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Prym varieties of spectral covers

TAMAS HAUSEL
CHRISTIAN PAULY

Given a possibly reducible and non-reduced spectral cover 7: X — C over a smooth
projective complex curve C we determine the group of connected components of
the Prym variety Prym(X/C). As an immediate application we show that the finite
group of n—torsion points of the Jacobian of C acts trivially on the cohomology
of the twisted SL,—-Higgs moduli space up to the degree which is predicted by
topological mirror symmetry. In particular this yields a new proof of a result of
Harder—Narasimhan, showing that this finite group acts trivially on the cohomology
of the twisted SL, stable bundle moduli space.

14K30; 14H60, 14H40

1 Introduction

Recently there has been renewed interest in the topology of the Hitchin fibration. The
Hitchin fibration is an integrable system associated to a complex reductive group G
and a smooth complex projective curve C. It was introduced by Hitchin [18] in 1987,
originating in his study of a 2—dimensional reduction of the Yang-Mills equations. In
2006, Kapustin and Witten [20] highlighted the importance of the Hitchin fibration for
S —duality and the Geometric Langlands program. While the work of Ngo [28] in 2008
showed that the topology of the Hitchin fibration is responsible for the fundamental
lemma in the Langlands program. In Ng&’s work and later in the work of Frenkel and
Witten [9] a certain symmetry of the Hitchin fibration plays an important role.

In this paper we focus on the Hitchin fibration for the group G = SL,, and for a line
bundle M over C, that is, the morphism

n
(1) h: M— Ay =@ HO(C. M7).
j=2

Here M denotes the quasi-projective moduli space of semi-stable Higgs bundles
(E,¢) over C of rank n, fixed determinant A and with trace-free Higgs field ¢ €
H°(C,Endy(E) ® M). In the case of SL, the above mentioned symmetry group
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of the Hitchin fibration is the Prym variety of a spectral cover. For the topological
applications the determination of its group of components is the first step. Ngd works
with integral, that is irreducible and reduced, spectral curves; but it is interesting to
extend his results to non-integral curves. For reducible but reduced spectral curves it
was achieved by Chaudouard and Laumon [5], who proved the weighted fundamental
lemma by generalizing Ng6’s results to reduced spectral curves. In this paper we
determine the group of connected components of the Prym variety for non-reduced
spectral curves as well.

In order to state the main theorem we need to introduce some notation. We associate
to any spectral cover : X — C a finite group K as follows: let X = | J;c; X; be its
decomposition into irreducible components Xj, let X; red be the underlying reduced
curve of X;, m; i the multiplicity of X red iy X; and X Fred the normalization of X;. We
denote by 7;: X; Yred 5 C the projection onto C and 1ntroduce the finite subgroups

K; =ker (7} Pic®(C) — Pic® (X)) c Pic®(C),

as well as the subgroups (K;)m; = [m;]7'(K;), where [m;] denotes multiplication
by m; in the Picard variety Pic®(C) parameterizing degree 0 line bundles over C.
Finally, we put

) K = ("\(Ki)m, CPic’(C).

iel
We denote by C, the multiple curve with trivial nilpotent structure of order n having
underlying reduced curve C.

We consider the norm map Nmy/c: Pic®(X) — Pic®(C) between the connected
components of the identity elements of the Picard schemes of the curves X and C and
define the Prym variety

Prym(X/C) :=ker(Nmy/,c).

Our main result is the following

Theorem 1.1 Let w: X — C be a spectral cover of degree n > 2. With the notation
above we have the following results:

(1) The group of connected components mwo(Prym(X/C)) of the Prym variety
Prym(X/C) equals

7o(Prym(X/C)) = K,

where K = Hom(K, C*) is the group of characters of K .
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(2) The natural homomorphism from the group of n—torsion line bundles Pic®(C)[n]
to wo(Prym(X/C)) given by

®: Pic®(C)[n] — mo(Prym(X/C)), y = [*y],
where [*y] denotes the class of 7*y € Pic®(X) in mo(Prym(X/C)) is surjec-
tive. In particular, we obtain an upper bound for the order
|70 (Prym(X/C))| < n?,
where g is the genus of the curve C.

(3) The map ® is an isomorphism if and only if X equals the non-reduced curve
C,, with trivial nilpotent structure of order n.

Similar descriptions of mo(Prym(X/C)) were given by Ngd in [27] in the case of
integral spectral curves and by Chaudouard and Laumon [5] in the case of reducible
but reduced spectral curves. Also de Cataldo, Hausel and Migliorini [6] use special
cases for SL,.

For a characteristic a € .Ag we denote by m: X; — C the associated spectral cover
of degree n (see Section 2.2) and by K, the subgroup of Pic®(C) defined in (2) and
corresponding to the cover Xy . Let ' C Pic®(C)[n] be a cyclic subgroup of order d of
the finite group Pic®(C)[n] of n—torsion line bundles over C and let .Al(l C A9 denote
the endoscopic sublocus of characteristics a such that the associated degree n spectral
cover m: X; — C comes from a degree % spectral cover over the étale Galois cover of
C with Galois group I' (for the precise definition see Section 5.1). With this notation
we have the following

Theorem 1.2 We have an equivalence

Frck, << acA}.

This gives a description of the locus of characteristics a € A9 such that the Prym
variety Prym(X,/C) is non-connected, because clearly A(l)“z C AIQI if I'y C Ty

Corollary 1.3 The sublocus of characteristics a € A,‘; such that the Prym variety
Prym(X,/C) is not connected equals the union

(3) Aendo = U AO s

where I" varies over all cyclic subgroups of prime order of Pic®(C)[n].
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Calculating the dimensions of the endoscopic loci .A% will lead to an immediate
topological application. Recall that Pic®(C)[n] acts on M by tensorization, and this
will induce an action on the rational cohomology H™*(M; Q). We then have

Theorem 1.4 Let n > 1 and p, be the smallest prime divisor of n. Assume that
M = K¢, the canonical bundle of C, and that (n,deg(A)) = 1. Then the action of
Pic®(C)[n] on H¥(M; Q) is trivial, provided that

k=2n*(1=1/pn)(g —1).

In fact this result should be sharp, as the topological mirror symmetry conjecture of
Hausel and Thaddeus [17, Conjecture 5.1] predicts that the smallest degree where
Pic®(C)[n] acts non-trivially is

k=n*(1—1/pp)(2g—2) + 1.

This results hints at the close connection between Ng&’s strategy in [27; 28] for studying
the symmetries of the Hitchin fibration and the topological mirror symmetry conjectures
in [17]. More discussion on this connection can be found in Hausel [15].

Finally let A/ denote the moduli space of stable vector bundles of rank n and fixed
determinant A over C. Again the finite group Pic®(C)[n] acts on A by tensoriza-
tion and thus on H*(N;Q). As the cohomology H*(N’; Q) is a summand in the
cohomology of H*(M; Q) we can deduce

Corollary 1.5 The finite group Pic®(C)[n] acts trivially on H*(N; Q).

