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Contact manifolds with
symplectomorphic symplectizations

SYLVAIN COURTE

We provide examples of contact manifolds of any odd dimension greater than or equal
to 5 which are not diffeomorphic but have exact symplectomorphic symplectizations.

53D10

1 Introduction

Symplectization provides a bridge between contact and symplectic geometry. It as-
sociates to any contact manifold .M; �/ (namely any manifold M equipped with
a co-oriented contact structure � ) an exact symplectic manifold .S�M; ��/ (that is
!� D d�� is a symplectic form on S�M ) diffeomorphic to R �M . Most known
contact invariants (such as those arising from symplectic field theory; see Eliashberg,
Givental and Hofer [5]) are defined using symplectizations. Therefore, one might think
that if two contact manifolds have symplectomorphic symplectizations then they are
contactomorphic (see Cieliebak and Eliashberg [2, page 239] where the problem is
addressed). In this paper, we prove the following theorem which shows that this is not
true (see Section 3 for the definition of exact symplectomorphism).

Theorem 1.1 Let M and M 0 be closed manifolds of dimension greater than or equal
to 5 such that R�M and R�M 0 are diffeomorphic. Then for every contact structure �
on M , there exists a contact structure � 0 on M 0 such that the symplectizations S�M
and S�0M 0 are exact symplectomorphic.

As a concrete example, consider M D L.7; 1/� S2n and M 0 D L.7; 2/� S2n for
n� 1, where L.p; q/ denotes the three-dimensional lens space of type .p; q/. In [8],
J Milnor showed using Reidemeister torsion that M and M 0 are not diffeomorphic, but
proved that they are h–cobordant. The s–cobordism theorem then implies that R�M

and R�M 0 are diffeomorphic (see Section 2). On the other hand M admits a contact
structure � . Indeed, for n D 1, M is diffeomorphic to the unit tangent bundle of
L.7; 1/ and in general, M is the boundary of L.7; 1/�D3�D2n�2 (after smoothing
corners) which is a product of Liouville domains. Theorem 1.1 above then provides a
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2 Sylvain Courte

contact structure � 0 on M 0 such that S�M and S�0M 0 are exact symplectomorphic,
though M and M 0 are not even diffeomorphic.

The main ingredients in the proof are the flexibility properties of certain Weinstein
cobordisms, first discovered by Y Eliashberg [4] and developed with K Cieliebak [2]
on the base of E Murphy’s work [11].

This paper is organized as follows. Section 2 contains some recollections about Morse–
Smale theory and the s–cobordism theorem. In Section 3, we discuss symplectization
of contact manifolds, Weinstein cobordisms, and quote two theorems from [2] about
so-called flexible Weinstein cobordisms. Section 4 contains our results and Section 5
discusses a few open questions.

2 h–cobordisms

Since we look for contact manifolds with symplectomorphic symplectizations, we must
first tackle the following well-known problem from differential topology:

If M and M 0 are closed oriented manifolds such that R�M and
R�M 0 are diffeomorphic, what can we say about M and M 0?

Certainly M and M 0 must have the same homotopy type. However, as we shall
see, M and M 0 need not be diffeomorphic (see the example in the introduction). Let
us introduce some terminology. A cobordism from M to M 0 is a triple .W IM;M 0/,
where W is a compact oriented manifold together with a decomposition of its boundary
as @W D @CW t@�W and orientation-preserving diffeomorphisms @�W !�M and
@CW !M 0 . Here, as customary, @W is oriented with outer normal first convention
and �M means M with opposite orientation. We insist that the identification of the
boundary is part of the data (as in Milnor [9]). Given two cobordisms .W IM;M 0/

and .W 0IM 0;M 00/, we can compose them by gluing along M 0 and get another
cobordism denoted by .W ˇW 0IM;M 00/. Producing an actual smooth structure
on W ˇW 0 requires some choices but the result is independent of these choices up to
a diffeomorphism relative to the boundary. A cobordism .W IM;M 0/ is called an h–
cobordism if both inclusion maps M !W and M 0!W are homotopy equivalences.
A product cobordism .Œ0; 1��M IM;M / is an obvious example. A Morse function
on a cobordism .W IM;M 0/ is a smooth function �W W !R which is constant on
the boundary, satisfies d� > 0 on inward pointing vectors at M and outward pointing
vectors at M 0 , and whose critical points are nondegenerate. A pseudogradient vector
field for a Morse function � is a vector field X such that X:� > 0 outside of the
critical points of � and such that at each critical point p , the linearized vector field X lin

