}\left(x^{\prime}-x\right)\right|$; see Section 3. Similarly, $D_{J_{n}}\left(F_{2}(x), F_{2}\left(x^{\prime}\right)\right)=e^{s}$ gives $e^{s}=\left|e^{-s N}\left(F_{2}\left(x^{\prime}\right)-F_{2}(x)\right)\right|$. Note $F_{2}\left(x^{\prime}\right)-F_{2}(x)=$ $\left(x^{\prime}-x\right)+w$, where $w=\left(C\left(x_{n}^{\prime}\right)-C\left(x_{n}\right), 0, \ldots, 0\right)^{T}$. The only nonzero entry in $e^{-t N} w$ is $C\left(x_{n}^{\prime}\right)-C\left(x_{n}\right)$. So we have

$$
\left|e^{-t N} w\right|=\left|C\left(x_{n}^{\prime}\right)-C\left(x_{n}\right)\right| \leq L\left|x_{n}^{\prime}-x_{n}\right|
$$

On the other hand, the last entry in $e^{-t N}\left(x^{\prime}-x\right)$ is $\left(x_{n}^{\prime}-x_{n}\right)$, hence

$$
\left|e^{-t N} w\right| \leq L\left|x_{n}^{\prime}-x_{n}\right| \leq L\left|e^{-t N}\left(x^{\prime}-x\right)\right|=L e^{t}
$$

We write
$e^{-s N}\left(F_{2}\left(x^{\prime}\right)-F_{2}(x)\right)=e^{(t-s) N} e^{-t N}\left[\left(x^{\prime}-x\right)+w\right]=e^{(t-s) N}\left[e^{-t N}\left(x^{\prime}-x\right)+e^{-t N} w\right]$.

Now

$$
\begin{aligned}
e^{s} & =\left|e^{-s N}\left(F_{2}\left(x^{\prime}\right)-F_{2}(x)\right)\right|=\left|e^{(t-s) N}\left[e^{-t N}\left(x^{\prime}-x\right)+e^{-t N} w\right]\right| \\
& \leq\left\|e^{(t-s) N}\right\| \cdot\left|e^{-t N}\left(x^{\prime}-x\right)+e^{-t N} w\right| \leq\left\|e^{(t-s) N}\right\| \cdot\left\{\left|e^{-t N}\left(x^{\prime}-x\right)\right|+\left|e^{-t N} w\right|\right\} \\
& \leq\left\|e^{(t-s) N}\right\| \cdot\left\{e^{t}+L e^{t}\right\} \leq e^{t}(1+L) \sqrt{Q\left(e^{(t-s) N}\right)}
\end{aligned}
$$

From this we derive $e^{s-t} \leq(1+L) \sqrt{Q\left(e^{(t-s) N}\right)}$. Notice that $Q\left(e^{(t-s) N}\right)$ is a polynomial of degree $2(n-1)$ in $t-s$ that depends only on n. It follows that there is a constant a depending only on n and L such that $s-t \leq a$. Since the inverse of F_{2} is $F_{2}^{-1}(x)=x+\left(-C\left(x_{n}\right), 0, \ldots, 0\right)^{T}$, the above argument applied to F_{2}^{-1} yields $t-s \leq a$. Hence $|s-t| \leq a$, and we are done.

Lemma 7.3 Let $F_{3}:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right)$ be given by

$$
F_{3}(x)=\left(a_{0} I_{n}+a_{1} N+\cdots+a_{n-1} N^{n-1}\right) x
$$

where $a_{0} \neq 0, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$ are constants. Then F_{3} is L-bilipschitz for some L depending only on n and $a_{0}, a_{1}, \ldots, a_{n-1}$.

Proof The proof is similar to that of Lemma 7.2. Let $x, x^{\prime} \in \mathbb{R}^{n}$ be arbitrary. Assume $D_{J_{n}}\left(x, x^{\prime}\right)=e^{t}$ and $D_{J_{n}}\left(F_{3}(x), F_{3}\left(x^{\prime}\right)\right)=e^{s}$. Then we have $e^{t}=\left|e^{-t N}\left(x^{\prime}-x\right)\right|$ and $e^{s}=\left|e^{-s N}\left(F_{3}\left(x^{\prime}\right)-F_{3}(x)\right)\right|$. We need to find a constant a that depends only on n and the numbers a_{0}, \cdots, a_{n-1} such that $|s-t| \leq a$.

