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Dehn filling and the geometry
of unknotting tunnels

DARYL COOPER

DAVID FUTER
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Any one-cusped hyperbolic manifold M with an unknotting tunnel � is obtained by
Dehn filling a cusp of a two-cusped hyperbolic manifold. In the case where M is
obtained by “generic” Dehn filling, we prove that � is isotopic to a geodesic, and
characterize whether � is isotopic to an edge in the canonical decomposition of M .
We also give explicit estimates (with additive error only) on the length of � relative to
a maximal cusp. These results give generic answers to three long-standing questions
posed by Adams, Sakuma and Weeks.

We also construct an explicit sequence of one-tunnel knots in S3 , all of whose
unknotting tunnels have length approaching infinity.

57M25, 57M50, 57R52

1 Introduction

Let M be a compact orientable 3–manifold whose boundary consists of tori. An
unknotting tunnel for M is a properly embedded arc � from @M to @M , such that
MX� is a genus-2 handlebody. Not all 3–manifolds with torus boundary admit an
unknotting tunnel; those that do are said to be one-tunnel or tunnel number one. The
above definition immediately implies that every one-tunnel manifold M has one or
two boundary components, and has Heegaard genus two (unless it is a solid torus).

For this paper, we investigate one-tunnel manifolds M such that the interior of M

carries a complete hyperbolic metric. The geometric study of unknotting tunnels in
this setting begins with two foundational papers published in 1995 by Adams [1] and
Sakuma and Weeks [39]. These papers posed three open questions about unknotting
tunnels of one-cusped manifolds:

(1) Is � always isotopic to a geodesic?

(2) Is there a universal bound B , such that outside a maximal cusp neighborhood in
M , the geodesic in the homotopy class of � is always shorter than B ?
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(3) Is � isotopic to an edge in the canonical polyhedral decomposition of M ?

One motivation behind these questions is that for complements of two-bridge knots
in S3 , the answer to all three questions is “yes” (Adams and Reid [4], and Akiyoshi,
Sakuma, Wada and Yamashita [6]). However, apart from the special family of two-
bridge knots, the only progress to date has consisted of selected examples for question
(1), and selected counterexamples to questions (2) and (3).

In this paper, we give detailed answers to all three questions, under the hypothesis
that M is obtained by “generic” Dehn filling on one cusp of a two-cusped hyperbolic
manifold X . In this generic setting, the tunnel � is indeed isotopic to a geodesic.
Generically, this geodesic is quite long, and we provide explicit estimates on the length,
with additive error only. Whether or not � is isotopic to an edge of the canonical
decomposition turns out to depend on the length of an associated tunnel � �X (see
Figure 1).

In addition, we construct an explicit sequence of one-tunnel knots Kn � S3 , such that
each Kn has two unknotting tunnels, whose length approaches infinity as n!1.

1.1 Generic Dehn fillings and generic unknotting tunnels

Let X be a compact orientable 3–manifold whose boundary consists of one or more
tori, and whose interior is hyperbolic. Let T be one of the tori of @M . A slope on T

is an isotopy class of simple closed curves. The Dehn filling of X along a slope �,
denoted X.�/, is the manifold obtained by attaching a solid torus D2 �S1 to T , so
that @D2 is glued to �. The slope � is called the meridian of the filling.

Definition 1.1 An embedded horoball neighborhood of a boundary torus T �X is
called a horocusp, and denoted HT . If we fix such a horocusp HT , the horospherical
torus @HT inherits a Euclidean metric that allows us to measure the length of slopes.
In particular, a slope � chosen as a meridian for Dehn filling has a well-defined length
`.�/, namely the length of a Euclidean geodesic representing � on @HT . In a similar
way, we define a longitude of the Dehn filling to be a simple closed curve on @HT that
intersects � once. We will typically be interested in the shortest longitude, denoted �.
In highly symmetric cases, there can be two shortest longitudes (up to isotopy), and
we may choose either one. Note that once the horocusp is fixed, the lengths `.�/ and
`.�/ are always well-defined.

Definition 1.2 We say that the Dehn filling along � is generic if both � and � are
sufficiently long. Equivalently, the filling is generic if both � and � avoid finitely
many prohibited slopes on the torus T .
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If we fix a basis h˛; ˇi for H1.T /Š Z2 , then all the possible choices of Dehn filling
slope are parametrized by primitive pairs of integers .p; q/ 2 Z2 . In this setting,
choosing a generic slope amounts to avoiding finitely many points and finitely many
lines in R2 .

The term generic can be justified as follows. Let F be the Farey graph, whose vertices
are slopes on the torus T , and whose edges correspond to slopes that intersect once.
For each prohibited value of �, the values of � that have � as a longitude lie on a
circle of radius 1 in F , centered at �. Thus prohibiting finitely many values of �
and � amounts to prohibiting � from lying in finitely many closed balls of radius 1.
Since the Farey graph F has infinite diameter, almost all choices of � will avoid the
prohibited sets, and are indeed generic. In particular, a random walk in F will land on
a generic slope with probability approaching 1.

We would like to argue that the unknotting tunnels created by generic Dehn filling (as
in Definition 1.2) are also “generic,” in an appropriate sense. This must be done with
some care, as there are multiple reasonable notions of genericity (for instance Dunfield
and Thurston [16], and Lustig and Moriah [30]).

Suppose X is a manifold with cusps T and T 0 , and an unknotting tunnel � . Then the
Heegaard surface associated to � (namely, the boundary † of a regular neighborhood
of T [ T 0 [ � ) cuts X into a genus-2 handlebody C and a compression body C 0 .
(See Definition 2.1 for details.) One way to obtain a “random” two-cusped 3–manifold
of this type is to glue C to C 0 via a random walk in the generators of the mapping
class group Mod.†/; see [16]. In this context, Maher has shown that with probability
approaching 1, a random walk in Mod.†/ gives a Heegaard splitting of high distance
[32]. Then, the work of Scharlemann and Tomova implies that † will be the only
genus-2 Heegaard surface of X [41]. The same conclusion holds under more measure-
theoretic notions of genericity: see Lustig and Moriah [30]. Thus, in two reasonable
senses, one can say that generic one-tunnel manifolds have a unique unknotting tunnel
and a unique minimal-genus Heegaard surface.

This generic uniqueness is preserved after Dehn filling. Results of Moriah and Rubin-
stein [34], and Rieck and Sedgwick [37] imply that for a generic Dehn filling slope �
on T , every genus-2 Heegaard surface † of X.�/ comes from a Heegaard surface of
X . See Theorem 2.3 for details, including quantified hypotheses. Thus, by the previous
paragraph, a generic Dehn filling of a generic one-tunnel manifold X will have exactly
one unknotting tunnel.

The unknotting tunnels created by Dehn filling have a natural visual description,
summarized in Figure 1. If X is a manifold with cusps T and T 0 , any unknotting
tunnel � of X must connect T with T 0 . Then there will be a new tunnel ��M DX.�/

Geometry & Topology, Volume 17 (2013)
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T T 0

�
�

X M DX.�/

�

Figure 1: A schematic picture of unknotting tunnels under Dehn filling. Left:
� is a tunnel for a 2–cusped manifold X . Right: the associated tunnel � of
the 1–cusped manifold M DX.�/ .

that starts at T 0 and runs along � , followed by a longitude of the filling, followed by
backtracking along � . It is easy to verify that MX� ŠXX� , hence is a handlebody.
We call � the tunnel of M D X.�/ that is associated to � . See Definition 2.10 and
Theorem 2.11 for a much more detailed description of associated tunnels.

The theorems stated below describe the geometry of all associated tunnels created
by generic Dehn filling. In particular, we answer questions (1), (2) and (3) for these
tunnels.

1.2 Tunnels isotopic to geodesics

Question (1) has the following history. Adams showed, using a symmetry argument, that
every unknotting tunnel of a two-cusped hyperbolic manifold is isotopic to a geodesic
[1]; see also Lemma 2.9. Shortly after, Adams and Reid extended these symmetry
arguments to prove that the upper and lower tunnels of a 2–bridge knot are isotopic to
geodesics [4]. However, since the late 1990s, there has been only minimal progress
on question (1). As a negative result, Futer showed that the symmetry arguments of
Adams and Reid do not apply to any knots in S3 besides 2–bridge knots [18].

For generic Dehn fillings, we provide a positive answer to question (1):

Theorem 1.3 Let X be an orientable hyperbolic 3–manifold that has two cusps and
tunnel number one. Choose a generic filling slope � on one cusp of X , and let
� �X.�/ be an unknotting tunnel associated to a tunnel � �X . Then � is isotopic to
a geodesic in the hyperbolic metric on X.�/.

Note that by the discussion above (more precisely, by Theorem 2.11 and Remark 2.13),
a two-cusped manifold X constructed by a random Heegaard splitting will have a
unique unknotting tunnel � , and its generic Dehn filling M DX.�/ will have a unique
tunnel � associated to � . Thus, generically, M has exactly one unknotting tunnel,
which is isotopic to a geodesic.
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1.3 The length of unknotting tunnels

To measure the length of an unknotting tunnel � , one first needs to choose horospherical
cusp neighborhoods in the ambient manifold M . If M has one boundary torus, there
is a canonical choice of maximal cusp, namely the closure of the largest embedded
horocusp about @M . If M has two (or more) cusps, then the maximal cusp neigh-
borhood will depend on the order in which the cusps are expanded. Once the cusp
neighborhoods are fixed, we define the length of an unknotting tunnel � to be the length
of the geodesic in the homotopy class of � , outside the given horocusps in M .

If a hyperbolic one-tunnel manifold M has two boundary tori, Adams [1] showed that
there always exist disjoint horocusps about these tori such that every unknotting tunnel
of M has length at most ln.4/. In a subsequent preprint [3], he improved the upper
bound to 7

4
ln.2/. These universal upper bounds for two-cusped manifolds prompted a

wide belief that the unknotting tunnels of one-cusped manifolds also have universally
bounded length.

In a recent paper [13], Cooper, Lackenby and Purcell showed that in fact, the answer
to question (2) is “no”: there exist one-cusped hyperbolic manifolds whose unknotting
tunnels are arbitrarily long outside a maximal cusp. However, the examples in [13]
either were non-constructive, or could not be complements of knots in S3 . The authors
asked whether there exist knots in S3 with arbitrarily long unknotting tunnels, and
whether such examples can be explicitly described.

In this paper, we show that generically, unknotting tunnels are very long. In fact, we
compute the length of � , up to additive error only.

Theorem 1.4 Let X be an orientable hyperbolic 3–manifold that has two cusps and
an unknotting tunnel � . Let T be one boundary torus of X . Then, for all but finitely
many choices of a Dehn filling slope �, the unknotting tunnel � of X.�/ associated to
� satisfies

2 ln `.�/� 6< `.�/ < 2 ln `.�/C 5;

where � is the shortest longitude of the Dehn filling, `.�/ is the length of � on
a maximal cusp corresponding to T , and `.�/ is the length of the geodesic in the
homotopy class of � .

We also apply this result to knots in S3 : see Theorem 1.7 below.
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1.4 Canonical geodesics

In a one-cusped hyperbolic manifold M , let H be a closed, embedded horocusp. Then
the Ford–Voronoi domain F is defined to be the set of all points in M that have a unique
shortest path to H . This is an open set in M , canonically determined by the geometry of
M and, in particular, independent of the chosen size of H . The complement LDMXF

is a compact 2–complex, called the cut locus. The combinatorial dual to L is an ideal
polyhedral decomposition P of M ; the n–cells of P are in bijective correspondence
with the .3 � n/–cells of L. This is called the Epstein–Penner decomposition or
canonical polyhedral decomposition of M .

For one-cusped manifolds, the canonical decomposition P is a complete invariant of the
homeomorphism type of M . For multi-cusped manifolds, one may perform the same
construction, although the combinatorics of the resulting polyhedral decomposition
may depend on the relative volumes of the horocusps H1; : : : ;Hk .

Definition 1.5 Let M be a one-cusped hyperbolic manifold. We say that an arc �
from cusp to cusp (in practice, an unknotting tunnel) is canonical if � is isotopic to an
edge of the canonical polyhedral decomposition P .

Sakuma and Weeks performed an extensive study of the triangulations of 2–bridge knot
complements [39]. Using experimental evidence from SnapPea [14], they conjectured
that these triangulations are canonical; a conjecture subsequently proved by Akiyoshi,
Sakuma, Wada, and Yamashita [6]. In addition, Sakuma and Weeks observed that the
unknotting tunnels of 2–bridge knots are always isotopic to edges of this triangulation,
which led them to conjecture that all unknotting tunnels of hyperbolic manifolds are
canonical [39].

This conjecture was disproved in 2005, with a single counterexample constructed by
Heath and Song [26]. For the .�2; 3; 7/ pretzel knot K , they showed that S3XK has
four unknotting tunnels but only three edges in its canonical triangulation. Although
this example settled question (3) in the negative, it did not shed light on the broader
question of what properties of an unknotting tunnel imply that it is, or is not, canonical.

In the context of generic Dehn filling, this broader question has the following answer.

Theorem 1.6 Let X be a two-cusped, orientable hyperbolic 3–manifold in which
there is a unique shortest geodesic arc between the two cusps. Choose a generic Dehn
filling slope � on a cusp of X . Then, for each unknotting tunnel � � X , the tunnel
� � X.�/ associated to � will be canonical if and only if � is the shortest geodesic
between the two cusps of X .
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If there are several shortest geodesics between the two cusps of X , then Theorem 1.6
does not give any information. However, the existence of a unique shortest geodesic
can also be regarded as a “generic” property of hyperbolic manifolds.

In practice, both alternatives of Theorem 1.6 are quite common. Using this theorem,
one may easily construct infinite families of manifolds whose tunnels are canonical, as
well as infinite families that have non-canonical tunnels. See Theorem 5.3 for one such
construction.

1.5 Knots with long tunnels in S 3

Theorems 1.3, 1.4 and 1.6 can be applied to construct explicit families of knots in S3 ,
whose unknotting tunnels have interesting properties.

Theorem 1.7 There is a sequence Kn of hyperbolic knots in S3 , such that each Kn

has exactly two unknotting tunnels. Each unknotting tunnel �n of Kn is isotopic to a
canonical geodesic, whose length is

2n ln
�

1C
p

5

2

�
� 5< `.�n/ < 2n ln

�
1C
p

5

2

�
C 6:

The sequence of knots Kn is explicitly described in Section 7. See Figure 11 for a
preview.

1.6 Organization of the paper

This paper is organized as follows. In Section 2, we fill in the details of a number of
definitions and theorems that were mentioned above. In Theorem 2.3, we describe the
effect of Dehn filling on Heegaard surfaces, adding quantified hypotheses to a theorem
of Moriah and Rubinstein [34], and Rieck and Sedgwick [37]. In Theorem 2.6, we
recall the drilling and filling theorems of Hodgson and Kerckhoff [27] and Brock and
Bromberg [11], which allow precise bilipschitz estimates on the change in geometry
during Dehn filling. This bilipschitz control will be used in all the geometric estimates
that follow.

In Section 3, we use the work of Adams on unknotting tunnels of two-cusped manifolds
[1], combined with Theorem 2.6, to prove Theorem 1.4. More precisely, we prove
two-sided estimates on the length of the geodesic g� in the homotopy class of a tunnel
� , without yet knowing that � is isotopic to g� . Several quantitative estimates from
Section 3 will be used in Section 4 to show that the tunnel � is isotopic to a geodesic,
establishing Theorem 1.3.
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In Section 5, we prove Theorem 1.6, which relates the canonicity of a tunnel � �X.�/

to the length of its associated tunnel � � X . The argument in this section relies on
the recent work of Guéritaud and Schleimer [23], and also uses the length estimates of
Section 3. As an application, we construct an infinite family of one-cusped manifolds,
each of which has one canonical and one non-canonical tunnel.

In Sections 6 and 7, we construct knots in S3 whose unknotting tunnels are arbitrarily
long. This construction has two flavors. The argument in Section 6 is quick and direct,
but requires making non-explicit “generic” choices. The argument in Section 7 is
completely explicit, and gives the precise quantitative estimate of Theorem 1.7. The
cost of this entirely explicit construction is that the argument of Section 7 is longer, and
requires rigorous computer assistance from the programs Regina [12] and SnapPy [14].
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2 Geometric setup

The goal of this section is to review and synthesize several past results. We recall
the work of Moriah and Rubinstein [34], and Rieck and Sedgwick [37] on Heegaard
splittings under Dehn filling, the work of Hodgson and Kerckhoff [27], and Brock and
Bromberg [11] on the change in geometry under Dehn filling, and the work of Adams
on unknotting tunnels of two-cusped manifolds [1]. Then, we synthesize these results
in Theorem 2.11, which explains the one-to-one correspondence between genus-2
Heegaard splittings of a two-cusped manifold X and the unknotting tunnels of any
generic Dehn filling X.�/.

2.1 Heegaard splittings under Dehn filling

Although the goal of this paper is to study unknotting tunnels of one-cusped hyperbolic
manifolds, this study will require a slightly more general setup.
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Definition 2.1 A compression body C is a 3–manifold with boundary, constructed
as follows. Start with a genus-g surface †. Thicken † to † � Œ0; 1�, and attach
some number (at least one, at most g ) of non-parallel 2–handles to †� f0g. If, after
attaching 2–handles, any component of the boundary becomes a 2–sphere, cap it off
with a 3–ball.

The positive boundary of C is the boundary component @CC D†� f1g, untouched
during the construction. The negative boundary is @�C D @CX@CC . When the
negative boundary is empty, the compression body C is a genus-g handlebody.

Given a compact orientable 3–manifold M and a genus-g surface †�M , we say
that † is a Heegaard splitting surface of M if † cuts M into compression bodies C1

and C2 , such that †D @CC1 D @CC2 .