p
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Contact manifolds with symplectomorphic symplectizations 3

has no eigenvalue with vanishing real part. We call .X; �/ a Morse pair. A Morse
homotopy is a smooth path .Xs; �s/ which is generic in the sense that �s encounters
only birth-death type singularities. There are finitely many parameters s where �s

has a degenerate critical points, for any other parameter s , .Xs; �s/ is a Morse pair.
S Smale showed in [13] that simply connected h–cobordisms of dimension greater
than or equal to 6 are diffeomorphic to product cobordisms. The nonsimply connected
case is the subject of the s–cobordism theorem, proved by D Barden, B Mazur and
J Stallings, which provides a complete classification of h–cobordisms .W IM;�/ up to
diffeomorphism relative to M in terms of so-called Whitehead torsion. These theorems
are proved using what is now called Morse–Smale theory. This consist in simplifying
Morse pairs by canceling critical points. For example, if we are able to cancel all the
critical points of a Morse function on a cobordism, the latter must be diffeomorphic to
a product cobordism.

Here are two lemmas from Morse–Smale theory which are building blocks for the
proof of the s–cobordism theorem (see Kervaire [7]). We will use them in Section 4.

Lemma 2.1 (Normal form) Let .W IM;M 0/ be an h–cobordism of dimension
greater than or equal to 6. Then there is a Morse pair with only critical points of index 2

and 3.

We briefly indicate why it is not always possible to cancel the remaining critical points
(see [7] for more details). Take a Morse pair .X; �/ given by Lemma 2.1 and lift it
to a Morse pair . zX ; z�/ on a universal cover �M !M . The Morse complex .Ci ; @i/

associated to . zX ; z�/ is a chain complex over ZŒ�1M � which is only nonzero in degree 2

and 3. Moreover, since W is an h–cobordism, this complex is acyclic. Therefore we
get a matrix A2GL.ZŒ�1M �/ which represents the boundary operator @3W C3!C2 . It
turns out that the class of A in a quotient group Wh.�1M / of GL.ZŒ�1M �/, called the
Whitehead group of �1M is an actual invariant of the h–cobordism, called Whitehead
torsion. The remaining critical points can be cancelled if and only if the Whitehead
torsion vanishes.

Lemma 2.2 Let .W IM;M 0/ be an h–cobordism of dimension greater than or equal
to 6 with vanishing Whitehead torsion. Let .X; �/ be a Morse pair with only critical
points of index 2 and 3. Then there is a Morse homotopy .Xs; �s/ fixed near the
boundary, with only critical points of index 2 and 3, such that .X0; �0/D .X; �/ and
.X1; �1/ has no critical points.

We now state the s–cobordism theorem.
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4 Sylvain Courte

Theorem 2.3 (Barden, Mazur, Stallings; 1965) Let M be a closed oriented manifold
of dimension greater than or equal to 5. Whitehead torsion �.W;M / 2Wh.�1M / of
a cobordism W from M induces a bijective correspondence:

� W fh–cobordisms .W IM;�/ up to diffeomorphism relative to M g !Wh.�1M /:

The reader may consult Kervaire [7], Milnor [10] and Ranicki [12] for more information
about Whitehead torsion and the s–cobordism theorem. We do not go further in this
topic since we will only need the following corollary.

Corollary 2.4 For any h–cobordism .W IM;M 0/ of dimension greater than or equal
to 6, there is an h–cobordism .W 0IM 0;M / such that W ˇW 0 is diffeomorphic to
Œ0; 1��M and W 0ˇW is diffeomorphic to Œ0; 1��M 0 .

The reason is that, according to the s–cobordism theorem, h–cobordisms are clas-
sified by Whitehead torsion which takes value in an abelian group. The inverse h–
cobordism W 0 in Corollary 2.4 is essentially the h–cobordism with opposite Whitehead
torsion (see [10]).

