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Torus bundles not distinguished
by TQFT invariants

Louis FUNAR
APPENDIX BY LOUIS FUNAR AND ANDREI RAPINCHUK

We show that there exist arbitrarily large sets of non-homeomorphic closed oriented
SOL torus bundles with the same quantum (TQFT) invariants. This follows from the
arithmetic behind the conjugacy problem in SL(2, Z) and its congruence quotients,
the classification of SOL (polycyclic) 3—manifold groups and an elementary study
of a family of Pell equations. A key ingredient is the congruence subgroup property
of modular representations, as it was established by Coste and Gannon, Bantay, Xu
for various versions of TQFT, and by Ng and Schauenburg for the Drinfeld doubles
of spherical fusion categories. In particular, we obtain non-isomorphic 3—manifold
groups with the same pro-finite completions, answering a question of Long and Reid.
On the other side we prove that two torus bundles over the circle with the same U(1)
and SU(2) quantum invariants are (strongly) commensurable.

In the appendix (joint with Andrei Rapinchuk) we show that these examples have
positive density in a suitable set of discriminants.

20F36, 57TM07; 20F38, 57N05

1 Introduction and statements

Two fundamental constructions of TQFTs are due to Reshetikhin and Turaev (see [64]),
using link invariants and quantum groups, and to Turaev and Viro [74], using quantum
6 —symbols. The Reshetikhin—Turaev method was further extended in Turaev [72]
to a very general construction of TQFTSs, whose input is a modular tensor category,
namely an algebraic structure that seems to be the most general data needed for building
invariants of arbitrary closed 3—manifolds.

The Drinfeld double construction provides a functor D that associates to every spherical
fusion category C a modular tensor category D(C) (see [50]), sometimes also called the
center of C. In the opposite direction, we have the forgetting functor U that associates
to the modular tensor category A the spherical fusion category U(.A) underlying A,
forgetting the braid structure (see next section for details). Notice that D(U(C)) =C®C,
where C is the opposite category and in particular D(U(C)) is anomaly-free. For the
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sake of simplicity of notation we will drop U in the sequel. If A is a modular tensor
category (see [72]) we denote by RT 4 the Reshetikhin—Turaev TQFT invariant of
3—manifolds constructed out of the category .A. In the particular case when the modular
tensor category A is the Drinfeld double D(C) of a spherical fusion category the
associated invariant RT p(¢) will be denoted as TV and it will be called the Turaev—
Viro TQFT invariant of 3—-manifolds associated to C. If C were itself a modular tensor
category then RTp () would indeed coincide with the usual Turaev—Viro invariants
| M |¢ constructed out of C by intrinsic methods (see [72, Section V]).

More generally, the Reshetikhin—Turaev construction produces, out of an (anomaly-free)
modular tensor category .4, a symmetric monoidal 2—functor RT 4 with domain the
2—category of compact oriented 1—, 2— and 3—manifolds (with corners) and target the
linear categories. Conjecturally, this construction gives all such 2—functors for which
the value of the circles is .4 with monoidal structure induced from the pair of pants
and braiding coming from the usual half-twist on the pair of pants. On the other hand,
the Turaev—Viro construction takes as input a spherical fusion category C and produces
a symmetric monoidal 3—functor with domain the 3—category of compact oriented 0—,
1-, 2— and 3-manifolds (with corners) and target the tensor linear categories. The
locality property makes the spherical fusion categories interesting for higher categories.
The cobordism hypothesis (which can also be formulated in higher dimensions and
was recently proved by Lurie) extends the previous conjecture by claiming that for
every fully dualizable object C of a symmetric monoidal 3—category there exists an
essentially unique 3—functor as above, for which the value of a point is C. So the
Turaev—Viro construction probably does not lead to all 3—functors, namely, there are
more local TQFTSs than there are spherical fusion categories.

As a matter of terminology, the Turaev—Viro invariants TV should not be confused
with the Turaev—Viro—Barrett—Westbury invariant | M |¢, which extends the intrinsic
state-sum definition of a 3—manifold invariant associated to an arbitrary spherical fusion
category C (see Barrett and Westbury [6]). Nevertheless this source of confusion
is not relevant, as Turaev and Virelizier proved recently (see Turaev and Virelizier
[73]) that the Turaev—Viro—Barrett—Westbury invariant | M |¢ actually coincides with
RTp(cy(M), for any spherical fusion category C of non-zero dimension. Notice that,
according to (Etingof, Nikshych and Ostrik [21, Theorem 2.3]) all spherical fusion
categories over C have non-zero dimension. All fusion categories considered here will
be C-linear categories, unless the opposite is explicitly stated.

A natural question in the area is to what extent the collection of all these 3—manifolds
invariants determine the topology of the manifolds. The aim of this article is to solve
this question for a particular class of 3—manifolds, namely the SOL manifolds.
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Torus bundles not distinguished by TQFT invariants 2291

Every closed SOL manifold has a finite cover of degree at most § that is a torus bundle
over a circle. Given A € SL(2, Z) we denote by M4 the torus bundle over the circle
whose monodromy is given by the matrix 4. It is well-known that the manifold has
geometry SOL if and only if A is hyperbolic (or Anosov).

The first result of this paper is the following:
Theorem 1.1 There exist infinitely many pairs of Anosov matrices A, B such that

M4 and Mp have non-isomorphic fundamental groups although for every spherical
tusion category C their Turaev—Viro invariants agree:

(1) TVe(My4) =TVe(Mp)

The simplest series of examples is the following:

1 kq? 1 k
@ (kv 1 +k2q2v) ’ (kvq2 1+ kzqzv) ’
where k € 7., k # 0, q is an odd prime number ¢ = 1 (mod 4), v is a positive integer

such that —v is a non-zero quadratic residue mod g and v is divisible either by a prime
p satisfying p =3 (mod 4), or by 4.

Remark 1.1 Notice that the manifolds M4 and Mp are prime SOL manifolds.

As an immediate consequence we obtain a negative answer to a question due to Turaev
(see [72, Problem 5, page 571]).

Corollary 1.1 There exist infinitely many pairs of matrices A and B as in Theorem 1.1
such that M 4 # M4 and Mg # Mp have non-isomorphic fundamental groups but for
every modular tensor category C their Reshetikhin—Turaev TQFT invariants agree:

3) RT¢(M4# My) = RTc(Mp # Mp)

Here M denotes the manifold M with the reversed orientation.

Proof This follows from the fact that
(4) RTc(My# Myg) = TVe(My)

according to Proposition 3.4. Moreover prime decomposition of 3—manifolds, as well
as splittings of groups as free amalgamated products are unique by classical results of
Milnor and Stallings. Therefore the fundamental groups are non-isomorphic since their
factors are not isomorphic. a
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We will show later (see Theorem 1.3) that there are also (infinitely many) examples
of pairs of prime manifolds, but we cannot provide an explicit infinite family as in
Theorem 1.1.

Recall now that a quotient of SL(2,7Z) is a congruence quotient if it is of the form
SL(2,Z/mZ) for some non-zero integer m. The key steps in the proof of Theorem 1.1
are the following. We will prove first:

Proposition 1.1 If M4 and Mp are torus bundles as above then
TVe(M4) =TVc(Mp)

for any spherical fusion category provided that the matrices A and B are conjugate in
every congruence quotient of SL(2, 7).

The main ingredient needed in the proof is the congruence property for representations
associated to Drinfeld doubles of spherical fusion categories (Ng and Schauenburg [53]).
Lackenby already noticed in [43] (see also Kania-Bartoszynska [41] and Lickorish [45]
for related work) that quantum SU(2)—invariants behave well with respect to modular
transformations that belong to congruence subgroups. Specifically, two 3—manifolds
are f—congruent, for f € Z4 \ {0, 1}, if we can obtain one from the other by Dehn
surgeries on framed links which are related by Kirby moves and framing changes
adding integral multiples of f. This was further explored and refined (to weak and
strong f —congruence) by Gilmer in [34] where it was shown that quantum invariants
are natural obstructions to the f—congruence of 3—manifolds. One can prove that torus
bundles M4 and Mp as in Proposition 1.1 are f—congruent for every integral f.

Now there exists an explicit classification of the manifolds of the form M 4. For the
sake of simplicity we will restrict ourselves to Anosov matrices A, B. In this case M4
is a SOL manifold and it is easy to see that it is Haken since the fiber is incompressible.
Therefore it suffices to understand its fundamental group, which is the polycyclic group
I'4 with the presentation

(5) Ty={(t,a,blab=ba,tat™" =a*"1p*2 tht~! = q%1p*22),
4 = (Olll 0112)
o221 (22

Proposition 1.2 Let A and B be matrices from SL(2, Z) whose traces are different
from 2. Then the groups I'4 and I'p are isomorphic if and only if A is conjugate to
either B orto B~! within GL(2,7).

where:

We have then the following:
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Although considered a folklore statement going back as far as Poincaré, the result
above seems to have first appeared with a sketch of proof in (Ghys and Sergiescu [33,
Appendix 1, Proposition 2]) and then with all details in the unpublished [5] by Barbot.
For the sake of completeness we give detailed proofs below. Notice that Proposition 1.2
actually gives the classification of torus bundles up to homeomorphism, since these are
aspherical Haken manifolds and hence completely determined by their fundamental
groups.

Eventually the problem of finding 3—manifolds M4 and Mp as in the statement of
Theorem 1.1 is reduced to a purely arithmetic question on integral matrices. This
amounts to find whether there exist Anosov integral matrices which are conjugate in
every congruence subgroup but are not conjugate within GL(2, Z). This question was
already answered affirmatively by Stebe in [68], who gave such an example. We are
able to give infinitely many such pairs of examples having a slightly stronger property
(as needed in Proposition 1.2), as follows:

Proposition 1.3 There exist infinitely many pairs of matrices A and B in SL(2,Z)
that are conjugate in every congruence quotient, such that A is conjugate neither to B
norto B~! in GL(2, Z). For instance we can take

1 kq? 1 k
A= (kv 1 +k2q2v) and B = (kvq2 1 +k2q2v)
where k € 7., q is an odd prime number ¢ = 1(mod) 4), v is a positive integer such

that first —v is a non-zero quadratic residue mod ¢q, and second v is divisible either by
a prime p =3 (mod 4), or by 4.

Remark 1.2 Stebe’s example [68] is:
188 275 188 11
4= (121 177) and B = (3025 177)
This implies that any pair of integral Anosov matrices as in Proposition 1.3 gives rise to

SOL 3-manifolds which are not distinguished by their Turaev—Viro TQFT invariants,
thus proving Theorem 1.1.

In the examples above the manifolds M4 and Mp obtained throughout Proposition 1.3
are actually commensurable SOL manifolds. This is not a fortuitous coincidence since
we have the following:

Theorem 1.2 If the torus bundles SOL manifolds M and N have the same Turaev—
Viro invariants for the U(1) and SU(2) TQFTs then they are strongly commensurable.
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Let us explain briefly the terminology used for the commensurability above. Two
groups are said to be commensurable if they have finite index subgroups which are
isomorphic.

Barbot [5] (see also Bridson and Gersten [8]) proved that the groups I'4 and I'p are
commensurable if and only if the quotient of their discriminants D4/ Dp is the square
of a rational number. Here the discriminant of A is D4 = Tr(A4)? —4det(A) when
Tr(A) is odd. Moreover, this is equivalent to the fact that A? and B? are conjugate
within GL(2,Q), for some p,q € Z \ {0}. We will call the matrices 4 and B in
SL(2, Z) strongly commensurable if actually A and B are conjugate within GL(2, Q),
namely they have the same trace (and determinant).

Let us introduce some more terminology coming from classical class field theory. We set
Z(My) for the ideal class group of the order Z[(Tr(A)+ /D4 )/2] of the real quadratic
field Q(+/D4 ). When D 4 is square-free the order is the ring of integers of Q (/D4 ).
An old theorem of Latimer, MacDuffee and Taussky-Todd (see Taussky-Todd [12,
Appendix] and Newman [52, III.16]) shows that there is a one-to-one correspondence
between Z(M4) and the set of matrices B from SL(2, Z) having the same trace as
A, which are considered up to conjugacy in GL(2, Z). In this context the “taking the
inverse” map B — B~ passes to the quotient and gives a well-defined involution
. IT(My) —IZ(My).

Let M be a given closed orientable 3—manifold. Denote by X U).SU@ (a1 (and
XTV(M)) the set of homeomorphism classes of closed orientable 3—manifolds N
having the same abelian, SU(2) Turaev—Viro invariants (and the same Turaev—Viro
invariants, for every spherical fusion category, respectively).

Corollary 1.2 Let M be a SOL torus bundle over the circle. The subset of the
torus bundles homeomorphism classes in XV1-SUR) (A1) injects into Z(M )/t and, in
particular, its cardinal is bounded by the class number of the corresponding totally real
quadratic field.

