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Legendrian and transverse cables of positive torus knots

JOHN B ETNYRE

DOUGLAS J LAFOUNTAIN

BÜLENT TOSUN

We classify Legendrian and transverse knots in the knot types obtained from positive
torus knots by cabling. This classification allows us to demonstrate several new
phenomena. Specifically, we show there are knot types that have nondestabilizable
Legendrian representatives whose Thurston–Bennequin invariant is arbitrarily far
from maximal. We also exhibit Legendrian knots requiring arbitrarily many sta-
bilizations before they become Legendrian isotopic. Similar new phenomena are
observed for transverse knots. To achieve these results we define and study “partially
thickenable” tori, which allow us to completely classify solid tori representing positive
torus knots.

53D10, 57R17; 57M50

1 Introduction

An .r; s/–curve on the boundary of a solid torus refers to the curve sŒ��C r Œ��, where
�;� is the longitude-meridian basis for the homology of the torus, and we denote this
by the fraction s=r . The .r; s/–cable of a knot type K , denoted K.r;s/ , is the knot
type obtained by taking the .r; s/–curve on the boundary of a tubular neighborhood
of a representative of K . Let K be a positive .p; q/–torus knot, where we may
assume q > p > 1 and gcd .p; q/ D 1 and let K.r;s/ be its .r; s/–cable, also with
gcd .r; s/ D 1. This paper concerns the classification of Legendrian and transverse
knots representing K.r;s/ and solid tori representing K . Though the proofs of our
classification results are heavily dependent on the ambient contact manifold being
.S3; �std/, all the Legendrian and transversal classification results hold in any tight
contact manifold, as can be seen by consulting Etnyre and Honda [8].

Studying Legendrian and transverse knots in cabled knot types has been very fruitful.
For example, Baker, the first author and Van Horn-Morris [1] used cabling to better
understand open book decompositions of contact structures; in particular, leading to
nonpositive monodromy maps supporting Stein fillable contact structures, monoids in
the mapping class group associated to contact geometry and procedures to construct
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open books on manifolds after allowable transverse surgery (from an open book for
the original contact manifold). Moreover, the first classification of a nontransversely
simple knot type was done by the first author and Honda [9] for the .2; 3/–cable of the
.2; 3/–torus knot. In that paper it was also shown that studying solid tori with convex
boundary that represent a given knot type (that is, their core curves are in a given
knot type) is key to understanding cables; such an analysis for solid tori representing
negative torus knots yielded simple Legendrian and transverse classifications for cables
of negative torus knots. Tori representing iterated cables of torus knots were further
studied by the second author in [13; 14] as well as by the third author in [17]. Building
on these works we completely classify embeddings of solid tori representing positive
torus knots and use this to give a complete classification of Legendrian and transverse
knots in the knot types of cables of positive torus knots.

Before discussing the technical classification results we state qualitative versions that
demonstrate new phenomena in the geography of Legendrian knots. We begin with
some notation. Given a topological knot type K and integers t and r we denote
by L.K/ the set of Legendrian knots (up to Legendrian isotopy) topologically isotopic
to K and by

L.r;t/.K/D fL 2 L.K/ W tb.L/D t and r.L/D rg:

We similarly denote the set of transverse knots isotopic to K by T .K/ and the ones
having self-linking number s by Ts.K/.

We first consider cables of the right handed trefoil, that is, the .2; 3/–torus knot.

Theorem 1.1 Let K be the positive trefoil knot in S3 . The knot K.r;s/ formed by
.r; s/–cabling K is Legendrian simple if and only if s=r 62 .1;1/. Furthermore, given
positive integers k , m, and n, where n > 1 and gcd .k;m/D 1, there exists a slope
s=r 2 .1;1/ such that L.u;t/.K.r;s// contains n Legendrian knots for some pair of
integers .u; t/ with t D tb.K.r;s//�m; moreover, one of these does not destabilize, and
they remain distinct when stabilized fewer than k times (and there are k stabilizations
that will make them isotopic).

Remark 1.2 This theorem gives the first example of a knot type with nondestabilizable
Legendrian knots with Thurston–Bennequin invariant arbitrarily far from the maximal
Thurston–Bennequin invariant. We note that Epstein, Fuchs and Meyer [5] showed
there were prime knot types, in particular some twist knots, that have arbitrarily many
Legendrian knots with fixed classical invariants. The first author, Ng and Vértesi [10]
classified Legendrian twist knots, giving the first classification of Legendrian knots in a
prime knot type having arbitrarily many Legendrian knots with fixed classical invariants.
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The above theorem gives only the second family of prime knots known to have this
property. We also observe that this theorem gives the first set of Legendrian knots in a
prime knot type with the same invariants that requires arbitrarily many stabilizations
before becoming Legendrian isotopic.

Theorem 1.3 Let K be the positive trefoil knot in S3 . The knot K.r;s/ formed by
.r; s/–cabling K is transversely simple if and only if s=r 62 .1;1/. Furthermore,
given positive integers k , m, and n, where n > 2 and gcd .k;m/ D 1, let p D

k.n� 1/Cm.n� 2/. Then there is some s=r 2 .1;1/ such that T .K.r;s// contains
.n � 1/ distinct transverse knots with sl D sl.K.r;s// � 2p , of which .n � 2/ are
nondestabilizable, and such that there is another nondestabilizable knot with sl D
sl.K.r;s//�2.pCm/. Moreover, these nondestabilizable knots must be stabilized until
their self-linking number is sl.K.r;s//�2.pCmCk/ before they become transversely
isotopic.

Remark 1.4 Ozsváth and Stipsicz [16] showed there are prime knot types, specifically
certain twist knots, that have arbitrarily many transverse knots with the same self-linking
number. The first author, Ng and Vértesi [10] classified transverse knots in these knot
types. In addition, Chongchitmate and Ng [2] gave examples of prime knot types that
contain transverse knots that do not destabilize but have self-linking number arbitrarily
far from maximal. The above theorem also gives examples demonstrating both these
phenomena but, in addition, demonstrates two new phenomena concerning transverse
knots that were not previously known. Specifically it gives the first example of knot
types that have transverse knots with the same self-linking number that require arbitrarily
many stabilizations before they become transversely isotopic, and the theorem also gives
the first knot type where there are nondestabilizable knots with distinct nonmaximal
self-linking numbers.

With all the interesting and complicated behavior exhibited by cables of the right handed
trefoil knot, one would expect to see behavior at least as complicated for cables of other
positive torus knots. Surprisingly, cables of such knots turn out to be relatively simple.

Theorem 1.5 Let K be a positive .p; q/–torus knot with .p; q/ 6D .2; 3/. Then for
any rational number s=r and any .u; t/ with tCu odd, there are at most 3 Legendrian
knots in L.u;t/.K.r;s// and at most 2 for all but one pair .u; t/.

Theorem 1.6 Let K be a positive .p; q/–torus knot with .p; q/ 6D .2; 3/. Then for
any rational number s=r there are at most two transverse knots isotopic to the .r; s/–
cable of K with the same self-linking number. However, for any positive integers n
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and m with gcd .m; n/ D 1, there is a rational number s=r > 0 for which there is a
nondestabilizable transverse knot with self-linking number at most sl.K.r;s//� 2n, and
it must be stabilized exactly m times to become isotopic to the destabilizable transverse
knot with the same self-linking number.

As indicated above, the key to proving these classification results is classifying solid
tori with convex boundary realizing positive torus knots. This classification, discussed
below, is the first complete such classification and exhibits features not seen before,
such as the existence of partially thickenable tori (see Section 1.2).

In the next two subsections we state the precise classification theorems that lead to
the above qualitative results. In Section 1.1 we state knot classification theorems for
cables; in Section 1.2 we state classification theorems for embeddings of solid tori.

1.1 Classification results for cable knots

We begin with cables of the right handed trefoil knot.

Theorem 1.7 Let K be the .2; 3/–torus knot. Then the .r; s/–cable K.r;s/ of K is
Legendrian simple if and only if s=r 62 .1;1/, and the classification of Legendrian
knots in the knot type K.r;s/ is given as follows.

(1) If s=r 2 .0; 1� then there is a unique Legendrian knot L 2 L.K.r;s// with
Thurston–Bennequin invariant tb.L/D rsCs�r and rotation number r.L/D 0.
All others are stabilizations of L.

(2) If s=r < 0, then the maximal Thurston–Bennequin invariant for a Legendrian
knot in L.K.r;s// is rs and the rotation numbers realized by Legendrian knots
with this Thurston–Bennequin invariant are

f˙.r C s.nC k// j k D .1C n/; .1C n/� 2; : : : ;�.1C n/g;

where n is the integer that satisfies

�n� 1<
r

s
< �n:

All other Legendrian knots L 2 L.K.r;s// are stabilizations of these. Two
Legendrian knots with the same tb and r are Legendrian isotopic.

(3) Suppose s=r 2 Œn; nC 1/ for a positive integer n; then K.r;s/ is not Legendrian
simple and has the following classification (see also Figure 1).
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(a) The maximal Thurston–Bennequin number is tb.K.r;s//D rs .
(b) There are n Legendrian knots L

j
˙
2 L.K.r;s//; j D 1; : : : ; n, with

tb.Lj
˙
/D rs and r.Lj

˙
/D˙.s� r/:

(c) If s=r 6D n then there are two Legendrian knots K˙ 2 L.K.r;s// that do not
destabilize but have

tb.K˙/D rs� jr.nC 1/� sj and r.K˙/D˙.s� r Cjr.nC 1/� sj/D˙rn:

(d) All Legendrian knots in L.K.r;s// destabilize to one of the L
j
˙

or K˙ .
(e) Let c D r � 1. For any y 2 N [ f0g, x � c and j > 1, the Legen-

drian Sx
˙

S
y
�.L

j
˙
/ is not isotopic to a stabilization of any of the other Li

˙
’s

the L
j
� , K˙ or K� .

(f) Let c0 D r � jr.nC 1/� sj � 1 D s � nr � 1. For any y 2 N [ f0g and
x � c0 the Legendrian Sx

˙
S

y
�.K˙/ is not isotopic to a stabilization of any

of the L
j
˙

’s or K� .
(g) Any two stabilizations of the L

j
˙

or K˙ , except those mentioned in item (e)
and (f), are Legendrian isotopic if they have the same tb and r.

n n

nC 1 2n� 1 nC 1

1 2n 2n 1

n 2nC 1 n

nC 1 nC 1

1

Figure 1: The image of L.K.r;s// ! Z2W L 7! .r.L/; tb.L// for nonsim-
ple cablings of the positive trefoil with s=r 2 .n; nC 1/ . The number of
Legendrian knots realizing each point in Z2 whose coordinates sum to an
odd number is indicated in the figure. The exact width of each region is
determined by Theorem 1.7.

The transverse classification is now an immediate corollary.
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Theorem 1.8 Let K be the .2; 3/–torus knot. If s=r 62 .1;1/ then K.r;s/ is trans-
versely simple and all transverse knots are stabilizations of the one with maximal
self-linking number rsC s� r .

If s=r > 1 and s=r 2 Œn; nC 1/ for a positive integer n then K.r;s/ is not transversely
simple and has the following classification.

(1) The maximal self-linking number is rsC s� r , and there is a unique transverse
knot in T .K.r;s// with this self-linking number.

(2) There are n� 1 distinct transverse knots in T .K.r;s// that do not destabilize and
have self-linking number rsC r � s .

(3) If s=r 6D n then there is a unique transverse knot in T .K.r;s// that does not
destabilize and has self-linking number rsC r � s� 2j.nC 1/r � sj.

(4) All other transverse knots in T .K.r;s// destabilize to one of the ones listed above.

(5) None of the transverse knots listed above become transversely isotopic until
they have been stabilized to have self-linking number rs � s � r . There is a
unique transverse knot in T .K.r;s// with self-linking number less than or equal
to rs� s� r .

For the classification of cables of other positive torus knots we need some notation.
Given a rational number u D s=r > 0 let ua be the largest rational number with
an edge in the Farey tessellation to u. See Figure 2. (The a superscript stands for
“anticlockwise”, as ua is anticlockwise of u in the Farey tessellation.) Similarly the
smallest rational number with an edge in the Farey tessellation to u will be denoted
by uc . A formula for computing these numbers will be given in Section 2.1. We will
refer to the interval .uc ;ua/ as the interval of influence for u.

u

ua

uc

Figure 2: Given a rational number u , the numbers ua and uc are determined
by the above figure in the Farey tessellation.

Given a positive .p; q/–torus knot and k a positive integer, define

ek D
k

pq�p� q
:
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We will see in Section 1.2 that such ek represent boundary slopes of nonthickenable
solid tori, and that the half-intervals of influence .ek ; e

a
k
/ will represent boundary

slopes of partially thickenable solid tori when gcd .k;pq�p� q/D 1. We will refer
to the ek as exceptional slopes. If we think of the fractions e�

k
as representing curves on

a torus, we denote the homological intersection of .r; s/ curves with the e�
k

curves by

s

r
� e�k :

We can now state the precise classification theorems for cables of general positive
.p; q/–torus knots.

Theorem 1.9 Let K be a .p; q/–torus knot with .p; q/ 6D .2; 3/. Let

I D fn 2 Z W n> 1 and gcd.n;pq�p� q/D 1g;

J D
[
n2I

Jn;

where Jn D .e
c
n; e

a
n/ is the interval of influence for the exceptional slope en defined

above. The Jn are all disjoint.

The classification of Legendrian knots in the knot type K.r;s/ is then given as follows.

(1) If s=r 62 J then K.r;s/ is Legendrian simple. Moreover, in this case we have the
following classification.

(a) If s=r 2 .0; 1=.pq �p � q/�, then there is a unique Legendrian knot L 2

L.K.r;s// with Thurston–Bennequin invariant tb.L/D rsCs.pq�p�q/�r

and rotation number r.L/D 0. All others are stabilizations of L.
(b) If s=r > 1=.pq�p�q/ or s=r < 0, then the maximal Thurston–Bennequin

invariant for a Legendrian knot in L.K.r;s// is rs and the rotation numbers
realized by Legendrian knots with this Thurston–Bennequin invariant are

f˙.rCs.nCk// j kD .pq�p�q�n/; .pq�p�q�n/�2; : : : ;�.pq�p�q�n/g;

where n is the least integer bigger than r=s . All other Legendrian knots
L 2 L.K.r;s// are stabilizations of these. Two Legendrian knots with the
same tb and r are Legendrian isotopic.

(2) If s=r 2 Jn then there is some k � 0 such that 1=.k � 1/ > s=r > 1=k and
K.r;s/ is not Legendrian simple. The classification of Legendrian knots in K.r;s/
is as follows.