This was the main application of Harder—Narasimhan in [13, Theorem 1]. Our proof
here can be considered as an example of both the abelianization philosophy of Atiyah—
Hitchin [1, Section 6.3] and Ngd&’s strategy [27; 28] of studying the symmetries of the
Hitchin fibration.

The paper is organized as follows. In sections 2 and 3 we recall basic results on spectral
covers and on the norm map Nmy,c. In sections 4 and 5 we prove the two main
theorems. In section 6 we describe the action of the Prym variety Prym(X,/C) on
the fiber over a € Ag of the SL,,—Hitchin fibration. Finally in section 7 we apply the
results in this paper to prove Theorem 1.4 and its Corollary 1.5.

Notation Given a sheaf F over a scheme X and a subset U C X we denote by
F(U) orby I'(U, F) the space of sections of F over U.
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2 Preliminaries

2.1 Two lemmas on abelian varieties

Given an abelian variety A and a positive integer n we denote by [n]: A — A4 the
multiplication by n, by A[n] = ker[n] its subgroup of n—torsion points and by 4 =
Pic®(A) its dual abelian variety. We consider

fiA— B

a homomorphism between abelian varieties with kernel K = ker( /) which we assume
to be finite. We let f : B — A denote the dual map induced by f. We introduce the
quotient abelian variety A’ = A/ K, so that we can write the homomorphism f as a
composite map .

f=jo/1v:Ai>A/L>B,

where p is an isogeny with kernel K and j is injective.

Lemma 2.1 The group of connected components of the abelian subvariety ker( f )C B
equals

mo(ker(f)) = K,
where K = Hom(K, C*) is the group of characters of K .

Proof We consider the dual map

~
~ A

fiBLa5 4

and observe that [i: A’ — A isan isogeny with kernel K (see, for example, Birkenhake
and Lange [4, Proposition 2.4.3]) and j has connected fibers (see, for example, [4,
Proposition 2.4.2]). The lemma then follows. O

We also suppose that A and B are principally polarized abelian varieties, that is, the
polarizations induce isomorphisms 4 = 4 and B =~ B.
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Lemma 2.2 We assume that there exists a homomorphism g: B — A such that
g o f =[n] for some integer n. Then the dual of the canonical inclusion i: K — A[n]
is a surjective map

it Aln] = Aln] — K,
which coincides with the restriction to A[n] of the composite map fo g:A—> B— A

~

Proof It suffices to observe that the isogeny f o g = [n] = [n] factorizes as
m: 4228 4 s o4,

that K = ker(f1), and that fo g is surjective. Hence a canonical surjection A[n] — K,

~

which is dual to the inclusion i: K < A[n], since [n] = [n]. a

2.2 Spectral covers

In this section we review some elementary facts on spectral covers.

Let C be a complex smooth projective curve and let M be a line bundle over C with
deg M > 0. We denote by | M| the total space of M and by

. | M|—C
the projection onto C. There is a canonical coordinate ¢t € HO(|M |, 7* M) on the
total space | M |. The direct image decomposes as follows
o0 .
7Oy = Sym'(M_l) = @ M.
i=0
Definition 2.3 A spectral cover X of degree n over the curve C and associated to the

line bundle M is the zero divisor in |M | of a non-zero section s € HO(|M |, n*M™").

Since a spectral cover X is a subscheme of |M |, it is naturally equipped with a
projection onto C, which we also denote by . The decomposition of the section s
according to the direct sum

[e.¢]
HO(M|, 7*M") = H® (C, M"® @ M_i) (projection formula)
i=0
=H(C.M")®---® H'(C.M)® H°(C,Oc¢)

gives an expression s = 5o 4 £51 4+ -+ + " Ls,_; + t"s, with sj € H(C, M),
Here we also denote by s; its pull-back to |M |. We note that there is an isomorphism
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7*: Pic(C );Pic(|M |), hence any line bundle over |M| is of the form 7*L for
some line bundle L € Pic(C). More generally, we have a decomposition

HO(M|,n*L)=H*(C,L)® H*(C, LMY &---& H*(C,LM~9)
for some integer d and any section s € HO(|M |, 7* L) can be written in the form
“4) s:s0+ts1+---+td_1sd_1+tdsd, SjEHO(C,LM_j).

Lemma 2.4 Let w: X — C be a spectral cover. Then the underlying reduced curve of
each irreducible component of X is again a spectral cover associated to the line bundle
M.

Proof It suffices to show that if the section s € HO(|M |, 7* M") decomposes as
s = sW . 5@ with s@ e HO (M|, 7*L;) for i = 1,2 and L{L, = M", then
L; = M" and ny 4+ n, = n. By (4) the section s can be written as

(5) sO =5 i@ 4o ymis O,

with s}i) e HY(C,L;M~7) and s,(lll.) #£ 0. Moreover n; = deg(X @ /C) with X® =
Zeros(s?). By considering the highest order terms of (5) we obtain the relations
ny+n,=n and s,gll) 'S’(122) =s,€ H°(C,Oc¢). Since s, is a non-zero constant section,

we conclude that L; = M"i | O

We introduce the SL,— and GL,-Hitchin space for the line bundle M over the curve
C

Ad(C, M) = @HO (C,M7) and A,(C,M)= @HO (C, M).
j=2 j=

If no confusion arises, we simply denote these vector spaces by A2 and A, . Note that
A% C A,. Given an element a = (ay, ..., an) € Ay with aj € HO(C, M7), called a
characteristic, we associate to a a spectral cover of degree n

Ta: Xg —> C, Xq = Zeros(sg) C | M|,
with
(6) Sa=t"+a;t" "+ ta,_it+a,€ HO (M|, 7*M").

Remark 2.5 Given a € A,, we observe that the pull-back of the spectral cover X, C

| M | by the automorphism of | M| given by translation with the section —=L, that is,
x,y)—>(x,y— %al (x)), equals the spectral cover X, for some a’ € AY; equlvalently
do the change of variables ¢ — ¢ — %L . Hence X, =~ X, . It therefore suffices to restrict
our study to spectral covers X, for ac .Ag.

Geometry & Topology, Volume 16 (2012)
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2.3 Non-reduced curves

Let X be an irreducible curve contained in a smooth surface and let X™¢ denote its
underlying reduced curve. Then there exists a global section s of a line bundle such
that X" = Zeros(s) and an integer k such that X = Zeros(s¥). We introduce the
subschemes X; = Zeros(si) for i =1,...,k, so that we have a filtration of X by
closed subschemes

X=X cX,C---CXp=2X.

In that case we say that X has a nilpotent structure of order k. For any integer i
we denote by Oy; the structure sheaf of the subscheme X; C X'. Note that Oy; is
naturally a Ox —module.

