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On the nonexistence of certain branched covers

PEKKA PANKKA

JUAN SOUTO

We prove that while there are maps T 4! #3.S2 �S2/ of arbitrarily large degree,
there is no branched cover from the 4–torus to #3.S2�S2/ . More generally, we obtain
that, as long as a closed manifold N satisfies a suitable cohomological condition, any
�1 –surjective branched cover T n!N is a homeomorphism.

57M12; 30C65, 57R19

1 Introduction

Starting with the classical result of Alexander [1], asserting that every closed, ori-
entable PL–manifold of dimension n admits a branched cover onto the n–dimensional
sphere Sn , a series of authors such as Berstein and Edmonds [3], Edmonds [11],
Hilden [15], Hirsch [16], Iori and Piergallini [18], Montesinos [19] and Piergallini [20]
have proved the existence of branched covers satisfying certain conditions between
certain manifolds. In this note, the starting point is a general existence theorem due
to Edmonds [11]: Every �1 –surjective map f W M !N between closed, orientable
3–manifolds with deg.f /� 3 is homotopic to a branched cover. We show that, already
in 4 dimensions, there are subtle obstructions for the existence of branched covering
mappings.

Theorem 1.1 There is no branched cover from the 4–dimensional torus T4 to
#3.S2 � S2/, the connected sum of three copies of S2 � S2 . On the other hand,
there are, a fortiori �1 –surjective, maps T4! #3.S2 �S2/ of arbitrarily large degree.

Recall that a branched cover between closed PL–manifolds is a discrete and open
PL–map; in the sequel we work always in the PL–category and consider only oriented
manifolds and orientation preserving maps; this is no reduction of generality as the
torus admits an orientation reversing involution.

One of the reasons why we find Edmonds’s theorem to be rather surprising is because
it asserts that, in 3 dimensions, there are many more branched covers than we would
naively have expected. A different interpretation of the same theorem is that it is not
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clear how to distinguish between branched covers and maps of positive degree. When
trying to rule out the existence of branched coverings between two closed manifolds
M and N , one can perhaps observe that any branched cover f W M !N induces, via
pullback, an injective homomorphism

(1-1) f �W H�.N IR/!H�.M IR/

between the associated cohomology rings. Although this poses a huge restriction to
the existence of branched covers, the same restriction applies for the existence of mere
maps of nonzero degree. In fact, it is due to Duan and Wang [10] that, at least when the
target N is a simply connected 4–dimensional manifold, the existence of maps M!N

of positive degree is equivalent to the existence of maps H 2.N IZ/! H 2.M IZ/
scaling the intersection form.

In the light of Theorem 1.1, the existence of branched covers is a more subtle issue which
does not seem to be detected by any standard cohomological property. Cohomological
considerations play a central role in the proof of Theorem 1.1, but they come into our
argument in a perhaps unexpected way.

Quasiregularly elliptic manifolds: the original motivation We would like to men-
tion that our interest to investigate the existence of branched covers from T4 onto
#3.S2 �S2/ stems from a question of Gromov [12; 13] and Rickman [21], who asked
if the manifolds #k.S2 �S2/ are K–quasiregularly elliptic for some K .

Recall that a continuous mapping f W M ! N between oriented Riemannian n–
manifolds is said to be K–quasiregular, with (outer) distortion K � 1, if f is a
Sobolev mapping in W

1;n
loc .M IN / and satisfies the quasiconformality condition

jDf jn �KJf a:e:;

where jDf j is the operator norm of the differential Df and Jf is the Jacobian determi-
nant. A Riemannian manifold of dimension n is K–quasiregularly elliptic if it admits
a nonconstant K–quasiregular mapping from Rn . We refer to Rickman [22] and Bonk–
Heinonen [4] for a detailed discussion on quasiregular mappings and quasiregularly
elliptic manifolds respectively.

Returning to the quasiregular ellipticity of manifolds #k.S2�S2/, recall that Bonk and
Heinonen showed in [4] that K–quasiregularly elliptic manifolds have quantitatively
bounded cohomology. In particular, there exists a bound k0 D k0.K/ depending only
on K , so that #k.S2 �S2/ is not K–quasiregularly elliptic for k > k0 .

Without a priori bounds on the dilatation K , the question on the quasiregular ellipticity
of manifolds #k.S2 � S2/ is only answered for k D 1; 2. We sketch the argument
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used in these two cases. Observing that branched covers between closed manifolds
are quasiregular, it follows that every manifold N for which there is a branched cover
f W T4 ! N is quasiregularly elliptic. Considering T4 as the product of two 2–
dimensional tori and taking on each factor a branched covering T2! S2 , one obtains
a branched cover T4! S2 �S2 and deduces that the latter manifold is quasiregularly
elliptic. What is really much more surprising, is that there is also a branched cover
T4! #2.S2 �S2/; see [23] for this construction. In particular #2.S2 �S2/ is also
quasiregularly elliptic.

The unfortunate offshoot of Theorem 1.1 is that this argument cannot be applied to
#k.S2 �S2/ for k D 3. Notice that for k > 3, this observation follows directly from
the injectivity of the homomorphism (1-1).

Sketch of the proof of Theorem 1.1 We will deduce the existence of maps T4!

#3.S2 �S2/ with arbitrarily large degree from the work of Duan and Wang [10]. The
nonexistence of branched covers in Theorem 1.1 is a special case of the following more
general result:

Theorem 1.2 Let N be a closed, connected, and oriented n–manifold, n� 2, so that
dim H r .N IR/ D dim H r .TnIR/ for some 1 � r < n. Then every branched cover
Tn!N is a cover. In particular, every �1 –surjective branched cover Tn!N is a
homeomorphism.