Remark 1.3 One might as well consider the set of torus bundles N having the
same Turaev—Viro invariants as M , up to an orientation preserving homeomorphism.
Observe that M4 and Mp are orientation-preserving homeomorphic if and only if A
and B are conjugate within SL(2,Z) or else 4 and B! are conjugate in GL(2, Z)
by a matrix of determinant —1.

The few examples we know suggest that the subset of torus bundles homeomorphism
classes in XTV(M) is a quite small proper subset of Z(M)/t, in general. As a
consequence of our proof of Theorem 1.1 and results of Platonov and Rapinchuk (see
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Platonov [57], Rapinchuk [62], and Platonov and Rapinchuk [58, Section 8.8.5]) on the
genus problem in arithmetic groups we obtain a stronger (but less precise) statement as
follows:

Corollary 1.3 The number of homeomorphisms classes of torus bundles in XV (M),
for M running over all torus bundles, is unbounded. Alternatively, for each m > 2
there exist examples of m pairwise non-homeomorphic torus bundles having the same
Turaev-Viro invariants for all spherical fusion categories.

We will provide an effective version for this corollary in the Appendix. One can
slightly improve the finiteness result in Corollary 1.2, by removing the assumptions
that manifolds in a equivalence class be torus bundles, as follows:

Proposition 1.4 If M is a closed irreducible orientable SOL manifold then | XV (M)]
is finite.

These results give some evidence for the following general conjecture:

Conjecture 1.1 If M and N are closed irreducible geometric 3—manifolds having
the same abelian and SU(2) Turaev—Viro invariants, then A and N should be com-
mensurable and, in particular, they share the same geometry.

On the other hand, we do not know whether the unboundedness of the number of
classes of torus bundles is a general phenomenon, valid in higher genus as well. In
order to dismiss obvious examples constructed out of torus bundles we formulate it as
follows:

Conjecture 1.2 The number of homeomorphism classes in XTY (M) of hyperbolic
fibered 3—-manifolds N with fiber of genus g > 1 is finite for every M . Is this number
unbounded when M runs over the set of hyperbolic fibered 3—manifolds with fiber of
given genus?

The pairs of manifolds from Theorem 1.1 and Corollary 1.3 also give a negative answer
to a question stated by Long and Reid in [46] (see also Calegari, Freedman and Walker
[9, Remark 3.7]), as follows:

Corollary 1.4 For any m > 2 there exist m torus bundles whose fundamental groups
have isomorphic pro-finite completions although they are pairwise non-isomorphic.
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This consequence was independently noticed by Masbaum. Our proof actually shows
that, more generally, invariants associated to finite groups determine the pro-finite
fundamental groups of closed 3—manifolds. We don’t know if the SU(2) Turaev—Viro
invariants alone determine already the pro-finite completion of the fundamental group.

Remark 1.4 We expect that the topological content of the Turaev—Viro invariants is
precisely this kind of arithmetic information: two fibered manifolds are in the same
class of XTV(M) if and only if their monodromies are conjugate in the pro-finite
completions of the mapping class group, which is slightly stronger than the pro-finite
fundamental groups being isomorphic. This would connect the quantum invariants to
some version of Grothendieck’s problem for 3—manifold groups which is stated in [46].

The result of Theorem 1.1 can also be formulated for Reshetikhin—-Turaev invariants:

Theorem 1.3 There exist infinitely many pairs of Anosov matrices A, B such that
M, and Mp have non-isomorphic fundamental groups although for every modular
tensor category C their Reshetikhin—Turaev invariants agree:

(6) RT¢(M,4) = RTc(Mp).

The simplest four examples are the following:

0 A= (211 442) b= (138 ;23)

®) A= (511 2602) B= (1546729 ;3471?)
C)) A= (513 2810) B= (1402057 ;ggé)
(10) A= (515 3(5)36) U7 (1838715 ;?4712)

The proof follows similar lines to that of Theorem 1.1, but now we use the congruence
property for representations associated to modular tensor categories (Dong, Lin and
Ng [18]) in order to obtain the corresponding version of Proposition 1.1 and a more
detailed arithmetic study of Rademacher function ¢ in relation with the reciprocal and
inert classes of binary quadratic forms.

The equivalence relation on torus bundles induced by the equality of all Turaev—Viro
invariants is the local equivalence of matrices determining a fixed genus, in the sense
studied by Platonov and Rapinchuk (see [57; 62; 58, Section 8.8.5]). Specifically,
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Mp and M, represent the same class in XTV(M) if and only if A and B are
locally conjugate, namely their images mod m are conjugate in GL(2, Z/mZ.), for any
positive integer m. Notice that this implies automatically that 4 and B are conjugate
in GL(2,Q).

A related equivalence relation is the one corresponding to the Pickel genus of groups
(see Pickel [56]). Two finitely generated groups are in the same Pickel genus if the
corresponding sets of finite quotients are the same. This is equivalent, following a
deep result of Nikolov and Segal (see [54]) to the fact that their pro-finite completions
are isomorphic. The groups of torus bundles 7;(Mp) and 7;(M,4) have isomorphic
pro-finite completions if and only if the subgroups (A) and (B) are locally conjugate,
namely their images mod m are conjugate in GL(2,Z/mZ), for any positive integer
m. This is coarser than the former equivalence relation.
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2 Preliminaries about modular tensor categories

2.1 Fusion categories

For simplicity we will only consider strict monoidal categories below, meaning that
the associativity morphisms are identities. We follow the definitions from Bakalov and
Kirillov [3] and Miiger [50].

A left/right rigid monoidal category is a strict monoidal category C with unit object
1 such that to each object X € Ob(C) there are associated a dual object X* € Ob(C)
and four morphisms

evy: X X — 1, coevy: 1 - X ® X*,
Vy: X @ X* =1, coevy: 1 - X" ® X,

such that, for every X € Ob(C), the pair (evy, coevy) is a left duality for X and the
pair (éVy, Coevy) is a right duality for X', namely:

(Iy ®evy)(coevy ® 1y) =1y and (evy ® lyx)(Iyxy* ® coevy) = ly=
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The category is rigid if it is both left and right rigid.

A pivotal category is a left rigid monoidal category equipped with an isomorphism j
of monoidal functors between identity and (-)**, called pivotal structure. One should
notice that the formulas

&y =coevy (ly+ ® jx '), ¢0evy = (jx ® Ly=)evy
define a right duality so that a pivotal category is rigid.

It is known that every pivotal category is equivalent to a strict pivotal category, namely
one where the associativity isomorphisms, the pivotal structure and the canonical
isomorphisms (V ® W)* — W* ® V* are identities.

The morphisms evy and coevy (respectively, €V and coevy) are mutually inverse
isomorphisms and evy = évq: 1* — 1.

Now, for an endomorphism f* of an object X of a pivotal category C, one defines the
left/right traces try(f),tr,(f) € Ende(1) by

tr;(f) =evy(lxy+ ® f)Coevy and tr,(f)=¢&Vy(f ® lx*)coevy.

Both traces are symmetric: trj(gh) = tr;(hg) and tr,(gh) = tr,(hg) for any mor-
phisms g: X — Y and 4: Y — X in C. Also tr;(f) = tr,(f*) = tr;(f**) for any
endomorphism f of an object (and similarly for / exchanged with r).

The left and right dimensions of X € Ob(C) are defined by dim;(X) = tr;(ly) and
dim, (X) = tr,(1x). Note that isomorphic objects have the same dimensions and
dim; (1) = dim, (1) = 15.

A spherical category is a pivotal category whose left and right traces are equal, ie,
try(f) = tr, (f) for every endomorphism f* of an object. Then they are denoted tr( /)
and called the trace of f. The left (and right) dimensions of an object X are denoted
dim(X) and called the dimension of X . In a (strict) spherical category we can make
free use of the graphical calculus.

Let K be a field, which for the moment is not supposed to be of characteristic zero,
although in the next section we will consider K = C.

A monoidal K-linear category is a monoidal category C such that its Hom-sets are
(left) K—modules and the composition and monoidal product of morphisms are K-
bilinear. An object V' € Ob(C) is called simple if the map K — End¢(1),a +— a1 is
a K-algebra isomorphism.

An additive category is said to be semi-simple if every object is a direct sum of finitely
many simple objects. In the case of Ab—categories from [72] we can weaken our
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requirements by asking that every object be dominated by finitely many simple objects.
A monoidal K-linear category is called semi-simple if the underlying K —linear category
is semi-simple with finite-dimensional Hom spaces and 1 is a simple object.

Now a fusion category over K is a rigid semi-simple K-linear category C with finitely
many simple objects. The fusion categories which are considered in the next sections
will always be spherical.

A monoidal category C is braided if there exist natural isomorphisms ¢y, : VW —
W ® V for every pair of objects V, W, such that for any U, V, W € Ob(C) we have

cuyvew =y @cuw)(cuy @ 1lw), cugr,w = (cuw @ 1y)(y  cy,w).

Let now C be a left rigid braided monoidal category. We do not require that V** = V.
A twist of C is an automorphism 6 of the identity functor of C satisfying

Ovew =cwycyw Oy @ 0w), and 07 = 1j.

The twist 0 is a ribbon structure on (C, ¢) if it also satisfies 67 = Oy« for every
V € Ob(C), and the (left) duality is compatible with the ribbon and twist structures,
namely:

Oy @ 1p+)coevy = (1y ® Oy« )coevy

In this case (C, ¢, 0) is called a ribbon category. In a ribbon category one associates
naturally a pivotal structure by using the (canonical) isomorphism uy: X — X**
given by:

uy = (evys ® Ly)(Ly* ® cy 'y ) (cOCVY ® L)

and setting # = u~! j . Moreover this pivotal structure j is spherical.

A modular tensor category over K is a ribbon fusion category (A4, ¢, 8) over K such
that the matrix S having entries S;; = tr((ch,Ui* cuy, v;) is non-singular, where i, j € I
and [ is the set indexing the simple objects U;,i € I in A. This matrix is called
the S—matrix of the category .A. Notice that / has induced a duality * such that
U = Ui*, for any i € I and there exists a label (also called color) 0 € I such that
Uy = 1. Since the object U; is simple the twist 0y, acts on U; as a scalar w; € K.

The (left) Drinfeld double (also called the center) of a (strict) monoidal category C
is a category D(C) whose objects are pairs (V, o), where V € Ob(C) and the half-
braiding o (W): V@ W x W ® V is a set of natural isomorphisms satisfying for
every U, V, W € Ob(C) the identities

(V@ayW) oy (V)@ W) =0oy(VeW), oy(l)=I1x.
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There is a natural monoidal structure on D(C) by defining the tensor product (U, o) ®
(V,oy) = (U ®V,oygy), where

oyey (W) = (ou(W)®@V)(U ® oy (W))

and the unit object is (1, 0q), where o1(V) = 1y, for any U, V, W € Ob(C). More
interesting is the fact that D(C) has a braiding given by ¢v,4,.),(w,0y,) = oV (W) so0
that C is a braided monoidal category. If C is left rigid/pivotal/spherical then D(C) is
also left rigid/pivotal/spherical, respectively.

2.2 SL(2,Z)-representations from modular tensor categories

Any modular tensor category C defined over the algebraically closed field K has
associated the modular data (see Gannon [31]), which contains a projective representa-
tion pc: SL(2,7Z) — PGL(Ky(C)), where Ko(C)) is the Grothendieck ring of C with
C —coefficients. However, we have slightly more than that, namely a lift of p¢ to an
almost linear representation, by means of the matrices .S and 7. The almost linear
representation comes with a 2—cocycle which was completely described by Turaev. An
essential feature of the genus 1 situation is that projective representations could always
be lifted (in more than one way) to genuine linear representations, which contrasts with
the higher genus case.

The matrices entering in the definition of pc are the S-matrix defined above and
the 7'—matrix associated to the twist. Specifically, T has the entries 7;; = w;d;;,
i, j € I. Moreover there is also the so-called charge conjugation matrix C having
entries C;j = 6; j*, i, j € I, which is actually S2.

The Gauss sums of C are given by péﬁ = icr a)l.il dim(U;)? and these are non-zero
scalars satisfying

(11 pd pe =) dim(U;)* = dim(C).
iel
In [72], Turaev used the notation A¢ = p, so that pér = dim(C) Agl. Further, one

chooses a rank (also called quantum order), which is an element A € K such that
A% = dimC. This was denoted by D in [72].

The group SL(2, Z) is generated by the matrices
0 —1 11
5—(1 O) and t—(o 1).

The usual presentation of SL(2, Z) in the generators s, t has the relations (st)3 = s
and s* = 1.

2
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The projective representation pc: SL(2, Z) — PGL(K((C)) is defined by
(12) pe(s) =S, pe)=T.

However the choice of a rank A and a third root of unity ¢ € K of the anomaly ¢3 =
DA™ = pi A~1 enables us to define a lift of p¢ to an ordinary linear representation

pEt: SL(2, Z) — GL(K(C)) by seiting
(13) @) ="' pfH=¢'T

These lifts are called the modular representations associated to C. It is known that,
given a rank A then the modular tensor category defines a TQFT with anomaly in the
group generated by &3, so that 3-manifold invariants associated to the data (C, 1) do
not depend on the particular choice of .

