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Pattern rigidity and the Hilbert—-Smith conjecture

MAHAN MJ

We initiate a study of the topological group PPQI(G, H) of pattern-preserving quasi-
isometries for G a hyperbolic Poincaré duality group and H an infinite quasiconvex
subgroup of infinite index in G . Suppose dG admits a visual metric d with dimyp,,s <
dim; + 2, where dimy,,s is the Hausdorff dimension and dim; is the topological
dimension of (0G,d). Equivalently suppose that ACD(dG) < dim; + 2, where
ACD(dG) denotes the Ahlfors regular conformal dimension of 0G .

(a) If Q, is a group of pattern-preserving uniform quasi-isometries (or more
generally any locally compact group of pattern-preserving quasi-isometries)
containing G, then G is of finite index in Q.

(b) If instead, H is a codimension one filling subgroup, and Q is any group of
pattern-preserving quasi-isometries containing G, then G is of finite index
in Q. Moreover, if L is the limit set of H, L is the collection of translates of L
under G, and Q is any pattern-preserving group of homeomorphisms of 0G
preserving £ and containing G, then the index of G in Q is finite (Topological
Pattern Rigidity).

We find analogous results in the realm of relative hyperbolicity, regarding an equivari-
ant collection of horoballs as a symmetric pattern in the universal cover of a complete
finite volume noncompact manifold of pinched negative curvature. Our main result
combined with a theorem of Mosher, Sageev and Whyte gives QI rigidity results.

An important ingredient of the proof is a version of the Hilbert—Smith conjecture for
certain metric measure spaces, which uses the full strength of Yang’s theorem on
actions of the p-adic integers on homology manifolds. This might be of independent
interest.

20F67; 57TM50, 22E40

1 Preliminaries

1.1 Statement of results

In this paper we start studying the full group of “pattern-preserving quasi-isometries” for
pairs (G, H), where G is a (Gromov) hyperbolic group and H an infinite quasiconvex
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subgroup of infinite index in G. Gromov [31] proposed the project of classifying finitely
generated groups up to quasi-isometry, as well as the study of the group QI(X) of
quasi-isometries of a space X, where two quasi-isometries are identified if they lie at a
bounded distance from each other. A class of groups where any two members are quasi-
isometric if and only if they are commensurable is said to be quasi-isometrically rigid.
However, any class of groups acting freely, cocompactly and properly discontinuously
on some fixed proper hyperbolic metric space H are quasi-isometric to H and hence
to each other. In this context (or in a context where quasi-isometric rigidity is not
known) it makes sense to ask a relative version of Gromov’s question. To obtain rigidity
results, we impose additional restrictions on the quasi-isometries by requiring that
they preserve some additional structure given by a “symmetric pattern” of subsets.
A “symmetric pattern” of subsets roughly means a G —equivariant collection 7 of
convex (or uniformly quasiconvex) cocompact subsets in H (see Section 1.3 for detailed
definitions). Then the relative version of Gromov’s question for classes of pairs (G, H)
was formulated by Mosher, Sageev and Whyte [46] as the following pattern rigidity
question:

Question 1.1 Given a quasi-isometry ¢ of two such pairs (G;, H;) (i = 1,2) pairing
a (G, Hy)-symmetric pattern 77 with a (G, H,)-symmetric pattern 7, , does there
exist an abstract commensurator / which performs the same pairing?

The study of this question was initiated by Schwartz [56; 57], where G is a lattice in a
rank one symmetric space. The paper [56] deals with symmetric patterns of convex
sets (horoballs) whose limit sets are single points, and [57] deals with symmetric
patterns of convex sets (geodesics) whose limit sets consist of two points. Biswas and
Mj [7] generalized Schwartz’ result to certain Duality and PD subgroups of rank one
symmetric spaces. Biswas [6] completely solved the pattern rigidity problem for G
a uniform lattice in real hyperbolic space and H any infinite quasiconvex subgroup
of infinite index in G . However, all these papers used, in an essential way, the linear
structure of the groups involved, and the techniques fail for G the fundamental group
of a general closed negatively curved manifold. (This point is specifically mentioned
by Schwartz in [57]). Further, the study in [56; 57; 7; 6] boils down to the study of a
single pattern-preserving quasi-isometry between pairs (G1, Hy) and (G, Hy). We
propose a different perspective in this paper by studying the full group PPQI(G, H) of
pattern-preserving (self-)quasi-isometries of a pair (G, H) for G a hyperbolic group
and H any infinite quasiconvex subgroup of infinite index. The features of G that we
shall use are general enough to go beyond the linear context while at the same time
being strong enough to ensure rigidity in certain contexts. Some of the ingredients of
this paper are:
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(1) The boundary of a Poincare duality (PD for short) hyperbolic group is a homology
manifold (cf Definition 1.14) by a Theorem of Bestvina and Mess [4].

(2) The algebraic topology of homology manifolds imposes restrictions on what
kinds of groups may act on them by Theorems of Newman [48], Smith [59] and
Yang [67].

(3) Boundaries of hyperbolic groups equipped with the visual metric also have a
metric measure space structure with the property that they are Ahlfors regular
(cf Definition 2.10).

(4) Quasiconformal analysis can be conducted in the general context of Ahlfors
regular metric spaces.

(5) A combinatorial cross-ratio can be constructed on the boundary of a hyperbolic
group in the presence of a codimension one subgroup. (Roughly speaking these
are subgroups whose Cayley graphs coarsely separate the Cayley graph of the
group. See first paragraph of Section 4.1 for a formal definition of codimension
one subgroups.)

We refer the reader to Hocking and Young [37, page 145] for details on topological
dimension and Davis [23] for details on PD groups.

Of these ingredients, the first two come from (a somewhat forgotten chapter of) algebraic
topology, the next two from a very active new area of analysis on metric measure
spaces, while the last comes from geometric group theory proper. Topological actions
of finite groups on manifolds and homological consequences of actions of p—adics on
manifolds form the two main ingredients for a proof of the Hilbert—Smith conjecture
for bi-Lipschitz (see Repov§ and S&epin [54]) and quasiconformal (see Martin [42])
actions. We first generalize the result of Martin [42] to Ahlfors regular metric spaces
that are boundaries of PD hyperbolic groups and obtain the following.

Theorem 2.24 and Corollary 2.25 Let G be a Poincare duality hyperbolic group and
O be a group of (boundary values of) quasi-isometries of G. Suppose d is a visual
metric on 0G with dimp,,s < dim; +2, where dimp,ys is the Hausdorff dimension (cf
Definition 2.9) and dim, is the topological dimension of (0G, d). Equivalently suppose
that ACD(dG) < dim; +2, where ACD(dG) denotes the Ahlfors regular conformal
dimension (cf Definition 2.13) of G . Then Q cannot contain a copy of Z ), where
Zp) denotes the p-adic integers. Hence if Q is finite dimensional locally compact, it
must be a Lie group.

Theorem 2.24 and Corollary 2.25 give a strong affirmative answer to a question of
Iwaniec and Martin [38, Remark 2, page 527].
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As in [42], there is no assumption on the uniformity of the quasiconformal maps in Z ).
The analogue of Theorem 2.24 is false for purely topological actions (see Raymond
and Williams [53]) on homology manifolds. Hence the quasi-isometry assumption is
crucial here. The statement that a topological manifold does not admit an effective
topological Z(,) action is the famous Hilbert-Smith conjecture (but does not imply
Corollary 2.25).

Corollary 2.25 will be a crucial ingredient in our approach to pattern rigidity. Another
property we shall be investigating in some detail is the notion of “topological infinite
divisibility” (see Section 3.1 for definitions). The notion we introduce is somewhat
weaker than related existing notions in the literature. In this generality, we prove:

Propositions 3.5 and 3.7 Let G be a hyperbolic group and H an infinite quasiconvex
subgroup of infinite index in G .

(a) Any group of pattern-preserving quasi-isometries is totally disconnected and
contains no topologically infinitely divisible elements.

(b) If G is a Poincare duality group, the group QI(G) of quasi-isometries cannot
contain arbitrarily small torsion elements.

We obtain stronger results under the assumption that G is a Poincare duality group (eg
the fundamental group of a closed negatively curved manifold) with some restrictions
on the visual metric on its boundary. (We refer the reader to the first paragraph of
Section 4.1 for the notion of codimension one filling subgroups.)