‘We need to recall a result on the local structure of coherent sheaves on non-reduced

curves.

Theorem 2.6 (Drézet [8, Théoreme 3.4.1]) Let X be a curve with nilpotent structure
of order k and let £ be a coherent sheaf over X . Then there exists an open subset
V C X depending on £ and integers m; such that

k
~ ©m;
SIV —> @OX,- v
i=1

The sheaf on the right is called a quasi-free sheaf.

3 The norm map

In this section we recall the definition of the norm map and prove some of its properties.
The standard references are Grothendieck [11, Section 6.5] and [12, Section 21.5].

3.1 Definition

Let C be a smooth projective curve and let
. X —C

be any finite degree n covering of C. The O¢ —algebra 7.O¢ will be denoted B and
the group of invertible elements in 3 by B*. Note that B is a locally free sheaf of
rank 7. Let U C C be an open subset and let s € I'(U, B) = I'(w~1(U), Ox) be a
local section. One defines (see [11, Section 6.5.1])

Ny/c(s) = det(us) € T(U. Oc)

Geometry & Topology, Volume 16 (2012)
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where ws: By — By is the multiplication with the section s. Moreover s is invertible
in I'(U, B) if and only if Ny,c(s) is invertible in I'(U, Ox). We have the following
obvious relations

(7 Nxyc(s-s") = Nx;c(s)-Nxsc(s),  Nxsc(hs) =1"Nx;c(s)

for any local sections s and s” of B and any local section A of O¢.

Let £ be an invertible 5—module. We can choose a covering {U; },ca of C by open
subsets and trivializations 1,: Ly, — Bjy, . Then (wy ;) uea With
Wx,u =Tpo0 77;,|1U)\mUM el(UynN U..B)

is a 1-cocycle with values in B* and (Ny,c (@ u))a,uen is a 1—cocycle with values
in OF, the sheaf of invertible elements of O¢ . This 1—cocycle determines an invertible
sheaf over C, which we denote by Nmy ;¢ (£). The following properties easily follow

from (7)
®) Nmy,c (L ® L") = Nmy,c (L) ® Nmy, ¢ (L),
Ny, ¢ (" M) = M®",

for any two invertible sheaves £ and £’ over X and for any invertible sheaf M over
C. We therefore obtain a group homomorphism between the Picard groups of the
curves X and C called the norm map

Nmy,c: Pic(X) — Pic(C), L+ Nmy,c(L).

3.2 Properties

In the case X is smooth, the norm map Nmy,¢c has a more explicit description in
terms of divisors associated to line bundles.

Proposition 3.1 (Grothendieck [12, Section 21.5]) Assume that X is a smooth curve.
The norm map, as defined above, coincides with the map

L= OX(Z”:’P:‘) = Nmy,c(£) = OC(Z”i”(Pi))’

iel iel
where n; € 7 and p; € X . Note that this map is well-defined, that is, Nmy ;¢ (L) only
depends on the linear equivalence class of the divisor ) ;. n; p;.

From now on the curve X is again an arbitrary cover of C.

Geometry & Topology, Volume 16 (2012)
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Lemma 3.2 Let 0 —» & - F — T — 0 be an exact sequence of Oy —modules. We
assume that £ and F are torsion-free and that T is a torsion sheaf. Let @o be a local
morphism over 7~ (U) for some open subset U C C between exact sequences

0 E F T 0
) l e l oF l o7
0 E F T 0

We consider the O¢ -linear maps induced by ¢¢ and @ in the direct image sheaves
m«€ and .« F . Then we have the equality

det(pe) = det(¢r) € T (U, Op).

Proof It is enough to show that the two local sections det(¢g) and det(pr) coincide
in the local rings Oc,, for every point p € U. We put A = O¢,, and K = Fr(A)
and denote by E, F and T the corresponding A-modules of sheaves £, F and T .
Then E and F are free A-modules, hence we have injections £ — E ® 4 K and
F— F®y4 K. Since T is a torsion module, we have T ®4 K = 0. Then after
localizing (9) at p € C and taking tensor product with K, we obtain the commutative
diagram

~

E®AK F®AK
(PE®idVJ J(OF(X)id
E®q K F®R4K,

~

where the horizontal maps are isomorphisms. So ¢ g ® id and ¢ ® id are conjugate,
hence det(pr ® id) = det(pr ® id) € K. On the other hand det(pr ® id) and
det(pF ®id) are elements in 4 C K, hence we obtain the desired equality. a

In the sequel we will use the following properties of the norm map:

Corollary 3.3 Let £ and F be two torsion-free Oy —modules such that
0—E&—F—T—0,

where T is a torsion Oy —-module. Let s € T'(U,B) = I'(x~'(U), Ox) be a local
section of B over the open subset U C C . We consider the maps induced by the multipli-
cation with the section s in the direct image sheaves n«& and mw«JF , which we denote
by ;Lf € Homo . () (m+EU), nxE(U)) and uf € Homop () (m« F(U), mx F(U)).
Then we have the equality

det(u§) = det(u]) € T(U, Oc).

Geometry & Topology, Volume 16 (2012)
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Lemma 3.4 Let p: X > X bea covering such that the cokernel of the canonical
inclusion Oy < p«O g is a torsion Ox —module. Then, for any invertible sheaf £
over X we have

Nmi/c(p*ﬁ) = Nmy/,c(L).
Proof We consider the exact sequence
(10) 0— Ox — pxOg5g — T —0,

where 7 is a torsion Oy -module. Note that the direct image p«O g is torsion-free.
We denote the O¢ —algebra 7« p:O g b){v B. Note that B is a B—module. Let £
be an invertible Ox —module, n,: Ly, —> By, be a set of trivializations of L as
B-module, and (wj )i uea be the corresponding 1—cocycle with values in B*.
Then the pull-back p*L corresponds to a 1—cocycle (p*wy ;)i uea With values
in B* obtained from (wy, )1, uer under the canonical inclusion B < B. We now
apply Corollary 3.3 to the exact sequence (10) and conclude that N £/ 0P oy ) =
Nyc(wy,u) € T(Up NU,, Oc). This proves the lemma. O

Lemma 3.5 Let X = |J/_, X; be the decomposition of X into irreducible compo-
nents X;. For an invertible sheaf L, we denote by L; = L ® oy, Oy; its restriction to
X;. Then, we have the equality

,
Ny, (£) = Q) Ny, /¢ (£i).

i=1

Proof We apply the previous lemma to the covering p: X = L', Xi > X given
by the disjoint union of the curves Xj. a

Lemma 3.6 Let X be an irreducible curve and let j: X™! < X be its underlying
reduced curve. Let m be the multiplicity of X™% in X . Then, for any invertible sheaf
L over X we have

Nmy,c(£) = Nmyws,c(j*£)®".