Suppose that f W Tn ! N is a branched cover as in the statement of Theorem 1.2.
By a result of Berstein and Edmonds [2], there are a compact polyhedron X , a finite
group G of automorphisms of X and a subgroup H of G such that N D X=G ,
Tn D X=H and such that the map f is just the orbit map X=H ! X=G . Our first
goal is to prove that the group G acts on the H –invariant cohomology H�.X IR/H

of X ; this is the content of Section 3 below.

In Section 4, we use the action of G on H 1.X IR/H to construct, by averaging,
cocycles ‚1; : : : ; ‚n which form a basis of H 1.X IR/H and behave well with respect
to the action of G on C 1.X IR/, the vector space of 1–cochains on X .

These cocycles give rise to a map X !Rn=Zn which semiconjugates the action of G

on X to a certain action on Rn=Zn . This map is defined in the same way as the
classical Abel–Jacobi map and this is the way we will refer to it below. The reader
can find the construction and some properties of the Abel–Jacobi map in Section 5
and Section 6. The Abel–Jacobi map and its G–equivariance properties are the key
tools to show that the map f W Tn ! N factors as Tn ! N 0 ! N where the first
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arrow is a cover and the second arrow has at most degree 2; moreover, N 0 is homotopy
equivalent to a torus.

In Section 7 we will conclude the proof of Theorem 1.2 showing that the branched
cover N 0!N is a homeomorphism. In order to do so, we have to rule out that it has
degree 2. Every degree 2 branched cover is regular, meaning that there is an involution
� W N 0 ! N 0 such that N D N 0=h�i and that the map N 0 ! N D N 0=h�i is the
orbit map. At this point we will already know that the involution � acts as �id on
H1.N

0IR/'Rn . The Lefschetz fixed-point theorem implies that the fixed-point set
Fix.�/ is not empty. The final contradiction is obtained when we show, using Smith
theory, that Fix.�/ is in fact empty.

Once Theorem 1.2 is proved, we discuss Theorem 1.1 in Section 8.
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2 Preliminaries

In this section we remind the reader of a few well-known facts and definitions. Through-
out this note we will work in the PL–category. We refer the reader to Hudson [17] and
Rourke and Sanderson [24] for basic facts on PL–theory.

2.1 Chains, cochains and homology

Suppose that X is a compact polyhedron, ie the geometric realization of a finite simpli-
cial complex and let R be either R or Z. Denote by Ck.X IR/, Zk.X IR/, C k.X IR/

and Zk.X IR/ the R–modules of singular k –chains, k –cycles, k –cochains and k –
cocycles with coefficients in R. The associated homology and cohomology groups are
denoted, as always, by Hk.X IR/ and H k.X IR/. The homology (resp. cohomology)
class represented by a chain (resp. cochain) ˛ will be denoted by Œ˛�.

If �W X!Y is a continuous map to another polyhedron Y , denote by �#W Ck.X IR/!

Ck.Y IR/ and by �#W C k.Y IR/!C k.X IR/ the pushforward and pullback of chains
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and cochains, respectively. On homological level, we denote the pushforward and pull-
back by ��W H�.X IR/!H�.Y IR/ and ��W H�.Y IR/!H�.X IR/ respectively.

Finally, denote by
h � ; � iW C k.X IR/�Ck.X IR/!R

the canonical evaluation form. Notice that, with the same notation as above, we have
for ! 2 C k.Y IR/ and c 2 Ck.X IR/

(2-1) h�#.!/; ci D h!; �#.c/i:

The induced bilinear form on H k.X IR/�Hk.X IR/ is also denoted by h � ; � i; again
(2-1) is satisfied

(2-2) h��.Œ!�/; Œc�i D hŒ!�; ��.Œc�/i:

Recall that if c and ! are a chain and a cochain representing the homology and
cohomology classes Œc� and Œ!� we have h!; ci D hŒ!�; Œc�i.

Continuing with the same notation, suppose that G is a finite group acting on the
polyhedron X . We denote by X=G the quotient space and by

�G W X !X=G

the orbit map. The G –invariant real cohomology

H�.X IR/G D f! 2H�.X IR/ j g�.!/D ! for all g 2Gg

of X is isomorphic to the real cohomology H�.X=GIR/ of the orbit space X=G .
Given that this fact will be used over and over again, we state it as a proposition:

Proposition 2.1 Let X be a polyhedron and G a finite group acting on X . The pull-
back of the orbit map �G W X !X=G induces an isomorphism between H�.X IR/G

and H�.X=GIR/.

Proposition 2.1 is a consequence of the natural transfer homomorphism H�.X=GIR/!
H�.X IR/; see eg Bredon [6, III.2]. Below we will need the following closely related
fact, whose proof we leave to the reader:

Lemma 2.2 Let X be a polyhedron, G a finite group acting on X and suppose that c

is a k –chain whose pushforward .�G/#.c/ under the orbit map �G W X ! X=G is a
k –cycle in X=G . Then

P
g2G g#.c/ is a k –cycle in X .

Moreover, if Œ!� is a k –cohomology class in X=G then�
��G.Œ!�/;

�X
g2G

g#.c/

��
D jGjhŒ!�; Œ.�G/#.c/�i:
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We refer the reader to [6; 7; 14] for basic facts of algebraic topology.

2.2 Branched covers

A branched cover between oriented PL–manifolds is an orientation preserving discrete
and open PL–map. Given any such branched cover f W M !N we say that x 2M

is a singular point of f if f is not a local homeomorphism in a neighborhood of x .
The image f .x/ of a singular point is a branching point of f . We denote by Sf �M

and Bf D f .Sf /�N the sets of singular points and branch points of f respectively.
We also denote by Zf D f

�1.Bf / the preimage of the set of branching points of f ;
notice that Sf �Zf .