3 Proof of Proposition 1.1

3.1 TQFT coming from centers of spherical fusion categories

In the case when the modular tensor category is the Drinfeld double D(C) of a spherical
fusion category C a number of simplifications occur.

For every SL(2, Z)-representation p we define its dual representation p by means of

p(x) = p(JxJ~1), where

10
J:(O 1) € GL(2,Z)

acts by conjugacy as an outer automorphism of SL(2,Z).
Notice that in this case we have the following:

Lemma3.1 (i) The anomaly of the TQFT coming from D(C) is trivial, ie, {3 =1
and thus there exists a privileged modular representation ,oé“’l .

(i) Further we have pi‘)’(lc) = pé’g & ,;T; c- Here { is arbitrary and in fact the right

hand side tensor product is well-defined even when we have only projective
representations.

Proof See [53, Lemma 6.2]. m|

The invariants of mapping tori have a very simple expression when the TQFT is
anomaly-free. In fact we have the following well-known result:
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Lemma 3.2 Assume that the TQFT associated to the modular tensor category C is
anomaly-free, namely that {3 = 1. Then the invariant of the mapping torus M, of
A € SL(2,7) is expressed as

(14) RTc (M) = Tr(ph ' ().

Proof For the sake of completeness here is the proof. Turaev defined in [72, Section
IV.5, (5.1.a)] an almost linear representation €: SL(2, Z) — GL(Kk (C)) satisfying the
cocycle law

(15) €(Ay Ag) = LA D LA D) ¢ (4))e(4y),

where (L1, Ly, L3) denotes the Maslov index (see [72, Section IV.3, page 179]) of the
triple (L, L, L3) of Lagrangian subspaces of H;(Xg;R) and L a fixed Lagrangian
subspace. Further € is determined by its values on the generators €(s) = A~!S and
e(t)=T.If {3 =1 then € is a linear representation that coincides with pé’l . Moreover,
one also knows from [72, Section I11.2.8, Example 1] that

RTc(M,4) = Tr(e(A)).

This proves the claim. a
We will prove now:

Proposition 3.1 Let C be an anomaly-free modular tensor category such that the
modular representation ,oé’l factors through SL(2,Z/NZ). Let A and B be two
integral matrices from SL(2,7) whose reductions mod N are conjugate. Then
RT¢(M4) = RTc(Mp).

Proof According to the Lemma 3.2 the invariant RT¢(My) is the trace of the en-

domorphism ,oé”’t(A). By hypothesis ,oé”’g factors as ,oé’t = ,oé’t’N o vy, where

vy: SL(2,7Z) — SL(2,7Z/ N Z) is the homomorphism of reduction mod N .

Since vy is surjective there exists 7 € SL(2, Z) such that vy (4) = vy (T~ BT).
Therefore:

(16)  Tr(p}*(4))
= Tr(o "N N (T) - oSN N (B)) - (055N un (T))) 1) = Te(p} ¥ (B))

Then Lemma 3.2 yields the equality of quantum invariants of M4 and Mp. a
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The final ingredient in the proof of Proposition 1.1 is the following result due to Ng
and Schauenburg for modular tensor categories that are centers of spherical fusion
categories [53], to Peng Xu for conformal field theories derived from vertex operator
algebras (see [76]) and to Coste and Gannon [13], and Bantay [4] for RCFT. Recall
that a congruence subgroup of SL(2,Z) is the kernel of one of the reducing mod m
homomorphism SL(2, Z) — SL(2,Z/mZ), for some non-zero integer m.

Theorem 3.1 Let D(C) be the Drinfeld double of a spherical fusion category C. Then
. Al

the modular representations pp, © have the congruence property, namely the kernels

contain congruence subgroups.

This proves Proposition 1.1, namely if 4 and B are conjugate in every congruence
quotient of SL(2, Z), then TV¢(M4) = TV (Mp) for any spherical tensor category C.

3.2 General modular tensor categories

Turaev constructed in [72, pages 198—199] some almost linear representations of the
mapping class group M, of genus g surfaces, for every g. We have to choose first
some Lagrangian subspace L C H;(Xg;R) with respect to the usual symplectic form
o in homology coming from the intersection form. We denote by Z¢(X4) the space
of conformal blocks in genus g associated to the modular tensor category C.

It is known that there exist maps (which will be called almost linear representations)
ka’L: Mg — GL(Zc(Xg)) into the automorphisms of the space of conformal blocks
Zc(Xg), satisfying the following 2—cocycle condition:

—1
(17) S (prpg) = 312D Lo ) gLy foE ()

where w(Lq, Ly, L3) denotes the Maslov index (see [72, Section IV.3, page 179]) of
the triple (L, Ly, L3) of Lagrangian subspaces of H;(Xg;R). This can be found for
instance either in [72, Section IV.5, (5.1.a)], and also in a rather equivalent context in
[72, Section IV.6, Lemma 6.3.2, (6.3.c)].

We introduce now the Rademacher Phi function (see Rademacher and Grosswald [61])
¢r: SL(2,7Z) — Z, defined as follows:

a B\ _ [(@+38)/y —12sgn(y)s(a. [y]) ify #0,
(18) Px (V 5) B {,3/)/ otherwise.

Here s(m,n), for n > 0, denotes the Dedekind sum

S o )

1
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where

20) () = {0’ ifx e,

x—[x]— % otherwise.

Alternatively, we have

n—1 .
_ 1 7\ o 7
2D s(m,n) = i Zlcot( p )cot( p )
]=

We have then the following result, which seems to be well-known to the specialists:

Lemma 3.3 Let L, be the integral Lagrangian subspace of the homology group
H,(21;R) = R? generated by the vector (1,0). Then Turaev’s almost linear represen-
tation jg"Lo in genus g =1 is related to the modular representation pé"g of SL(2,7Z),
by means of the formula

22) it () = ¢ @R phLo(g)
forevery A € SL(2,7).

Proof Consider

/ / Vi Vi
A= ()‘f ?) and B = (;‘j, ’2,) and let BA = (z,, 5,,).

By direct computation we obtain

(23) (BA(Lo), B(Lo), Lo) = —sgn(yy'y").

On the other hand Rademacher proved that ® g is a 1-cocycle whose boundary is 3
times the signature 2—cocycle, in other words we have the identities

24) PR(BA) = PR(A) + Pr(B) —3sgn(yy'y")
for A, B as above. Therefore the equation above, the cocycle identity (17) for fc)"Lo

and (23) yield:
(25) C—QR(BA) fc)»,Lo (BA) = é——‘:bR(B)fc)»,Lo (B)- ;—@R(A) fc)»,Lo (4)

This means that ¢~ P fc)“’LO is a linear representation of SL(2,Z). Since ®g(s) =0
and ®g(t) = 1 the two linear representations {~ PR fc)"L0 and ,oé’g agree. a

Proposition 3.2 The quantum invariant of a mapping torus M4 of

A= (;‘j ?) eSL(2,7)
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is given by the formula

(26) RTe(My) = {2 Tr(og(4))
where ¢: SL(2,7) — Z is the modified Meyer function

27 3p(4) = Pr(A) —3sgn(y(a +5-2)).

Proof The main reason to introduce the almost linear representations fC)”’L is the
following result of Turaev (see [72, Section IV.7, Theorem 7.2.1, page 209]), which
expresses the quantum invariant of a mapping torus as follows:

Proposition 3.3 Let M} be the mapping torus of some homeomorphism whose map-
ping class is h € g . Then

(28) RTe(Mj) = A0 L@k (L)) (1 E ()

where pu is the Maslov index of the Lagrangian subspace of —H;(X¢;R)® H(Zg;R)
endowed with the symplectic form —w @ w, A(hy) denotes the graph of h, ie, the
subspace of vectors x @ h4(x), where x € H;(Xg;R), and Diag is the diagonal

subspace A(1g,(s,:R))-

Observe that the manifold M}, and its invariant RT¢(M},) do not depend on the choice
of the Lagrangian L, although fc)“ ’L(h) does.

Now it suffices to check that
(29) u(A(A), Lo ® A(Lo), Diag) = —sgn ((« + 8 —2)y)

when 4 € SL(2,Z). If y =0 then one verifies that the Maslov index is 0. Suppose now
that ¥ # 0. A direct inspection shows that (A(A4) + Lo @ A(Lg)) N Diag is the one-
dimensional subspace generated by the vector ¢ = (¢ —1, y) @ (¢—1, y). The quadratic
form associated to e has value w(es, ), where e = e; + e, is any decomposition
with e; € A(A) and e, € Lo @ A(Lg). We can take e; = (0,y) & (By,dy) and
er =(a—1,0)® (a(1 =96), y(1 —4)). This implies that

(30) w(ey,e)=2—a—358)y.

Now the signature of this quadratic form is the value of the Maslov index and the
formula above follows. |

Since the orientation preserving homeomorphism type of the manifolds M4 depends
only on the conjugacy class of 4, we obtain immediately the following property of
Meyer’s function:
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Corollary 3.1 Meyer’s function ¢ is conjugacy invariant.

Remark 3.1 There exists a slight difference between the usual Meyer’s function
¢p from Kirby and Melvin [42] and the modified Meyer function ¢ (M) considered
here, following Turaev. This does not makes a big difference since it only affects the
invariants for M4 where A is parabolic. Specifically we have:

{%(1 +sgn(8)) sgn(p) if y =0,
0

(31 o(A) —ppr(A) = otherwise

However the function ¢ — ¢as is an integral 1—cocycle so that the boundaries §(¢)
and §(¢pr) are cohomologous. Notice that §(¢ar) is Meyer’s signature 2—cocycle (see
Atiyah [2] and Meyer [48]).

3.3 Reshetikhin—Turaev invariants vs Turaev-Viro invariants

Proposition 3.4 For any modular tensor category C we have the identity

(32) RTe(M4# My) = TVe(My).

Proof Since RT¢ behaves multiplicatively with respect to connected sums, we have
(33)  RTc(Mq#My) =RTc(My)-RTe(My) = RTc(My) -RTz(M4)

from [72, I1.2, (2.5.a)]. Here C denotes the mirror category of the modular tensor
category C according to [72, 1.1.4]. It is known that the rank A = A¢ for C is equally a
rank A = )‘c for C, although the roles of Pc are inverted, namely we have Pc =D
and p, = pT i It follows also that dlmcl = dimg 7, for every i € I, but a)Cl = wg, l.
Furthermore the anomalies CC = / Ac are inverse to each other, namely é‘ 3 — é‘c .
Therefore the S matrix assomated to the mirror category has its entries S (C) ij equal
to S(C);«; (from [72, I1.1.9, Example 1.9.(2)]). At the last the matrix T(C)l j 1s the
inverse of T'(C);; since T(@),-j = wa}Sij

On the other hand we have the representation

o A, -

Pt () = pt (X T
defined above. We have the following identities, where ¢ stands for (¢
34 M) 2 ATU(SC) ) = 4718 = phE
(34) pz” (8) =A"(S(C)ixj) = ©) =pc"(s)

(35) A =T = b

Geometry & Topology, Volume 17 (2013)



Torus bundles not distinguished by TQFT invariants 2307

Therefore the two representations agree on every element
X SN
(36) P5 (x) = pz” (x) forany x € SL(2,Z).

Now using Proposition 3.2 and Lemmas 3.1 and 3.2 we obtain the identities

(37)  RTe(Ma)-RTs(Mq) = Tr(oh (4)) Tr(oh (4))

—_—

A, A, A,
=Tr(pp* ® i (4)) = Tr(ply ) () = TVe(Ma).

A more direct proof of Proposition 3.4 comes from the recent proof by Turaev and
Virelizier (see [73]) of the formula |M |¢c = RTp (M) for any oriented 3—manifold,
and spherical fusion category of non-zero dimension C. Here |M |¢ is the simplicial
67 —symbol state sum defined in [72, Section 4]. According to [72, Section IV, Theo-
rem 4.1.1], we have |M|c = RT¢(M)RTe(M). O

Corollary 3.2 For pairs of matrices A, B as in Theorem 1.1, M4 and Mp are
not homeomorphic but | RT¢(M4)| = | RTe(Mp)| for any Hermitian modular tensor
category C.

Proof It is known that RT¢(M) = RT¢(M), for any Hermitian modular tensor
category C [72, IL.5, Theorem 5.4], so the previous proposition gives us | RT¢(M)|* =
TVe(M). Also the TQFT associated to D(C) is anomaly-free. This follows from the
fact that the mapping class group representations in genus g associated to C and D(C)
satisfy pg p(c) = Pg.c ® Pg,c. in every genus g. In fact the right hand side tensor
product is well-defined even when we have only projective representations and this
shows that pp(c) is a genuine linear representation so that the associated TQFT is
anomaly-free.