Proof The Oc-algebra B = n+Ox comes equipped with a nilpotent ideal sheaf
J C B such that Bieg = B/ J = mxOyxrea. We choose a covering {U) }pea of C by
open subsets which trivialize the invertible sheaf L, that is, there exists isomorphisms
m.: Ly, — Bjy, and such that J|y, is generated by an element 7 € B|y, . Then
multlphcatlon with the invertible element w), ,, = © nuIU nu,, Preserves the filtration
"= 1l%’|UA - C tBjy, C Bjy, and acts on the quotients as multiplication with

red Blrgd nU, . It follows that Ny, c(wy u) = NXred/C(wie(iL) which proves the
lemma a
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3.3 The Prym variety Prym(X/C)

Given a spectral cover 7: X — C we denote by Pic®(X) the connected component of
the identity element of the Picard group of X (see, for example, Kleiman [22]). We
then define the Prym variety Prym(X/C) to be the kernel of the Norm map Nmy ¢

Prym(X/C) := ker (NmX/C: Pic®(X) — PicO(C)).

We recall that n denotes the degree of the cover #: X — C. We choose an ample line
bundle O¢ (1) over C and denote by Ox (1) = 7*O¢ (1) its pull-back to X and by
6 =degOc(1).

Definition 3.7 Let £ be a coherent Ox —module. The rank and degree of £ with re-
spect to the polarization Oy (1) are the rational numbers rk(€) and deg(€) determined
by the Hilbert polynomial

X(X,E®Ox (1)) = nélrk(E) + deg(€) + rk(E) x(Ox).

The slope of £ is defined by u(€) = iig((gg)) . The sheaf £ is stable (resp. semi-stable) if

& is torsion-free and for any proper subsheaf £ C £ we have the equality (&) < u(€)
(resp. <).

Remark 3.8 The definitions of rank and degree of a coherent sheaf £ over X above
coincide with the classical ones when the curve X is integral. The (semi-)stability con-
dition above coincides with the (semi-)stability condition introduced by Simpson [31].

Remark 3.9 Using the equality x(X,E ® Ox (1)) = x(C, 7+€ ® O¢c(l)) we obtain
the following formulae

nrk (&) = k(&)

(i and deg(&) + k(&) x(Ox) = deg(m+&) + k(&) x (O¢).

Proposition 3.10 Let £ be a torsion-free Oy —module of integral rank r = 1k(€) and
let £ be an invertible Ox —module. Then we have the relation

det(rm4 (€ ® L)) = det(7+E) ® Nmy ¢ (£)®”.

Proof We shall use the notation of Section 3.1. Since £ is torsion-free, the direct
image 74& is a locally free O¢c—module. We choose a covering {Uy },cp of C for
which both £ and 7«& are trivialized, that is, such that there exists local isomorphisms

oy Ty, — (93\’” and . Ly, — Bu, .

Geometry & Topology, Volume 16 (2012)
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Since L is trivial on U) we have an isomorphism
ide ®13: EQ £|UA —E® B|UA»
which we can consider as an isomorphism between O¢—modules
ide ®1): 14 (ER® [’)lUx — JT*E|UA.
We compose with «; to obtain a trivialization of 74(€ ® L)y,

ide 1) )
Bi: mx(E® L)y, —> 71*5|UA—>(’)(QX".

Given A, € A we can now write the transition functions f , = 8, o ,3;1 of the
vector bundle 74(€ ® L) as

1
@ ide Qw1 o) ®
Sau: OF " — (mE)u, . — @Owu,, — (’)U;",

where we denote by wy, ,, = 1), 07, 1 the B*—valued transition functions of the line
bundle £. We deduce from this expression the relation

det(fk,u) = det(gy ) - det(ide ®wy ;).

where g; , = ) © oz;l denotes the transition functions of the vector bundle 7.&.
Hence the proposition follows if we show the relation det(ids ®wy, ) = det(wy ,)",
which is proved in the next Lemma. a

Lemma 3.11 Let £ be a torsion-free Oy —module and let
sel(U,B) =T (x"1(U),0x)
be a local section of B over the open subset U C C. We denote by
/Lf € Homp. () (mxE(U), mxE(U))
the map induced by multiplication with the section s. Then we have an equality
det(uf) = det(us)” € T(U, O¢).
Proof By Theorem 2.6 there exists an open subset j: V <> X such that j*& is

isomorphic to j*Q where Q is a quasi-free sheaf of the form @l_l Oeam’ We then
apply Corollary 3.3 to the two exact sequences

Geometry & Topology, Volume 16 (2012)
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where 7; are torsion sheaves. This leads to the equality det(u?) = det(/LsQ). It
therefore suffices to compute det(,usg) in terms of det(us). We put n = k -/ with
[ =deg(X™/C). Then we have

k k k
1 1 1
r =1k(€) =1k(Q) = " E mirk(m«Oy,) = . E mjil = A E mji.

i=1 i=1 i=1

Let A= Oc,, denote the local ring at the point p € C and let B denote the localization
of 7.Oyx at the point p € C. Thus B is a projective 4—module of rank »n equipped
with a filtration

t*'Bc...ctBcCB, t € B with t* = 0.

We put B; = B/tB, the localization of 7Oy at the point p € C. Since B is
projective we can choose a splitting

B=B,®tB, ® -t 1B,
Using this decomposition we can write a section s € B as s =sg+151+-- -—i—tk_lsk_l
with s; € B;. Moreover, the localization of 74Oy, at the point p € C is given by
Bi = B1®tB; &---®t'"! B, and the matrix of the multiplication with s in B;
is with respect to this decomposition lower block-triangular and has determinant
det (,ufi ) = det (//,ff)l )l . Therefore

k
det(l’(’sg) = l_[ det(MSBl )mi = det(ﬂg)l)25=1 im; ]

i=1

On the other hand det(jts) = det (,u?X) = det (uf") = det (Mﬁl)k, which leads to
the desired equality. a

Taking the trivial sheaf £ = Oy in Proposition 3.10 we obtain the following description
of the norm map:

Corollary 3.12 For any invertible Ox —module, we have

Nmy,c(£) = det(7+L) ® det(7+Ox) .

4 The group of connected components of Prym(X/C)

In this section we give the proof of Theorem 1.1.
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4.1 Proof of Theorem 1.1 (1)

Given a spectral cover X we will associate a covering
X —X

as follows: let X = |J/_, X; be its decomposition into irreducible components X;,
let X; red be the underlylng reduced curve of Xj, let m; be the multiplicity of X; red §
Xi and let X; Y7ed be the normalization of X; red Since X; red is embedded in the smooth
surface |M |, there exists a sequence of blowmg -ups bl |M | = | M| of the surface
| M| at reduced points (depending on the curve X red) such that the proper transform
of Xj red equals its normalization X; Yrd We then define X; C |M | to be the proper
transform of the non-reduced curve X, C |M|, and take

to be the disjoint union of the curves X; together with the natural map p onto X . Note
that the multiplicity of X l.red in X; also equals m; .