Definition 2.2 Let C be a compression body whose positive boundary @CC has
genus 2. Then @�C is a disjoint union of at most two tori. If @�C D∅, then C is a
handlebody. If @�C ¤∅, then C can be constructed by adding exactly one 2–handle
to †� f0g. Define the core tunnel of C to be an arc � dual to this 2–handle. It is
well-known that the core tunnel is unique up to isotopy.

If a genus-2 surface † is a Heegaard surface for X , where @X consists of tori, then
there are at most two such tori on each side of †. If one component of MX† is a
handlebody while the other has non-empty negative boundary, the core tunnel � is an
unknotting tunnel for X .

Suppose that, as above, X is a 3–manifold with toroidal boundary and a genus-2
Heegaard splitting surface †. If we perform a Dehn filling along one of the boundary
tori of X , it is easy to check that † remains a Heegaard surface for the filled manifold
X.�/. (The meridian disk of a solid torus can be thought of as a 2–handle added to
the negative boundary of a compression body C . This creates a 2–sphere boundary
component, and filling it in amounts to adding the rest of the solid torus.) In this setting,
a core tunnel � of a pre-filling compression body gives rise to a core tunnel � of the
after-filling compression body, exactly as in Figure 1.

Moriah and Rubinstein [34], and Rieck and Sedgwick [37], showed that generically,
there is a one-to-one correspondence between minimum-genus Heegaard splittings of
X and those of X.�/. More recently, Futer and Purcell found a way to quantify the
hypotheses in their theorem [20]. Here is what the result says in genus 2.

Theorem 2.3 Let X be an orientable hyperbolic 3–manifold with one or more cusps
and Heegaard genus 2. Let T be one boundary torus of X . Choose a Dehn filling
slope � on T , such that `.�/ > 6� and the shortest longitude � for � has length
`.�/ > 6. Then:
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(a) X.�/ is a hyperbolic manifold of Heegaard genus 2.

(b) For every genus-2 Heegaard surface † of X.�/, the core curve  of the Dehn
filling solid torus is isotopic into †.

(c) Once  is isotoped into one of the compression bodies separated by †, the
surface † becomes a Heegaard surface of X DX.�/X .

Proof If `.�/ > 2� , the 2� –Theorem of Gromov and Thurston implies that the filled
manifold X.�/ admits a negatively curved metric (Bleiler and Hodgson [9]). (See
also Futer, Kalfagianni and Purcell [19, Theorem 2.1] for an explicit construction, with
curvature estimates.) Since X.�/ is negatively curved, its Heegaard genus must be
at least 2. But a Heegaard surface † of X is also a Heegaard surface for all fillings,
hence X.�/ must have Heegaard genus exactly 2. By geometrization, X.�/ must also
admit a hyperbolic metric, proving conclusion (a).

Conclusions (b) and (c) are a restatement of [20, Theorem 1.1].

2.2 Geometric estimates

We will repeatedly need to bound the amount of change of geometry under Dehn filling.
To do so, we use a version of the drilling theorem of Brock and Bromberg [11]. Before
stating the theorem, we recall several definitions.

Definition 2.4 Given � > 0 and a hyperbolic 3–manifold M , the �–thin part M<� of
M is the set of all points in M whose injectivity radius is less than �=2. Equivalently,
M<� is the set of all points that lie on a non-trivial closed curve of length less than � .

A given � > 0 is called a Margulis number for M if each component of M<� has
abelian fundamental group. In this case, the �–thin part M<� is a disjoint union of
horocusps and tubular neighborhoods about geodesics. For a particular cusp T , we
let T�.T / denote the component of M<� corresponding to T . Similarly, if  is a
geodesic of length less than � , a tubular neighborhood T�. / is a component of M<� .

The Margulis Lemma states that there is a positive number � that serves as a Margulis
number for every hyperbolic 3–manifold (Benedetti and Petronio [8, Chapter D]). The
greatest such � , denoted �3 , is called the (3–dimensional) Margulis constant.

The best available estimate on the Margulis constant is �3 � 0:104, due to Meyerhoff
[33]. However, under additional hypotheses there are stronger estimates on Margulis
numbers. For example, Culler and Shalen recently showed [15] that every cusped
hyperbolic 3–manifold has a Margulis number of at least 0.292. See also Shalen [43,
Proposition 2.3].
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Definition 2.5 Let T be a Euclidean torus, and let g be a closed geodesic on T . The
normalized length of g is defined to be

(2-1) L.g/D `.g/=
p

area.T /:

The normalized length L.�/ of a slope � on T is defined in the same way, via the
normalized length of a geodesic representative of �.

Note that equation (2-1) is scaling-invariant. Hence, if T is a cusp torus in M , the
normalized length of a slope on T does not depend on the choice of horospherical torus.

We can now state a version of Brock and Bromberg’s drilling theorem.

Theorem 2.6 (Drilling theorem) Let X be a hyperbolic 3–manifold with one or
more cusps, and let T be a cusp torus of X . Choose any J > 1 and any � > 0

that is a Margulis number for each hyperbolic filling along T . Then there is some
KDK.J; �/�4

p
2�� such that every slope � on T with normalized length L.�/�K

satisfies the following:

(a) X.�/ is a hyperbolic 3–manifold, obtainable from X by a cone deformation.

(b) The core curve  of the added solid torus is a geodesic satisfying

`. /�
2�

L.�/2� 4.2�/2
:

(c) There is a J –bilipschitz diffeomorphism

�W XXT�.T /!X.�/XT�. /:

(d) � is level-preserving on any remaining cusps of X , mapping horospherical tori
to horospherical tori. In particular, if T 0 ¤ T is a different cusp, then

�.@T�.T
0//D @T�.�.T

0//:

In the setting of finite-volume manifolds, conclusions (a) and (b) are due to Hodgson
and Kerckhoff [27]. Conclusions (c) and (d) are due to Brock and Bromberg [11,
Theorem 6.2 and Lemma 6.17], who construct the reverse diffeomorphism ��1 under
the hypothesis that the core curve  is sufficiently short. (When � is sufficiently
long, this hypothesis will be satisfied by (b).) See Magid [31, Section 4] for a unified
treatment of all four statements in this version of the theorem.

Conclusions (c) and (d) can be fruitfully combined, as follows. Let T�.X / denote the
union of all the �–thin cusp neighborhoods of X , ie, the cusp components of X<� . Sim-
ilarly, let T�.X.�// denote the union of T�. / and all the �–thin cusp neighborhoods
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in X.�/. Then, by the drilling theorem, we have

(2-2) �W XXT�.X /!X.�/XT�.X.�//:

a J –bilipschitz diffeomorphism between compact manifolds.

Remark 2.7 In the forthcoming arguments, particularly in Sections 3 and 4, we
will refer to XXT�.X / and X.�/XT�.X.�// as the thick parts of X and X.�/,
respectively. This usage is somewhat abusive, for instance since the manifold X.�/

may contain other �–short geodesics besides  . However, any “extra” �–thin regions
of X or X.�/ will not affect the arguments in any way, rendering the abuse relatively
harmless.

In practice, we will always use Theorem 2.6 in the setting where X is a finite-volume
hyperbolic manifold with two or more cusps. Thus, since every filled manifold M D

X.�/ has one or more cusps remaining, Culler and Shalen’s recent theorem [15] implies
that � D 0:292 is a Margulis number for both X and every hyperbolic X.�/. Unless
stated otherwise (eg, in the proof of Theorem 1.6), we will always work with the value
� D 0:29.

One immediate consequence of Theorem 2.6 is the following fact, which we will use
repeatedly.

Lemma 2.8 Let ˛ be a homotopically essential closed curve in X , or an essential arc
whose endpoints are on @T�.X /. Let g˛ be a shortest geodesic in the free homotopy
class of ˛ in XXT�.X /, where the endpoints of ˛ are allowed to slide along @T�.X /
if ˛ is an arc.

Choose J > 1 and a slope � that satisfies Theorem 2.6. Let ˛ D �.˛/ be a curve or
arc in X.�/, where � is the J –bilipschitz diffeomorphism guaranteed by Theorem 2.6.
Let g˛ be a shortest geodesic in the free homotopy class of ˛ in X.�/XT�X.�/.
Then,

(2-3) 1

J
� `.g˛/� `.g˛/� J � `.g˛/:

When the inequality (2-3) holds, we will say that the lengths of g˛ and g˛ are J –
related.

The reason for the non-unique terminology “a shortest geodesic” is that ˛ can be, for
instance, a peripheral curve in @T� . In this case, g˛ is a Euclidean geodesic.

Note that there is no reason to expect that the J –bilipschitz diffeomorphism � maps
the geodesic g˛ to the geodesic g˛ . Nevertheless, the estimate on the geodesic lengths
still holds.
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Proof of Lemma 2.8 To prove the upper bound on `.g˛/, suppose that ˛ D g˛
is already geodesic. Then, by Theorem 2.6, the arc ˛ D �.g˛/ has length at most
J � `.g˛/. Since the geodesic g˛ can be no longer than ˛ , the same upper bound
applies: `.g˛/� J � `.g˛/. By the same argument, starting with the geodesic g˛ and
applying the J –bilipschitz diffeomorphism ��1 , we obtain `.g˛/� J � `.g˛/, which
is exactly what is needed to complete the proof.

2.3 Geometric estimates and core tunnels

In the remaining sections of the paper, we will apply Theorems 2.3 and 2.6 to unknotting
tunnels in cusped hyperbolic 3–manifolds, and more generally, to the core tunnels as
in Definition 2.2. In order to do this, we need information about the core tunnels before
filling.

Lemma 2.9 Suppose X is a finite-volume hyperbolic 3–manifold, with a genus-2
Heegaard surface †. Suppose that � �X is the core tunnel for a compression body of
XX†, whose endpoints are on distinct cusp tori T and T 0 . Then:

(a) X admits a hyper-elliptic involution  , which preserves † up to isotopy.

(b) The hyperbolic isometry isotopic to  fixes a hyperbolic geodesic isotopic to � .

Proof When � is an unknotting tunnel, this statement is due to Adams [1, Lemma 4.6],
and his proof carries through verbatim to core tunnels that connect distinct cusps. We
recall the argument briefly. Each compression body Ci in the complement of † admits
a hyper-elliptic involution, and the restriction of these involutions to † is unique up to
isotopy (Bleiler and Moriah [10]). Thus the involutions of C1 and C2 can be glued
together to obtain an involution  on X preserving † setwise.

The hyper-elliptic involution  , restricted to †, preserves the isotopy class of every
simple closed curve; separating curves on † are preserved with orientation. The
compression disk of C1 dual to � separates T from T 0 , hence its boundary is preserved
with orientation (up to isotopy). As a result,  can be chosen to fix � pointwise.

By Mostow–Prasad rigidity,  is homotopic to a hyperbolic isometry. This order-2
isometry of X lifts to an elliptic isometry of H3 that preserves the endpoints of a lift
of � , hence preserves the geodesic zg� connecting these endpoints. Now, by the work
of Waldhausen [47] and Tollefson [46], two homotopic involutions of X are connected
by a continuous path of involutions. Thus the fixed-point set of  is isotopic to the
fixed-point set of the isometry, hence � is isotopic to the geodesic g� in its homotopy
class.
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In the remainder of the paper, we will assume that every core tunnel � connecting
distinct cusps of X is already a geodesic. We will be studying the behavior of this
geodesic in the compact, thick part XXT�.X /. See Figure 2 for two lifts of this
geodesic to H3 .

We may use the geodesic � to carefully construct an arc � that will become an associated
tunnel in a Dehn filling of X . The point of the following construction is to make
Figure 1 precise. In the introduction, we stated that an associated tunnel in the filled
manifold runs from the cusp, along � , then once around a longitude, then back along �
to the cusp. However, this arc as described is not embedded. In the following definition,
we push the new tunnel off � carefully to ensure the result is embedded. We then prove
the claim from the introduction that this arc becomes an unknotting tunnel under Dehn
filling.

Definition 2.10 Let X be a be an orientable hyperbolic 3–manifold that has two
cusps (denoted T and K ), and tunnel number one. Let � be an unknotting tunnel of
X , isotoped to be a geodesic. Let � be a Dehn filling slope on T , and � be a longitude
for �. Choose any � > 0 that is a Margulis number for X (for example, � D 0:29).
Let �� be a closed curve representing � on the horospherical torus @T�.T /, which
passes through the endpoint of � on @T�.T /.

Let Q be an embedded quadrilateral contained in a tubular neighborhood of � , whose
top side is on �� and whose bottom side is on @T�.K/, and whose remaining sides,
call them s1 and s2 , run parallel to � on the boundary of the tubular neighborhood.

We define the tunnel arc associated to � and �, denoted �.�; �/, to be the embedded
arc s1[ .��XQ/[ s2 . This three-part arc is sketched in the right panel of Figure 1. If
� is oriented from K to T , then �.�; �/ is homotopic to � ��� � ��1 .

The hyperbolic geodesic � �X , the Euclidean geodesic ���X , and the corresponding
geodesics �; �� �X.�/ are depicted in Figures 2 and 3.

As the name suggests, the tunnel arc �.�; �/ will become an unknotting tunnel in
X.�/.

Theorem 2.11 Let X be an orientable hyperbolic 3–manifold that has two cusps
(denoted T and K ), and tunnel number one. Let � be an unknotting tunnel for X .
Choose �D0:29 and J >1, and let � be any Dehn filling slope on T that is sufficiently
long for Theorem 2.6 to ensure a J –bilipschitz diffeomorphism �W XXT�.X / !
X.�/XT�.X.�//. Then:

(a) If �.�; �/ is the tunnel arc associated to � and �, as in Definition 2.10, then
�.�; �/D �.�.�; �// is an unknotting tunnel of X.�/.
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(b) Suppose, in addition, that `.�/ > 6� and `.�/ > 6 on a maximal cusp about
T . Then every unknotting tunnel of X.�/ corresponds to a genus-2 Heegaard
surface †�X .

(c) Suppose that `.�/ > 6� , that `.�/ > 6, and that both cusps of X lie on the
same side of every genus-2 Heegaard surface †� X . Then every unknotting
tunnel of X.�/ is isotopic to �.�; �/D �.�.�; �// for some unknotting tunnel
� of X .

��

��

Figure 2: � is the geodesic unknotting tunnel in the unfilled manifold, X . ��
is a geodesic representative of the longitude � in the boundary of the �–thin
cusp neighborhood. We take � D 0:29 throughout. Picture in the universal
cover.

��

�

�

Figure 3: � is the geodesic in the homotopy class of the image of � in
the filled manifold X.�/ . The curve �� is the shortest curve along the �–
Margulis tube between points where � meets the tube on its boundary. Picture
in the universal cover.

Proof Let � D �.�.�; �//�X.�/. We will prove that � is an unknotting tunnel for
X.�/ by showing that X.�/X� is homeomorphic to XX� , which is a handlebody by
hypothesis.

Let �� , Q, s1 and s2 be as in Definition 2.10. Then observe that �.��/ is a longitude
for the solid torus V added during Dehn filling, hence is isotopic to the core curve 
of V . As a result, X.�/X�.��/ŠX.�/X ŠX . Similarly, s1 is isotopic to � . Thus

X.�/X�.s1[��/Š �.XXs1/ŠXXs1 ŠXX�;
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and XX� is a genus-2 handlebody. Finally, note that the arc on top of Q, namely
.�� \Q/, can be replaced with s2 without altering the complement. This replacement
can be accomplished by continuously sliding one endpoint of .�� \Q/ along s1 ,
turning the “eyeglass” �� [ � into the embedded arc �.�; �/. Thus

X.�/X�.s1[ .��XQ/[ s2/ŠX.�/X�.s1[��/ŠXX�;

proving (a).

Statement (b) follows from Theorem 2.3. Let � be an unknotting tunnel of X.�/, and
let †�X.�/ be the Heegaard surface associated to � . By Theorem 2.3, the core curve
 is isotopic into †. Furthermore, isotoping  off † into one of the pieces separated
by † turns † into a Heegaard surface for X DX.�/X .

To prove (c), let † � X be the Heegaard surface guaranteed by (b). By hypothesis,
both cusps of X must lie on the same side of †. Thus †�X has a handlebody on
one side and a compression body on the other side. Hence, the core tunnel � of the
compression body in XX† is an unknotting tunnel for X .

It remains to check that � is isotopic to �.�; �/ as in Definition 2.10. This is true because
the Heegaard surface defined by �.�; �/ is the boundary of a regular neighborhood of
�� [Q[@T�.K/, which is the same Heegaard surface † defined by � . Thus, since �
and �.�; �/ are core tunnels for the same compression body in X.�/X†, they must
be isotopic.

Remark 2.12 The construction in Definition 2.10 involved numerous choices. There
are many longitudes for �, many representatives of � on @T�.T /, and many choices
for the quadrilateral Q (some of which are twisted). The argument above implies that
all of these choices are immaterial: up to isotopy in X.�/, they all produce the same
unknotting tunnel.

Remark 2.13 As we mentioned in Section 1.1, the work of Lustig and Moriah [30],
Maher [32], and Scharlemann and Tomova [41] severely restricts the “generic” possi-
bilities for †. More precisely, suppose that the two-cusped manifold X is constructed
by gluing a genus-2 handlebody C to a compression body C 0 via some mapping class
' 2Mod.†/. If ' is chosen by a random walk in the generators of Mod.†/, Maher
showed that with probability approaching 1, the Heegaard splitting has curve complex
distance d.†/� 5: see [32, Theorem 1.1]. Similarly, Lustig and Moriah showed that
Heegaard splittings satisfying d.†/� 5 are generic in the sense of Lebesgue measure
on the projective measured lamination space PML.†/: see [30]. In either case, once
we know that d.†/ � 5, a result of Scharlemann and Tomova implies that † is the
unique minimal-genus Heegaard surface of X [41, Corollary on p 594].
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Thus, for a generic Dehn filling, Theorem 2.11 implies the filled manifold X.�/ has a
unique unknotting tunnel � , associated to the tunnel � of X .

