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Convergence properties of end invariants
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We prove a continuity property for ending invariants of convergent sequences of
Kleinian surface groups. We also analyze the bounded curve sets of such groups
and show that their projections to non-annular subsurfaces lie a bounded Hausdorff
distance from geodesics joining the projections of the ending invariants.
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1 Introduction

The solution (Minsky [26], and Brock, Canary and Minsky [11]) of Thurston’s ending
lamination conjecture (together with that of Marden’s tameness conjecture; see Agol
[1], and Calegari and Gabai[13]) gives a complete classification of finitely generated
Kleinian groups in terms of their topological type and their end invariants. This
classification leaves an incomplete picture, however, because it does not describe the
topology of the deformation space of hyperbolic structures associated to a given group
(with the natural topology induced from representation spaces). In particular, the
end invariant data does not vary continuously with deformations in any of the usual
topologies that have arisen historically (Brock [8], and Anderson and Canary [2]).
Moreover, such deformation spaces can fail to be locally connected (Bromberg [12],
and Magid [20]). In this article, we describe how end invariants do converge in limiting
families of hyperbolic structures. In the process, we produce a number of important
structural refinements to the geometric picture developed in [26; 11].

We restrict ourselves to Kleinian surface groups, which are discrete, faithful represen-
tations �W �1.S/! PSL2.C/ where S is an oriented compact surface (a parabolicity
condition is imposed on @S if it is nonempty). Let AH.S/ denote the space of
conjugacy classes of such representations, viewed as a subset of the PSL2.C/ character
variety of �1.S/. The end invariants of Œ�� 2 AH.S/ are a pair of data �˙.�/, each a
union of marked Riemann surface structures and geodesic laminations supported on
essential subsurfaces of S (see Section 2 for details). The orientations of S and of the
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quotient manifold N� DH3= Im.�/ give N� a “top” and “bottom” side or end, with
asymptotic geometry encoded by �C and �� , respectively.

Limits of projections of end invariants The primary objective of [26; 11], as well as
their precursors by Minsky [24; 25], is to obtain coarse information about N� using the
projections of �C and �� to the curve complexes C.W /, where W � S denotes an
essential subsurface of S . Let �W .�

˙/ denote these projections. (We emphasize that
we allow the possibility that W D S .) We recall that C.W / is a ı–hyperbolic metric
space (Masur and Minsky [21]), and that (for W non-annular) its Gromov boundary
can be identified with EL.W /, the space of unmeasured filling laminations in W

(Hamenstädt [17] and Klarreich [18]). Moreover EL.W / is also the set of laminations
that can occur as components of the end invariants �˙ supported on non-annular W .
Our first theorem describes a sense in which the end invariants in a convergent sequence
of representations can be said to converge, establishing a continuity property for the
projections of end invariants to subsurfaces.

Theorem 1.1 Let �n! � in AH.S/. If W � S is an essential subsurface of S other
than an annulus or a pair of pants, and � 2 EL.W / is a lamination supported on W ,
the following statements are equivalent:

(1) � is a component of �C.�/.

(2) f�W .�
C.�n//g converges to �.

Furthermore, we have:

(a) If f�W .�
C.�n//g accumulates on � 2 EL.W /, then it converges to �.

(b) The sequences f�C.�n/g and f��.�n/g do not converge to a common �2EL.S/.
(c) If W ¨ S is a proper subsurface, then convergence of f�W .�

C.�n//g to
� 2 EL.W / implies f�W .�

�.�n//g does not accumulate on EL.W /.

The same statements hold with “C” replaced by “�”.

Leininger and Schleimer [19, Theorem 6.5] previously established Theorem 1.1 in
the setting of doubly degenerate Kleinian surface groups, ie, Kleinian surface groups
whose ending invariants are a pair of filling laminations on S .

Ohshika has independently obtained a similar result in [27, Theorem 2], phrased in the
equivalent language of Hausdorff limits. One can make the hybrid objects �˙.�n/ into
laminations by replacing each Riemann surface component of �˙.�n/ with bounded
length pants decompositions on the associated hyperbolic metric. We then let �˙ denote
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the Hausdorff limit of these sequences. The statement that �W .�
C.�n// converges to

� 2 EL.W / is then equivalent to the condition that �C contains � as a component.

This convergence behavior was presaged in the examples of [8] for representations
in a Bers slice, and those examples also indicate how the Hausdorff topology on end
invariants necessarily fails to predict the full end-invariant of the limit. In particular,
one might hope to find that the parabolic components of �˙.�/ always arise either
as components of the Hausdorff limits �C or �� , or as boundary components of
subsurfaces W filled by components � of these Hausdorff limits. However, in [8]
examples are given in which parabolic curves in the limiting invariants are not related
to the Hausdorff limit in either of these ways.

In the other direction, the phenomenon of wrapping explored in detail in [2] gives
examples in which both Hausdorff limits �C and �� contain the same curve as a
component, but the curve can only appear in the end invariant of one side or the other
in the limit.

We do not address these subtleties here, but note that all parabolics and ending lamina-
tions are predicted in full by recording the full collection of subsurfaces for which such
projections diverge, or equivalently, by studying the sequence of hierarchies associated
to the end invariants. The precise behavior and its connection to end invariants will be
described in Brock, Bromberg, Canary and Lecuire [9].

Theorem 1.1, together with Theorem 1.2 below, is used in our related paper [10] to
analyze (and rule out) “bumping” phenomena on the boundary of AH.S/, and in
particular to identify boundary points where AH.S/ is locally connected. Theorem 1.1
will also be applied, together with Theorems 1.2 and 1.3, in [9], which gives a complete
characterization, in terms of end invariants, of convergence and divergence of sequences
of Kleinian surface groups.

Controlling the bounded curve sets The second theme of this paper involves im-
proving our understanding of the bounded curve sets associated to a Kleinian surface
group. In [26; 11] we applied the notion of a hierarchy of geodesics as developed in
Masur and Minsky [22]. This combinatorial device connects the two end invariants
with a family of markings, curve systems on S , in a combinatorially efficient way. A
crucial step in [26; 11] is to establish a priori bounds on the geodesic lengths of all
simple closed curves that appear in such a hierarchy. On the other hand one can simply
ask to understand the full set

C.�;L/D f˛ 2 C.S/ W `�.˛/�Lg

of simple closed curves in S whose �–length is bounded by L (for a given L). Our
second theorem gives a description of this set in terms of its subsurface projections.
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We denote by hullW .�C; ��/ the union of geodesics in C.W / connecting �W .�
C/ to

�W .�
�/. (Hyperbolicity of C.W / implies that this union lies in a uniform neighbor-

hood of any one of its members). The set of curves appearing in the hierarchy has the
property that its projections into each C.W / lie in a uniformly bounded neighborhood
of hullW .�˙/. The next theorem shows that the same holds for the bounded curve set.
Let dHaus denote Hausdorff distance for subsets of a metric space, applied below to
C.W /. We also use dW .x;y/ as an abbreviation for dC.W /.�W .x/; �W .y//.

Theorem 1.2 Given S , there exists L0 such that for all L � L0 there exists D D

D.S;L/, such that given �2AH.S/ with end invariants �˙ and an essential subsurface
W � S that is not an annulus or a pair of pants,

dHaus
�
�W .C.�;L//; hullW .�˙.�//

�
�D:

Moreover, if dW .�
C.�/; ��.�// >D , then C.�;L/\ C.W / is nonempty and

dHaus
�
C.�;L/\ C.W /; hullW .�˙.�//

�
�D:

Our third theorem relates the projections of bounded-length curves to their topological
ordering in the manifold (in the sense described in Section 2.5). It states that when the
geodesic representative ˛� of a curve ˛2C.�;L/ lies above the geodesic representative
ˇ� of some component ˇ of the boundary of a subsurface W that it overlaps, then its
projection to C.W / is uniformly close to �W .�

C/. (We recall that ˛� lies above ˇ�

if ˛� can be pushed arbitrarily far upward, in the complement of ˇ� , in the product
structure on N� Š S �R.) This property follows directly from the machinery of [11]
in the case of curves that arise in the hierarchy of N� (see Lemma 2.6).

Theorem 1.3 Given S and L > 0 there exists c such that, given � 2 AH.S/, an
essential subsurface W �S that is not a pair of pants, and a curve ˛ 2C.�;L/ such that
˛� lies above the geodesic representative of some component of @W that it overlaps,
then

dW .˛; �
C.�//� c:

Furthermore, if W is not an annulus or a pair of pants, ˛ 2 C.�;L/ overlaps @W , and

dW .˛; �
�/ > c

then ˛� lies above the geodesic representative of every component of @W that it
overlaps.

The same holds when replacing “above” with “below” and �C with �� .
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We note that the conclusion of Theorem 1.2 need not hold in the case that W is an
annulus. It is possible that N� contains a bounded geometry pleated surface that is
“wrapped” several, say n, times about the Margulis tube T .ˇ/ associated to the core
curve of W . If ˛ is a curve on the pleated surface of bounded length, say L, that
overlaps ˇ , then ˛ may be concatenated with n copies of the meridian of the Margulis
tube of ˇ to obtain a curve ˛0 of length roughly LCnC whose geodesic representative
lies above or below ˇ� . Moreover, dW .˛; ˛

0/ is roughly ndW .�
C; ��/. For any given

value of n, one may construct families of examples where dW .�
C; ��/ is arbitrarily

large, but one may make uniform choices of L and C . (This wrapping construction
was introduced in [2]; see also McMullen [23, Lemma A.4] or Canary [15].)

Outline of the paper In Section 2 we review background on curve complexes, hierar-
chies, Kleinian surface groups and their end invariants. We also review some material
from our previous work in [26; 11], particularly the structure of model manifolds
associated to hierarchies, and some consequences. In Section 2.5, and particularly
Lemma 2.6, we discuss the relationship between combinatorial order relations in a
hierarchy, and its connection to a topological ordering in the corresponding 3–manifold.
In Section 2.7 we discuss W–product regions, which are submanifolds of either the
model manifold or the hyperbolic manifold that are homeomorphic to W � Œ0; 1� (for
some subsurface W ) and so that @W � Œ0; 1� is identified with a submanifold of the
boundaries of the tubes associated to @W . Lemma 2.13 provides criteria on a hierarchy
that imply the existence of “large” W–product regions in the associated 3–manifolds.

In Section 3 we study the question of which curves from a hierarchy are “visible” in
a pleated surface (or any Lipschitz surface) in a Kleinian surface group. Lemma 3.1
provides a bounded-length system of hierarchy curves in every such surface, satisfying
some additional bounded-projection properties. This lemma plays a central role in each
of the main theorems.

In Section 4 we prove Theorem 1.2. The main new ingredient here is provided by
Lemma 3.1.

In Section 5 we prove Theorem 1.1. We remark that the principal difficulty in the proof
involves showing that a component of the limiting lamination corresponding to the top
invariants of a sequence is in fact a top invariant for the limit, and not a bottom invariant
in the limit. The issue of such possible “flipped ends” in the limit has a long history in
this subject, arising first in the work of Thurston [28] on strong limits of quasi-Fuchsian
groups. It arises in our proof in [11] of the bi-Lipschitz model theorem as well, and the
relevant arguments there contain echos of Thurston’s original interpolation argument.
In the present paper, we rely primarily on properties of the bi-Lipschitz model, with
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Lemma 2.6 on topological ordering and Lemma 2.13 on the existence of thick product
regions playing a central role.

In Section 6 we give the proof of Theorem 1.3. We remark that the conclusion of
the theorem is already known from the properties of hierarchies and models, when
the curves in question are hierarchy curves. Thus we must answer the question of
how close the given curves of bounded length are to being hierarchy curves, and
Lemma 3.1 provides the needed connection via pleated surfaces. The product region
from Lemma 2.13 then gives the necessary control of these pleated surfaces. This
argument, for the case of a non-annular surface, is detailed in Section 6.1, whereas for
the case of annuli, a fairly different argument is needed, which appears in Section 6.2.

2 Background

2.1 Curve complexes and laminations

We briefly recall definitions and terminology from [11; 22] and related papers. We will
denote by C.S/ the curve complex of a surface S of finite type, recalling that it is a
locally infinite complex that is ı–hyperbolic with respect to a natural path metric [21].
Vertices of C.S/ are isotopy classes of essential closed curves in S , and simplices
correspond to systems of disjoint curves (with a few standard exceptions). The curve
and arc complex A.S/ is formed similarly, with vertices corresponding to essential
properly embedded arcs (up to isotopy rel boundary) as well as curves.

Klarreich’s theorem [17; 18] states that the Gromov boundary @C.S/ is naturally
identified with EL.S/, the set of filling geodesic laminations in S , with topology
inherited from the space of measured laminations.