Geometry & Topology, Volume 16 (2012)



1646 John B Etnyre, Douglas J LaFountain and Bülent Tosun

(a) The maximal Thurston–Bennequin invariant of K.r;s/ is rs .
(b) For each integer i in the set

f˙.rCs.�kCl// j l D .pq�p�q�k/; .pq�p�q�k/�2; : : : ;�.pq�p�q�k/g;

there is a Legendrian Li 2 L.K.r;s// with

tb.Li/D rs and r.Li/D i:

(c) There are two Legendrian knots K˙ 2 L.K.r;s// satisfying

tb.K˙/D rs and r.K˙/D˙.r � s.pq�p� q//

if s=r 2 Œen; e
a
n/; however, if s=r 2 .ec

n; en/ then

tb.K˙/D rs�
ˇ̌̌ s
r
� en

ˇ̌̌
and r.K˙/D˙r.n� 1/

and K˙ is not destabilizable.
(d) All Legendrian knots in L.K.r;s// destabilize to one of the Li or K˙ .
(e) Let

c D

(
..s=r/ � ea

n/� 1 s=r 2 Œen; e
a
n/;

..s=r/ � ea
n � .s=r/ � en/� 1 s=r 2 .ec

n; en/:

For any y 2N [f0g and x � c the Legendrian Sx
˙

S
y
�.K˙/ is not isotopic

to a stabilization of any of the Li or K� .
(f) Any two stabilizations of the nondestabilizable Thurston–Bennequin invari-

ant Legendrian knots in L.K.r;s//, except those mentioned in item (e), are
Legendrian isotopic if they have the same tb and r.

From this theorem we can easily derive the transverse classification.

Theorem 1.10 Let K be a .p; q/–torus knot with .p; q/ 6D .2; 3/. Using notation
from Theorem 1.9 we have the following classification of transverse knots in T .K.r;s//.

(1) If s=r 62 Jn for any n 2 I then K.r;s/ is transversely simple and all transverse
knots in this knot type are stabilizations of the one with self-linking number
rs� r C s.pq�p� q/.

(2) If s=r 2 Jn for some n 2 I then K.r;s/ is not transversely simple. There is a
unique transverse knot T in this knot type with maximal self-linking number,
which is rs�rCs.pq�p�q/. There is also a unique nondestabilizable knot T 0

in this knot type and it has self-linking number rsC r �s.pq�p�q/. All other
transverse knots in T .K.r;s// destabilize to either T or T 0 and the stabilizations
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of T and T 0 stay nonisotopic until they are stabilized to the point that their
self-linking numbers are

rsC r � s.pq�p� q/� 2
� s

r
� ea

n

�
in the case of s=r 2 Œen; e

a
n/, and

rsC r � s.pq�p� q/� 2
� s

r
� ea

n �
s

r
� en

�
in the case of s=r 2 .ec

n; en/.

We now turn from classification results for cables of positive torus knots, to classification
results for embeddings of solid tori representing the positive torus knots themselves.

1.2 Classification results for solid tori

Let S be a solid torus in a manifold M . We say S is in the knot type K , or represents K ,
if the core curve of S is in the knot type K .

We say a solid torus S with convex boundary in a contact manifold .M; �/ thickens if
there is a solid torus S 0 that contains S , has the same core curve as S (in particular
S 0�S is a thickened torus) and such that S 0 has convex boundary with dividing slope
different from S . The existence of nonthickenable tori was first observed by the first
author and Honda [9]; the following theorem shows that nonthickenable tori exist for
all positive .p; q/–torus knots.

Theorem 1.11 Let S be a solid torus in the knot type of a positive .p; q/–torus knot.
In the standard tight contact structure �std on S3 suppose that @S is convex with two
dividing curves of slope s=r . Then S thickens unless s=r is an exceptional slope

ek D
k

pq�p� q
;

for some positive integer k , in which case it might or might not thicken.

Moreover for each positive integer k > 1 there are, up to contact isotopy, exactly two
solid tori N˙

k
with convex boundary having 2nk dividing curves of slope ek that do

not thicken, where nk D gcd.pq � p � q; k/. For k D 1 there is exactly one solid
torus N1 with convex boundary having two dividing curves of slope e1 . This solid
torus is a standard neighborhood of a Legendrian .p; q/–torus knots with maximal
Thurston–Bennequin invariant and it does not thicken.
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A key feature in the knot classification results above in Section 1.1 is a complete
understanding of not only nonthickenable tori but also partially thickenable tori, that
is tori with convex boundary that thicken, but not to a maximally thick torus in the
given knot type. The existence of such tori has not been observed before, but it is clear
that such tori will be key to future Legendrian classification results. In addition it is
likely they will be important in understanding contact surgeries. The following theorem
shows that partially thickenable tori exist for all positive .p; q/–torus knots.

Theorem 1.12 Let K be a positive .p; q/–torus knot and ek D k=.pq�p�q/ be the
exceptional slopes. Let IkD Œek ; e

a
k
/ and IDfn2Z Wn>1 and gcd.n;pq�p�q/D1g.

All solid tori below will represent the knot type K .

(1) If .p; q/D .2; 3/ then I DN �f1g and we have the following.

(a) The intervals Ik D .k;1/, so Ik � IkC1 .
(b) Any solid torus S with convex boundary thickens to N˙

k
or to N1 (that is a

neighborhood of the maximal Thurston–Bennequin invariant .2; 3/–torus
knot).

(c) Any solid torus inside N˙
k

with convex boundary having dividing slope
greater than k (that is in Ik ) does not thicken past the slope ek .

(d) Any solid torus inside N˙
k

with convex boundary having negative (or infi-
nite) dividing slope will thicken to a neighborhood of the maximal Thurston–
Bennequin invariant .2; 3/–torus knot.

(2) If .p; q/ 6D .2; 3/ then we have the following.

(a) For any k 62 I , any solid torus S inside N˙
k

with either boundary slope
different from ek , or less than 2nk dividing curves, thickens to N1 .

(b) All the Ik with k 2 I are disjoint.
(c) Any solid torus S with convex boundary having dividing slope in Ik thickens

to N˙
k

or to N1 (that is a neighborhood of the maximal Thurston–Bennequin
invariant .p; q/–torus knot).

(d) Any solid torus inside N˙
k

for some k 2 I , and with convex boundary
having dividing slope in Ik , does not thicken past the slope ek .

(e) Any solid torus inside N˙
k

with convex boundary having dividing slope
outside of Ik (that is greater than or equal to ea

k
or negative) will thicken to

a neighborhood of the maximal Thurston–Bennequin invariant .p; q/–torus
knot.

From this theorem we can classify solid tori in the knot types of positive torus knots.
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Corollary 1.13 Let K be a positive .p; q/–torus knot and ek D k=.pq�p�q/ be the
exceptional slopes. Let IkD Œek ; e

a
k
/ and IDfn2Z Wn>1 and gcd.n;pq�p�q/D1g.

(1) If .p; q/ D .2; 3/, then given a slope s > 1 there is some integer n such that
n� s < nC 1 and there are exactly 2n solid tori representing the knot type K
with convex boundary having dividing slope s and two dividing curves, only two
of which thicken to a standard neighborhood of a Legendrian knot.

(2) If .p; q/ 6D .2; 3/, then given any slope s�1=.pq�p�q/ we have the following.
(a) If there is some integer n > 0 such that 1=n < s < 1=.n� 1/ and s 62 Ik

for any k 2 I , then there are exactly 2.pq � p � q � nC 1/ solid tori
representing the knot type K with convex boundary having dividing slope s

and two dividing curves each of which thickens to a standard neighborhood
of a Legendrian knot with tbD n.

(b) If there is some integer n > 0 such that 1=n < s < 1=.n� 1/ and s 2 Ik

for any k 2 I , then there are exactly 2.pq � p � q � nC 1/C 2 solid
tori representing the knot type K with convex boundary having dividing
slope s and two dividing curves, all but two of which thicken to a standard
neighborhood of a Legendrian knot with tbD n.

(c) If there is some n>0 such that sD1=n, then there are exactly pq�p�q�nC1

solid tori representing the knot type K with convex boundary having divid-
ing slope s and two dividing curves and they each represent a standard
neighborhood of a Legendrian knot with tbD n.

(3) Given any negative slope s there is some negative integer n < 0 such that
1=.nC 1/ < s < 1=n. A solid torus with convex boundary having dividing
slope s and two dividing curves will thicken to a solid torus that is a standard
neighborhood of a tbD nC 1 Legendrian knot.

We conclude this introduction with an outline of what follows. In Section 2 we collect
needed preliminaries, including facts about continued fractions and convex surfaces,
and we outline a strategy for classifying Legendrian knots. In Section 3 we classify
embeddings of solid tori representing positive torus knots. In Section 4 we provide
classifications for all simple cables of positive torus knots, and in Sections 5 and 6 we
establish classifications for all nonsimple cables of positive torus knots.
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2 Preliminaries

In this section we first prove some important facts about continued fractions in
Section 2.1. The remaining sections recall various facts concerning the classification
of Legendrian and transverse knots from Etnyre and Honda [7]. The reader is assumed
to be familiar with the basic notions associated to convex surfaces and Legendrian and
transverse knots, but these sections are included for the convenience of the reader and
to make the paper as self-contained as possible. All this information can be found
in [7] and Honda [11].

2.1 Continued fractions, the Farey tessellation and intersection of curves
on a torus

In this section we collect various facts about continued fractions and the Farey tessella-
tion (see Figure 4) that will be needed throughout our work.

Given a rational number u> 0 we may represent it as a continued fraction

uD a0�
1

a1�
1

a2 � � � �
1

an

with a0 � 1 and the other ai > 1. We will denote this as uD Œa0I a1; : : : ; an�. If we
know that uD Œa0I a1; : : : ; an� then we define

ua
D Œa0I a1; : : : ; an�1�;

with the convention that if nD 0 then ua D1; we also define

uc
D Œa0I a1; : : : ; an� 1�:

Lemma 2.1 The number ua is the largest rational number bigger than u with an edge
to u in the Farey tessellation and uc is the smallest rational number less than u with an
edge to u in the Farey tessellation. Moreover there is an edge in the Farey tessellation
between ua and uc and u is the mediant of ua and uc , that is if ua D pa=qa and
uc D pc=qc then

uD
paCpc

qaC qc
:
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Proof Define pk=qk D Œa0I a1; : : : ; ak � and p�1D 1; q�1D 0. One may easily verify
using induction that

pkC1 D akC1pk �pk�1 and qkC1 D akC1qk � qk�1:

From this one can inductively deduce that

pkC1qk �pkqkC1 D�1:

Thus there is an edge in the Farey tessellation between u D p=q D pn=qn and
ua D pa=qa D pn�1=qn�1 . Similarly, let ck=dk D Œak I akC1; : : : ; an� and c0

k
=d 0

k
D

Œak I akC1; : : : ; an� 1� and notice that cnd 0n� dnc0n D an� .an� 1/D 1. Now we see
that

ck

dk

D ak �
1

ckC1=dkC1

D
akckC1� dkC1

ckC1

and a similar expression for c0
k
=d 0

k
and induction yield ckd 0

k
�dkc0

k
D 1. In particular,

there is an edge in the Farey tessellation between uD c0=d0 and uc D c0
0
=d 0

0
.

Finally setting c00
k
=d 00

k
D Œak I akC1; : : : ; an�1� and noting c00

n�1
d 0

n�1
� d 00

n�1
c0

n�1
D 1,

we can use the above formulas, along with analogous ones, to inductively prove that
c00

k�1
d 0

k�1
�d 00

k�1
c0

k�1
D 1. This establishes an edge in the Farey tessellation between

uc D c0
0
=d 0

0
and ua D c00

0
=d 00

0
. Since there is an edge in the Farey tessellation between

each pair of numbers in the set fu;ua;ucg the lemma is established by noticing that
the numerators (and denominators) of ua and uc are both smaller than the numerator
(and denominator) of u.

We recall that if we choose a basis for H1.T
2IZ/ then there is a one-to-one correspon-

dence between embedded essential curves on T 2 and rational numbers p=q , written
in lowest common terms. Moreover given two rational numbers p=q and r=s we
denote their homological intersection (which also happens to be the signed minimal
intersection number) between the corresponding curves on T 2 by .p=q/ � .r=s/ and it
can be computed by

p

q
�
r

s
D ps� rq:

Notice that this number is only well defined up to sign (since the orientation on the
curve corresponding to a fraction is not determined). Throughout this work we will
only be concerned with the absolute value of this number (if the exact number is ever
needed we will specify the orientations on the homology class corresponding to a
fraction).

Lemma 2.2 Fix some positive integer n and set ek D k=n for k 2 f1; 2; : : : ; g and
I D fk 2 Z W k > 1 and gcd.n; k/D 1g. If n 6D 1 then the intervals Jk D .e

c
k
; ea

k
/ for

k 2 I are all disjoint. If nD 1 then the intervals are nested JkC1 � Jk .
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If r is a positive rational number less than ec
k

or greater than ea
k

then for any s 2 Jk

we have
jr � sj �minfjr � ea

k j; jr � e
c
k jg

with equality only if s D ea
k

or ec
k

.

If r 2 .ec
k
; ek/ and s 2 .ek ; e

a
k
/, then

jr � sj> jr � ea
k j:

Proof If nD 1 then it is clear that ek D k and one easily checks that ec
k
D k�1 and

ea
k
D1. So Jk D .k � 1;1/.

If n 6D 1 then we notice that any number in .ec
k
; ek/ is a mediant of ek and ec

k
and

hence has denominator strictly bigger than n (since the denominator of ek is n), thus
ek0 cannot be in this interval for any k 0 2 I . Similarly ek0 cannot be in the interval
.ek ; e

a
k
/. Thus the intervals Jk ; i 2 I are disjoint.

For the second statement notice that r �ea
k

and r �ec
k

have the same sign and r �s will be
some nonnegative integral linear combination of r �ea

k
and r �ec

k
. For the last statement

note that r � s will be some positive integral linear combination of r � ek and r � ea
k

.

2.2 Convex surfaces and bypasses

In this section we discuss the main tools we will be using throughout the paper – convex
surfaces. We assume the reader is familiar with convex surfaces as used in [7; 11]; but,
for the convenience of the reader, we recall the fundamental facts from the theory that
we will use in this paper.

2.2.1 Convex surfaces Recall a surface † in a contact manifold .M; �/ is convex if
it has a neighborhood †�I , where ID .��; �/ is some interval, and � is I –invariant in
this neighborhood. Any closed surface can be C1–perturbed to be convex. Moreover
if L is a Legendrian knot on † for which the contact framing is nonpositive with
respect to the framing given by †, then † may be perturbed in a C 0 fashion near L,
but fixing L, and then again in a C1 fashion away from L so that † is convex.

Given a convex surface † with I –invariant neighborhood let �†�† be the multicurve
where � is tangent to the I factor. This is called the dividing set of †. If † is oriented
it is easy to see that †n� D†C[†� where � is positively transverse to the I factor
along †C and negatively transverse along †� . If L is a Legendrian curve on a † then
the framing of L given by the contact planes, relative to the framing coming from †,
is given by �1

2
.L ��/. Moreover if LD @† then the rotation number of L is given

by r.L/D �.†C/��.†�/.
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2.2.2 Convex tori A convex torus T is said to be in standard form if T can be
identified with R2=Z2 so that �T consists of 2n vertical curves (note �T will always
have an even number of curves and we can choose a parameterization to make them
vertical) and the characteristic foliations consists of 2n vertical lines of singularities
(n lines of sources and n lines of sinks) and the rest of the foliation is by nonsingular
lines of slope s . See Figure 3. The lines of singularities are called Legendrian divides

˛
ˇ

D

†

Figure 3: Standard convex tori shown on the left and a bypass shown on the
right. The thicker curves are dividing curves.

and the other curves are called ruling curves. We notice that the Giroux Flexibility
Theorem allows us to isotope any convex torus into standard form [7; 11].