3 The length of unknotting tunnels

The main goal of this section is to write down a proof of Theorem 1.4, which estimates
the length of an unknotting tunnel � �X.�/ up to additive error. Unfortunately, the
clean statement of Theorem 1.4 relies on a number of technical estimates about various
related lengths in X and X.�/. We collect these technical estimates in Sections 3.1
and 3.2. Then, in Section 3.3, we complete the proof of Theorem 1.4.

3.1 Length and waist size

As above, let � be an unknotting tunnel of a two-cusped manifold X . We know that �
is a geodesic arc that runs between the cusps about K and T . The first step toward
estimating the length of an unknotting tunnel �.�; �/ of X.�/ is estimating the length
of � itself. The length of � turns out to be closely related to the notion of waist size,
defined and explored by Adams [2; 3].

Definition 3.1 Let H be a horocusp in a hyperbolic 3–manifold M (see Definition
1.1). Then the waist size w.H / is defined to be the length of the shortest non-trivial
curve on @H . This shortest curve is necessarily a Euclidean geodesic on @H .

Adams proved the following statements about the waist size of a two-cusped manifold:

(A) Given any choice of disjointly embedded horocusps HK and HT , such that the
smaller of the two waist sizes is w , the length of an unknotting tunnel � relative
to HK and HT is `.�/ < ln.4/� 2 ln.w/. This is [1, Theorem 4.4].

(B) If this choice of cusp neighborhoods is maximal, in the sense that neither of
HK or HT can be expanded while keeping them disjointly embedded, then
each of HK and HT , has waist size at least 1. This universal estimate is [2,
Lemma 2.4].

Facts (A) and (B) have the following consequence.

Lemma 3.2 In the two-cusped, tunnel number one manifold X , let NK be a maximal
neighborhood about cusp K , expanded until it bumps into itself. Then the waist size of
NK is 1� w.NK / < 4. The same estimate holds for the other cusp T of X .
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Proof Let H 1
K

be a cusp neighborhood about K whose waist size is exactly 1. By
fact (B), this neighborhood is contained in NK , therefore embedded. Similarly, let H 1

T

be a horocusp about T whose waist size is exactly 1.

We claim that NK is disjoint from H 1
T

. This is because a maximal choice of neigh-
borhoods can be obtained as follows: expand K until it bumps into itself, obtaining
NK . Then, expand T until it bumps into either itself or K ; in either case, the resulting
horocusp about T will have waist size at least 1, hence contains H 1

T
. Therefore, H 1

T

is disjoint from NK .

Next, we claim that the horospherical tori @NK and @H 1
K

are at hyperbolic distance

(3-1) d.@NK ; @H
1
K / < ln 4:

Here is why. On the one hand, the length of � relative to NK and H 1
T

is at least 0,
since these cusp neighborhoods are disjoint. On the other hand, the length of � relative
to H 1

K
and H 1

T
is less than ln 4, by fact (A). The difference between these lengths is

exactly the hyperbolic distance d.@NK ; @H
1
K
/, which must be less than ln 4. Similarly,

d.@NT ; @H
1
T
/ < ln 4.

Consider the waist size of NK . This is at least 1 by fact (B). Also, since w.H 1
K
/D1 and

waist size grows exponentially with hyperbolic distance, (3-1) implies that w.NK /< 4.

Facts (A) and (B) also allow us to estimate the length of � in the thick part of X .

Lemma 3.3 In the two-cusped manifold X , let NK be a maximal horocusp about K ,
expanded until it bumps into itself. Let NT be a maximal horocusp about T , expanded
until it bumps into itself. For � D 0:29, let T�.K/ and T�.T /, respectively, be the
�–thin neighborhoods of those cusps. (See Definition 2.4.)

Then, in the thick portion of X , the length of � relative to T�.K/ and T�.T / satisfies

(3-2) 2:46< `.��/ < 3:86:

Relative to the (possibly overlapping) maximal cusps NK and NT , the length of � is

(3-3) � ln 4< `.�max/ < ln 4:

Here, we are using the convention that the length of � in XX.NK [ NT / counts
positively, and the length of � in NK \NT counts negatively.

The length convention in (3-3) is natural, in the following sense. If a horoball is
expanded by distance d , the length of a geodesic running perpendicularly into that
horoball decreases by distance d . This natural convention requires negative lengths for
overlapping horoballs.
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Proof As in Lemma 3.2, let H 1
K

and H 1
T

be cusp neighborhoods about K and T ,
respectively, whose waist sizes are exactly 1. By Adams’ fact (B), these horocusps
are disjointly embedded in X . Thus the length of an unknotting tunnel � relative to
these horocusps is at least 0. On the other hand, by (A), the length � relative to these
horocusps is less than ln 4.

Now, consider what happens when we replace H 1
K

by T�.K/ and H 1
T

by T�.T /. By
Lemma A.2 in the appendix, the waist size of @T� is

(3-4) w.T�.K//D w.T�.T //D 2 sinh.0:145/D 0:29101 : : :

Because waist size grows exponentially with length, the length of � will increase by a
distance of � ln.2 sinh 0:145/ as H 1

K
is replaced by T�.K/. Replacing H 1

T
by T�.T /

has the same effect. Thus the length of � relative to T�.K/ and T�.T / satisfies

2:468 : : : D�2 ln.2 sinh 0:145/ < `.��/ < ln.4/� 2 ln.2 sinh 0:145/D 3:855 : : : :

To prove (3-3), we begin with disjoint cusp neighborhoods NT and H 1
K

. By facts (A)
and (B), the length of � relative to these disjoint horocusps is at least 0 and less than
ln 4. As we replace H 1

K
by the larger cusp neighborhood NK , the length of � can

only become smaller, hence is still bounded above by ln 4. In fact, as we replace H 1
K

by NK , the length of � will decrease by precisely d.@NK ; @H
1
K
/, which is less than

ln 4 by equation (3-1). Thus `.�/ is bounded below by � ln 4.

3.2 Estimating a few related quantities

The next several lemmas involve comparisons between certain geometric measurements
in X and those of X.�/.

Condition 3.4 For the remainder of this section, we set �D0:29 and J D1:1. We also
assume throughout that the Dehn filling slope � on T is long enough for Theorem 2.6
to guarantee a J –bilipschitz diffeomorphism �W XXT�!X.�/XT� .

Lemma 3.5 Assume that � satisfies Condition 3.4. In the two-cusped manifold
X , let x WD d.@N.T /; @T�.T //, where N.T / is the maximal horocusp about T

and T�.T / is the �–thin horocusp about T . In the filled manifold X.�/, let s WD

d.@N�.K/; @T�. //, where N�.K/ � X.�/ is the maximal horocusp about the re-
maining cusp K , and T�. / is the �–thin Margulis tube. Then

(3-5) x < 2:621:

Furthermore, s and x are equal up to additive error:

(3-6) �2< s�x < 2:02:
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Proof Let us label several more lengths in X and X.�/. In the unfilled mani-
fold X , define y WD d.@N.K/; @T�.K//. In the filled manifold X.�/, define t WD

d.@N�.K/; @T�.K//, the distance between an �–sized cusp and a maximal cusp about
K . These definitions are depicted in Figure 4.

x

`.�/

y

˛

r r

s s

t t

Figure 4: Notation for Section 3. The �–thin parts of the two manifolds
are shaded. The J –bilipschitz diffeomorphism of Theorem 2.6 maps the
unshaded area on the left to the unshaded area on the right.

Note that the waist sizes of N.K/ and T�.K//, as well as of N.T / and T�.T //, are
bounded by Lemma 3.2 and equation (3-4). Thus

(3-7) y D d.@N.K/; @T�.K// < ln
�

4

2 sinh 0:145

�
D 2:6206 : : : ;

and similarly for x . This proves (3-5).

In the terminology of Lemma 3.3, we now have

`.��/D xCyC `.�max/:

Similarly, the geodesic �� in the homotopy class of �.��/ has length

`.��/D sC t:

By Lemma 2.8, the lengths of �� and �� are J –related, for J D 1:1:

(3-8) 10
11
.`.�max/CxCy/� sC t � 11

10
.`.�max/CxCy/:

Observe that the shortest geodesic h � X from T�.K/ back to T�.K/ has length
exactly 2y . This is because an expanding horocusp about K will become maximal,
and bump into itself, precisely at the midpoint of a shortest geodesic. Similarly, the
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shortest geodesic h�X.�/ from T�.K/ back to T�.K/ has length exactly 2t . Thus
the lengths of h and h are also J –related:

(3-9) 10
11

y � t � 11
10

y:

(Note estimate (3-9) will be true even if h is in a different homotopy class from �.h/, by
applying the assumptions that h and h are both shortest, as in the proof of Lemma 2.8.)

We are now ready to prove the upper and lower bounds of (3-6). By equation (3-8):

.`.�max/CxCy/� 1
11
`.��/� sC t � .`.�max/CxCy/C 1

10
`.��/

.y � t/„ƒ‚…
use (3-9)

C`.�max/�
1

11
`.��/� s�x � .y � t/„ƒ‚…

use (3-9)

C`.�max/C
1

10
`.��/

.y � 11
10

y/„ ƒ‚ …
use (3-7)

C `.�max/„ ƒ‚ …
use (3-3)

�
1

11
`.��/„ ƒ‚ …

use (3-2)

� s�x � .y � 10
11

y/„ ƒ‚ …
use (3-7)

C `.�max/„ ƒ‚ …
use (3-3)

C
1

10
`.��/„ ƒ‚ …

use (3-2)

�
1

10
.2:621/� ln 4� 1

11
.3:86/„ ƒ‚ …

D�1:9993:::

< s�x < 1
11
.2:621/C ln 4C 1

10
.3:86/„ ƒ‚ …

D2:0105:::

Therefore, �2< s�x < 2:02.

Let  � X.�/ be the geodesic core of the solid torus V added during Dehn filling.
Let � be the geodesic from T�.K/ to  that contains �� and extends into the thin
part of X.�/ all the way to  . There is an arc �0 that follows � to the core  and
runs along  for half the length of  , and a similar arc �0

0
that follows � and runs

halfway along  in the other direction. Let � and �0 be the geodesics in the homotopy
classes of �0 and �0

0
, respectively.

Recall that if � is oriented toward  , then � is homotopic to � �  � ��1 . Equivalently,
if � and �0 are oriented toward  , then � is homotopic to �0 � ��1 . The geodesic in
this homotopy class is denoted g� . Figure 5 depicts lifts of � ,  , � , �0 and g� to the
universal cover H3 .

The next lemma estimates the radius r of the Margulis tube T�. /, as well as the
distances between � and � (similarly, � and �0 ) along @T�. /.

Lemma 3.6 Assume that the Dehn filling slope � is long enough that its representative
�� satisfies `.��/ � 10, and also that � is long enough to satisfy Theorem 2.6; in
particular, the normalized length of � is L.�/ � 4

p
2� . Then the radius of the

Margulis tube T�. / is

(3-10) r � sinh�1
�`.��/

2:2�

�
> 1:16:
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�0

�

��


�

g�

�

Figure 5: A schematic picture of the lifts of  , � , � and �0 to the universal
cover. The arc g� is the geodesic in the homotopy class of the tunnel � .

The distance along � between the vertex v D �\ �0 and �\ @T�. / satisfies

(3-11) r � d.�\ ; �\ @T�. //� r C h;

where
h< 1:4� 10�6 and h! 0 as L.�/!1:

Finally, the distance on @T�. / from � \ @T�. / to �\ @T�. / satisfies

(3-12) d.� \ @T�. /; �\ @T�. // < 0:02e�r
C h< 0:0063;

and similarly for the distance from � \ @T�. / to �0\ @T�. /.

Proof For (3-10), choose � so that its length on @T�.T / is `.��/ � 10. Then the
corresponding curve ���X.�/ is the circumference of a meridian disk of the Margulis
tube T�. /, and has length `.��/ D 2� sinh.r/. By Lemma 2.8, the lengths of ��
and �� are J –related. Hence,

2� sinh.r/D `.��/� `.��/=1:1:

Now, inequality (3-10) follows by solving for r :

r � sinh�1
�`.��/

2:2�

�
� sinh�1

� 10

2:2�

�
D 1:1649 : : :

For (3-11), observe that the geodesics  , � , and �0 form an isosceles 1=3 ideal triangle
�, whose axis of symmetry is � . Lift this triangle to H3 , and label the two material
vertices v and v0 (these vertices project to the same point in X.�/, but are distinct in
H3 ). There is a single horocycle C about the ideal vertex of � that passes through v
and v0 . See Figure 6.

Note that by Theorem 2.6(b), the distance from v to v0 along the lift z of  is

`. /� 1
8�
:
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By Lemma A.2, the distance from v to v0 along the horocycle C is:

(3-13) p D 2 sinh `. /
2
� 2 sinh 1

16�
D 0:03978 : : :

Thus, by the triangle inequality, the maximum distance by which z deviates from C is

(3-14) 0< h� .sinh 1
16�

/� 1
16�
D 1:312 : : : � 10�6;

where this tiny deviation approaches 0 as L.�/!1 and `. /! 0.

To derive the first inequality of (3-11), observe that the point �\@T�. / is by definition
at distance r from the geodesic  . Thus the closest point of  is at distance r , and
the vertex �\  is at distance at ` > r . For the second inequality of (3-11), observe
that �\ @T�. / is closer to C than � \ @T�. /, which is at distance r C h from C .

�

p



�

`

T�. / h

�0

`
C

rr
r

Figure 6: (In universal cover) The triangle �.��0/ intersects the Margulis
tube T�. / as shown. Right: zoomed in to show lengths.

Finally, to prove (3-12), note that the path ˇ from � \ @T� to �\ @T� along @T�. /
has a length that can be computed as an arclength integral in the upper half-space
model:

`.ˇ/D

Z
ˇ

ds D

Z
ˇ

p
dx2C dy2

y
<

Z
ˇ

jdyj

y
C

Z
ˇ

jdxj

y
:

In words, ˇ is shorter than the union of a geodesic segment along � (vertical in
Figure 6, dashed) followed by a horocyclic segment (horizontal in Figure 6, dashed).
The vertical segment has length .r C h/� `, where ` is the length of the arc of �
from @T�. / to  , hence ` > r . Thus the vertical segment has length at most h. The
horizontal segment has length e�`p=2, which is at most e�r p=2. Thus,

`.ˇ/D d@T� .� \ @T�; �\ @T�/� p=2e�r
C h

< 0:02e�r
C h; by (3-13)

< 0:02e�1:16
C 2� 10�6 by (3-10), (3-14)

D 0:00627 : : : ;

and similarly for the distance from � \ @T� to �0\ @T� .
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3.3 The triangle of g�

To complete the proof of Theorem 1.4, we need to carefully study the triangle ��X.�/

whose sides are � , �0 and g� . (See Figures 5 and 7.) The quantity that we seek is the
length of g� relative to the maximal horocusp N.K/�X.�/.

Lemma 3.7 Assume that the Dehn filling slope � is long enough to satisfy Condition
3.4 and Lemma 3.6. As in Figure 4, let r C s be the length of � from @T�. / to the
maximal cusp @N�.K/. Then,

(3-15) r C s D
`.g� /

2
�

1

2
ln
�1� cos˛

2

�
� h;

where ˛ is the angle at the material vertex v D �\ �0 of triangle �.��0g� /, where
the length `.g� / is measured relative to the maximal cusp N�.K/, and where 0< h<

2� 10�6 is the error term of Lemma 3.6.

Proof The triangle �.��0g� / is an isosceles 2=3 ideal triangle. Thus, by Lemma A.3,

(3-16) `.�/C `.�0/D `.g� /� ln
�1� cos˛

2

�
;

where the lengths `.�/D `.�0/ are measured from v to the torus @N�.K/.

Next, observe from Figure 6 that the geodesics � and � fellow-travel from  to the
torus @N�.K/, and that their lengths differ by exactly h:

(3-17) `.�/D `.�0/D `.�/C hD .r C s/C h:

Plugging (3-17) into (3-16) completes the proof.

We will be able to estimate the length of g� once we obtain bounds on the length of a
circle arc opposite g� .

Lemma 3.8 Assume that the Dehn filling slope � is long enough to satisfy Condition
3.4 and Lemma 3.6. Let ��X.�/ be the triangle whose sides are � , �0 and g� . Let
v D �\ �0 be the material vertex of �. Then the circle arc of radius r and angle ˛
about v has length

(3-18) e�x�0:31`.�/ < ˛ sinh r < e�xC0:1`.�/;

where x D d.@N.T /; @T�.T // in X , as in Lemma 3.5, and � is the shortest longitude
for �.
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Proof The length of a circle arc of angle ˛ and radius r is always equal to ˛ sinh r .
The main goal of the lemma is to estimate this quantity in terms of x and `.�/.

By Lemma 3.5, the distance between the maximal cusp and the �–sized cusp in X is

x D d.@N.T /; @T�.T // < 2:621:

Since the shortest longitude � for � has length `.�/� 1 on the maximal cusp N.T /,
the corresponding geodesic �� � @T�.T / has length

`.��/D e�x`.�/ > e�2:621
D 0:07273 : : : :

Since the lengths of �� and the corresponding curve �� � T�. / are J –related by
Lemma 2.8, it follows that

(3-19) 0:0661 : : : < 10
11
`.��/� `.��/�

11
10
`.��/:

Let C � T�. / be a curve in the homotopy class of �� , constructed as follows. We
take C D C1 [C2 , where C1 is the shortest segment on @T�. / connecting points
�\T�. / and �0\T�. /, hence lying in the plane of the triangle �.��0/. We take
C2 to be the shortest arc of intersection of @T�. / and the plane containing the triangle
�.��0g� /. These arcs are shown schematically in Figure 7.

�

�0

�0

v



g�

C1

C2

Figure 7: Schematic picture of the arcs C1 and C2 in the universal cover of X.�/

Note that by equation (3-12),

`.C1/D d.�\ @T�. /; �
0
\ @T�. // < 2� 0:0063D 0:0126:

Thus, by the triangle inequality and (3-19), the longer segment C2DCXC1 has length

(3-20) `.C2/ > `.��/� 0:0126> 0:8094`.��/ > 0:7358`.��/D 0:7358 e�x`.�/;

where the last inequality used the fact that `.��/ and `.��/ are J –related.