Before moving on, observe that since f is PL, discrete and open, the sets Sf ;Bf
and Zf are polyhedra of codimension at least 2. Remark also that the restriction of f
to M nZf is a covering map onto N nBf .

Remark It is worth noticing that the above statement does not require the mapping to
be PL. Indeed, given a discrete and open mapping between n–manifolds the singular
set has topological codimension at least 2 by a result of Černavskiı̆ [8] and Väisälä [25].
Moreover, Bf and Sf have the same (topological) dimension.

A branched cover f W M ! N is said to be regular if there is a group G of PL–
automorphisms of M such that there is an identification of N with M=G in such a
way that the map f becomes the orbit map �G W M !M=G D N . The following
result, due to Berstein and Edmonds [2, Proposition 2.2], asserts that every branched
cover is a, nonregular, orbit map:

Proposition 2.3 Given a branched cover f W M ! N between closed orientable
manifolds of dimension n, there exists a connected polyhedron Xf of dimension n, a
group G of automorphisms of Xf , a subgroup H of G and identifications M DXf =H

and N DXf =G so that the following diagram commutes:

Xf
�H

yy

�G

%%
Xf =H DM

f

// N DXf =G

Moreover, H n.Xf ;R/'R and G acts trivially on H n.Xf ;R/.
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We observe that in general the polyhedron Xf is not a manifold. However, the comple-
ment of ��1

G
.Bf /D �

�1
H
.Zf / in Xf is a manifold and the restriction of �G and �H

to that set is a covering map. Just to clarify terminology, we would like to mention
that under a cover or covering map we understand, as usual, a branched cover whose
singular set is empty.

Before going any further we state, with the same notation as in Proposition 2.3, the
following simple consequence of the fact that H n.Xf IR/'R and that G acts triv-
ially on H n.Xf IR/. If K is namely a subgroup of G then H n.Xf =KIR/' R by
Proposition 2.1. Hence, if V1;V2 are oriented n–manifolds then any two continuous
maps

f1W V1!Xf =K; f2W Xf =K! V2

have a well-defined degree deg.fi/ which satisfies the usual rule

deg.f2 ıf2/D deg.f2/ deg.f1/:

This fact will be of some importance below.

2.3 Branched covers of degree 1 or 2

Below, we will show that any branched cover f W Tn ! N as in the statement of
Theorem 1.2 is the composition of a covering map and a branched cover of degree one
or two. It is well-known that such branched covers are very particular:

Proposition 2.4

(1) A branched cover of degree 1 is a homeomorphism.

(2) Let f W M ! N be a degree 2 branched cover between closed, connected,
orientable PL–manifolds. Then there is an orientation preserving involution
� W M !M such that N DM=h�i and such that the map f is just the natural
orbit map M !M=h�i DN .

In the statement of Proposition 2.4, as well as in the future, we denote by h�i the group
generated by � .

We conclude this section with the following observations on the fixed point sets of
involutions on n–manifolds that have the homotopy type of an n–torus.

Proposition 2.5 Let M be a closed orientable n–manifold with nontrivial orientation-
preserving involution � such that M=h�i is an n–manifold. Then each component of
the fixed point set of � is a Z2 –cohomology .n� 2/–manifold. In particular, if n� 3

then the components of Fix.�/ are not Z2 –acyclic.
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By classical Smith theory, the fixed point set of a Zp –action, for p prime, on an
orientable manifold is a Zp –cohomology r –manifold for some r < n; see eg [5,
Theorem 7.4].

Recall that a Zp –cohomology r –manifold, for p prime, is a topological space satisfying
a few properties, the most important of which is that it admits a cover B such that
the one-point compactification of every element in B has the same Zp –cohomology
relative to the point at infinity, as the r –dimensional sphere Sr relative to one of its
points. See [5, Definition 1.1] for details and notice that it follows directly from the
definition that a connected polyhedron which is a Zp –cohomology 0–manifold is a
singleton.

Proof of Proposition 2.5 By the comment above, it suffices to show that r D n� 2.
Let � W M !M=h�i be the quotient map.

Let † be a component of Fix.�/ and A a top dimensional simplex in †. Then
A is an r –simplex. Let x 2 A be an interior point. By passing to a subdivision
on M and M=h�i if necessary, we may assume that the link Lk.�.x/;M=h�i/ is an
.n�1/–sphere and that �jLk.x;M /W Lk.x;M /! Lk.�.x/;M=h�i/ is a simplicial
map.

Let S1DA\Lk.x;M / and S2DLk.A;M /. Then S1 and S2 are r – and .n�r�1/–
spheres in Lk.x;M /, respectively. Moreover, � acts trivially on S1 and freely on S2

by top dimensionality of A. Thus �.S2/ has the homotopy type of RPn�r�1 .

Let † D Lk.�.x/;M=h�i/. Since † is a join of �.S1/ and �.S2/ and the pair
.†; �.S1// is the standard sphere pair .Sn�1;Sr�1/, we have that † n�.S1/ has the
homotopy type of both Sn�r�1 and RPn�r�1 . The claim now follows.

Proposition 2.6 Let M be an n–manifold with the homotopy type of the n–torus and
let � be an involution of M that acts by multiplication by .�1/ on H 1.M;Z/. Then
the fixed point set Fix.�/ consists of 2n points.

Proof Since M is homotopy equivalent to an n–torus, we may identify �1.M /D

H1.M IZ/D Zn and H�.M IR/DH�.TnIR/, where R is either Z or R.

Since � acts by .�1/ to H 1.M;Z/ and H�.M;Z/ is isomorphic to the ring
V�Zn ,

we know � acts on H s.M IZ/ by multiplication by .�1/s . In particular, � W M !M

has Lefschetz number L.�/D 2n . It follows from the Lefschetz fixed point theorem
that

(2-3) Fix.�/¤∅:
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We show now that components of Fix.�/ are points. The claim then follows from the
Lefschetz–Hopf theorem.