Theorems 3.9, 4.8 and 4.10 Let G be a hyperbolic Poincare duality group and
H an infinite quasiconvex subgroup of infinite index in G. Suppose further that
for some visual metric on G, dimp,s(0G) < dim;(0G) + 2, where dimy,,s and
dim; denote Hausdorff and topological dimension respectively. Equivalently suppose
that ACD(dG) < dim; +2, where ACD(dG) denotes the Ahlfors regular conformal
dimension of G .

(a) If Qy is a group of pattern-preserving uniform quasi-isometries (or more gener-
ally any locally compact group of pattern-preserving quasi-isometries) containing
G, then G is of finite index in Q.

(b) If further, H is a codimension one filling subgroup, and Q is any group of (not
necessarily uniform) pattern-preserving quasi-isometries containing G, then G
is of finite index in Q.

(c) (Topological Pattern Rigidity) Under the assumptions of (b), let L be the
limit set of H and L be the collection of translates of L under G. Let Q
be any pattern-preserving group of homeomorphisms of dG preserving £ and
containing G . Then the index of G in Q is finite.
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Theorem 4.10 is a generalization of a Theorem of Casson and Bleiler [19] and Kapo-
vich and Kleiner [39] to all dimensions. Casson and Bleiler [19] and Kapovich and
Kleiner [39] proved Theorem 4.10 for G the fundamental group of a surface and H
an infinite cyclic subgroup corresponding to a filling curve.

Codimension one filling subgroups (See first paragraph of Section 4.1 for defini-
tions.) The existence of a codimension one filling quasiconvex subgroup H (or more
generally a finite family of codimension one quasiconvex subgroups that are filling as
a collection) of a hyperbolic group G ensures that G acts properly, cocompactly on a
CAT(0) cube complex (see Sageev [55]) by a recent result of Bergeron and Wise [2].
Thus, Theorems 3.9, 4.8 and 4.10 deal with the pattern-rigidity for PD(#n) hyperbolic
groups acting properly and cocompactly on a CAT(0) cube complex.

We also derive QI rigidity results for fundamental groups of certain noncompact
negatively curved manifolds of finite volume, by deriving analogues of Theorem 3.9
for symmetric patterns of horoballs and combining it with a Theorem of Behrstock,
Drutu and Mosher [1]. The hypotheses in the following Theorem are satisfied by
fundamental groups of finite volume complete noncompact manifolds of sufficiently
pinched negative curvature and dimension bigger than 2.

Theorem 5.5 Let M = M" be a complete finite volume manifold of pinched negative
curvature with n > 2. Let G = w1 (M). Suppose that there exists a visual metric d
on 8(]\7 ) with dimp,,s < dim; 42, where dimy,y is the Hausdorff dimension and dim;
is the topological dimension of (8(1\7 ), d). Equivalently suppose that ACD(8(]\7 ) <
dinﬁ +2, where ACD(B(M )) denotes the Ahlfors regular conformal dimension of
I(M).

Let I be a Cayley graph of G with respect to a finite generating set. Let Q be a
group of uniform quasi-isometries of I' containing G. Then G is of finite index in Q.
In particular, Q C Comm(G), where Comm(G) denotes the abstract commensurator
of G.

The author learnt the following Scholium from Misha Gromov [32].

Scholium 1.2 If two discrete groups can be embedded in the same locally compact
group nicely, they are as good as commensurable.

A partial aim of this paper is to make Scholium 1.2 precise in the context of pattern

rigidity. It follows from Theorems 3.9 and 5.5 that in the context of pattern rigidity or
QI rigidity of (fundamental groups of) finite volume complete noncompact manifolds of
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pinched negative curvature and dimension bigger than 2, “as good as” can be replaced
by “actually” in Scholium 1.2. Thus, Theorem 3.9 and Theorem 5.5 reduce the problem
of pattern rigidity to the weaker problem of embedding two groups simultaneously in
the same locally compact group and Theorem 4.8 carries out this embedding under
certain hypotheses.

Notation To prevent confusion we fix two pieces of notation:

(1) Zp, will denote the integers mod p.

(2) Z(p) will denote the p-adic integers.

Section 2 discusses Ahlfors regular metric spaces and proves the Hilbert—Smith conjec-
ture in our context. In Section 3 we investigate pattern preserving groups as topological
groups, including topological infinite divisibility and PD groups. Section 4 considers
filling codimension one subgroups and pattern rigidity. Section 5 specializes to finite
volume manifolds of negative curvature, and in Section 6 we give examples and
consequences of our results.

1.2 Dotted geodesic metric spaces

Definition 1.3 A dotted metric space is a metric space X, where d(x, y) is an integer
for all x, y € X. A dotted geodesic metric space is a dotted metric space X, such that
for all x, y € X, there exists an isometric map o: [0, d(x, y)]NZ — X with ¢(0) = x
and o(d(x, y)) = y. A dotted metric space is proper if every ball N (x) is finite.

The compact open topology on the space F of self-maps of a dotted metric space
is defined by taking the family of sets Ug (f) ={g € F : g(x) = f(x), Vx € K,
K C X finite} as a basis for the topology on F.

The following easy observation will turn out to be quite useful. Note that we do not
need any extra geometric assumptions (eg hyperbolicity) on X in the Lemma below.

Lemma 1.4 Let (X, d) be a proper dotted geodesic metric space. Let L be a closed
subset of F , the collection of self-maps of X equipped with the compact open topology.
Further suppose that there exist K > 1,C,e > 0 and x € X such that for all g € L,
g is a (K, €) quasi-isometry of X and d(x, g(x)) < C. Then L is compact. Hence
any group of uniform quasi-isometries of a proper dotted metric space X is locally
compact.

Geometry & Topology, Volume 16 (2012)
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Proof Since N¢ (x) is finite (by properness), it suffices to prove that for all y € N¢(x),
{g e L:g(x)=y} is compact.

Hence, without loss of generality assume that there exists y € X such that g(x) =y
for all g € L. Since X is proper, X is countable. Let X = {x = x1,X2,...,Xn,...}
be an enumeration of the elements of X . Since each go € L is a (K, €)—quasi-isometry
and g(x) = y for all g € L, then for each x, € X, there exists a finite set K, such
that g(x,) € K, forall ge L.

Then, given any infinite collection of go’s in L, we can pass to a sequence {g1, g2, ...,
gn, ...} such that for each x, € X, there exists y, € X with g;(x,) = y, foralli <n.
Let goo(xp) = yp, forall n.

Then g, converges to g, in JF, the collection of self-maps of X equipped with the
compact open topology and we are done. a

Lemma 1.4 may be thought of as a coarsening of the fact that the stabilizer of a point
in the isometry group of a Riemannian manifold is compact.

For a nonelementary Gromov hyperbolic group G we shall construct a certain pseudo-
metric space which will come in handy. It is known [30] that G acts cocompactly on
the collection 93 G of distinct triples on the boundary dG of G. Let K be a (closed)
fundamental domain for this action. Choose a point p in the interior Int(K) of K.
Define p(g(p),.h(p)) =1 if g(K) N h(K) # @. Also for x € g(Int(K)) define
p(g(p),x) =0. For x € 9°G \ Ug g(Int(K)), let g1,...,gm be the collection of
all elements of G such that x € ("); g;(K). Choose one of the elements g1, ..., gm,
say g; and define p(g;(p).x) =0 and p(gj(p).x) =1 for j # i. Now define a
dotted path metric on 3*G by

p(x, y) =inf{ n : there exists a sequence x = x¢, g1(p), 22(p),--., &n(P), Xpy1 =y
such that p(xo, g1(p)) =0 = p(Xn+1.8n(P))
and p(gi (), gi+1(p) = 1 fori = 1,....n—1}.

Observation 1.5 The pseudo-metric space (33G, p) is quasi-isometric to any Cayley
graph ' of G with respect to a finite generating set. The proof of this fact is an
easy modification of the Svarc—Milnor Lemma (see the proof [16, Proposition 8.19,
page 140]). The map ¢: I' — (393G, p) given by ¢(g) = g(p) gives the required
quasi-isometry.

1.3 Patterns

Definition 1.6 Let G be a hyperbolic group acting geometrically (ie freely, cocom-
pactly and properly discontinuously by isometries) on a hyperbolic metric space H.
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A symmetric pattern of closed convex (or quasiconvex) sets in H is a G —invariant
countable collection J of convex (or quasiconvex) sets such that

(1) the stabilizer H of J € J acts cocompactly on J,
(2) J is the orbit of some (any) J € J under G.