Set $B_{1}=e^{(t-s) N}$ and $B_{2}=a_{0} I_{n}+a_{1} N+\cdots+a_{n-1} N^{n-1}$. Notice that B_{2} commutes with N. We have

$$
\begin{aligned}
e^{s} & =\left|e^{-s N}\left(F_{3}\left(x^{\prime}\right)-F_{3}(x)\right)\right|=\left|e^{(t-s) N} e^{-t N} B_{2}\left(x^{\prime}-x\right)\right| \\
& =\left|B_{1} B_{2} e^{-t N}\left(x^{\prime}-x\right)\right| \leq\left\|B_{1}\right\| \cdot\left\|B_{2}\right\| \cdot\left|e^{-t N}\left(x^{\prime}-x\right)\right| \\
& \leq \sqrt{Q\left(B_{1}\right)} \sqrt{Q\left(B_{2}\right)} e^{t} .
\end{aligned}
$$

Hence $e^{s-t} \leq \sqrt{Q\left(B_{1}\right) Q\left(B_{2}\right)}$. Since $Q\left(B_{1}\right) Q\left(B_{2}\right)$ is a polynomial in $t-s$ that depends only on n and the numbers a_{0}, \ldots, a_{n-1}, there is some constant $a>0$ depending only on n and a_{0}, \ldots, a_{n-1} such that $s-t \leq a$.
Notice that $F_{3}^{-1}(x)=B_{2}^{-1} x$. Set

$$
\beta=-\left(\frac{a_{1}}{a_{0}} N+\cdots+\frac{a_{n-1}}{a_{0}} N^{n-1}\right)
$$

Then $\beta^{n}=0$. We have $B_{2}=a_{0}(I-\beta)$ and $B_{2}^{-1}=a_{0}^{-1}\left(I+\beta+\beta^{2}+\cdots+\beta^{n-1}\right)$. It follows that B_{2}^{-1} has the expression $B_{2}^{-1}=a_{0}^{-1} I+b_{1} N+\cdots+b_{n-2} N^{n-2}+$
$b_{n-1} N^{n-1}$, where b_{1}, \ldots, b_{n-1} are constants depending only on a_{0}, \ldots, a_{n-1}. Now the preceding paragraph implies that $t-s \leq a^{\prime}$ for some constant a^{\prime} depending only on n and $a_{0}^{-1}, b_{1}, \ldots, b_{n-1}$, hence only on n and a_{0}, \ldots, a_{n-1}. Therefore $|s-t| \leq \max \left\{a, a^{\prime}\right\}$, and the proof of Lemma 7.3 is complete.

To prove that every quasisymmetric map has the described type, we induct on n. The basic step $n=2$ is given by Theorem 3.6. Now we assume $n \geq 3$ and that Theorem 7.1 holds for J_{n-1}.

Let $F:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right)$ be a quasisymmetric map. Let $\mathcal{F}_{i}(i=1, \ldots, n-1)$ be the foliation of \mathbb{R}^{n} consisting of affine subspaces parallel to the linear subspace

$$
H_{i}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n} \mid x_{i+1}=\cdots=x_{n}=0\right\} .
$$

Then the proof of Theorem 1.2 shows that the foliation \mathcal{F}_{i} is preserved by F. To be more precise, if H is an affine subspace parallel to H_{i}, then $F(H)$ is also an affine subspace parallel to H_{i}. In particular, F maps every line parallel to the x_{1}-axis (that is, parallel to H_{1}) to a line parallel to the x_{1}-axis, and maps every horizontal hyperplane (that is, parallel to H_{n-1}) to a horizontal hyperplane. It follows that there is a map $G: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ such that for any $y \in \mathbb{R}^{n-1}, F(\mathbb{R} \times\{y\})=\mathbb{R} \times\{G(y)\}$. For each $y \in \mathbb{R}^{n-1}$, there is a map $H(\cdot, y): \mathbb{R} \rightarrow \mathbb{R}$ such that $F\left(x_{1}, y\right)=\left(H\left(x_{1}, y\right), G(y)\right)$.