Markings A marking on S , in the sense of [22], is a system of curves (ie, a simplex
of C.S/) together with a selection of transversal curves, at most one for each curve
in the system. Each transversal intersects the curve it is associated with at most two
times, and is disjoint from the others. The simplex of a marking � is denoted base.�/.
If the base is a pants decomposition of S and every curve has a transversal we call the
marking complete.

A generalized marking on S is a similar object, except that base.�/ is allowed to have
components that are minimal geodesic laminations, not just simple closed curves.

Subsurface projections Given an essential non-annular subsurface W � S , there is
a natural map �A.W /W C.S/! A.W /[ f∅g, which assigns to a curve system in S
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the barycenter of the span of the components of its essential intersection with W (or
∅ if there are none).

A natural construction takes vertices of A.W / to points in C.W /: Given a proper arc
(or curve) a�W , take the essential components of a regular neighborhood of a[@W .
Composing this with �A.W / we obtain a map �W , which takes vertices of C.S/ to
(finite sets of) vertices in C.W /.

For a marking � in S we can define �W .�/� C.W / as the union of �W .ˇ/ over the
curves ˇ in �. The union has uniformly bounded diameter. For a generalized marking
we need to allow �W to take values in C.W /[ EL.W /. If � contains a minimal
component � 2 EL.W / then �W .�/D �. If not then as above �W .�/ is the union of
�W .ˇ/ over the closed curves ˇ in �.

Complexes and projections can be defined for annuli also, with some care. If A is
an annulus and  its core curve, we consider the annular lift of S associated to A,
which has a natural compactification coming from the circle at infinity of zS . Vertices
of A.S/ are essential arcs in this annulus, up to homotopy fixing endpoints. Given
a curve ˛ in S that crosses an annulus A essentially, lift ˛ to the annular cover and
keep only those components that cross the annulus (or select one arbitrarily) to obtain
�A.˛/.

Given generalized markings (or curves) ˛ and ˇ that intersect W essentially, we
regularly use the shorthand dW .˛; ˇ/ to denote dC.W /.�W .˛/; �W .ˇ//. If  is the
core of an annulus A, we write dA and d interchangeably.

2.2 Kleinian surface groups and end invariants

Let AH.S/ denote the space of Kleinian surface groups, ie, discrete faithful represen-
tations �W �1.S/! PSL2.C/ taking peripheral elements to parabolics, and considered
up to conjugacy in the image. The end invariants of � 2AH.S/ are two hybrid objects
�˙.�/, each a combination of laminations and conformal structures on subsurfaces of
S . We sketch a description here, referring to [26; 11] and the references therein for
more details.

Let N DN�DH3=�.�1.S// be the quotient 3–manifold, and let N 0 denote N minus
the (open) cusp neighborhoods associated to the parabolic subgroups of �.�1.S//

(which we note include one cusp for each component of @S ). This manifold with
boundary has a relative compact core K �N 0 , which meets each cusp boundary in
one core annulus. Thus K can be identified with S � Œ�1; 1�, and K\ @N 0 is a union
P of annuli in @K that includes P0 D @S � Œ�1; 1�. We further decompose P �P0

into the union PC of components of P in S �f1g and the remaining components P� .
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This decomposition has the property that no two annuli in P are pairwise isotopic in
S � I .

The closure of each component W of @K nP bounds a component UW of N 0 nK ,
which is a neighborhood of an end of N 0 . We say that W faces this end and vice
versa, and there are two possibilities for its geometry:

� Geometrically finite It corresponds to a component of the boundary at infinity
of N� , and W inherits a finite-type conformal structure, ie, a point in Teich.W /.
The convex core of N intersects UW in a bounded set.

� Simply degenerate It is described by an ending lamination, which is a filling
geodesic lamination in W , ie, an element of EL.W /. This lamination is the
support of the limit (in Thurston’s projective lamination space) of any sequence of
curves in W whose geodesic representatives exit every bounded subset of UW .

The end invariant �C.�/ is a list of the following data: The core curves of the annuli of
PC that lie in S �f1g, the conformal structures associated to geometrically finite ends
facing subsurfaces in S�f1gnPC , and the laminations associated to simply degenerate
ends facing subsurfaces in S �f1g nPC . The invariant ��.�/ is defined similarly; the
ends associated to �C and to �� are called upward-pointing and downward-pointing,
respectively.

We recall here Thurston’s notion of a pleated surface (or map), which is a map
f W X!N where X is a hyperbolic surface and N a hyperbolic 3–manifold, such that
f is length-preserving and totally geodesic on the strata of a geodesic lamination on X .
In the setting of a Kleinian surface group �W �1.S/! PSL2.C/, we typically consider
pleated maps with underlying surface S , in the homotopy class determined by � . We
say that such a map realizes a lamination � if it maps the leaves of � geodesically.

The laminations and parabolic components of the end invariants are exactly those
laminations that are unrealizable in � . So for example if �C.�/ is a single lamination
that fills S , there is no pleated map that carries �C geodesically, and moreover if n

is a sequence of closed curves converging to �C then a sequence of pleated surfaces
realizing n will necessarily escape every compact subset of N� and converge to the
end associated to �C .

End markings In order to have a more topological object to work with, in [26,
Section 7.1] we convert the end invariants �˙ to a pair of generalized markings �˙ as
follows: for each conformal structure on a subsurface W we select a minimal-length
complete marking on W . The union of these with core curves of the annuli PC and
the lamination components of �C will be the generalized marking �C ; define ��

Geometry & Topology, Volume 17 (2013)



Convergence properties of end invariants 2885

similarly. Note that the total length of base.�˙/ is bounded by the Bers constant, LB ,
which bounds the length of the minimal curve system in any hyperbolic structure on S

(Bers [4]).

With this in mind we can define the projections �Y .�
˙/D �Y .�

˙/ for any essential
non-annular subsurface Y that is not a core curve of a component of the parabolic
locus P˙ .

There is a bit of flexibility in this definition, as the choice of markings in the geometri-
cally finite subsurfaces may not be unique. For our purposes this will not matter, as
the different choices have �Y images differing by a uniform amount, and moreover
convergence conditions of the type �Y .�

C
n /!�2EL.Y / are unaffected by the choices

in the definition.

We also record a consequence of these definitions and the basic properties of pleated
surfaces: for an essential subsurface W , we have

(2-1) �W .�
˙/\�W .C.�;L//¤∅

provided L is at least the Bers constant LB . (Recall from the introduction that
C.�;L/ is the set of essential simple closed curves in S whose �–length is bounded
by L.) If W intersects a closed curve component ˇ of base.�/, then l�.ˇ/ � LB

and so �W .ˇ/ 2 �W .C.�;L//. If � is a lamination component of base.�˙/ and
Z D supp.�/, then there exists a family of pleated surfaces ffnW Xn!N�g with base
surface Z that exit the end associated to � (see Bonahon [5]). If we choose shortest
curves ˇn on Zn , then l�.ˇn/�LB , so fˇng � C.�;L/ and ˇn! �. If W overlaps
Z , then �W .ˇn/! �W .�/, so:

�W .�/ 2 �W .�
˙/\�W .C.�;L//:

Margulis tubes We fix throughout a Margulis constant �1 for H3 , which it will be
convenient to take to be the same choice of Margulis constant as in [26] (see page 19)
and [11]. In particular, this number is sufficiently small that the �1 –thin part of a
hyperbolic 3–manifold is a disjoint union of cusps and solid-torus neighborhoods of
geodesics.

If ˛ is a curve in S and � is a given Kleinian surface group we let T .˛/ denote the
component of the �1 –thin part .N�/thin.�1/ whose core is in the homotopy class of ˛ .
If � < �1 , then we define:

T�.˛/D T .˛/\ .N�/thin.�/:
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2.3 Hierarchies

Given two generalized markings �C and �� , we let H.�C; ��/ or H.�˙/ denote
the hierarchy connecting them, in the sense of [22; 26; 11]. We also denote this by
H.�˙/, if �˙ are obtained from a pair of end invariants �˙ . We give an impressionist
discussion here, referring the reader to those three articles for the details. A hierarchy
is a collection of tight geodesics supported on subsurfaces of S , and interlocked in a
structure that encodes certain nesting and ordering properties. Each tight geodesic is
essentially a directed geodesic in the curve complex of the subsurface it is supported
on. We typically denote such a geodesic kW if W is the supporting surface, and we
let �W and �W denote the initial and terminal vertices.

We will use CH.�˙/, or sometimes CH , to denote the set of all vertices of C.S/ that
occur in the (non-annular) geodesics in a hierarchy H.�˙/.

A resolution of H.�˙/ is a (possibly infinite) sequence of markings .�n/, separated
by elementary moves, and connecting �� to �C (in the sense that �n is either equal
to �C for the last n, or converges to it as n!1 if �C has a lamination component,
and similarly for �� ). Each marking is composed of curves that occur as vertices in a
nested collection of geodesics of H , which is known as a “slice” of H , and successive
markings are separated by elementary moves, which correspond in a specific way to
forward motion along the geodesics of H .

Hierarchies and projections We will make crucial use of [22, Lemma 6.2], some-
times called the “large link lemma”. Given markings �˙ and a subsurface W � S

we let hullW .�˙/ denote a geodesic in C.W / joining �W .�
C/ to �W .�

�/ (there
may be more than one such geodesic but hyperbolicity implies that all such choices are
within uniform Hausdorff distance of each other).

Lemma 2.1 There exists A D A.S/ such that if H.�˙/ is a hierarchy, W � S is
an essential subsurface, and dW .�

C; ��/ >A, then H.�˙/ contains a geodesic kW

with domain W and
dHaus.kW ; hullW .�˙//�A:

Moreover
dW .�W ; �

C/�A and dW .�W ; �
�/�A;

where �W and �W are the terminal and initial vertices of kW .

In fact the first inequality of Lemma 2.1 can be strengthened to something that holds
in the setting where a geodesic kW may not necessarily exist:
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Lemma 2.2 Given S there exists M , such that for any pair of generalized markings
and any essential W � S ,

dHaus
�
�W .CH.�˙//; hullW .�˙/

�
�M:

This result, which is established in the proof of [26, Lemma 5.14], follows from [22,
Lemmas 6.1 and 6.9], which are part of the same machinery used in the proof of the
large link lemma.

2.4 Model manifolds

To each hierarchy H DH.�˙/ we associate (in [26]) a model manifold M DM.�˙/,
which is equipped with an orientation-preserving embedding into S�R (which we treat
as inclusion), a path metric and a disjoint collection of tubes, one for each vertex of H .
The tube associated to v 2 CH is an open solid torus of the form U.v/� collar.v/�I ,
where collar.v/� S is an annulus whose core is v , and I is an interval (sometimes
infinite). Each tube U.v/ is isometric to a standard Margulis tube (possibly parabolic,
for finitely many of the v ). Let U � M denote the union of all the tubes. The
complement, M nU , decomposes into a union of blocks, which (with the exception of
a bounded number of boundary blocks) are submanifolds that fall into a fixed finite
number of isometry classes. The boundary of each block is a union of annuli on tube
boundaries and level 3–holed spheres, where the latter have the form Y � ftg, for a
three-holed sphere Y �S obtained as a complementary component of S ncollar.�/ for
a curve system � . (The boundary blocks, whose structure is slightly more complicated,
are all adjacent to the boundary of M , if any, and will not affect the rest of our
arguments.)

The model contains a collection of split-level surfaces, each associated to markings or
partial markings that occur in resolutions. Suppose � is such a marking, restricted to a
subsurface W (so that @W � base.�/ and base.�/ determines a pants decomposition
of W ). The split-level surface F� �M nU is a disjoint union of level three-holed
spheres Y � ftY g, where Y runs over the components of W n collar.base.�//. Each
three-holed sphere is properly embedded in .M nU ; @U/, and in the induced metric
they are all isometric to a single standard 3–holed sphere. Moreover, if FY intersects a
tube U.v/, then FY \U.v/ is a geodesic in the metric on @U.V /.

An extended split-level surface yF� is obtained from F� by adding, for every v in
base.�/ \ int.W /, an annulus in the corresponding tube U.v/. These annuli are
identified with the corresponding collars in a way that extends the identification of
W n collar.base.�// with F� to an identification of W with yF� . In particular yF� is
an isotope of W � f0g.
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The annulus in each U.v/ is chosen so that it has a CAT.�1/ metric: If U.v/ is the
Margulis tube with geodesic core then this can be done by extending the boundaries of
the annuli radially to the core, and if U.v/ is parabolic we can simply rule the annulus
by geodesics connecting the boundaries.

If the domain surface W of an (extended) split-level surface is all of S , we call it
maximal.