This definition is slightly more restrictive than Schwartz’ notion of a symmetric pattern
of geodesics, in the sense that he takes 7 to be a finite union of orbits of geodesics,
whereas Condition (2) above forces J to consist of one orbit. All our results go through
with the more general definition, where 7 is a finite union of orbits of closed convex
(or quasiconvex) sets, but we restrict ourselves to one orbit for ease of exposition.

Suppose that (X7, d1), (X3, dy) are metric spaces. Let 7, J» be collections of closed
subsets of X, X, respectively. Then d; induces a pseudo-metric (which, by abuse of
notation, we continue to refer to as d;) on J; for i = 1,2. This is just the ordinary
(not Hausdorff) distance between closed subsets of a metric space.

In particular, consider two hyperbolic groups G, G, with quasiconvex subgroups
H,, Hy, Cayley graphs I';, I'>. Let £; for j =1, 2 denote the collection of translates of
limit sets of H;, H, in 3G, 0G; respectively. Individual members of the collection L;
will be denoted as LJ Let J; denote the collection {J; =7 (Lj ): L] € Lj} of
joins of limit sets. Recall that the join of a limit set A; is the union of bi-infinite
geodesics in I'; with endpoints in A;. This is a uniformly quasiconvex set and lies at
a bounded Hausdorff distance from the Cayley graph of the subgroup H; (assuming
that the Cayley graph of H; is taken with respect to a finite generating set which is
contained in the generating set of G;). Following Schwartz [57], we define:

Definition 1.7 A bijective map ¢ from J; — J, is said to be uniformly proper if
there exists a function f: N — N such that

() dg,(J(L}),J(L}) =n = dG,(¢(J(L})),¢(J(L)))) = f(n),
(2) d,(p(J(L})).¢(J(L)))) =n=dg,(J(L]).J(L)) = f(n).

When J; consists of all singleton subsets of I'y, I';, we shall refer to ¢ as a uniformly
proper map from I'y to I';.

The proof of the following Theorem can be culled out of our paper [44]. We give a
proof for completeness.
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Theorem 1.8 Let H be an infinite quasiconvex subgroup of a hyperbolic group G
such that H has infinite index in G. Let I" be a Cayley graph of G with metric d . Let
L be the limit set of H and L be the collection of translates of L under G. There
exists a finite collection L1, ..., L, of elements of L such that the following holds.

For any K, €, there exists a C such thatit ¢ : I’ — I' is a pattern-preserving (K, €)—
quasi-isometry of I' with d¢(L;) = L; fori =1,...,n,then d(¢(1),1) <C.

Proof Let J; denote J(L;) for L; € L. Also let By (1) denote the k—neighborhood
of 1 €I". In [44, page 1706], we show that there exists M € N such that for all k > M
the collection

i Br(1)NJ; # o}

contains a pair Jp, J4 such that L, N L, = &. Further [44, page 1707] for any K,
there exists D, such that {z € I" : d(z, Jp) < Ky,d(z, J4) < K;} has diameter less
than D.

Let Lq,...Ly, be all the elements of £ such that Bas(1) N J; #% @. Suppose
d¢p(L;) = L; for i = 1,...,n. Then there exists Cy = Co(K, €) such that ¢(J;)
lies in a Cy neighborhood of J; fori =1,...,n. Also d(¢(1),¢(J;)) < MK + € for
i=1,...,n.Hence d(¢(1),J;) MK +e+Cyfori=1,...,n.

Choose K; = MK +¢€+ Cy. Then d(z,Jp) < Ky,d(z,Jq) < Ky for z =1 or
z=¢(1). Hence d(1,¢(1)) < D where D is the real number determined by the last
assertion in the first paragraph of this proof. Taking C = D we are done. a

Definition 1.9 Let H be an infinite quasiconvex subgroup of a hyperbolic group G
such that H has infinite index in G. The group PP(G, H) of pattern-preserving maps
for such a pair (G, H) is defined as the group of homeomorphisms of dG that preserve
the collection of translates £, ie PP(G, H) = {¢ € Homeo(dG) :¢p(L)e L, YL € L}.
The group PPQI(G, H) of pattern-preserving quasi-isometries for a pair (G, H) as
above is defined as the subgroup of PP(G, H) consisting of homeomorphisms / of dG
such that 47 = d¢ for some quasi-isometry ¢p: I' — I". The topology on PP(G, H) or
PPQI(G, H) is inherited (as a subspace) from the uniform topology on Homeo(9G).

Proposition 1.10 [44] The collection L is discrete in the Hausdorff topology on
the space of closed subsets of 0G, ie for all L € L, there exists € > 0 such that
Ne(L) N L = L, where Ne(L) denotes an € neighborhood of L in the Hausdorff
metric. Further, for every € > 0 and any visual metric d on dG , the number of elements
of L of diameter greater than € is finite.
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Observation 1.11 We observe now that PP(G, H) is closed in Homeo(dG) equipped
with the uniform topology. To see this, assume that f,, € PP(G, H) and f, — f in
Homeo(dG) equipped with the uniform topology. If f € PP(G, H) there exists L € L
such that f(L) ¢ L. Since f; converges to f in the uniform topology, f,(L)— f(L)
in the Hausdorff metric on closed subsets of dG . Since f is a homeomorphism, there
exists € > 0 such that the diameter of f(L) is greater than 2¢ and hence there exists
N € N such that the diameter of f(L) is greater than € for all » > N . Since the
number of elements of £ of diameter greater than € is finite by Proposition 1.10, then
(after passing to a subsequence if necessary) it follows that there exists L € £ such
that f,(L) = L, forall n > N . Since L, L are closed and f, — f in Homeo(dG)
equipped with the uniform topology, it follows that f(L) = L, € L, a contradiction.
This shows that PP(G, H) is closed in Homeo(dG).

The same is true for PPQI(G, H).

Henceforth, whenever we refer to Homeo(0G) as a topological group, we shall assume
that it is equipped with the uniform topology.

Combining Lemma 1.4 with Theorem 1.8, we get:

Corollary 1.12 Let H be an infinite quasiconvex subgroup of infinite index in a hyper-
bolic group G . Let I" be a Cayley graph of G with metric d and Q C PPQI(G, H) be
any group of boundary values of uniform quasi-isometries of (the vertex set of) I'. Let
L be the limit set of H and L be the collection of translates of L under G . There exists
a finite collection L1, ... L, of elements of L such that Qo = ﬂi=1,...,n Stab(L;) is
compact, where Stab(L;) denotes the stabilizer of L; in Q. (Here Q is equipped with
the uniform topology as a subspace of Homeo(9G).)

Proof Let K > 1,¢ > 0 be such that each ¢ € Q is the boundary value of a (K, €)—
quasi-isometry. Let Lq,... L, be elements of £ as in Theorem 1.8. For each ¢ € O,
let ¢4 be a (K, €)—quasi-isometry such that d¢, = q. Let Fo = {¢g : 994 € Qo }.

By Theorem 1.8, there exists C = C(K, €) such that d(¢4(1),1) < C for all ¢4 € Fy.
Hence, by Lemma 1.4, F{ is compact in the compact open topology on the space of
self-maps of the dotted geodesic metric space consisting of the vertex set of I'.

Suppose {¢q; } C Fo is a sequence converging to ¢, in the compact open topology.
Hence ¢; and g are boundary values of (K, €)—quasi-isometries ¢4, and ¢, respec-
tively such that ¢4, , ¢, agree on larger and larger subsets as i — 0o. It follows that
¢i — ¢ in Homeo(dG) (with the uniform topology) by stability of quasigeodesics (see
Ghys and de la Harpe [27]) as G is hyperbolic. a
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Also, since PP(G, H) or PPQI(G, H) is a closed subgroup of Homeo(dG) equipped
with the uniform topology, we have

Corollary 1.13 Let H be an infinite quasiconvex subgroup of a hyperbolic group G
such that H has infinite index. Let I" be a Cayley graph of G with metric d and
Q C PPQI(G, H) be any group of boundary values of pattern-preserving uniform
quasi-isometries of (the vertex set of) I'. Then Q, equipped with the topology inherited
from Homeo(0G), is locally compact.

Proof We include a slightly different direct proof here. The collection L is discrete
by Proposition 1.10. Consider the finite collection Ly, ... L, in Corollary 1.12. There
exists € > 0 such that Ne(L;)N L= L; foralli =1,...,n. Define

Ne(Id) ={g € O :dyg(x,q(x)) <€ forall x € 0G},

where dyg denotes some visual metric on G . Then Ne(Id)C Qo=();—; . ,Stab(L;),
which is compact by Corollary 1.12. Hence the Corollary. O

1.4 Boundaries of hyperbolic metric spaces and the Newman—-Smith The-
orem

Let L be one of the rings Z or Z, for p a prime.