Lemma 4.1 The covering p: X — X constructed above has the following properties:

(1) the cokernel of the canonical inclusion Oy — p*O is a torsion Oy —module,
(2) the underlying reduced curve X Yred of X is smooth.
(3) the map induced by pull-back under p
Pic®(X) LN Pic®(X)
is surjective and has connected kernel.

(4) we have an equality

o (Prym(X/C)) = mo(Prym(X / C)).

Proof

(1) This is clear since p: X - X isan isomorphism outside a finite set of points.

(2) We clearly have X yred — =L, X; Y™ and the curves X lred are smooth by con-
struction.
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We consider the two exact sequences obtained by restricting invertible sheaves
to the underlying reduced curve

0 U, Pic(X) — Pic(X™) ———=0
l o l p* l p:;d
0 U, Pic(X) — Pic(X™) ——~ 0

which are surjective with unipotent kernels Uy and U, by Liu [23, Lemma 7.5.11].
Then by the snake lemma the kernel ker(p*) fits into the exact sequence

0 —> ker(a) —> ker(p™*) —> ker(pyq) —> coker(a) —> 0.

Note that ker(«) and coker(«) are unipotent groups. We shall denote by V' the
kernel of the last map. By [23, Lemma 7.5.13] the kernel ker(p,) is an extension
of a toric group by an unipotent group. The same holds for V', since there are no
non-zero maps from a toric group to an unipotent group. Hence V' and ker(«)
are connected, so ker(p*) is connected. Hence ker(p*) is contained in the
connected component Pic®(X) and we obtain that p*: Pic®(X) — Pic® (f ) is
surjective.

Because of Lemma 3.4 we have an exact sequence
0 —> ker(p*) —> Prym(X/C) 2= Prym(X/C) —> 0.

The equality between the groups of connected components now follows since
ker(p™*) is connected. O

The previous lemma implies that it is enough to show the equality g (Prym(X~ /C)) =
K. By Lemma 3.5 and Lemma 3.6 the Norm map Nmf/c factorizes as follows:

» ok - r _ ) r ~
Nm)?/C: PiCO(X~) EAN PiCO(Xred) _ l_[ PiCO(Xired) l_[[_mi] l—[ PiCO(Xl.red) ]_[_Nr)n PiCO(C)

i=1 i=1

Moreover j* is surjective and ker(j*) is connected (see, for example, Liu [23,
Lemma 7.5.11]). It suffices therefore to compute 7o (ker(/2)), where /: Pic® ()? red) —
Pic®(C) denotes the composite of the last two maps. We also consider the composite
homomorphism

[1lm;]

Nn# ~ ~
/: Pic®(C) 5 Pic®(C) =3 Pic®(C) —3 [ Pic® (F™) = Pic(X™4),

i=1
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where A(L) = (L, ..., L) is the diagonal map. We note that the duals ﬁi* and [m/?]
coincide with Nm e /C and [m;] under the identifications

Pic®(C) =Pic®(C)  and  Pic®(X[) = Pic®(X[*)

given by the principal polarizations on the Jacobians (see Birkenhake and Lange [4,
Section 11.4]), and that the dual A of A is the multiplication map on Pic®(C) (see, for
example, [4, Exercise 2.6(12)]). Hence we obtain that f =h. Thus ¢ (Prym(A7 /C )) =
7o (ker ( ﬁ) Now we apply Lemma 2.1 to f and we obtain the desired result since

ker(f) = (V=i (Kidm;. o

4.2 Proof of Theorem 1.1 (2)

We consider the morphism f: Pic®(C) — Pic® (f red) introduced in the previous section.
Moreover the morphism g: Pic®(X™4) — Pic®(C) defined by

r
g(Lr.... L) = Q) Nm g, (L)
i=1
satisfies the relation g o f = [n]. We are therefore in a position to apply Lemma 2.2
to the morphism f. This proves part (2) for the Prym variety Prym(X/C). Since
by Lemma 4.1 the natural map p*: Pic®(X) — Pic®(X) induces an isomorphism
wo(Prym(X/C)) = mo(Prym(X /C)), we are done. O

4.3 Proof of Theorem 1.1 (3)

The if part follows immediately from the formula proved in part (1). Suppose now
that K = Pic®(C)[n]. With the notation above we have n = > mideg(X, l.red /C)
and K = (\/~;(Ki)m, , from which we deduce that r = 1. On the other hand K =
(K)m, = Pic®(C)[n] implies that K; = Pic®(C)[d;] with d; = deg(Xlr"'d/C). But
this can only happen if d; = 1. Hence m; = n and we are done. |

5 Endoscopic subloci of A,

5.1 Cyclic Galois covers

We consider a smooth projective curve C and a line bundle M € Pic(C). Let I" be a
cyclic subgroup of order d of the group of n—torsion line bundles Pic®(C)[n] and let

o: D—C
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be the étale Galois covering of C associated to ' C Pic®(C)[n]. By definition D =
Spec(ér) where &t = @ o L is the direct sum of all line bundles L in I' with the
natural Q¢ —algebra structure. Note that the Galois group of the covering ¢: D — C
equals T' =~ Aut(D/C). We introduce the line bundle N = ¢*M . Then the line
bundle N has a canonical I'-linearization, hence we obtain a canonical action of T’
on the total space | N |. We notice that the canonical coordinate ¢t € HO(|N|, 7*N) is
invariant under this I"—action.

We consider a spectral cover of degree m over D with associated line bundle N given
by a global section s € HO(|N |, #* N™). We can apply a Galois automorphism o € I"
to s and denote its image by s°. We introduce

§=]]s° € H°(N|.x*N"),  with n=d-m.
oell

We observe that § is I'—invariant, hence § descends to a section over |M |, which we
also denote by §. Hence we obtain a map

®r: Ap(D, N) —> Ay = An(C, M), b ®p(b).

with @ = ®r(b) defined by the relation 5, = s, where s, € HO(|N|, 7* N™) is the
global section s = 1" + b " 4 byt™"2 4... 4 b, associated to b = (by, ..., by)
with b; € H(D, N7). Since the zero divisor of the section § has a finite number
of irreducible components, we immediately see that the fiber @Fl (5) is finite, hence
dim im®r = dim A,,(D, N). We also introduce the subspace

m
Ap(D,N) = H*(D, N)uar & @ H’(D,N) C Ap(D, N),
j=2

where H%(D, N)ya, denotes the I'—variant subspace of H°(D, N), that is, the direct
sum of the character spaces H%(D, N), for non-trivial characters y of the group T".