Meanwhile, the points �\@T� and �0\@T� are closer to each other along C2 than the
full length of the longitude �� . This is because a full longitude runs from one endpoint
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of C2 to an endpoint of C1 in Figure 7, and the arc C1 is vertical in the cylindrical
coordinates on the Euclidean torus @T�. /. Thus,

(3-21) `.C2/ < `.��/ < 1:1`.��/D 1:1e�x`.�/:

It remains to relate the length of C2 to the circle arc of length ˛ sinh r . By equation
(3-11), the distance between the vertex vD�\�0 and the endpoints of C2 is somewhere
between r and r C h, where h < 1:4� 10�6 . Meanwhile, the midpoint of C2 is at
distance exactly r from v . Thus all of C2 lies between circles of radius r and r Ch.
Hence, up to a multiplicative error of less than

eh < 1:000002;

the length of C2 is the same as the length ˛ sinh r of the circle arc of radius r .
Combining this with (3-20) and (3-21), we conclude that

e�x�0:31`.�/ < e�h
� 0:7358e�x`.�/ < ˛ sinh r < eh

� 1:1e�x`.�/ < e�xC0:1`.�/;

as desired.

At this point, we are ready to complete the proof of Theorem 1.4. In fact, we have the
following version of the theorem, which (mostly) quantifies how long � needs to be in
order to ensure that the estimates hold.

Theorem 3.9 Let X be an orientable hyperbolic 3–manifold that has two cusps and
an unknotting tunnel � . Let T be one boundary torus of X . Let � be a Dehn filling
slope on T such that `.�/ > 138, and such that � is also long enough to satisfy
Condition 3.4. Then the unknotting tunnel � of M DX.�/ associated to � satisfies

2 ln `.�/� 5:6< `.g� / < 2 ln `.�/C 4:5;

where � is the shortest longitude for �. Here `.�/ and `.�/ are lengths on a maximal
cusp about T in X , and `.g� / is the length of the geodesic in the homotopy class of � ,
relative to a maximal cusp in M DX.�/.

Proof Let � be an unknotting tunnel of M D X.�/ associated to an unknotting
tunnel � for X . Our assumptions about the length of � ensure that the estimates of
Lemma 3.5 apply. In particular, by Lemma 3.5, x < 2:621. Thus the length of � on
@T�.T / is

`.��/D e�x`.�/ > e�2:621
� 138> 10;

ensuring that Lemmas 3.6, 3.7 and 3.8 apply as well. The proof of the theorem will
involve combining the results of Lemmas 3.5 through 3.8.
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The quantity we seek is the length `.g� /. Recall that equation (3-15) expresses `.g� /
in terms of rCs , the angle ˛ , and the (tiny) error term h. We can now use the previous
lemmas to express r C s in terms of `.�/. One immediate consequence of equation
(3-10) is that

e�r < e�2:32er ;

which implies that

(3-22) e�0:11er < .1� e�2:32/er < er
� e�r

D 2 sinh r < er :

Thus, by combining equation (3-22) with (3-18), we obtain

(3-23) 2

˛
e�x�0:31`.�/ < 2 sinh r < er < e0:11

� 2 sinh r <
2

˛
e�xC0:21`.�/:

Now, equation (3-23) bounds er , hence r , in terms of `.�/, x and the angle ˛ .
Inserting the estimate of (3-23) into (3-15), as we will do in the calculation below, will
produce a term of the form f .˛/D 2.1� cos˛/=˛2 . By a derivative calculation, one
observes that f .˛/ is strictly decreasing on the interval .0; ��. In our case, the angle
˛ must indeed be positive, and is at most � . Thus,

(3-24)
4

�2
D f .�/�

2.1� cos˛/
˛2

< lim
˛!0

f .˛/D 1:

With these preliminaries out of the way, we can perform the final calculation. Taking
the log of the first, middle and last terms of (3-23) yields:

ln `.�/�x� 0:31C ln
�

2
˛

�
< r < ln `.�/�xC 0:21C ln

�
2
˛

�
ln `.�/C s�x„ƒ‚…

use (3-6)

� 0:31C ln
�

2
˛

�
< r C s < ln `.�/C s�x„ƒ‚…

use (3-6)

C 0:21C ln
�

2
˛

�
ln `.�/� 2� 0:31C ln

�
2
˛

�
< r C s„ƒ‚…

use (3-15)

< ln `.�/C 2:02C 0:21C ln
�

2
˛

�
ln `.�/� 2:31C 1

2
ln
�2.1�cos˛/

˛2

�„ ƒ‚ …
use (3-24)

<
`.g� /

2
< ln `.�/C 2:23C h„ ƒ‚ …

use (3-14)

C
1
2

ln
�2.1�cos˛/

˛2

�„ ƒ‚ …
use (3-24)

ln `.�/C .�2:31/C ln
�

2
�

�„ ƒ‚ …
D�2:7615:::

<
`.g� /

2
< ln `.�/C 2:231

2 ln `.�/� 5:6 < `.g� / < 2 ln `.�/C 4:5:

Remark 3.10 By assuming that � is extremely long, one can force most of error
in the preceding sequence of inequalities to become arbitrarily small. The following
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exceptions are the only sources of error in the argument which do not disappear as
`.�/!1.

First, the length of the unknotting tunnel � �X , bounded in equation (3-3), inevitably
contributes to additive error in estimating the length of g� . This can be seen most
clearly near the end of the proof of Lemma 3.5, where the factors of 1=10 and 1=11

depend on our choice of J , and the additive error of ˙ ln 4, which came from the
bound on `.�max/, is all that remains if J ! 1.

The only other source of error that will not vanish as �!1 is the term ln.2=�/,
which comes from equation (3-24). This error term has a natural geometric meaning,
which can be seen by comparing Figures 2 and 3. The horocycle (and Euclidean
geodesic) �� in Figure 2 becomes �� in Figure 3, which is essentially a circle arc when
� is extremely long. This arc can cover anywhere up to half of the circle, corresponding
to the angle ˛ 2 .0; ��. In the Euclidean setting, the maximum ratio between an arc
of a circle and a chord through the middle is exactly �=2. In our hyperbolic setting,
the logarithmic savings achieved by a geodesic through the thin part of a horoball (or
the thin part of a Margulis tube) turns this multiplicative error of �=2 into an additive
error of ln.�=2/.

All in all, the sharpest possible version of the above argument, in which `.�/!1,
would give the asymptotic estimate

(3-25) ln `.�/� ln 4� ln.�
2
/� `.g� /=2� ln `.�/C ln 4:

4 Geodesic unknotting tunnels

In this section, we prove Theorem 1.3, showing that unknotting tunnels created by
generic Dehn filling are isotopic to geodesics. Here are the ingredients of the proof.

First, we will make extensive use of Theorem 2.6. As in Sections 2 and 3, this will
allow us to compare the geometry of the unfilled manifold X to that of its Dehn filling
X.�/. In particular, we will need the geometric control of Theorem 2.6 to construct
an embedded collar about a geodesic � �X.�/. This is done in Section 4.1.

Second, we will build on several results from Section 3 – specifically, Lemmas 3.5
and 3.6 and Theorem 3.9 – to show that the triangle �.��0g� / visible in Figure 5 is
embedded in X.�/. The length estimates from Section 3 are only needed in a soft way.
Mainly, we need to know that for generic Dehn fillings, the geodesic g� is arbitrarily
long, which will imply that it stays within the thin part of X.�/, or else within an
embedded tube about � . This argument is carried out in Section 4.2.
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Finally, in Section 4.3, we combine these ingredients to prove Theorem 1.3. Using
Theorem 2.11, we can locate an arc �.�; �/ � X.�/ that is in the isotopy class of
the unknotting tunnel � . By carefully sliding this arc through the embedded triangle
�.��0g� /, we perform an isotopy of the tunnel to the geodesic g� .

4.1 Embedded collars about geodesics

Following the notation of Sections 2 and 3, X will denote a two-cusped, hyperbolic
manifold that has tunnel number one. For � D 0:29, and for any J > 1, the drilling
theorem, Theorem 2.6, implies that if we exclude finitely many slopes �, there is a
J –bilipschitz diffeomorphism � between thick parts of X and X.�/. We will assume
throughout that 1< J � 1:1; this means that all the estimates of Section 3 that hold
true for a 1:1–bilipschitz diffeomorphism will also apply here.

Let �� WD �XT�.X / denote the portion of the unknotting tunnel � � X that lies in
the thick part of X . (Recall Remark 2.7.) We begin the argument by studying the
diffeomorphic image �.��/�X.�/.

Lemma 4.1 The image of the unknotting tunnel � � X under the embedding of X

into X.�/ is homotopic to a geodesic arc � . Let �� � X.�/ be the portion of this
geodesic that lies in the thick part of X.�/. Then there exists J 2 .1; 1:1�, depending
only on X and � , and ı > 0, depending on .X; �;J /, such that the following hold:

(a) Nı.��/ is an embedded solid cylinder D2 � I in X.�/.

(b) If �W XXT�.X /!X.�/XT�.X.�// is a J –bilipschitz diffeomorphism, then
�.��/ is contained in Nı.��/.

In particular, J and ı do not depend on the slope �.

Proof Let �� D �XT�.X / denote the portion of the tunnel � that lies in the thick part
of X . Choose r > 0 so that Nr .��/ is an embedded tube in X . Choose J 2 .1; 1:1�

so that every arc homotopic to �� of length less than J 3`.��/ lies in Nr .��/. For
this J , and for all but finitely many slopes �, Theorem 2.6 gives a J –bilipschitz
diffeomorphism � between the thick parts of X and X.�/. (Here and below, we are
using the term “thick” in the sense of Remark 2.7.)

For any � such that X.�/ is hyperbolic, choose the smallest ı� > 0 so that every arc
homotopic to �� in X.�/XT .�/ of length strictly less than J 2`.��/ must be contained
in Nı�.��/. Note that when the J –bilipschitz diffeomorphism � exists, �.��/ has
length bounded by J `.��/, hence �.��/ lies in Nı�.��/.
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Let ı D inf� ı� . We claim ı is strictly greater than 0. For, suppose not. Then
we have a sequence of slopes �j such that ı�j DW ıj approaches 0. Note that the
normalized lengths of these slopes must necessarily approach infinity. Hence by the
Drilling Theorem, for any sequence Ji > 1, with Ji < J and Ji ! 1, we may
find a subsequence f�ig such that there is a Ji –bilipschitz diffeomorphism �i from
the thick parts of X to those of X.�i/. Let d > 0 be such that the neighborhood
Nd .��/�XXT .�/ is foliated by arcs parallel to �� of length less than J`.��/. Then
�i.Nd .��// is contained in Nıi

.��/ for all i , and as i!1, the radius of �i.Nd .��//

approaches d > 0. Hence ıi cannot approach 0, and thus ı > 0.

Now, Nı.��/ is foliated by arcs ˛ of length `.˛/� J 2`.��/. Then ��1.Nı.��// is
foliated by arcs ��1.˛/, each of length bounded by J 3`.��/. By choice of r , this
implies ��1.Nı.��// is contained in Nr .��/, and hence is embedded. Then Nı.��/

must also be embedded.

We may bootstrap from Lemma 4.1 to the following statement.

Lemma 4.2 Let � , J and ı be as in Lemma 4.1. Then, whenever there is a J –
bilipschitz diffeomorphism �W XXT�.X /! X.�/XT�.X.�//, the arc �.��/ is iso-
topic to the geodesic �� , through the embedded tube Nı.��/.

The point of the lemma is that the homotopy from �.��/ to �� is actually an isotopy.
The proof below is inspired by Scharlemann’s proof of Norwood’s Theorem that tunnel
number one knots are prime [40, Theorem 2.2].

Proof of Lemma 4.2 By Lemma 4.1, �.��/ is contained in Nı.��/. Furthermore,
the complement of �.��/ in the thick part of X.�/ is homeomorphic to the com-
plement of � in the thick part of X , which is a genus-2 handlebody. In particular,
X.�/X.T�X.�/[�.��// has free fundamental group.

Now, suppose that �.��/ is not isotopic to the geodesic �� . Since �.��/ is contained
in the embedded ball N D Nı.��/, the only way this can happen is if it is knotted
inside that ball. Let AD @NX@T�X.�/ be the annulus boundary between N and the
rest of the thick part of X.�/. Then, by van Kampen’s Theorem,

�1.NX�.��//��1.A/ �1

�
X.�/X.T�X.�/[N /

�
Š �1

�
X.�/X.T�X.�/[�.��//

�
;

which is a free group. This means that �1.NX�.��// is a subgroup of a free group,
hence itself free. Since NX�.��/ is homeomorphic to a knot complement in S3 , and
the only knot whose complement has free fundamental group is the unknot, the arc
�.��/ must be unknotted in N . But then �.��/ must be isotopic to the geodesic at
the core of N .
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We also note the following immediate consequence of Definition 2.4.

Lemma 4.3 The Margulis tube V D T�. / is an embedded solid torus in X.�/.
Therefore, any arcs that are isotopic within V must be isotopic in X.�/.

4.2 Embedded triangles in X.�/

Recall the geodesics �; �0 �X.�/ that are depicted in Figure 5, and played a role in
Section 3: � is the geodesic in the homotopy class that follows � and runs halfway
along the core  , while �0 is the geodesic in the homotopy class that follows � and
runs halfway along  in the other direction.

For our purposes here, an isotopy from an unknotting tunnel � to the geodesic g� will
involve deforming arcs through the triangle �.��0g� / with sides � , �0 and g� . (See
Figure 5 for a lift of � to H3 .) Thus we need to know more about this triangle.

Lemma 4.4 Let ı > 0 be the tube radius of Lemma 4.1. Then, for a sufficiently long
Dehn filling slope � on T , the geodesics �; �0 �X.�/ are contained in either the thin
part of X.�/ or a tube of radius ı=2 about � :

(4-1) .�[ �0/� T�X.�/[Nı=2.��/:

Proof First, observe that since � and � share an endpoint on the sphere at infinity,
the distance between � and a representative point x 2 � decreases monotonically as x

moves toward the shared ideal vertex. Thus, in the thick part of X.�/, the distance
between � and � is maximized at x D �\@T�. /. Similarly, the distance between �0

and � is maximized at x0 D �0\ @T�. /.

Now, the result follows immediately from Lemma 3.6. In the statement of that lemma,
choosing � long enough forces the tube radius r to be as large as we like via equation
(3-10). Choosing � long enough also forces the error h to be as small as we like. Thus,
in equation (3-12), choosing a long slope � ensures that

(4-2) d.� \ @T�. /; �\ @T�. // < 0:02 e�r
C h< ı=2;

and similarly for the distance from � \ @T� to �0\ @T� .

Lemma 4.5 For a generic Dehn filling slope �, the triangle � D �.��0g� / is con-
tained in T�X.�/[Nı.��/. Furthermore, g� intersects the Margulis tube T�. /. The
portion of g� outside T�. /, and outside the maximal cusp of X.�/, has length less
than 10.
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Proof Recall that H3 is a Gromov hyperbolic metric space, with a ı–hyperbolicity
constant of ln.

p
2C 1/. This means that any side of a triangle in H3 is contained

within a ln.
p

2C1/ neighborhood of the other two sides. Since triangle �D�.��0g� /
has a reflective symmetry, it follows that the midpoint m of g� (fixed by the reflective
symmetry) is within a ln.

p
2C 1/ neighborhood of both � and �0 .

Next, observe that because � and g� share an ideal vertex, the distance between side �
and x 2 g� decreases exponentially toward 0 as x moves with unit speed toward the
shared ideal vertex. The same statement is true for �0 and g� . Thus, there is a constant
R (depending only on ı ) such that if m is the midpoint of g� ,

(4-3) x 2 g� and d.x;m/ >R ) d.x; �/ < ı=2 or d.x; �0/ < ı=2:

Now, we recall several estimates from Section 3. First, by Lemma 3.5, the distance in
X.�/ between the Margulis tube V D T�. / and the maximal horocusp N�.K/ is

(4-4) s D d.@N�.K/; @T�. // < 2:621C 2:02< 5:

On the other hand, by Theorem 3.9, choosing � and � sufficiently long will ensure that
the length of g� relative to the maximal cusp N�.K/ is arbitrarily long, in particular

(4-5) `.g� / > 2 ln `.�/� 5:2� 2RC 10:

Combining (4-4) with (4-5), we conclude that the middle 2R of the length of g� (ie,
the portion of g� that is within R of the midpoint m) is contained inside the Margulis
tube T�. /. Thus, by (4-3), it follows that when � and � are sufficiently long,

(4-6) g�XT�. /�Nı=2.�/[Nı=2.�
0/:

Combining (4-1) and (4-6) gives the desired result.

Lemma 4.6 For a generic slope �, the triangle �D�.��0g� / is embedded in X.�/.

Proof Consider the intersections between � and the following three regions of X.�/:
the Margulis tube T�. /, the cusp neighborhood T�.K/, and the remaining thick part
X.�/XT� . See Remark 2.7 and Figure 5.

We may lift � to a triangle z� � H3 . There is a decomposition of H3 into tubes
covering the Margulis tube T�. /, horoballs covering T�.K/, and the remaining piece
covering the thick part. We will show that � is embedded in X.�/ by showing that
none of these pieces of H3 contains a point of intersection between z� and one of its
translates by the deck transformation group.

First, consider a solid tube about a geodesic z �H3 , which covers the Margulis tube
T�. /. By Lemma 4.3, the only deck transformations of H3 that fail to move this
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solid tube off itself belong to a Z subgroup fixing the geodesic axis z . Now, observe
that each lift of � intersecting z is contained in a totally geodesic plane perpendicular
to z , and that the triangle z� is bounded between two consecutive planes. See Figure 5.
Thus every non-trivial deck transformation in the Z subgroup fixing z will move z�
completely off itself.