2.2.3 Bypasses and tori Let † be a convex surface and ˛ a Legendrian arc in †
that intersects the dividing curves �† in 3 points p1;p2;p3 (where p1;p3 are the end
points of the arc). Then a bypass for † (along ˛ ) (see Figure 3) is a convex disk D

with Legendrian boundary such that

(1) D\†D ˛ ,

(2) tb.@D/D�1,

(3) @D D ˛[ˇ ,

(4) ˛\ˇ D fp1;p3g are corners of D and elliptic singularities of D� .

A surface † locally separates the ambient manifold. If a bypass is contained in the
(local) piece of M n† that has † as its oriented boundary then we say the bypass will
be attached to the front of † otherwise we say it is attached to the back of †.
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When a bypass is attached to a torus T then either the dividing curves do not change,
their number increases by two, or decreases by two, or the slope of the dividing curves
changes. The slope of the dividing curves can change only when there are two dividing
curves. (See [11] for more details.) If the bypass is attached to T along a ruling curve
then either the number of dividing curves decreases by two or the slope of the dividing
curves changes. To understand the change in slope we need the following. Let D be
the unit disk in R2 . Recall the Farey tessellation of D is constructed as follows. Label
the point .1; 0/ on @D by 0D 0=1 and the point .�1; 0/ with 1D 1=0. Now join
them by a geodesic. If two points p=q , p0=q0 on @D with nonnegative y –coordinate
have been labeled then label the point on @D half way between them (with nonnegative
y –coordinate) by .pCp0/=.qCq0/. Then connect this point to p=q by a geodesic and
to p0=q0 by a geodesic. Continue this until all positive fractions have been assigned to
points on @D with nonnegative y –coordinates. Now repeat this process for the points
on @D with nonpositive y –coordinate except start with 1D�1=0. See Figure 4.

01

1

2

3

�1

�2

�3

1=2

1=3

�1=2

�1=3

2=3

�2=3

3=2

�3=2

Figure 4: The Farey tessellation

The key result we need about the Farey tessellation is given in the following theorem.

Theorem 2.3 (Honda 2000 [11]) Let T be a convex torus in standard form with
j�T j D 2, dividing slope s and ruling slope r 6D s . Let D be a bypass for T attached to
the front of T along a ruling curve. Let T 0 be the torus obtained from T by attaching
the bypass D . Then j�T 0 j D 2 and the dividing slope s0 of �T 0 is determined as
follows: let Œr; s� be the arc on @D running from r counterclockwise to s , then s0 is
the point in Œr; s� closest to r with an edge to s .

If the bypass is attached to the back of T then the same algorithm works except one
uses the interval Œs; r � on @D .
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2.2.4 The Imbalance Principle As we see that bypasses are useful in changing
dividing curves on a surface we mention a standard way to try to find them called the
Imbalance Principle. Suppose that † and †0 are two disjoint convex surfaces and
A is a convex annulus whose interior is disjoint from † and †0 but its boundary is
Legendrian with one component on each surface. If j�† � @Aj> j�†0 � @Aj then there
will be a dividing curve on A that cuts a disk off of A that has part of its boundary
on †. It is now easy to use the Giroux Flexibility Theorem to show that there is a
bypass for � on A.

2.2.5 Discretization of isotopy We will frequently need to analyze what happens to
the contact geometry when we have a topological isotopy between two convex surfaces
† and †0 . This can be done by the technique of Isotopy Discretization [3] (see also [7]
for its use in studying Legendrian knots). Given an isotopy between † and †0 one
can find a sequence of convex surfaces †1 D†;†2; : : : ; †n D†

0 such that

(1) all the †i are convex,

(2) †i and †iC1 are disjoint and †iC1 is obtained from †i by a bypass attachment.

Thus if one is trying to understand how the contact geometry of M n† and M n†0

relate, one just needs to analyze how the contact geometry of the pieces of M n†i

changes under bypass attachment. In particular, many arguments can be reduced from
understanding a general isotopy to understanding an isotopy between two surfaces that
cobound a product region.

There is also a relative version of Isotopy Discretization where † and †0 are convex
surfaces with Legendrian boundary consisting of ruling curves on a convex torus. If
@†D @†0 and there is a topological isotopy of † to †0 relative to the boundary then
we can find a discrete isotopy as described above. (Note that during the discrete isotopy
the boundary of the surface is not fixed but is allowed to move among the ruling curves
on the convex torus. One could slightly rephrase item (2) in the above definition of a
discretized isotopy to keep the boundary fixed, but we find it more natural to allow the
boundary to move even though the original isotopy is relative to the boundary.)

2.3 Classifying knots in a knot type

In this section we briefly recall the standard strategy for classifying Legendrian knots
in a given knot type K as laid out in [6; 7]. We begin by recalling the “normal form”
for a neighborhood of a Legendrian or transverse knot and the relation between them.
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2.3.1 Standard neighborhoods of knots Given a Legendrian knot L, a standard
neighborhood of L is a solid torus N that has convex boundary with two dividing
curves of slope 1= tb.L/ (and of course we will usually take @N to be a convex torus
in standard form). Conversely given any such solid torus it is a standard neighborhood
of a unique Legendrian knot. Up to contactomorphism one can model a standard
neighborhood as a neighborhood N 0 of the x–axis in R3=.x 7! xC 1/Š S1 �R2

with contact structure �std D ker.dz � y dx/. Using this model we can see that
L˙ D f.x;˙�; 0/g �N 0 is a .˙/–transverse curve. The image of LC in N is called
the transverse push-off of L and L� is called the negative transverse push-off. One
may easily check that L˙ is well-defined and compute that

sl.L˙/D tb.L/� r.L/:

One may understand stabilizations and destabilizations of a Legendrian knot K in terms
of the standard neighborhood. Specifically, inside the standard neighborhood N of L,
L can be positively stabilized to SC.L/, or negatively stabilized to S�.L/. Let N˙
be a neighborhood of the stabilization of L inside N . As above we can assume that
N˙ has convex boundary in standard form. It will have dividing slope 1=.tb.L/� 1/.
Thus the region N nN˙ is diffeomorphic to T 2 � Œ0; 1� and the contact structure on it
is easily seen to be a basic slice; see [11]. There are exactly two basic slices with given
dividing curves on their boundary and as there are two types of stabilization of L we
see that the basic slice N nN˙ is determined by the type of stabilization done, and
vice versa. Moreover if N is a standard neighborhood of L then L destabilizes if the
solid torus N can be thickened to a solid torus Nd with convex boundary in standard
form with dividing slope 1=.tb.L/C 1/. Moreover the sign of the destabilization will
be determined by the basic slice Nd nN . Finally, we notice that using Theorem 2.3
we can destabilize L by finding a bypass for N attached along a ruling curve whose
slope is clockwise of 1=.tb.L/C 1/ (and anticlockwise of 0).

A neighborhood of a transverse knot T can be modeled by the solid torus Sa D

f.�; .r; �// j r �ag�S1�R2 for sufficiently small a, where .r; �/ are polar coordinates
on R2 and � is the angular coordinate on S1 , with the contact structure �cyl D

ker.d� C r2 d�/. Notice that the tori @Sb inside of Sa have linear characteristic
foliations of slope �b2 . Thus for all integers n with 1=

p
n < a we have tori Tn D

@S1=
p

n with linear characteristic foliation of slope �1=n. Let Ln be a leaf of the
characteristic foliation of Tn . Any Legendrian L Legendrian isotopic to one of the Ln

so constructed will be called a Legendrian approximation of T .

Lemma 2.4 (Etnyre–Honda 2001 [7]) If Ln is a Legendrian approximation of the
transverse knot T then .Ln/C is transversely isotopic to T . Moreover, LnC1 is
Legendrian isotopic to the negative stabilization of Ln .
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This lemma is a key ingredient in the following result from which our transverse
classification results will follow from our Legendrian classification results.

Theorem 2.5 (Epstein–Fuchs–Meyer 2001 [5]; Etnyre–Honda 2001 [7]) The classi-
fication of transverse knots up to transverse isotopy is equivalent to the classification of
Legendrian knots up to negative stabilization and Legendrian isotopy.

2.3.2 Classification strategy The classification of Legendrian knots in a given knot
type can be done in a (roughly) three step process.

Step I Identify the maximal Thurston–Bennequin invariant of K and classify Legen-
drian knots realizing this.

Step II Identify and classify the nonmaximal Thurston–Bennequin Legendrian knots
in K that do not destabilize and prove that all other knots destabilize to one of these
identified knots.

Step III Determine which stabilizations of the maximal Thurston–Bennequin invariant
knots and nondestabilizable knots are Legendrian isotopic.

As stabilization of a Legendrian knot is well defined and positive and negative stabi-
lizations commute, it is clear that these steps will yield a classification of Legendrian
knots in the knot type K .

Step II is facilitated by the observation above that bypasses attached to appropriate
ruling curves of a standard neighborhood of a Legendrian knot yield destabilizations.
Similarly, if L is a Legendrian knot contained in a convex surface † (and the framing
given to L by † is less than or equal to the framing given by a Seifert surface) and
there is a bypass for L on † then this leads to a destabilization of L. Moreover one
can find such a bypass in some cases by the Imbalance Principle discussed above.

2.3.3 Contact isotopy and contactomorphism We begin by recalling a result of
Eliashberg concerning the contactomorphism group of the standard contact structure �std

on S3 . Fix a point p in S3 and let Diff0.S
3/ be the group of orientation-preserving

diffeomorphisms of S3 that fix the plane �std.p/, and let Diff�std be the group of
diffeomorphisms of S3 that preserve �std .

Theorem 2.6 (Eliashberg 1992 [4]) The natural inclusion of

Diff�std ,! Diff0.S
3/

is a weak homotopy equivalence.
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Using this fact it is clear that if one has a contactomorphism � of .S3; �std/ that takes a
set S � S3 to S 0 � S3 , then there is a contact isotopy of .S3; �std/ that takes S to S 0 .
In particular, if one is trying to show that two embeddings of a contact structure on a
torus are contact isotopic then one merely needs to construct a contactomorphism that
takes one torus to the other. Similarly to show two Legendrian knots are Legendrian
isotopic one only needs to construct a contactomorphism that takes one knot to the other
(or takes a standard neighborhood of one of the knots to the other, that is understand
the contactomorphism type of the complement of the standard neighborhood).

2.4 Computations of tb; r and tb

In this subsection we collect various facts that are useful in computing the classical
invariants of Legendrian knots on tori.

2.4.1 Rotation numbers for curves on convex tori Let T be a convex torus in a
contact manifold .M; �/, where � has Euler class 0. Now we define an invariant of
homology classes of curves on T . Let v be any globally nonzero section of � and w
a section of �jT that is transverse to and twists (with � ) along the Legendrian ruling
curves and is tangent to the Legendrian divides. If 
 is a closed oriented curve on T

then set fT .
 / equal to the rotation of v relative w along 
 . One may check the
following properties (cf [6; 7]).

(1) The function fT is well-defined on homology classes.

(2) The function fT is linear.

(3) The function fT is unchanged if we isotope T through convex tori in standard
form.

(4) If 
 is a .r; s/–ruling curve or Legendrian divide then fT .
 /D r.
 /.

2.4.2 Legendrian knots on tori We recall two simple lemmas from [9]. The first
concerns the computation of the Thurston–Bennequin invariant for cables.

Lemma 2.7 Let K be a knot type and N a solid torus representing K whose boundary
is a standard convex torus. Suppose that L 2 L.K.p;q// is contained in @N .

(1) Suppose L.p;q/ is a Legendrian divide and slope.�@N.K//D q=p . Then

tb.L.p;q//D pq:

(2) Suppose L.p;q/ is a Legendrian ruling curve and slope.�@N.K//D q0=p0 . Then

tb.L.p;q//D pq� jpq0� qp0j:
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A simple consequence of the discussion in Section 2.4.1 yields the following computa-
tion of the rotation number for cables.

Lemma 2.8 Let K be a knot type and N a solid torus representing K whose boundary
is a standard convex torus. Suppose that L 2 L.K.p;q// is contained in @N . Then

r.L.p;q//D p � r.@D/C q � r.@†/;

where D is a convex meridional disk of N with Legendrian boundary on a contact-
isotopic copy of the convex surface @N , and † is a convex Seifert surface with Legen-
drian boundary in L.K/ which is contained in a contact-isotopic copy of @N.K/.

We end with a lemma that was established in [9, Claim 4.2]. Recall that the contact
width of a knot type K is given by

w.K/D sup
1

slope.�@S /
;

where here S ranges over all solid tori with convex boundary representing K .

Lemma 2.9 Given a knot type K , suppose .r; s/ is a pair of relatively prime integers
such that r=s <w.K/. Then the maximal Thurston–Bennequin invariant of K.r;s/ is

tb.K.r;s//D rs:

3 Solid tori in S 3

In Section 3.1 we classify nonthickenable tori in the knot types of the positive torus
knots, and in Section 3.2 we classify the partially thickenable tori. Section 3.3 discusses
Legendrian knots sitting on these tori as ruling curves and Legendrian dividing curves.

3.1 Nonthickenable tori

When considering tori N that realize the knot type of .p; q/–torus knot K , there are two
different “natural” coordinates to use. The first is the longitude-meridian coordinates
where the longitude comes from the intersection of a Seifert surface with @N . This
longitude will be called the 1–longitude, and these coordinates will be called the
C coordinates. The other coordinate system has the longitude given by the framing
coming from the Heegaard torus that K sits on in S3 . This longitude will be called the
10–longitude and these coordinates will be called the C0 coordinates. Except where
stated otherwise we will always use the more standard C coordinates.
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Lemma 3.1 Suppose that the solid torus N represents the knot type of a positive
.p; q/–torus knot K . If N has convex boundary then N will thicken unless it has
dividing slope

ek D
k

pq�p� q

for some k 2 f1; 2; : : : ; g, and 2nk dividing curves where nk D gcd.pq�p� q; k/.

Proof We begin by ignoring the contact structure and building a topological model
for the complement of N . See Figure 5. The knot K can be thought to sit on a torus T

that separates S3 into two solid tori V1 and V2 , each of which can be thought of as
a neighborhood of an unknot F1 and F2 . As N is a neighborhood of K , we can
isotope T so that it intersects N in an annulus and thus A0 D T n .T \N / is an
annulus in the complement of N with boundary on @N . Moreover, there is a small
neighborhood of A0 , which we denote N.A0/ such that S3 n .N [N.A0// consists of
two solid tori, which we may think of as V1 and V2 . Turning this construction around
V1[V2[N.A0/ is the complement of N . We can identify N.A0/ as a neighborhood
of an annulus A that has one boundary component a .p; q/ curve on @V1 and the other
boundary component a .q;p/ curve on @V2 . Thus, topologically, the complement
of N can be built as the neighborhood of two unknots (that form a Hopf link) union
the neighborhood of an annulus A.