Let ‰W R �M ! R �M 0 be a diffeomorphism. Consider in R �M 0 the regions
between fc0g �M 0 and ‰.fcg �M /, and between fc0g �M 0 and ‰.f�cg �M /

for c sufficiently large. These are cobordisms inverse to each other, so in particular
h–cobordisms. Conversely, we have the following well-known corollary of the s–
cobordism theorem.

Corollary 2.5 Let M and M 0 be closed oriented manifolds of dimension greater
than or equal to 5. If M and M 0 are h–cobordant, then R �M and R �M 0 are
diffeomorphic.

Proof The proof is an instance of the so-called Mazur trick which consists of intro-
ducing parentheses in an infinite sum in two different ways.

By Corollary 2.4, there are h–cobordisms .W IM;M 0/ and .W 0IM 0;M / such that

W ˇW 0 ' Œ0; 1��M; W 0ˇW ' Œ0; 1��M 0:

We now consider the open manifold V obtained by gluing infinitely many copies of W

and W 0 in an alternate pattern:

V D � � �ˇW 0ˇW ˇW 0ˇW ˇ � � �

Now we just write, on one hand,

V '
K
j2Z

.W ˇW 0/'
K
j2Z

Œj ; j C 1��M 'R�M;
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and on the other hand,

V '
K
j2Z

.W 0ˇW /'
K
j2Z

Œj ; j C 1��M 0
'R�M 0:

We finish this section by studying the extension problem of nondegenerate 2–forms on
h–cobordisms.

Remark 2.6 In the case of a product cobordism W D Œ0; 1��M , we can retract W

by an isotopy to Œ0; ���M with � > 0 as small as we want. Therefore we can extend
any nongenerate 2–form defined near f0g�M to a nondegenerate 2–form on W in a
unique way up to homotopy relative to a neighborhood of f0g �M .

This is also true for h–cobordisms of dimension greater than or equal to 6 according
to the following lemma.

Lemma 2.7 Let .W IM;M 0/ be an h–cobordism of dimension greater than or equal
to 6 with a nondegenerate 2–form � defined near M . There is a nondegenerate two-
form ! on W that coincides with � near M . Moreover, the extension is unique up to
homotopy relative to a neighborhood of M .

Proof Let .W 0IM 0;M / be an inverse h–cobordism given by Corollary 2.4, so that
W ˇW 0' Œ0; 1��M . By Remark 2.6, there is a nondegenerate 2–form ! on Œ0; 1��M

which coincides with � near f0g�M . Restricting ! to W gives the required extension.
Now suppose that we have two nondegenerate 2–forms ! and !0 on W which coincide
with � near M . According to what we have just proved, they both extend further to W 0

because W 0 is an h–cobordism. Again by Remark 2.6, ! and !0 are homotopic on
Œ0; 1��M relative to a neighborhood of f0g �M , in particular they are homotopic
on W relative to a neighborhood of M .

3 Contact manifolds and Weinstein cobordisms

Let .M; �/ be a contact manifold, we mean � is a co-oriented hyperplane field which is
maximally nonintegrable. We always endow M with the orientation induced by � . An
exact symplectic manifold is a manifold V together with a 1–form � such that d� is a
symplectic form. There are at least two notions of isomorphism between exact symplec-
tic manifolds. If .V; �/ and .V 0; �0/ are exact symplectic manifold, a diffeomorphism
‰W V ! V 0 is said to be

� an exact symplectomorphism if ‰��0�� is an exact 1–form on W ,
� a symplectomorphism if ‰��0�� is a closed 1–form on W .
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6 Sylvain Courte

The symplectization of a contact manifold .M; �/ is an exact symplectic manifold that
can be described as follows. The space of cotangent vectors of M vanishing on � is a
one-dimensional subbundle of the cotangent bundle T�M . Restricting our attention to
nonzero cotangent vectors which induce the right co-orientation of � yields a principal
R�C–bundle that we denote by S�M . Since � is co-oriented, this bundle admits global
sections which correspond to contact forms for � . In particular, S�M is diffeomorphic
to R�M . The canonical 1–form � of T�M induces a 1–form denoted by �� on S�M
called the Liouville form, whose exterior derivative !� D d�� is a symplectic form
(this is equivalent to � being a contact structure). The principal bundle structure can
be recovered from the 1–form �� . Indeed, the Liouville vector field X� , defined by
X�y!� D �� , is the infinitesimal generator of the R�C–action. The flow 't

X�
of X�

satisfies .'t
X�
/��� D et�� , so it preserves ker�� . Hence the projection map

.S�M=R�C; ker��/! .M; �/

is a contactomorphism. In particular, we have that the symplectization .S�M; ��/

entirely recovers the contact manifold .M; �/. In other words, any diffeomorphism
‰W .S�M; ��/! .S�0M 0; ��0/ such that ‰���0 D �� induces a contactomorphism
.M; �/! .M 0; � 0/. However, Theorem 1.1 shows that if S�M and S�0M 0 are only
exact symplectomorphic, then M and M 0 need not even be diffeomorphic.