Next, consider the piece of � in the thick part X.�/XT�X.�/. By Lemma 4.5, this
piece of � is entirely contained in the embedded tube Nı.��/. Therefore, z�XfT� is
entirely contained in one of the disjointly embedded solid cylinders covering Nı.��/,
hence is disjoint from all the images of z� by the deck transformation group.

Finally, consider the part of � in the horocusp T�.K/. By Lemma 4.5, we already
know that �\@T�.K/ is contained in an embedded disk of radius ı about �\@T�.K/.
Thus �\T�.K/ follows the T 2 � Œ0;1/ product structure of the horocusp T�.K/,
and the portion of � in this cusp is also embedded.

4.3 Completing the proof

We can now complete the proof of Theorem 1.3.

Theorem 1.3 Let X be an orientable hyperbolic 3–manifold that has two cusps and
tunnel number one. Choose a generic filling slope � on one cusp of X , and let
� �X.�/ be an unknotting tunnel associated to a tunnel � �X . Then � is isotopic to
the geodesic g� in its homotopy class.

Proof The two-cusped manifold X has finitely many Heegaard splittings of genus 2,
hence finitely many unknotting tunnels (Hass [25], Li [29]). Choose a value J 2 .1; 1:1�

that satisfies Lemma 4.1 for every unknotting tunnel of X . Next, choose a generic
Dehn filling slope �, such that both � and its shortest longitude � are long enough to
satisfy Lemmas 4.2, 4.4 and 4.6.

Choose an unknotting tunnel � � X , and let � D �.�; �/ � X.�/ be an unknotting
tunnel associated to � , as in Definition 2.10 and Theorem 2.11(a). Let us unpack what
this means.

Using the geodesic � � X.�/ and the core curve  of the Dehn filling solid torus,
construct geodesics � and �0 as in Figure 5. Let QD�.��0 /XT�X.�/ be a totally
geodesic quadrilateral obtained by removing the thin part T�X.�/ from the triangle
�.��0 /. The quadrilateral Q can be seen schematically in Figure 7, where a lift of
Q lies on the right of the figure, with one side labeled C1 , two sides on (lifts of) �0

and � , and the last side on the horosphere where these lifts of �0 and � meet.
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By Lemma 4.4, Q is embedded in the tubular neighborhood Nı=2.��/. Let C be an
arc in @T�. / whose endpoints are �\ @T�. / and �0 \ @T�. /, and which lies in
the same plane as triangle �.��0g� /. (This is the same arc that was denoted C2 in the
proof of Lemma 3.8, shown in Figure 7.) Notice that the union of C1 DQ\ @T�. /
and C2 D C is a closed curve isotopic to �� . See Figure 7.

Now, QD ��1.Q/ is an embedded quadrilateral in the thick part of X . Furthermore,
observe that the two sides of Q that run along � and �0 are each isotopic to �� , and ��
is isotopic to �.��/ by Lemma 4.2. Pulling back these isotopies via ��1 , we conclude
that two opposite sides of Q, namely s1 D �

�1.�/ and s2 D �
�1.�0/, run parallel to

� through the thick part of X . Furthermore, the union of ��1.C / and Q\ @T�.T /
is a closed curve isotopic to �. In other words, the quadrilateral Q satisfies all the
criteria of Definition 2.10.

In the language of Definition 2.10, this means that �.�; �/D s1 [ �
�1.C /[ s2 is a

tunnel arc associated to � and �. Therefore, by Theorem 2.11,

�.�.�; �//D .�XT�/[C [ .�0XT�/

is an arc isotopic to our unknotting tunnel � .

Now, we may construct an isotopy from �.�.�; �// to g� in two stages. First, homotope
arc C to the piecewise geodesic arc .�\T�. //[ .�0\T�. //, through the Margulis
tube T�. /. Because the Margulis tube is embedded by Lemma 4.3, and in fact
the entire homotopy occurs in the geodesic plane containing triangle �.��0g� /, this
homotopy is an isotopy. At the end of this isotopy, we have shown that tunnel � is
isotopic to �[ �0 , two of the sides of �.��0g� /.

Next, homotope �[�0 to the third side g� of �.��0g� /, through the triangle �.��0g� /.
Because �.��0g� / is embedded in X.�/ by Lemma 4.6, the homotopy from two sides
of the triangle to the third side is again an isotopy. Therefore, � is isotopic to the
geodesic g� .

It is worth observing that in the proof of Theorem 1.3, we used the hypothesis on
the length of � only at the very end, to apply Lemma 4.6 and construct an isotopy
from �[ �0 to the geodesic g� . When we strip away the last paragraph of the proof,
what remains is the following corollary, which does not require any hypotheses on the
longitude �.

Corollary 4.7 Let X be an orientable hyperbolic 3–manifold that has two cusps and
an unknotting tunnel � . Choose a Dehn filling slope � on one boundary torus T of X ,
and let � �X.�/ be the unknotting tunnel associated to � , as in Figure 1. Then, for
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all but finitely many choices of filling slope �, the tunnel � is isotopic to the piecewise
geodesic curve �[ �0 depicted in Figure 5.

5 Canonical and non-canonical geodesics

Heath and Song showed by a single counterexample that unknotting tunnels are not
necessarily isotopic to canonical geodesics [26]. In this section, we give conditions that
will guarantee that an unknotting tunnel is a canonical geodesic, or is not a canonical
geodesic. This results in the proof of Theorem 1.6. In addition, in Theorem 5.3, we
construct an infinite family of one-cusped manifolds Mi , such that each Mi in the
family has one canonical tunnel and one non-canonical tunnel.

Recall, from Definition 1.5, that a geodesic in M DX.�/ is called canonical when it
is an edge of the canonical polyhedral decomposition P , ie, the geometric dual to a
face of the Ford domain. Note that when there are multiple cusps, the Ford domain
depends on choice of horoball expansion for all cusps. However, when there is only
one cusp, canonical geodesics are well defined.

Consider again the manifold X , with cusps corresponding to torus boundary com-
ponents K and T , and unknotting tunnel � running between them. Take a horoball
expansion as follows. For the cusp corresponding to K , to be left unfilled, expand a
horocusp maximally, until it becomes tangent to itself. Now expand a horocusp about
T slightly, so that it has very small volume. This expansion determines a Ford domain,
hence a canonical polyhedral decomposition. We will use this canonical polyhedral
decomposition of X in the results below. (It is a theorem of Akiyoshi [5] that the
combinatorics of the Ford domain stabilizes as the volume of a horocusp shrinks toward
0; thus there is a well-defined canonical decomposition corresponding to a “sufficiently
small” horocusp about T .)

The proof of Theorem 1.6 will use the recent work of Guéritaud and Schleimer [23].
In that paper, the authors show that if the canonical polyhedral decomposition of a
manifold X is a triangulation, and if there is a unique shortest canonical geodesic
meeting a cusp to be filled, then the canonical decomposition of the filled manifold
X.�/ can be determined by replacing two tetrahedra of the canonical triangulation of
X with a collection of tetrahedra forming a “layered solid torus.”

The results we need are contained in the following lemma.

Lemma 5.1 Let X be a hyperbolic manifold with two cusps, denoted K and T , such
that there is a unique shortest geodesic ˛ running from K to T . Let D be the canonical
polyhedral decomposition of X , relative to a cusp neighborhood where the horocusp
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about T is sufficiently small. Then, for a sufficiently long slope � on T , every edge
E of the canonical decomposition D� of X.�/ satisfies one of the following:

(a) E is isotopic to the image of a canonical edge in D under the (topological)
inclusion X ,!X.�/, or

(b) E is isotopic to the image of an edge created by subdividing some polyhedron
of D into ideal tetrahedra, under the inclusion X ,!X.�/, or

(c) E is isotopic to an arc that follows ˛ into the filled solid torus, runs n times
around the core of the solid torus (for some positive integer n 2 N ), and then
follows ˛ back out. There is exactly one such edge for nD 1.

The edges in (c) are exactly the edges of the canonical tetrahedra that make up the
layered solid torus V , which will be described in the proof.

Proof Suppose, for the moment, that the polyhedral decomposition D consists entirely
of tetrahedra. (This hypothesis is assumed globally in [23]. See Remark 5.2 below.)

If the horocusp about T is sufficiently small, Guéritaud and Schleimer show that the
only edge of D entering cusp T is the unique shortest geodesic ˛ . In particular, the
cusp cellulation of T will contain exactly one vertex, corresponding to the endpoint of
˛ at T . There are two special tetrahedra, denoted � and �0 , such that three edges of
� (sharing an ideal vertex) and three edges of �0 are identified at the shortest geodesic
˛ . All other tetrahedra of D are disjoint from the horocusp about T , and have all of
their vertices at K . See [23, Section 4.1].

For a sufficiently long Dehn filling slope �, Guéritaud and Schleimer observe that the
tetrahedra of DX.�[�0/ remain canonical in X.�/. This is because the canonicity of
a tetrahedron can be encoded in finitely many strict inequalities (which express relative
distance to various horoballs in H3 , or equivalently convexity in Minkowski space
R3C1 ). Hence, the canonicity of a tetrahedron is an open condition, and remains true
as the complete hyperbolic metric on X is perturbed slightly to give the hyperbolic
structure on X.�/.

If D consists entirely of tetrahedra, Guéritaud and Schleimer show that the canonical
decomposition D� will combinatorially be of the form

D� D .DXf�;�0g/[V;

where V D�1 [ � � � [�N is a solid torus with one point on the boundary removed.
This removed point corresponds to the endpoint of ˛ on K . The solid torus V has a
layered triangulation by tetrahedra �1; : : : ; �N , as follows. The tetrahedron �1 is
glued along two faces to the punctured torus @V D @.�[�0/, then �2 is glued along

Geometry & Topology, Volume 17 (2013)



Dehn filling and the geometry of unknotting tunnels 1851

two faces to the punctured torus on the other side of �1 , and so on. At the core of the
solid torus V , two faces of �N are glued by folding onto a Möbius band. See [23,
Section 2] for more details, and in particular [23, Figure 3].

For our purposes, the salient points are as follows. First, every edge of VD�1[� � �[�N

runs some nonzero number of times about the core of V . Second, all of these edges
share the same ideal vertex, namely the endpoint of ˛ at cusp K . Thus every edge of
V is homotopic to a portion of ˛ , followed by n 2N trips about the core, followed by
returning to the ideal vertex along ˛ . The homotopy class of each (unoriented) edge in
V is completely determined by the positive integer n. Thus, since there can only be
one hyperbolic geodesic in any homotopy class, there is at most one canonical edge for
any value n 2N . Note that there will actually be an edge in V for nD 1: this is the
core of the Möbius band onto which the tetrahedra are layered. This edge is marked
with an arrow in [23, Figure 3].

This completes the proof in the case where D consists entirely of tetrahedra. Next,
consider what can be said without this restrictive hypothesis.

By the same argument as in Section 4.1 of [23], the cusp cellulation of a horospherical
torus about T will contain exactly one vertex, corresponding to the endpoint of ˛ at
T . Thus the Delaunay decomposition of the torus T is either two triangles or one
rectangle. The corresponding canonical 3–cells of D with ideal vertices at T are either
two tetrahedra (which may be labeled �;�0 as before), or a single ideal rectangular
pyramid, which can be subdivided into two tetrahedra �;�0 by choosing a diagonal
for the rectangle.

When we perform Dehn filling along a sufficiently long slope �, the same argument as
above implies that every canonical tetrahedron of DX.�[�0/ will remain canonical
in X.�/. The presence of a larger canonical polyhedron in D is equivalent (by duality)
to a vertex v of the Ford–Voronoi domain that is equidistant to five or more horoballs.
As the complete hyperbolic metric on X is perturbed slightly to give the metric on
X.�/, this equality of distances may break into inequalities, and a large polyhedron
in D may become subdivided into tetrahedra or other cells. Nonetheless, we observe
that any new edges created in this fashion are interior to polyhedra of D or to faces of
D . Thus all edges in X.�/ that do not come from .�[�0/ satisfy (a) or (b) in the
statement of the lemma.

After all the cells of DX.�[�0/ are mapped to X.�/, and subdivided as necessary,
what remains is again a solid torus V with one point on the boundary removed. Then,
by the same argument of Guéritaud and Schleimer [23, Section 4.4], the canonical
subdivision of V will again be a layered triangulation. As above, every edge of V
satisfies (c) in the statement of the lemma, completing the proof.
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Remark 5.2 The main reason why Guéritaud and Schleimer assumed that the canon-
ical decomposition D of X consists entirely of tetrahedra is that their goal was to
completely describe the canonical decomposition of X.�/. Typically, large cells in the
canonical decomposition D of X tend to break up into tetrahedra in D� , in a pattern
that seems hard to predict from the combinatorial data alone. For our purposes in this
paper, it suffices to know that each edge created in this subdivision is contained in the
closure of a cell of D .

We may now complete the proof of Theorem 1.6.

Theorem 1.6 Let X be a two-cusped, orientable hyperbolic 3–manifold in which
there is a unique shortest geodesic arc between the two cusps. Choose a generic Dehn
filling slope � on a cusp T of X . Then, for each unknotting tunnel � �X , the tunnel
� � X.�/ associated to � will be canonical if and only if � is the shortest geodesic
between the two cusps of X .

Proof For the “if” direction of the theorem, suppose that the unknotting tunnel � of
X is the unique shortest canonical geodesic from T to the other cusp K of X . By
Definition 2.10, the associated tunnel �.�; �/ � X.�/ follows � to the added solid
torus V , runs once around the longitude � (ie, once around the core of V ), and returns
along � . By Lemma 5.1(c), there is exactly one edge E in the canonical decomposition
of X.�/ that does exactly that. Thus the tunnel � D �.�; �/ is homotopic to this edge
E . In fact, since E and � are both boundary-parallel arcs in the layered solid torus V ,
they are isotopic in V , hence in X.�/.

We remark that the proof of this direction does not need any hypotheses on �; all
that’s needed is that the slope � is long enough to apply the work of Guéritaud and
Schleimer.

For the “only if” direction of the theorem, suppose that the unknotting tunnel � of X

is not the shortest canonical geodesic connecting cusps T and K . Denote this unique
shortest geodesic by ˛ .

Choose a value of � � 0:29 small enough so that the �–thin part T�.T / � X is
contained in a horocusp about T that is sufficiently small to satisfy Lemma 5.1. Then
Theorem 2.6 implies that for a sufficiently long Dehn filling slope �, the boundary of
the �–thin Margulis tube T�. /�X.�/ will be contained in V :

@T�. /� V �X.�/;

where V is the layered solid torus of Lemma 5.1.
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Next, let � D �.�; �/ be the unknotting tunnel of X.�/ associated to � . We claim
that when � and � are sufficiently long, the geodesic g� in the homotopy class of �
must intersect the Margulis tube T�. /. The proof of this claim is essentially identical
to the proof of Lemma 4.5, where it is proved for the value � D 0:29. (For a different
value of � , there would be different numerical estimates in (4-4), but the argument is
otherwise the same.) Thus we may conclude that for a generic slope �, the geodesic
g� in the homotopy class of � must intersect the layered solid torus V .

We are now ready to complete the proof. By Lemma 5.1, if an edge of the canonical
decomposition meets V , then it is isotopic to an arc that follows ˛ , runs some number
of times around the core curve  of V , then follows ˛ back out. But we have assumed
that ˛ ¤ � ; in particular, these geodesics enter the horocusp K at different points.
Thus the geodesic g� , which is homotopic to � �  � ��1 , cannot be a canonical edge
in X.�/.

� 0�

Figure 8: A two-bridge link L of slope 5=22 , with upper tunnel � and lower
tunnel � 0

Theorem 5.3 There exists an infinite family fMig of one-cusped hyperbolic tunnel
number one manifolds, such that each Mi has two unknotting tunnels, of which one is
canonical and the other is not.

Proof To prove the result, all we need is a two-cusped, one-tunnel manifold X with
two unknotting tunnels, one of which is the unique shortest canonical geodesic, and
one of which is not. We may then Dehn fill one cusp of X and apply Theorem 1.6 to
obtain infinitely many tunnel number one manifolds Mi DX.�i/ as in the statement
of the theorem.

The example we use is the complement of a 2–bridge link L, shown in Figure 8. By a
result of Adams and Reid [4], the only unknotting tunnels of a two-bridge link are the
upper and lower tunnels. These are shown in Figure 8 as � and � 0 .

Using SnapPy [14], we compute the hyperbolic structure on S3XL, shrink the cusp
about the lower (red) component of Figure 8, and expand the cusp about the upper (blue)
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component maximally to determine the appropriate canonical polyhedral decomposition.
Figure 9 shows the cusp neighborhood for this link. Notice that there is a single maximal
horoball in a fundamental domain in the figure. This implies that there is a unique
shortest canonical geodesic between the two cusps. We will see that this corresponds
to the lower tunnel � 0 .

Figure 9: A horoball packing diagram for the two-bridge link of slope 5=22 .
The red cusp (shaded lighter in grayscale) lifts to the horoball about infinity.

To do so, we consider the combinatorics of the canonical decomposition of the 2–bridge
link complement. By a theorem of Akiyoshi, Sakuma, Wada and Yamashita [6], and
independently Guéritaud [21], the canonical polyhedral decomposition of the link
complement follows a combinatorial pattern that can be read off the diagram of the
link. See Sakuma and Weeks [39] or Futer [22, Appendix] for detailed descriptions of
this triangulation.

In particular, the canonical decomposition determines a triangulation of the cusp. This
cusp triangulation has the feature that exactly two edges run over an entire meridian of
the cusp. Each of these two special edges forms one side of an ideal triangle, while the
other two sides of the triangle run along the (same) upper or lower tunnel. In Figure 9,
we see the upper and lower tunnels “head on,” as vertices in the cusp torus. One of the
tunnels must correspond to the maximal horoball, as claimed, and the other corresponds
to the smaller horoball shown in the center of Figure 9. By counting valences of the
vertices lying over these horoballs, we see that the lower tunnel � 0 corresponds to the
maximal horoball.