The maximal extended split-level surfaces yF�n
associated to a resolution are isotopes

of S � f0g and are monotonically arranged in the sense that the transition from yF�n

to yF�nC1
always involves isotoping a subsurface upward in the R direction of S �R.

This provides a connection between topological ordering in M and the directionality
of the hierarchy, aspects of which we will state more precisely below.

Bi-Lipschitz model map The main theorem of [11] provides a bi-Lipschitz homeo-
morphism between the model manifold associated to the end invariants of a hyperbolic
3–manifold N , and the augmented convex core of N , denoted yCN . This is the union
of a 1–neighborhood of the convex hull of N with the thin part of N . (An extension
of this theorem gives a model that covers all of N , but we will not need it.) We give
here a statement that combines this bi-Lipschitz map with other structural facts derived
in that and related papers:

Theorem 2.3 Given S , there exists Kh > 1, �h > 0 and Lh > 0 such that, if
� 2 AH.S/ has end invariants �˙ , then:

(1) There exists a Kh –bi-Lipschitz homeomorphism hW M.�C; ��/! yCN� that is
orientation-preserving.

(2) CH.�˙/� C.�;Lh/.

(3) C.�; �h/� CH.�˙/.

(4) If l.˛/ < �h , then h.U.˛//D T .˛/.

Remark Part (2) is a formal consequence of (1), but is established [26, Lemma 7.9]
as part of the proof of (1).

An important additional feature of the model manifold is that, for any resolution .�n/,
every point of M nU lies within uniformly bounded distance of at least one split level
surface yF�n

, since every block intersects some yF�n
.

Lemma 2.4 There exists c0 > 0 such that if S is a compact surface, � 2 AH.S/
has end invariants �˙ with associated model manifold M DM.�˙/ and .�n/ is a
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resolution sequence of the associated hierarchy H DH.�˙/, then if x 2M nU , there
exists n such that

d.x;F�n
/ < c0:

Let us also record the following useful fact, relating the appearance of short curves in
N� with high subsurface projections.

Theorem 2.5 [25, Theorem B] Given a surface S , � > 0 and L > 0, there exists
K DK.S; �;L/ such that if � 2 AH.S/ and W is an essential subsurface of S , then
l�.@W / < � if diam.�W .C.�;L///�K .

2.5 Ordering

In a product S �R there is a natural notion of topological ordering induced by the
projection qW S �R!R to the second factor. The details are however slightly messy
so we take some care with the definitions.

Given two maps f W A! S �R and gW B! S �R, we say that f lies above g if f
extends to a map F W A� Œ0;1/! S �R such that F.�; 0/D f , the image of F is
disjoint from g.B/, and q ıF. � ; t/ goes uniformly to C1 as t !C1. We define
below similarly with C1 replaced by �1. If g lies above f , f lies below g , and
the opposite statements are false, we write f �top g (in spite of the notation, however,
this relation is not a partial order). We will also apply this terminology to subsets of
S �R where the map is presumed to be the inclusion map.

If A and B are subsets of S and f and g are homotopic to the inclusions A!A�f0g

and B! B � f0g, then we say that f and g overlap if A and B intersect essentially
(ie, cannot be made disjoint by isotopy). Note that in this case if f lies above g then
g cannot lie above f , and so on. If f and g are overlapping level embeddings, ie, of
the form a 7! .a; t/ and b 7! .b; s/, then f �top g if and only if t < s .

This notion of ordering can usefully be applied to the tubes in a model manifold,
where it is closely related to the ordering of the geodesics in the hierarchy. (For an
extensive discussion of topological ordering and its relationship to the hierarchy, see
[11, Sections 3 and 4].)

Given a geodesic g in C.W /, let �g denote the composition of the projection �W

with a nearest-point projection C.W /! g .

For a directed geodesic g , we can fix an orientation-preserving identification with an
interval of Z, so that addition makes sense, and a < b means a occurs earlier than
b . This lemma describes the relation between topological order of tubes in a model
manifold, and the order of projections along hierarchy geodesics.
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Lemma 2.6 Let H DH.�˙/ be a hierarchy and M DM.�˙/ the associated model
manifold. Suppose that k is a geodesic in H , supported in a non-annular W � S .
There is a constant r D r.S/ such that:

(1) For any two vertices u; v 2 CH.�˙/ that overlap W and each other,

U.u/�top U.v/D) �k.u/� �k.v/C r:

(2) If  2 CH.�˙/ overlaps a component ˇ of @W , then

U.ˇ/�top U. /D) dW .; �
C/� r

and similarly

U. /�top U.ˇ/D) dW .; �
�/� r:

Proof Fix a resolution .�n/ of the hierarchy. Following the notation in [11, Section
4], for any vertex or simplex a in CH.�˙/ define J.a/ � Z to be the set of n such
that base.�n/ contains a. There is also a subset J.kW / that consists of those indices
for which the geodesic kW is “active” in the resolution in a certain sense. Rather than
give the full definition we will note that

J.kW /� J.Œ@W �/;

ie, the geodesic is only active when @W is visible in the marking, and that for each
n 2 J.kW / there must be some vertex x of kW such that x 2 base.�n/ – in other
words, n 2 J.x/. [11, Lemma 4.9] states that J.a/ and J.kW / are intervals in Z.

Note that if a and b overlap then J.a/ and J.b/ are disjoint. Because the split-level
surfaces F�n

move monotonically upward in S �R, we have immediately that

(2-2) U.a/�top U.b/D)max J.a/ <min J.b/:

Another aspect of the monotonicity property of resolutions is that the vertices of kW

are traversed monotonically. That is, if u and v are vertices in kW , then

(2-3) max J.u/ <min J.v/D) u< v:

We will also need the following: If n 2 J.a/, then

(2-4) n<min J.kW /D) dW .�n; �
�/� r0

and similarly

(2-5) max J.kW / < nD) dW .�n; �
C/� r0

for some uniform choice of r0 . In other words, the projection to W of everything in the
hierarchy that happens “before” kW is frozen, and similarly for everything afterwards.
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This is a consequence of [22, Lemmas 6.1 and 6.9], in a way similar to Lemma 2.2.
(The discussion in [22] identifies a certain sequence of geodesic segments in H that
connect kW to �� and �C in such a way that every vertex in the sequence projects
nontrivially to C.W /, and [22, Lemma 6.1] shows that the parts of this sequence before
and after kW , respectively, have bounded projections to C.W /. [22, Lemma 6.9]
shows that every slice in the resolution meets some part of this sequence.)

Proof of part (1) Since U.u/ �top U.v/, we can choose su 2 J.u/ and sv 2 J.v/

such that su < sv (by (2-2)).

If su 2J.kW /, then base.�su
/ contains a vertex u0 in kW , and in particular su 2J.u0/.

Note that u0 is within 1 of u in C.W /, and hence within 2 of �kW
.u/.

If sv 2 J.kW / as well, then we similarly have v0 in kW , so that sv 2 J.v0/ and v0 is
within 2 of �kW

.v/. It therefore suffices to show that u0 � v0C 1.

If dW .u
0; v0/ � 1 then we are done, and otherwise u0 and v0 overlap, so that J.u0/

and J.v0/ are disjoint. Since su < sv , it must be that max J.u0/ <min J.v0/, so that
u0 must appear before v0 in kW (by (2-3)). Again we are finished in this case.

If one of su and sv is not in J.kW /, suppose without loss of generality it is su .

If su <min J.kW / then, by (2-4), �W .u/ is within r0 of the initial point of kW . In
this case the conclusion holds trivially no matter where �kW

.v/ is.

If max J.kW / < su , then by (2-5), �W .u/ is within r0 of the final point of kW . Since
su < sv the same holds for �W .v/, and again we are done.

For the proof of part (2), we first note that since ; ˇ 2 CH.�˙/ and  and ˇ

overlap, U. / and U.ˇ/ are topologically ordered (see [11, Lemma 4.9]). More-
over, since ˇ 2 Œ@W �, J. / and J.kW / are disjoint. If U.ˇ/ �top U. / then
max J.kW / < min J. /, and as above, (2-5) implies that dW .; �

C/ is bounded.
The proof of the opposite case is similar.

2.6 Topological lemmas

In this section, we collect topological lemmas concerning ordering of curves and
surfaces in S �R, which will be applicable to split-level and pleated surfaces in our
hyperbolic manifolds.

We begin by showing that a proper homotopy equivalence whose image is disjoint from
a level curve 0 D  � f0g lies above 0 if and only if there is an essential curve on
the surface that intersects  whose image lies above 0 .
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Lemma 2.7 Let ˛ and  be overlapping curves on S and let

f W .S; @S/! .S �R; @S �R/

be a homotopy equivalence with image disjoint from 0 D  � f0g. Then f j˛ lies
above 0 if and only if f lies above 0 .

Proof Clearly if f lies above 0 then f j˛ lies above 0 .

Suppose that f j˛ lies above 0 . Let AD  � .�1; 0�. We can homotope f j˛ , in the
complement of 0 , to a map whose image is disjoint from A. This homotopy can be
extended to all of S where the homotopy is supported on a neighborhood of ˛ and
the image of the homotopy is disjoint from 0 . Let gW .S; @S/! .S �R; @S �R/
be the new map. We can assume g.S/ intersects A transversely. Then � D g�1.A/

will be a collection of disjoint curves on S . Since g is a homotopy equivalence every
curve in � will either be homotopic to  or will bound a disk. However, any curve
that is homotopic to  must intersect ˛ and since g.˛/ is disjoint from A we must
have that all curves in � bound disks. Using the standard innermost disk argument and
the fact that .S �R/� 0 is irreducible we can then homotope g , in the complement
of 0 , to a map whose image is disjoint from A. Such a map will lie above 0 so g

and therefore f lies above 0 .

We next observe that a proper homotopy equivalence whose image is disjoint from an
essential non-annular level subsurface lies either above or below that subsurface

Lemma 2.8 Let W be a non-annular subsurface of a compact surface S . If

f W .S; @S/! .S �R; @S �R/

is a homotopy equivalence with image disjoint from W0 DW � f0g, then either f lies
above or below W0 .

Proof Much as in the proof above, we may homotope f (in the complement of W0 )
so that f �1.W �R/D f �1.W � .R n f0g// is a union of essential subsurfaces of S .
Since f is a homotopy equivalence, these subsurfaces must consist of one isotope of
W and a (possibly empty) collection of disjoint annuli.

Each annulus maps either to W �.0;1/ or W �.�1; 0/, where it must be homotopic
rel boundary to @W � .0;1/ or @W � .�1; 0/, respectively. Thus, after homotopy
we may assume that f �1.W �R/ is just W , and f .W / lies either in W � .0;1/ or
in W � .�1; 0/. It follows that we can homotope f to C1 or �1, respectively, in
the complement of W0 .
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We say a map of a curve system in S to S �R is unknotted if it is isotopic to a level
embedding. It will also be useful to recall that knotting of the boundary is the only
obstruction to extending an embedding of an essential subsurface to a proper embedding
of the entire surface that is isotopic to a level surface. This result is a special case of
[11, Lemma 3.10], although the proof of just this case is not hard.

Lemma 2.9 Let W be a compact essential subsurface of S . If hW W ! S �R is an
embedding homotopic to a level embedding, such that h.@W / is unknotted, then h

extends to an embedding of S in S �R whose image is isotopic to S � f0g.

Our final topological lemma is a degree computation, which will be used to complete
the proof of Theorem 1.3 in the case that the essential subsurface is an annulus.

Lemma 2.10 Let  be an essential curve in S and N . / be an open regular neigh-
borhood of  � f1=2g in S � Œ0; 1� with boundary the torus T . Suppose that

f W ..S � Œ0; 1�/nN . /; @S � Œ0; 1�;T /! ..S � Œ0; 1�/nN . /; @S � Œ0; 1�;T /

is a continuous map of triples such that f jS�f0g and f jS�f1g are homotopic in the
complement of N . /.

Then the restriction of f to T has degree zero.

Proof Since f jS�f0g and f jS�f1g are homotopic to each other in the complement
of N . /, we may assume, possibly adjusting f by homotopy, that f .x; 0/D f .x; 1/
for all x 2 S . Thus, f descends to a map

F W .S �S1/ nN . /! .S � Œ0; 1�/ nN . /

with F.@S �S1/� @S � Œ0; 1�. Since F defines a relative 3–chain in

..S � Œ0; 1�/nN . /; @S � Œ0; 1�/

whose boundary is F jT , we see that

ŒF jT �D 0 2H2..S � Œ0; 1�/nN . /; @S � Œ0; 1�/:

However, ŒT � is a non-trivial homology class in H2..S � Œ0; 1�/nN . /; @S � Œ0; 1�/
and

F�.ŒT �/D ŒF jT �D d ŒT �;

where d is the degree of the restriction of F to T or, equivalently, the degree of the
restriction of f to T . Therefore, this degree is zero.
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2.7 Thick distance, bounded diameter lemmas and subsurface product
regions

A simple but useful feature of hyperbolic geometry is the fact that the thick part of a
surface of bounded area has components of uniformly bounded diameter. This, together
with the observation that a �1 –injective Lipschitz map of a hyperbolic surface into
a hyperbolic 3–manifold takes the thick part to the thick part (with slightly different
constants), is a useful tool that recurs, for example, in the work of Thurston and
Bonahon, and others. We develop some notation in order to discuss and apply these
ideas in our context.