Remark 3.1 If we choose a contact form ˛ for � , the symplectization naturally
splits as

.S�M; ��/D .R�M; et˛/:

A Weinstein structure on a cobordism .W IM;M 0/ is a triple .!;X; �/, where .X; �/
is a Morse pair and ! is a symplectic form (positive with respect to the orientation
of W ) such that X:! D ! . We call X the Liouville vector field. It gives rise to
a Liouville form � D X y! . In fact, .!;X / and � are equivalent pieces of data,
often called a Liouville structure. The Liouville form � induces contact structures �
on M and � 0 on M 0 with contact forms ˛ D ��� and ˛0 D �0��, where �W M !W

and �0W M 0!W are the inclusion maps. We sometimes say that .W; !;X; �/ is a
Weinstein cobordism from .M; �/ to .M 0; � 0/.

Remark 3.2 Let .W; !;X; �/ be a Weinstein cobordism from .M; �/ to .M 0; � 0/

and .W 0; !0;X 0; �0/ be a Weinstein cobordism from .M 0; � 0/ to .M 00; � 00/. We now
explain how to compose them in a Weinstein cobordism from .M; �/ to .M 00; � 00/.
Suppose that the Liouville forms � and �0 induce the same contact form ˛0 on M 0 . The
flow of the Liouville vector fields X and X 0 define collar neighborhoods Œ��; 0��M 0

in W and Œ0; �� �M 0 in W 0 where � and �0 both read et 0

˛0 (t 0 is the coordinate

Geometry & Topology, Volume 18 (2014)



Contact manifolds with symplectomorphic symplectizations 7

in R). Using these collar neighborhoods, we can glue W and W 0 along M 0 and
get a smooth cobordism .W ˇW 0IM;M 00/ with a Liouville structure .!00;X 00/ that
restricts to .!;X / and to .!0;X 0/ respectively on W and W 0 . Even if �D �0 on M 0 ,
they do not necessarily glue to a smooth function on W ˇW 0 . This can be arranged by
composing � with a diffeomorphism of W which is the identity on M 0 and supported
in an arbitrary small neighborhood of M 0 . For example, it is enough to arrange that
X:� D 1 and X 0:�0 D 1 in a neighborhood of M 0 . Finally, we get a Weinstein
cobordism .W ˇW 0; !00;X 00; �00/ from .M; �/ to .M 00; � 00/.

The easiest example is the following: let M be a closed manifold together with a
contact form ˛ . For any two smooth functions f�; fC on M with maxf� <minfC ,
we consider the part of symplectization

W D f.t;x/ 2R�M j f�.x/� t � fC.x/g:

It admits a Liouville structure .!Dd.et˛/;X D@=@t/. By choosing a Morse function �
(constant on the boundary, as always) without critical points such that X:� > 0, we get
a Weinstein cobordism .W; !;X; �/.

Remark 3.3 If .W IM;M 0/ is a cobordism with Weinstein structure .!;X; �/. This
induces contact forms ˛ and ˛0 respectively on M and M 0 . By multiplying ! by
a positive number, and composing with parts of symplectizations as above, we can
change the contact forms ˛ and ˛0 for any contact forms eke�f ˛ and ekef

0

˛0 with
k 2R, and smooth functions f W M ! Œ0;C1Œ and f 0W M 0! Œ0;C1Œ.

A Weinstein homotopy on W is a smooth path .!s;Xs; �s/, such that .Xs; �s/ is a
Morse homotopy and for all but finitely many parameters s (where .Xs; �s/ encounters
a birth-death singularity) .!s;Xs; �s/ is a Weinstein structure.