Bringing the contact structure back into the picture we can assume that Li , i D 1; 2, is
a Legendrian representative of Fi in the complement of N . Let tb.Li/D�mi , where
mi > 0. If N.Li/ is a regular neighborhood of Li , then slope.�@N.Li // D �1=mi

with respect to CFi
.

Notice that S3n.N.L1/[N.L2// is diffeomorphic to S DT 2�Œ0; 1� and contains N .
We wish to change coordinates on T 2 so that N is a vertical solid torus in S . Specifi-
cally, T 2 inherits coordinates as the boundary of N.L1/, that is using the coordinate
system coming from the framing CF1

. We change coordinates so that the .p; q/ curve
on T 2 becomes the .0; 1/ curve (which can be thought of as the longitude in the C0
framing). This can be done by sending the oriented basis ..p; q/; .p0; q0// for T 2 ,
where pq0� qp0 D 1, to the basis ..0; 1/; .�1; 0//. This corresponds to the map

�1 D

�
q �p

q0 �p0

�
:

Then �1 maps .�m1; 1/ 7! .�qm1�p;�q0m1�p0/. Since we are only interested in
slopes, we write this as .qm1Cp; q0m1Cp0/.

Similarly, we change from CF2
to C0 . The only thing we need to know here is that

.�m2; 1/ maps to .pm2Cq;p0m2Cq0/. Thus S is a thickened torus T 2� Œ0; 1� with
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V1 V2

A A0

N

Figure 5: The cubes in the picture represent T 2 � Œ0; 1� (the top and bottom
are identified and the front and back are also identified), thought of as the
complement of the Hopf link F1[F2 . We have chosen coordinates on the
torus so that the .p; q/ curve is vertical. On the left hand side we see the
solid tori V1 and V2 (minus their cores) and the annulus A . On the right
hand side we see the solid torus N and the annulus A0 .

dividing slope .q0m1Cp0/=.qm1Cp/ on T � f0g and .p0m2C q0/=.pm2C q/ on
T � f1g.

Now suppose qm1Cp ¤ pm2C q . This would mean that the twisting of Legendrian
ruling representatives of K on @N.L1/ and @N.L2/ would be unequal. Then we
could apply the Imbalance Principle to a convex annulus A in S3nN between @N.L1/

and @N.L2/ to find a bypass along one of the @N.Li/. This bypass in turn gives rise
to a thickening of N.Li/, allowing, by the twist number lemma [11], the increase of
tb.Li/ by one. Hence, eventually we arrive at qm1Cp D pm2C q and a standard
convex annulus A; that is, the dividing curves on A run from one boundary component
of A to the other.

Since mi > 0, the smallest solution to qm1C p D pm2C q is m1 D m2 D 1. All
the other positive integer solutions are therefore obtained by taking m1 D pj C 1 and
m2 D qj C 1 with j a nonnegative integer. We can then compute the boundary slope
of the dividing curves on @. zN / where zN D N.L1/[N.L2/[N.A/. This will be
the boundary slope for the solid torus zN containing N . We have

(1) �
q0.pj C 1/Cp0

pqj CpC q
C

p0.qj C 1/C q0

pqj CpC q
�

1

pqj CpC q
D�

j C 1

pqj CpC q
:
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After changing from C0K to CK coordinates, and setting kD jC1, these slopes become
k=.pq�p�q/ as desired. Also note @ zN has 2 gcd.pq�p�q; k/ dividing curves. So
any solid torus N will thicken unless it satisfies the conditions stated in the lemma.

We have not yet proved that tori as described in the above lemma actually exist. To
rectify this problem we explicitly construct such tori in the tight contact structure on S3

by gluing together tight contact structures on the pieces used in the proof of Lemma 3.1.
More specifically we have the following.

Construction 3.2 Let N be a solid torus in the knot type of K and set M DS3nN . As
noted in the proof above we can think of M as the union of two solid tori V1[V2 (which
we think of as a neighborhood of a Hopf link F1[F2 ), together with a product neighbor-
hood N.A/ of an annulus A that has one boundary component a .p; q/–curve on @V1

and the other boundary component a .q;p/–curve on @V2 . Also recall that N.A/ can
be thought of as a neighborhood of an annulus A0 that has boundary on N and that the
union of N and N.A/ is a thickened torus T 2 � Œ0; 1� whose complement is V1[V2 .

Now let N˙
k

denote N with one of the two universally tight contact structures on N

with convex boundary having boundary slope sk D k=.pq�p� q/ with respect to C ,
and with 2nk dividing curves. From the classification of tight contact structures on
solid tori this is equivalent to the condition that the convex meridional disks all have
bypasses all of the same sign and thus the two contact structures on N˙

k
differ by � Id.

(Note that when k D 1 there is only one contact structure. To avoid unnecessary
notation we will frequently write N˙

1
realizing that NC

1
is the same as N�

1
.)

Let N.A/ D N.A0/ D A0 � Œ0; 1� denote a product neighborhood of A0 and put a
Œ0; 1�–invariant contact structure on it, where the dividing curves on A0 DA0�f1

2
g are

in standard form.

The set R D Nk [N.A0/ is diffeomorphic to T 2 � Œ0; 1� and we can think of it as
fibering over the annulus with fiber circles representing the knot type K . For either
choice of contact structure on Nk , the contact structure on R can be isotoped to
be transverse to the fibers of R, while preserving the dividing set on @R. It is well
known (see for example [12]) that such a horizontal contact structure is universally
tight. Moreover, we see the boundary conditions on R are #�T1

D #�T2
D 2 and (with

appropriately chosen dividing curves on A0 ) slope.�T1
/D�1=m1 , slope.�T2

/D�m2

when using the coordinates on T 2 coming from the framing CF1
.

We know that there are exactly two universally tight contact structures on T 2�Œ0; 1� with
these dividing curves, differing by � Id, and their horizontal annuli contain bypasses all
of the same sign; one can easily see they correspond to the two choices of universally
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tight contact structures on Nk . We know that each of these universally tight contact
structures on R embeds in the standard tight contact structure as the region between
a Legendrian realization of the Hopf link F1 [F2 . Thus the standard tight contact
structure on S3 minus R give standard neighborhoods of a Legendrian realization L1

of F1 , and L2 of F2 . Moreover, we know that if F1 and F2 are oriented so that their
linking is C1 then for one choice of universally tight contact structure on R we have
that L1 and L2 are both obtained from maximal Thurston–Bennequin unknots by only
positive stabilizations and for the other choice of universally tight contact structure
on R we have only negative stabilizations.

We first notice that these N˙
k

just constructed in S3 are nonthickenable solid tori.

Lemma 3.3 The tori N˙
k

from Construction 3.2 are nonthickenable.

Proof By Lemma 3.1, it suffices to show that Nk does not thicken to any Nk0 for
k 0 < k . (We drop the ˙ from the notation for Nk for the remainder of this proof
and just assume one choice of sign is fixed throughout.) To this end, observe that the
.p; q/–torus knot is a fibered knot over S1 with fiber a Seifert surface † of genus
g D .p� 1/.q� 1/=2 (see [15]). Moreover, the monodromy map � of the fibration is
periodic with period pq . Thus, Mk has a pq–fold cover �Mk Š S1�†. If one thinks
of Mk as †� Œ0; 1� modulo the relation .x; 0/� .�.x/; 1/, then one can view �Mk as
pq copies of †� Œ0; 1� cyclically identified via the same monodromy. Now note that
in Mk , the 10–longitude intersects any given Seifert surface pq times efficiently. It
is therefore evident that we can view Mk as a Seifert fibered space with two singular
fibers (the components of the Hopf link). The regular fibers are topological copies
of the 10–longitude, which itself is a Legendrian ruling curve on @Mk D @Nk with
twisting �.pq.k � 1/CpC q/.

We claim the pullback of the tight contact structure to �Mk admits an isotopy where the
S1 fibers are all Legendrian and have twisting number �.pq.k � 1/CpC q/ with
respect to the product framing. To see this we consider the contact structure on Vi , the
neighborhood of the Legendrian unknot Li (we will use notation from Construction 3.2).
In the pq–cover of Mk the torus V1 will lift to p copies of the q–fold cover zV1

of V1 and similarly V2 will lift to q copies of the p–fold cover zV2 of V2 . We can
assume that @V1 has ruling slope q=p (that is the ruling curves are Legendrian isotopic
to a Legendrian 10–curve on @Mk ) and similarly for @V2 . The ruling curves lift
to curves of slope 1=p in zV1 . In particular they are longitudes and have twisting
�.pq.k � 1/CpC q/. Moreover the dividing curves on zV1 are also longitudinal (a
different longitude of course). Thus we see that the contact structure on zV1 is just
a standard neighborhood of one of the ruling curves (pushed into the interior of the
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solid torus) as well as one of the dividing curves (pushed into the interior of the solid
torus). (One may easily see this by considering the following model for a standard
neighborhood: D2�S1 with the contact structure ker.sin 2n� dxCcos 2n� dy/ where
.x;y/ are coordinates on D2 and � is the coordinate on S1 .) Similarly for zV2 . Thus
each of these tori is foliated by Legendrian curves isotopic to the ruling curves. As �Mk

is made from copies of the zVi and copies of covers of the convex neighborhoods of the
annuli A we see the claimed isotopy of �Mk so that the S1 fibers are all Legendrian.

If Nk can be thickened to Nk0 , then there exists a Legendrian curve topologically
isotopic to the regular fiber of the Seifert fibered space Mk with twisting number greater
than �.pq.k�1/CpCq/, measured with respect to the Seifert fibration. Pulling back
to the pq–fold cover �Mk , we have a Legendrian knot which is topologically isotopic
to a fiber but has twisting greater than �.pq.k � 1/CpC q/. Call this Legendrian
knot with greater twisting 
 . We will obtain a contradiction, thus proving that Nk

cannot be thickened to Nk0 .

Since † is a punctured surface of genus g , we can cut † along 2g disjoint arcs ˛i ,
all with endpoints on @†, to obtain a polygon P . Thus we have a solid torus S1 �P

embedded in �Mk . We first calculate slope.�@.S1�P// as measured in the product
framing. To do so, note that a longitude for this torus intersects � , 2.pq.k�1/CpCq/

times, and a meridian for this torus is composed of 2 copies each of the 2g arcs ˛i , as
well as 4g arcs ˇi from @†. Now since @† is a preferred longitude downstairs in Mk ,
we know that � intersects these ˇi , 2.pq�p�q/D 2.2g�1/ times positively. Thus
the dividing curves on @.S1 �†/ have slope .2g� 1/=.pq.k � 1/CpC q/. Cutting
along the 2g curves ˛i and rounding will result in dividing curves on @.S1�P / with
slope.�@.S1�P//D�1=.pq.k � 1/CpC q/.

Now as in [12, Lemma 3.2], we take �Mk D S1 �† and pass to a (new) finite cover
of the base by tiling enough copies of P together so that 
 is contained in a solid
torus S1 � .

S
P /. We notice that S1 � .

S
P / is foliated by Legendrian knots with

twisting �.pq.k � 1/ C p C q/ that are isotopic to the S1 fibers in the product
structure and that the dividing curves on the boundary of the solid torus are longitudinal.
Thus S1 � .

S
P / is a standard neighborhood of a Legendrian curve with twisting

�.pq.k � 1/CpC q/ with respect to the product structure. We know that inside any
such solid torus any Legendrian isotopic to the core of the torus has twisting less than
or equal to �.pq.k � 1/CpC q/ (or else one could violate the Bennequin bound).
Thus 
 cannot exist.

We now observe that the N˙
k

are the only candidates for nonthickenable tori in the
knot type of a positive .p; q/–torus knot. In addition, we compute what the rotation
numbers of Legendrian curves on @N˙

k
are.
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Lemma 3.4 Let N be a solid torus with convex boundary representing the positive
.p; q/–torus knot. If N does not thicken then N must be isotopic to one of the N˙

k

from Construction 3.2.

Moreover, if @N˙
k

is isotoped so that the ruling curves are meridional then the merid-
ional curves will have rotation number ˙.k � 1/, and if @N˙

k
is isotoped so that the

ruling curves are 1–longitudes then the 1–longitudes have rotation number 0.

Proof Let N be a solid torus with convex boundary as in the lemma. If N does not
thicken then from the discussion in the proof of Lemma 3.1 we see that S3 nN can
be thought of as the union of two solid tori V1[V2 (which we think of as a standard
neighborhood of a Legendrian realization L1[L2 of the Hopf link F1[F2 ) together
with a product neighborhood N.A/ of an annulus A that has one boundary component
a .p; q/–curve K1 on @V1 and the other boundary component a .q;p/–curve K2

on @V2 . From the proof of Lemma 3.1 we see that tb.L1/ D �.p.k � 1/C 1/ and
tb.L2/D �.q.k � 1/C 1/ for some positive integer k . We can assume that @A are
ruling curves on the tori @V1 and @V2 . Ruling curves on A provide a Legendrian
isotopy form K1 to K2 . Thus K1 and K2 have the same rotation numbers. From
this and the discussion in Construction 3.2 we see that the signs of the stabilizations
must be the same, thus r.L1/D˙p.k � 1/ and r.L2/D˙q.k � 1/. Hence S3 nN

is contactomorphic to S3 nN˙
k

. Thinking of the neighborhood N.A/ as a product
neighborhood N.A0/ of the annulus A0 (using the notation from Lemma 3.1 and
Construction 3.2) we see that N [N.A0/ must be a universally tight contact structure
on T 2� Œ0; 1� (or else we could find a bypass for one of the Li and hence thicken N ).
We will only get a universally tight contact structure on N [N.A0/ if N has convex
meridian discs with bypasses all of the same sign, as one may easily check by computing
the relative Euler class of N [N.A0/.

The statement about meridional ruling curves is obvious. To verify the statement for
the 1–longitudes we need to use the function fT that measures the rotation numbers
of curves on convex tori T that was discussed in Section 2.4.1. We fix our attention
on NC

k
(leaving the analogous case for N�

k
to the reader). Recall L1 is a Legendrian

unknot obtained from the maximal Thurston–Bennequin unknot by p.k � 1/ positive
stabilizations. Thus if V1 is a standard neighborhood of L1 and K is a .p; q/–ruling
curve on @V1 then we see

f@V1
.K/D pf@V1

.�0/C qf@V1
.�00/D qp.k � 1/;

where �0 is a meridional curve on @V1 and �00 is a longitude.