If X is a path-metric space and A � X a subset, we denote by djA;X .x;y/ the
infimum over paths ˛ in X from x to y of the length of ˛\A. This is a pseudometric
that assigns distance 0 to pairs of points in the same component of X n A. We
let diamjA;X denote diameter with respect to this pseudometric, and also use the
abbreviation diamjA.X /� diamjA;X .X /. It will also be useful, for a subset Y �X ,
to let djA;Y denote the same as djA\Y;Y .

We will use this notation when X is a hyperbolic manifold N and ADNthick.�/ , and
when X is a model M and ADM nU . In particular, it is easy to express the bounded
diameter lemma for surfaces in this language.

Lemma 2.11 Given a compact surface S and � > 0, there exists b D b.S; �/ such
that:

(1) If X is a finite volume surface homeomorphic to S , then

diamjXthick.�/.X / < b:

(2) If M is a model manifold associated to a hierarchy and yF is an extended
split-level surface in M , then

diamj yFthick.�/
. yF / < b:

For hyperbolic surfaces, this is a consequence of the thick-thin decomposition (see
Bonahon [5, Proposition 1.5]). For split-level surfaces, it follows from the fact that
each such surface is a union of three-holed spheres whose metric is standard and a
bounded number of CAT(�1) annuli each of whose intersection with the �–thick part
consists of one or two annuli whose diameter is uniformly bounded in terms of � .

The following remark will be useful for us. Let f W X ! N be a �1 –injective
K–Lipschitz map. Then, since f .Xthin.�//�Nthin.K�/ , we obtain

(2-6) diamjNthick.K�/;N .f .X //�KdiamjXthick.�/.X /:
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Finally, let us also observe:

Lemma 2.12 If N is a hyperbolic 3–manifold and N 0 the complement of cusp
neighborhoods in N , then djNthick.�/;N 0 is a proper pseudometric on N 0 , when � is
less than the Margulis constant.

This follows immediately from the fact that, with � less than the Margulis constant,
the distance between any two components of Nthin.�/ is uniformly bounded below.

Subsurface product regions Another important feature of Kleinian surface groups,
and their bi-Lipschitz models, is the presence of “thick product regions”, namely
regions in S �R that are topologically products W �J , and geometrically anchored
on Margulis tubes (or model tubes), and bounded by split-level surfaces. We introduce
some notation for discussing these regions, and indicate their interaction with the
topological ordering relation and the structure of the hierarchy.

If W is an essential non-annular subsurface of S and M is a model manifold associated
to � 2AH.S/, we say that Q�M is a W–product region if there exists an orientation-
preserving homeomorphism gW W � Œ0; 1�!Q so that g.@W � Œ0; 1�/� U.@W / and,
if g0W W !Q is the inclusion map given by g0.x/D g.x; 0/, then .g0/� is conjugate
to �j�1.W / . In this case, @0QD g.W � f0g/ and @1QD G.W � f1g/ are called the
horizontal boundary components of Q. Similarly, if N DN� and hW M !N is the
model map, we say that R�N is a W–product region for N if and only if h�1.Q/

is a W–product region for M . In this case, @0RD h.@0Q/ and @1RD h.@1Q/ are
called the horizontal boundary components of R.

The following lemma shows that if one has a long geodesic kW �H associated to a
level subsurface, then one can find thick W–product regions in the model manifold.

Lemma 2.13 Let � 2 AH.S/ have associated hierarchy H and model map
hW M !N� . Let W � S be the support of a geodesic kW in H .

For every simplex v 2 kW there is an extended split-level surface yFv � M in the
isotopy class of W , passing through U.v/, such that, if u; v 2 kW and dW .u; v/� 5,
then:

(1) yFu and yFv are disjoint and comprise the horizontal boundaries of a W–product
region for M . Moreover, if u< v , then yFu �top yFv .

(2) There exists c1 D c1.S/ > 0 such that

djMnU ;Q.Fu;Fv/ > c1dW .u; v/:

(3) There exists c3 D c3.S/ such that for RD h.Q/ and Gx D h.Fx/,

djNthick.�h/
;R.Gu;Gv/ > c3dW .u; v/:
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Proof Each simplex v in kW can be extended to a marking �.v/ in W , and we
can let yFv denote yF�.v/ with a slight abuse of notation. For u; v separated by at
least 5, the pair yFu and yFv form a special case of the “cut systems” described in
[11, Section 4]. [11, Proposition 4.15] implies that the surfaces are disjoint, form the
horizontal boundary of a W–product region, and that the topological order agrees with
the ordering of vertices. This gives us (1).

To prove (2), we first observe that there is a definite lower bound b0 on separation
between surfaces in the product region, namely

(2-7) djMnU ;Q. yFu; yFv/ > b0 > 0

when dW .u; v/� 5. To see this, note that in M every tube is separated by a definite
distance b1 > 0 from every other tube – this is a consequence of the uniform geometry
of the blocks that compose M nU . Similarly, each level 3–holed sphere in a split-level
surface has a b2 –neighborhood that meets no other 3–holed spheres. We conclude from
this that the union of yFu with all the tubes associated to the base of its marking has a
regular neighborhood of definite width within M nU . Since dW .u; v/ � 5, the two
markings cannot share any base curves, which implies that these regular neighborhoods
are disjoint. This gives (2-7).

Now suppose that dW .u; v/� 5n. Then by suitably subdividing the interval Œu; v� in
kW we can subdivide their product region into a sequence of n product regions, each
with the definite separation given by (2-7). This suffices to give (2).

Because h is K–bi-Lipschitz, we have the inequality

djNthick.�h/
;R �

1

K
djh�1.Nthick.�h/

/;Q :

Now since (by Theorem 2.3) h�1.Nthick.�h// contains M nU , we have

djh�1.Nthick.�h/
/;Q � djMnU ;Q :

We conclude that

djNthick.�h/
;R.Gu;Gv/ >

1

K
djMnU ;Q.Fu;Fv/

which gives (3).

We next observe that any large enough W–product region gives rise to a pants decom-
position of W consisting of hierarchy curves.
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Lemma 2.14 Given a compact surface S and � > 0, there exist d0Dd0.S; �/> 0 and
d1Dd1.S; �/>0 with the following properties. Let �2AH.S/ have end invariants �˙

and associated model manifold M DM.�˙/. Then, if W is an essential non-annular
subsurface of S , Q is a W–product region for M , z 2Q nU and

djMthick.�/;Q.z;W � f0; 1g/ > d0

then there exists a pants decomposition � of W so that � � CH and U.�/�Q.

Similarly, if hW M ! N D N� is the model map, R is a W–product region for N ,
z 2R\Nthick.�/ and

djNthick.�/;R.z; h.W � f0; 1g// > d1

then there exists a pants decomposition � of W so that � � CH and h.U.�//�R.

Proof We first prove our claim in the setting of the model manifold. Lemma 2.4 gives
a maximal split-level surface F� in M whose image comes within c0 of z . Let � be
the collection of components of base.�/ that are components of @W . Let Z be the
component of yF� nU.�/ that comes within c0 of z .

Since Z is an extended split level surface it meets model tubes only if they are associated
to its base, and by construction no base curve in Z can be a component of @W . Hence,
Z cannot meet U.@W /. Lemma 2.11 implies that

diamjZthick.�/.Z/ < b D b.S; �/:

Therefore, if we choose d0 > c0C b , then Z �Q.

We conclude from this that (the underlying subsurface associated to) Z is homotopic
into W , which implies that Z is isotopic to W since @Z is isotopic into @W . This
implies that base.�/ contains a pants decomposition of W and the lemma follows
when M is a model manifold.

We now assume we are in the hyperbolic manifold setting. Let QD h�1.R/. If z 2

Nthick.�/\R, then h�1.z/�Mthick.�=Kh/ where Kh is the constant from Theorem 2.3.
Therefore, there exists z0 2 M n U that may be joined to h�1.z/ by a path in
M � U.@W / of length at most c1 (where c1 depends only on S and on �=Kh ).
If

djNthick.�/;R.z; h.W � f0; 1g// > d1 DKhd0.S; �=Kh/CKhc1

then z0 2Q and

djMthick.�=Kh/
;Q.z0;W � f0; 1g/ > d0.S; �=Kh/:
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Then the model manifold case guarantees that there exists a pants decomposition �
of W so that � � CH and U.�/�Q. It follows that h.U.�//�R and our proof is
complete.

3 Controlled hierarchy curve systems

In this section we provide a tool for directly relating bounded-length curves on pleated
surfaces in a Kleinian surface group to the curves that occur in the associated hierarchy.
Lemma 3.1 says that in any such pleated surface (or more generally a Lipschitz surface
with fixed bounds) there is a maximal collection of disjoint hierarchy curves, all of
uniformly bounded length, such that in the curve complexes of their complementary
subsurfaces the projection of the entire hierarchy is within bounded distance from the
set of bounded-length curves.

Lemma 3.1 Given a compact surface S and K > 0 there exists B D B.S;K/ > 0

such that if X 2 T .S/ is a finite area hyperbolic surface,

f W X !N

is a K–Lipschitz homotopy equivalence, � D f� 2 D.S/ has end invariants �˙ and
H DH.�˙/ is the associated hierarchy, then there exists a curve system � on X such
that if  2 � , then

 2 CH and lX . /� B:

Moreover, if W is a component of Xn� that is not a thrice-punctured sphere, then:

(1) C.W / contains no curves in CH .

(2) There exists ˇ 2 C.W / such that lX .ˇ/� B and

diam.�W .ˇ[ CH//� B:

The proof will proceed by contradiction. We assume that we have a sequence f�ng

where it is not possible to choose appropriate collections of hierarchy curves for any
uniform choice of constants. We then re-mark and pass to a subsequence so that there
is a maximal collection �1 of curves so that l�n

.�1/! 0 and if Y1 is a component
of S � �1 , then f�nj�1.Y1/g is convergent. For large enough values of n, �1 are
hierarchy curves in Hn . If lim �nj�1.Y1/ is geometrically infinite, we pull-back a wide
Y1 –product region from the corresponding end of the limit manifold and consider a
split-level surface passing through the middle of the product region in the approximates
to find a pants decomposition of Y1 by hierarchy curves for all large enough values
of n. If lim �nj�1.Y1/ is geometrically finite, then the set of projections of bounded
length curves to any subsurface of Y1 is finite and our result follows as well.
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Proof We suppose that, for some S and K , it is not possible to choose such a
value of B and proceed to find a contradiction. So assume there exists a sequence
ffnW Xn!Nng of K–Lipschitz homotopy equivalences with associated representations
f�n D .fn/�g and hierarchies fHng, and Bn!1 such that, for each n, one cannot
find a disjoint collection of curves in Hn that have length at most Bn on Xn whose
complementary regions that are not thrice-punctured spheres have properties (1) and
(2) with constant Bn .

By passing to a subsequence and re-marking the Xn we can assume that there is a
curve system �0 on S such that `Xn

.�0/! 0 and there is a uniform lower bound on
the length of any homotopically non-trivial, non-peripheral curve disjoint from �0 . We
may further re-mark the Xn by homeomorphisms of S fixing �0 to guarantee that if
 is any fixed curve in S n�0 , then f`Xn

. /g is bounded (where the bound depends
on  ). Notice that, by Theorem 2.3, each curve in �0 eventually lies in the set CHn of
hierarchy curves. If each component of S n�0 is a thrice-punctured sphere, then we
have already achieved a contradiction.

We now focus on a component Y of S n�0 that is not a thrice-punctured sphere. Since
each curve on Y has bounded length on Xn for all n, we may pass to a subsequence
so that f�nj�1.Y /g converges (up to conjugation). Let �Y 2AH.Y / be the limit of (the
subsequence) f�nj�1.Y /g.

Let �1 be a maximal collection of disjoint simple closed curves on Y such that if
 2 �1 , then �Y . / is parabolic. Notice that if  2 �1 , then eventually  2 CHn and
`Xn

. / is bounded independent of n. We are again finished if every component of
Y n�1 is a thrice-punctured sphere.