Lemma 5.1 We have the inclusion

r(Ap (D, N)) C Ay,
Proof It suffices to compute the coefficient of t*~! in §p, which equals ;aer‘ o*b;.
We immediately see that the relation ) . 0*b; = 0 is equivalent to bio =0, where
bgo) denotes the I"—invariant component of b; . o
We denote the images of ®r by

A% C A2 and Ar C A,.
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The subvariety Ar admits the following characterization: for a € A, we denote by
Yo=Xaxc D

the fiber product of X, and D over C. Then Y, is a spectral cover over D of degree
n associated to the line bundle N . The following lemma follows immediately from
the definition of Ar.

Lemma 5.2 The characteristic a lies in Ar if ond only if the fiber product Y, decom-

pOS@S as
Y, = U 7°.

oel

where Z is a spectral cover of degree m = % over D and Z° is its image under the

Galois automorphism o € I
We also need to introduce some natural subvarieties of the Hitchin spaces A% and Ay,
which will be used in the proof of Theorem 1.2.

For any divisor / # 1 of n, with n = k -/, we consider the natural & th power map

D A — Ay,

where @y (b) = a is defined by the relation

sa= @ + b1 4w bR e HO(M|, ¥ M™),  forb = (by,....b)) €A
We shall abuse notation and will also denote by A; its image @ (A;) C A, . Note that
7% (.A?) C A9 and we also denote this image by .A?.

Given two positive integers n1,n, such that n; + n, = n, we introduce the map
Py ny Any X Any —> An,

with a = @y, », (b, ¢) defined by the relation s, = sp - 5¢, where 55 = ¢"! + by 4
oo+ by, and s, = "2 + "l + cp, for b = (by,...,bn,) € Ay, and
c=(c1,...,¢n,) € Ay,. We define (A, X Ap,)o C An, X Ap, to be the subset of
pairs (b, ¢) satisfying the relation b; + ¢; = 0. We shall denote by A, », C A, the
image of ®,, », and by AY , the subset Ay, n, N AL = @y 1, [(An, X Any)ol.-

nyi,n2

5.2 Proof of Theorem 1.2

We show here the analogue of Theorem 1.2 for the GL(n)—Hitchin space A, . Note that
both statements are equivalent by Remark 2.5. Given a spectral cover 7: X; — C with
a € Ay, we denote the subgroup of Pic®(C) defined in (2) by K. Let I’ C Pic®(C)[n]
be a cyclic subgroup of order d .
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Theorem 5.3 We have an equivalence

I'C K, <~ ac€Ar.

Proof We first show the equivalence in the case the spectral cover X, is integral. In
that case we can consider its normalization X,, which comes with a natural projection

gt fa — C.

By Birkenhake and Lange [4, Proposition 11.4.3] we have I' C K if and only if 7,
factors through the map ¢, that is, there exists a map u: X, — D such that 7, = pou.
By the universal property of the fiber product there exists a map 4: X, — Y, into the
fiber product Y, of X, with D over C. We denote by Z = im(8) C Y, the image of
the smooth irreducible curve fa. Then Z is irreducible too. Moreover, since X, is
reduced and ¢ is étale, the curve Y, is also reduced, hence Z is integral. The group
I' acts on Y,, hence permutes its irreducible components. Since I' acts transitively
on the fibers of Y; — X, all irreducible components are of the form Z° for some
o € I'. We therefore obtain a factorization X, — Z — X,. Since this composite map
is birational, we deduce that deg(Z/X,;) = 1. Hence, since deg(Y,/X,) = d, we
conclude that

Ya=UZ“ and Z°+27% ifo £0.
oel
By Lemma 2.4 the curve Z is a spectral cover of degree m over D and by Lemma 5.2
we obtain that a € Ar.

Conversely, for a € Ar the map Z — X, given by Lemma 5.2 is birational. Hence
the normalization of Z equals X, and we obtain a factorization X, - Z - D — C,
which implies that I' C K, by [4, Proposition 11.4.3].

Now we will prove the equivalence for more general characteristics a € A,. We
start with @ € A, such that the spectral cover X, is irreducible, but not reduced. Let
X4 be the underlying reduced curve of X, and let k be the multiplicity of X, 5ed in
Xg. We put n =k -1. By Lemma 2.4 we have X! = X, , for some characteristic
dred € A C Ay and a = Oy (areq) — see Section 2.2. Then by formula (2) we have
Ko =[k]! (Ka,,)- We introduce I'req = [k](I") C PicO(C)[l]. Then ['q is a cyclic
subgroup of order dyeq = m. With this notation we easily obtain the equivalence

I'c K, = IMeq C Kq

red *

We combine this equivalence with the statement of the Theorem written for the integral
characteristic a4, which was proved above:

[red C Ko,y = Ared € Ar

red *
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Therefore it remains to show the following equivalence

Ared € -Al" — a = CI)k (ared) € AF~

red

In order to show this equivalence we introduce the subgroup S = ker(I" — I'req). By
Galois theory there ex1sts an intermediate cover D — D — C with Aut(D/C) = Tyeq
and Aut(D/D) =

Consider a characteristic dreq € Ar,,,. By Lemma 5.2 applied to dyeq € Ar,,, We obtain
that the fiber product Y4, = Xg,,xc D decomposes as | Jyer, W, where W is
a spectral cover of degree de over D. Now, observing that Y, = k(Yamdx [—)D) as

divisors in |N |, we can write

Yo=k | J WxpD)Y =] z°

o€l eq oel

red

where we have put Z = gcd(k D (W X5 ) C |N|. Note that Z°9 = Z for 0 € S and
that Z is a spectral cover of degree 7 ThlS proves that a = Oy (dreq) € Ar.

Conversely, we consider a characteristic deq € A; With @ (areq) € Ar. We assume
that the spectral cover X, _, is integral. This assumption implies that the fiber product
Xa,g Xc D is reduced. Let Z denote an irreducible component of X, , xc D, let
Stab(Z) denote its stabilizer, that is,

Stab(Z) ={o €T | Z° =1},
and let § =|Stab(Z)| be the order. Since I' acts transitively on the fibers of X, ,xc D —
Xa,., We obtain the decomposition into irreducible components
Xarcd XC D = U IU‘
o€’ /Stab(Z)

Let us denote by s the global section over |N | with Zeros(s) = Z. Then the spectral
cover Y, = k(X,_, Xc D) is the zero set of the section

l_[ (Sa)k,

o €I’ /Stab(Z)

red

which has k% irreducible factors of the same degree. The assumption @ (dreq) € Ar
implies that this product can be written as a product of d factors of the same degree,
hence k% is divisible by d, that is, § divides k, so § divides ged(k,d). Since
6 = |Stab(Z)| and gcd(k, d) = | S|, we conclude that Stab(Z) C S'. We then introduce
the section

t = l_[ 5.

o €S /Stab(T)
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Since ¢ is S—invariant, its zero divisor descends as a spectral cover W over D = D/S.
Moreover we have the equality

M «= I -

o€l /Stab(Z) t€lg=I/S

which proves that ¥, , = X, , X¢ D splits into dreq spectral covers W7 for 7 € [eq,
and we conclude by Lemma 5.2 that aeq € Ar,, -

Finally, we will show the equivalence for a characteristic a € Ay, », C Ay, that is,
the spectral cover X, equals the union X, U X, for two spectral covers X,; with
a; € Ay; , which we assume to be irreducible. Then by (2) we have

I'CK, — ' C Ky and I' C Ky, .