If we isotope @NC
k

so that the ruling curves are 10–curves then there is a convex
annulus A00 in S3 from the curve K on @V1 to an 10–longitude �0 on @NC

k
that
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has dividing curves that run from one boundary component to the other. Thus we can
rule A00 by curves parallel to K and �0 and see that K and �0 are Legendrian isotopic.
In particular f

@N
C

k

.�0/D r.�0/D qp.k � 1/. Let � denote a 1–longitude on @V C
k

.
Since we know that �D �0�pq� where � is a meridian on @V C

k
we see that

f
@N
C

k

.�/D f
@N
C

k

.�0/�pqf
@N
C

k

.�/D 0:

Proof of Theorem 1.11 The theorem merely collects the statements of Lemmas 3.1,
3.3 and 3.4, together with Construction 3.2.

3.2 Partially thickenable tori

In this section we use the notation established in Construction 3.2 and the subsequent
lemmas of the previous section. We notice that M˙

k
can always be constructed so

that it is contained in any arbitrarily small neighborhood of the annulus A union
N.L1/[N.L2/ from Construction 3.2 and any two such constructed M˙

k
are isotopic

(and hence the corresponding N˙
k

are isotopic too).

Throughout this subsection we will always be talking about tori in the knot type of a
positive .p; q/–torus knot.

Lemma 3.5 Let N be a solid torus in N˙
k

with standard convex boundary having
dividing slope s 2 Œek ; e

a
k
/. If gcd.k;pq�p� q/D 1, then there can be no bypass D

inside N˙
k
nN for @N˙

k
attached along a ruling curve of slope 10 .

Proof Notice that N˙
k
nN is diffeomorphic to T 2 � Œ0; 1�. Moreover the slope on

T 2�f0g D @N is in Œek ; e
a
k
/ and on T 2�f1g D @N˙

k
is ek . If such a bypass existed

then there would be a torus T in T 2 � Œ0; 1� with dividing slope ea
k

. Thus the contact
structure on T 2 � Œ0; 1� is not minimally twisting, but this is impossible as the contact
structure on S3 we are considering is tight.

(Notice that if gcd.k;pq�p�q/> 1 then a bypass can be attached that merely reduces
the number of dividing curves.)

Lemma 3.6 Assume that gcd.k;pq � p � q/ D 1. Let L1 and L2 be the two
unknots used in the construction of M˙

k
and A the annulus; see Construction 3.2. Let

N.L1/[N.L2/ be the standard neighborhood of L1[L2 used in this construction.
Suppose that yA is any convex annulus in the complement of N.L1/[N.L2/[N ,
which has boundary Legendrian ruling curves parallel to @A on @N.L1/[ @N.L2/,
and such that yA is isotopic to A in the complement of N . Then the dividing curves
on yA run from one boundary component to the other and there is a contact isotopy
of S3 taking N.L1/[N.L2/[A to N.L1/[N.L2/[ yA.
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Proof First notice that if yA is disjoint from A then the first statement is clear
since if the dividing curves were not as stated there would be a bypass for N˙

k

on a 10 ruling curve contradicting Lemma 3.5. (To see this recall that N˙
k
D

S3�.N.L1/[N.L2/[N.A//.) For the second statement notice that there will be a dif-
feomorphism of S3 fixing (set-wise) N.L1/[N.L2/ and sending A to yA. Moreover
we can assume this diffeomorphism preserves the dividing sets on @N.L1/[ @N.L2/

and sends �A to � yA . Thus we may isotope the diffeomorphism so that it is a contacto-
morphism in a neighborhood of N.L1/[N.L2/[A. As the contact structure on the
complementary solid torus is unique (as indicated in the proof of Lemma 3.4) we can
further isotope this map to a contactomorphism of S3 . As the space of contactomor-
phisms of the standard contact structure on S3 (that fix a point) is contractible it is
standard to find a contact isotopy as desired.

If yA and A are not disjoint then we can use Isotopy Discretization as discussed in
Section 2.2.5 to find a sequence of annuli A1; : : : ;An such that A1 D A;An D A0 ,
each Ai is a convex annulus with boundary Legendrian ruling curves parallel to @A
and for each i D 1; : : : ; n� 1;Ai and AiC1 are disjoint. The result now follows.

Proposition 3.7 Let N be a solid torus in N˙
k

with standard convex boundary having
dividing slope s 2 Œek ; e

a
k
/. If gcd.k;pq�p� q/D 1, then N will thicken to a solid

torus N 0 of slope ek but not beyond. Moreover, N 0 is isotopic to N˙
k

.

Remark 3.8 Notice that if gcd.k;pq � p � q/ > 1 then N˙
k

can be thinned to a
torus N 0 that has the same dividing slope as N˙

k
but fewer dividing curves. This will

allow for the destabilization of the Legendrian knots L1 and L2 used in Lemma 3.1,
which in turn, allow for the thickening of N 0 past N˙

k
. Therefore we see when

gcd.k;pq�p� q/ > 1 that there are no partially thickenable tori in N˙
k

.

Remark 3.9 For the right handed trefoil knot there is another, arguably simpler, proof
of this result that is more in the spirit of the previous subsection. We present a unified
proof for all .p; q/ here and refer to the third author’s thesis [18] for the alternate
argument.

Proof Suppose that N can be thickened past the slope ek . Then it can be thickened
to Nk0 for some k 0 < k . We can arrange N to have ruling curves isotopic to 10–
longitudes. Taking an annulus zA from a ruling curve on @N to a ruling curve on @Nk0

(of slope 10 ) we see that there are enough bypasses D1; : : : ;Dn along zA for @N
to thicken N to a solid torus with dividing slope outside the interval Œek ; e

a
k
/. If the

bypasses were contained in Nk this would of course be a contradiction, as we could
attach them to @N to obtain a convex torus in Nk with slope ek0 . We now argue that
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we can isotope Nk so that it contains all the bypasses. This contradiction will imply
that N cannot be thickened to Nk0 for any k 0 < k .

To this end let L1 and L2 be the two unknots used in the construction of M˙
k

and
A the annulus; see Construction 3.2. From the construction we know that M˙

k
is

obtained by taking the union of arbitrarily small neighborhoods N.L1/[N.L2/ of
L1[L2 and N.A/ of A (and rounding corners). Consider the 2–complex X obtained
from L1[L2 by attaching (an extension of) A. Clearly M˙

k
can be isotoped to be

contained in any arbitrarily small neighborhood of X .

We now consider the intersection of X with the bypasses above. First we notice there is
a contact isotopy of the Di making them transverse to X . So the intersection consists
of closed curves, vertices (corresponding to the intersection of D with L1[L2 ) and
arcs. We may now choose standard neighborhoods N.Li/ of the Legendrian knots Li

(and possibly isotope the interiors of the Di ) so that N.Li/ intersects the bypass disks
in disks (that is each vertex of X \Di becomes a disk) that are disjoint from the simple
closed curves in X \Di . We may now isotope X so that X �.X \.N.L1/[N.L2///

is a convex annulus yA with Legendrian boundary ruling curves on @.N.L1/[N.L2//

and intersects the bypass disks as X � .X \ .N.L1/[N.L2/// does.

Let D denote one of these bypasses. We will show how to isotope D to be disjoint
from M˙

k
and observe that this argument can be applied to each of the Di resulting

in the desired contradiction. It is clear that if D \X D ∅ then D may be assumed
to be contained in N˙

k
. Thus we show how to eliminate the intersections between D

and X . We first show how to remove the closed curves from the intersection. Let 

be an innermost closed curve in D \X . (That is 
 bounds a disk on D that does
not contain any other points of intersection between X and D .) Notice that from the
setup above 
 is an intersection between yA and D . We can isotope yA, rel boundary,
so as to eliminate 
 from X \D . (Notice along the way, we might also eliminate
some intersections between X and other Di but we do not increase the number of
intersections between Di and X .) By Lemma 3.6 we see that this isotopy can be done
by a contact isotopy, thus resulting in a new X with all the above properties but fewer
intersections with the disk D . Continuing we can assume that D \X contains no
simple closed curves.

Now suppose that 
 is an arc in D \X that connects two vertices. We can take an
interval in 
 that is disjoint from the intersection of D and N.L1/ [N.L2/ and
then isotope yA as above to remove this interval from the intersection of X and D .
Thus X \D consists of “stars” and arcs; that is, each connected component of the
intersection is either an arc (with both endpoints on @D ) or has a single vertex with
several edges (connecting the vertex to @D ). We again notice that the arcs of intersection

Geometry & Topology, Volume 16 (2012)



Legendrian and transverse cables of positive torus knots 1669

are intersections between yA and D and thus we may remove them as above if they
are outermost (that is, separates off a disks from D that does not contain any points of
intersection between D and X ).

We are now left to consider outermost “stars”. Given such a star we assume that
the vertex comes from an intersection between D and L1 . So we have a disk D0 �

D \N.L1/ corresponding to the vertex and the p edges corresponding to yA\D

(we would have q edges if D intersected L2 at the vertex under consideration).
Recall M˙

k
is obtained by taking the union of an I invariant neighborhood of yA and

N.L1/[N.L2/ and rounding corners. So we can isotope D slightly near yA so that
M˙

k
\D consists of D0 union p strips corresponding to thickenings of the edges of

D\ yA. From this it is easy to see that @.M˙
k
\D/ consists of p arcs, 
1; : : : ; 
p . One

of these arcs, which we denote 
p , divides D into two disks, one of which contains all
the other 
i ’s (and no other intersections with X ). Denote this disk C . Notice that
N.L2/ does not intersect C .


1

2


3

C1 C2

Figure 6: On the left is the disk D and a star component of D\X is in bold.
The intersection of a neighborhood of X with D is also shown along with
the curves 
i that make up the boundary of this region. On the right is the
disk C that 
3 cuts off of D and the subdisks Ci .

Each arc 
i ; i <p , separates a disk Ci from C that is disjoint from the interior of M˙
k

.
If we push @M˙

k
across the disk Ci then we get a new torus T 0 in N˙

k
�N . Recall that

the ruling slope on @N.L2/ was by .q;p/–curves and that the isotopy of @M˙
k

to T 0

can be done fixing one of these curves. Thus the contact twisting of the ruling curve is
still �.pq.k � 1/CpC q/, however, the ruling curve on a convex torus with dividing
slope in Œek ; e

a
k
/ will always have twisting less than or equal to �.pq.k�1/CpCq/

with equality if and only if the dividing slope is ek . Thus we see that T 0 has dividing
slope ek and hence is contact isotopic to @M˙

k
. That is we can find a contact isotopy
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that eliminates one of the arcs of intersection. Continuing in this way we push @M˙
k

across the other disks Ci by a contact isotopy resulting in the disk C being contained
in M˙

k
. Now pushing @M˙

k
across C will not change the dividing set since N˙

k
is a

nonthickenable torus. Combining these isotopies we have removed the outermost “star”
in D\X .

By successively removing outermost arcs or “stars” from D \X we can eventually
make D disjoint from X and thus contained in N˙

k
�N .

Proposition 3.10 Let N be a solid torus in N˙
k

with standard convex boundary
having dividing slope s 62 Œek ; e

a
k
/. Then N will thicken to the solid torus N1 (which

is a standard neighborhood of the maximal Thurston–Bennequin invariant Legendrian
.p; q/–torus knot).

Proof Given such a torus N we know from the construction and discussion in
Section 3.1 that we can thicken N to a solid torus N 0 whose boundary is convex with
two dividing curves of slope ea

k
and in the complement of N 0 we will have M˙

k
. Now

taking an annulus from N 0 to @N.L1/ (using the notation from Construction 3.2) we
will see that there is a bypass for @N.L1/ and thus we can increase the Thurston–
Bennequin of L1 . As in the proof of Lemma 3.1 we see that N 0 will thicken to
some N˙

k0
with k 0 < k . Thus we know we can thicken past N˙

k
unless k D 1, and

hence we can thicken to N1 .

We are now ready to establish the main results stated in the introduction concerning
partially thickenable tori.

Proof of Theorem 1.12 The statements in the theorem just collect the facts from
Proposition 3.7, Remark 3.8 and Lemma 2.2.

Proof of Corollary 1.13 For statement (1) notice that if n� s < nC 1 then a convex
torus with two dividing curves of slope s will lie inside one of the N˙m for mD 2; : : : n

or N1 . From the classification of the N˙m we know there is a convex torus with two
dividing curves and infinite dividing slope inside each of the N˙m and it will cobound
with @N˙m a unique basic slice [11]. Moreover there are two distinct such tori in N1

and each of these two will cobound with @N1 a unique basic slice. Inside a basic slice
there is a unique, up to contactomorphism, convex torus of slope s . Thus given any
convex torus T with two dividing curves of slope s we can use this data to construct
a contactomorphism of S3 taking T to one of the tori described above. Then the
discussion in Section 2.3.3 gives a contact isotopy from T to one of these tori. As
there are 2n such tori this establishes statement (1) of the theorem.

The other statements in the corollary have analogous proofs.
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3.3 Legendrian knots on tori

In this section we prove two fundamental propositions about Legendrian knots on
partially thickenable, and nonthickenable, tori that will be necessary in our classification
of cables of torus knots.

Proposition 3.11 Suppose K is a positive .p; q/–torus knot and N˙n is a solid torus
constructed above in Section 3.1, for some n > 1 with gcd .n;pq�p� q/D 1. Let
s=r 2 Œen; e

a
n/ and k D j.s=r/ � ea

nj. If T is the convex torus in N˙n with two dividing
curves and dividing slope s=r and L is a Legendrian divide on T , then:

(1) For any y 2N [f0g and x < k , any convex torus T 0 on which the Legendrian
knot Sx

˙
S

y
�.L/ sits bounds a partially thickenable, or nonthickenable, torus

in N˙n .

(2) The Legendrian knot Sk
˙

S
y
�.L/ sits on a convex torus T 0 that bounds a solid

torus that thickens to N1 .

Proof We will concentrate on the Legendrian divide L on a torus T inside NCn below,
but analogous arguments also work for N�n . Recall that inside the solid torus NCn
there is a convex torus T 0 with two dividing curves and dividing slope ea

n . Let L0 be
a Legendrian ruling curve on T 0 of slope s=r . Using an annulus A that L and L0

cobound, it is easy to see that L0 is obtained from L by stabilizing k D j.s=r/ � ea
nj

times.

We want to compute the difference between the rotation number of L on T and L0

on T 0 . The region between T and T 0 is a thickened torus and the difference in these
rotation numbers will be given by the value of the relative Euler class of the thickened
torus evaluated on the annulus A. To compute this we use the classification of tight
contact structures on thickened tori, as given in [11], and the fact that NCn is universally
tight. In particular, we can compute the relative Euler class e of the thickened torus
cobounded by T 0 and T :

PD.e/D ..r; s/� .b; a// 2H1.T
2
� I IZ/;

where PD stands for the Poincaré dual and we are using the basis for H1 given
by the meridian and longitude and ea

n D a=b . We can use this to compute the dif-
ference between the rotation number of the .r; s/ curve on T 0 and on T which is
r.s�a/�s.r�b/D .sb�ra/D .s=r/ �.a=b/D .s=r/ �ea

n > 0. That is, L0 is obtained
from L by k positive stabilizations. According to Theorem 1.12 the solid torus that
T 0 bounds can be thickened to N1 . As any further negative stabilizations of L can be
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seen on T 0 as well (by having L intersect the dividing curves in a nonminimal way)
we have established the second point in the proposition.