Let N DM=h�i. We observe that H 1.N IR/D 0. Indeed,

(2-4) H 1.N IR/DH 1.M=h�iIR/DH 1.M IR/h�i D 0:

We prove first that the inclusion of Fix.�/ into M is trivial on homology.

Claim 1 The map H1.Fix.�/IZ/!H1.M IZ/ is trivial.

Seeking a contradiction suppose that Œ˛� 2H1.Fix.�/IZ/ is not trivial in H1.M IZ/
and let Œˇ� 2H n�1.M IR/ be the unique cohomology class with

hŒ��; Œ˛�i D Œ��^ Œˇ�

for all Œ�� 2H 1.M IR/. Since Œ˛� is fixed by � we deduce that Œˇ� is also fixed by � .
This implies that

H n�1.M=h�iIR/DH n�1.M IR/h�i ¤ 0;

contradicting (2-4). This completes the proof of Claim 1.

Claim 2 Every connected component † of Fix.�/ lifts homeomorphically to the
universal cover �M of M .

Since the homomorphism �1.M /!H1.M IR/ is injective, given a connected com-
ponent † of Fix.�/ we have the following commutative diagram:

�1.†/

��

// �1.M /

��
H1.†IR/ // H1.M IR/

As we just observed the right vertical arrow is injective. On the other hand, the
lower horizontal arrow is trivial by Claim 1. This implies that the homomorphism
�1.†/! �1.M / is trivial as well. In other words, † lifts homeomorphically to the
universal cover �M of M . Thus Claim 2 holds.

Let now † � Fix.�/ be a connected component and lift it to z† � �M . Since M is
homotopy equivalent to Tn , �M is homotopy equivalent to Rn and hence contractible.

Choosing a point zx 2 z† there is a unique lift z� of � to �M with z�.zx/D zx . Observe
that z� is an involution and that

z†� Fix.z�/:
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The involution z� is obviously a transformation of the contractible space �M of prime
period 2. It is a standard consequence of Smith theory [6, III. Theorem 5.2] that Fix.z�/
is Z2 –acyclic and hence connected. Since Fix.z�/ is Z2 –cohomology manifold, we
observe that z†D Fix.z�/ is a point by Z2 –acyclicity and connectedness. Thus † is a
point. This concludes the proof of Proposition 2.6.

We combine these two propositions to the following corollary.

Corollary 2.7 Let M be an n–manifold with the homotopy type of the n–torus. For
n� 3 there is no involution � on M that acts by multiplication by .�1/ on H 1.M IZ/
and M=h�i is a manifold.

Remark An equivalent formulation for Corollary 2.7 is that if M and N are PL–
manifolds, with M homotopy equivalent to the n–dimensional torus with n � 3

and with H1.N IR/ D 0, then there is no 2–fold branched cover M ! N . In the
topological category, this result is due to Connolly, Davis and Kahn [9].

At this point we fix some notation that will be used throughout the whole paper:

Notation 2.8 Suppose that f W Tn ! N is a branched cover as in the statement
of Theorem 1.2; in other words, we may fix 1 � r < n so that dim H r .N IR/ D
dim H r .TnIR/. Let also X DXf be the polyhedron provided by Proposition 2.3 and
H �G the groups of automorphisms of X with Tn DX=H and N DX=G . Also,
let

� D �H W X !X=H D Tn

be the orbit map onto X=H .

3 The key observation

The key tool in the proof of Theorem 1.2 is the analysis of the action of G on the
singular (real) cohomology ring H�.X IR/ of X .

Recall that if � �G denotes a subgroup of G , then H�.X IR/� is the �–invariant
cohomology of X and that the orbit map X ! X=� induces, via the pullback, an
isomorphism between H�.X=�IR/ and H�.X IR/� .

Since H is a subgroup of G , it is immediate that H�.X IR/G is H –invariant. The
main result of this section is a partial converse. Our notation is as in Notation 2.8.
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Proposition 3.1 The subspace H 1.X IR/H is G –invariant. Moreover, for any g 2G

we have that the restriction of g� to H 1.X IR/H is equal to ˙id.

We begin with two observations.

Lemma 3.2 Elements of G act trivially on H r .X IR/H .

Proof Observe that

dim H r .X IR/G D dim H r .X=GIR/D dim H r .N IR/

and, similarly,

dim H r .X IR/H D dim H r .X=H IR/D dim H r .Tn
IR/:

Since dim H r .N IR/D dim H r .TnIR/ and H r .X IR/G �H r .X IR/H , it follows
that H r .X IR/G DH r .X IR/H . Thus G acts trivially on H r .X IR/H by definition.

Lemma 3.3 Let r � 1, V be a vector space, W a subspace of V with dim W � rC1,
and 'W V ! V a linear mapping so that

Vr
' D idW

Vr
W !

Vr
W . Then W is

'–invariant and 'jW D˙id.

Proof Since
Vr

' D id on
Vr

W , all r –dimensional subspaces of W are invariant
under ' ; hence W is '–invariant. Let v 2 W , v ¤ 0, and let U1; : : : ;Us be r –
dimensional subspaces of W whose intersection L D

T
i Ui is the line containing

v . Since subspaces Ui , i D 1; : : : ; s , are '–invariant, the line L is also invariant. It
follows that the restriction of ' to W fixes every line in L and hence is a homothety
of ratio � 2R: '.v/D �v for all v 2W .