Finally, the so-called Vafa Theorem (see Vafa [75] and Etingof [20]) shows that the
anomaly ¢3 of the TQFT associated to D(C) is a root of unity for every modular tensor
category C (actually it is enough to know that |{3| = 1) and hence the associated
invariants verify the claim. a

3.4 Congruence subgroups

We will prove now:

Proposition 3.5 Suppose that some modular representation ,O’C\’C associated to the
modular tensor category C factors through SL(2,Z/NZ). Let A and B be two
integral matrices whose reductions mod N are conjugate. If ¢(A) = ¢(B) then

RT¢(M,4) = RTc(Mp).
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Henceforth, it A and B are conjugate in every congruence quotient of SL.(2, Z) then
RT¢(M4) =RT¢(Mp) for any modular tensor category C with the congruence property
if and only if

(38) @(A) = ¢(B).

Proof According to the Proposition 3.2 the invariant RT¢ (M) is the trace of the
endomorphism ,oé”’z(A) up to the factor {394 By hypothesis, pé"; factors as

A, ACN
é-=/0Cé- OVN,

Pc
where vy: SL(2,7Z) — SL(2,7Z/NZ) is the homomorphism of reduction mod N .

Since vy is surjective (see Lemma 5.1) there exists 7" € SL(2,Z) such that va(A4) =
vN(T~!BT). Therefore:

(39)  Tr(ps*(A4))
= Tr(os "N N (T)) - oSN N (B)) - (055N un (T)) 1) = Te(p} ¥ (B))

Thus we have equality of quantum invariants of M, and Mp if and only if ~3¢(4) =
¢=3¢(B) _ Since there are modular categories whose anomaly &3 is a root of unity of
arbitrary large degree, the claim follows. a

Ng and Schauenburg proved in [53] that the projective representation pc has the
congruence property for every modular tensor category C. However this does not imply
that some linear lift pé’g of it also has the congruence property (see [53, Section 7]).
Moreover, it is not clear whether the fact that ,oé’ has the congruence property for one
particular value of (A, ¢) would imply that all modular representations pé"t do have it.

Eholzer conjectured in [19] that modular representations ,oé"z have the congruence
property for every RCFT, or in somewhat equivalent terms, for every modular tensor
category. This was recently proved to be true for all modular tensor categories in Dong,
Lin and Ng [18].

Theorem 3.2 Let C be a modular tensor category. Then the modular representations

p;‘)’(gc) have the congruence property, namely the kernels contain congruence subgroups.

Then Proposition 3.5 implies that RT¢(M4) = RT¢(Mp) for every modular tensor
category C if A and B are conjugate in every congruence quotient of SL(2,7Z) and

@(A) = ¢(B).
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Example 3.1 The torus bundles M4 and Mp, where
188 275 188 11
A= (121 177) and B = (3025 177)
have the same absolute values of quantum invariants, but their phase factors are distinct,
in general. The reciprocity law for Dedekind sums,

o ) W — 3sgn(ay),

and the equality s(c, y) = s(¢/, y), for @ = o/(mod y), give us p(A) = —1, ¢(B) =
—21.

4 Proof of Proposition 1.2

Recall from the introduction that
41) Ty={(t,a,b|ab=ba, tat™! =a*1b*2 tht~! = g%1p%22),

where 4 € SL(2,Z) is a matrix with entries «;;, 1 <1, j <2, such that Tr(4) # 2.
We have the following exact sequence:

(42) 1-z22 41,2721,

defined by

(43) ig(1,0)=a, iq0,1)=>b, pqt)=1, pala)=pq(b)=0.

Proposition 4.1 The abelian subgroup i 4(Z?%) C T4 is the radical set R4 of [I'4, T'4]
in T4, namely the set of those x € T4 for which there exists some k # 0 such that

Proof Consider x € R4. By the definition of the radical set there exists k # 0 such
that xk € [TC4, 4] and thus the image of x* vanishes in every abelian quotient of I'4.
This implies that p4(x¥) = 0. Since k # 0 we have py(x) = %pA (x*) = 0, which
means that x € ker py = i4(Z?).

Lemma 4.1 Every element of I'4 can be uniquely written in the form t*a"b™ .

Proof For every x € Z? the conjugacy by the stable letter ¢ can be expressed as
follows:

(44) tig(x)t ™ =ig(Ax)), a0t =ig(A7 (X)),
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where A(x) denotes the left multiplication by the matrix A of the vector x € Z2.

Consider now a word in the generators containing at least one letter . We use the
conjugacy relations above to move to the left every occurrence of the letter ¢ (or ¢~ 1).
If a leftmost sub-word of the new word is of the form i4(x)¢¢, with non-zero x € Z2,
then rewrite it as (¢ %iq(x)t%) = t°-i4(A7%(x)) and continue. This process will
stop eventually because there are only finitely many occurrences of ¢ and the resulting
word will have the desired form.

For the uniqueness it suffices to see that I'4 is a HNN extension with one stable letter

and conclude by the classical Britton’s Lemma. a

Lemma 4.2 Let U denote the integral matrix A — 1. Then [I"4, T 4] is the subgroup
iA(U(Zz)) of Ry.

Proof If x € Z? then we have the identities
45) [t i4 ()] = tig(x)i ig(x7") = ig(A(x) —x).
This shows that i 4(U(Z?)) C [T'4, T'4].

Conversely, let us consider u € i4(U(Z?)). Then tut~' € iy(U(Z?)) and t'ut €
i4(U(Z?)) because

(46)  tig(A(x)—x)t7 ! =i (A% (x) — A(x)) =iq(A(y)—y), where y = Ax
and
A7) 7l (Ax) = x)t =ig(x — AN (X)) = ig(A(y)—y), where y = A" lx.

Further p4([T'4,T'4]) = 0 so that [["4, ['4] is a subgroup of R4; in particular, it is
abelian. Thus the action of ¢ and b (or any x € i4(Z?)) by conjugacy on i4(U(Z?))
is trivial.

Now [I"4, 4] is generated by the commutators of elements of I'4. The Hall identities
hold:

(48) R e U B VU B N ) e B R PO

Then a double recurrence on the number of letters in the words representing x, y € I'y4
and the previous observations about the conjugacy by generators prove that [x, y] €
i4(U(Z?)). O

Lemma 4.3 If A has no eigenvalue equal to 1 then [I"4, I'4] is a finite index subgroup
of Ry.
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Proof Since Tr(A) # 2 we have |det(U)| = |Tr(4) —2| # 0 so that UZ?> C Z? is a
subgroup of index |det(U)|. Since i4 is an isomorphism the lemma follows. a

In particular, for every x € iy (Z?) there exists some k (which divides |det(U)|) for
which x¥ €[4, [4], as claimed. |

Now any isomorphism ¢: T'y — I'p should restrict to an isomorphism ¢: i4(Z?) —
ig(Z?). In fact, if x € Ry there exists k # 0 such that x¥ e [[4,T4] so that
#(x)¥ e [I'p, '], meaning that ¢(x) € Rg. Now isomorphisms ¢ between free
abelian groups are determined by some invertible matrix, namely

(49) ¢(ia(x) = ip(V(x)), for x €Z?

where V € GL(2,7%Z).
Lemma 4.4 There exists E € Z? such that either ¢ (t) =tig(E) or ¢(t) =t~ lig(E).

Proof In fact ¢ induces an isomorphism ¢ =I'y/R4 — I'p/Rp. Now both groups
I'y/R4 and I'g/Rp are isomorphic to Z and so ¢« is elz where € € {—1, 1}. This
is precisely the claim of the lemma. O

In order to get rid of the translation factor in ¢, we need the following extension result:

Lemma 4.5 For every E € Z? there exists an automorphism Lg: I'g — I'p such
that:

(50) LEg(tig(x)) =tig(x+ E), Lg(ip(x))=ig(x), forevery x € Z>.

Proof We have to show that the homomorphism defined on the generators by:
(5D Lg@t)=tig(E), Lg(a)=a, LEg(b)=>,
is well-defined. First we compute:
(52) Lp(t™") = (tip(E)™" =ip(=E)~' =17" -tig(=E)t~" =" lig(~B(E))
It suffices now to verify that the relations in I'p are preserved, namely at first:
(53) Lg(xt™)
=tip(x + E)t"lig(=B(E)) = ig(B(x + E))ip(~B(E)) = ip(B(x))
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for x € Z?, and second L g(ab) = L g(ba), which is obvious. Hence L g defines a
homomorphism, whose inverse is L_ g, which implies that L g is an automorphism
of I'p. An immediate computation shows that
(54) Lc(#ip(x))
t’ig(x + E + B(E)+ B*(E)+---+ B*"Y(E)) ifs>1,
=4{Xx if s =0,
tip(x — B~Y(E)— B 2(E)—---— B™%(E)) if s <—1.

This proves the lemma. a
We replace now the isomorphism ¢ by the composition L_g o¢: I'y — I'g, which

has trivial translation part, and keep the same notation ¢ for the new isomorphism,
which has the property that

(55) ¢(t) =1t°, where ¢y =¢ly.

Recall now that ti(x)t~! =i (A(x)), for any x € Z2. If ¢ = | then on one hand
we have

(56) P(tig()t™") = 1¢(ia(x))i ™" =tip(V(x)t~" = ig(BV(x))
and on the other hand
(57) P(tia(x)i™") = pia(A(x)) = ig(VA(x)).

The two right hand side terms from above must coincide, so ig(VA(x)) = ip(BV(x))
for every x € i(Z?), which implies VA = BV so that A and B are conjugate within
GL(2,7Z).

Lemmad4.6 There is an automorphism J: I'g— T'g—1 givenby J(t)=t"', J(a)=a,
J(b)=b.

Proof Clear, by direct computation. a

Assume now that ¢ = —1. We consider then the isomorphism J o¢: I'y — I'g—1,
which satisfies

(58) Jogp(t)=t, Jog(ig(x)) =ig(V(x)), for xeZ>.

The argument from above shows now that 4 and B~! are conjugate by the matrix
V € GL(2,Z). This proves Proposition 1.2.

Now, we will give also a second, simpler proof, due to S Friedl and H Wilton. Given
C €SL(2,7Z) the abelianization of I'c is given by Z ®Z?/(1—C)Z?. In particular, if
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the trace of C is different from 2, then the abelianization of I'¢c is isomorphicto Z& T
where T is a finite group. Therefore, up to sign, there exists a unique epimorphism from
I'c onto Z. Now suppose that A and B are matrices from SL(2, Z) whose traces are
different from 2 such that there exists an isomorphism ¢: I'y — I'g. The uniqueness of
epimorphisms onto Z implies first that ¢ (1) =¢€ig(v)) for some € € {—1, 1} and some
v € Z?, and second that the restriction Bli yz2)" ia (Z?) — ig(Z?) is an isomorphism,
ie, there exists a Q € GL(2, Z) such that ¢ (i4(w)) = ip(Qw). Now, for any w € Z?2
we have:
ip(QAW) = ¢ (ia(Aw)) = p(tiaW)r™") = (P (La(w)P(t™")

= 1€ip(v)ig(Qw)(t“ip(v))~!

=1%ig(v)ig(Qw)t ¢ig(—B €v) =t%ig(v + B Qw)t” €ig(—B “v)

=ig(v+ B*Qw— BB “v) =ig(B Qw)

Since w was arbitrary we obtain Q4 = B€Q, namely QAQ~! = B€.

Remark 4.1 The result holds more generally when A and B € GL(2,Z) and
|Tr(A)| # 2 # |Tr(B)|, with the same proof.

5 Proof of Proposition 1.3

Proposition 5.1 Let

1 kq? 1 k
(kv 1 +k2q2v) an (kvq2 1 +k2q2v)
denote matrices from SL(2, Z), where k € Z,, q is an odd prime number ¢ =1 (mod 4),

v is a positive integer such that —v is a non-zero quadratic residue mod ¢, which is
divisible either by a prime p = 3 (mod 4), or by 4. Then the following hold:

(i) For every natural N there exists Ty € SL(2,Z) such that vy (A) and vy (B)
are conjugate by the matrix vy (7T), where vy: Z — Z /N Z is the reduction
mod N .

(ii) The matrix A is conjugate neither to B nor to B~ within GL(2,7Z).

Proof The conjugacy condition 74 = BT is equivalent to a linear system of equations
having the 2—parameter family of solutions:

_(x ¥
Ty = (vy q>x +kq2vy)
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The matrix 7" belongs to SL(2, Z) if and only if x, y € Z and the determinant of T
is 1, namely if and only if the quadratic Diophantine equation

(59) ¢*x* + kq?vxy —vy? =1
has integral solutions.

In a similar way vy (A) and vy (B) are conjugate by a matrix 7" € SL(2,Z/NZ) if
and only if the equation (59) has solutions x, y € Z/N7Z. We can improve this last
statement as follows:

Lemma 5.1 The homomorphism vy: SL(m,Z) — SL(m,Z/N7Z) is surjective.