Arguments similar to the proofs of Lemmas 3.3 and 3.4 show the following:
(1) For each $y \in \mathbb{R}^{n-1}$, the restriction of $D_{J_{n}}$ to $\mathbb{R} \times\{y\}$ agrees with the Euclidean distance on \mathbb{R}.
(2) For any two $y_{1}, y_{2} \in \mathbb{R}^{n-1}$, the Hausdorff distance with respect to $D_{J_{n}}$ satisifes $H D\left(\mathbb{R} \times\left\{y_{1}\right\}, \mathbb{R} \times\left\{y_{2}\right\}\right)=D_{J_{n-1}}\left(y_{1}, y_{2}\right)$.
(3) For any $p=\left(x_{1}, y_{1}\right) \in \mathbb{R} \times \mathbb{R}^{n-1}, y_{2} \in \mathbb{R}^{n-1}$, we have $D_{J_{n}}\left(p, \mathbb{R} \times\left\{y_{2}\right\}\right)=$ $D_{J_{n-1}}\left(y_{1}, y_{2}\right)$.

Hence each $H(\cdot, y):(\mathbb{R},|\cdot|) \rightarrow(\mathbb{R},|\cdot|)$ is quasisymmetric, and the arguments of [22, page 11] shows that $G:\left(\mathbb{R}^{n-1}, D_{J_{n-1}}\right) \rightarrow\left(\mathbb{R}^{n-1}, D_{J_{n-1}}\right)$ is also quasisymmetric.

The induction hypothesis applied to G establishes constants $a_{0} \neq 0, a_{1}, \ldots, a_{n-3}, b_{i}$ ($2 \leq i \leq n$) and a Lipschitz map $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
G\left(\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{0} x_{2}+a_{1} x_{3}+\cdots+a_{n-3} x_{n-1}+b_{2}+g\left(x_{n}\right) \\
a_{0} x_{3}+a_{1} x_{4}+\cdots+a_{n-3} x_{n}+b_{3} \\
\vdots \\
a_{0} x_{n-1}+a_{1} x_{n}+b_{n-1} \\
a_{0} x_{n}+b_{n}
\end{array}\right) .
$$

Notice that the horizontal hyperplane $\mathbb{R}^{n-1} \times\left\{x_{n}\right\}$ at height x_{n} is mapped by F to the horizontal hyperplane $\mathbb{R}^{n-1} \times\left\{a_{0} x_{n}+b_{n}\right\}$ at height $a_{0} x_{n}+b_{n}$. Since the restriction of $D_{J_{n}}$ to a horizontal hyperplane agrees with $D_{J_{n-1}}$ (Lemma 3.3), the map

$$
F:\left(\mathbb{R}^{n-1} \times\left\{x_{n}\right\}, D_{J_{n-1}}\right) \rightarrow\left(\mathbb{R}^{n-1} \times\left\{a_{0} x_{n}+b_{n}\right\}, D_{J_{n-1}}\right)
$$

is quasisymmetric. Now the induction hypothesis, the fact $F\left(x_{1}, y\right)=\left(H\left(x_{1}, y\right) G(y)\right)$ and the expression of G imply that

$$
H\left(x_{1}, y\right)=a_{0} x_{1}+a_{1} x_{2}+\cdots+a_{n-3} x_{n-2}+c_{1}\left(x_{n}\right)+c_{2}\left(x_{n-1}, x_{n}\right),
$$

where $c_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $c_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are two maps and for each fixed $v, c_{2}(u, v)$ is Lipschitz in u. Since F is a homeomorphism, c_{1} and c_{2} are continuous. Define $c_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $c_{3}(u, v)=c_{1}(v)+c_{2}(u, v)$. After composing F with a map of the described type, we may assume F has the following form

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}+c_{3}\left(x_{n-1}, x_{n}\right), x_{2}+g\left(x_{n}\right), x_{3}, \ldots, x_{n}\right) .
$$

We need to show that there are constants a_{n-2}, d_{2} and a Lipschitz map $C: \mathbb{R} \rightarrow \mathbb{R}$ such that $g\left(x_{n}\right)=a_{n-2} x_{n}+d_{2}$ and $c_{3}\left(x_{n-1}, x_{n}\right)=a_{n-2} x_{n-1}+C\left(x_{n}\right)$.