Given a component Y1 of Y n�1 that is not a thrice-punctured sphere, we will construct
a further subsequence and a curve system �2 in Y1 consisting of hierarchy curves in
CHn for all n such that if W is a component of Y1 n�2 that is not a thrice punctured
sphere, then C.W / contains no curves in CHn and if ˇ 2 C.W / then there is an upper
bound on diam.�W .ˇ[CHn// for all n. As we can apply this procedure iteratively to
each component of Y n�1 that is not a thrice-punctured sphere, this will achieve the
desired contradiction and complete the proof.

Fix, then, a component Y1 of Y n�1 that is not a thrice-punctured sphere. We first
claim that, for each ˛ 2 CHn that overlaps Y1 , there exists a curve  n.˛/ in C.Y1/

such that `�n
. n.˛// and dY1

. n.˛/; ˛/ are uniformly bounded (independently of ˛
and n).

Recall that `�n
.˛/ � L0 for all ˛ 2 CHn (see Theorem 2.3). Hence we can let

 n.˛/D ˛ if ˛ is already in C.Y1/. In general, [25, Lemma 4.1] provides for each
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�n and each ˛ 2 CHn a pleated surface gW Z ! Nn (in the homotopy class of fn ,
where Z denotes a hyperbolic structure on S ) mapping @Y1 geodesically, so that every
minimal Z–length proper arc � in Y1 satisfies a bound dA.Y1/.�; ˛/ � c , where c

depends only on S and L0 .

Now given our upper bound on `�n
.@Y1/ (and hence on `Z .@Y1/), we can combine

arcs in � and @ collar.@Y1/ to obtain an essential simple closed curve ˛0 in Y1 with
`�n
.˛0/� `Z .˛

0/� d 0 and dY1
.˛; ˛0/� c0 , for uniform c0 and d 0 . This is the desired

 n.˛/.

We can break into two cases now:

Case 1 There is a sequence ˛n 2 CHn such that ˛0n D  n.˛n/ takes on infinitely
many values. After taking a further subsequence we can assume that f˛0ng converges
in PML.Y1/ to a lamination �. Let V be the support of �. Using an argument of
Kobayashi and Luo (see [21, Section 4.3]), dV .ˇ; ˛

0
n/!1, for any fixed ˇ , and

hence, by Theorem 2.5, `�n
.@V / goes to 0. Since there are no further parabolics within

Y1 , this means that V DY1 , and � is filling in Y1 . Since `�n
.˛0n/ is bounded while the

length of ˛0n in the fixed surface Y1 goes to1, continuity of length (Brock [7]) implies
that `�Y

.�/D 0, and therefore that N 0
Y

has a degenerate end with base surface Y1 .

The idea now is that this degenerate end will correspond to a part of the model manifold
from which we can extract a pants decomposition of Y1 consisting of hierarchy curves.
The details of this are a bit delicate because we have to consider how the hierarchies
Hn interact with the structure of this limiting degenerate end.

We may assume, after passing to a further subsequence, that fNng converges geo-
metrically to NG and that there is a covering map pW NY ! NG . The covering
theorem (Thurston [28] and Canary [14]) can then be used to show that there is a
neighborhood of this degenerate end that embeds in NG (see, for example, the proof
of [11, Proposition 6.10]). Let E be the image of this neighborhood in NG . If Y1 is
identified with the interior of a compact surface xY1 , one may further assume that the
closure of E is homeomorphic to xY1 � Œ0;1/. Let @0E be the image of xY1 � f0g and
@1E be the image of @ xY1 � Œ0;1/ under this homeomorphism.

For any fixed R� E , which is identified with xY1 � Œ0; a� for some a> 0, for all large
n there exist 2–bi-Lipschitz comparison maps

�nW R!Nn

in the homotopy class of �n ı .�Y j�1.Y1//
�1 such that

�n.R\ @T .@Y1//� @T .@Y1; n/;

Geometry & Topology, Volume 17 (2013)



Convergence properties of end invariants 2901

where T .@Y1; n/ is the collection of Margulis tubes in Nn associated to the components
of @Y1 . (See [11, Lemma 2.8].) Let Hn and Mn be the hierarchy and model manifold
associated to Nn and let hnW Mn!Nn be the model map. For all sufficiently large n,
`�n
.@Y1/ < �h , so @Y1 � CHn and T .@Y1; n/D hn.U.@Y1/. Therefore, Rn D �n.R/

is a Y1 –product region for Nn for all sufficiently large n.

Since the pseudometric dj.NG/thick.�1=4/;E is proper (see Lemma 2.12), we may choose
R so that there exists z 2R\ .NG/thick.�1/ with

dj.NG/thick.�1=4/;R.z;Y1 � f0; ag// > 2d1.S; �1=2/;

where d1.S; �1=2/ is the constant from Lemma 2.14. For large enough n, znD�n.z/2

Nthick.�1=2/ and

dj.NG/thick.�1=2/;Rn
.z; �n.Y1 � f0; ag// > d1.S; �1=2/:

Therefore, by Lemma 2.14, there exists a pants decomposition �n of Y1 so that
�n � CHn and h.U.�n// � Rn . Since every curve in �n has a representative of
uniformly bounded length in Rn , it also has a representative of uniformly bounded
length in R. Since there are only finitely many such curves in R, we can pass to a
subsequence such that �n is a fixed pants decomposition � . The fixed set of curves �
will have uniformly bounded length on Xn . This completes the proof in this case.

Case 2 For some k , the union
S

n�k  n.CHn/ is finite. Taking a subsequence, we
can assume that  n.CHn/ is a constant set ‰ . Since CHn\ C.Y1/ is contained in ‰ ,
we may assume that it is constant for all n as well. Let �2 be a maximal curve system
in Y1 whose elements are in CHn\ C.Y1/.

Suppose first that �2 is empty. Then there are no hierarchy curves in C.Y1/. The
projection �Y1

.CHn/ lies, for all n, within a uniform distance of the finite set  , and
hence within uniform distance of any fixed curve ˇ 2 C.Y1/. This concludes the proof
in this case.

If �2 is nonempty, consider any component W of Y1 n �2 . By maximality of �2 ,
C.W / contains no hierarchy curves. We can now repeat the argument replacing Y1

by W . We construct a new collection  n.CHn/ in C.W /, and find ourselves either in
Case 2 but with �2 empty, or in Case 1.

If we are in Case 2 we can complete the proof as above, with a uniform bound on
the set of projections of CHn into W . If we are in Case 1, we note that the argument
shows that in fact the boundary of W must consist of parabolics for �Y , so that in fact
W D Y1 , contradicting the fact that �2 is nonempty.
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4 Projections of the bounded curve set

In this section, we prove Theorem 1.2, which we restate here for convenience:

Theorem 1.2 Given S , there exists L0 such that for all L � L0 there exists D D

D.S;L/, such that given �2AH.S/ with end invariants �˙ and an essential subsurface
W � S that is not an annulus or a pair of pants,

dHaus
�
�W .C.�;L//; hullW .�˙.�//

�
�D:

Moreover, if dW .�
C.�/; ��.�// >D then C.�;L/\ C.W / is nonempty and

dHaus
�
C.�;L/\ C.W /; hullW .�˙.�//

�
�D:

The main new content of this theorem is the statement that �W .C.�;L// is contained
in a uniform neighborhood of hullW .�˙/, and for this we use Lemma 3.1, which
gives us a comparison between the short curves in pleated surfaces and hierarchy
curves. The other inclusions were already known, and are essentially consequences of
the bi-Lipschitz model Theorem 2.3, which relates hierarchy curves to the hyperbolic
structure, and Lemma 2.2, which controls hierarchies in terms of subsurface projections.

The main new ingredient in the proof is Lemma 3.1. Given a curve ˛ 2 C.�;L/, we
consider a pleated surface realizing ˛ and the system � of hierarchy curves produced
by Lemma 3.1. If some element of � overlaps W , then the result follows from
Lemma 2.2, which is essentially a version of Theorem 1.2 for hierarchy curves. If not,
then �W .CH/ has bounded diameter, and Lemma 3.1 provides a bounded length curve
whose projection to W is uniformly near �W .CH/, which again allows us to complete
the proof.

Proof We first recall (from (2-1) in Section 2) that if L0 is chosen to be greater than
the Bers constant LB , then

(4-1) �W .�
˙/\�W .C.�;L//¤∅;

where the closure is in the Gromov closure C.W /D C.W /[ EL.W /. From this we
immediately have

(4-2) diam�W .C.�;L//� dW .�
C; ��/:

We next wish to get an inclusion in one direction,

(4-3) �W .C.�;L//�Nd1
.hullW .�C; ��//
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for a uniform d1 . Recall that Theorem 2.3 provides �h>0 such that C.�; �h/�CH.�˙/.
Theorem 2.5 gives a constant K D K.S; �h;L/ such that if diam�W .C.�;L// >
K , then `�. / < �h for each component of @W . Thus we suppose for now that
diam�W .C.�;L// >K , and therefore that Œ@W �� CH.�˙/.

Given ˛ 2 C.�;L/, let f W X !N� be a pleated surface, in the homotopy class of � ,
realizing ˛ . Let � be the curve system provided by Lemma 3.1, which consists of
curves in CH.�˙/ whose length in X is at most B D B.S; 1/.

If a component  2 � intersects W essentially, then, since the length bound on 
and ˛ in X implies a uniform upper bound on the intersection number of  and ˛
and hence an uniform upper bound on dW .˛;  / (see [21, Lemma 2.1]), we obtain a
uniform upper bound on dW .˛; CH.�˙//. Lemma 2.2 gives a uniform bound on the
Hausdorff distance between �W .CH.�˙// and hullW .�˙/, so we obtain a uniform
upper bound on dW .˛; hullW .�˙//.

If, on the other hand, W is disjoint from � , consider the component Z of S�collar.�/
containing W . Since, by Lemma 3.1, C.Z/\ CH.�˙/ is empty and Œ@W �� CH.�˙/,
we must have W DZ . Moreover, again by Lemma 3.1, there exists ˇ 2 C.W / such
that lX .ˇ/� B and

diamW .ˇ[�W .CH.�˙///� B:

The length bounds on ˛ and ˇ again give a uniform upper bound on dW .˛; ˇ/, so we
again obtain a uniform upper bound on dW .˛; hullW .�˙//.

Since we have obtained a uniform upper bound on dW .˛; hullW .�˙// for all
˛ 2 C.�;L/, we have established the containment (4-3), for some uniform d1 .

Lemma 2.1 implies that there exists ADA.S;L/ such that if dW .�
C; ��/ >A, then

the hierarchy H contains a geodesic kW supported on the subsurface W , whose initial
and terminal vertices lie within A of �W .�

�/ and �W .�
C/. If

diam.�W .C.�;L// > 2d1CA;

then (4-3) implies that dW .�
C; ��/ >A, and hence that we have kW in H .

In this case, assuming L0 �Lh , Theorem 2.3 implies that the vertices of kW are all
contained in C.�;L/, and since the Hausdorff distance between kW and hullW .�˙/
is uniformly bounded (since C.W / is Gromov hyperbolic), we may conclude that there
exists a uniform d2 so that

(4-4) hullW .�˙/�Nd2
.C.�;L/\ C.W //:

In particular

(4-5) hullW .�˙/�Nd2
.�W .C.�;L///:
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Therefore, if diam�W .C.�;L// > 2d1CKCA, then both the Hausdorff distance
between hullW .�˙/ and �W .C.�;L// and the Hausdorff distance between hullW .�˙/
and C.�;L/\ C.W / are bounded from above by d1C d2 . Therefore, we have estab-
lished our theorem in this case if we choose D D 2d1C d2CACK .

It remains to consider the case that diam�W .C.�;L//� 2d1CACK . However in
this case the conclusion of the theorem is immediate from (4-1).

5 Ending laminations in the algebraic limit

We now prove Theorem 1.1, which asserts that ending laminations of geometrically
infinite ends arise as limits of projections of end invariants.

Theorem 1.1 Let �n! � in AH.S/. If W �S is an essential subsurface of S , other
than an annulus or a pair of pants, and � 2 EL.W / is a lamination supported on W ,
the following statements are equivalent:

(1) � is a component of �C.�/.

(2) f�W .�
C.�n//g converges to �.

Furthermore we have:

(a) If f�W .�
C.�n//g accumulates on � 2 EL.W /, then it converges to �.

(b) The sequences f�C.�n/g and f��.�n/g do not converge to a common �2EL.S/.
(c) If W ¨ S is a proper subsurface then convergence of f�W .�

C.�n//g to
� 2 EL.W / implies f�W .�

�.�n//g does not accumulate on EL.W /.

The same statements hold with “C” replaced by “�”.

We note that we allow the case W D S unless explicitly noted otherwise.