For the first point in the proposition notice that the discussion above shows that
Sx
CSy
�.L/, with x < k , cannot sit as a Legendrian curve on a convex torus with

dividing slope ea
n (since otherwise x� k ). Suppose that Sx

CSy
�.L/ is also isotopic to a

curve on a convex torus T 0 that is neither a partially thickenable, nor a nonthickenable,
torus in NCn . (This T 0 is not the same as in the previous paragraph.) We can extend the
isotopy of Sx

CSy
�.L/ to an ambient contact isotopy and thus we may assume that one

fixed copy of Sx
CSy
�.L/ sits on both a partially (or non) thickenable torus T in NCn

and on a torus T 0 that is not a partially (or non) thickenable torus in NCn . We may
isotope T 0 near Sx

CSy
�.L/ so that it agrees with T . Let N be a standard neighborhood

of Sx
CSy
�.L/ that intersects T and T 0 on a subset of T \T 0 . Let A and A0 be the

annuli in the complement of N given by T and T 0 , respectively. We may further
assume that @AD @A0 are ruling curves on @N and that all ruling curves on @N are
parallel to @A. These annuli are properly topologically isotopic in the complement
of a neighborhood of Sx

CSy
�.KC/. (This follows from standard results concerning

incompressible surface in Seifert fibered spaces.)

We can use Isotopy Discretization as discussed in Section 2.2.5 to find a sequence
of annuli A1; : : : ;Am such that A1 D A;Am D A0 , each Ai is a convex annulus
with boundary consisting of Legendrian ruling curves parallel to @A and for each
i D 1; : : : ;m�1;Ai and AiC1 are disjoint and related by a bypass attachment. Notice
that this gives us a sequence of tori T1 D T; : : : ;Tm D T 0 that are related by bypass
attachments in the complement of Sx

CSy
�.L/. The torus T1 is partially (or non)

thickenable inside of NCn . We inductively show that Ti is also such a convex torus.
Assume that we have shown that Ti�1 is such a torus; then recall Ti is obtained
from Ti�1 by attaching a bypass from the outside (that is from the outside of the solid
torus Ti�1 bounds) or from the inside. If we attach the bypass to Ti�1 from the outside
we get a new convex torus that bounds a thickening of the solid torus that Ti�1 bounds,
and so is also a partially (or non) thickenable torus in NCn . If we attach the bypass
from the inside then as there is an edge in the Farey tessellation between en and ea

n

(and the dividing slope of Ti�1 is contained in the interval Œen; e
a
n/) we see that the

dividing slope of Ti is in Œen; e
a
n �. But as in the previous paragraph the restriction on

the rotation number and Thurston–Bennequin invariant implies that the dividing slope
cannot be ea

n . Thus the dividing slope of Ti is in Œen; e
a
n/. In particular it bounds a

partially (or non) thickenable solid torus in NCn . Thus Tm D T 0 bounds a partially (or
non) thickenable solid torus in NCn , which contradicts our assumption on T 0 . From
this we see that any convex solid torus on which Sx

CSy
�.L/ sits bounds a partially (or

non) thickenable solid torus in NCn .
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Proposition 3.12 Suppose K is a positive .p; q/–torus knot and N˙n is a solid torus
constructed above in Section 3.1, for some n > 1 with gcd .n;pq�p� q/D 1. Let
s=r 2 .ec

n; en/ and k D ..s=r/ � ea
n/� ..s=r/ � en/. If L is a ruling curve on @N˙n with

slope s=r , then:

(1) For any y 2 N [ f0g and x < k the convex torus containing Sx
˙

S
y
�.L/ has

dividing slope en and is contained in N˙n .

(2) The Legendrian knot Sk
˙

S
y
�.L/ sits on a convex torus T that bounds a solid

torus that thickens to N1 .

Proof We will concentrate on a Legendrian ruling curve L on @NCn below, but
analogous arguments also work for N�n . The proof of the second point in the proposition
follows exactly as in the proof of Proposition 3.11 and in particular, Sk

CSy
�.L/ sits on a

convex torus T 0 inside of NCn with dividing slope ea
n . Moreover, any Legendrian knot

that is a stabilization of L that sits on T 0 will have at least k positive stabilizations.

The first point follows the same outline as the proof of [9, Claim 6.5], but is augmented
by what we know from Proposition 3.7. More specifically, if T 0 also contains L

and is isotopic to @NCn then standard properties of incompressible surfaces in Seifert
fibered spaces (recall that the subannulus of T 0 contained in the complement of a
neighborhood of L is incompressible in the complement of L) imply that T 0 must
be isotopic to @NCn relative to L. Therefore, it suffices to show that the slope of the
dividing set does not change under any isotopy of @NCn relative to L. Although we
would like to say that the isotopy leaves the dividing set of @NCn invariant, this is not
true (see [9]), though we will show the dividing slope does not change. If T 0 is isotopic
to @NCn relative to L then the standard Isotopy Discretization used above implies that
there is a sequence of surfaces †1 D @N

C
n ; : : : ; †m D T 0 such that each †i is convex

and obtained from the previous †i�1 by a bypass attachment. We inductively assume
the following:

(1) † is a convex torus which contains L and satisfies 2 � #�† � 2.xC y/C 2

and slope.�†/D en .

(2) † is contained in a Œ0; 1�–invariant T 2�Œ0; 1� with slope.�T0
/Dslope.�T1

/Den

and #�T0
D #�T1

D 2 and is parallel to T 2 � fig.

(3) There is a contact diffeomorphism �W S3 �! S3 which takes T 2 � Œ0; 1� to a
standard I –invariant neighborhood of @NCn and matches up their complements.

Notice that if we prove all the †i satisfy these conditions then T 0 will satisfy the
conclusions of the first point of the proposition, thus completing our proof.
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We assume that †i satisfies the inductive hypothesis above. Using the terminology
from the proof of Proposition 3.11 we notice that if a bypass is attached to †i from the
outside then the dividing slope cannot change or this would give a thickening of our
nonthickenable solid torus. If the bypass is attached from the inside, then let †0 be the
torus obtained after the bypass is attached. By Lemma 2.1 we see that sD slope.�†0/
must lie in Œen; e

a
n �. Since the argument in the first paragraph of this proof disallows

sD ea
n , we know that s 2 Œen; e

a
n/. Suppose that s> en . Let †00 be a convex torus of

slope ea
n and #� D 2 in the interior of the solid torus bounded by †0 . Without loss of

generality we may assume there is a Legendrian curve L0 on †0 which is parallel to
and disjoint from L, and intersects �†0 minimally. (To see this notice that we can use
bypasses for L seen on †0 to destabilize L to a Legendrian zL. That is LDSa

CSb
�.
zL/

and zL sits on a copy of †0 , which we still call †0 . We can now stabilize zL on †0

to get L – recall stabilization is well defined – by a sequence of “finger moves”
across �†0 so that we still have a ruling curve on †0 that is disjoint from L. This
ruling curve will be L0 .) Similarly, consider L00 on †00 . Using Lemma 2.2 we see
that j�†0 \L0j > j�†00 \L00j. Thus an annulus that is bounded by L0 and L00 will
contain bypasses for †0 that are disjoint from L. After successive attachments of
such bypasses, we eventually obtain †000 of slope ea

n containing L, a contradiction.
Therefore (observing the restriction on the number of components of �†i

are dictated
by tb.Sk

CSy
�.L//) we see that Condition (1) is preserved.

Suppose †0 is obtained from † by a single bypass move. Since slope.�†0/ D
slope.�†/, either the bypass attachment was trivial or #� is either increased or
decreased by 2. Suppose first that †0 � N , where N is the solid torus bounded
by †. For convenience, suppose †D T0:5 inside T 2 � Œ0; 1� satisfies Conditions (2)
and (3) of the inductive hypothesis. In particular T1 is a torus outside of N with two
dividing curves. The tori T1 and †0 cobound a thickened torus T 2 � Œ0:5; 1� with
nonrotative contact structure. Thus by the classification of tight contact structures on
solid tori, we can factor a nonrotative outer layer which is the new T 2 � Œ0; 0:5�. It is
easy to see that this new T 2 � Œ0; 1� satisfies Conditions (2) and (3) of the inductive
hypothesis.

Now suppose †0 � .S3 nN /. If N 0 is the solid torus †0 bounds then we prove that
there exists a nonrotative outer layer T 2� Œ0:5; 1� for S3 nN 0 , where #�T1

D 2. This
follows from repeating the procedure in the proof of Lemma 3.1, where Legendrian
representatives of F1 and F2 were thickened and then connected by a vertical annulus.
This time the same procedure is carried out with the provision that the representatives
of F1 and F2 lie in S3 nN 0 . Once the maximal thickness for representatives of F1

and F2 is obtained, after rounding we get a convex torus in S3 nN 0 parallel to †0 but
with #� D 2. Therefore we obtain a nonrotative outer layer T 2 � Œ0:5; 1�.
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4 Simple cables

In this section we classify the simple cables of positive torus knots. These classification
results and their proofs are very similar to those in Etnyre and Honda [9] and the first
two of them follow directly from Tosun [17]. We include sketches here to demonstrate
the classification strategy discussed in Section 2.3.2 and as a warm-up for the more
intricate results in the next section.

Theorem 4.1 Suppose K is a positive .p; q/–torus knot. If r; s are relatively prime
integers with

r

s
D

1

s=r
>w.K/D pq�p� q;

then K.r;s/ is Legendrian simple. Moreover, there is a unique maximal Thurston–
Bennequin invariant representative L of K.r;s/ which has invariants

tb.L/D tb.K.r;s//D rs�
ˇ̌̌
w.K/ �

r

s

ˇ̌̌
D rs� .r � s.pq�p� q//;

and r.L/D 0. All other Legendrian representatives of K.r;s/ destabilize to L.

Sketch of Proof We establish the theorem by (1) proving the above formula for
tb.K.r;s//, (2) showing there is a unique Legendrian knot L with this as its Thurston–
Bennequin invariant and (3) showing that any other Legendrian knot in this knot type
is a stabilization of L.

To show (1) we let K be any Legendrian knot in the knot type K.r;s/ . There is a solid
torus S realizing the knot type K that contains K in @S . We know there is a Seifert
surface for K.r;s/ with Euler characteristic rC s.pCq�pq/� rs thus the Bennequin
inequality implies

tb.K/� rs� r C s.pq�p� q/:

From this we see that the twisting of the contact planes along K measured with respect
to @S is less than or equal to �rCs.pq�p�q/. Our condition that r=s >pq�p�q

implies that �r C s.pq �p � q/ < 0, from which we can conclude that @S can be
made convex without moving K . Let a be the slope of the dividing curves on @S .
We know a� w.K/ or negative. Moreover, ja � .r=s/j � jw.K/ � .r=s/j with equality
if and only if a D w.K/. Since we know that tb.K/ is rs plus tw.K; @S/ and
tw.K; @S/ is �ja � .r=s/j times the number of dividing curves, we clearly see that
the maximal possible Thurston–Bennequin invariant is realized on the boundary of
a solid torus S with convex boundary having two dividing curves of slope 1=w.K/.
If S is the standard neighborhood of a Legendrian knot in the knot type K with
maximal Thurston–Bennequin invariant then a ruling curve of slope s=r will give
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a Legendrian knot L in the knot type K.r;s/ realizing this bound as its Thurston–
Bennequin invariant. Thus we have computed tb.K.r;s//. Notice we have also shown
that if K is any other Legendrian knot with tb.K/ D tb.K.r;s// then K will sit on
the boundary of a standard neighborhood of a maximal Thurston–Bennequin invariant
Legendrian knot representing K . Since there is a unique such knot, standard arguments,
like those in [7; 9] and discussed in Section 2.3.3, show that K is Legendrian isotopic
to L. Thus we have shown there is a unique Legendrian representative with maximal
Thurston–Bennequin invariant.

We are left to check (3). To this end let K be a Legendrian knot in the knot type
K.r;s/ with tb.K/ < tb.K.r;s// and let S be a solid torus in the knot type K such
that K sits on @S . As mentioned above we can assume that @S is convex. Let
a be the dividing slope for @S . If a is positive then there is some integer n � 0

such that 1=.n C 1/ < a � 1=n. (A similar argument will hold for a negative.)
Thus there is a convex torus T inside S with two dividing curves of slope 1=n. As
.s=r/ � .1=n/� .s=r/ �b for any slope b 2 .1=.nC1/; 1=n� with equality if and only if
b D 1=n, we see that the .r; s/ ruling curve on T has Thurston–Bennequin invariant
less than or equal to tb.K/ and it is strictly less than tb.K/ unless aD 1=n. Taking
an annulus between K and a ruling curve on T we can find a bypass to show that
K destabilizes unless aD 1=n. In this case we can assume that T is @S and S is a
standard neighborhood of a Legendrian knot in the knot type K . As K is Legendrian
simple and n is not the maximal Thurston–Bennequin invariant we can thicken S to a
solid torus S 0 that is a standard neighborhood of a Legendrian knot with tbD nC 1.
We can now use the ruling curve on @S 0 to show that K destabilizes.

Theorem 4.2 Suppose K is a positive .p; q/–torus knot. If r; s are relatively prime
integers with s > 1 and s=r < 0, then K.r;s/ is also Legendrian simple. More-
over, tb.K.r;s// D rs and the set of rotation numbers realized by fL 2 L.K.r;s// j
tb.L/D tb.K.r;s//g is

f˙.rCs.nCk// j kD .pq�p�qCn/; .pq�p�qCn/�2; : : : ;�.pq�p�qCn/g;

where n is the integer that satisfies

�n� 1<
r

s
< �n:

All other Legendrian knots destabilize to one of these maximal Thurston–Bennequin
knots.

Notice that the restriction s > 1 is reasonable as when s D 1 we know K.r;s/ DK .
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Sketch of Proof This theorem is essentially [9, Theorem 3.6], the only difference being
that K is not uniformly thick. As we saw in the previous proof the only real difference
in this case where K is not uniformly thick is that we have to be careful to argue that
Legendrian knots with nonmaximal Thurston–Bennequin invariants destabilize. But in
this case we see that if K is any Legendrian knot in the knot type K.p;q/ then it sits
on a convex torus T bounding a solid torus S in the knot type K and there is either
a torus T 0 parallel to T inside S or outside S such that T 0 is convex with dividing
slope s=r . We can use T 0 to find a destabilization of K .

Theorem 4.3 Suppose K is a positive .p; q/–torus knot with .p; q/ 6D .2; 3/. If
r; s are relatively prime positive integers with 0 < r=s < w.K/ D pq � p � q but
s=r 62 J , where J is as in Theorem 1.9, then K.r;s/ is also Legendrian simple. More-
over, tb.K.r;s// D rs and the set of rotation numbers realized by fL 2 L.K.r;s// j
tb.L/D tb.K.r;s//g is

f˙.rCs.�nCk// jkD .pq�p�q�n/; .pq�p�q�n/�2; : : : ;�.pq�p�q�n/g;

where n is the integer that satisfies

n� 1<
r

s
< n:

All other Legendrian knots destabilize to one of these maximal Thurston–Bennequin
knots.