For a cobordism to admit a Weinstein structure, it is necessary that it carries a nonde-
generate 2–form. But there are more severe topological constraints due to the following
(see [2, page 242] for a proof).

Proposition 3.4 If .W; !;X; �/ is a Weinstein cobordism of dimension 2n, then the
critical points of � have index less than or equal to n.

A Weinstein cobordism .W; !;X; �/ of dimension 2n is called subcritical if the
critical points of � have index less than n. It is known for some time that subcritical
Weinstein cobordisms exhibit remarkable flexibility properties (see [4]). Yet a larger
class of Weinstein cobordisms with flexibility properties was recently discovered. A
Weinstein cobordism .W; !;X; �/ is called flexible if it is the composition of finitely
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8 Sylvain Courte

many Weinstein cobordisms .W i ; !i ;X i ; �i/ which are elementary (that is X i has no
trajectory joining critical points) and whose attaching spheres of Lagrangian handles
form a loose Legendrian link in the lower boundary of W i (see [2, pages 250–251]).
Notice that it is clear from the definition that the composition of two flexible Weinstein
cobordisms is still a flexible Weinstein cobordism.

We now state two theorems about flexible Weinstein structures that are relevant to our
purpose [2, page 279].

Theorem 3.5 (Cieliebak, Eliashberg) Let .W IM;M 0/ be a cobordism of dimension
2n� 6 together with a nondegenerate 2–form � and a Morse pair .Y; �/ with critical
points of index less than or equal to n such that .�;Y; �/ is a Weinstein structure
near M . Then there is a flexible Weinstein structure .!;X; �/ on W such that ! D �
near M .

Theorem 3.6 (Cieliebak, Eliashberg) Let .W IM;M 0/ be a cobordism of dimension
2n � 6 together with a flexible Weinstein structure .!;X; �/. Then for any Morse
homotopy .Ys; �s/ fixed near the boundary, with critical points of index less than or
equal to n, such that .Y0; �0/D .X; �/, there is a Weinstein homotopy .!s;Xs; �s/

satisfying

� .!0;X0; �0/D .!;X; �/,

� .Xs; �s/ is fixed near @W , !s is fixed near @�W and !s D ecs!0 near @CW

for a smooth real-valued function s 7! cs .

4 Main results

4.1 Symplectomorphic symplectizations

We start by a lemma which shows that Theorem 3.5 can be applied to any h–cobordism
of dimension greater than or equal to 6 from a closed contact manifold.

Lemma 4.1 Let .M; �/ be a closed contact manifold of dimension greater than or
equal to 5 and let .W IM;M 0/ be an h–cobordism. Then there is a flexible Weinstein
structure .!;X; �/ on W that induces a contact structure isotopic to � on M and
which has only critical points of index 2 and 3.

Proof Take a collar neighborhood Œ0; ���M of M in W . Consider the standard
Weinstein structure .d.et˛/; @=@t ; t/ in this collar. By Lemma 2.7, the 2–form d.et˛/

extends to W as a nondegenerate 2–form. By Lemma 2.1, the Morse pair .@=@t ; t/
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extends to a Morse pair .Y; �/ on W with only critical points of index 2 and 3. We
now apply Theorem 3.5 to get a flexible Weinstein structure .!;X; �/ such that ! D �
near M . Then the induced contact structure on M is isotopic to � .

Remark 4.2 By Gray’s stability theorem, any two isotopic contact structures are
contactomorphic. So after applying Lemma 4.1, we may compose the identification
of @�W with M by such a contactomorphism to actually get a Weinstein cobordism
from .M; �/. We will do this implicitly in the proof of Theorem 4.3 below.

We now turn to our main result which can be thought of as a symplectic analogue of
Corollary 2.5.

Theorem 4.3 Let .M; �/ be a closed contact manifold of dimension greater than or
equal to 5. Then for any h–cobordism .W IM;M 0/ there is a contact structure � 0

on M 0 such that .S�M; ��/ and .S�0M 0; ��0/ are exact symplectomorphic.