Lemma 7.4 There is a constant L such that the following holds for all $u, v, v^{\prime} \in \mathbb{R}$:

$$
\left|\left\{c_{3}\left(u+\left(v^{\prime}-v\right) \ln \left|v^{\prime}-v\right|, v^{\prime}\right)-c_{3}(u, v)\right\}-\ln \right| v^{\prime}-v\left|\left\{g\left(v^{\prime}\right)-g(v)\right\}\right| \leq L\left|v^{\prime}-v\right|
$$

Proof Let $u, v, v^{\prime} \in \mathbb{R}$. Let $x \in \mathbb{R}^{n}$ with $x_{n-1}=u, x_{n}=v$. Set $t=\ln \left|v^{\prime}-v\right|$ and let $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ be the unique solution of $e^{-t N} y=\left(0, \ldots, 0, v^{\prime}-v\right)^{T}$. Let $x^{\prime}=x+y$. Notice $y_{n}=v^{\prime}-v, y_{n-1}=\left(v^{\prime}-v\right) \ln \left|v^{\prime}-v\right|, x_{n}^{\prime}=v^{\prime}$ and

$$
x_{n-1}^{\prime}=x_{n-1}+y_{n-1}=u+\left(v^{\prime}-v\right) \ln \left|v^{\prime}-v\right| .
$$

Notice also that t is the smallest solution for $e^{t}=\left|e^{-t N}\left(x^{\prime}-x\right)\right|$ and so $D_{J_{n}}\left(x, x^{\prime}\right)=e^{t}$. Suppose $D_{J_{n}}\left(F(x), F\left(x^{\prime}\right)\right)=e^{s}$. Then $e^{s}=\left|e^{-s N}\left(F\left(x^{\prime}\right)-F(x)\right)\right|$. By Theorem 1.2, F is L_{1}-bilipschitz for some $L_{1} \geq 1$. Hence $e^{t} / L_{1} \leq e^{s} \leq L_{1} e^{t}$. It follows that $|t-s| \leq \ln L_{1}$. Now we write the following:
$e^{-s N}\left(F\left(x^{\prime}\right)-F(x)\right)$

$$
=e^{-s N}\left(x^{\prime}-x\right)+e^{-s N}\left(\begin{array}{c}
c_{3}\left(x_{n-1}^{\prime}, x_{n}^{\prime}\right)-c_{3}\left(x_{n-1}, x_{n}\right) \\
g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right) \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& =e^{(t-s) N} e^{-t N}\left(x^{\prime}-x\right)+e^{(t-s) N} e^{-t N}\left(\begin{array}{c}
c_{3}\left(x_{n-1}^{\prime}, x_{n}^{\prime}\right)-c_{3}\left(x_{n-1}, x_{n}\right) \\
g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right) \\
0 \\
\vdots \\
0 \\
=e^{(t-s) N}\left(\begin{array}{c}
\left\{c_{3}\left(x_{n-1}^{\prime}, x_{n}^{\prime}\right)-c_{3}\left(x_{n-1}, x_{n}\right)\right\}-t\left\{g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right)\right\} \\
g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right) \\
0 \\
\vdots \\
0 \\
x_{n}^{\prime}-x_{n}
\end{array}\right.
\end{array}\right)
\end{aligned}
$$

Set

$$
\tau=\left\{c_{3}\left(x_{n-1}^{\prime}, x_{n}^{\prime}\right)-c_{3}\left(x_{n-1}, x_{n}\right)\right\}-t\left\{g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right)\right\}
$$

The first entry of $e^{-s N}\left(F\left(x^{\prime}\right)-F(x)\right)$ is

$$
q:=\tau+(t-s)\left\{g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right)\right\}+\frac{(t-s)^{n-1}}{(n-1)!}\left(x_{n}^{\prime}-x_{n}\right) .
$$

We have

$$
|q| \leq\left|e^{-s N}\left(F\left(x^{\prime}\right)-F(x)\right)\right|=e^{s} \leq L_{1} e^{t}=L_{1}\left|v^{\prime}-v\right|
$$