For simplicity of notation, we let �Cn D �
C.�n/ and ��n D �

�.�n/. If � is a component
of �C.�/, it is not difficult to show that � is an accumulation point of either f�W .�

C
n /g

or of f�W .�
�
n /g. We first show, in Lemma 5.1, that it cannot be both. In order to

show that it is an accumulation point of f�W .�
C
n /g, we use the covering theorem and

geometric limit arguments to pull-back larger and larger W–product regions from N�
to the approximates. We then consider intersections of split-level surfaces with these
product regions to find pairs of hierarchy curves in CHn , one of which lies in a bounded
set and the other of which approximates �, such that the geodesic representative of the
approximation to � lies above the geodesic representative of the curve in the bounded
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set. This allows us to prove that (1) implies (2). On the other hand, if f�W .�
C
n /g

converges to �, we check that � is the ending lamination of a geometrically infinite
end of N� . Then, using the fact that (1) implies (2), we see that the end must be
upward-pointing, which establishes that (2) implies (1).

Proof We first observe that if f�W .�
C
n /g converges to �, then f�W .�

�
n /g cannot

accumulate at �.

Lemma 5.1 Suppose that f�ng is a convergent sequence in AH.S/. If W � S is a
(not necessarily proper) subsurface of S and f�W .�

C
n /g converges to �2 EL.W /, then

�W .�
�
n / does not accumulate at �. Similarly, if f�W .�

�
n /g converges to � 2 EL.W /,

then f�W .�
C
n /g does not accumulate at �.

Proof Let W be any non-annular subsurface of S that is not a pair of pants. Suppose
that f�W .�

C
n /g converges to �2 EL.W /. If f�W .�

�
n /g also accumulates at �, then we

can pass to a subsequence, still called f�ng, such that both f�W .�
C
n /g and f�W .�

�
n /g

converge to �. Let �D lim �n .

Let ˛ be a curve on W . Then the distance of ˛ to any geodesic joining �W .�
C
n / and

�W .�
C
n / diverges to 1. Since there exists some L�L0 such that l�n

.˛/�L for all
n, this contradicts Theorem 1.2.

The proof of the other case is exactly the same.

Suppose that � 2 EL.W / is a component of �C.�/ – that is, N 0
� has an upward-

pointing end with base surface W and ending lamination �. In order to show that (1)
implies (2), it suffices to show that any subsequence of f�ng has a further subsequence
f�nk
g such that �W .�

C
nk
/! �.

Given any subsequence of f�ng, we may pass to a subsequence (still denoted f�ng)
such that fNng D fN�n

g converges geometrically to a manifold NG , which is covered
by N� . It is a consequence of the covering theorem [28; 14] (see [3, Proposition 5.2])
that there is a neighborhood of the geometrically infinite end of N 0

� with ending
lamination � that embeds in NG . Let E be the image of this neighborhood in NG .
We may identify E in an orientation-preserving way with W � Œ0;1/.

After passing to a subsequence, we may assume that there exist 2–bi-Lipschitz maps

�nW W � Œ0; nC 1�!Nn

so that �n.@W � Œ0; n�/ � T .@W; n/ where T .@W; n/ is the collection of Margulis
tubes in Nn associated to the curves in @W . After passing to a further subsequence
we can adjust the product structure on E and choose points

zn 2 .NG/thick.�1/\ .W � Œn; nC 1�/
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so that �n.W � Œk; kC 1�/ is a W–product region, �n.zk/ 2 .Nn/thick.�1=2/ , and

dj.Nn/thick.�1=2/;�n.W �Œk;kC1�/

�
�n.zk/; �n.W � fk; kC 1g/

�
> d1.S; �1=2/

for all k D 0; : : : ; n. In other words, .�n.W � Œk; kC1�/; �n.zk// satisfies the assump-
tions of Lemma 2.14. (See the proof of Lemma 3.1.)

Let hnW Mn!Nn be the model map provided by Theorem 2.3. Lemma 2.14 guarantees
that for all n there exists ˛n 2 CHn with hn.U.˛n//� �n.W � Œ0; 1�/. Each ˛n has
a representative in W � Œ0; 1� � E of uniformly bounded length. As in the proof of
Lemma 3.1 there will be a finitely many such curves and we can pass to a further
subsequence such that ˛n is a fixed curve ˛ .

Similarly, for all n, Lemma 2.14 implies that there exists a curve ˇn 2 CHn with
hn.U.ˇn//� �n.W � Œn; nC 1�/. Then f��1

n .ˇn/g is a sequence of bounded length
curves exiting E , so we have that ˇn ! �. In particular, for large n, ˛ and ˇn

overlap. Furthermore, by construction ��1
n .hn.U.ˇn/// lies above ��1

n .hn.U.˛///

in E . Lemma 2.9 implies that �n.W � f1g/ extends to an embedded surface X

isotopic to a level surface in Nn . Since hn.U.˛n// and hn.U.ˇn// lie in a collar
neighborhood of �n.W � f1g/ we may assume they are disjoint from X . Since each
�n is orientation-preserving, this implies that

hn.U.˛//�top hn.U.ˇn//

in Nn . Since hn is orientation-preserving, we may conclude that U.˛/ �top U.ˇn/

in Mn .

Since dW .˛; ˇn/ ! 1 and ˛; ˇn 2 �W .C.�n;L0//, Theorem 1.2 implies that
dW .�

C
n ; �

�
n / ! 1. We may pass to a subsequence so that dW .�

C
n ; �

�
n / � A.S/

for all n, so Lemma 2.1 implies that Hn contains a geodesic kn with domain W .
Lemma 2.2 implies that dW .�kn

.˛/; ˛/ and dW .�kn
.ˇn/; ˇn/ are uniformly bounded,

where �kn
is the projection from C.S/ to kn through C.W /. After identifying kn

with an interval, Lemma 2.6 implies that there exists r so that

�kn
.˛/ < �kn

.ˇn/C r:

Now, since ˇn! � 2 EL.W /, it follows that �kn
.ˇn/! �. Since

�kn
.˛/ < �kn

.ˇn/C k;

ˇn lies between ˛ and the terminal vertex �n of kn for all large enough n. Recalling
that all the �kn

.˛/ lie in a finite diameter set in C.W /, we may conclude that the
terminal vertex �n also converges to �. (Here, we use that C.W / is hyperbolic and
Klarreich’s theorem [18] identifying @C.W / with EL.W /.) Since, by Lemma 2.1,
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dW .�n; �
C
n / is uniformly bounded, we further conclude that f�W .�

C
n /g converges to

�, as desired. This completes the proof that (1) implies (2).

Now suppose that f�W .�
C
n /g converges to � 2 EL.W /. Lemma 5.1 then implies

that f�W .�
�
n /g does not accumulate at �. Therefore, dW .�

C
n ; �

�
n /!1. Lemma 2.1

implies that, for all large enough n, Hn contains a geodesic kn with base surface W .
For each n choose a vertex ˇn of kn so that ˇn! �. By Klarreich’s theorem, there is
a subsequence so that fˇng converges projectively to a measured lamination � on W

whose support is �, that is, fˇn= lX .ˇn/g converges to � , where X is a fixed finite area
hyperbolic metric on W . By continuity of length [7], l�.�/D lim l�n

.ˇn/= lX .ˇn/D 0,
so � is unrealizable in � . This implies that � is an ending lamination for an end based
on W (see Section 2).

If this end were downward-pointing, then, since (1) implies (2) (applied in the downward-
pointing case), f�W .�

�
n /g would converge to �, which would contradict Lemma 5.1.

Therefore, the end must be upward-pointing. This completes the proof that (2) im-
plies (1).

In order to establish Claim (a), we assume that f�W .�
C
n /g accumulates at � 2 EL.W /.

By applying .2/ D) .1/ to a subsequence f�nj g where f�W .�
C
nj
/g converges to �,

we see that � is a component of �C.�/, and so, applying implication .1/D) .2/, we
see that the entire sequence f�W .�

C
n /g converges to �. Claim (b) in the statement

follows immediately from Lemma 5.1. Finally, for Claim (c), note that for W a proper
subsurface of S , if f�W .�

C
n /g converges to �C 2 EL.W / and f�W .�

�
n /g converges

to �� 2 EL.W /, then �C is a component of �C.�/ and �� is a component of ��.�/
by an application of (2) D) (1). Therefore, for some boundary component  of W

that is non-peripheral in S ,  � f0g is isotopic in S � I into the annuli PC and P�

determined by the relative compact core for N� , contradicting that no two components
of PC and P� are isotopic.

6 Overlapping curves

In this section we prove Theorem 1.3, which states that if a curve ˛ 2 C.�;L/ overlaps
and lies above @W in N� , then �W .˛/ is uniformly close to �W .�

C.�//.

Theorem 1.3 Given S and L > 0 there exists c such that, given � 2 AH.S/, an
essential subsurface W � S that is not a pair of pants, and a curve ˛ 2 C.�;L/ such
that ˛� lies above the geodesic representative of some component of .@W /� that it
overlaps, then

dW .˛; �
C.�//� c:

Geometry & Topology, Volume 17 (2013)



2908 Jeffrey F Brock, Kenneth W Bromberg, Richard D Canary and Yair N Minsky

Furthermore, if W is not an annulus or a pair of pants, ˛ 2 C.�;L/ overlaps @W , and

dW .˛; �
�/ > c

then ˛� lies above the geodesic representative of every component of @W that it
overlaps.

The same holds when replacing “above” with “below” and �C with �� .

When �.˛/ or �.ˇ/ is parabolic we interpret the statement “˛� lies above ˇ�” to
mean that all sufficiently short representatives of ˛ in N� lie above all sufficiently short
representatives of ˇ . Equivalently, ˛� lies above ˇ� if ˛ is in the top end invariant or
ˇ is in the bottom end invariant.

In the course of the proof we will notice that if l�.˛/ � L, W is not an annulus,
and dW .�

C; ��/ is sufficiently large, then ˛� either lies above or below all geodesic
representatives of components of @W that it overlaps (see Proposition 6.1).

We will first prove the theorem when W is not an annulus. The result will be straightfor-
ward if dW .�

C; ��/ is small. We sketch the argument when dW .�
C; ��/ is large and

therefore all the components of @W lie in CH , are very short, and Lemma 2.13 gives
us a wide W–product region. If ˛ is a curve in the hierarchy the theorem follows from
statement (2) of Lemma 2.6. If not we may realize ˛ by a pleated surface f W X !N

and then replace ˛ with a hierarchy curve  that overlaps W given to us by Lemma 3.1.
If ˛� overlaps and lies above a component ˇ� of .@W /� then the pleated surface
also lies above ˇ� . Therefore, if  and ˇ� overlap, f . / also lies above ˇ� and
the theorem again follows from (2) of Lemma 2.6. Most of the work in the proof
involves the case when there is no such ˇ� that both ˛ and  overlap. For example, it
is possible that  lies in W . Here we employ the observation that the pleated surface
has bounded penetration into the wide W–product region, and an application of part
(1) of Lemma 2.6 completes the proof.

In the case that W is an annulus, note that the argument above works perfectly well as
long as the curve  2 � overlaps the core of W . However, the possibility that  is
equal to the core of W , together with the phenomenon of wrapping, force a completely
different approach. Given a curve ˛ of bounded length such that ˛� lies above  �

(where  is now the core of W ), we first note that there does exist a curve ˇ of bounded
length such that ˇ� also lies above  � , and that moreover d .ˇ; �

C/ is bounded (ˇ is
essentially obtained from the top ending data of N� , in Lemma 6.2). We therefore
have to bound d .˛; ˇ/. To do this we consider a “model manifold” constructed with
ending data ˛ and ˇ . If d .˛; ˇ/ is large enough then this model will have a deep
tube U. /, and a Lipschitz model map constructed in Lemma 6.4 using a variation on
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the work in [26] will take @U. / to the boundary of the corresponding Margulis tube
T . /. The fact that ˛� and ˇ� are both above this tube will be used to show that the
map @U. /! @T . / has degree 0, but a Lipschitz map of degree 0 between tori of
bounded geometry cannot have kernel generated by a very long curve (Lemma 6.5).
This bounds the length of the meridian of U. /, and hence bounds d .˛; ˇ/.

6.1 Proof in the non-annular case

When W is not an annulus the theorem will follow from this proposition:

Proposition 6.1 If S is a compact surface and L> 0, then there exists c2D c2.S;L/

such that if � 2 AH.S/, W is a non-annular subsurface, dW .�
C; ��/ > c2 and

˛ 2 C.S;L/ overlaps @W , then either ˛� lies above the geodesic representative in N�
of every component of @W it overlaps or ˛� lies below the geodesic representative of
every component of @W it overlaps.

Moreover, if ˛� lies above the geodesic representative in N� of every component of
@W it overlaps, then

dW .˛; �
C/� c2:

The same holds when replacing “above” with “below” and “C” with “�”.