Proof Let .W 0IM 0;M / be an inverse h–cobordism of .W IM;M 0/ as given by
Corollary 2.4. By Lemma 4.1, there is a flexible Weinstein structure .!;X; �/ on W

which induces the contact structure � on M . It also induces a contact structure � 0

on M 0 . Again by Lemma 4.1, there is a flexible Weinstein structure .!0;X 0; �0/ on W 0

that induces the contact structure � 0 on M 0 . Denote by ˛ and ˛0 the contact forms
respectively on M and M 0 induced by .W; !;X; �/. According to Remark 3.3, we
can arrange W 0 so that the contact form induced on M 0 equals ˛0 . Up to composing �
and �0 by affine transformations of R, we can assume that � D 0 on M , � D 1

on M 0 , �0D 1 on M 0 and �0D 2 on M . After arranging the functions � and �0 as in
Remark 3.2, we can compose W and W 0 to get a smooth cobordism W 00 DW ˇW 0

together with a Weinstein structure .!00;X 00; �00/ which restricts to .!;X; �/ on W

and to .!0;X 0; �0/ on W 0 . The function �00 has only critical points of index 2 and 3.
Since W ˇW 0 is diffeomorphic to a product cobordism, Lemma 2.2 implies that there
is a Morse homotopy .Ys; �

00
s / fixed near the boundary, with only critical points of

index 2 and 3, such that .Y0; �
00
0
/D .X 00; �00/ and �00

1
has no critical points. Now by

Theorem 3.6, there is a Weinstein homotopy .!00s ;X
00
s ; �

00
s / such that

� .!00
0
;X 00

0
; �00

0
/D .!00;X 00; �00/,

� .X 00s ; �
00
s / is fixed near @W 00 , !00s is fixed near @�W 00 and !s D ecs!00

0
near

@CW 00 for a smooth real-valued function s 7! cs .

Near @CW 00 , X 00s is fixed and !00s is fixed up to a constant, so in particular, the
contact structure � 00s induced on @CW 00 D M is fixed during the homotopy. The
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10 Sylvain Courte

holonomy of the Liouville vector field X 00
1

defines a contactomorphism .M; �/ to
.M; � 00

1
/. In the cobordism W 0 , we now change the identification of @CW 0 with M

by composing it with this contactomorphism (as in Remark 4.2), so that the contact
structure on M induced by .W 0; !0;X 0; �0/ is equal to � . According to Remark 3.3,
we may compose W 0 with a part of the symplectization of M so that it induces the
contact forms ek˛ for some k > 0. The Weinstein homotopy .!00s ;X

00
s ; �

00
s / obviously

extends to this slightly enlarged cobordism since .X 00s ; �
00
s / is fixed near @CW 00 and

!00s D ecs!00
0

near @CW 00 . Up to composing �00s with a diffeomorphism of R, assume
that �00s D 2 on @CW 00 still holds.

In the spirit of the proof of Corollary 2.5, we will construct an exact symplectic
manifold V by gluing infinitely many copies of W and W 0 and show that V is exact
symplectomorphic to both S�M and S�0M 0 .

We now define translates of W and W 0 as follows, for j 2 Z,

.W j ; !j ;X j ; �j /D .W; ejk!;X; �C 2j /;

.W 0j ; !0j ;X 0j ; �0j /D .W 0; ejk!0;X 0; �0C 2j /;

and consider

V D � � �ˇW �1
ˇW 0�1

ˇW 0
ˇW 00ˇW 1

ˇW 01ˇ � � � :

According to Remark 3.2, this is well-defined and carries a Weinstein structure .!;X; �/
that restricts to the given one on each W i and W 0i .

We now prove that V is exact symplectomorphic to S�M .

We want to repeat the homotopy .!00s ;X
00
s ; �

00
s / on the whole V by translation. We just

need to take care of the scaling factor ecs near the top boundary. So define, for j 2 Z,
on W j ˇW 0j ,

.!s;Xs; �s/D .e
jcs ejk!00s ;X

00
s ; �

00
s C 2j /:

This gives a Weinstein homotopy of V during which the vector field Xs is complete (it
is invariant by translation in j ) and is transverse to the hypersurfaces M j D��1

s .2j /D

��1.2j /'M for all j 2 Z. Note that this homotopy is fixed near ��1.0/'M (we
will make use of this in Section 4.2).

We now look for an isotopy ‰s of V such that ‰�s �s��0 is exact (here �s DXsy!s ).
We will find it using Moser’s lemma (see [2, pages 240–241] for a similar argument).
Take C > max.0;max cs/ and consider �M j D 'jC

X0
.M j / ('t

X
denotes the flow at

time t of a vector field X ).
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...
..
.