Proof It is known that the group SL(m, Z/N Z) is generated by the matrices of the
form 1+ E;j, where Ej; has only one non-zero entry, which is 1, sitting in position
ij. See Hahn and O’Meara [37, Theorem 4.3.9] for a proof.

Here is an explicit construction when m = 2. Let

U= (Ull 1412)
U1 U2z
be an integral matrix whose reduction mod N is a given matrix of SL(2,Z/NZ).
There exist integers o, f such that ou1, — Buyq = ged(uqq,u12). Set then:

U1+ N(a+upy)+1—detU U +Nb+NPB+upy)+1—detU
upy(detU —1)

U upry(detU —1) wuzy —

1 1
ged(uy,u12) ged(uy,u12)

where y = Bty1 —ausy. Now vy (T) = vy (U) because vy(detU)=1€Z/NZ,
and det7 =1 sothat T € SL(2,7Z). a

Therefore, if the Diophantine equation (59) has solutions in Z/g*Z for every prime ¢,
then for every natural N there exists Tn € SL(2, Z) such that vy (A4) and vy (B) are
conjugate by the matrix vy (7).

Lemma 5.2 If —v is a non-zero quadratic residue mod ¢ then the equation (59) has
solutions in Z /N Z for every N .

Proof Let us show that this equation has solutions mod p’ for every prime p and
positive integer /, which will imply that there exist solutions mod N for every N .

If p # ¢ then take x = ¢ and y = 0, where @ denotes the inverse of ¢ mod p*. If
p = ¢q then —v is also a quadratic residue mod ql for every positive /, by the quadratic
reciprocity law and the fact that ¢ = 1 (mod 4). Thus there exists an invertible z such
that —v = z2 (mod ¢)’. Therefore x =0 and y = Z is a solution mod /' . a
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Lemma 5.3 If g is an odd prime and v is a positive integer then the equation (59) has
non-integral solutions.

Proof The discriminant is a perfect square w? such that
(60) w? — (kK2q*v? + 4¢%v)y? = 4¢>.

If k = 2n is even then w is even and divisible by ¢ so that we can put w = 2qu, for
some integer u satisfying

(61) u? — (n*qg*v® +v)y? =1.
If k is odd then w = gu and the equation reads
(62) u? — (k2q*v? + 4v)y? = 4.

Lemma 5.4 If (u, y) is an integer solution for either one of the equations (61) or (62)
then y is divisible by ¢q.

Proof Consider first k£ even when the equation (61) is a Pell equation. Let us remind
briefly the theory of the Pell equation
(63) W2—Dy* =1,

where D is a positive integer which is not a square. There exists only one minimal
solution that can be constructed following classical results (see Mollin [49], and Niven,
Zuckerman and Montgomery [55]) as follows. We set:

(64) Py=0, Qo=1, ao=[VD]
(65) H,=1  H_1=0, G,=-Py, G_1=0o

We define inductively:

(66) Hi=aiH; 1+ H;_>, G;i=a;Gi_1+G;»
(67) Pi=a;1Qi—1—Pi_1, Qi=(D—-P}/Qi
P; D
(68) a; = [—’ * f}
Qi

‘We have therefore:
(69) Gi2_1 - DH,'2_1 = (_l)iQi

The algorithm for solving the Pell equation is as follows. Find the smallest even
integer / > 1 such that Q; = 1. Then (Gy_;, H;_;) is the minimal non-trivial solution
(ug, yo) to the Pell equation (63).
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Moreover, any other (positive) integral solution can be obtained from the minimal one
by means of the following recurrence:

(70) Ugy1 =UoUs + Dyoys, Vs+1 = yous+xoys for s=>0.

The previous algorithm (notice that D is not a square) gives us the minimal solution
for (61):

(71) up =2n’q*>v+1, yo=2ngq.
A recurrence on s shows that yg is a multiple of ¢ for every s > 0.
Assume now that k is odd where the equation (62) is a Pell-type equation.

When v is odd we can use the same algorithm as used for the Pell equation above to
solve (62) but starting from the initial data

(72) Po=1 Q¢=2

because we are in the situation when D = 1 (mod 4). Then the minimal solution is
(73) uo=k*¢*>v+2, yo=kq

and the same arguments show that all solutions y are multiple of ¢.

Finally, assume that v is even, v = 2v’, such that u = 2u’ for some integer u’ and the
equation (62) becomes

(74) M/Z_(k2q2v/2+2v/)y2 =1.

One finds the minimal solutions

(75) uy =k*q*v' +1,  yo=kq.

Thus all solutions y are multiple of y. This proves Lemma 5.4. a
Remark 5.1 If v is negative the minimal solutions are different, for instance when

v =—1 and k is even we have uy = (k/2)q, yo = 1, so that the previous lemma
cannot be extended to negative v.

Going back to the original equation (59), if y were a multiple of ¢ it would imply that
g divides 1, which is a contradiction. Thus (59) has non-integral solutions and hence
Lemma 5.3 is proved. a
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Further —v was assumed to be a quadratic residue modulo ¢. Thus Lemma 5.2
shows that the equation (59) has solutions in Z/N Z for every N but has non-integral
solutions. In particular, the matrices 4 and B are not conjugate in SL(2,Z). In order
to show that they are not conjugate in GL(2, Z) either it amounts to prove that the
equation corresponding to det(7') = —1, namely

(76) q>x? 4+ 2kq*vxy —vy? = —1

has non-integral solutions. If v is divisible by a prime number p that is congruent to 3
mod 4 then the reduction mod p of the equation (76) reads ¢?x? = —1 (mod p). But
—1 is not a quadratic residue mod p when p is as above. The same argument works
when v is divisible by 4. This shows that the matrices 4 and B are not conjugate in
GL(2,7Z).

Finally, consider the conjugacy between A and

B1_ 1+ 4k%q%v —2k
“\ —2kq*v 1 )7

The system of linear equations V4 = B~!V has the solutions

— X y
Vix,y) = (—vy + 2kq?vx —qzx) )
The condition det(V') = £1 is actually the same couple of equations
a7 q*x* + 2kq*vxy —vy? = F1

studied above. Therefore 4 and B~! are not conjugate within GL(2, Z), as claimed.
O

Remark 5.2 We have ¢(A4) —¢(B) = 2k(g?>—1)(v+1). Since v is positive all pairs
(A, B) furnished by Proposition 5.1 have ¢(A) # ¢(B) and hence the manifolds M4
and Mp can be distinguished by their Reshetikhin—Turaev invariants.

Remark 5.3 There exist always rational solutions to the Diophantine equation above
and thus the matrices 4 and B are always conjugate within SL(2, Q). This implies
that the associated 3—manifolds M4 and Mp are commensurable.

6 Proof of Theorem 1.3

6.1 Outline of the proof

According to Proposition 3.5 and Theorem 3.2, it suffices to show that there exist
pairs of Anosov matrices 4 and B such that their images A and B are conjugate
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within SL(2, Z /mZ) for every m, neither A4 and B, nor A and B!, are conjugate in
GL(2, Z) (thus satisfying the claims of Proposition 5.1) and moreover ¢(A) = ¢(B).
We reformulate these requirements, in a stronger form, as follows:

Proposition 6.1 There exist infinitely many pairs of Anosov matrices A and B such
that:

(i) A and B are conjugate in SL(2, Z/mZ) for every m,

(i) A and B are reciprocal, namely they are conjugate in SL(2,Z) to A~! and
B!, respectively,

(iii) A and B are inert, namely they are conjugate in SL(2,7Z) to wAw™! and

wBw™!, respectively, where

w— 1 0
—\0 —1)°
(iv) A and B are not conjugate in SL(2,7Z).

Proof of Theorem 1.3 assuming Proposition 6.1 If A were conjugate to B in
GL(2,Z), namely A = sBs~! with s € GL(2,7Z), then det(s) = —1 and wAw™! =
wsB(ws)~!, with det(ws) = 1. Since A4 is inert, this would imply that 4 is conjugate
in SL(2,7Z) to B, which contradicts our assumption. Since A and B are reciprocal,
A cannot be conjugate to B! in GL(2, Z) either.

Recall that ¢ is constructed from ® g in such a way that it becomes a quasi-homomor-
phism ¢: SL(2, Z) — Z . Namely, the following hold (see [48]):

(78) P(CAC™Y) = p(A) for C €SL(2,7),

(79) $(A71) = —p(4).

In particular, if A and B are reciprocal, then ¢(A4) = ¢(B) = 0 and this actually holds
for any quasi-homomorphism ¢. This will settle Theorem 1.3. a

6.2 Proof of Proposition 6.1

Reciprocal (conjugacy) classes in SL(2, Z) were recently discussed by Sarnak in [67].
Let A+ denote the transpose of A. Since the transpose is given by

(01 0 1
= () ()
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it follows that A is reciprocal if and only if it is conjugate to its transpose AL (see

also [67], page 218). Recall that A is ambiguous if A is conjugate within SL(2, Z) to
-1 4—1

w AT w.

We say that 4 and B are in the same genus (see Borevich and Shafarevich [7]) if their
images are conjugate within SL(2,Z/mZ), for every m. Our aim is to find reciprocal
and inert conjugacy classes in the same genus.

Let D be an odd (square-free) fundamental discriminant. Following Gauss (see [7])
there are 2°(P)~1 genera of primitive integral binary forms, where o' (D) is the number
of distinct prime divisors of D.

Denote by D™ the set of those D for which the negative Pell equation
(80) X?-DY*=-4

has integral solutions. It is known that D € D~ if and only if the narrow class group
Cp coincides with the class group Clp of Q(«/ﬁ) (see Stevenhagen [69, Lemma 2.1]).
Recall that the 4-rank of an abelian group C is the rank of C2?/C*, which counts the
number of distinct cyclic factors of order 4.

Lemma 6.1 Every D € D~ such that the 4-rank of Cp is non-trivial gives raise to a
pair of non-conjugate reciprocal matrices in the same principal genus.

Proof According to Gauss (see [7]) the group of genera is isomorphic to Cp/C 12).
The classes in the kernel of the projection Cp — Cp/C 12) form the principal genus.
The set of ambiguous classes is identified with the kernel of the square homomorphism
§: Cp — Cp given by §(x) = x2. Therefore the elements of order 2" in Cp with
n > 2 are ambiguous classes in the principal genus.

When D € D~ it is known that every class is inert and every ambiguous class is
reciprocal and vice-versa (see [67, page 214]). In particular, if the 4-rank of Cp is
positive then there are at least two inert and reciprocal classes in the principal genus.
They are non-conjugate as they are distinct classes in Cp . |

There exists a simple method developed by Rédei and Reichardt (see [63]) to find the
4—rank of the narrow class group Cp. Let D = p;p,--- p, be the decomposition
in odd prime numbers of D. The Rédei matrix Mp is the n x n matrix over Z /27
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whose entries a;j are:

e Pi\_ _
1 1f17é]and(p) 1,

(81) ajj = p’_
0 ifi# and (—l)=1,
pj
(82) ajj = Z ajj.
i#j,1<i<n

Here (g) € {—1, 1} is the Legendre symbol, equal to 1 if and only if p is a quadratic
residue mod ¢ . Following [63], the 4—rank of Cp is givenby o(D)—1—rankz/,7 Mp.

We will consider from now on D of the form D = u? + 4, so that the negative Pell
equation has obvious solutions X =u, ¥ = 1. We seek those D that are odd square-
free and such that the associated Rédei matrix is identically zero. If D has at least
two prime factors then the 4—rank of Cp is non-trivial. In this case it is easy to find
explicit matrices 4 and B corresponding to ambiguous, inert and reciprocal pairs of
classes in the principal genus. The trace ¢ of A will be

(83) t=D-2
so that it verifies
(84) 12— Du* =4.

For each positive integral solution (a,b) of the equation 4a® 4+ h?> = D, we have
associated the classes of binary forms (a, b, —a), which correspond to the symmetric
matrices

3(t —ub) au ) .

(85) Aap = ( au %(t + ub)

These are obviously reciprocal classes in the principal genus C 12) of Cp. The examples
in Theorem 1.3 arise when choosing u € {21, 51, 53, 55} for which (D) = 2 and
Mp =0.

Finally, there are infinitely many D € D~ for which the 4-rank of Cp is positive. Let
D denote the set of special discriminants, namely the set of those D whose prime
factorization has only distinct odd primes of the form p = 1 (mod 4) and possibly
8. Then in Fouvry and Kliiners [24, Theorem 2], the authors state that the subset of
those D € D for which the 4-rank of Cp equals 1 and the 8-rank vanishes (and hence
D € D7) has positive density within the set D. In particular this set is infinite.
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Remark 6.1 We think that the number of distinct cyclic factors of order 2 > 4 of
the class group Cp, where D runs over the odd square-free D of the form n? + 4, is
unbounded.