Proof of Theorem 1.3 in non-annular case, given Proposition 6.1 If dW .�
C; ��/>

c2 , then the second claim of Proposition 6.1 is exactly the first claim of the theorem.
For the second claim of the theorem we note that the first claim implies that ˛� cannot
lie below .@W /� . Proposition 6.1 then implies that ˛� lies above .@W /� .

If dW .�
C; ��/� c2 it is convenient to assume, without loss of generality, that L�L0

where L0 is the constant from Theorem 1.2. Theorem 1.2 then implies, since l�.˛/�L,
that �W .˛/ lies within D DD.S;L/ of hullW .�˙/. Therefore,

dW .˛; �
C/�DC dW .�

C; ��/�DC c2

regardless of whether or not ˛� lies above any component of .@W /� . In particular,
we have both claims of the theorem.

Proof of Proposition 6.1 We first assume that c2>A, where ADA.S/ is the constant
given in Lemma 2.1. Therefore, the assumption that dW .�

C; ��/ > c2 implies that
W is the support of a geodesic kW in the hierarchy H DH.�C; ��/.

We may further assume that c2>KC2D , where KDK.S; �h;L/ is the constant from
Theorem 2.5 and D DD.S;L/ is the constant from Theorem 1.2. Then Theorem 1.2
implies diamW .C.�;L// >K , so that l�.@W / < �h .
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Let N DN� and let hW M !N be the model map provided by Theorem 2.3. Since
l�.@W / < �h , @W � CH (where H DH.�˙/) and h.U.@W //D T .@W /.

If dW .�
C; ��/D1 then W supports a geometrically infinite end and every component

of .@W /� will be parabolic and will either lie in �C or �� . The ordering claim of
the proposition then follows. For the remainder of the proof we assume that if W

supports a geometrically infinite end it is downward-pointing and therefore kW , the
hierarchy geodesic supported on W , has a terminal vertex �W and ˛� lies above every
component of @W that it overlaps.

Let f W X !N be a pleated surface, in the homotopy class of � , realizing ˛ . Let � be
the system of hierarchy curves and B D B.S; 1/ the constant provided by Lemma 3.1,
which bounds the length on X of every curve in � . Since we know that W is the
support of a geodesic in H , and there are no hierarchy curves in the complement of � ,
there exists a hierarchy curve  2 � that overlaps W . Notice that, since lX .˛/�L

and lX . /� B , dW .˛;  /� a for some uniform constant a. Therefore

(6-1) dW .˛; �
C/� dW .; �W /C aCA:

Thus our goal now is to bound dW .; �W /.

We will define a constant a1 and require that c2 > 2a1C 2A, so that, by Lemma 2.1,
kW has length at least 2a1 . The constant a1 will be chosen so that the W–product
region provided by Lemma 2.13 will be “thick” enough for our purposes.

We begin by giving the argument in a simpler case, where it is easier to understand the
structure of the argument.

Simplified ordering argument Consider the case in which the following hold:

(S1) f .X / is disjoint from T .@W /.

(S2) f . /� h.U. //.

Recall from Lemma 2.11 that there exists a constant b D b.S; �h/, so that

diamjXthick.�h/
.X /� b:

Since f is 1–Lipschitz it follows (see (2-6)) that

diamjNthick.�h/
.f .X //� b:

Let c3 D c3.S/ be the constant given by Lemma 2.13, and assume that a1 has been
chosen so that

a1 � db=c3e:
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Let v0 < v1 < v2 D �W be three vertices in kW such that dW .vi ; viC1/ D a1 .
Lemma 2.13 gives us images of extended split-level surfaces Gi D h. yFvi

/ and two
W–product regions R1 and R2 where R1 has horizontal boundary G0[G1 and R2

has horizontal boundary G1[G2 . If we let RDR1[R2 , then G1 �R, and

(6-2) djNthick.�h/
;R.G1;Gj / > b

for j D 0 and j D 2.

We claim now that f .X / is disjoint from G1 . If not, then, since f .X / is disjoint from
T .@W / and

diamjNthick.�h/
.f .X //� b;

f .X / would have to be contained in R. However, this is impossible, since f is a
homotopy equivalence.

Since f .X / is disjoint from G1 , it lies above it or below it by Lemma 2.8. By
Lemma 2.7, ˛� lies either above or below every component of .@W /� that it overlaps.
This proves the ordering statement of the proposition.

Assume that the former holds: f .˛/D ˛� lies above the core curve of T .ˇ/ for every
component ˇ � @W that ˛ overlaps. Since f .˛/ is disjoint from the tube T .ˇ/, it
also lies above the corresponding boundary component of G1 . Hence G1 �top f .X /.
We therefore can conclude that G1 �top f . /, and finally, since f . /� h.U. //, that

(6-3) G1 �top h.U. //

provided G1 is disjoint from h.U. //.

Note that G1 intersects h.U. // only if yFv1
intersects U. /. Since yFv1

is an extended
split-level surface, this can only happen if  is one of the base curves of yFv1

, and in
particular if  is disjoint from v1 (as curves on S ). In this case dW .; v1/� 1, so

dW .; �W /� a1C 1n:

If  does intersect v1 , then G1 and h.U. // are disjoint and so

U.v1/�top U. /:

By Lemma 2.6, �kW
.v1/� �kW

. /C r , which implies that

dW .; �W /� a1C r:

We have uniformly bounded dW .; �W / in all cases. In combination with (6-1), this
completes the proof of the second claim in our simplified case.
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General ordering argument We now adapt the above argument to hold in the general
setting where (S1) and (S2) may not hold. It will be convenient to divide @W into
the collection @1W of components that do not overlap ˛ , and the collection @0W of
components that do overlap ˛ . Moreover, we will assume that the pleated surface f
realizes ˛ [ @1W . As in the simplified case, we will construct extended split level
surfaces G0 , G1 and G2 such that G0 and G2 are the horizontal boundary components
of a W–product region R that contains G1 . We will choose the spacing constant to
guarantee that:

(1) f .X / is disjoint from G1 .

(2) There exists a collection of annuli A0 joining (suitable components of) @G1 to
.@0W /� such that f .X / misses A0 .

(3) There exists a homotopy from f . / into h.U. // that is disjoint from G1 .

By (1) and (2), f .X / is disjoint from xG1 D G1 [A0 and therefore, by Lemma 2.8,
f .X / lies above or below xG1 and, as in the simplified case, Lemma 2.7 implies that
˛� lies either above or below every component of .@W /� that it overlaps. This proves
the ordering statement. Since f .X / lies above xG1 and hence above G1 , then (3)
implies that h.U. // lies above G1 if it is disjoint from G1 . Therefore, once we have
established (1)–(3), we can use Lemma 2.6 to complete the proof just as we did in the
simplified case.

We remark that with a little more work, we could homotope f to a uniformly Lipschitz
map g such that g. / � h.U. // and g.X / is disjoint from T .@0W /. Our proof
would then resemble the simplified case even more closely.

We now establish (1)–(3). Notice that our assumptions imply that

f .collar.@1W //� T .@1W /:

Since lX .˛/�L and ˛ overlaps every component of @0W , there exists L2DL2.S;L/

so that passing through every point in X � collar.@1.W // there is a curve of length
at most L2 that is not homotopic into collar.@W /. Moreover, there exists �3 D

�3.maxfL2;B;Khg/ so that any curve of length at most maxfL2;B;Khg that inter-
sects T�3

.@W / is contained in T .@W /. It follows that f .X �collar.@1W // is disjoint
from T�3

.@W /.

Applying Theorem 2.5, we may assume that dW .�
C; ��/ is large enough that

l�.@W /� �3=4. Therefore, there exists a constant K3 so that the radial projection

rW W T .@W /�T�3
.@W /! @T .@W /
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is K3 –Lipschitz. We may extend rW to a K3 –Lipschitz map defined on N �T�3
.@W /

by setting it to be the identity off of T .@W /.

Let Z be a component of X � collar.@1W /. Lemma 2.11 implies that there exists
b D b.S; �3/ so that

diamjXthick.�3/
.Z/� b:

Since f . / has length at most B and the core curve of h.U. // has length at most
Kh , one may homotope f . / into h.U. // through a family of curves of length at
most maxfB;Khg. It follows that this homotopy may be completed in the complement
of T�3

.@W /. Therefore, there exists a constant b1 D b1.B; �3/ so that there is a
homotopy from f . / into h.U. // all of whose tracks have length at most b1 and are
disjoint from T�3

.@W /. (If `�. / < �h , then h.U. //D T . / and this follows from
[11, Lemma 2.6]. If not, then the ruled homotopies from f . / to  � and from the
core curve of h.U. // to  � each have uniformly bounded length tracks and avoid
T�3

.@W /, so they may be concatenated to produce the desired homotopy.)

Let c3 D c3.S/ be the constant given by Lemma 2.13, and assume that

a1 � dK3.bC b1/=c3e:

As in the simplified case, this implies that kW has length at least 2a1 .

Let v0 < v1 < v2 D �W be three vertices in kW such that dW .vi ; viC1/ D a1 .
Lemma 2.13 provides extended split level surfaces Gi D h. yFvi

/ and a W–product
region R with horizontal boundary G0[G2 such that G1 �R and

(6-4) djNthick.�3/
;R.G1;Gj /� djNthick.�h/

;R.G1;Gj / >K3.bC b1/

for j D 0 and j D 2.

We first claim that if Z is a component of X � collar.@1W /, then f .Z/ is disjoint
from G1 . Since f .collar.@1W // � T .@1.W //, this implies that f .X / is disjoint
from G1 , which establishes (1). Notice that Z is not homotopic into W , so f .Z/
cannot be contained in R[T .@W /. So, if f .Z/ intersects G1 , there is a path � in
Z so that � \Zthick.�3/ has length at most b and f .�/ joins G1 to a point outside of
R[T .@W /. Since f .Zthin.�3// is disjoint from T�3

.@W / and f .Zthin.�3//�Nthin.�3/ ,
x� D rW .f .�// is a path contained in N �T .@W / joining a point on G1 to a point
outside of R such that x� \Nthin.�3/ has length at most K3b . However, this would
contradict (6-4).

A very similar argument establishes (2). Let A0 be the collection of radial annuli in
T .@0W / joining components of .@0W /� to the appropriate components of @G1 . If Z

is a component of X � collar.@1W / and f .Z/ intersects A0 , then there is a path �
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in Z so that � \Zthick.�3/ has length at most b and f .�/ joins A0 to a point outside
of R[ T .@0W /. Then x� D rW .f .�// would be a path contained in N � T .@W /

joining a point on G1 to a point outside of R such that x�\Nthin.�3/ has length at most
K3b . Again, this contradicts (6-4). Therefore, f .X / is disjoint from A0 and we have
established (2).

To establish (3), consider the homotopy with track lengths at most b1 joining f . /
to a curve in h.U. // (in the complement of T�3

.@W /). If the homotopy intersects
G1 then there is a path � of length b1 joining G1 to f .X /. Then rW .�/ is a path of
length Kb1 in N �T .@W / joining G1 to a point in z 2 f .X /. One may then apply
the construction in (1) to find a path x� in N �T .@W / joining rW .z/ to a point in
N �R such that x� \Nthin.�3/ has length at most K3b . Concatenating � and x� would
again contradict (6-4). This completes the proof of the first claim in the non-annular
case.

6.2 Proof in the annular case

We now proceed to give a proof of Theorem 1.3 in the case when W is an annulus.
Let  be the core of W . Assume that ˛ 2 C.�;L/ and that ˛� lies above  � .

We first observe that we may assume that there is a bounded length curve ˇ such that
dW .ˇ; �

C/� 1 whose geodesic representative lies above  � .

Lemma 6.2 Let S be a compact surface and L�L0 . There exists K3 DK3.S;L/

and L1 D L1.S;L/ such that if � 2 AH.S/ has end invariants �˙ , ˛ 2 C.�;L/,
 2 C.S/, ˛� lies above  � and

d .˛; �
C/ >K3;

then there exists ˇ 2 C.�;L1/ such that d .ˇ; �
C/� 1 and ˇ� lies above  � .

Proof First notice that if  overlaps a simple closed curve component of �C then we
can choose ˇ to be that curve. (Recall that, by convention, we say that ˇ� lies above
 � if ˇ is an upward-pointing parabolic).

If  overlaps a lamination component � of �C with support Y , then there exists a
sequence fˇng� C.�;Lh/\C.Y / so that ˇn! � in C.Y /. For all sufficiently large n,
dW .ˇn; �

C/� 1 and ˇ�n lies above  � , so we may choose ˇ D ˇn for some specific
large enough n.