Figure 1: The symplectic manifold V obtained by Mazur’s trick

Since Xs is complete for all s 2 Œ0; 1�, we can define

‚2j
s D '

j.C�cs/
Xs

ı'
�jC
X0
W �M j

�! V:

And we have

.‚2j
s /
��s D .'

�jC
X0

/� ı .'
j.C�cs/
Xs

/�.�s/

D .'
�jC
X0

/�.e�j.C�cs/�s/

D .'
�jC
X0

/�.ejC�0/D �0:

We can extend ‚2j
s near �M j in a unique way so that .‚2j

s /
��s D �0 . The image

of ‚2j
s is 'j.C�cs/

Xs
.M j /, so they are all disjoint. Hence we can find an isotopy

‚sW V ! V that coincides with ‚2j
s near �M j for all j . The path ‚�s �s is now fixed

near each �M j and Moser’s lemma applied to each region between �M j and �M jC1

gives an isotopy ‰sW V ! V such that ‰�s �s ��0 is exact.

Since X1 is complete and nowhere vanishing, its flow defines a diffeomorphism
„W R�M !V which satisfies „��1D et˛ . The map „�1ı‚1 is the required exact
symplectomorphism from .V; �/ to .S�M; ��/D .R�M; et˛/.

Geometry & Topology, Volume 18 (2014)



12 Sylvain Courte

Since .W 0�1ˇW 0IM 0;M 0/ is a product cobordism, we can apply exactly the same
reasoning and find another Weinstein homotopy of V , which we then turn into an exact
symplectomorphism from .V; �/ to .S�0M 0; ��0/.

Theorem 4.3 implies Theorem 1.1 stated in the introduction because if R �M is
diffeomorphic to R�M 0 , then M and M 0 are h–cobordant.

Remark 4.4 (1) Given a closed contact manifold .M; �/ of dimension greater than
or equal to 5, we have associated to any h–cobordism from M a contact manifold
.M 0; � 0/ such that S�M and S�0M 0 are exact symplectomorphic. So by the
s–cobordism theorem, this produces as many contact manifolds as the cardinality
of Wh.�1M /. Of course, this is only interesting when Wh.�1M /¤ 0. Note
that the example given in the introduction together with s–cobordism theorem
shows that Wh.Z=7Z/¤ 0 (see Cohen [3, pages 42–45] for more examples of
nontrivial Whitehead groups).

(2) A contact invariant which is functorial with respect to Liouville cobordisms
(such as SFT invariants, see [5]) cannot distinguish .M; �/ and .M 0; � 0/ though
they are not diffeomorphic.

4.2 Contact manifolds at infinity of Weinstein and Stein manifolds

A Weinstein structure on an open manifold V is a triple .!;X; �/, where ! is a
symplectic form, X is a complete vector field such that X:! D ! , � is a Morse
function on V (proper and bounded from below) for which X is a pseudogradient
vector field. Notice that the region between two regular values of � is a Weinstein
cobordism in the sense of Section 3. We call .V; !;X; �/ of finite type if there is c > 0

such that ��1.Œc;C1Œ/ does not contain any critical point. In this case, the level sets
of � above c are all contactomorphic by flowing along the Liouville vector field X ,
we call it the contact manifold at infinity of .V; !;X; �/. This depends only on .!;X /
and we may think that it is actually independent of X (see [2, pages 238–239]). As a
corollary of the proof of Theorem 4.3, we show that this is not the case.

We will need the following notion of homotopy for an open Weinstein manifold
(see [2, page 246]). A Weinstein homotopy on V is a smooth path .!s;Xs; �s/s2Œ0;1� of
Weinstein structures such that .Xs; �s/ is a generic path (it encounters only birth-death
type singularities), there is a subdivision 0D a0 < a1 < � � � < ap D 1, and for each
i 2 f0; : : : ;p� 1g an unbounded increasing sequence .ci

k
/ of regular values of �s for

all s 2 Œai ; aiC1�. This definition prevents critical points to escape at infinity during a
Weinstein homotopy.
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Corollary 4.5 Let .V; !;X; �/ be a finite type Weinstein manifold of dimension
greater than or equal to 6 with contact manifold at infinity contactomorphic to .M; �/.
For any h–cobordism .W IM;M 0/ there is a Weinstein homotopy .!s;Xs; �s/s2Œ0;1�
such that .!0;X0; �0/ D .!;X; �/ and .W; !1;X1; �1/ is a finite type Weinstein
manifold with contact manifold at infinity diffeomorphic to M 0 .