On the other hand since the curves X, are irreducible, we can apply what we have
proved above, that is, for i = 1,2

[ C Ky = aj € A7

Note that I' € Pic®(C)[n;] for i = 1,2. Here A’ff denotes the corresponding subspace
of Ay, . Hence it remains to show that

ai EA'IIJ andaze.A'li2 — a= Py, n,(a1,az) € Ar.

The implication = is trivial. In order to show the implication < we note that
Lemma 5.2 gives the decomposition Y, = |, Z¢ for some spectral cover Z. We
then put Z; = Z N Yy, , which gives the desired decomposition for the fiber product
Ya .

14

Now the statement follows for arbitrary characteristic ¢ € A, by induction on the
number of irreducible components of X, . O

6 Moduli space of semi-stable Higgs bundles

In this section we describe how the Prym variety Prym(X,/C) acts on the fiber /=1 (a)
of the SL,,—Hitchin fibration. First we recall the semi-stability condition Definition 3.7
for coherent sheaves over the spectral cover X,. The following result generalizes
Beauville, Narasimhan and Ramanan [3, Proposition 3.6] to any spectral cover X, .

Proposition 6.1 Let a € AY be any characteristic. The fiber h~'(a) of the SL,—

Hitchin fibration (1) equals the moduli space of semi-stable sheaves £ over the spectral
curve X, of rank 1 and with fixed determinant det(w+&) = A.
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Proof In the case X, integral this is exactly [3, Proposition 3.6] except for the
assertion that the bijective correspondence between Higgs bundles (E, ¢) over C
with given characteristic @ and torsion free rank-1 sheaves £ over X, is compatible
with both semi-stability conditions. But this compatibility is shown by Simpson [32,
Corollary 6.9] — note that Simpson works in the special case when M is the canonical
bundle of C but his proof remains valid for an arbitrary line bundle M .

In order to show the statement for an arbitrary spectral cover X, we observe that
the constructions and arguments of Beauville, Narasimhan and Ramanan [3] and
Simpson [32] remain valid for an arbitrary characteristic «. However the next statement
needs a new proof.

Lemma 6.2 Let £ be a torsion-free sheaf over X,. Then the characteristic of its
associated Higgs bundle (E, ¢) equals a.

Proof If X, is integral, this is shown in [3, Proposition 3.6] using the irreducibility
of the polynomial s, defined in (6). In the general case we first show the statement
when X is irreducible but non-reduced and secondly when X, is reducible. Given a
sheaf £ over X,; we denote by Char(£) the characteristic polynomial of its associated
Higgs field.

Suppose first that X, is irreducible and that its underlying reduced curve X! has
multiplicity 7. Denote by £™¢ the restriction of £ to X4, Then one shows exactly
along the lines of Lemma 3.5 that Char(£) = Char(£%)".

Suppose now that X, has several irreducible components X; and denote by &; the
restriction of £ to X;. Then one shows exactly along the lines of Lemma 3.6 that
Char(€) = []; Char(&;).

Finally decomposing X, into irreducible components and taking the underlying reduced
curves, one reduces the statement to the integral case, which is already shown. |

This completes the proof of the proposition. a

Considering 471 (a) as the moduli space of semi-stable sheaves over X, we let
Prym(X,/C) act through tensor product. By Proposition 3.10 it is clear that the
determinant is invariant under this action, and since deg(£ ® £) = deg(&) for any
L € Prym(X,/C) we see that semi-stability is preserved.

Remark 6.3 In a forthcoming paper we will describe in detail the case @ = 0, that is,
the action of the Prym variety Prym(X,/C), which equals in this case 728 copies of
a vector space (see, for example, Drézet [7, Section 3.3]), on the nilpotent cone of the
Higgs moduli space.
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Remark 6.4 We note that the description of the fiber 4~ (@) above was already stated
by Schaub [30, Proposition 2.1]. Unfortunately the proof of [30, Proposition 2.1]
contains an inaccuracy, which is a consequence of the author’s different definition of a
torsion-free sheaf of rank 1 over an arbitrary spectral cover.

7 Application to Topological Mirror Symmetry

In this final section we assume that our line bundle M equals the canonical bundle
K¢ and that (n,deg(A)) = 1. These assumptions imply that M is a non-singular
quasi-projective variety of dimension

dim(M) = (n?> — 1)(2g —2).
The dimension of the affine space A9 is
dim(Ap) = (1>~ (g — 1)
and consequently the Hitchin map / is of relative dimension (n2 —1)(g —1).
Let I C Pic®(C)[n] be a cyclic subgroup of order d which must divide 7. Then we
have the following:

Lemma 7.1 dim(AY) = (n?/d —1)(g—1)

Proof In Section 5.1 we associated an étale Galois cover ¢: D — C to I' with Galois
group I'. Thus the pull back N = ¢*(K¢) = Kp. There we also constructed .A% as
the image of A};T by the finite map ®r. Thus we have

dim(AY) = dim(AL)
= dim(Ap) — dim (H*(D, Kp)T)

= dim(A) —dim (H*(C, K¢))
I’l2

= n*/d—1)(g—1).

as required. |

Now we can prove Theorem 1.4:
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Proof of Theorem 1.4 With the notation (3) we introduce
Ape = Ap\ Acndo

the locus of those characteristics for which Prym(X,/C) is connected. Further denote
Mue = h"1(A),).

First we argue that Pic®(C)[n] acts trivially on H*(Mye). Let a € A%, Since by (8)
we have 77*Pic®(C)[n] C Prym(X,/C) and since by assumption on the characteristic a
the Prym variety Prym(X,/C) is connected, the finite group Pic®(C)[n] acts trivially
on the cohomology of every fiber /! (a) of

hne = h|Mne: .Mne —> Age.
Therefore by Lemma 7.2 below it follows that it acts trivially on H™*(M,,; Q) as well.
Lemma 7.2 Let f: X — Y be a proper map between locally compact Hausdorff
topological spaces. Let the finite group G act on X along the fibers of f. Assume G

acts trivially on H*(X,; Q) forevery a € Y, where X, = f~1(a). Then the action of
G on H*(X; Q) is trivial.