In the remaining case,  is contained in Y where Y is the support of an upward
pointing geometrically finite end. Let Yh be the component of the (upper) convex
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hull boundary associated to Y , and let Y1 be the corresponding component of the
boundary at infinity, with its Poincaré metric. Recall that there is a 2–Lipschitz map
r W Y1! Yh in the correct homotopy class, called the nearest point retraction (Epstein,
Marden and Markovic [16, Theorem 3.1]).

There exists �4D �4.L/ such that any curve of length at most L that intersects T�4
. /

is homotopic to a power of  . If lYh
. / < �4 , then there is an annulus A in T�4

. /

joining  � to its representative on Yh . But then ˛� , which lies in C.N / and above  � ,
would be forced to intersect A, contradicting the assumption that l.˛�/<L. Therefore,
we may assume that lYh

. /� �4 , which implies (via the map r ) that lY1. /� �4=2.
It follows that the minimal Y1–length marking �CjY contains a curve ˇ of length at
most L1 DL1.S; �4/ that overlaps  .

It is clear that r.ˇ/ lies above  � , unless it intersects  � , since  � � C.N /. There
exists �5 D �5.L1/ so that there is a homotopy from r.ˇ/ to ˇ� that is disjoint from
T�5

.ı/ for any curve ı 2 C.S/�fˇg. Therefore, if l�. / < �5 , then ˇ� lies above  � .
Theorem 2.5 gives K3DK.S;L; �5/ so that if diam .C.�;L//�K3 , then l�. /<�5 .
But, since

diam ..C.�;L//� d .˛; �
C/�K3

by assumption, we may conclude that ˇ� lies above  � in this case as well.

The annular case of Theorem 1.3 then follows quickly from the following result:

Proposition 6.3 Given a compact surface S and L;D > 0, there exists F DF.D;L/

such that if � 2 AH.S/ and ˛ , ˇ and  are curves in C.S/ such that

(1) ˛ and ˇ overlap  ,

(2) `�.˛/�L and `�.ˇ/�L,

(3) ˛� and ˇ� lie above  , and

(4) if Y is non-annular essential subsurface with  2 Œ@Y � then dY .˛; ˇ/�D ,

then d .˛; ˇ/� F .

Proof of the annular case of Theorem 1.3 We may assume that d .˛; �
C/ > K3

where K3 DK3.S;L/ is the constant from Lemma 6.2. Let ˇ be the curve provided
by Lemma 6.2. Recall that l�.ˇ/ < L1 D L1.S;L/, d .ˇ; �

C/ � 1 and ˇ� lies
above  � .

If D DD.S;L/ is the constant from the non-annular case of Theorem 1.3, then for
any non-annular surface Y with  2 Œ@Y �, we have

dY .˛; ˇ/� 2D:
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We may then apply Proposition 6.3 to conclude that

d .˛; ˇ/� F D F.2D;maxfL;L1g/:

It follows that d .˛; �
C/� F C 1, and the proof is complete.

We now turn to the proof of Proposition 6.3. The first lemma we need is a mild
variation of the model manifold theorem from [26], in which the end invariants have
been replaced by the bounded-length curves ˛ and ˇ . Our statement of this lemma
forgets most of the structure of the model and the Lipschitz properties of the map,
remembering only the properties of the map concerning the tube U. / and the images
of ˛ and ˇ . We will have to take a bit of care because the statements in [26] are given
in the setting where the initial and terminal markings of the hierarchy are actually
the end invariants of � , although the proofs go through verbatim in this setting. In
Bowditch [6], simpler proofs of the a priori length bounds of [26] are given, in the
more general setting, and this will simplify the discussion. We will point out the details
as we go.

Lemma 6.4 Given a compact surface S and L;D > 0 there exist K1DK1.S;L;D/

and K2 DK2.S;L;B/ such that if � 2 AH.S/, ˛ and ˇ are intersecting curves in
C.S/ and  2 C.S/ intersects both ˛ and ˇ ,

� `�.˛/; `�.ˇ/�L,

� d .˛; ˇ/ >K1 , and

� dY .˛; ˇ/ <D if  2 Œ@Y � and Y is non-annular,

then there exists a map of pairs

f˛;ˇW .S � Œ0; 1�; @S � Œ0; 1�/!
�
N 0
� ; @N

0
�

�
;

in the homotopy class determined by � , such that:

(1) The preimage f �1
˛;ˇ
.T . // is a regular neighborhood U. / of  � f1=2g.

(2) The restriction of f˛;ˇ to @U. /, as a map to @T�. /, is K2 –Lipschitz with
respect to a Euclidean metric � on @U. /, which has area at most K2 , and
meridian length bounded below by d .˛; ˇ/=K2 .

(3) If ˛� lies above (respectively below)  � , then f jS�f0g lies above (respectively
below)  � .

(4) If ˇ� lies above (respectively below)  � , then f jS�f1g lies above (respectively
below)  � .
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Proof We first extend ˛ to a pants decomposition P˛ each of whose curves has
length at most L0 DL0.S;L/. We do so by considering a pleated surface f W X !N

realizing ˛ and letting P˛ be a minimal length pants decomposition of X that contains
˛ . We similarly extend ˇ to a pants decomposition Pˇ each of whose curves has
length at most L0 DL0.S;L/.

Construct a hierarchy H whose initial and terminal markings are P˛ and Pˇ , respec-
tively. [26, Section 7], as well as the main theorem of Bowditch [6], give us an uniform
upper bound on the lengths of all curves in CH .

Choose K1 >K.S; �h;L/, where K.S; �h;L/ is the constant from Theorem 2.5, so
that, with our assumptions, `�. / < �h . Moreover, we may choose K1 >A.S/ where
A.S/ is the constant from Lemma 2.1, so that  must lie in CH .

We assume, for the moment, that P˛ and Pˇ have no curves in common. The construc-
tion in [26, Section 8] produces a “model manifold” from the hierarchy H . This is a
manifold, equipped with a path metric, homeomorphic to S � Œ0; 1� minus the curves
P˛ � f0g and Pˇ � f1g. To each curve v in H is associated a “tube” U.v/, which
is a solid torus regular neighborhood of a level curve isotopic to v . This applies in
particular to  and the curves of P˛ and Pˇ . After removing U.v/ for each curve v
in P˛ and Pˇ , and taking the closure of what remains (this has the effect of removing
the part of @U.v/ that is in the boundary of the model), we obtain a subset M of the
model that is homeomorphic to S � Œ0; 1�, and such that P˛ and Pˇ are realized with
uniformly bounded length on its boundary (we again label these curves P˛ � f0g and
Pˇ � f1g). This is the manifold on which we will define our map.

The boundary of the tube U. / is a Euclidean torus, whose geometry is controlled in
terms of the coefficients fdY .P˛;Pˇ/g�@Y , by [26, Theorem 9.1] (and the discussion
in [26, Section 9]). In particular, given our uniform upper bound on dY .P˛;Pˇ/ over
all non-annular Y with  � @Y , we obtain an uniform upper bound on the area of
@U. /. The same theorem gives a lower bound of the form d .˛; ˇ/=K2 for the length
of the meridian of this torus. Together these bounds give us conclusion (2).

We now note that the construction of a map from M to N� carried out in [26, Section 10]
depends only on the length bounds on hierarchy curves. Thus the proof of the Lipschitz
model theorem in that section, carried out in our setting, yields a continuous map
f W M ! N� such that f �1.T . // D U. / (conclusion (3) of that theorem), that
f takes ˛ � f0g and ˇ � f1g to curves of uniformly bounded length, and that f
is K2 –Lipschitz on @T . / (for some uniform choice of K2 depending only on S

and L).

Geometry & Topology, Volume 17 (2013)



2918 Jeffrey F Brock, Kenneth W Bromberg, Richard D Canary and Yair N Minsky

Since f .˛� f0g/ has bounded length, there exists �6 > 0 so that the ruled homotopy
from f .˛�f0g/ to ˛� cannot intersect T�6

.˛/. We again use Theorem 2.5 to observe
that we may choose K1 large enough that l�. / < �6=2, so that the ruled homotopy
is disjoint from  � . Therefore, if ˛� lies above (below)  � , then f .˛ � f0g/ lies
above (below)  � , which implies, by Lemma 2.7, that f jS�f0g lies above (below)  � .
Similarly, if ˇ� lies above (below)  � , then f .ˇ�f1g/ lies above (below)  � , which
implies, by Lemma 2.7, that f jS�f1g lies above (below)  � .

Thus we obtain a map satisfying all the conditions of the lemma. This completes the
proof under our assumption that P˛ and Pˇ have no common curves.

We now explain how to handle the case when P˛ and Pˇ do have common curves.
Let � denote the union of their shared components.

A hierarchy between P˛ and Pˇ still exists, and the a priori length bounds on the
hierarchy curves are obtained in exactly the same way. The construction of the model,
however, is now slightly different: In [26], the initial and terminal markings are allowed
to have common components only if at least one of them comes with a transversal.
This is not the case here, so we must use a variation of the construction.

The construction in [26] proceeds just as before, except at the stage where a tube is in-
serted for a component ı of �. This tube will now be of the form .annulus/�R, and so
the removal of the tubes associated to � will produce a model naturally homeomorphic
to R� Œ0; 1�, where R is the (possibly disconnected) surface S n collar.�/.

The construction of the Lipschitz map f proceeds as before on each component of
R� Œ0; 1�. We note that the restriction of the model map to R�f1g may be extended to
a map defined on S �f1g by appending ruled annuli connecting f .@R/ to @R� . Since
there is an uniform upper bound on the length of f .@R/, there exists �7 > 0 so that
these appended annuli cannot intersect T�7

. /. We may assume that K1 is chosen
large enough that l�. / < �7=2, so that a retraction can be used to adjust the map so
that the pre-image of T . / is just U. /. We can extend this to a slight thickening of
S � f1g, so that our final model is homeomorphic to S � Œ0; 1�, and again the proof is
complete.

We next establish a lower bound on the Lipschitz constant of a degree zero map between
two Euclidean tori, which depends on the minimal length of a homotopically non-trivial
geodesic generating the kernel of the associated map between the fundamental groups.

Lemma 6.5 If T0 and T1 are Euclidean tori and f W T0 ! T1 is a Lipschitz map
such that the kernel of f�W �1.T0/! �1.T1/ is infinite cyclic and is generated by an

Geometry & Topology, Volume 17 (2013)



Convergence properties of end invariants 2919

element whose geodesic representative has length L, then

Lip.f /�
2 inj.T1/L

Area.T0/
;

where Lip.f / is the minimal Lipschitz constant for f .

Proof Let a be a generator of ker.f�/. Then a stabilizes a line `0 in the universal
cover zT0 D R2 . Choose b 2 �1.T0/ so that a and b generate and let `n D bn.`0/.
Notice that Area.T0/DLd.`0; `1/. It follows that

d.`0; `n/D
n Area.T0/

L
:

The lift zf W zT0!
zT1 factors through a map to zT0=hai and in zT0=hai the image of `0

is compact. Notice that

diam. zf .`0//D diam. zf .`n//:

Since f�.b/ acts by translation on zT1DR2 with translation distance at least 2 inj.T1/,
we see that:

d. zf .`0/; zf .`n//� 2 inj.T1/n� 2 diam. zf .`0//

Therefore

Lip.f /� Lip. zf /�

�
2 inj.T1/n� 2 diam. zf .`0//

�
L

n Area.T0/
:

Letting n!1 gives the desired estimate.

Proof of Proposition 6.3 We may assume that d .˛; ˇ/ > K1 , where K1 is the
constant from Lemma 6.4, since otherwise we are done.

Let f˛;ˇ be the map given by Lemma 6.4 and let f W @U. /! @T . / be the restriction
of f˛;ˇ to the torus @U. /. Since f˛;ˇjS�f0g and f˛;ˇjS�f1g both lie above  � and
have image disjoint from T . /, they are homotopic in the complement of T . /.
Lemma 2.10 then implies that deg.f /D 0 and thus that ker.f /¤ fidg. Since f˛;ˇ
is a homotopy equivalence the kernel of f has to be contained in the kernel of the
inclusion of @U. / in S � Œ0; 1�. The kernel of this second map is generated by the
meridian of @U. / and therefore ker.f / is generated by a power of the meridian.
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By Lemma 6.4 there exists a constant K2 > 0 such that @U. / is a Euclidean torus
with area bounded above by K2 , the length of the meridian is bounded below by
d .˛; ˇ/=K2 and f is a K2 –Lipschitz map. The boundary of the Margulis tube T . /
is also a Euclidean torus and its injectivity radius is uniformly bounded below by some
constant C1 . We then apply Lemma 6.5 to conclude that

K2 >
2C1.d .˛; ˇ/=K2/

K2

D
2C1d .˛; ˇ/

.K2/2
:

Rearranging we have

d .˛; ˇ/ <
.K2/

3

2C1

which completes the proof.
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