Definition 1.14 [15, page 329] An m—dimensional homology manifold over L (de-
noted m—hmy ) is a locally compact Hausdorff space X with finite homological
dimension over L, that has the local homology properties of a manifold, ie for all
xeX, Hy(X, X \{x}) =L and H;(X, X \{x}) =0 for i #m.

Further, if X is an m—hmy and HS(X; L) = HS(S™; L) then X is called a general-
ized m—sphere over L. (Here H{ denotes Cech homology and Hy denotes ordinary
singular homology.)

For homology manifolds, the existence of a local orientation was proven by Bredon [13].

The related notion of a cohomology manifold over L, denoted m—cmy, is defined by
Bredon [15, page 373]. If L = Z,, a connected space X is an n—cmp if and only it
if it is an n—hmy, and is locally connected [15, page 375, Theorem 16.8, footnote].

We shall be using the following Theorem which is a result that follows from work of
Bestvina and Mess [4] and Bestvina [3] (see also Swenson [63], Bowditch [11] and
Swarup [62]).
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Theorem 1.15 Boundaries dG of PD(n) hyperbolic groups G are locally connected
homological manifolds (over the integers) with the homology of a sphere of dimen-
sion (n — 1). Further, it G acts freely, properly discontinuously, cocompactly on a
contractible complex X then H¥(X) = H,_130G, where HLY denotes locally finite
homology.

In fact, one of the main results of [4] asserts that the (reduced) Cech cohomology
groups of dG vanish except in dimension (n — 1). Bestvina [3] also shows that the
(reduced) Steenrod homology groups of dG vanish except in dimension (7 — 1). Since
dG is compact metrizable, Steenrod homology coincides with Cech homology (see
for instance Milnor [43]). Further, for locally connected metrizable compacta such
as G, the Cech (co)homology groups coincide with singular (co)homology groups
(see Lefschetz [40, page 107]). Hence the singular (as well as Cech) homology and
cohomology of dG coincide with that of a sphere of dimension (n — 1), ie Hy(dG) =
H,_1(0G) = H°(0G) = H"1(dG) = Z and all other homology and cohomology
groups with Z coefficients are zero. Finally, using the Universal Coefficient Theorem
for homology [34, Theorem 3A.3] H;(0G;Zp) = H;(0G) ® Z, since all the integral
homology groups are torsion-free. Similarly for cohomology groups. Thus we have
the following strengthening of Theorem 1.15:

Theorem 1.16 Let L denote Z, the integers or Zj, the integers mod p. Bound-
aries dG of PD(n) hyperbolic groups G are locally connected (co)homological mani-
folds (over L ) with the (co)homology of a sphere of dimension (n —1).

We shall be using Theorem 1.16 in conjunction with the following Theorem of Newman
and Smith, which as stated below is a consequence of the work of several people (see
below).

Theorem 1.17 (Newman [48], Smith [59]) Let (X, d) be a compact Z,—-cohomology
manifold for all p, having finite topological (covering) dimension and equipped with a
metric d. There exists € > 0 such that (for any n) if 7, acts effectively on X , then
the diameter of some orbit is greater than €.

Newman proved the above Theorem for closed orientable manifolds [48]. Smith [59]
generalized it to locally compact spaces satisfying certain homological regularity
properties. Building on work of Yang [66], Conner and Floyd [21, Corollary 6.2]
proved that cohomological manifolds of finite topological (covering) dimension satisfy
the regularity properties required by Smith’s theorem. (The theorem also holds for a
somewhat more general class of spaces, called “finitistic spaces” by Bredon [14], but
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we shall not require this). For a historical account of the development of the theory
of generalized/homology manifolds and their connection with Smith manifolds, see
Raymond [52].

We shall also be using a theorem on homological consequences of actions of p—adic
transformation groups on homology manifolds.

Theorem 1.18 (Yang [67]) Let X be a compact homology n—manifold admitting
an effective K —action, where K = Z,y is the group of p—adic integers. Then the
homological dimension of X /K isn+ 2.

2 Ahlfors regular metric measure spaces

2.1 General facts

We refer to Heinonen [35] and Bonk and Kleiner [8] for details on quasisymmetric
maps and metric measure spaces.

Quasi-symmetric maps and quasi-isometries

Definition 2.1 Let f: X — Y be a homeomorphism between metric spaces (X, dx)
and (Y, dy).

Then f is n—quasisymmetric for some homeomorphism #: [0, c0) — [0, 0o) if

dy (f(x1), f(x2)) _ . (dx(xl,Xz))
dy (f(x1). f(x3)) — " \dx(x1.x3)

for every triple (x1, x5, x3) of distinct points in X .

The inverse of a quasisymmetric map is also quasisymmetric. In fact the right general-
ization of quasiconformal maps in R” to metric measure spaces are quasisymmetric
maps (cf [35, Chapters 10, 11]).

Proposition 2.2 [35, page 79] If f: X — Y is an n—quasisymmetric homeo-
morphism, then f~': Y — X is an 1, —quasisymmetric homeomorphism, where
n@) = 1/n7 1t~ fort > 0. Further, if f: X — Y and g: Y — Z are ns and
ng —quasisymmetric homeomorphisms respectively, then go f: X — Z is (ng ony)—
quasisymmetric.

Remark 2.3 It follows from the definition of n—quasisymmetry that dy (xq, x;) <

dx (x1,x3) = dy (f(x1), f(x2)) =n(D)dy (f(x1). f(x3)). Nowlet B=B(x,r)CX
denote the closed ball of radius » about x € X and dB = {u € B :dx(x,u) =r}.
Hence if X is connected and y, z € 0B, then dy (f(x), (1)) <n(Ddy(f(x), f(2)).
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Lemma 24 Let g: X — X be an n—quasisymmetric map of a compact metric space
(X.d) toitself. Then g—! is an 1, —quasisymmetric map by Proposition 2.2. Let
c= nl_l(l). Let B= B(x,r)={y € X :d(x, y) <r} be the closed ball of radius r
about x. Let 0B = {y € X :d(x,y) = r} denote the sphere of radius r about Xx.
Assume that 0B # @ . Let s = d(g(x), g(0B)). Then B(g(x),cs) C g(B(x,r).

Proof It follows from compactness of X that dB is compact. Therefore g(dB)
is compact (and nonempty by hypothesis). Hence there exists yy € dB such that
d(g(x),g(y9)) =s. Suppose d(g(x),w)/d(g(x), g(yo)) <c for some w € X. Then
d(x, g7 (w))/d(x, yo) <ni(c) = 1. Hence d(x, g~ "(w)) < d(x, yg) =r. Hence
w € g(B). a

It is a standard fact that the boundary values of quasi-isometries of proper hyperbolic
metric spaces are quasisymmetric maps for any visual metric on the boundary:

Lemma 2.5 (Buyalo—Schroeder [18, Theorem 5.2.17, page 55], Viisild [64, Theorem
5.35]) Suppose that X and Y are §—hyperbolic spaces equipped with basepoints and
that f: X — Y is a base point preserving (A, ) —quasi-isometry. Let (0X, px) and
(9Y, py) be their respective boundaries equipped with visual metrics. Then f extends
to an n—quasisymmetric homeomorphism df: (0X, px) — (3Y, py) with n depending
onlyon §,A, 1u.

A converse result follows from work of Paulin [50]. We state it in the form we shall
need it.

Theorem 2.6 Suppose that X is (the Cayley graph with respect to a finite generating
set of) a nonelementary hyperbolic group. Further suppose that X is equipped with
a basepoint. Let Q be a compact group of n—quasisymmetric homeomorphisms in
the uniform topology on 0X . Then there exist (A, ;1) such that each ¢ € Q may be
realized as the boundary value of a (A, ) —quasi-isometry of X fixing the basepoint.

Proof By Paulin’s work [50], there exist A1, ;1 such that every element ¢ € Q may
be realized as the boundary value of a (A, ;1)—quasi-isometry of X . We denote the
map induced by ¢ on (33X, p) by ¢*. Here (3> X, p) is the pseudo-metric space in
Observation 1.5.