Recall that g is L_{2}-Lipschitz for some $L_{2} \geq 0$. Hence,

$$
\left|g\left(x_{n}^{\prime}\right)-g\left(x_{n}\right)\right| \leq L_{2}\left|x_{n}^{\prime}-x_{n}\right|=L_{2}\left|v^{\prime}-v\right|
$$

Now it follows from $|t-s| \leq \ln L_{1}$ and the triangle inequality that

$$
|\tau| \leq\left(L_{1}+L_{2} \ln L_{1}+\frac{\left(\ln L_{1}\right)^{n-1}}{(n-1)!}\right)\left|v^{\prime}-v\right|
$$

Recall that the map g is Lipschitz and for each fixed $v, c_{3}(u, v)$ is Lipschitz in u. Hence g is differentiable ae, and for each fixed v, the partial derivative $\partial c_{3} / \partial u$ exists for ae u.

Lemma 7.5 Let v be any point such that $g^{\prime}(v)$ exists. Then $c_{3}(u, v)=c_{3}(0, v)+$ $g^{\prime}(v) u$ for all u.

Proof Fix an arbitrary $u \in \mathbb{R}$. Let $a>0$. For any positive integer n, define $\left(y_{0}, z_{0}\right)=$ (u, v) and $\left(y_{i}, z_{i}\right)=(u+i(a / n) \ln (a / n), v+i(a / n))(1 \leq i \leq n)$. Applying Lemma 7.4
to y_{i-1}, z_{i-1}, z_{i} we obtain

$$
\left|\left\{c_{3}\left(y_{i}, z_{i}\right)-c_{3}\left(y_{i-1}, z_{i-1}\right)\right\}-\ln \left(\frac{a}{n}\right)\left\{g\left(z_{i}\right)-g\left(z_{i-1}\right)\right\}\right| \leq L \frac{a}{n} .
$$

Now let $k=k(n)$ be the integer part of $n / \ln (n / a)$. Then $(k / n) \ln (a / n) \rightarrow-1$ as $n \rightarrow \infty$. Combining the above inequalities for $1 \leq i \leq k$ and using the triangle inequality, we obtain

$$
\left|\left\{c_{3}\left(y_{k}, z_{k}\right)-c_{3}(u, v)\right\}-\ln \left(\frac{a}{n}\right)\left\{g\left(z_{k}\right)-g(v)\right\}\right| \leq L \frac{a k}{n}
$$

Now divide both sides by $(a k / n) \ln (n / a)$ (which converges to a as $n \rightarrow \infty$), we get

$$
\left|\frac{\left\{c_{3}\left(y_{k}, z_{k}\right)-c_{3}(u, v)\right\}}{(a k / n) \ln (n / a)}+\frac{\left\{g\left(z_{k}\right)-g(v)\right\}}{(a k / n)}\right| \leq \frac{L}{\ln (n / a)}
$$

As $n \rightarrow \infty$, we have $z_{k}=v+(a k / n) \rightarrow v, y_{k} \rightarrow u-a$. Also, since $g^{\prime}(v)$ exists, we have

$$
\frac{\left\{g\left(z_{k}\right)-g(v)\right\}}{(a k / n)} \rightarrow g^{\prime}(v)
$$

Consequently,

$$
\frac{c_{3}(u-a, v)-c_{3}(u, v)}{a}+g^{\prime}(v)=0
$$

Hence $c_{3}(u-a, v)-c_{3}(u, v)=-a g^{\prime}(v)$ for all $u \in \mathbb{R}$ and all $a>0$. It follows that $c_{3}(u, v)=c_{3}(0, v)+g^{\prime}(v) u$ for all u.

Lemma 7.6 Suppose g is differentiable at v_{1} and v_{2}. Then $g^{\prime}\left(v_{1}\right)=g^{\prime}\left(v_{2}\right)$.