Now, Theorem 2.11 implies that for a generic Dehn filling, the resulting manifold has
two unknotting tunnels �.�; �/ and �.� 0; �/. By Theorem 1.6, the second of these is
canonical, while the first is not.
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6 Knots with long tunnels in S3

In this section, we prove there exist knots in S3 with arbitrarily long unknotting tunnel.
Our starting point is the alternating chain link in S3 with four link components. We
will denote the link by C , its complement by M D S3XC . This link is hyperbolic,
for example by work of Neumann and Reid [36]. (In fact, the arguments below will
apply to any choice of hyperbolic chain link on four strands. We choose the alternating
one for concreteness.)

Label the four link components L1 , L2 , L3 and L4 , with L1 and L3 opposite each
other. Notice that there is a 3–punctured sphere with boundary components a longitude
of L1 and a meridian of L2 and L4 , embedded on the plane of projection of the link
diagram. This will play a part in the arguments below. See Figure 10.

Our knot complement in S3 will be obtained by Dehn filling three of the four link
components, along carefully chosen slopes.

Lemma 6.1 The link complement M D S3XC has exactly two genus-2 Heegaard
splittings.

Proof One genus-2 Heegaard surface separates L1 and L2 from L3 and L4 . It
restricts to a standard genus-2 Heegaard splitting of S3 , and the links L1 and L2 run
through two distinct 1–handles of a corresponding genus-2 handlebody in S3 . The
two core tunnels in the compression bodies separated by this surface correspond to
arcs between L1 and L2 , and between L3 and L4 . These core tunnels are the unique
arcs on the intersection of 3–punctured spheres bounded by longitudes of these link
components. See Figure 10.

The other genus-2 Heegaard surface of M is obtained by rotating the right panel of
Figure 10 by a quarter-turn. It separates L1 and L4 from L2 and L3 , with core
tunnels running between the corresponding boundary components.

By Lemma 2.9, every core tunnel of M can be isotoped so it is fixed by an isometry
that is a hyper-elliptic involution. Since M has 4 torus boundary components, such
an involution must map each boundary component to itself. It must also reverse the
orientation on each longitude and each meridian. We claim there is only one such
isometry, and that it preserves the 3–punctured sphere S depicted in Figure 10.

If there are two such involutions, their composition is an isometry,  , which sends
(a neighborhood of) each component of the link to itself, preserving the orientation
of each longitude. The orbit of S under the finite cyclic group F generated by  
consists of disjoint 3–punctured spheres, one for each element of F . These spheres
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˛

L1
L2

L3

L4

Figure 10: The alternating chain link with four link components. On the
left, an embedded 3–punctured sphere S is shown, shaded. On the right, a
Heegaard surface is shown, along with corresponding core tunnels.

separate the link complement into jF j isometric pieces. However, the cusp of L3 lies
in exactly one of these complementary components. This contradicts the existence of a
second hyper-elliptic isometry.

Now, suppose for a contradiction that the manifold M DS3XC contains another genus-
2 Heegaard surface †, apart from the two surfaces that we have already exhibited. We
know that the hyper-elliptic involution corresponding to † rotates the 3–punctured
sphere S about its central axis, and that two link components of C lie on the same
side of †. By the pigeonhole principle, an arc in the axis of S that connects two link
components on the same side of † must be a core tunnel of †.

There are three potential core tunnels contained in the axis of S . Two of these are
known core tunnels of existing splittings, described above. The third is an arc ˛ running
from L4 to L2 , shown in Figure 10. We now argue that this arc cannot be a core
tunnel in MX†. For, suppose that ˛ is a core tunnel. Then the genus-2 Heegaard
surface † must separate L2 and L4 from L1 and L3 . This surface must carry the
Z2 –homology of M D S3XC . Note H1.M IZ2/ is generated by the four meridians
m1 , m2 , m3 and m4 , hence has rank 4.

Let N be the compression body that is the neighborhood of the cusp tori of L2 and L4 ,
along with the arc ˛ joining these tori. The subgroup G �H1.M IZ2/ corresponding
to the inclusion N ,!M is generated by meridians and longitudes of the boundary
components L2 and L4 . The longitude of L2 is homologous to m1Cm3 .mod 2/,
as is the longitude of L4 . Hence G �H1.M IZ2/ has rank only 3, and cannot be the
entire group. On the other hand, if the positive boundary @CN was a Heegaard surface
†, N would have to carry all of the homology of M . This is a contradiction. Hence
there are exactly two Heegaard splittings, described above.
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Lemma 6.2 Dehn filling M D S3XC along an integer slope p=1 on cusp L3 yields
a manifold homeomorphic to .T 2 � I/XK , where K is a knot. The homeomorphism
maps the boundary torus of L2 to T 2 � f0g, the boundary torus of L4 to T 2 � f1g,
and the link component L1 to the knot K � T 2 � I .

Proof If we perform meridian Dehn filling on L1 , then we obtain an unlinked chain
of three unknots. The complement of this chain of unknots is homeomorphic to the
product of a 3–punctured sphere P and the circle, P �S1 , which is Seifert fibered
with base orbifold S2.1;1;1/. Thus L1 is a knot in P �S1 .

Now consider p=q Dehn filling on the component L3 . The longitude of L3 bounds
the 3–punctured sphere fiber, so is horizontal. Dehn filling yields a new Seifert fibered
space with base orbifold S2.1;1; q/. Hence if we perform integral Dehn filling,
q D 1, then the Seifert fibered space has base orbifold S2.1;1/. This is an annulus.
The Seifert fibered space must be the product of an annulus and a circle, which is
homeomorphic to T 2 � I . Note that the two boundary tori T 2 �f0; 1g come from the
boundary tori of L2 and L4 . Thus, after p=1 integer filling on L3 , the link component
L1 is a knot K � T 2 � I .

Lemma 6.3 For large n, the manifold obtained by Dehn filling M D S3XC along
the slope 2n on L3 is hyperbolic, and has exactly two genus-2 Heegaard splittings,
which come from the Heegaard splittings of M .

Proof Let X D T 2XK denote the manifold obtained by this Dehn filling. Again by
Lemma 2.9, any genus-2 Heegaard splitting of T 2XK gives rise to an involution of
the manifold X that fixes the boundary components. For large n, the core of the Dehn
filling solid torus will be shorter than any other closed geodesic. Thus it must be taken
to itself by the involution. But then the involution restricts to an involution of S3XC

that fixes boundary components, preserving slopes on the boundary components L1 ,
L2 and L4 .

As in the proof of Lemma 6.1, this fixes the 3–punctured sphere S with boundary
components isotopic to the longitude of L1 and meridian of L2 and L4 . So again
the core tunnel must be one of the three arc components fixed by a reflection of that
3–punctured sphere. Again two of these arcs are known core tunnels, and we must
again rule out the third arc ˛ , shown in Figure 10. We do so by a homology argument.

As before, if a core tunnel ˛ connects L2 and L4 , then the compression body N

obtained as a neighborhood of these two components and the tunnel must carry the
homology of the manifold M . The homology H1.S

3XC IZ2/ is generated by merid-
ians m1 , m2 , m3 and m4 . After Dehn filling along .2n/m3C `3 , the longitude `3
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becomes equal to zero mod 2. Hence `3 D 0Dm2Cm4 , and the homology now has
rank 3.

On the other hand, the subgroup G �H1.M IZ2/ induced by the inclusion N ,!M

is generated by meridians and longitudes m2 , `2 , m4 and `4 . Since

`2 Dm1Cm3 .mod 2/D `4;

and m2Dm4 after Dehn filling, G has rank only 2. Thus the positive boundary @CN

cannot be a Heegaard splitting surface.

By Lemmas 6.2 and 6.3, there exists a knot K � .T 2 � I/ with exactly two genus-2
Heegaard splittings, and with hyperbolic complement. Denote the hyperbolic manifold
X D .T 2 � I/XK . To obtain a knot in S3 , we will be Dehn filling two more of the
boundary components of X : those corresponding to T 2 � f0g and to T 2 � f1g.

Let �. � ; � / denote the geometric intersection number between two slopes on a torus.
The following lemma is well-known.

Lemma 6.4 Consider the manifold Y DT 2� Œ0; 1�. Put the same framing on T 2�f0g

and T 2�f1g. Choose slopes �i on T 2�fig, such that �.�0; �1/D 1. Then the Dehn
filled manifold Y .�0; �1/ is homeomorphic to S3 .

Proof There is a mapping class ' 2 SL.2;Z/, mapping T 2 ! T 2 , which sends
the slope �0 to 0=1 and the slope �1 to ˙1=0. Now, if we identify the target T 2

with the standard Heegaard torus of S3 , the product homeomorphism .' � id/ maps
Y D T 2 � I to the complement of the Hopf link in S3 , with �0 and �1 mapped to
the meridians of the two link components. Filling these in gives S3 .

We are now ready to prove the main theorem of this section.

Theorem 6.5 For any L> 0, there exists a tunnel number one knot in S3 with exactly
two unknotting tunnels, each of which has length at least L.

Proof The knot in S3 will be obtained by Dehn filling two cusps of the manifold
X D .T 2 � I/XK of Lemma 6.2. In particular, we will fill cusps corresponding to
T0 WD T 2�f0g and T1 WD T 2�f1g. Note one of the two core tunnels of .T 2�I/XK ,
call it �0 , runs from K to T0 , and the other, �1 , from K to T1 . After appropriate
Dehn filling, we will see that Theorem 2.11 applies to give unknotting tunnels �i

corresponding to �i , and that by Theorem 2.3 these are the only unknotting tunnels of
the resulting knot.
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We need to take care in our choice of slopes, to ensure that the tunnels stay long, and
also to ensure the resulting filled manifold is a knot complement in S3 with no new
genus-2 Heegaard splittings.

Put the same framing on T0 and on T1 , and choose disjoint horocusps about these tori.
Set J D 1:1, and � D 0:29, as Section 3. Also, choose a length L> 0. Now, we will
choose slopes �0 on T0 and �1 on T1 , such that the following hold:

(A) The normalized lengths L.�i/ are long enough to satisfy Theorem 2.6 for
J D 1:1 and � D 0:29. In fact, each L.�i/ is at least J 2 times longer than
necessary to apply the drilling theorem. This way, we can apply Theorem 2.6
twice: once to fill T0 and a second time to fill T1 (or in the opposite order).

(B) On the disjoint horocusps about T0 and T1 , the length of each �i (on its
respective torus) satisfies `.�i/ > 152.

(C) For each slope �i , the shortest longitude �i satisfies `.�i/ > 7 and `.�i/ >

e3CL=2 . Again, these lengths are measured on the chosen horospherical tori
about T0 and T1 . Note that every longitude for �i satisfies the same lower
bound on length.

(D) The intersection number is �.�0; �1/D 1.

We claim that in the complement of a bounded region in the Farey graph F , conditions
(A)–(D) hold simultaneously. In the language of the Farey graph, conditions (A) and
(B) require �0 and �1 to avoid finitely many vertices of F . Condition (C) requires
each of �0 and �1 to avoid finitely many closed balls of radius 1 in F , where each
ball is the set of all Farey neighbors of a longitude too short for (C). Finally, condition
(D) requires �0 to be a Farey neighbor of �1 . Thus, by choosing an edge Œ�0; �1��F
that lies outside the bounded prohibited region, we satisfy all of (A)–(D).

We Dehn fill T0 along �0 , and T1 along �1 . By Lemma 6.4, the result is a knot in
S3 .

Applying Theorem 2.3 twice (once to fill T0 , and again to fill T1 ), we conclude that
the resulting knot complement X.�0; �1/ has Heegaard genus 2, with any genus-2
Heegaard surfaces coming from the Heegaard surfaces of the original manifold X .
By Lemma 6.3, there are exactly two Heegaard surfaces in X (with core tunnels �0

running from K to T0 , and �1 running from K to T1 ). Thus there are exactly two
unknotting tunnels in X.�0; �1/.

We claim that the two unknotting tunnels for the resulting knot are associated to �0

and �1 . To see this, first fill one of the cusps, say T0 . Then �1 , running from K to
T1 , remains a core tunnel in its compression body, and is now an unknotting tunnel for
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X.�0/. Now, Theorem 2.11 implies that �1D �.�1; �1/, is an unknotting tunnel for the
knot complement X.�0; �1/. Similarly, if we first fill T1 , then Theorem 2.11 implies
that �0D �.�0; �0/, is an unknotting tunnel for the knot complement X.�0; �1/. Thus
we have found exactly two unknotting tunnels, and these must be all the tunnels for the
manifold.

It remains to show that the tunnels have length at least L. First, fill X along slope �0

on T0 . Then, by Theorem 2.6(d), there is a J –bilipschitz diffeomorphism � that maps
the horocusp about T1 in X to an embedded horocusp about T1 in X.�0/. Since
J D 1:1, the meridian slope �.�1/ has length at least

(6-1) `.�1/=1:1> 152=1:1> 138:

Similarly, the shortest longitude for �.�1/ in X.�0/ has length at least

(6-2) `.�1/=1:1> e3CL=2
� e�0:1

D e.5:8CL/=2:

Thus, by equation (6-1) and condition (A), Dehn filling X.�0/ along slope �1 on T1

will satisfy all the hypotheses of Theorem 3.9. Therefore, by Theorem 3.9 and equation
(6-2), the unknotting tunnel �1 of X.�0; �1/ will have length longer than L.

By the same argument, reversing the order of the fillings, the other unknotting tunnel
�0 of X.�0; �1/ will also have length longer than L.

7 A concrete example

In this section, we take another look at the construction of Section 6, giving a concrete
example. As a result, in Theorem 7.9 we obtain a thoroughly effective version of
Theorem 6.5, with an explicit sequence of knots and an explicit bound on the length
of their tunnels. The downside of this concrete construction is that rigorous computer
assistance will be required at two places in the argument (Lemmas 7.1 and 7.3).

7.1 The manifold X and its Heegaard splittings

For the entirety of this section, we will work with the knot K in T 2�I that is depicted
in Figure 11. It is a pleasant exercise to show that this knot is obtained by 2=1 Dehn
filling on one component of the alternating chain link C from Section 6. Since we will
not need this fact, we omit the derivation.

The following lemma collects a few useful facts about X D .T 2 � I/XK .
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˛0

ˇ0

Figure 11: Diagram of a knot K in T 2 � I . Note the framing: ˛0 runs to
the right, ˇ0 runs to meet ˛0 as shown. Slopes ˛1 and ˇ1 are on the top
torus, parallel to ˛0 and ˇ0 , respectively.

Lemma 7.1 Let X D .T 2�I/XK be the complement of the knot in Figure 11. Then:

(a) X has an ideal triangulation consisting of seven tetrahedra, as depicted in
Figure 12.

(b) X is isometric to the SnapPea census manifold v3227 .

(c) The basis h˛i ; ˇii for H1.T
2 � fig/, shown in Figure 11, places the same

framing on T0 WD T 2 � f0g and T1 WD T 2 � f1g.

(d) In the hyperbolic metric on X , there is a unique shortest edge from K to T0

(edge e0 , marked 0 in Figure 12), and a unique shortest edge from K to T1

(edge e1 , marked 1).

(e) On the maximal cusp about T0 , the slopes ˛i and ˇi are realized by parabolic
translations

(7-1) ˛0W z 7! zC 2:383; ˇ0W z 7! zC 4:222C 2:657
p
�1:

On the maximal cusp about T1 , the slopes ˛i and ˇi are realized by parabolic
translations

(7-2) ˛1W z 7! zC 7:961C 1:269
p
�1; ˇ1W z 7! zC 4:989:

The real and imaginary parts in (7-1) and (7-2) are accurate to within 0:01.

Proof Conclusions (a), (b) and (c) are immediate consequences of rigorous routines
in SnapPy [14]. In particular, the construction of an ideal triangulation is rigorous.

Geometry & Topology, Volume 17 (2013)



1862 Daryl Cooper, David Futer and Jessica S Purcell

0

0

1

1

1 0
66

2

4 4

3

0

1

1
6

2

4

0

1

0
6

4

3


4 6

3
2

6 5

5 3

2 5

6
6


4 6

3
2

6 5



Figure 12: The 7 tetrahedra in an ideal triangulation of X D .T 2 � I/XK .
The cusp of T0 is blue, the cusp of T1 is red, and the cusp of K is black.
For convenience in the ensuing argument, edge labels are permuted from the
labels in the SnapPea census, via the permutation e0$ e5 , e1$ e6 , e2$ e3 .

The isometry checker is rigorous, because (in the case of a “yes” answer) it exhibits a
simplicial isomorphism between X and v3227 . Similarly, the realization of particular
peripheral curves as moves in the triangulation is a rigorous combinatorial operation.
Note that, once the meridian of K is filled, ˛0 becomes isotopic to ˛1 , and ˇ0 to ˇ1 .

Next, we turn to the work of Moser [35], which can be summarized as follows. When-
ever SnapPy produces an approximate solution to the gluing equations for a triangulation,
with sufficiently small error, then an exact solution exists nearby (where “nearby” is
explicitly quantified, with Lipschitz estimates on the distance between approximate
tetrahedron shapes and true tetrahedron shapes). For every census manifold, including
X Š v3227 , Moser verifies that the error in SnapPy’s approximate solution to the gluing
equations is bounded by

(7-3) jbj< 1:8 � 10�26;

easily enough to ensure a true solution nearby. Thus X is hyperbolic.

Moser’s estimate on the distance between an approximate solution and a true solution
also gives error bounds on every geometric quantity computed by SnapPy. It follows
that the edge e0 (marked 0 in Figure 12) is the unique shortest geodesic between K

and T0 , because the next shortest edge is significantly longer. Similarly, the edge e1

(marked 1 in Figure 12) is the unique shortest geodesic between K and T1 , proving (d).