Since X is quasi-isometric to (93X, p) for the dotted path-metric constructed on the
set of distinct triples (Observation 1.5), every element ¢ € O may be realized as the
boundary value of a uniform quasi-isometry g3 of (9° X, p).
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Since Q is compact, any ¢ € Q maps a fixed triple (a1,a2,a3) € (0°X,p) to
triples that are uniformly separated in (dX,d) where d denotes a visual metric, ie
there exists € > 0 such that for all ¢ € O, d(q(ai),q(aj)) > € for i # j. Hence
p((ay,as,a3),q*(ay, az,as)) is uniformly bounded. Choose (a1,as,as3) € (3> X, p)
as the basepoint in (33X, p).

Define a map ¢g: (33X, p) — (3* X, p) as follows:

(1) ¢4 maps q3(ay,ay,a3) and all points at p distance zero from it to (a1, as,as).
(2) ¢4 fixes all other points of (0*X, p).

Then ¢, o ¢* is a uniform (independent of ¢) quasi-isometry of (3> X, p) fixing a
basepoint. postcomposing further by the inverse of the quasi-isometry from X to
(33X, p) and moving back a basepoint in X again if necessary, we get the required
result. a

Ahlfors regular and doubling spaces

Definition 2.7 A metric space X is said to be doubling if for all A > 1 there exists
N € N such that for all x € X the ball AB(x,r) = B(x,Ar) can be covered by N
balls of radius r.

We shall need a special case of a Theorem of Bonk and Schramm [9].

Theorem 2.8 (Bonk—Schramm [9]) Let X be a Gromov-hyperbolic group or a
complete simply connected Hadamard manifold of pinched negative curvature. Then
(0X, d) is doubling for any visual metric d .

Definition 2.9 Let (X,d) be a metric space. Then the k—dimensional Hausdorff
measure of X is defined by

inf{ D rl.k : there exists a cover of X by balls B; of radius r; }

The Hausdorff dimension dimp,us(X) of X is defined to be the infimum of all k£ > 0
such that the k—dimensional Hausdorff measure of X is zero.

In this paper we shall have occasion to use the easier to compute notion of Minkowski
dimension where the balls used to cover X are of equal radii. See Sullivan [60],
Coornaert [22] and Bishop and Jones [5] for the equivalence in our situation (also see
Falconer [25] for very general sufficient conditions ensuring equality of Hausdorff and
Minkowski dimensions).
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Definition 2.10 Let (X, d, i) be a compact metric measure space, ie a metric space
equipped with a Borel measure. We say that X is Ahlfors Q-regular, if there exists
Co = 1 such that for all 0 < r < diam(X), and any ball B,(x) C X, the measure
w(By(x)) satisfies (1/Co)r€ < u(B,(x)) < Cor€.

When Q is omitted in Definition 2.10, we assume that Q is the Hausdorff dimension
and p the Hausdorff measure.

The relevance to the present paper comes from the following.

Theorem 2.11 (Coornaert [22]) Let G be a hyperbolic group. Then (0G, d, i) is
Ahlfors regular for any visual metric d and the associated Hausdorff measure (4.

Certain very general conditions ensure Ahlfors regularity. Corollary 14.15 of [35]
asserts that a metric space is quasisymmetrically equivalent to an Ahlfors regular space
if and only if it is uniformly perfect and carries a doubling measure. We shall not
be needing the precise definitions of these terms. Suffice to say that a metric space
carries a doubling measure if and only if it is doubling [41; 20]; and connected sets
are uniformly perfect. However for our purposes, the proof of the more restrictive
Theorem 5.4 of [22] for hyperbolic groups which in turn is modelled on Sullivan’s
work [60] suffices to ensure the following. (See [60, Theorem 25] in particular which
devotes special attention to noncompact finite volume manifolds or [51, Theorem 0.2].)

Theorem 2.12 Let X be the universal cover of a complete finite volume manifold of
pinched negative curvature. Then (dX, d, jt) is Ahlfors regular for any visual metric d
and the associated Hausdorff measure (4.

The following notion is essentially due to Bourdon and Pajot [10].

Definition 2.13 Let I" be a hyperbolic group or more generally a hyperbolic metric
space. We define the Ahlfors regular conformal dimension of the boundary of I' as

ACD(II') = inf{Q : 0" admits a visual metric with Hausdorff dimension Q}.
In this paper we shall repeatedly make the assumption that the boundary oI" of I" admits
a visual metric d such that the Hausdorff dimension dimp,,s of (9T, d) is less than

(dim; +2), where dim; denotes topological dimension. Note that by Definition 2.13
above, this is equivalent to saying that ACD(dI") < (dim;(dT") + 2).
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Also note that all visual metrics are quasisymmetrically conjugate to each other. The
identity map on the underlying topological space gives the required quasisymmetry.
More generally, for a metric space X', ACD(X) is usually defined [10] by

ACD(X) = inf{Q : there exists an Ahlfors Q-regular metric space Y
that is quasisymmetrically equivalent to X }.

We shall not have need for this more general notion in this paper.

We collect certain notions and facts from Bonk and Kleiner [8] and Heinonen [35] that
we shall have need for in what follows.

Lemma 2.14 [35, Theorem 1.2, page 2] Every family F of balls of uniformly
bounded diameter in a metric space X contains a pairwise disjoint subtamily G such
that \ Jge 7 B C\Upeg 5B, where A B denotes a ball concentric with B and radius A
times that of B.

Corollary 2.15 Let X be a doubling metric space. There exists an M such that the
following holds.

Let F, be the family of all balls of radius r in X . Let G, be any pairwise disjoint
subfamily such that X = UBegr 5B. Then for any x € X, the cardinality of the set
{B € G, :x € 5B} is less than or equal to M .

Proof We omit the suffix r for convenience. The existence of a pairwise disjoint
subfamily G of F such that X = | Jgc; 5B is guaranteed by Lemma 2.14.

We now argue by contradiction. Suppose that no such M exists. Then for all N € N,
there exists ry > 0, a pairwise disjoint subfamily G of balls of radius rp in X, and an
x € X such that the cardinality of the set {B € G : x € 5B} is greater than N . Hence
the 6r) ball around x contains more than N distinct (and hence disjoint) elements
of G. Since N is arbitrary, this contradicts the hypothesis that X is doubling. o

We start with a general result about compact group actions on doubling, Ahlfors regular
compact metric measure spaces, eg boundaries of one-ended hyperbolic groups.

Lemma 2.16 Let (X, d, 1) be a connected, doubling, Ahlfors regular compact metric
measure space having Hausdorff dimension Q > 1 (for instance the boundary of a
one-ended hyperbolic group or the boundary of the universal cover of a finite volume
manifold of pinched negative curvature by Theorems 2.8 2.11 and 2.12). Let K be a
compact topological group acting by uniformly n—quasisymmetric maps on (X, d, )
and equipped with a Haar measure of unit mass. Let C = (1), ¢ = 771_1 (1), and let
dg be the average metric on X given by di (x,y) = [ d(g(x),g(y)) dg. Then the
Hausdorff dimension of (X, dg, ;) does not exceed Q.
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Proof We adapt an argument of Repovs and S&epin [54] and Martin [42] to the present
context. Assume after normalization, that the total Hausdorff measure of X is one.

Cover X by a family of balls of radius r > 0 measured with respect to d. By
Lemma 2.14 we can choose a family B, of pairwise disjoint balls of radius r such
that X = Jpc B, SB. Asin [42], it is enough to find a uniform bound (independent
of r) for the sum ) p. p, (diamg, 5B)2 where diamg, 5B is the diameter of 5B in
the invariant metric dg .

For each B € B, let c¢g denote its center and let zg be a point on the boundary of 5B
with diamg, B <2dk (cg,zp). (Such a point zp exists as X is connected.) Then

Q
3" (diamgy 5B)2 <22 Y ( /K d(g(cp). §(z5)) dg)

BeB, BeB,

=20 Y [ dteten). g2 dg

BeB,

<(20)° f inf d(g(cp). 2d
(20) B%; | d(g(en).g(rp)° dg

C Q
_ (27) ) [K (¢ inf_d(z(cn). g(ra)° de.

BeB,

where the second line holds by Holder’s inequality since @ > 1 and the normalization
condition that the total Haar measure of K is one, the third lines holds since K acts
by uniformly n—quasisymmetric maps, and since d(5B) # & by connectedness of X
and the last equality holds by Remark 2.3.