Proof By Lemma 7.5, we have $c_{3}\left(u, v_{1}\right)=c_{3}\left(0, v_{1}\right)+u g^{\prime}\left(v_{1}\right)$ and

$$
c_{3}\left(u+\left[v_{2}-v_{1}\right] \ln \left|v_{2}-v_{1}\right|, v_{2}\right)=c_{3}\left(0, v_{2}\right)+\left(u+\left[v_{2}-v_{1}\right] \ln \left|v_{2}-v_{1}\right|\right) g^{\prime}\left(v_{2}\right)
$$

for all u. Now Lemma 7.4 applied to u, v_{1}, v_{2} implies that $\left|u\left(g^{\prime}\left(v_{2}\right)-g^{\prime}\left(v_{1}\right)\right)\right| \leq C$ holds for all u, where C is a quantity independent of u. Thus $g^{\prime}\left(v_{2}\right)-g^{\prime}\left(v_{1}\right)=0$.

Completing the proof of Theorem 7.1 Lemma 7.6 implies that g is an affine function and hence there are constants a, b such that $g(v)=a v+b$. It now follows from Lemma 7.5 that for any v we have $c_{3}(u, v)=c_{3}(0, v)+a u$. To finish the proof of Theorem 7.1, it remains to show that $c_{3}(0, v)$ is Lipschitz in v. This follows immediately from Lemma 7.4 after plugging in the formulas for g and c_{3}.

Now the proof of Theorem 7.1 is complete.

8 A Liouville-type theorem

In this section we prove a Liouville-type theorem for G_{A} in the case when A is a Jordan block: every conformal map of the ideal boundary of G_{A} extends to an isometry of G_{A}.

Let X and Y be quasimetric spaces with finite Hausdorff dimension. Denote by H_{X} and H_{Y} their Hausdorff dimensions and by \mathcal{H}_{X} and \mathcal{H}_{Y} their Hausdorff measures. We say a quasisymmetric map $f: X \rightarrow Y$ is conformal if
(1) $L_{f}(x)=l_{f}(x) \in(0, \infty)$ for \mathcal{H}_{X}-almost every $x \in X$,

$$
\begin{equation*}
L_{f^{-1}}(y)=l_{f^{-1}}(y) \in(0, \infty) \text { for } \mathcal{H}_{Y} \text {-almost every } y \in Y \tag{2}
\end{equation*}
$$

We now describe some isometries of G_{A}. For any $g=(x, t) \in G_{A}=\mathbb{R}^{n} \rtimes \mathbb{R}$, the Lie group left translation L_{g} is an isometry. If $g=(x, 0)$, then the boundary map $\partial L_{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of L_{g} is translation by x. If $g=(0, t)$, then the boundary map of L_{g} is the similarity $e^{t A}$. Let $\tau^{\prime}: G_{A} \rightarrow G_{A}$ be given by $\tau^{\prime}(x, t)=(-x, t)$. Then τ^{\prime} is an isometry, and its boundary map is $\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \tau(x)=-x$.

Theorem 8.1 Let J_{n} be the $n \times n(n \geq 2)$ Jordan matrix with eigenvalue 1. Then every conformal map $F:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right)$ is the boundary map of an isometry $G_{J_{n}} \rightarrow G_{J_{n}}$.

We first prove the case $n=2$.
Lemma 8.2 Every conformal map $F:\left(\mathbb{R}^{2}, D_{J_{2}}\right) \rightarrow\left(\mathbb{R}^{2}, D_{J_{2}}\right)$ is the boundary map of an isometry $G_{J_{2}} \rightarrow G_{J_{2}}$.

Proof Since F is conformal, it is quasisymmetric in particular. By Theorem 7.1, F has the following form: $F(x, y)=(a x+c(y), a y+b)$, where $a \neq 0, b$ are constants and $c: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz map. By composing F with the boundary maps of the isometries described before Theorem 8.1, we may assume $a=1$ and $b=0$; that is, F has the form $F(x, y)=(x+c(y), y)$. We shall prove that $c(y)$ is a constant function.

Since $c: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz function, it is differentiable ae. We shall show that $c^{\prime}(y)=0$ for ae $y \in \mathbb{R}$. By the definition of a conformal map, $L_{F}(x, y)=l_{F}(x, y)$ for ae $(x, y) \in \mathbb{R}^{2}$ with respect to the Lebesgue measure in \mathbb{R}^{2}. It follows from Fubini's Theorem that for ae $y \in \mathbb{R}$, the derivative $c^{\prime}(y)$ exists and $L_{F}(x, y)=l_{F}(x, y)$ for ae $x \in \mathbb{R}$. Let y_{0} be an arbitrary such point and $x_{0} \in \mathbb{R}$ be such that $L_{F}\left(x_{0}, y_{0}\right)=$ $l_{F}\left(x_{0}, y_{0}\right)$. We will show $c^{\prime}\left(y_{0}\right)=0$.