Proof Let c be sufficiently close to C1 so that � has no critical points in f� � cg.
Then ��1.c/ is contactomorphic to .M; �/ and the flow of X identifies f� � cg with
Œ0;C1Œ�M . The proof of Theorem 4.3 shows that there is a Weinstein homotopy
.!s;Xs; �s/ on Œ0;C1Œ�M such that

� .!0;X0; �0/D .!;X; �/,
� .!s;Xs; �s/ is fixed near f0g �M ,
� for c0 > 0 sufficiently large, f�1 � c0g contains no critical points of �1 and
��1

1
.c0/ is diffeomorphic to M 0 .

We extend the Weinstein homotopy by a constant homotopy on f� � cg D f�s � cg to
get the result.

Remark 4.6 (1) If M and M 0 are not diffeomorphic, critical points have to appear
out of every compact set during the Weinstein homotopy in Corollary 4.5 because
otherwise the topology of the contact manifold at infinity would not change.

(2) The Weinstein homotopy can be made fixed on an arbitrary large compact set
of V : in some sense, it only moves things at infinity.

(3) According to the proof of Theorem 4.3, we can find an isotopy ‰s of V such that
‰�s �sD�0Cdfs . In particular, we get a Weinstein homotopy .!0; ‰

�
s Xs; ‰

�
s �s/

with fixed symplectic form during which the topology of the contact manifold at
infinity changes.

(4) Since the homotopy in Corollary 4.5 only concerns the cylindrical end
Œ0;C1Œ�M , the result also holds for any symplectic manifold with cylindrical
end, not necessarily Weinstein.

And finally using the Weinstein–Stein correspondence from [2], we can give a corollary
concerning the complex geometry of Stein manifolds.

Corollary 4.7 Let .V;J; �/ be a finite type Stein manifold of dimension greater than
or equal to 6 with contact manifold at infinity contactomorphic to .M; �/. For any h–
cobordism .W IM;M 0/, there is a Stein homotopy .J; �s/s2Œ0;1� such that �0D � and
.V;J; �1/ is a finite type Stein manifold with contact manifold at infinity diffeomorphic
to M 0 .
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Proof In the spirit of [2], the proof goes from Stein to Weinstein and back. Let
.!D�ddc�;X Dr��; �/ be the Weinstein structure which is associated to .V;J; �/;
see [2, pages 244–245]. By Corollary 4.5, there is a Weinstein homotopy .!s;Xs; �s/

such that .!0;X0; �0/D .!;X; �/ and level sets of �1 at infinity are diffeomorphic
to M 0 . Now by [2, Theorem 15.3], there is an isotopy ‰s of V and an isotopy gs

of R such that .J;gs ı �s ı‰
�1
s / is a Stein homotopy. The level sets at infinity of

g1 ı�1 ı‰
�1
1

are then diffeomorphic to M 0 .

5 Questions

We now state a few questions that remain open.

(1) Does there exist contact structures � and � 0 on a closed manifold M that are not
contactomorphic but whose symplectizations S�M and S�0M are (exact) sym-
plectomorphic? There are many examples of closed manifolds M of dimension
greater than or equal to 5 for which there are nontrivial h–cobordisms from M

to itself (see Hatcher and Lawson [6]). A flexible Weinstein structure on such a
cobordism produces two contact structures on M whose symplectizations are
exact symplectomorphic according to Theorem 4.3 but we do not know if they
are contactomorphic or not.

(2) What about contact 3–manifolds? On one hand, it follows from the combination
of the work of Perelman and Turaev that if M and M 0 are closed 3–manifolds
such that R�M and R�M 0 are diffeomorphic, then M and M 0 are diffeomor-
phic (this was pointed out to me by Vladimir Chernov). On the other hand, the
existence of a smooth 4–dimensional h–cobordism which is not diffeomorphic
to a product cobordism is an open question (see the discussion by Chen in [1]).
So the method used in this paper will hardly adapt to the 3–dimensional case.
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