We claim that �D˙1. In order to see that this is the case let v1; : : : ; vr 2W with
v1 ^ � � � ^ vr ¤ 0 and compute

v1 ^ � � � ^ vr D .
Vr

'/.v1 ^ � � � ^ vr /D '.v1/^ � � � ^'.vr /

D .�v1/^ � � � ^ .�vr /D �
r .v1 ^ � � � ^ vr /:

The claim follows.

Proof of Proposition 3.1 We are going to apply Lemma 3.3 to V DH 1.X IR/, W D

H 1.X IR/H and 'Dg� for g2G . Notice that dim H 1.X IR/H Ddim H 1.TnIR/D
n� r C 1.
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Consider the commutative diagram

(3-1)

Vr
.H 1.X=H IR//

^ //

Vr
��

��

^ // H r .X=H IR/

��

��Vr
.H 1.X IR/H / // H r .X IR/H

where the vertical arrows are the pullback of the orbit map � W X ! X=H , while
the horizontal maps are the cup product in cohomology. By Proposition 2.1, the two
vertical arrows are isomorphisms. On the other hand, the upper horizontal arrow is also
an isomorphism because X=H D Tn is an n–dimensional torus. This proves that the
homomorphism Vr

.H1.X IR/
H /!H r .X IR/H

is an isomorphism.

Lemma 3.2 says g� acts trivially on H r .X IR/H and hence on
Vr
.H1.X IR/

H /. In
other words, Lemma 3.3 applies and the claim follows.

Let G! Hom.H 1.X IR/H ;H 1.X IR/H / be the map g 7! g� . By Proposition 3.1,
the image of this homomorphism is f˙idg. Identifying f˙idg with the multiplicative
group f˙1g of two elements, we obtain a homomorphism

(3-2) ıW G! f˙1g:

Notice that by definition H � Ker.ı/.

With the same notation as above we can now show that H�.X IR/H is in fact G–
invariant and describe the action

G Õ H�.X IR/H :

Corollary 3.4 For s D 0; 1; : : : ; n and Œ!� 2H s.X IR/H we have

g�Œ!�D ı.g/s Œ!�

for all g 2G .

Proof Using the same argument as in the proof of Proposition 3.1, more concretely
using diagram (3-1) and the discussion following that diagram, we deduce that the
standard homomorphismVs �

H1.X IR/
H
�
!H s.X IR/H
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is an isomorphism. By Proposition 3.1, and by definition of ı. � /, we have that g

acts on H 1.X IR/H by multiplication by ı.g/. Hence, g acts on H s.X IR/H by
multiplication by ı.g/s , as we claimed.

From here we obtain the first nontrivial restrictions on any manifold N as in Notation 2.8.

Corollary 3.5 Using Notation 2.8 the following holds:

(1) The pullback f �W H 2�.N IR/!H 2�.TnIR/ is an isomorphism.

(2) If n or r is odd, then f �W H�.N IR/!H�.TnIR/ is an isomorphism.

Proof Since H s.N IR/DH s.X IR/G �H s.X IR/H we deduce from Corollary 3.4
that

H s.N IR/D .H s.X IR/H /G

for s even. Also by Corollary 3.4 we have that the action G Õ H s.X IR/H is trivial
for even s ; hence

H s.N IR/D .H s.X IR/H /G DH s.X IR/H DH s.Tn
IR/

for even s . This proves (1).

Suppose now, for the sake of concreteness, that n is odd. Notice that on the one
hand g� is trivial on H n.X IR/ by Proposition 2.3 while on the other hand it acts by
multiplication by ı.g/n by Corollary 3.4. Hence ı.g/D 1 for all g 2G . Observe that
the same argument applies if r is odd. Once we know that ı.g/D 1 for all g 2G , the
second claim follows as (1).

4 Averaging

In this section we construct n cocycles in C 1.X IR/ which represent a basis of
H 1.X IR/H and have some highly desirable properties; notation is as in Notation 2.8.

To begin, choose bases Œc1�; : : : ; Œcn� of H1.T
nIZ/ and Œ�1�; : : : ; Œ�n� of H 1.TnIR/

with
hŒ�i �; Œcj �i D ıij ;

where ıij is the Kronecker symbol.

Proposition 4.1 There are 1–cocycles ‚1; : : : ; ‚n 2 C 1.X IR/ with the following
properties:

(1) ��.Œ�i �/D Œ‚i � for i D 1; : : : ; n.
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(2) g#.‚i/D ı.g/‚i for any g 2G and i D 1; : : : ; n. Here ı. � / is the homomor-
phism (3-2).

(3) h‚i ; zcj i D ıij for any 1–chain zcj 2C1.X IR/ in X such that �#.zcj / is 1–cycle
representing Œcj �.

(4) h‚i ; ci 2 Z for every integral 1–chain c 2 C1.X IZ/ whose pushforward �#.c/

is a 1–cycle in X=H D Tn .

Proof We begin choosing 1–cocycles �1; : : : ; �n 2 C 1.TnIR/ representing the co-
homology classes Œ�1�; : : : ; Œ�n� and define ‚i as a twisted G–average of the pull-
back �#.�i/:

‚i D
1

jGj

X
g2G

ı.g/g#.�#.�i//:

Observe that ‚i is a cocycle because it is a weighted sum of the cocycles g#.�#.�i//.
We claim that the cocycles ‚1; : : : ; ‚n fulfill the claims of Proposition 4.1.

To show (1), notice that, since �#.�i/ represents the cohomology class ��.Œ�i �/ 2

��.H 1.X=H IR//DH 1.X IR/H , we have by Proposition 3.1 that

Œg#.�#.�i//�D g�Œ�#.�i/�D ı.g/�
�.Œ�i �/:

Since ı.g/2 D 1 for all g 2G we have

Œ‚i �D

�
1

jGj

X
g2G

ı.g/g#.�#.�i//

�
D

1

jGj

X
g2G

ı.g/2��.Œ�i �/D �
�Œ�i �;

as claimed.