But by Lemma 2.4, the ball of radius ¢ inf), ;55 d(g(cB). g(yB)) is contained in g(5B).
Hence

C Q C Q
(27) > [ ingBd(g(cm,g(yB)))ngsco(%) > [ ntemyds

€
Bep, 'K VB BeB,

Q
(%) [ X ntesnn s

BeB,

20\
SCOM(T) / 1(g(X)) de.
K

where Cj is the constant appearing in the definition of Ahlfors Q-regularity of X
and M is the constant appearing in Corollary 2.15 giving an upper bound for the local
multiplicity of the cover {5B: B € 3, }.
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Since g is a homeomorphism from X onto itself, this equals

Q Q
COM(£) / /L(X)ngCoM(E) ,
C K c

where the equality holds since K is equipped with a Haar measure of unit mass and by
the normalization condition that the total Hausdorff measure of X is one.

This establishes a uniform bound (independent of r) for the sum ) 5 5, (diamg, 5B)<
and completes the proof. a

Theorem 2.17 (See [36, Chapter II, Theorems 7.1-7.6, pages 60-61].) Let G be a
topological group. Then there exists an exact sequence

1-Gy—>G—-H—>1

with G the connected component of the identity in G and H totally disconnected. If
G, and hence H , is locally compact, then H contains arbitrarily small compact open
subgroups (ie for every neighborhood U of the identity in H , there is a compact open
subgroup K contained in U ).

Moreover the structure of G is well-known thanks to Montgomery and Zippin [45,
Theorem 4.6] and Gleason [29].

We state a definition first.

Definition 2.18 A topological group is said to have arbitrarily small torsion elements

if for every neighborhood U of the identity, there exists an element g € U, g # 1, and
a positive integer n such that g” = 1, and furthermore g € U for all m € N.

A topological group is said to have small subgroups if for every neighborhood U of

the identity, there exists a subgroup H # {1} such that H is contained in U .

The following is a celebrated Theorem of Montgomery and Zippin [45] and Glea-
son [29].

Theorem 2.19 [45, Sections 4.5, 4.6, 4.9; 29] Let Gy be the connected component
of the identity in a locally compact topological group G such that G/Gq is compact.
For each neighborhood U of the identity in Gy, there exists a compact normal subgroup
K C U such that the quotient group Go/ K is a Lie group.

Small subgroups of connected locally compact finite dimensional groups are totally
disconnected and belong to the center.

Any locally compact finite dimensional group with no small subgroups is a Lie group.
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Remark 2.20 The hypothesis in Theorem 2.19 that G/ G is compact is superfluous.
Let H=G/Gy and ¢q: G — H be the quotient homomorphism. By Theorem 2.17,
H contains a compact open totally disconnected subgroup H,. Let G; = ¢~ (H)).
Then Gy is the connected component of the identity of G| and G;/G¢ is compact.
Theorem 2.19 now applies.

We also have the following Theorem of Yamabe [65].

Theorem 2.21 (Yamabe [65]) A group with a neighborhood U of the identity which
does not contain any nontrivial normal subgroup has a neighborhood V of the identity
which does not contain any nontrivial subgroup.

Definition 2.22 A topological group containing a cyclic dense subgroup is said to be
monothetic.

It is easy to see that a monothetic group is abelian (using continuity of multiplication).
The following is a consequence of a structure theorem for 0—dimensional compact
monothetic groups (see [36, Theorem 25.16, page 408]).

Theorem 2.23 Any infinite 0—dimensional (ie totally disconnected), compact, mono-
thetic group K contains a copy of the a—adic integers A,, where a = {ay,a,,...} is a
sequence of integers a; > 1. Hence K must contain arbitrarily small torsion elements
or a copy of the group Zp) of p-adic integers.

2.2 The Hilbert—-Smith Conjecture

Theorem 2.24 Let (X, d, ;1) be a connected, doubling, Ahlfors regular compact met-
ric measure space. Further suppose that X is a 7, —cohomology manifold for all p ; and
1 < dimpyys(X) < dimy (X)) 4 2, where dimpyy is the Hausdorff dimension and dimy,
is the homological dimension. Then (X, d, i) does not admit an effective Z,)—action
by uniform quasisymmetric maps, where Z,) denotes the p-adic integers. Hence any
finite dimensional locally compact group acting effectively on (X, d, ;1) by uniform
quasisymmetric maps is a Lie group.

Proof Let K = Z(,) be the compact group of p-adic integers acting effectively
on X by uniform quasisymmetric maps. Let dx be the average metric on X given
by dg(x,y) = [¢d(g(x),g(y))dg. By Lemma 2.16 the Hausdorff dimension
of (X,dg, ) does not exceed dimpy(X). Then K acts on (X,dg) by isome-
tries. Therefore, the orbit space X /K admits the well-defined metric p([x],[y]) =
dg (K(x), K(y)), where [x],[y] denote the images of x, y under the quotient map
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by K. Let P: X — X/K be the natural quotient map. Since P is clearly 1-Lipschitz,
it cannot increase Hausdorff dimension. Hence the Hausdorff dimension of X /K is
at most equal to dimpays(X'), the Hausdorff dimension of X', which in turn is less
than dimy (X') 4+ 2. Since topological dimension is majorized by Hausdorff dimension
and homological dimension is majorized by topological dimension, it follows that the
homological dimension of X/ K is less than dimj(X) 4 2. This directly contradicts
Yang’s Theorem 1.18 which asserts that the homological dimension of X/ K is equal
to dimy (X') 4+ 2 and establishes the first part of the theorem.

The last statement follows from the first by standard arguments (see [54; 42], for
instance). We outline the argument for the sake of completeness.

Let G be any finite dimensional locally compact group acting effectively on X by
uniform quasisymmetric maps. By the last statement of Theorem 2.19, if G has no
small subgroups, then G must be a Lie group.

We now proceed by contradiction. If possible, let G have small subgroups. By local
compactness, we may assume that G has compact small subgroups. Hence by Yamabe’s
Theorem 2.21, G has a sequence (K;); of compact normal small subgroups such that
K; # {1} for all i and such that ("); K; = {1}. Let L be the connected component
of the identity of G'. Then either K; N L # {1} or K; is totally disconnected. If
K; N L # {1} then K; N L is a compact normal small subgroup of L. Hence again
by the second statement of Theorem 2.19, K; N L is totally disconnected. In any
case, G has a sequence (K;); of nontrivial compact normal totally disconnected small
subgroups.

If K is infinite, it must contain a copy of the p—adics (Theorem 2.23) or have ar-
bitrarily small torsion elements. By Theorem 1.17, K cannot have arbitrarily small
torsion elements. Hence Z () acts effectively on X by uniform quasisymmetric maps,
contradicting the first assertion of the Theorem proved above. O

Since quasi-isometries of a hyperbolic group G act by quasisymmetric maps on the
boundary (0G, d), where d is a visual metric, we have the following by combining
Theorems 1.16 and 2.11 with Theorem 2.24.

Corollary 2.25 Let I' be a Poincare duality hyperbolic group and Q be a group
of (boundary values of) quasi-isometries of I". Q is equipped with the uniform
topology. Suppose d is a visual metric on 0T" with dimp,,s < dimy +2, where dimp,y
is the Hausdorff dimension and dim; is the topological dimension of X = (dT',d).
Equivalently suppose that ACD(X) < dim; +2 where ACD(X) denotes the Ahlfors
regular conformal dimension of X'. Then Q cannot contain a copy of Zp), where
Zp) denotes the p-adic integers. Hence if Q is finite dimensional locally compact, it
must be a Lie group.
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Proof By Theorem 1.16, X is a Zj,—cohomology manifold for all p. By Theorems
2.8 and 2.11 and by one-endedness of I', X = (dI', d, i) is a connected, doubling,
Ahlfors regular compact metric measure space.

The assumption of Theorem 2.24 that 1 < dimp,ys is superfluous here as the only PD
group that violates this hypothesis is virtually cyclic, when the Corollary is trivially
true.

If possible, let K = Z,) be the compact group of p-—adic integers acting effectively
on X by quasisymmetric maps. All that remains to be shown is that we can extract an
action of Z,) by uniform quasisymmetric maps.

Let (3% X, p) be the pseudo-metric space in Observation 1.5. Fix a basepoint x € 3> X .
Since K is compact, p(k3(x), x) is uniformly bounded.

For each k € K there exist Az € N such that k3: (33X, p) — (33X, p) isa (Ag, Ax)—
quasi-isometry. Note further that ¢, — ¢ in the uniform topology implies that qn3 —q3
in the compact open topology.