Sketch of Proof Establishing the classification of maximal Thurston–Bennequin
Legendrian knots in this knot type can be done exactly as in [9, Theorem 3.6] (see [17]
for details), except when s=r 2 Œen; e

a
n/ for some n not relatively prime to pq�p�q .

If L is a Legendrian knot in the knot type K.r;s/ for such an s=r 6D en and L has
maximal Thurston–Bennequin invariant, then, as discussed above, L will sit as a
Legendrian divide on a convex torus T in the knot type K . Such a torus bounds a
solid torus S that can be thickened to a solid torus with convex boundary having two
dividing curves of slope en . As mentioned in Corollary 1.13 (see also Remark 3.8),
we see that this torus further thickens to N1 . Thus the reasoning in [9, Theorem 3.6]
applies. If L is a Legendrian knot in the knot type K.r;s/ with s=r D en , then it again
sits as a Legendrian divide on a convex torus T . If T is not @N˙n then according
to Corollary 1.13 it will bound a solid torus that thickens to N1 . If T D @N˙n then
since en 62 J , by assumption, we know gcd.n;pq � p � q/ 6D 1 and hence T has
more than two dividing curves. Below we show that we can find a torus T 0 , inside
the solid torus T bounds, with two less dividing curves on which L also sits. Of
course this new torus will thicken to N1 and hence we are done as above. To find T 0

notice that according to the classification of contact structures on thickened tori we
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can find a convex torus T0 inside of S , the solid torus T bounds, with two dividing
curves of slope en . Let B D T0� Œ0; 1� be the thickened torus that T and T0 cobound.
Take a simple closed curve 
 on T0 that intersects a curve of slope en one time. Let
AD 
 � Œ0; 1� be an annulus in B running from 
 on T0 to T . We can arrange that
@A consists of ruling curves on T0 and T . Now if gcd.n;pq�p� q/ > 2 then there
will be at least 2 nonadjacent bypasses on A for T . Thus one of them will be disjoint
from L. Pushing T across this bypass will result in the torus T 0 with fewer dividing
curves than T and on which L sits. Since we are considering .p; q/–torus knots notice
that pq�p�q is odd and thus gcd.n;pq�p�q/ cannot be even, thus the condition
that gcd.n;pq�p� q/ > 2 is satisfied.

We are left to show that any Legendrian knot with nonmaximal Thurston–Bennequin
invariant destabilizes. Let K be a Legendrian knot in the knot type K.r;s/ with
tb.K/ < rs . We know that K can be put on a convex torus T that bounds a solid
torus S representing the knot type K . Let a be the dividing slope of T . If a> s=r

then there is a torus T 0 parallel to T inside S with dividing slope s=r . We can use an
annulus that cobounds K and a Legendrian divide on T 0 to show that K destabilizes.
Now suppose that a< s=r . If a 2 In D Œen; e

a
n/ for some n then from Lemma 2.2 we

see that ja � .s=r/j � jea
n � .s=r/j with equality if and only if a D ea

n . Since a 6D ea
n

we can let T 0 be a torus inside S that is parallel to T and has dividing slope ea
n and

use an annulus between K and a ruling curve on T 0 to show K destabilizes. If a is
not in In D Œen; e

a
n/ for any n then from Theorem 1.12 we know there is a torus T 0

outside S that is parallel to T and has dividing slope 1=.pq�p� q/. Thus between
T and T 0 we have a convex torus T 00 with dividing slope s=r . As above we can use
this torus to show K destabilizes.

5 Cables of positive torus knots (other than the trefoil)

Recall if K is the knot type of the positive .p; q/–torus knot and .p; q/ 6D .2; 3/ then
we set

ek D
k

pq�p� q
;

Jk D .e
c
k
; ea

k
/, I D fn 2 Z W n > 1 and gcd.n;pq �p � q/D 1g and J D

S
n2I Jn .

Much of Theorem 1.9 was proven in the previous section. To complete the proof we
need to classify Legendrian knots in the .r; s/–cable of the .p; q/–torus knot type K
when s=r 2 Jn for some n 2 I . In the next two propositions we do this first for the
case when s=r 2 Œen; e

a
n/, and then for the case when s=r 2 .ec

n; en/.
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Proposition 5.1 With the notation above, suppose s=r 2 Œen; e
a
n/ for some n 2 I .

Then there is some k � 0 such that 1=.k � 1/ > s=r > 1=k and L.K.r;s// admits the
following classification.

(1) The maximal Thurston–Bennequin invariant is tb.K.r;s//D rs .

(2) For each integer i in the set

f˙.rCs.�kCl// j l D .pq�p�q�k/; .pq�p�q�k/�2; : : : ;�.pq�p�q�k/g;

there is a Legendrian Li 2 L.K.r;s// with

tb.Li/D rs and r.Li/D i:

(3) There are two Legendrian knots K˙ 2 L.K.r;s// with

tb.K˙/D rs and r.K˙/D˙.s.pq�p� q/� r/:

(4) All Legendrian knots in L.K.r;s// destabilize to one of the Li or K˙ .

(5) Let c D ..s=r/ � ea
n/ � 1. For any y 2 N [ f0g and x � c the Legendrian

Sx
˙

S
y
�.K˙/ is not isotopic to a stabilization of any of the other maximum

Thurston–Bennequin invariant Legendrian knots in L.K.r;s//.
(6) Any two stabilizations of maximal Thurston–Bennequin invariant Legendrian

knots in L.K.r;s//, except those mentioned in item (5), are Legendrian isotopic
if they have the same tb and r.

Proof We follow the standard approach to classifying Legendrian knots in a given
knot type outlined in Section 2.

Step I Identify the maximal Thurston–Bennequin invariant of the knot type and
classify Legendrian knots realizing this:

The computation of the maximal Thurston–Bennequin invariant is done in Lemma 2.9.

� Construction of maximal Thurston–Bennequin invariant knots in L.K.r;s//: Let
N˙m be the nonthickenable solid tori representing K that were constructed in Section 3.1.
Recall N1 is a standard neighborhood of the maximal Thurston–Bennequin invariant
Legendrian .p; q/–torus knot L (and that there is only one N1 so the ˙ is ignored here).
Inside N1 there are solid tori corresponding to stabilizing L, .pq� q�p/� k times.
The range of the rotation numbers for the Legendrian .p; q/–torus knots represented
by these tori is S D f.pq�p�q�k/; .pq�p�q�k/�2; : : : ;�.pq�p�q�k/g.
Denote these tori Sl for l 2 S . Inside each Sl there are two tori S˙

l
that come from

positively or negatively stabilizing the Legendrian knot corresponding to Sl . In the
thickened torus Sl �S˙

l
there is a unique convex torus T˙

l
with dividing slope s=r .
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Let i D sl˙m where mD r � sk > 0 is the remainder. Denote by Li a Legendrian
divide on T˙

l
. We clearly have that tb.Li/D rs and the computation in the proof of

[9, Lemma 3.8] (or similar to the one given below for K˙ ) gives that r.Li/D i .

Now consider the two tori N˙n . Inside each one there is a convex torus T˙ with
dividing slope s=r . Let K˙ be a Legendrian divide on T˙ . Again it is clear that
tb.K˙/D rs . Recall that from Lemma 2.8 we know that

r.K˙/D r r.@D/C s r.@†/;

where D is a meridional disk for T˙ with Legendrian boundary and † is a surface,
outside the solid torus T˙ that bounds, with Legendrian boundary on T˙ . If D0

and †0 are the corresponding surfaces for @N˙n then we know from Lemma 3.4 that
r.@D0/D˙.n�1/ and r.@†0/D 0. Thus the rotation number of an .r; s/–ruling curve
on @N˙n is ˙r.n� 1/. To compute the rotation number for the Legendrian divide
on T˙ we use the classification of tight contact structures on thickened tori, as given
in [11], and the fact that N˙n is universally tight. In particular, we can compute the
relative Euler class e of the thickened torus cobounded by N˙n and T˙ :

PD.e/D˙..r; s/� .pq�p� q; n// 2H1.T
2
� I IZ/;

where PD stands for the Poincaré dual and we are using the basis for H1 given by the
meridian and longitude. We can use this to compute the difference between the rotation
number of the .r; s/ curve on @N˙n and on T˙ which is ˙.r.s�n/�s.r�.pq�p�q//.
Thus we have that r.K˙/D˙.s.pq�p� q/� r/.

� Classification of maximal Thurston–Bennequin invariant knots in L.K.r;s//: If
K 2L.K.r;s// with tb.K/D rs then K sits on a convex torus with dividing slope s=r .
Theorem 1.12 and Corollary 1.13 say that such a torus is one of the ones considered
when constructing K˙ and Li . Thus, a by now standard argument (see [7] and
Section 2.3.3 above), says the torus must be isotopic to one of the ones used in those
constructions from which we can also conclude that K is isotopic to one of K˙ or Li .

Step II Prove all nonmaximal Thurston–Bennequin invariant knots in L.K.r;s//
destabilize:

Let K be any Legendrian knot in L.K.r;s// with Thurston–Bennequin invariant less
than rs . Let T be a torus bounding a solid torus S in the knot type K on which K sits.
Since tb< rs we know that we can perturb T relative to K so that it is convex. If the
dividing slope t of T is equal to s=r then K intersects the dividing curves inefficiently
and we can find a bypass for K on T . Thus we can destabilize K . If t 6D s=r then
we have three cases to consider. Case one is when t 62 Œem; e

a
m/ for any m. In this
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case Theorem 1.12 tells us that S can be thickened to a standard neighborhood of a
maximal Thurston–Bennequin knot in L.K/. Thus there is a convex torus T 0 parallel
to T (either inside S or outside S depending on t ) with dividing slope s=r . We
can use an annulus between T and T 0 with boundary on K and a Legendrian divide
on T 0 to find a bypass for K and hence K destabilizes. Case two is when t 2 Œem; e

a
m/

for m 6D n. Lemma 2.2 says that jt � .s=r/j is strictly greater than j.s=r/ � ea
mj and

j.s=r/ � ec
mj (since t is on the interior of Œec

m; e
a
m�). Thus there is a torus T 0 in S with

dividing slope ea
m . Using an annulus between K on T and a s=r ruling curve on T 0

we find a bypass for K and hence a destabilization. Finally in case three we consider
t 2 Œen; e

a
n/. In this case we can find a torus T 0 as in case one to destabilize K .

Step III Determine which stabilizations of the K˙ and Li are Legendrian isotopic:

We first notice that exactly as in [7, Lemma 4.12; 9, Theorem 3.6] we see that stabi-
lizations of the Li are Legendrian isotopic whenever they have the same Thurston–
Bennequin invariants and rotation numbers. (Recall this is easily established by showing
that when two of the Li are stabilized a minimal number of times to have the same
invariants they can both be realized as a ruling curve on the boundary of a standard
neighborhood of the same Legendrian knot in the knot type K .)

We will now concentrate on KC below, but analogous arguments also work for K� .
From Proposition 3.11 we see that Sx

CSy
�.KC/ sits on a torus T that bounds a solid

torus that thickens to N1 if x > c . In particular T sits inside a solid torus S used in
the construction of one of the Li (that is Li is a Legendrian dividing curve on @S ).
Thus we may use an annulus that Sx

CSy
�.KC/ and Li cobound to see that Sx

CSy
�.KC/

destabilizes to Li .

We are left to see that Sx
CSy
�.KC/ is not isotopic to any stabilization of the other

maximal Thurston–Bennequin invariant knots if x � c . But this is clear from part one
of Proposition 3.11 since any stabilization of one of the Li or K� sits on a convex
torus that does not bound a partially (or non) thickenable torus contained in NCn .

Proposition 5.2 With the notation above, suppose s=r 2 .ec
n; en/ for some n 2 I .

Then there is some k � 0 such that 1=.k � 1/ > s=r > 1=k and L.K.r;s// admits the
following classification.

(1) The maximal Thurston–Bennequin invariant is tb.K.r;s//D rs .

(2) For each integer i in the set

f˙.rCs.�kCl// j l D .pq�p�q�k/; .pq�p�q�k/�2; : : : ;�.pq�p�q�k/g;
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there is a Legendrian Li 2 L.K.r;s// with

tb.Li/D rs and r.Li/D i:

(3) There are two Legendrian knots K˙ 2 L.K.r;s// that do not destabilize but have

tb.K˙/D rs�
ˇ̌̌ s
r
� en

ˇ̌̌
and r.K˙/D˙r.n� 1/:

(4) All Legendrian knots in L.K.r;s// destabilize to one of the Li or K˙ .

(5) Let c D ..s=r/ � ea
n � .s=r/ � en/ � 1. For any y 2 N [ f0g and x � c the

Legendrian Sx
˙

S
y
�.K˙/ is not isotopic to a stabilization of any of the maximum

Thurston–Bennequin invariant Legendrian knots in L.K.r;s// or stabilizations
of K� .

(6) Any two stabilizations of the nondestabilizable Thurston–Bennequin invariant
Legendrian knots in L.K.r;s//, except those mentioned in item (5), are Legen-
drian isotopic if they have the same tb and r.

Proof We follow the standard approach to classifying Legendrian knots in a given
knot type outlined in Section 2.

Step I Identify the maximal Thurston–Bennequin invariant of the knot type and
classify Legendrian knots realizing this:

The computation of the maximal Thurston–Bennequin invariant is done in Lemma 2.9.

� Construction of maximal Thurston–Bennequin invariant knots in L.K.r;s//: This
is identical to part of the construction in Proposition 5.1. Let N1 be a standard neigh-
borhood of the maximal Thurston–Bennequin invariant Legendrian .p; q/–torus knot.
Inside N1 there are solid tori corresponding to stabilizing L, .pq� q�p/� k times.
The range of the rotation numbers for the Legendrian .p; q/–torus knots represented
by these tori is S D f.pq�p�q�k/; .pq�p�q�k/�2; : : : ;�.pq�p�q�k/g.
Denote these tori Sl for l 2 S . Inside each Sl there are two tori S˙

l
that come from

positively or negatively stabilizing the Legendrian knot corresponding to Sl . In the
thickened torus Sl �S˙

l
there is a unique convex torus T˙

l
with dividing slope s=r .

Let i D sl˙m where mD r � sk > 0 is the remainder. Denote by Li a Legendrian
divide on T˙

l
. We clearly have that tb.Li/D rs and the computation in the proof of

[9, Lemma 3.8] gives that r.Li/D i .

� Classification of maximal Thurston–Bennequin invariant knots in L.K.r;s//: If
K 2L.K.r;s// with tb.K/D rs then K sits on a convex torus with dividing slope s=r .
Theorem 1.12 and Corollary 1.13 say that such a torus is one of the ones considered
when constructing the Li . Thus, a by now standard argument (see [7]) says the torus
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must be isotopic to one of the ones used in those constructions from which we can also
conclude that K is isotopic to one of Li .

Step II Identify and classify the nondestabilizable, nonmaximal Thurston–Bennequin
Legendrian knots in L.K.r;s// and then show the rest destabilize to one of these or a
maximal Thurston–Bennequin Legendrian knot:

Let N˙m be the nonthickenable solid tori representing K that were constructed in
Section 3.1.