7 Proof of Theorem 1.2

7.1 Abelian invariants

We will consider the U(1) gauge theory as defined in Funar [27; 29], Gocho [35], and
Murakami, Ohtsuki and Okada [51], and then generalized in Deloup [14; 15]. One
chooses a root of unity ¢ of order & for odd & and of order 2k for even k. Then in
[51] there is defined the invariant Zj (M, q) for 3-manifolds M as follows. Set L be
a framed link with n components in S such that the 3-manifold M is obtained by
Dehn surgery on L. Let Ay, denote the linking matrix of L. We define then after [51,
(1.1)] the MOO invariant of the 3—manifold M as being:

G —o(AL)
(86) zk(M,q)=( "@) Gl S gl
G (@) o

where o denotes the signature of the matrix and the Gaussian sums are given by

(87) Glg)= Y. 4"

heZ/kZ

Notice that for even k the value of qTXALx is defined by taking arbitrary lifts X €
(Z/2k7Z)" and setting

TXAL.X TEALE
b

q =9
which is independent on the choice of the lifts, since A is symmetric.

These invariants where further extended by Deloup in [14] by making use of general
quadratic forms and finally extended to TQFTs in [15]. These TQFTs correspond to
suitable modular tensor categories, which are related to the Drinfeld double D(Z/kZ)
of the finite group Z/kZ and to the geometric U(1) Chern—-Simons gauge theories.
A more precise statement is given in [14, Appendix A], where the invariants Zj and
their generalizations are identified with the Reshetikhin—Turaev invariants associated
to a modular category .A coming from an abelian group, which is described by Turaev
in [72, page 29].

The Turaev—Viro invariants TV 4 are therefore the absolute values of |Z; (M, q)|. The
main result of this section is the following:
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Proposition 7.1 Let M4 and Mp be SOL torus bundles with the same absolute value
MOO invariants | Z; (M, q)|, for all k. Then, either

(88) Tr(A) = Tr(B)
or else
(89) Tr(A4) + Tr(B) = 4.

Consequently those torus bundles having the same abelian Turaev—Viro invariants as
M 4 fall into two commensurability classes.

Proof We have first the following explicit computation of the MOO invariants from
[51]:

Lemma 7.1 If k is odd then we have

(90) |Ze(M.q)| = |H' (M. Z/kZ)|'/2.

If k is even then

O |Zx(M, q)|
_ (IHY(M,Z/kZ)|V? ifaUaUa =0 foreveryoa € H (M,Z/kZ),
o otherwise.

Proof See [51, Theorem 3.2]. m|
Further the cohomology of SOL torus bundles is given by:

Lemma 7.2 If M = M4 with A € SL(2, Z) hyperbolic then
(92) HY(My,Z)k7) = 7] k7 ® ker vi (AT —1),

where AT denotes the transpose of the matrix A.

Proof By the Universal Coefficient Theorem,
HY(My,7/k7Z) =~ Hom(H;(M4),Z/kZ).

Since A is hyperbolic, Hi(M4) = Z & Tors(H{(My4)). The torsion part can be
computed by abelianizing 'y and we find Tors(H; (M,)) = Z2 /(A —1)(Z?), which
is a finite abelian group of order |det(4 — 1)| = |Tr(A4) —2|.

Then Hom(Tors(H(My)), Z/kZ) is naturally identified with ker(4 —1)7, where
(A—1)§: Hom(Z*,Z/kZ) — Hom(Z*, Z/ kZ)
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is the linear map given by (4 —1);(f) = fo (A1), for f € Hom(Z2,7Z/kZ).
We have a (non-canonical) isomorphism (Z/kZ)? — Hom(Z?, Z/ kZ), which sends
(a,b) € (Z/kZ)? to the homomorphism Ja,b satisfying

(er (o) 20 (1)) = @ tr e @022

Then f, 5 € ker(A — 1); if and only if (a,b) € kervy (AT —1). This proves the
claim. a

Consider now two SOL manifolds M4 and Mp having the same absolute value MOO
invariants. If the MOO invariants as well as their generalizations from [14] were the
same for the two manifolds then the result would be a simple consequence of the main
theorem from Deloup and Gille [16]. In fact these invariants determine the linking
pairing of the 3—manifold and in particular the torsion group Tors(H;(M)).

The case where we only know that the absolute values of the MOO invariants agree
is only slightly more complicated. First, when k is odd, Lemma 7.1 and Lemma 7.2
imply that:

(93) lkervg (AT —1)| = |ker v (BT — 1)

In order to compute the orders of the kernels above we have to recall some standard facts
concerning the normal forms of integral matrices. Let C: Z" — Z" be a non-singular
linear map C: Z" — 7" . Then there exists a (unique) collection of positive integers
1,¥2,...,In, called the invariant factors of C with r; dividing rj+ (when j <n—1)
such that C = VDW, where V, W € GL(n, Z) are invertible integral matrices and
D is diagonal with entries r{, 72, ..., r,. Moreover |det(C)| = ryry---ry. This is the
so-called Smith normal form (see [52, II.15]).

This normal form is particularly useful if one seeks for counting the solutions of the
congruences system C(x) = 0 (mod k). By above this is equivalent to the system
of congruences rjx; = 0 (mod k), for 1 < j < n. Each congruence above gives
ged(rj, k) distinct solutions x; (mod k), so that the total number of solutions of the
system is [17_; ged(r;, k).

Notice that the invariant factors for a 2 x 2 matrix

()

are simply ry(A) = ged(a, b, c,d) and rp(A) = det(A4)/r1(A).
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Now, for fixed C and k of the form k = p”, with prime p, if we choose r large
enough such that r > m; ,(C), where rj = p”’f-l’(c)sj, with ged(p, sj) =1 then the
previous discussion shows that

(94) |ker vi (C)| = ged(|det(C)|, k).

We will apply this formula to C = 4 —1 and, respectively, C = B —1, where k = p”
for odd prime p and r is chosen large enough such that

95) r = max(mj, p(A—1),mj ,(B—1)).
Then the relations above imply that
(96) ged(Tr(A4) =2, p") = ged(Tr(B) -2, p")

for every odd prime p and r large enough. Therefore the numbers |Tr(A4) — 2| and
|Tr(B) — 2| have the same odd divisors.

Let us now call the even number k good for M if we have @ U U = 0, for every
o€ H'(M,Z7Z/kZ). Lemma 7.1 shows that k is good if and only if | Z; (M, q)| # 0.
On the other hand in [51, Corollary 5.3], one founds the following explicit criterion.
The number & is not good for M, ie, Z;(M,q) = 0, if and only if there exists
x € Tors(H{(M)) of order 2" such that Ls(x,x) = ¢/2™, where k = 2™b, with
odd b, Lps denotes the linking pairing Lps: Tors(H;(M)) x Tors(H{(M)) - Q/Z,
and c¢ is odd.

Now, if M4 and Mp have the same absolute value of MOO invariants, then k is
good for M, if and only if £ is good for Mp. On the other hand, we know that
|Tr(A4) — 2| = 2"4s and |Tr(A) — 2| = 2™Bs, with odd s. Observe that any &k of the
form k = 2" with r > my4 + 1 is good for M4 since the torsion Tors(H;(M4)) has
no elements of order 2”. In particular if » > max(m4,mp) + 1 then 2" is good for
both M4 and Mp.

Choose now p =2, k =2" with r large enough as in (95) and such that 2" is good
for both M4 and Mp. Then the equality of MOO invariants of M4 and Mp implies

(97) [ker vi (AT —1)| = |ker v (BT —1)],
which, by above, is equivalent to the following:

(98) gcd(Tr(A) —2,2") = ged(Tr(B) —2,2")
Thus m4 = mp and this completes the proof of the fact that

(99) ITr(A) — 2| = [Tr(B) —2|.
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If Tr(A) = Tr(B) then A and B have the same trace and the same determinant and
thus the equation XA = BX has solutions in GL(2,Q), so that M4 and Mp are
(strongly) commensurable.

In fact, recall that Barbot [5] and later Bridson and Gersten [8] proved the following:

Lemma 7.3 The groups 'y and I"p are commensurable if and only if the quotient of
their discriminants D4/ Dp is the square of an rational. Here the discriminant of A is
D4 = Tr(A)? —4det(A). Moreover, this is equivalent to the fact that A” and BY are
conjugate within GL(2,Q), for some p,q € Z.

Further if Tr(A4) + Tr(B) = 4 we have again only one (strong) commensurability class
allowed for B. Thus the torus bundles as in the statement of the proposition fall into
two commensurability classes. a

We will give now several examples to show that all abelian invariants (of Reshetikhin—
Turaev type, not only their absolute values) fail to distinguish the two distinct commen-
surability classes above.

Proposition 7.2 Set

I n 1-2n n
(100 A_(1n+1)’ B_(—l—Zn n+1)’ nely.

The manifolds M4 and Mp have the same quantum abelian invariants although
Tr(A) + Tr(B) = 4 and Tr(A) # Tr(B), if n > 1 and n # 4. In particular the
trace is not detected by the quantum abelian invariants of torus bundles. Moreover, if
(n+4)/(n—4) ¢Q? then M4 and Mp (equivalently T4 and T'p ) are not commen-
surable.

Proof The quantum abelian invariants from [14] are identical for two manifolds if
and only if their first Betti numbers agree and their linking pairings are isomorphic
(see [16]).

Let T be the torus fiber of M 4. The we have the exact sequence

(101) Hy (M) — H(T) 225 B (T) —> Hy (M) — 7.

Therefore Hy(M,4) = Z & Tors(H{(My4)), where the torsion Tors(H;(M,4)) is the
image of Hy(T) into H{(My).

The linking pairing L 4: Tors(H;(M4))xTors(Hy(M,4)) — Q/Z is defined as follows.
For every & € Tors(H;(M4)) we choose a lift of it as an element in H,(M4:Q/Z),
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namely an element g? whose image by the boundary connecting homomorphism
0x: Hy(M4;Q/7Z) — H{(My,Z) is exactly &. Here the connecting homomorphism
comes from the long exact sequence associated to the coefficients exact sequence:

(102) -+ = Hry(M4: Q) > Hy(Mq; Q/Z) - Hi(My, Z) — Hi(M4,Q) — ---
We take then L4([n],[€]) = n- § € Q/7Z where the intersection product is the one

induced by H;(M4,Z)x Hy(M4;Q/Z) — Q/Z.

If we have a 1-cycle £ representing the class [£] € H;(T?), then its product with [0, 1]
yields a 2—chain whose boundary is (A4 — 1)&. This implies that the linking pairing of
M, is given by

(103) La(nl.[E) = o((A—1)""(n).€) € Q/Z,

where 1, £ € H(T) = Z? are representing (torsion) classes in Z2?/(A4 —1)(Z?) C
H;(M4) and o is the usual (symplectic) intersection form on H;(7T'), namely

(104) o((v1,v2), (W1, w2)) = VW — VW]

The torsion group of 1-homologies of M4 and Mp are both cyclic groups of order
|Tr(A) — 2| since the first invariant factors for the integral matrices A —1 and B —1
are both equal to 1. Thus the torsion homology groups are isomorphic. Now we can
verify that (4 —1)~! — (B —1)~! is the integral matrix

2 =2
2 =2
such that the linking pairings of M4 and Mg are isomorphic. If n > 1 and n # 4

then these torus bundles are SOL manifolds. Their Betti numbers coincide as all SOL
manifolds have their first Betti number equal to 1.

The statement concerning the commensurability is a consequence of the commensura-
bility criterion for the polycyclic groups from Lemma 7.3 saying that 'y and I'p are
commensurable if and only if D4/Dp € Q2. a

Remark 7.1 If n = 4 then M4 is a SOL torus bundle but Mp is a nilmanifold.
Although their linking pairings are isomorphic their first Betti numbers are different, as
the nilmanifold has Betti number 2. Another pairs with the same property are:

32 32
(105) A:(4 3), B:(_S _5)
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7.2 SU(2)-invariants and the metaplectic representations

Denote by psu(2),k (and respectively py(1),k) the SL(2, Z)-representation associated
to the modular tensor category constructed out of SU(2) (and respectively U(1) or
7./ kZ)inlevel k (see [72]). It should be noticed that the parameters Agy(2).k- {su(2),k
do not agree with Ay(1) . Su(1),k- For instance {y(1)x = exp(wi/4) is independent
on k. The choice of the rank and anomaly will be irrelevant in the arguments below.

Recall first that both representations psy(2),x and py(r)x factor through the finite
congruence group SL(2,Z/kZ).

Now explicit formulas for the values of SU(2) quantum invariants of torus bundles
were obtained in [39] by Jeffrey. Nevertheless it seems difficult to extract explicit
topological information out of them.