Let Ui = {k € K, Ay <i}. Then K = |, Uj is the union of a countable family of
closed sets U;. Note further that the limit of a sequence of (A, Ax)—quasi-isometries
is (at most) a (Ag + 2, Ax + 2) quasi-isometry. By the Baire category theorem there is
some Uc with nonempty interior. Translating by an element /s of K in the interior
of Uc, we may assume that U, (for some ¢ depending on C and the quasi-isometry
constant of /1) contains the identity. But any neighborhood of the identity in K contains
an isomorphic copy of K.

Hence we have an action of K (replacing the original group by the isomorphic copy
contained in the above neighborhood of the identity) on (3°X, p) by (c, c)—quasi-
isometries. Since (X = dI',d) is a visual boundary for (%X, p) and since each
element in K moves the basepoint x by a uniformly amount, we have an action of K
on (X, d, i) by uniformly quasisymmetric maps by Lemma 2.5. Theorem 2.24 now
furnishes the required conclusion. a

Note The hypothesis dimp,, < dim; +2 (or ACD(X) < dim; +2) is clearly true for
(uniform lattices in) real hyperbolic space, where dimy,,s = dim; as well as complex
hyperbolic space, where dimp,,s = dim; +1. Amongst rank one symmetric spaces
these are the only ones of interest in the context of pattern rigidity as quaternionic
hyperbolic space and the Cayley plane are quasi-isometrically rigid in light of Pansu’s
fundamental result [49].
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3 Pattern preserving groups as topological groups

3.1 Infinite divisibility

We begin with some easy classical facts about topological groups. A property we shall
be investigating in some detail is the notion of “topological infinite divisibility”. The
notion we introduce is weaker than related existing notions in the literature.

Definition 3.1 An element g in a topological group G will be called fopologically
infinitely divisible, if there exists a sequence of symmetric neighborhoods (Uy)y of
the identity, such that (), Uy = {1} and g € J,2, U} C G for all k. Similarly,
a subgroup H of G is said to be topologically infinitely divisible, if there exists a
sequence of symmetric neighborhoods (U )y of the identity, such that (), Up = {1}
and HC J{° U] C G forall k.

Let I" be a hyperbolic group and H an infinite quasiconvex subgroup of infinite index
in T'. Then the collection of translates of the (join of the) limit set of H in dI" gives
rise to a symmetric pattern.

For the rest of this subsection Q will denote a group of boundary values of pattern-
preserving quasi-isometries of (the Cayley graph of) G.

Recall that the topology on Q is inherited from the uniform topology on Homeo(dT").
Also recall that ¢ € Q is a quasisymmetric map on the boundary dI".

Lemma 3.2 ¢, — ¢ in the uniform topology on Homeo(dT") if and only if ¢} — ¢*
in the compact-open topology on 33T .

Proof Suppose ¢, — ¢ in the uniform topology on Homeo(dI'). Then ¢2 — ¢* in
the uniform topology on Homeo(dI" x dT" x dT"). Since 3°T is an open invariant subset
of T x T x AT, it follows that g5 — ¢> on compact subsets of 33T". Hence ¢; — ¢>
in the compact-open topology on 9°T".

Next suppose ¢ — ¢* in the compact-open topology on 83T If g, does not converge
to ¢ uniformly on dI", then (after passing to a subsequence if necessary) there exists
€ > 0 such that for all n there exists x, € dI" such that d (g, (x,), ¢(xn)) > 2¢. Passing
to a further subsequence if necessary we can assume that x, — x € dI". Hence
q(xn) = q(x) € 0T". Hence by passing to a further subsequence if necessary we can
assume that d (g, (xn),q(x)) > € for all n. Choosing y, z fixed distinct points unequal
to x, it follows that qi (xn, ¥, z) does not converge to g3 (x, , z), a contradiction. [
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Proposition 3.3 Q has no nontrivial topologically infinitely divisible elements. More
generally, Q does not contain any nontrivial infinitely divisible subgroups.

Proof Suppose g € Q is infinitely divisible. Then for every neighborhood U of 1
there exists m € N such that g € U™ . Now for any finite collection Ly,..., L, € L,
there exists a neighborhood U of 1 € Q such that if g € U then g(L;) = L; for
i=1,...,n.

Hence for any finite collection Lq,..., L, € L, there exists a neighborhood U of 1
and m € N such that

(1) geU™,
(2) g(Lj)=LjforgeU, j=1,...,n.

From (2) it follows that g(Lj) = L; for ge U™, j =1,...,n and all m e N.

Therefore g(Lj) = L;j forall Lj € L. Thatis g stabilizes every L € L. If x € dI", there
exist L, € L such that L, — {x} (the singleton set containing x) in the Hausdorff
topology on 0I'. Therefore ¢({x}) = {x} for all x € d", ie ¢ is the trivial element
of Q. The same argument shows that 0 has no nontrivial topologically infinitely
divisible subgroups. a

Remark 3.4 We state the second conclusion of Proposition 3.3 slightly differently.
Let U; be a decreasing sequence of symmetric neighborhoods of the identity in Q
such that ("); U; = {1}. Let (U;) =J,, U/". Then (;(U;) = {1}.

Since a connected topological group is generated by any neighborhood of the identity,
we obtain:

Proposition 3.5 Q is totally disconnected.

Note that in Proposition 3.3 and Proposition 3.5 we do not need to assume that Q is a
group of uniform quasi-isometries.

Remark 3.6 Let K be a compact group of pattern-preserving quasi-isometries. Then
a reasonably explicit structure of K may be given as a permutation group. Since K
is compact it acts on the discrete set £ with compact and hence finite orbits. Let
L1,L,,...beadecomposition of £ into disjoint orbits under K. Then K C I1;S(L;),
where S(L;) denotes the symmetric group on the finite set £; and IT denotes direct
product. Thus, we have a natural representation of K as a permutation group on an
infinite set, where every orbit is finite. The last part of the argument in Proposition 3.3
shows that this representation is faithful, since any element stabilizing every element
of £ must be the identity.
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3.2 PD groups

Boundaries dG of PD(n) hyperbolic groups G are locally connected homological
manifolds (over the integers) with the homology of a sphere of dimension (n — 1) by
Theorem 1.16. The interested reader may refer to Davis’ survey [23] for background
on PD groups.

If QI(G) denotes the group of boundary values of quasi-isometries of G acting on 0G
(equipped with the uniform topology), then Theorem 1.17 implies the following.

Proposition 3.7 QI(G) cannot have arbitrarily small torsion elements.
We combine Corollary 2.25 with Proposition 3.7 to get the following.

Proposition 3.8 Let G be a Poincare duality hyperbolic group and H an infinite
quasiconvex subgroup of infinite index in G . Let K be a compact group of (boundary
values of) pattern-preserving quasi-isometries of G. Suppose d is a visual metric
on dG with dimp,,s < dim; +2, where dimp,y,s is the Hausdorff dimension and dim; is
the topological dimension of (0G, d). Equivalently suppose that ACD(0G) < dim; +2
where ACD(0G) denotes the Ahlfors regular conformal dimension of G . Then K
must be finite.

Proof By Proposition 3.7, K cannot have arbitrarily small torsion elements. Hence
there exists € > 0 such that for any nontrivial k € K, there exists an x € dG such that
(k)x has diameter greater than € where (k) denotes the cyclic group generated by k.
Again, since K is infinite and compact there exists a sequence of distinct elements
ki — 1 in K. By compactness of dG, there exists x € dG, such that (k;)x has
diameter greater than € and hence the order o(k;) — o0 as i — o0.

Therefore the subgroups (k;) C K converge up to a subsequence (in the Chabauty
topology on closed subgroups of K) to an infinite compact nontrivial abelian group L
without small torsion elements. If L is pure torsion it must have elements of arbitrarily
large order (since L being infinite and compact must contain elements arbitrarily
close to the identity). This contradicts the structure of compact abelian torsion groups
(see [36, Theorem 25.9]).

Hence, if K is infinite, it must have an element g of infinite order. Let C(g) be
the (closed) monothetic subgroup generated by g. Since K is totally disconnected
by Proposition 3.5 so is C(g) and hence C(g) cannot have arbitrarily small torsion
elements. By Theorem 2.23 C(g) must contain a copy of the p—adic integers. But K
cannot contain a copy of the p-adic integers by Corollary 2.25, a contradiction. Hence
K is finite. O
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We come now to the main Theorem of this section. Since G acts on its Cayley
graph T' by isometries, we are interested in uniform pattern-preserving groups of
quasi-isometries containing G .