Finally, SnapPy computes the action of ˛0 and ˇ0 on the complex plane covering the
maximal cusp torus about T0 . The computed values are as in (7-1). Moser’s error
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bound on the gluing equations, expressed in (7-3), implies that the error in equation
(7-1) is significantly less than 0:01. Similarly, the lengths of ˛1 and ˇ1 , as computed
in (7-2), are accurate to an error much less than 0:01.

Next, we turn our attention to Heegaard splittings of X .

Lemma 7.2 The arcs �0 and �1 , depicted in Figure 13, are core tunnels for genus-2
Heegaard splittings of the manifold X D .T 2 � I/XK .

�0

�1

Figure 13: The arcs �0 and �1 are core tunnels for X D .T 2 � I/XK .

Figure 14: Manifolds homeomorphic to XX�1

Proof We prove this for the arc �1 , as the proof for �0 is similar. Let V � X be a
regular neighborhood of T1[K[ �1 . Then V is obtained by attaching a 1–handle
to the cusp tori of T1 and K , along arc �1 . Thus V is a compression body whose
positive boundary is a genus-2 surface S1 D @CV , and whose core tunnel is �1 .

It remains to show that W DXXV is also a compression body. To see this, note that
XXV is homeomorphic to XX�1D .T

2�I/X.K[�1/. Furthermore, the complement
of K[�1 in T 2� I is homeomorphic to the manifold shown on the left of Figure 14,
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where we now are taking the complement of an arc with endpoints on the top boundary
of T 2 � I .

Drag one of these endpoints along the torus T1 D T 2 � f1g, following the disk shown
in the middle part of Figure 14. The result is shown on the right of that figure. Now
untwist. The result is a manifold homeomorphic to T 2 � I , with a simple boundary-
parallel arc removed. Thus W DXXV is a genus-2 compression body.

In fact, �0 and �1 lead to the only two genus-2 Heegaard surfaces of X .

Lemma 7.3 The manifold X of Figure 13 has exactly two genus-2 Heegaard surfaces
S0 and S1 , associated to tunnels �0 and �1 .

Proof Let S � X be a genus-2 Heegaard surface. Since X is hyperbolic, S must
be strongly irreducible (every compression disk on one side of S intersects every
compression disk on the other side of S ). Thus, by a theorem of Rubinstein [38] and
Stocking [44], S must be isotopic to an almost normal surface in the triangulation of
Figure 12. Recall that a normal surface intersects every tetrahedron in a disjoint union
of normal triangles and quadrilaterals, as in the left two panels of Figure 15. An almost
normal surface is composed of triangles and quads, as well as exactly one octagon or
tube, as in the right two panels of Figure 15.

The program Regina [12] can perform a rigorous combinatorial analysis of normal and
almost normal surfaces in X . In particular, Regina verifies that X contains no almost
normal genus-2 surfaces with an octagon. Thus S must contain a tube.

Because S has genus 2, compressing S along the tube will produce one or two normal
tori. But since the triangulation of Figure 12 supports a positively oriented solution
to the gluing equations (by Lemma 7.1), any normal torus must be boundary-parallel,
composed entirely of vertex-linking triangles. (See, eg, Lackenby [28, Proposition 4.4].)
Thus the almost normal tube in S is obtained by tubing together two non-parallel
triangles in one tetrahedron.

Any tube between two normal triangles is isotopic to the neighborhood of an edge in the
triangulation. Thus, since there are seven edges in Figure 12, we must consider seven
tubed surfaces S0; : : : ;S6 , in one-to-one correspondence with edges e0; : : : ; e6 . For
each Si , let Vi be the closure of the component of XXSi that contains the 1–handle
through the tube. Since Vi is obtained by joining together one or two cusp tori along a
1–handle, it is a compression body.

For each almost normal tubed surface Si , we begin isotoping Si toward its associated
edge ei , according to the tightening algorithm of Schleimer [42, Sections 7–9]. In
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the case at hand, Schleimer’s tightening procedure constructs an embedded isotopy
between each Si and a normal surface in the triangulation.

The tubed surfaces S0 and S2 tighten to the same normal surface, from opposite sides.
Thus these surfaces are isotopic, and furthermore V0 ŠXXV2 . Thus S0 splits X into
compression bodies V0 and V2 . Similarly, S1 and S3 tighten to the same normal
surface, from opposite sides. Thus S1 splits X into compression bodies V1 and V3 .

Figure 15: Left to right: Normal triangles. A normal quadrilateral. An almost
normal octagon. An almost normal tube between two vertex-linking triangles.
(Graphics by Saul Schleimer.)

It remains to check that Si is not a Heegaard surface for i D 4; 5; 6. This follows from
a theorem of Bachman [7]. He proves that if a normal surface T �X is a Heegaard
surface, then there must be two almost normal surfaces isotopic to X . (For example,
this is the situation for S0 and S2 .) In our case, each of S4 , S5 and S6 separates the
cusp of K from the cusps T0 and T1 (see edges 4; 5; 6 in Figure 12). Thus, if two of
these surfaces Si and Sj were isotopic, then the compression bodies Vi and Vj on the
side of T0 and T1 would also be isotopic. But the core tunnels of these compression
bodies, namely edges ei and ej , are distinct edges of a geometric triangulation, hence
non-isotopic. This is a contradiction.

Alternately, one may show that Si is not a Heegaard surface for i D 4; 5; 6 by using
Regina to cut X along the normal surface isotopic to Si . Regina can retriangulate the
resulting pieces. Then, it verifies that the piece XXVi is not a compression body, by
showing that it has incompressible boundary. (If the boundary was compressible, there
would have to be a normal compression disk.) Since cutting and retriangulating greatly
increases the number of tetrahedra, this verification took six hours of runtime.

We conclude that S0 is the only Heegaard surface of X that separates T1 from T0[K .
Since the core tunnel �0 connects T0 to K , it must be a core tunnel for S0 , isotopic to
edge e0 from T0[K . Similarly, since �1 connects T1 to K , it must be a core tunnel
for S1 , isotopic to edge e1 in the triangulation.

As a corollary of the above argument, we obtain:
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Lemma 7.4 For i D 0; 1, the core tunnel �i of Figure 13 is isotopic to the unique
shortest geodesic in X between the cusps of K and Ti .

Proof The analysis of almost normal surfaces in Lemma 7.3 shows that �i is isotopic
to edge ei , labeled i in the triangulation of Figure 12. By Lemma 7.1, edge ei is the
unique shortest geodesic between K and Ti .

7.2 Fibonacci slopes

As in Section 6, we will construct a sequence of knots in S3 by filling cusp tori
T0 D T 2 � f0g and T1 D T 2 � f1g. We choose the filling slopes as follows.

Definition 7.5 For every integer n � 0, let fn be the nth Fibonacci number (with
f0 D 0 and f1 D 1). Then, for each n� 1, define the filling slopes

(7-4) �n
0 D fn˛0CfnC1ˇ0; �n

1 D fn�1˛1Cfnˇ1;

where ˛i and ˇi are as in Figure 11.

Lemma 7.6 The slopes �n
0

and �n
1

have intersection number �.�n
0
; �n

1
/D 1. There-

fore, by Lemma 6.4, filling cusp T0 along �n
0

and cusp T1 along �n
1

produces a knot
Kn 2 S3 .

Proof It is well-known that Fibonacci numbers can be produced by the explicit formula

(7-5)
�
fn�1 fn

fn fnC1

�
DAn; where AD

�
0 1

1 1

�
:

Since the left column of An expresses the slope �n
1

, and the right column expresses
the slope �n

0
, we have

�.�n
0; �

n
1/D jdet.An/j D jdet Ajn D 1:

Thus, by Lemma 6.4, filling cusp Ti along �n
i produces a knot Kn 2 S3 .

In fact, recalling the proof of Lemma 6.4 allows a concrete way to visualize the knot
Kn . If we embed the slab T 2 � I in the complement of the Hopf link in S3 via the
mapping class �

fn�1 .�1/nfn

fn .�1/nfnC1

�
2 SL.2;Z/;

the curves �n
0

and �n
1

will be mapped to the meridians of the two Hopf components.
Then, filling the two Hopf components along their meridians in S3 (ie, erasing these
two link components from the diagram) will leave the knot Kn 2 S3 .
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Lemma 7.7 Let n� 5. Then, on a maximal horocusp about Ti �X , the slope �n
i of

Definition 7.5 has length

(7-6) 4:3'n < `.�n
i / < 4:7'n;

where ' D .1C
p

5/=2 is the golden ratio. Furthermore, the shortest longitude for �n
i

is �n
i D �

n�2
i .

Proof The Fibonacci number fn has the closed form expression

(7-7) fn D
'n� .�'/�n

p
5

;

which can be derived by diagonalizing the matrix A of equation (7-5). Thus the slope
�n

0
of Definition 7.5 can be written as

(7-8) �n
0 D

�
'n� .�'/�n

p
5

�
˛0C

�
'nC1� .�'/�.nC1/

p
5

�
ˇ0

D

�
'n

p
5

�
.˛0C'ˇ0/C

�
.�'/�.nC1/

p
5

�
.'˛0�ˇ0/:

Note that when n� 3, we have

(7-9) 'n
� '7

�'�.nC1/ > 29'�.nC1/:

Thus, substituting (7-9) and the translation lengths of (7-1) into equation (7-8) gives:

'n

p
5
`.˛0C'ˇ0/�

'n `.'˛0�ˇ0/
p

5 � 29
< `.�n

0/ <
'n

p
5
`.˛0C'ˇ0/C

'n `.'˛0�ˇ0/
p

5 � 29

'n

p
5
.10:1/�

'n

p
5

�
2:7

29

�
< `.�n

0/ <
'n

p
5
.10:2/C

'n

p
5

�
2:7

29

�
4:4'n < `.�n

0/ < 4:7'n

An identical calculation, using

(7-10) �n
1 D

�'n�1

p
5

�
.˛1C'ˇ1/C

�.�'/�n

p
5

�
.'˛1�ˇ1/;

the estimate (7-9), and the translation lengths of (7-2) gives

4:3'n < `.�n
1/ < 4:6'n:

Thus both �n
0

and �n
1

satisfy the estimates of (7-6).
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Now, consider the shortest longitude �n
i of �n

i . Since �n
1

is the same slope on T 2

as �n�1
0

, Lemma 7.6 implies that �.�n�1
0

; �n
0
/ D 1. Thus, by definition, �n�1

0
is a

longitude for �n
0

. Furthermore, every longitude for �n
0

must have the form

�n�1
0 C k�n

0; where k 2 Z:

Now, observe from equations (7-8) and (7-9) that both �n�1
0

and �n
0

are nearly parallel
to the vector .˛0C' ˇ0/, hence nearly parallel to one another. Furthermore, by (7-6),
the lengths of �n�1

0
and �n

0
differ by a ratio of at most .4:7=4:3/' < 2. Thus the

shortest longitude of the form �n�1
0
Ck�n

0
will have kD�1, and the shortest longitude

is the slope
�n

0 D �
n�1
0 ��n

0

D .fn�1 ˛0Cfn ˇ0/� .fn ˛0CfnC1 ˇ0/

D�.fn�2 ˛0Cfn�1 ˇ0/

D��n�2
0 :

(The minus sign is immaterial, since we do not need an orientation on �n
0

.) By an
identical argument, the shortest longitude for �n

1
is �n

1
D �n�2

1
.

Remark 7.8 Although Fibonacci numbers are convenient for the proof of Lemma 7.7,
in fact the construction has many generalizations. The key fact that makes the entire
argument work is that the sequence of slopes comes from powers of a pseudo-Anosov
matrix A, as in equation (7-5). If we had defined a sequence of slopes �n by iterating
some other pseudo-Anosov matrix B 2 SL.2;Z/, then it would follow, in analogy to
equation (7-8), that for sufficiently large n the slopes �n are nearly parallel to the stable
foliation of B . The lengths `.�n/ of slopes defined in this way would be controlled
by the dilatation (or largest eigenvalue) of B , and the shortest longitude of �n would
be immediately visible.

In this way, ideas from hyperbolic geometry play a significant role in a combinatorial
construction on the torus.

7.3 Completing the argument

We may now Dehn fill X , along slope �n
i on cusp Ti , to produce a knot Kn�S3 . The

following result about the unknotting tunnels of Kn immediately implies Theorem 1.7
in the introduction.

Theorem 7.9 Let �n
0

and �n
1

be the Dehn filling slopes of Definition 7.5. Then, for
sufficiently large n, the knot Kn�S3 obtained by filling Ti �X along �n

i has exactly
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two unknotting tunnels �n
0

and �n
1

. Both tunnels are isotopic to canonical geodesics in
S3XKn , and both tunnels have length satisfying

2n ln.'/� 4:8< `.�n
i / < 2n ln.'/C 5:9;

where ' D .1C
p

5/=2 is the golden ratio.

Proof The proof parallels the proof of Theorem 6.5, with more explicit estimates. As
in that proof, let J D 1:1 and � D 0:29. Then, by Lemma 7.7, choosing a sufficiently
large n ensures the following:

(A) For n� 0, the normalized lengths L.�n
i / are J 2 times longer than necessary

to satisfy the Drilling Theorem 2.6, for J D 1:1 and � D 0:29. This way, we
can apply Theorem 2.6 twice: once to fill T0 and a second time to fill T1 (or in
the opposite order).

(B) For n� 8, the length of each �n
i (on its respective horospherical torus) satisfies

`.�n
i / > 4:3'8 > 152:

(C) For n� 5, the shortest longitude �n
i D �

n�2
i satisfies `.�i/ > 4:3'3 > 7.

Applying Theorem 2.3 twice (once to fill T0 , and again to fill T1 ), we conclude that the
resulting knot complement S3XKn has Heegaard genus 2, with any genus-2 Heegaard
surfaces coming from the Heegaard surfaces of the original manifold X . Recall that
by Lemma 7.3, there are exactly two Heegaard surfaces in X (with core tunnels �0

running from K to T0 , and �1 running from K to T1 ).

When n is sufficiently large and �n
0

is sufficiently long, filling torus T0 along �n
0

will preserve the property (from Lemma 7.4) that �1 is the shortest geodesic from K

to T1 . Note that in the two-cusped manifold X.�n
0
/, the arc �1 is a core tunnel of

a compression body V1 , and the complement of V1 is a genus-2 handlebody. Thus
�1 is an unknotting tunnel of X.�n

0
/, and is the shortest arc between the two cusps

of X.�n
0
/. Thus, by Theorem 1.6, the unknotting tunnel �n

1
of Kn that is associated

to �1 must be a canonical geodesic in S3XKn . (The filling of T1 along �n
1

will be
generic because choosing n large ensures that both �n

1
and �n

1
are arbitrarily long.)

In a similar way, if we choose n sufficiently large and start by filling T1 along �n
1

,
the unknotting tunnel �0 of X.�n

1
/ will be the shortest arc between the two cusps of

X.�n
0
/. Thus, by Theorem 1.6, the unknotting tunnel �n

0
of Kn that is associated to

�0 must be a canonical geodesic in S3XKn .

Note that by Lemma 4.5, the large majority of the length of �n
0

is contained in the
Margulis tube created by filling T0 . Similarly, the large majority of the length of �n

1
is
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contained in the Margulis tube created by filling T1 . Thus the two unknotting tunnels
�n

0
and �n

1
are distinct, and account for the only two genus-2 Heegaard splittings of

S3XKn .

It remains to estimate the lengths of �n
0

and �n
1

. First, fill X along slope �n
0

on T0 .
Then, by Theorem 2.6(d), there is a J –bilipschitz diffeomorphism � that maps a
maximal horocusp about T1 in X to a self-tangent (hence, maximal) horocusp about
T1 in X.�0/. Applying Lemma 7.7 with error bounded by J D 1:1, we conclude that
in X.�n

0
/, the meridian �.�n

1
/ and its shortest longitude '.�n

1
/ have lengths satisfying

(7-11) `.�n
1/ > 152=1:1> 138 and 4:3

1:1
'n�2 < `.�n

1/ < 4:7 � 1:1'n�2:

Thus, by equation (7-11) and condition (A), Dehn filling X.�n
0
/ along slope �n

1
on

T1 will satisfy all the hypotheses of Theorem 3.9. Therefore, by Theorem 3.9, the
unknotting tunnel �n

1
associated to �1 will have length satisfying:

2 ln
�

4:3

1:1
'n�2

�
� 5:6< `.�n

1 / < 2 ln.4:7 � 1:1'n�2/C 4:5

2n ln.'/C 2 ln
�

4:3

1:1
'�2

�
� 5:6< `.�n

1 / < 2n ln.'/C 2 ln.4:7 � 1:1'�2/C 4:5

2n ln.'/� 4:8< `.�n
1 / < 2n ln.'/C 5:9

By the same argument, reversing the order of the fillings, the other unknotting tunnel
�n

0
of S3XKn satisfies the same estimates on length.

Appendix A: Variations on the law of cosines

The goal of this appendix is to write down versions of the law of cosines that work
for triangles with a mix of material and ideal vertices. The formulae of Lemmas A.2
and A.3 can likely be derived from the extensive tables compiled by Guo and Luo [24,
Appendix]. We prefer to begin with the law of cosines for ordinary triangles in H2 .

Lemma A.1 (Law of cosines) Let � be a triangle in H2 , with side-lengths a; b; c .
Let ˛ be the angle opposite side a. Then

(A-1) cosh aD cosh b cosh c � sinh b sinh c cos˛:

Proof See [45, Equation 2.4.9] or [17, Section VI.3.5].