The validity of (2) follows from a simple computation and the fact that ı is a homo-
morphism.

To show (3) observe that the homomorphism ı from (3-2) induces a well-defined map

ıW G=H ! f˙1g

because H � Ker.ı/. From now on we choose a representative g for every class
gH 2G=H and hence identify G=H with a subset of G . We start rewriting h‚i ; zcj i:

h‚i ; zcj i D
1

jGj

�X
g2G

ı.g/g#.�#.�i//; zcj

�

D
1

jGj

�
�#.�i/;

X
g2G

ı.g/g#.zcj /

�
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D
1

jGj

�
�#.�i/;

X
g2G=H

X
h2H

ı.gh/.gh/#.zcj /

�

D
1

jGj

�
�#.�i/;

X
g2G=H

X
h2H

ı.g/g#.h#.zcj //

�

D
1

jGj

�
�#.�i/;

X
g2G=H

ı.g/g#

� X
h2H

h#.zcj /

��

D
1

jGj

� X
g2G=H

ı.g/g#.�#.�i//;
X
h2H

h#.zcj /

�
:(4-1)

Notice that, by Lemma 2.2,
P

h2H h#.zcj / is a 1–cycle satisfying

(4-2) ��

�� X
h2H

h#.zcj /

��
D jH jŒcj �:

Observing that in the last equation in (4-1) we are evaluating a 1–cocycle and a 1–cycle
we obtain the same result if we evaluate the corresponding cohomology and homology
classes:

h‚i ; zcj i D
1

jGj

� X
g2G=H

ı.g/g#.�#.�i//;
X
h2H

h#.zcj /

�

D
1

jGj

�� X
g2G=H

ı.g/g#.�#.�i//

�
;

� X
h2H

h#.zcj /

��

D
1

jGj

� X
g2G=H

ı.g/g�.��.Œ�i �//;

� X
h2H

h#.zcj /

��
:

(4-3)

By Proposition 3.1, and ı.g/2 D 1, we have

(4-4) ı.g/g�.��.Œ�i �//D �
�Œ�i �

for all g 2G . Therefore, we obtain from (4-3) and (4-4)

(4-5)

h‚i ; zcj i D
1

jGj

� X
g2G=H

ı.g/g�.��.Œ�i �//;

� X
h2H

h#.zcj /

��

D
jG=H j

jGj

�
��.Œ�i �/;

�X
h2H

h#.zcj /

��

D
jG=H j

jGj

�
Œ�i �; ��

� X
h2H

h#.zcj /

��
D
jG=H j

jGj

˝
Œ�i �; jH jŒcj �

˛
;
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where the last equality holds by (4-2). It follows that

h‚i ; zcj i D hŒ�i �; Œcj �i D ıij ;

as claimed.

To prove (4), we observe that a similar computation as in the proof of (3) shows that

h‚i ; ci D hŒ�i �; Œ�#.c/�i:

The claim (4) follows because Œ�#.c/� 2H1.X=H;Z/ can be written as a linear combi-
nation of the basis Œc1�; : : : ; Œcn� with integer coefficients and because hŒ�i �; Œcj �i D ıij
by the choice of the bases. This concludes the proof of Proposition 4.1.

5 The Abel–Jacobi map

Still using Notation 2.8, we construct in this section a map ‰W X !Rn=Zn and study
its equivariance properties with respect to the action of G on X . The construction
of the map ‰ is motivated by the construction of the classical Abel–Jacobi map of a
Riemann surface into its Jacobian.

To begin with we consider the linear map

z‰W C1.X IR/!Rn; z‰.c/D .h‚i ; ci/iD1;:::;n;

given by evaluating the 1–cocycles ‚1; : : : ; ‚n in Proposition 4.1 on singular chains.
By (4) in Proposition 4.1, the image of Z1.X IZ/ under z‰ is contained in Zn . In
particular, z‰ induces a map

‰0W C1.X IR/=Z1.X IZ/!Rn=Zn:

In order to obtain a map defined on X we choose a base point x0 . Suppose that
x 2 X is another point and that I and I 0 are two paths starting at x0 and ending
in x . Considering both paths as 1–chains we have ‰0.I/D‰0.I 0/ because I � I 0 is
a 1–cycle. It follows that the value ‰0.I/ does not depend on the chosen path I but
only on the point x . We obtain hence a well-defined map

‰W X !Rn=Zn:

We will refer to ‰ as the Abel–Jacobi map.

Proposition 5.1 The Abel–Jacobi map ‰W X ! Rn=Zn descends to a homotopy
equivalence y‰W Tn DX=H !Rn=Zn .
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We start by investigating how the action of G on X is reflected by the Abel–Jacobi
map. In order to do so we consider Rn=Zn as an abelian group.

Lemma 5.2 For all g 2G there is Ag 2Rn=Zn with

‰.g.x//D ı.g/‰.x/CAg

for all x 2X .

Proof For x 2X denote by Ix a path from x0 to x . In order to compute ‰.g.x//
we consider the juxtaposition Ig.x0/Cg.Ix/ of Ig.x0/ and g.Ix/. We have thus

‰.g.x//D‰0.Ig.x0/Cg.Ix//D‰
0.Ig.x0//C‰

0.g.Ix//D‰.g.x0//C‰
0.g.Ix//:

We set Ag D‰.g.x0// and compute

‰0.g.Ix//D .h‚i ;gIxi/iD1;:::;n:

We have for i D 1; : : : ; n

h‚i ;g.Ix/i D h‚i ;g#.Ix/i D hg
#‚i ; Ixi D ı.g/h‚i ; Ixi;

where the last equation holds by Proposition 4.1. The claim follows.