� Constructing the nondestabilizable Legendrian knots: consider the two tori N˙n .
Let K˙ be a ruling curve of slope .r; s/ on @N˙n . It is clear that the twisting of the
contact planes along K˙ with respect to the framing of K˙ coming from @N˙n is

�
1

2
jK˙ ��@N˙n

j D �

ˇ̌̌ s
r
� en

ˇ̌̌
:

Thus the Thurston–Bennequin invariant (that is the twisting with respect to the Seifert
surface for K˙ ) is

tb.K˙/D rs�
ˇ̌̌ s
r
� en

ˇ̌̌
:

Just as in Step I of the proof of Proposition 5.1 we compute

r.K˙/D˙r.n� 1/:

� Proving all nonmaximal Thurston–Bennequin invariant knots either destabilize or
have tbD rs� j.s=r/ � enj and sit as a ruling curve on @N˙n : Let L be a Legendrian
knot in L.K.r;s// with tb.L/ < rs . Let S be a solid torus representing the knot type K
that contains L in its boundary. We know that the twisting of the contact planes with
respect to @S is negative so we can make @S convex without moving L. If L does
not intersect the dividing curves �@S minimally (for curves in their homology classes)
then we will see a bypass for L on @S and hence L destabilizes. So we can assume
that L intersects �@S minimally.

Now if the dividing slope t of @S is not en then there are three cases to consider.
Case one is when t 62 Œem; e

a
m/ for any m. In this case Theorem 1.12 tells us that S

can be thickened to a standard neighborhood of a maximal Thurston–Bennequin knot
in L.K/. Thus there is a convex torus T parallel to @S (either inside S or outside S

depending on t ) with dividing slope s=r . We can use an annulus between T and @S
with boundary on L and a Legendrian divide on T to find a bypass for L and hence
L destabilizes. Case two is when t 2 Œem; e

a
m/ for m 6D n. Lemma 2.2 says that

jt � .s=r/j is strictly greater than j.s=r/ � ea
mj and j.s=r/ � ec

mj (since t is on the interior
of Œec

m; e
a
m�). Thus there is a torus T in S with dividing slope ea

m . Using an annulus
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between K on T and a s=r ruling curve on T we find a bypass for L and hence a
destabilization. Finally in case three we consider t 2 .en; e

a
n/. In this case we have

that j.s=r/ � t j> j.s=r/ � enj. We can thus use an annulus between L on @S and a s=r

ruling on @N˙n to find a bypass for L.

If t D en then L is a ruling curve on @S . If S is not N˙n then S will thicken to N1

and thus we can again destabilize L as in case one of the previous paragraph. So we
see that L will destabilize unless it is a ruling curve on N˙n . Of course in this case
tb.L/D rs� j.s=r/ � enj.

� Proving the knots K˙ do not destabilize: It K˙ destabilized then by the above
work they would be stabilizations of one of the Li . Thus K˙ could be put on some
convex torus other than @N˙n , but this contradicts Proposition 3.12.

� Proving any Legendrian knots with tbD rs� j.s=r/ � enj either destabilize or are
isotopic to K˙ : This is immediate from the work above and Corollary 1.13.

Step II Determine which stabilizations of the K˙ and Li are Legendrian isotopic:

The stabilizations of the Li all become Legendrian isotopic whenever they have
the same Thurston–Bennequin invariants as discussed in Step III of the proof of
Proposition 5.1.

From Proposition 3.12 we know that Sx
˙

S
y
�.K˙/, for any y 2N[f0g and x � c , can

be put only on the convex torus @N˙n . Thus it is clear that Sx
˙

S
y
�.K˙/ is not isotopic

to any stabilization of a Li or of K� .

We also know from Proposition 3.11 that ScC1
˙

S
y
�.K˙/ can be put on a convex torus

that bounds a solid torus that thickens to N1 and thus is a stabilization of the Li .

Proofs of Theorems 1.5 and 1.9 Theorem 1.9 is an immediate consequence of Propo-
sitions 5.1 and 5.2 together with Theorems 4.1, 4.2 and 4.3. Theorem 1.5 is clear from
the statement of Theorem 1.9.

Proofs of Theorems 1.6 and 1.10 Theorem 2.5 tells us that the classification of
transverse knots is equivalent to the classification of Legendrian knots up to negative
stabilization. Thus the Theorem 1.10 is a corollary of Theorem 1.9. Theorem 1.6 follows
from Theorem 1.10 once one observes that if we choose s=r DmekCnea

k
(where the

addition is done as on the Farey tessellation), then .s=r/ � .1=.pq�p� q// > n. As
a result, the nondestabilizable transverse knot will have self-linking number at least 2n

less than maximal; furthermore, it will take .s=r/ � ea
k
Dm stabilizations before it be-

comes isotopic to a stabilization of the maximal self-linking number transverse knot.
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6 Cables of the trefoil

We are now ready to classify non-Legendrian simple cables of the positive trefoil knot.

Proposition 6.1 Let K be the positive trefoil knot. Suppose that n� 1 and .r; s/ is a
pair of relatively prime integers such that s

r
2 Œn; nC 1/. Then the .r; s/–cable K.r;s/

of K is not Legendrian simple and Legendrian knots in this knot type have the following
classification.

(1) The maximal Thurston–Bennequin number is tb.K.r;s//D rs .

(2) There are n Legendrian knots L
j
˙
2 L.K.r;s//; j D 1; : : : ; n, with

tb.Lj
˙
/D rs and r.Lj

˙
/D˙.s� r/:

(3) If s=r 6D n then there are two Legendrian knots K˙ 2 L.K.r;s// that do not
destabilize but have

tb.K˙/D rs�
ˇ̌̌ s
r
� .nC 1/

ˇ̌̌
and r.K˙/D˙

�
s� r C

ˇ̌̌ s
r
� .nC 1/

ˇ̌̌�
D˙rn:

(4) All Legendrian knots in L.K.r;s// destabilize to one of the L
j
˙

or K˙ .

(5) Let c D r � 1. For any y 2N , x � c and j > 1 the Legendrian Sx
˙

S
y
�.L

j
˙
/ is

not isotopic to a stabilization of any of the other Li
˙

’s the L
j
� , K˙ or K� .

(6) Let c0 D r �j.s=r/ � .nC 1/j�1D s�nr �1. For any y 2N [f0g and x � c0

the Legendrian Sx
˙

S
y
�.K˙/ is not isotopic to a stabilization of any of the L

j
˙

’s
or K� .

(7) Any two stabilizations of the L
j
˙

or K˙ , except those mentioned in item (5)
and (6), are Legendrian isotopic if they have the same tb and r.

Proof We follow the standard approach to classifying Legendrian knots used above.

Step I Identify the maximal Thurston–Bennequin invariant of the knot type and
classify Legendrian knots realizing this:

The computation of the maximal Thurston–Bennequin invariant is done in Lemma 2.9.

� Construction of maximal Thurston–Bennequin invariant knots in L.K.r;s//: This is
identical to the construction from the last section. Let N1 be a standard neighborhood of
the maximal Thurston–Bennequin invariant Legendrian positive trefoil knot. Inside N1

there are two solid tori S˙ that come from positively or negatively stabilizing the
Legendrian knot corresponding to N1 . In the thickened torus N1 � S˙ there is a
unique convex torus T˙ with dividing slope s=r . Let L1

˙
be a Legendrian divide
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on T˙ . We clearly have that tb.Li/ D rs and the computation in the proof of [9,
Lemma 3.8] gives that r.Li/D˙.s� r/.

Now consider the nonthickenable tori N˙j from Theorem 1.12. For j � n we can find
a convex torus T˙j with dividing slope s=r . Let L

j
˙

be a Legendrian divide on T˙j .
Again it is clear that tb.K˙/D rs . Recall that from Lemma 2.8 we know that

r.Lj
˙
/D r r.@D/C s r.@†/;

where D is a meridional disk for T˙j with Legendrian boundary and † is a surface
outside the solid torus T˙j bounds with Legendrian boundary on T˙j . If D0 and †0

are the corresponding surfaces for @N˙j then we know from Lemma 3.4 that r.@D0/D
˙.j �1/ and r.@†0/D 0. Thus the rotation number of an .r; s/–ruling curve on @N˙n
is ˙r.j � 1/. To compute the rotation number for the Legendrian divide on T˙j we
use the classification of tight contact structures on thickened tori, as given in [11], and
the fact that N˙j is universally tight. In particular, we can compute the relative Euler
class e of the thicken torus cobranded by N˙j and T˙ :

PD.e/D˙..r; s/� .1; j // 2H1.T
2
� I IZ/;

where PD stands for the Poincaré dual and we are using the basis for H1 given by the
meridian and longitude. We can use this to compute the difference between the rotation
number of the .r; s/ curve on @N˙j and on T˙j which is ˙.r.s� j /� s.r �1/. Thus
we have that r.Lj

˙
/D˙.s� r/.

� Classification of maximal Thurston–Bennequin invariant knots in L.K.r;s//: If
K 2L.K.r;s// with tb.K/D rs then K sits on a convex torus with dividing slope s=r .
Theorem 1.12 and Corollary 1.13 say that such a torus is one of the ones considered
when constructing the L

j
˙

. Thus, a by now standard argument (see [7]) says the torus
must be isotopic to one of the ones used in those constructions from which we can also
conclude that K is isotopic to one of the L

j
˙

.

Step II Identify and classify the nondestabilizable, nonmaximal Thurston–Bennequin
Legendrian knots in L.K.r;s// and then show the rest destabilize to one of these or a
maximal Thurston–Bennequin Legendrian knot:

Let N˙m be the nonthickenable solid tori representing K that were constructed in
Section 3.1.

� Constructing the nondestabilizable Legendrian knots: If s=r D n then there are
no nondestabilizable knots. Otherwise consider the two tori N˙

nC1
. Let K˙ be a

ruling curve of slope .r; s/ on @N˙
nC1

. It is clear that the twisting of the contact planes

Geometry & Topology, Volume 16 (2012)



Legendrian and transverse cables of positive torus knots 1687

along K˙ with respect to the framing of K˙ coming from @N˙n is

�
1

2
jK˙ ��@N˙

nC1
j D �

ˇ̌̌ s
r
� .nC 1/

ˇ̌̌
:

Thus the Thurston–Bennequin invariant (that is the twisting with respect to the Seifert
surface for K˙ ) is

tb.K˙/D rs�
ˇ̌̌ s
r
� .nC 1/

ˇ̌̌
:

Just as in the proof of Proposition 5.1 we compute

r.K˙/D˙
�
s� r �

ˇ̌̌ s
r
� .nC 1/

ˇ̌̌�
;

or, more simply, r.K˙/D˙rn.

� Proving all nonmaximal Thurston–Bennequin invariant knots either destabilize or
have tb D rs � j.s=r/ � .nC 1/j and sit as a ruling curve on @N˙

nC1
: Assume that

s=r 6D n (since otherwise there are no-nondestabilizable knots). Let L be a Legendrian
knot in L.K.r;s// with tb.L/ < rs . Let S be a solid torus representing the knot type K
that contains L in its boundary. We know that the twisting of the contact planes with
respect to @S is negative so we can make @S convex without moving L. If L does
not intersect the dividing curves �@S minimally (for curves in their homology classes)
then we will see a bypass for L on @S and hence L destabilizes. So we can assume
that L intersect �@S minimally.

Now if the dividing slope t of @S is not nC 1 then there are three cases to consider.
If t < 0 then S thickens to N1 and in particular there is a convex torus with dividing
slope s=r either inside or outside S . We may use an annulus between L and a dividing
curve on this torus to destabilize L. If t > nC1, then S contains a solid torus S 0 with
convex boundary having infinite dividing slope. Lemma 2.2 guarantees that jt � .s=r/j

is greater than j.1=0/ � .s=r/j. Thus we may take a convex annulus from L to a
ruling curve on @S 0 and use the Imbalance Principle to find a bypass, and hence a
destabilization, for L. Finally if t 2 .n; nC 1/, then there is a torus with dividing
slope s=r either inside or outside of S , and we may use an annulus between L and a
dividing curve on this torus to destabilize L.

If t D nC 1 then L is a ruling curve on @S . If S is not N˙
nC1

then S will thicken
to Nk for some k�n and thus we can again destabilize L as in case one of the previous
paragraph. So we see that L will destabilize unless it is a ruling curve on N˙

nC1
. Of

course in this case tb.L/D rs� j.s=r/ � .nC 1/j.

� Proving the knots K˙ do not destabilize: If K˙ destabilized then by the above
work they would be stabilizations of one of the L

j
˙

. Thus K˙ could be put on some
convex torus other than @N˙n , but this contradicts Proposition 3.12.
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� Proving any Legendrian knots with tbD rs� j.s=r/ � .nC 1/j either destabilize or
are isotopic to K˙ : This is immediate from the work above and Corollary 1.13.

Step III Determine which stabilizations of the K˙ and Li
˙

are Legendrian isotopic:

The stabilizations of the L1
˙

are shown to be Legendrian isotopic when they have the
same classical invariants in the usual fashion as discussed in the proof of Proposition 5.1.

From Proposition 3.11, when j > 1, we know that Sx
˙

S
y
�.L

j
˙
/, for any y 2N [f0g

and x � c , can be put only on the convex torus @N˙j . Thus it is clear that Sx
˙

S
y
�.K˙/

is not isotopic to any stabilization of any of the other L
j
˙

, K˙ or K� . Similarly if
s=r 6D n then for x � c0 , Proposition 3.12 says that Sx

˙
S

y
�.K˙/ can only be put on

the convex torus @N˙
nC1

and hence is not isotopic to any stabilization of the L
j
˙

or
to K� .

We also know from Propositions 3.11 and 3.12 that ScC1
˙

S
y
�.L

j
˙
/ and Sc0C1

˙
S

y
�.K˙/

can be put on a convex torus that bounds a solid torus that thickens to N1 and thus is a
stabilization of the L1

˙
.

Proof of Theorem 1.1 and Theorem 1.7 Theorem 1.7 simply collects the results
from Proposition 6.1 and Theorems 4.1 and 4.2. For Theorem 1.1 we can choose
s=r D .knCm.n � 1//=.k Cm/. One may easily check using Theorem 1.7 that
L.K.r;s// contains n� 1 Legendrian knots L1; : : : ;Ln�1 with maximal Thurston–
Bennequin invariant (which will be rs in this case) and rotation number s � r . It
also contains one nondestabilizable knot L0 with tbD rs� j.s=r/ � nj D rs�m and
rotation number s� r Cm. Moreover, one must stabilize L0 positively k times before
it becomes isotopic to a stabilization of one of the Li .

Proof of Theorem 1.3 and Theorem 1.8 Theorem 2.5 tells us that the classification
of transverse knots is equivalent to the classification of Legendrian knots up to negative
stabilization. Thus Theorem 1.8 is a corollary of Theorem 1.7. Turning to Theorem 1.3
we see that choices similar to those in the previous proof yield the desired result.
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