When � has an ideal vertex, the natural analogue of an angle ˛ is the length of a
horocycle truncating this ideal vertex. As a result, the law of cosines takes the following
form. (We prove Lemma A.2 for isosceles triangles, but the general case is not much
harder.)
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H

r.˛/a

p

v0v

w.˛/

r.˛/

˛ sinh.r.˛//

Figure 16: Lengths on 1=3–ideal triangle

Lemma A.2 Let � be a 1=3 ideal triangle in H2 . Let H be a horoball truncating the
ideal vertex of �, and suppose that the two material vertices v; v0 are equidistant from
H . Let a denote the side-length opposite the ideal vertex, let b denote the distance
from H to v or v0 , and let p denote the length of the horocyclical segment @H \�.
Then,

(A-2) 2 sinh.a=2/D peb:

Proof First, observe that the quantity peb on the right-hand side of equation (A-2) is
independent of the choice of horoball H . This is because increasing the size of H by
hyperbolic distance d will increase the horocycle p by a factor of ed while subtracting
d from the side-length b . Thus the right-hand side of (A-2) remains unchanged. As
a result, no generality is lost in assuming that b D 0, or equivalently that vertices
v; v0 2 @H .

For every angle ˛ 2 .0; �/, let �˛ be an isosceles triangle in H2 that has vertices
at v and v0 , and a third vertex w.˛/ with angle ˛ . Then the points v and v0 lie on
the same circle centered at w.˛/, whose radius we denote by r.˛/. The length of the
circle arc from v to v0 is ˛ sinh r.˛/. See Figure 16.

By the law of cosines (A-1), the side-length a of �˛ satisfies

(A-3) cosh aD cosh2 r.˛/� sinh2 r.˛/ cos˛

D 1C sinh2 r.˛/.1� cos˛/

D 1C
�
˛ sinh r.˛/

�2�1�cos˛
˛2

�
D 1C

�
lim
˛!0

˛ sinh r.˛/
�2� lim

˛!0

1�cos˛
˛2

�
D 1Cp2

�
1
2
:
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The last equality holds because as ˛! 0, the triangle �˛ converges to �, and the
circle of radius r.˛/ converges to the horocycle @H through v and v0 . Thus the circle
arc of length ˛ sinh r.˛/ converges to the horocyclical segment of length p . Now,
solving equation (A-3) for p and recalling that b D 0 produces (A-2), as desired.

For 2=3 ideal triangles, we have the following version of the law of cosines.

Lemma A.3 Let � be a 2=3 ideal triangle in H2 . Suppose that the two sides of �
meeting at the material vertex v are labeled � and �0 , and the angle at v is ˛ . Suppose
the third side of � is labeled g . Choose horoball neighborhoods H and H 0 about the
two ideal vertices. Then, relative to the horoballs H and H 0 ,

(A-4) `.g/D `.�/C `.�0/C ln
�

1�cos˛
2

�
:

Proof As in the last proof, we begin by observing that the quantity

(A-5) `.g/� .`.�/C `.�0//

is independent of the choice of horoball neighborhoods. This is because expanding
horoball H will decrease both `.g/ and `.�/ by the same amount. Similarly, adjusting
the size of H 0 will affect `.g/ and `.�0/ by the same amount. Thus, no generality
is lost in assuming that `.�/D `.�0/. Given this assumption, we will show that the
quantity (A-5) is equal to ln.1� cos˛/=2.

w.r/

H 0

w0.r/

h.r/

�0

v

�

g

H

Figure 17: The setup of Lemma A.3

For each r > 0, let w.r/ be the point on � that is distance r from v , and let w0.r/ be
the corresponding point on �0 . See Figure 17. By Lemma A.1, the distance between
w.r/ and w0.r/ is

h.r/D cosh�1 f .r/; where f .r/D cosh2 r � sinh2 r cos˛:
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Now, as r !1, the geodesic between w.r/ and w0.r/ approaches g . In particular,
this geodesic fellow-travels � and �0 for a greater and greater portion of its length.
Thus h.r/�2r becomes a better and better approximation to the quantity `.g/�2`.�/.
Therefore,

`.g/� 2`.�/D lim
r!1

h.r/� 2r

D lim
r!1

cosh�1.f .r//� 2r

D lim
r!1

ln
�
f .r/C

q
f .r/2� 1

�
� 2r

D lim
r!1

ln.2f .r//� 2r

D lim
r!1

ln.2 cosh2 r � 2 sinh2 r cos˛/� 2r

D lim
r!1

ln
�

e2r

2
�

e2r

2
cos˛

�
� 2r

D lim
r!1

2r C ln
�

1�cos˛
2

�
� 2r

D ln
�

1�cos˛
2

�
:

References
[1] C Adams, Unknotting tunnels in hyperbolic 3–manifolds, Math. Ann. 302 (1995)

177–195 MR1329452

[2] C C Adams, Waist size for cusps in hyperbolic 3–manifolds, Topology 41 (2002)
257–270 MR1876890

[3] C C Adams, Waist size for cusps in hyperbolic 3–manifolds, II, preprint available from
the author (2002)

[4] C C Adams, A W Reid, Unknotting tunnels in two-bridge knot and link complements,
Comment. Math. Helv. 71 (1996) 617–627 MR1420513

[5] H Akiyoshi, Finiteness of polyhedral decompositions of cusped hyperbolic manifolds
obtained by the Epstein–Penner’s method, Proc. Amer. Math. Soc. 129 (2001) 2431–
2439 MR1823928

[6] H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Punctured torus groups and 2–
bridge knot groups, I, Lecture Notes in Mathematics 1909, Springer, Berlin (2007)
MR2330319

[7] D Bachman, Normalizing Heegaard–Scharlemann–Thompson splittings arXiv:
math/0309049

Geometry & Topology, Volume 17 (2013)

http://dx.doi.org/10.1007/BF01444492
http://www.ams.org/mathscinet-getitem?mr=1329452
http://dx.doi.org/10.1016/S0040-9383(00)00034-3
http://www.ams.org/mathscinet-getitem?mr=1876890
http://dx.doi.org/10.1007/BF02566439
http://www.ams.org/mathscinet-getitem?mr=1420513
http://dx.doi.org/10.1090/S0002-9939-00-05829-9
http://dx.doi.org/10.1090/S0002-9939-00-05829-9
http://www.ams.org/mathscinet-getitem?mr=1823928
http://www.ams.org/mathscinet-getitem?mr=2330319
http://arxiv.org/abs/math/0309049
http://arxiv.org/abs/math/0309049


1874 Daryl Cooper, David Futer and Jessica S Purcell

[8] R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer,
Berlin (1992) MR1219310

[9] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996)
809–833 MR1396779

[10] S A Bleiler, Y Moriah, Heegaard splittings and branched coverings of B3 , Math. Ann.
281 (1988) 531–543 MR958258

[11] J F Brock, K W Bromberg, On the density of geometrically finite Kleinian groups,
Acta Math. 192 (2004) 33–93 MR2079598

[12] B A Burton, Regina: normal surface and 3–manifold topology software Available at
http://regina.sourceforge.net/

[13] D Cooper, M Lackenby, J S Purcell, The length of unknotting tunnels, Algebr. Geom.
Topol. 10 (2010) 637–661 MR2606795

[14] M Culler, N M Dunfield, J R Weeks, SnapPy, a computer program for studying the
geometry and topology of 3–manifolds Available at http://snappy.computop.org

[15] M Culler, P B Shalen, Margulis numbers for Haken manifolds, Israel J. Math. 190
(2012) 445–475 MR2956250

[16] N M Dunfield, D P Thurston, A random tunnel number one 3-manifold does not fiber
over the circle, Geom. Topol. 10 (2006) 2431–2499 MR2284062

[17] W Fenchel, Elementary geometry in hyperbolic space, de Gruyter Studies in Mathe-
matics 11, Walter de Gruyter & Co., Berlin (1989) MR1004006

[18] D Futer, Involutions of knots that fix unknotting tunnels, J. Knot Theory Ramifications
16 (2007) 741–748 MR2341313

[19] D Futer, E Kalfagianni, J S Purcell, Dehn filling, volume, and the Jones polynomial,
J. Differential Geom. 78 (2008) 429–464 MR2396249

[20] D Futer, J S Purcell, Explicit Dehn filling and Heegaard splittings, Comm. Anal.
Geom. 21 (2013) 625–650

[21] F Guéritaud, Géométrie hyperbolique effective et triangulations idéales canoniques
en dimension trois, PhD thesis, Université de Paris–XI (Orsay) (2006)

[22] F Guéritaud, On canonical triangulations of once-punctured torus bundles and two-
bridge link complements, Geom. Topol. 10 (2006) 1239–1284 MR2255497 With an
appendix by David Futer

[23] F Guéritaud, S Schleimer, Canonical triangulations of Dehn fillings, Geom. Topol.
14 (2010) 193–242 MR2578304

[24] R Guo, F Luo, Rigidity of polyhedral surfaces, II, Geom. Topol. 13 (2009) 1265–1312
MR2496046

[25] J Hass, Genus two Heegaard splittings, Proc. Amer. Math. Soc. 114 (1992) 565–570
MR1070519

Geometry & Topology, Volume 17 (2013)

http://dx.doi.org/10.1007/978-3-642-58158-8
http://www.ams.org/mathscinet-getitem?mr=1219310
http://dx.doi.org/10.1016/0040-9383(95)00040-2
http://www.ams.org/mathscinet-getitem?mr=1396779
http://dx.doi.org/10.1007/BF01456837
http://www.ams.org/mathscinet-getitem?mr=958258
http://dx.doi.org/10.1007/BF02441085
http://www.ams.org/mathscinet-getitem?mr=2079598
http://regina.sourceforge.net/
http://regina.sourceforge.net/
http://dx.doi.org/10.2140/agt.2010.10.637
http://www.ams.org/mathscinet-getitem?mr=2606795
http://snappy.computop.org
http://dx.doi.org/10.1007/s11856-011-0189-z
http://www.ams.org/mathscinet-getitem?mr=2956250
http://dx.doi.org/10.2140/gt.2006.10.2431
http://dx.doi.org/10.2140/gt.2006.10.2431
http://www.ams.org/mathscinet-getitem?mr=2284062
http://dx.doi.org/10.1515/9783110849455
http://www.ams.org/mathscinet-getitem?mr=1004006
http://dx.doi.org/10.1142/S0218216507005506
http://www.ams.org/mathscinet-getitem?mr=2341313
http://projecteuclid.org/euclid.jdg/1207834551
http://www.ams.org/mathscinet-getitem?mr=2396249
http://dx.doi.org/10.2140/gt.2006.10.1239
http://dx.doi.org/10.2140/gt.2006.10.1239
http://www.ams.org/mathscinet-getitem?mr=2255497
http://dx.doi.org/10.2140/gt.2010.14.193
http://www.ams.org/mathscinet-getitem?mr=2578304
http://dx.doi.org/10.2140/gt.2009.13.1265
http://www.ams.org/mathscinet-getitem?mr=2496046
http://dx.doi.org/10.2307/2159682
http://www.ams.org/mathscinet-getitem?mr=1070519


Dehn filling and the geometry of unknotting tunnels 1875

[26] D J Heath, H-J Song, Unknotting tunnels for P .�2; 3; 7/ , J. Knot Theory Ramifica-
tions 14 (2005) 1077–1085 MR2196648

[27] C D Hodgson, S P Kerckhoff, Universal bounds for hyperbolic Dehn surgery, Ann. of
Math. 162 (2005) 367–421 MR2178964

[28] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243–282
MR1756996

[29] T Li, Heegaard surfaces and measured laminations, I: The Waldhausen conjecture,
Invent. Math. 167 (2007) 135–177 MR2264807

[30] M Lustig, Y Moriah, Are large distance Heegaard splittings generic? arXiv:
1002.4292

[31] A D Magid, Deformation spaces of Kleinian surface groups are not locally connected,
Geom. Topol. 16 (2012) 1247–1320 MR2967052

[32] J Maher, Random Heegaard splittings, J. Topol. 3 (2010) 997–1025 MR2746344

[33] R Meyerhoff, A lower bound for the volume of hyperbolic 3–manifolds, Canad. J.
Math. 39 (1987) 1038–1056 MR918586

[34] Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3-manifolds,
Comm. Anal. Geom. 5 (1997) 375–412 MR1487722

[35] H Moser, Proving a manifold to be hyperbolic once it has been approximated to be so,
Algebr. Geom. Topol. 9 (2009) 103–133 MR2471132

[36] W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: “Topology ’90”,
(B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ.
Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 273–310 MR1184416

[37] Y Rieck, E Sedgwick, Persistence of Heegaard structures under Dehn filling, Topology
Appl. 109 (2001) 41–53 MR1804562

[38] J H Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision prob-
lems for 3–dimensional manifolds, from: “Geometric topology”, (W H Kazez, editor),
AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1–20 MR1470718

[39] M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link com-
plements, Japan. J. Math. 21 (1995) 393–439 MR1364387

[40] M Scharlemann, Tunnel number one knots satisfy the Poenaru conjecture, Topology
Appl. 18 (1984) 235–258 MR769294

[41] M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom.
Topol. 10 (2006) 593–617 MR2224466

[42] S Schleimer, Sphere recognition lies in NP, from: “Low-dimensional and symplectic
topology”, (M Usher, editor), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011)
183–213

Geometry & Topology, Volume 17 (2013)

http://dx.doi.org/10.1142/S0218216505004238
http://www.ams.org/mathscinet-getitem?mr=2196648
http://dx.doi.org/10.4007/annals.2005.162.367
http://www.ams.org/mathscinet-getitem?mr=2178964
http://dx.doi.org/10.1007/s002220000047
http://www.ams.org/mathscinet-getitem?mr=1756996
http://dx.doi.org/10.1007/s00222-006-0009-y
http://www.ams.org/mathscinet-getitem?mr=2264807
http://arxiv.org/abs/1002.4292
http://arxiv.org/abs/1002.4292
http://dx.doi.org/10.2140/gt.2012.16.1247
http://www.ams.org/mathscinet-getitem?mr=2967052
http://dx.doi.org/10.1112/jtopol/jtq031
http://www.ams.org/mathscinet-getitem?mr=2746344
http://dx.doi.org/10.4153/CJM-1987-053-6
http://www.ams.org/mathscinet-getitem?mr=918586
http://www.ams.org/mathscinet-getitem?mr=1487722
http://dx.doi.org/10.2140/agt.2009.9.103
http://www.ams.org/mathscinet-getitem?mr=2471132
http://www.ams.org/mathscinet-getitem?mr=1184416
http://dx.doi.org/10.1016/S0166-8641(99)00147-9
http://www.ams.org/mathscinet-getitem?mr=1804562
http://www.ams.org/mathscinet-getitem?mr=1470718
http://www.ams.org/mathscinet-getitem?mr=1364387
http://dx.doi.org/10.1016/0166-8641(84)90013-0
http://www.ams.org/mathscinet-getitem?mr=769294
http://dx.doi.org/10.2140/gt.2006.10.593
http://www.ams.org/mathscinet-getitem?mr=2224466


1876 Daryl Cooper, David Futer and Jessica S Purcell

[43] P B Shalen, A generic Margulis number for hyperbolic 3–manifolds, from: “Topology
and geometry in dimension three”, (W Li, L Bartolini, J Johnson, F Luo, R Myers,
J H Rubinstein, editors), Contemp. Math. 560, Amer. Math. Soc. (2011) 103–109
MR2866926

[44] M Stocking, Almost normal surfaces in 3–manifolds, Trans. Amer. Math. Soc. 352
(2000) 171–207 MR1491877

[45] W P Thurston, Three-dimensional geometry and topology, Vol. 1, Princeton Mathe-
matical Series 35, Princeton Univ. Press (1997) MR1435975

[46] J L Tollefson, Involutions of sufficiently large 3–manifolds, Topology 20 (1981) 323–
352 MR617370

[47] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math.
87 (1968) 56–88 MR0224099

Department of Mathematics, University of California, Santa Barbara
Santa Barbara, CA 93106, USA

Department of Mathematics, Temple University
Philadelphia, PA 19147, USA

Department of Mathematics, Brigham Young University
Provo, UT 84602-6539, USA

cooper@math.ucsb.edu, dfuter@temple.edu, jpurcell@math.byu.edu

http://www.math.ucsb.edu/~cooper/, http://math.temple.edu/~dfuter,
http://www.math.byu.edu/~jpurcell/

Proposed: Walter Neumann Received: 13 August 2012
Seconded: Danny Calegari, Colin Rourke Accepted: 8 March 2013

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1090/conm/560/11094
http://www.ams.org/mathscinet-getitem?mr=2866926
http://dx.doi.org/10.1090/S0002-9947-99-02296-5
http://www.ams.org/mathscinet-getitem?mr=1491877
http://www.ams.org/mathscinet-getitem?mr=1435975
http://dx.doi.org/10.1016/0040-9383(81)90018-5
http://www.ams.org/mathscinet-getitem?mr=617370
http://dx.doi.org/10.2307/1970594
http://www.ams.org/mathscinet-getitem?mr=0224099
mailto:cooper@math.ucsb.edu
mailto:dfuter@temple.edu
mailto:jpurcell@math.byu.edu
http://www.math.ucsb.edu/~cooper/
http://math.temple.edu/~dfuter
http://www.math.byu.edu/~jpurcell/
http://msp.org
http://msp.org

	1. Introduction
	1.1. Generic Dehn fillings and generic unknotting tunnels
	1.2. Tunnels isotopic to geodesics
	1.3. The length of unknotting tunnels
	1.4. Canonical geodesics
	1.5. Knots with long tunnels in S3
	1.6. Organization of the paper
	Acknowledgements

	2. Geometric setup
	2.1. Heegaard splittings under Dehn filling
	2.2. Geometric estimates
	2.3. Geometric estimates and core tunnels

	3. The length of unknotting tunnels
	3.1. Length and waist size
	3.2. Estimating a few related quantities
	3.3. The triangle of g_

	4. Geodesic unknotting tunnels
	4.1. Embedded collars about geodesics
	4.2. Embedded triangles in X(mu)
	4.3. Completing the proof

	5. Canonical and non-canonical geodesics
	6. Knots with long tunnels in S3
	7. A concrete example
	7.1. The manifold X and its Heegaard splittings
	7.2. Fibonacci slopes
	7.3. Completing the argument

	Appendix A. Variations on the law of cosines
	References