By precomposing and postcomposing with Euclidean translations if necessary, we may assume that $\left(x_{0}, y_{0}\right)=(0,0)$ and $c\left(y_{0}\right)=0$. We need to show $c^{\prime}(0)=0$. We will suppose $c^{\prime}(0) \neq 0$ and get a contradiction. Notice that $F(x, 0)=(x, 0)$ for all $x \in \mathbb{R}$. It follows that $L_{F}(0,0) \geq 1$ and $l_{F}(0,0) \leq 1$. Combining this with the assumption $L_{F}(0,0)=l_{F}(0,0)$, we obtain $L_{F}(0,0)=l_{F}(0,0)=1$. First suppose $c^{\prime}(0)>0$. Then $c(y)>0$ for sufficiently small $y>0$. Let $p=(0,0)$ and $q=(r+r \ln r, r)$ with $r>0$. Then $F(p)=p$ and $F(q)=(r+r \ln r+c(r), r)$. One calculates $D(p, q)=r$ and $D(F(p), F(q))=r+c(r)$. It follows that $L_{F}(p, r) \geq r+c(r)$ and hence $L_{F}(p) \geq 1+c^{\prime}(0)>1$, contradicting $L_{F}(0,0)=1$. If $c^{\prime}(0)<0$, then letting $q=(-r+r \ln r, r)$ one similarly obtains a contradiction.

Proof of Theorem 8.1 Let $F:\left(\mathbb{R}^{n}, D_{J_{n}}\right) \rightarrow\left(\mathbb{R}^{n}, D_{J_{n}}\right)$ be a quasisymmetric map. After composing with the boundary maps of isometries described before Theorem 8.1, we may assume F has the following form

$$
F(x)=\left(I+a_{1} N+\cdots+a_{n-2} N^{n-2}\right) x+\left(C\left(x_{n}\right), 0, \ldots, 0\right)^{T}
$$

where $C: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz. We will prove the following statement by inducting on n :
If F as above is conformal, then $a_{1}=\cdots=a_{n-2}=0$ and C is constant.
The basic step $n=2$ is Lemma 8.2. Now we assume $n \geq 3$ and that the statement holds for Jordan matrices with sizes less than or equal to $n-1$. Notice that F maps every horizontal hyperplane $H\left(x_{n}\right):=\mathbb{R}^{n-1} \times\left\{x_{n}\right\}$ to itself. By Lemma 3.3 the restriction of $D_{J_{n}}$ on $H\left(x_{n}\right)$ agrees with the metric $D_{J_{n-1}}$. It now follows from Fubini's Theorem that for ae $x_{n} \in \mathbb{R}$, the restricted map

$$
\left.F\right|_{H\left(x_{n}\right)}:\left(H\left(x_{n}\right), D_{J_{n-1}}\right) \rightarrow\left(H\left(x_{n}\right), D_{J_{n-1}}\right)
$$

is also conformal. Now the induction hypothesis applied to $\left.F\right|_{H\left(x_{n}\right)}$ implies that $a_{i}=0$ for $1 \leq i \leq n-2$. It remains to show C is constant.

Suppose C is not constant. Then there is some $u \in \mathbb{R}$ such that $C^{\prime}(u) \neq 0$ and $L_{F}(p)=l_{F}(p)$ for some $p \in H(u)$. After precomposing and postcomposing with Euclidean translations, we may assume $u=0, C(0)=0$ and p is the origin o. Notice that the restriction of F to the x_{1}-axis is the identity, so $L_{F}(o)=l_{F}(o)=1$. Now for any $x_{n}>0$, choose x_{1}, \ldots, x_{n-1} such that $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ satisfies $e^{-t N_{x}}=\left(0, \ldots, 0, x_{n}\right)^{T}$, where $t=\ln x_{n}$. It follows that $D_{J_{n}}(o, x)=e^{t}=x_{n}$. Suppose $D_{J_{n}}(F(o), F(x))=e^{s}$. Then $e^{s}=\left|e^{-s N} F(x)\right|$. We calculate as before that

$$
e^{-s N} F(x)=\left(C\left(x_{n}\right)+\frac{(t-s)^{n-1}}{(n-1)!} x_{n}, \frac{(t-s)^{n-2}}{(n-2)!} x_{n}, \ldots,(t-s) x_{n}, x_{n}\right)^{T}
$$