Clearly, the map

(5-1) G �Rn=Zn
!Rn=Zn; .g;x/ 7! ı.g/xCAg;

is an action of G on Rn=Zn .

Lemma 5.3 The restriction of the G –action (5-1) to H is trivial.

Proof Notice that for any h 2H the path Ih.x0/ projects to a closed loop in X=H .
In other words, �#.Ih.x0// is a 1–cycle in X=H D Tn . It follows from (4) in
Proposition 4.1 that z‰.Ih.x0// 2 Zn , meaning that

Ah D
z‰.Ih.x0// mod Zn

D 0:

Since H � Ker.ı/ we deduce from Lemma 5.2 that the action of H on Rn=Zn is
trivial.

Proof of Proposition 5.1 Lemma 5.3 implies directly that the Abel–Jacobi map ‰
descends to a map

y‰W X=H !Rn=Zn:
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We claim now that y‰ is a homotopy equivalence. In order to see that this is the case let
c1 be a loop in X=H D Tn representing the homology class Œc1� 2H1.X=H IZ/D
�1.X=H / chosen in the previous section. Suppose also that c1 is based at �.x0/ and
avoids Zf , the preimage of the branching locus of f . This last condition implies that
there is a unique lift zc1 of c1 starting at x0 . Applying Proposition 4.1(3) to zc1 we
obtain that

z‰.zc1/D .1; 0; : : : ; 0/:

Identifying �1.R
n=Zn/ with the deck-transformation group Zn of the cover Rn!

Rn=Zn we have that the image y‰.c1/ of c1 is homotopic to the first standard generator
of �1.R

n=Zn/'Zn . Arguing in the same way for c2; : : : ; cn we have proved that the
homomorphism

�1.y‰/W �1.X=H; �.x0//! �1.R
n=Zn; ŷ .�.x0///

induced by y‰ maps the basis Œc1�; : : : ; Œcn� to the standard basis of Zn D �1.R
n=Zn/.

In other words, �1.y‰/ is an isomorphism. Since both X=H and Rn=Zn are tori, and
hence have contractible universal coverings, this implies that ‰W X=H !Rn=Zn is a
homotopy equivalence, as we wanted to show.

We can now start drawing a diagram to which we will continue adding arrows and
objects in the next section:

X
‰

xx
�
��

�G

''
Rn=Zn X=H D Tn

y‰oo f // X=G DN

6 The subgroup K � G

Still using Notation 2.8 define
K D Ker.ı/

to be the kernel of the homomorphism ı ; see (3-2). By construction K is a normal
subgroup of G with at most index 2. Notice that H �K D Ker.ı/ and that it follows
from Corollary 3.4 that K DG if the dimension n of the involved manifolds is odd.

Remark In the next section, we will also prove that K DG if n is even.

By Lemma 5.2, the action (5-1) of G on Rn=Zn restricts to an action of K by
translations. Observe that since H �K , this action is not effective by Lemma 5.3. In
spite of this, we will denote by .Rn=Zn/=K the quotient of Rn=Zn under the action
by translations of K . In this section we prove:
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Proposition 6.1 The homotopy equivalence y‰W X=H !Rn=Zn descends to a map
x‰W X=K! .Rn=Zn/=K . In particular, the following holds:

(1) The orbit map p1W R
n=Zn! .Rn=Zn/=K has degree jK=H j.

(2) H is a normal subgroup of K .

(3) The action of K=H on Rn=Zn is effective and .Rn=Zn/=K is a torus.

(4) The action of K=H on X=H is free. In particular, the space X=K is in fact a
manifold and the orbit map p2W X=H !X=K is a covering map.

(5) The map x‰W X=K! .Rn=Zn/=K is a homotopy equivalence.

Proof The fact that y‰W X=H !Rn=Zn descends to a map x‰W X=K! .Rn=Zn/=K

follows just from the definitions and is left to the reader. Notice that since K acts on
the n–dimensional torus Rn=Zn by translations, the quotient is an n–dimensional a
torus as well. This proves the second part of (3).

At this point we can enlarge the diagram above as follows:

(6-1)

X
‰

vv
�
��

�G

��

Rn=Zn

p1

��

X=H D Tn
y‰oo

f

''
p2

��
.Rn=Zn/=K X=K

x‰oo p3 // X=G DN

where p1 , p2 and p3 are the obvious orbit maps.

Since the square in the left bottom corner of the diagram commutes we have that

deg.p1/ deg.y‰/D deg.p1 ı
y‰/D deg.x‰ ıp2/D deg.x‰/ deg.p2/:

Taking into account that y‰ is a homotopy equivalence and that p2 has degree jK=H j
we obtain

deg.p1/D jK=H j deg.x‰/:

On the other hand, p1 has positive degree. This implies that x‰ has to have positive
degree as well; hence

deg.p1/� jK=H j:

On the other hand, deg.p1/� jK=H j because the subgroup H of K acts trivially on
Rn=Zn . We have proved (1).

Recall that H is contained in the kernel of the homomorphism

K! Aut.Rn=Zn/
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by Lemma 5.3. The image of this homomorphism has deg.p1/ D jK=H j elements.
It follows that H is in fact precisely the kernel of this homomorphism and that it is
therefore normal in K . We have proved (2) and the first part of (3).

Now H is normal in K , so K=H acts on X=H and that X=K D .X=H /=.K=H /.
We claim that the action of K=H on X=H is free. In order to see this, suppose that
we have x 2X=H and k 2K=H with kx D x . Then we have

y‰.x/D y‰.kx/D k y‰.x/:

Since the action of K=H on Rn=Zn is effective and by translations, an element
k 2K=H can only fix the point ‰.x/ 2Rn=Zn if k is the neutral element in K=H .
We have proved (4).