Proof Let Qx be the constant sheaf on X. Let 7: X' — X /G be the quotient map,
Qx/c the constant sheaf on X'/G and g: X /G — Y defined by the property gom = f.
Then we have a morphism of sheaves

m: Qx g —> mxQx.
This induces a morphism of sheaves
Rfm: ng*@X/G — ng*n*@x.
As 7 is finite R¥ ZxxQx = Rk J«Qx . Thus we get a morphism of sheaves
R¥m: R¥g,Qx/6 — R* £ Qx.

Firs we understand the induced map on any stalk. By proper base change (see
Iversen [19, Theorem 6.2]) the stalks are just the kth cohomology groups of the
fibres. Thus our morphism becomes

RFmy: Hk(Xs/G; Q) — Hk(Xs;Q).
We have the isomorphism

H*(X,/G; Q) = H*(X,; Q)°
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of Macdonald [24, (1.2)] and by assumption
HY(X: Q)% = H*(X: Q).

Thus R¥my is an isomorphism for all s € Y so Hartshorne [14, Proposition 1.1] implies
that R¥m is an isomorphism of sheaves. By [24, (1.2)] the theorem follows. m|

Thus we have that Pic®(C)[n] acts trivially on H*(My.; Q). Note that by Lemma 7.1
and by the observation that A(l)“z C “4(1)“1 if I'y C I'p, the codimension of the endoscopic
locus Aengo is given by

=n*—1)(g—1)—n*/pn—D(g—1) =n*(1—1/pa)(g—1).

where pj, is the smallest prime divisor of n. By studying the cohomology long exact
sequence of the pair (M, M,,) we see that the restriction map

H*(M; Q) — HF (Mye; Q)

is an isomorphism for k < 2¢, — 2 and is an injection for k = 2¢; — 1.Thus we could
immediately deduce that Pic®(C)[n] acts trivially on HX (M; Q) for

12) k <2cp.

Further, we note that any generic (c, — 1)—dimensional subvariety A1 of A° will
be disjoint from [ J AIQ thus a cohomology class n € H*(M; Q) which is not invariant

under Pic®(C)[n] (we call such classes variant) must satisfy

7]|h—1(Acn—1) =0

and so by de Cataldo, Hausel and Migliorini [6, Theorem 1.4.8] a variant class of
degree i must have perversity at most i —c,. By [6, Theorem 1.4.12] this already
implies i > 2¢, (which as we noted above in (12) also follows from the cohomology
long exact sequence of (M, My,)). Finally a variant class

€ Hii"(M; Q)

by Relative Hard Lefschetz -with the ample Pic®(C)[n]-invariant class o € H?(M; Q)
gives a variant class
adim(M)/2—cn ne Hdim(M) (M, Q)

which contradicts Garcia-Prada, Heinloth and Schmitt [10, Theorem 1], which proves
that there are no variant classes in the middle cohomology HY™M) (M: Q). Here we
used the fact o € H?(M; Q) is always Pic®(C)[n]—invariant, for example because of
(12) and 2 < 2¢, when g > 1.
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Thus the smallest possible degree a variant class may have is 2¢, + 1, proving
Theorem 1.4. a

Remark 7.3 Theorem 1.4 is a consequence of the topological mirror symmetry
conjecture (see Hausel and Thaddeus [17, Conjecture 5.1]). It can be deduced by
calculating all possible fermionic shifts F(y) for y € Pic®(C)[n] on the RHS of [17,
Conjecture 5.1] and noting that due to the presence of the gerbe B9 the degree 0
part of the cohomology of the twisted sector MY /Pic®(C)[n] does not contribute to
the stringy cohomology of M /Pic®(C)[n]. In fact, the inequality in Theorem 1.4 is
sharp, when 7 is a prime, because [17, Proposition 10.1] implies that there is variant
cohomology in degree 2¢, + 1. The close connection between the topological mirror
symmetry conjecture [17, Conjecture 5.1] and the group of connected components of
Prym varieties of spectral covers unravelled in this section is an indication of the deep
analogies between S-duality considerations in physics as in Kapustin and Witten’s [20]
and Ngo’s [27; 28] geometric approach to the fundamental lemma. For more discussion
on this see Hausel [15].

Finally we can prove Corollary 1.5:

Proof of Corollary 1.5 As the Hitchin map h: M — A9 is proper by Nitsure [29],
and the C* —action on M covers a C* action on A with positive weights, and so with
a unique fixed point 0 € A°. It follows that for every z € M the limit limy_, o Az exists
in the compact fixed point set ME™, Using the compactification M as defined in such
a situation in Simpson [33, Section 11] and Hausel [16] we can apply the following
cohomological techniques. They were studied in the compact case by Kirwan in [21],
(who commented on the non-compact case in [21, Section 9]) and in the non-compact
case by Nakajima in [25, Section 5.1].

For a connected component Fy, of the fixed point set
ME = | Fu
ael
we can then define
Uy :={zeM|lim Az € Fy}
A—0
giving the Bialinicki-Birula decomposition

M= | V..

ael
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One can now define a partial ordering on the index set 7, by a <8 when UgN Uy # 2.
By induction on this ordering one can prove

(13) H*(M, Q) ~ @ H*—codim(Ua)(Ua; Q)

aecl

If 0 denotes the minimal element in 7, then we can see that Uy = T* A\ contains those
Higgs bundles where the underlying bundle is stable. It follows from (13) (or rather
via the perfectness of the Bialinicki-Birula stratification used to prove (13)) that the
restriction map

H*(M;Q) » H*(Up: Q) = H*(N: Q)

is surjective.

Thus in particular Theorem 1.4 implies that Pic®(C)[n] acts trivially on the cohomology
H*(W: Q) for k <2¢, =2n%(1—1/ pn)(g—1), where p, is the smallest prime divisor
of n. But

2en > (n* —1)(g — 1)

thus the cohomology H*(N; Q) is Pic®(C)[n]—invariant up to and including the middle
degree and by Poincaré duality everywhere. The result follows.

As 2¢, — 1> (n? —1)(g — 1) (with possible equality when g =2 and p, = 2) we
note that the more elementary estimate (12) already implies the result. O

Remark 7.4 When n = 2 Corollary 1.5 follows from Newstead [26, Theorem 1] and
for general n it appeared as [13, Theorem 1] of Harder—Narasimhan. In [13] it was
proved by an arithmetic study of . Later it was reproved with the gauge theoretical
approach of Atiyah—Bott in [2, Proposition 9.7]. Our proof above is by identifying the
characteristics for which the Prym variety is connected, which excludes the nilpotent
cone, where N is located, and yields Corollary 1.5 without focusing on H*(N; Q).
This approach thus can be considered as an example of the abelianization philosophy
of Atiyah—Hitchin [1, Section 6.3], by studying the abelian problem of Prym varieties
of spectral curves we deduced results on the moduli space A of vector bundles of rank
n>1.
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