Since $L_{F}(o)=l_{F}(o)=1$, we must have $e^{s} / e^{t}=D_{J_{n}}(F(x), F(o)) / D_{J_{n}}(x, o) \rightarrow 1$ as $x_{n} \rightarrow 0$ and hence $t-s \rightarrow 0$. Now

$$
e^{s}=\left|e^{-s N} F(x)\right|=x_{n}\left|\left(\frac{C\left(x_{n}\right)}{x_{n}}+\frac{(t-s)^{n-1}}{(n-1)!}, \frac{(t-s)^{n-2}}{(n-2)!}, \ldots,(t-s), 1\right)^{T}\right|
$$

Since $x_{n}=e^{t}$, we have

$$
e^{s-t}=\left|\left(\frac{C\left(x_{n}\right)}{x_{n}}+\frac{(t-s)^{n-1}}{(n-1)!}, \frac{(t-s)^{n-2}}{(n-2)!}, \ldots,(t-s), 1\right)^{T}\right|
$$

Now as $x_{n} \rightarrow 0$, the right hand side converges to

$$
\left|\left(C^{\prime}(0), 0, \ldots, 0,1\right)^{T}\right|=\sqrt{1+\left(C^{\prime}(0)\right)^{2}}
$$

which is greater than 1 since $C^{\prime}(0) \neq 0$. However, the left-hand side converges to 1 . The contradiction shows C must be a constant function.

References

[1] Z M Balogh, Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group, J. Anal. Math. 83 (2001) 289-312 MR1828495
[2] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266-306 MR1771428
[3] Y Conrulier, On the quasi-isometric classification of focal hyperbolic groups arXiv: 1212.2229
[4] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer, Berlin (1990) MR1075994
[5] T Dymarz, Bijective quasi-isometries of amenable groups, from: "Geometric methods in group theory", (J Burillo, S Cleary, M Elder, J Taback, E Ventura, editors), Contemp. Math. 372, Amer. Math. Soc. (2005) 181-188 MR2139686
[6] T Dymarz, I Peng, Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces, Geom. Dedicata 152 (2011) 129-145 MR2795238
[7] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221-260 MR2925383
[8] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries II: Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869-910 MR3034290
[9] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145-202 MR1768110
[10] F W Gehring, J Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 (1973) 504-512 MR0324028
[11] J Heinonen, Lectures on analysis on metric spaces, Universitext, Springer, New York (2001) MR1800917
[12] E Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974) 23-34 MR0353210
[13] B Kleiner, Unpublished notes
[14] P Pansu, Cohomologie L^{p}, espaces homogenes et pincement Available at http:// www.math.u-psud.fr/\~pansu/pincement19juil01.pdf
[15] P Pansu, Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) 177-212 MR1024425
[16] P Pansu, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1-60 MR979599
[17] F Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. 54 (1996) 50-74 MR1395067
[18] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, I, Geom. Topol. 15 (2011) 1883-1925 MR2860983
[19] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, II, Geom. Topol. 15 (2011) 1927-1981 MR2860984
[20] N Shanmugalingam, X Xie, A rigidity property of some negatively curved solvable Lie groups, Comment. Math. Helv. 87 (2012) 805-823 MR2984572
[21] J T Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001) 21-73 MR1872156
[22] X Xie, Quasisymmetric maps on the boundary of a negatively curved solvable Lie group, Math. Ann. 353 (2012) 727-746 MR2923947

Department of Mathematics and Statistics, Bowling Green State University
Bowling Green, OH 43403, USA
xiex@bgsu.edu
http://personal.bgsu.edu/~xiex/

Proposed: Dmitri Burago
Received: 20 July 2012
Seconded: Benson Farb, John Lott Revised: 5 May 2013