It remains to show that the map x‰W X=K! .Rn=Zn/=K is a homotopy equivalence.
As in the proof of Proposition 5.1, it suffices to show that .�1/�.x‰/W �1.X=K/!

�1..R
n=Zn/=K/ is an isomorphism. Notice at this point that we have the following

commutative diagram:

1 // �1.X=H /

.�1/�.y‰/
��

// �1.X=K/

.�1/�.x‰/
��

// K=H

id
��

// 1

1 // �1.R
n=Zn/ // �1..R

n=Zn/=K/ // K=H // 1

Since the first and third vertical arrows are isomorphisms it follows that the middle
arrow is an isomorphism as well. This concludes the proof of Proposition 6.1.

We conclude this section with some remarks needed to prove Theorem 1.2 below. The
following is just a direct consequence of parts (3) and (5) of Proposition 6.1:

Corollary 6.2 The manifold X=K is homotopy equivalent to an n–torus.

Recall now that K � G is normal of at most index 2 because it is the kernel of
the homomorphism (3-2). In particular, the group G=K acts on X=K with X=G D

.X=K/=.G=K/ and the map p3W X=K! X=G D N in (6-1) is just the orbit map.
We prove now:

Lemma 6.3 If K ¤ G denote by � the nontrivial element in G=K . Then � acts
as �id on H 1.X=KIR/.

We suggest the reader to compare with Corollary 3.5.
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Proof Denote by z� 2G a representative of � in G . Notice that, by the very definition
of the action (5-1), z� acts on H 1.Rn=ZnIR/ by �id. Since K acts on Rn=Zn by
translations, it follows that � also acts on H 1..Rn=Zn/=KIR/ by �id. Since the
homotopy equivalence x‰ satisfies x‰.�.x// D �.x‰.x//, we deduce that � acts on
H 1.X=KIR/ as �id as well.

7 The final step of the proof of Theorem 1.2

In this section we conclude the proof of Theorem 1.2; as always, we use Notation 2.8.
We copy (6-1) here for the convenience of the reader:

X
‰

vv
�
��

�G

��

Rn=Zn

p1

��

X=H D Tn
y‰oo

f

''
p2

��
.Rn=Zn/=K X=K

x‰oo p3 // X=G DN

Having this diagram in mind, we conclude the proof of Theorem 1.2:

Theorem 1.2 Let N be a closed, connected, and oriented n–manifold, n� 2 so that
dim H r .N IR/ D dim H r .TnIR/ for some 1 � r < n. Then every branched cover
f W Tn!N is a cover. In particular, every �1 –surjective branched cover Tn!N is
a homeomorphism.

Proof If G=K is the trivial group then p3 D id and, in particular, we have

f D p3 ıp2 D p2:

By Proposition 6.1, the map p2 , and hence f , is a covering map. Thus it suffices to
show that K DG .

Seeking a contradiction assume that K ¤ G . Hence G=K is the group of order
two. As in Lemma 6.3, denote by � the nontrivial element in G=K . It follows from
Corollary 6.2 that X=K is homotopy equivalent to an n–torus. Furthermore, it follows
from Lemma 6.3 that � acts on H s.X=KIR/ by multiplication by .�1/s . Since
.X=K/=.G=K/DX=G DN is an orientable manifold, this contradicts Corollary 2.7.
The proof is complete.
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8 Brief discussion of Theorem 1.1

Theorem 1.1 There is no branched cover from the 4–dimensional torus T4 to
#3.S2 � S2/, the connected sum of three copies of S2 � S2 . On the other hand,
there are, a fortiori �1 –surjective, maps T4! #3.S2 �S2/ of arbitrarily large degree.

The claim that there is no branched covering T4! #3.S2�S2/ follows directly from
Theorem 1.2. Maps of arbitrarily large degree

f W T4
! #3.S2

�S2/

can either be constructed directly, or be shown to exist using the work of Duan and
Wang [10]. These authors prove namely the following remarkable theorem:

Theorem (Duan–Wang [10, Theorem 3]) Suppose M and L are closed oriented
4–manifolds and denote by xH 2.M IZ/ and xH 2.LIZ/ the torsion free part of the
corresponding second cohomology group. Let also ˛� and ˇ� be respectively bases of
xH 2.M IZ/ and xH 2.LIZ/ and let A and B be the intersection matrices on M and L

with respect to the bases ˛� and ˇ� . Finally, let P be an m–by–l –matrix, where
mD dim xH 2.M / and l D dim xH 2.L/.

If L is simply connected, then there is a map f W M ! L of degree k such that
f �.ˇ�/D ˛�P if and only if P tAP D kB . Moreover, there is a map f W M !L of
degree 1 if and only if the intersection form of L is isomorphic to a direct summand of
the intersection form of M .

In [10, Example 4], this is applied in the particular case of maps T4!#3.S2�S2/ to ob-
tain mappings of every degree. We finish by recalling this example. Let Œ�1�; : : : ; Œ�4� be
generators of H 1.T4IZ/ as in Section 4. The basis .Œ�i �^Œ�j �/1�i<j�4 of H 2.T4IZ/
can be ordered so that the intersection form of H 2.T4IZ/ reads asL3

�
0 1
1 0

�
:

Similarly, we can fix 2–spheres in S1; : : : ;S6 in #3.S2�S2/, so that ŒS1�; : : : ; ŒS6� is
a basis of H2.#3.S2 �S2/IZ/ and that the intersection form of H 2.#3.S2 �S2/IR/
in the corresponding dual basis reads asL3

�
0 1
1 0

�
:

Thus the linear mapping given by the matrix

P D
L3

�
0 k
1 0

�
with respect to these bases of H 2.#3.S2 �S2/IR/ and H 2.T4IR/ yields the result.
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