The key point in our computation is the existence of simple formulas for the characters
of the SU(2) quantum representations:

Proposition 7.3 We have:
(106) 2Tr(psu(2).k (A)) = Tr(py1).x (A)) — Tr(pyr) .k (—A4))

Proof The finite symplectic groups Sp(2g,7Z/kZ) are endowed with (projective)
representations into some complex vector space Vj, which are known under the name
of Segal-Shale—Weil metaplectic representations. Although these were classically con-
structed only for prime k there exist now several constructions valid for every k. In [27;
29; 35], such representations were constructed for every even k (and for a congruence
quotient of the Theta group I'[2] when £ is odd) in any dimension g using level k
theta functions. The monodromy representations from [51] agree with the previous
constructions and work for every odd k as well. Later in Feichtinger, Hazewinkel,
Kaiblinger, Matusiak and Neuhauser [23], a direct construction of the metaplectic
SL(2, Z/ kZ)-representations was described, which were further generalized in [40]
to higher dimensions.

The following seems to be widely known among experts:

Lemma 7.4 The SL(2, Z) quantum representations pyi),k are lifts of the projective
metaplectic representations.

The theta functions construction was generalized in Funar [28] to quantizations of mul-

tidimensional tori endowed with Coxeter group actions. This leads to finite symplectic
group representations depending on a semi-simple Lie group G or, equivalently, on
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a Coxeter group W (corresponding to the Weyl group of G). It was already noticed
in [28] that the SL(2, Z/kZ)-representations associated to W = Z/27Z coincide

(projectively) with pgy(2) .k -

Lemma 7.5 Let
-1 0
r—(o _1)eSL(2,Z).

The space V}, splits into eigenspaces for the metaplectic action of T as Vj = Vk+ eV,
where

(107) VE = {x e Vi | puys(t)(x) = £x}.

Then the representation psy(2) x of SL(2, Z) is isomorphic to the restriction py 1), | v
of the metaplectic representation to the invariant sub-module V.

Proof This was made so by the explicit construction in [28]. The result was also
formulated explicitly in Freedman and Krushkal [26, Section 5] for prime k&, but the
same argument is valid for all k& when comparing with the formulas in [23]. A more
precise result was given by Larsen and Wang in [44] and independently by Gilmer in
[34, Theorem 5.2]. O

The two lemmas above prove the claim, since the characters of the factors V* are
precisely the —invariant part of the character of V. a

Recall now from Proposition 3.2 and equation (26) that the Reshetikhin—Turaev quantum
invariants of the torus bundle M4 are suitable multiples of the corresponding characters,
as follows:

~30(4
RTsu(2),k(M4) = ngéggk) Tr(psu(2),k(4)).
—3¢(4
RTy),k(Ma) = §U(f§fk ) Tr(pu(1),k(A4))-

The Turaev—Viro abelian invariant is known to be the same as the absolute value of the
MOO invariant (up to a scalar) and this can be extended as follows:

(108)

Lemma 7.6 For any oriented 3—-manifolds we have:
(109) RTy(y k(M) = k™2 Z(M. q)
Proof We know that TVy 1)k (M4) =k~ 12| 7, (M, ¢)| and the associated projective

representations are isomorphic (see [51; 27; 29; 35]). The anomalies are the same and
thus the associated Reshetikhin—Turaev invariants agree.
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Another proof is given in [14, Appendix A], where one uses the modular tensor category
from [72, page 29]. a

Assume now that

RTsy(2),k(M4) = RTsy2)x(Mp) and  RTy()x(M4) = RTy)k(MBp).

Then Proposition 7.3 and relations (108) imply that RTy (1) x (M 4) = RTy1)k (M:B).
In particular, applying the result of Proposition 7.1, we obtain that either Tr(A4) = Tr(B),
or else Tr(—A) + Tr(—B) = 4. The only possibility is that Tr(4) = Tr(B).

The case when the Turaev—Viro invariants of the two manifolds agree is only slightly
more complicated. The key point is that Proposition 7.3 leads to a closed formula for
the SU(2) quantum invariants of torus bundles. We restrict, for the sake simplicity, to
the case of Turaev—Viro invariants, which are central in our argument.

Proposition 7.4 Let A € SL(2,7Z) and k be large enough such that whenever p™,
with prime p and m > 1, divides some invariant factors of A —1 or A + 1 then it also
divides k. Then the SU(2)—Turaev-Viro invariant of M 4 is given by

(110) | Tr(psu) ik (ADI* = T Vsuy k (M.a)
; 2
= (V/eed(Tr(4) = 2.%) —exp( 2 (/i (M4)) ) /2ed(Tr(4) +2.K))

where fr(My) = ¢op(M4q) — pp(My), TA = —A, and ¢p(My) € Z/8Z is the
function introduced in [51, Section 4].

Proof We need first the following:
Lemma 7.7 If A is hyperbolic then (A) = ¢(tA).

Proof By definition ®g(A4) = ®gr(—A) since the Rademacher function is defined on
PSL(2, Z). Further, by (27), the function ¢(A) — O g(A4) is equal to sgn(y (e +8§—2))

when p
o
4= (V 5)

and so it also satisfies ¢(A) — P r(A4) = p(—A) — Pr(—A) when A is hyperbolic, by
direct inspection. |

The last lemma implies that

(1) Zi(Ma.q) — Zi(Mea.q) = §5 005 (Tr(puny e (A) = Tr(pucr) e (TA))).

We have the following:
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Lemma 7.8 If A is hyperbolic and k is good for M 4 and sufficiently large, then

112 Telpuay (4) = exp( ZL@(A) + g (M.a))) lker v (4 = 1)

where ¢ (M4) € 7./8Z is the function introduced in [51, Section 4].

Proof The MOO invariant was computed in [51, Theorem 4.5], for those & for which
the invariant is non-zero, as being:

13)  Zi(Ma,q) = exp( ZL@(A) + k(M) ) H' (M, 2/ )
Since {8(1)’,( = exp(wi/4) we obtain:
(114)  Tr(pu(yk(A4)) = £ RTy(1) k(M)
= exp( %L (0(A) + k(M) )k ™2 H' (Mg, 2/ KZ)) V2,

which implies the claim. |

Now, if A is hyperbolic and k is large enough then use Lemma 7.8 to derive:

(115) | Tr(psu) 4 () = TVsy@) x (Ma)
= |RTsy) x (Ma)1> =k Zk (M4, q) — Zx (M4, 9)|?

1 i 112
= [Iker vie (4T = 1)13 — exp( ZL (@ (M) — 1 (M) ) Ier v (4 + 1)

Then the closed formula (110) follows. O

7.3 End of the proof of Theorem 1.2

It remains to prove the following:

Proposition 7.5 If the SOL torus bundles M4 and Mp have the same abelian and
SU(2) Turaev-Viro invariants then Tr(A) = Tr(B).

Proof We have to recall (see eg [72, Section VI]) that the modular tensor category
Csu(2)» which is leading to the SU(2) invariants, is defined only when the level is of
the form 4n, with n > 3.

We assume that a = Tr(A) # Tr(B). According to Proposition 7.1 we must have
Tr(B) =4 —a. Let k be large enough in order to be good for M4 and Mp and also
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to verify (95). We put ged(a —2,k) = u, ged(a+2,k) =v and ged(a—6,k) = w.
Then (115) implies that
(116) —2cos(%ifA>«/uv+v = —2005(%1']”,4)«/uw+w

where f4 = ¢ (Mr4) — i (M,y).

This is equivalent to the equation

(117) (Vo= V) (Vo + vw—2cos( T f4) Vir) =0,

Lemma 7.9 The prime divisors of a — 6 are the same as the prime divisors of a + 2.
Proof Suppose that there exists some odd p, which divides ¢ — 6 but not a + 2. We

write a — 6 = 2% p” ¢, with ¢ odd and coprime with p, r > 1.

Assume first s > 3. We chose k of the form k = 2" p™ (with m large with respect to r
and 5). Then w =25p", u = gcd(4(252p"c+1),2mp™) =4, v=ged(8(2* 3 p"c+
1),2™M p™) = 2! where ¢ > 3. Actually we have ¢t = 3 if s > 4. Then equation (117)
implies that

(118) ,/2Spr+ﬁ=4cos(%lfA).
Since 4 cos((rwi/4) f4) € {0, £2+/2, +4}, this equation is impossible for any odd
prime p.

Consider now s = 1. We choose again k of the form k = 2" p", with m large with
respect to . Then w = 2p”, u = gcd2(p"c +2),2"p™) =2, v = ged(2(p"c +
4),2™ p™) = 2, so that equation (117) implies that

(119) V2P V2= 2cos(%ifA)\/§.

Its only integral solution is p = 1, which is not convenient.

Letnow s =0. Then, again, choose k of the form k =2" p'" (with m large with respect
to ). We find that w = p", u=ged(p"c+4,2"p")=1, v=ged(p"c+8,2"p™) =
1, so that equation (117) above yields

(120) Vo 4 1= 2cos(%lfA).
The only integral solution is again p = 1.

Let us consider the case when s = 2. We write p"c + 1 = 2%d, with odd d. Choose
now k = 2" p™c™, for some large enough m so that k is good for M4 and Mp
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and (95) holds. Then w = 4p”c, u = gcd(d(p"c + 1),2" p™mc™) = 2412y =
ged(4(p”c +2),2™ p™c™) = 4. In this case equation (117) gives us

(121) m+l=2cos<%if/1)\/2_”.

Suppose that cos((7ri/4) f4) = 1 so that we have to find integral solutions of
(122) | V2ud —1 = ou+2,

If d > 5, then for every u > 1 we have

(123) 14+ V24d —1> 14 +/5-2¢4 —1> 2424,

If d = 3 then the previous equation is equivalent to

(124) 1++/3.20—1=22u,

By taking the square and collecting together the terms, we derive that 22472 = 3.24 1.
This is impossible when u# > 1 because of modulo 2 considerations. If d = 1, then

(125) 1+ /24 —1 < 24/2u.

The only possibility left is that 2 cos((7i/4) f4) = ~/2 so that the equation reads
(126) |+ V2ud —1 = y2u+2,

Ifd >3,as u>1, we have

(127) 14+ V24d —1> 14324 —1>242¢,

If d =1 then the equation reads

(128) 1+ /21 —1 =2:2%,

Squaring both sides and collecting the terms we obtain 22#~2 = 2% — |, which is
impossible by mod 2 considerations. This proves that any odd prime dividing a — 6
also divides @ 4 2. A similar proof shows that conversely, if an odd prime p divides
a+ 2 then p divides a — 6. This proves the lemma. a

Thus the prime divisors of @ — 6 and a 4 2 are the same and this implies that they
divide their difference, so actually the only prime divisor of these two numbers is 2.
Thus @ —6 = £2™ and a + 2 = £2", for some integers m, n. This is impossible when
m > 5 since it implies that 8(£2"3 4+ 1) = £2", but £273 4 1 is a non-trivial odd
number. Inspecting the remaining cases when 0 < m < 4 leads us to the following
solutions a =2, a = 14 and @ = —10. The first is not convenient since A was supposed
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hyperbolic. The other ones do not satisfy the constraint (117). This contradiction shows
that the only possibility is that Tr(A4) = Tr(B), as claimed. a

7.4 Ideal class groups and proofs of Corollaries 1.2 and 1.3

We want to prove that the set of those Mp having the same abelian and SU(2) Turaev—
Viro invariants as M4 is finite, and it can be identified with a subset of a quotient of
T(M,) by the involution ¢ which acts as X — X! on matrices with given trace.

Let a be a root of x2 —Tr(A4)x + 1 = 0, where |Tr(4)| # 2. A construction due
to Latimer, MacDuffee and Taussky-Todd (see [12, Appendix] and [52, III.16] for
details) establishes a one-to-one correspondence between the ideal class group Z(M4)
of the order Z[«] and the classes of matrices C € SL(2, Z) with trace Tr(C) = Tr(A),
considered up to conjugacy in GL(2,7Z).

The order Z[x] is sometimes (though not always) the ring of integers of a real quadratic
field. Specifically, set D4 = Tr(A4)? —4 for odd Tr(A), and Dy = %Tr(A)2 —1 for
even Tr(A), respectively. If D4 is square-free, then Z[«] is the ring of integers O /D4
of the real quadratic field Q(+/Dy).

For any SL(2, Z) matrix C having trace Tr(A4), one defines an ideal of Z[«] as follows.
Consider an eigenvector (u1,u) of C associated to the eigenvalue «, which could
be chosen to lie within Z[a] x Z[«]. Therefore {u,u,} form the basis of an ideal
1(C) C Z]a]. Conversely, the choice of a basis of an ideal I C Z[«] determines a
matrix C(I) € SL(2,7Z) corresponding to the multiplication by «. This matrix is
uniquely determined by 7, up to conjugacy in GL(2,7Z).

In the ideal class group Z(My4) of Z[«], two ideals I and J are identified if there
exist nonzero elements v, w € Z[«] such that v/ = wJ. Further, if B =UCU -1
with U € GL(2,Z), then the ideals /(B) and /(C) are equivalent. Therefore the
class of I(C) is well-defined in Z(M 4), independently on the representative C in its
conjugacy class.

Now recall that two torus bundles M4 and Mp are homeomorphic if and only if
their fundamental groups are isomorphic, since they are aspherical. According to
Proposition 1.2 this corresponds to the fact that A is conjugate to B or to B! within
GL(2,Z). If we take into account the involution B — B~!, we obtain the first claim
of the Corollary 1.2. Dedekind’s Theorem states the finiteness of the ideal class group
and it permits to conclude.

Although the statement of Proposition 1.2 was only stated for hyperbolic matrices A4
and B this extends naturally to all matrices from SL(2, Z).
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Stronger results dues to Platonov and Rapinchuk (see [57; 62; 58, Section 8.8.5]) show
that the number of classes in an arithmetic group belonging to the same G —genus (where
G is a connected linear algebraic group defined over Q) is finite and unbounded. In
particular, the number of classes in XTY (M) is unbounded. This settles Corollary 1.3.

7.5 Proof of Corollary 1.4

Manifolds as in the statement of Theorem 1.1, or those arising in Corollary 1.3, have
isomorphic pro-finite fundamental groups, since the pro-finite completion of I'y4 is
determined by the conjugacy class of the subgroup (A) in GL(2, Z), where Z denotes
the pro-finite completion of Z.

But this is also a consequence of the fact that quantum invariants associated to finite
groups determine the pro-finite completions of closed 3—manifolds. Specifically, for
every finite group F there is associated a modular category whose associated invariants
are the so-called Dijkgraaf—Witten invariants (see eg [72]). The simplest of them is the
untwisted Dijkgraaf—Witten invariant RTr given by the following explicit counting
formula in terms of the fundamental group of the closed 3—manifold M (according to
Turaev [72], or Freed and Quinn [25, (5.14)]):

1
|F|

We have now the following easy lemma:

(129) RTr(M) = — |Hom(rr; (M), F)|.

Lemma 7.10 Let I'y and T"y be finitely generated groups such that:
(130) Hom(T'y, F)| = [Hom(T'y. F)|

holds for any finite group F. Then the sets of finite quotients of I'y and T",, respectively,
coincide.

Recall that the pro-finite completions of two finitely generated groups are isomorphic
as topological groups if and only if the sets of their finite quotients are the same (see
Dixon, Formanek, Poland and Ribes [17]). However, two pro-finite completions are
isomorphic as topological groups if and only if they are isomorphic as discrete groups,
because finite index subgroups in pro-finite groups are open, according to a fundamental
result of Nikolov and Segal ([54] and the discussion in [17]). This settles Corollary 1.4.

Proof of Lemma 7.10 Let Hom®"(T", F) denotes the set of surjective homomor-
phisms between the groups I' and F. We claim first that, under the assumptions of the
lemma, we have for any finite group F' the equality:

(131) [Hom**(T'y, F)| = |[Hom*™(T,, F)|
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Otherwise, pick some F for which the claim above is false and such that F is a minimal
group, with respect to the inclusion, with this property. Then F is nontrivial and

(132) |[Hom*“9(T'y, F)| # |Hom*"(T,, G)|.

By the induction hypothesis we have

(133) |Hom™(T'y, G)| = [Hom™¥(T',, G)|

for any subgroup G C F such that G # F. However, we also have

(134) [Hom(T';, F)| = > [Hom™(T;. G)|.
GCF

The inequality above implies then
(135) [Hom(T'y, F)| # |[Hom(T';, G)|

contradicting our assumptions. This proves the claim.

Finally, note that F is a finite quotient of the group I'; if and only if |[Hom*“9(I';, F)| #
0. Then the claim above implies that the set of finite quotients of the groups I'; should
coincide. a

7.6 Proof of Proposition 1.4

Let G be the fundamental group of a closed orientable irreducible SOL manifold
M. Then G is solvable and, according to a result of Evans and Moser (see [22,
Theorem 5.2]), G is polycyclic.

Consider the fundamental group H of a closed 3—manifold whose class is in XTY(M).
According to Lemma 7.10 the finite quotients of H coincide with the finite quotients of
G . Moreover, by classical results of Hempel and Perelman’s solution to the geometriza-
tion conjecture the 3—manifold groups are residually finite. Sabbagh and Wilson have
proved in [66] that any residually finite group H having the same quotients as a
polycyclic group is also polycyclic. In particular H is polycyclic. Now the finiteness
statement is a consequence of a deep theorem of Grunewald, Pickel and Segal (see [36]),
which states that the number of polycyclic groups with the same pro-finite completion
is finite.

8 Comments

8.1 Higher genus

A direct extension of these results to higher genus surface bundles does not seem to
work. In the case of the closed torus the kernel of all modular representations of level k
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is a congruence subgroup of level k£ and hence strictly larger than the normal subgroup
generated by the k™ powers of Dehn twists. In higher genus one expects the kernel of
SU(2) quantum representation to be precisely the normal subgroup generated by the
k™ powers of Dehn twists.

The first case to analyze is the mapping class group of the 1-punctured torus Mi
(isomorphic to SL(2,Z)). Its quantum representations are known to not always be
congruence. Moreover, the kernel of the quantum SU(2)-representations (where the
puncture is colored with every possible color) is now the subgroup M 1 [k] generated
by the kth powers of Dehn twists (see Funar and Kohno [30], and Masbaum [47]). The
following shows that the analog of Proposition 1.3 does not hold:

Proposition 8.1 Iftwo matrices A, BeSL(2,7)= M} are conjugate in each quotient
M%/M%[k] then A and B are conjugate in SL(2, 7).

Proof Let F be a finite quotient of SL.(2,7Z). Then the image of the Dehn twist
corresponding to a parabolic in SL(2, Z) is of finite order, say k. The Dehn twists
on Z} are conjugate so that F is a quotient of ./\/li / ./\/l}[k]. This implies that the
images of A and B are conjugate in any finite quotient F. According to Stebe (see
[68]) the group SL(2, Z) is conjugacy separable and this implies that 4 and B are
conjugate. a

8.2 Equivalence relations on 3—-manifolds

There are some natural equivalence relations on the set of closed 3—manifolds, which
are inspired by the present constructions. At first there is Lackenby’s congruence
relation from the introduction. Further, two manifolds are said to be Turaev—Viro
equivalent if their Turaev—Viro invariants agree for every spherical fusion category.
From [34; 43] one derives that congruent manifolds are also Turaev—Viro equivalent
and we don’t know if the converse also holds. It would be interesting to find examples
of non-homeomorphic congruent hyperbolic 3—-manifolds, if they exist.

Appendix: Counting matrices in a given genus

For t € Z, we let
M ={4eSLQ2,Z)|tr(A) =t},

and let X; denote the set of GL(2, Z)—conjugacy classes of matrices in M;. We
define the discriminant of A € M, to be

t2—4 for ¢ even,

D=D()=
® {z2/4—1 for ¢ odd.
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Furthermore, the genus &(A) of A € M, is the set of B € SL.(2, Z) that are conjugate
to 4 in SL(2, 2) where Z is the profinite completion of Z (we note that obviously
B(A4) C M;). Equivalently, B € &(A) if the images of A and B are conjugate in
SL(2,7Z/mZ) for all m > 1. It may appear that to comply with the general definition
of genus adopted in Platonov and Rapinchuk [58, Section 8.5], we would also need
to require that B must also be conjugate to 4 in SL(2,Q), but here this condition
follows automatically from local conjugacy in view of the Hasse norm theorem for
quadratic extensions. On the other hand, one can consider a variation of this definition
of genus by requiring that the images of A and B in SL(2,Z/mZ) be conjugate
in SL*(2,Z/m1Z), the group of matrices over Z/mZ with determinant +1, for all
m > 1; the genus of A thus defined will be denoted by &% (A). Finally, we let 2(A4)
denote the set of SL(2, Z)—conjugacy classes in &(A).

Our main result is the following.

Theorem A.1 There exists an increasing sequence of integers {t,} such that:

(1) Dy := D(t,) is square-free for all n.
(i1) We have:

1
(136) max |2A(A4)] =0.1023-107*. p9-4°
AEMy, 2log2 +log(Dy +2)

and therefore max e ry,, [A(A)| —> 00 as n — oo.

(iii)) We have

max A(A 1
(137) AeMy, [A(A)] L
| X7, | 64

In particular,

1 1
(138) htn_l)solip WAHGI%I(, [A(A)| = a
According to Propositions 1.1 and 1.2 above, matrices A1, A, € (A) such that neither
of A;—Ll and A2il are conjugate in GL(2,7Z) (we will call such matrices strongly
non-conjugate) give rise to nonhomeomorphic torus bundles having the same quantum
invariants. This, in particular, yields nonisomorphic 3—manifold groups having the
same profinite completion, answering the Grothendieck-type question raised in Long
and Reid [46]. Theorem A.1 above implies an asymptotic lower bound on the size
of a set of pairwise strongly non-conjugate matrices in a genus inquired about in the
paper above, which gives an effective version of Corollary 1.3. This effective version
is closely related to the more general results of the second author from Prasad and
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Rapinchuk [59; 60]. The proof below is based on the (well-known) connection between
the conjugacy of 2 x 2 matrices and the equivalence of binary quadratic forms (see
Cassels [10]), although one can also give a direct argument.

Proof Assume henceforth that |[¢| > 3 and set D = D(¢). First, we prove the following
result about the number of genera, which is based on the analysis of local conjugacy (it
should be noted that there are easy algorithms to determine if two matrices in SL(n, Z))
are conjugate, for any n (see Appelgate and Onishi [1]), but all we need for n = 2 is
the classical result about binary quadratic forms).

Proposition A.2 Let D =2"p{' p;?--- p;" be the prime factorization of D.

(1)

(i)

The number of distinct genera &(A) contained in M; is
s(t) =2V (D) (D)

where ©(D) is the number of divisors of D and

0 if D=1 (mod2),

0 ifD=4d,d =1 (mod4),

2 if D=0 (mod 32),
1 otherwise.

v(D) =

(Note that 2"+V(P) js the number of genera of primitive binary quadratic forms
of discriminant D .)

The number of distinct genera Qﬁi(A) in M; is
s+ (1) =2mT D) (D)

where t(D) and v(D) are the same as above and n is the number of odd prime

Proof For a matrix

factors p; =1 (mod 4).
ab
= (03)

that is not scalar, one defines the Jorgensen invariant to be

J(A) = ged(a —d., b, c).

As pointed out in Traina [71], J(A) is an invariant of the conjugacy class of A4.

Furthermore, if one associates to the matrix A the primitive bilinear form

sgn(tr(A4))

7(4) (bx* —(a—d)xy —cy?),
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then conjugacy classes in SL(2, Z) will correspond to equivalence classes of bilinear
forms.

Then J(A) can take 7(D) distinct values. Moreover the number of genera of primitive
bilinear forms over Z was basically computed by Gauss [32]; see [10, Chapter 14,
Section 3, pages 339-340, Lemmas 3.1-3.3] for a modern treatment. The case of
improper equivalence classes is similar. O

Denote by w the element
1+vD

(139) w = 2
VD for even .

for odd ¢,

According to the Latimer—MacDuffee—Taussky correspondence (see Newman [52])
there is a bijection between the elements of X; and the ideal class group Z(Z[w]) of
the order Z[w]. Denote then by 4(D) = |Z(Z[w])| the class number of Z[w]. Notice
that Z[w] might not be the maximal order in Q(+/D) unless D is square-free.

Therefore there exists some A € M; such that the number of conjugacy classes in
2A(A) is at least:

(140) N(t) =2"On(D)

According to a celebrated theorem of Jing Run Chen (see [11]) revisited by Halberstam
(see [38]) and Richert (see [65, Theorem 13.2]) there exist infinitely many primes
pn such that p, 4 4 has at most two factor primes. Assuming that p, > 5 the two
factor primes have to be distinct and different from p,. If we set #, = p, + 2 then

n = t2 —4 are odd square-free and have at most 3 prime divisors (counted with
their multiplicities). In particular 4 (D) = hp, where this time /p denotes the class
number of the quadratic field Q(+/D) (namely of its ring of integers).

It remains to prove that for this subsequence we also have lim sup 4#(D;) = co. This
is already classical. Indeed the Dirichlet class number formula for real quadratic fields
reads:

1
(141) hi = Siogey Y4 LU X):

where d = 49D D is the discriminant of Q(+/D), ep is the fundamental unit, x4 is
the mod d Dirichlet primitive character and L (-, x4) the associated L—series. In our
case Dy =1 (mod 4) so that 6p, = 0 and the fundamental unit is ep = (¥ + VD)/2
if D=1%—4. Thus ep <2+/D +2.
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The Tatuzawa effective version of Siegel’s Theorem (see [70, Theorem 2]) states the
following lower bound for the L —series:

—1
(142) L(1, xq) > 0.655.#

for all d > max(exp(s), exp(11.2)) with one possible exception and all s > 2. Consider
s = 100 and #, large enough for which the inequality above holds. This gives our
estimate. i

Remark A.1 The congruence subgroup property implies that the estimates of Theorem
A.1 also hold in SL(n, Z), with n > 3, by considering matrices of the form A & 1,_,,
with 4 € SL(2,7Z).
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