Theorem 3.9 Let G be a hyperbolic Poincare duality group and H an infinite qua-
siconvex subgroup of infinite index in G . Suppose d is a visual metric on dG with
dimpyys < dim; +2, where dimp,ys is the Hausdorff dimension and dim; is the topo-
logical dimension of (0G, d). Equivalently suppose that ACD(dG) < dim; +2 where
ACD(0G) denotes the Ahlfors regular conformal dimension of G . Let Q be a group
of pattern-preserving uniform quasi-isometries containing G. Then G is of finite
index in Q. In particular, Q C Comm(G), where Comm(G) denotes the abstract
commensurator of G .

Proof Let L be the limit set of H and £ be the collection of translates of L under G.
By Corollary 1.12, we can choose a finite collection Ly, ..., L, of elements of £ such
that Q¢ = ﬂi=1’_“’n Stab(L;) is compact, where Stab(L;) denotes the stabilizer of
L; in Q. Then Qy is finite by Proposition 3.8. As in the proof of Corollary 1.13, we
can choose a neighborhood U of the identity in Q such that U C Q. Hence U is
finite and Q is discrete.

Let Gq1,...,Gqy,... be distinct cosets. Since G acts transitively on (the vertex
set of) I', we can choose representatives g1¢1,...,gnqn, ... such that g;q;(1) =1
for all 7. Since (the vertex set of) I' is locally finite, the sequence g1¢q1,...gnqn,- .-
must have a convergent subsequence in Q. Since Q is discrete, it follows that such a
sequence must be finite. Hence G is of finite index in Q.

Let ¢ € Q. Since G is of finite index in Q, it follows that ¢G¢ ™! is of finite index
in gQg~! = Q. Therefore G NqgGq™!' is of finite index in Q. Hence G N¢Gq™!
is of finite index in both G and ¢G¢~!, ie ¢ € Comm(G), where Comm(G) denotes
the abstract commensurator of G (where we identify ¢ with the element of Comm(G)
that takes G NgGq~! to ¢(GNgGg~1)g™"). Since distinct elements ¢, g, induce
distinct homeomorphisms of dG by definition, and since two elements defining the
same element of Comm((G) induce the same homeomorphism on dG, the elements
41,42 € Comm(G) are distinct. This proves the result. O

In fact the proof of Theorem 3.9 gives:
Corollary 3.10 Let G be a hyperbolic Poincare duality group and H an infinite

quasiconvex subgroup of infinite index in G. Suppose d is a visual metric on dG
with dimp,,s < dim; +2, where dimy,,s is the Hausdorff dimension and dim; is the
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topological dimension of (0G, d). Equivalently suppose that ACD(0G) < dim; +2
where ACD(dG) denotes the Ahlfors regular conformal dimension of dG. Let Q
be a locally compact group of pattern-preserving quasi-isometries containing G C
Homeo(dG), where Q is equipped with the uniform topology. Then G is of finite
index in Q. In particular, Q C Comm(G), where Comm(G) denotes the abstract
commensurator of G .

Proof By Proposition 3.5, Q is totally disconnected. Hence by Theorem 2.17 Q
contains arbitrarily small compact open subgroups. Such compact open subgroups are
finite by Proposition 3.8 (as in the proof of Theorem 3.9). Hence Q is discrete. The
rest of the proof is as in Theorem 3.9. O

In the present context, Scholium 1.2 translates to the following precise statement as a
consequence of Corollary 3.10.

Corollary 3.11 Let ¢ be a pattern-preserving quasi-isometry between pairs (G, H1)
and (G,, Hy) of hyperbolic PD groups and infinite quasiconvex subgroups of infinite in-
dex. Suppose d is a visual metric on 0G; with dimp,,s <dim; +2, where dimy,,g is the
Hausdorff dimension and dim; is the topological dimension of (0G1, d). Equivalently
suppose that ACD(0G ) < dim; +2 where ACD(dG1) denotes the Ahlfors regular
conformal dimension of (0G ). Further, suppose that G; and d¢~! 0 G, 00d¢ embed in
some locally compact subgroup Q of Homeo(dG1) with the uniform topology. Then
G, and G, are commensurable.

Proof By Corollary 3.10, G is of finite index in Q. Hence Q is a rational PD(n)
group. Since d¢ ! 0 G, 0 d¢ embeds in Q and is also a PD(n) group, it follows that
¢~ 0G,00¢ C Q is of finite index [17]. Hence G| and G, are commensurable. [I

4 Filling codimension one subgroups and pattern rigidity

4.1 Codimension one subgroups and pseudometrics

Let G be a one-ended Gromov-hyperbolic group with Cayley graph I'. Let H be a
quasiconvex subgroup. We say that H is codimension one if the limit set Ly of H
disconnects dG . This is equivalent to saying that the join J(Lg) = J disconnects I"
coarsely, ie if D be the quasiconvexity constant of J, then I' \ Np(J) has more
than one unbounded component, where Np(J) denotes the D-neighborhood of J.
(See [58, Chapter 2], particularly Remark 2.4 for a proof of this equivalence and related
results.)
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We say further that H (or more generally a finite collection Hy, ..., Hy) is filling if
for any two x, y € G, there exists a translate gL g of Ly (or more generally gL g, )
by an element g of G such that x, y lie in distinct components of dG \ gL g (or more
generally dG \ gL g, ). We shall deal with a single filling subgroup for convenience
of exposition. The results in this section go through for a finite collection of filling
codimension one subgroups.

The existence of a finite collection of filling codimension one quasiconvex subgroups
is important in light of the following Theorem due to Sageev [55] and Bergeron and
Wise [2].

Theorem 4.1 [55;2] A hyperbolic group acts properly, cocompactly on a CAT(0)
cube complex if and only if it admits a finite collection Hq, ..., Hy of filling codimen-
sion one quasiconvex subgroups.

Let D; be such that any path joining points in distinct unbounded components of
I'\ Np(J) passes within Dy of J. We say that x, y € I" are separated by some
translate gJ of J if x, y lie in distinct unbounded components of I' \ gNp 1 p, (/).
Equivalently, we shall say that the geodesic [x, y] is separated by some translate gJ
of J.

Lemma 4.2 Let H be a codimension one, filling, quasiconvex subgroup of a one-
ended hyperbolic group G . Let " be a Cayley graph of G . There exists C > 0 such
that any geodesic o in I of length greater than C is separated by a translate of J .

Proof Suppose not. Then there exists a sequence of geodesic segments o; = [a;, b;]
which are not separated by any translate of J such that d(a;, b;) — co. By equivariance,
we may assume that o; is centered at the origin, ie d(a;, 1) = oo and d(1, b;) — oo
and 1 € [a;, b;i]. Let a; — doo € G and b; — boo € 0G . Then aeo and b, cannot lie
in distinct components of dG \ gL g for any g € G, for if they did then there exists
g € G such that as, and b lie in distinct components of dG \ g L i and hence for all i
sufficiently large, a;, b; would lie in distinct unbounded components of I\ gNp(J).
(Here we are implicitly using the correspondence between the unbounded components
of I'\ gNp(J) and the components of dG \ gL g mentioned in the first paragraph of
this section; cf [58, Chapter 2]).

But if aso and boo cannot be separated, then H cannot be filling, contradicting the
hypothesis. |

Lemma 4.3 Let G, H,T',J be as above. Let [a,b] C T" be a geodesic and ¢ € [a, b]
such that d(a,c) > 2D, d(b,c) > 2D, where D is the quasiconvexity constant of J .
Suppose gJ separates a,c. Then gJ separates a,b.
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Proof Suppose not. Then a, b lie in the same unbounded component of I\ gNp (J),
whereas c¢ lies in a different unbounded component of I" \ g Np(J). Hence there is a
subsegment [ecf] of [a,b] such that e, f € Np, J,but ¢ € Np4 p,J, contradicting
the quasiconvexity constant for J . a

Lemma 4.4 [28] Let G be a hyperbolic group and H a quasiconvex subgroup, with
limit set L. Let J denote the join of the limit set. There exists N € N such that
there exist at most N distinct translates of J intersecting the 2—neighborhood B, (g)
nontrivially for any g € G.

Lemma 4.5 Define a new pseudometric p; on I' by declaring pi(a,b) to be the
number of copies of joins J € J separating a,b. Then (I', p1) is quasi-isometric
to (T',d).

Proof By Lemma 4.4, it follows that there exists N € N such that d(a,b) < Cy
implies p(a, b) < NCy. From Lemma 4.2, it follows that there exists C, > 0, such that
d(a,b) > C, implies p(a, b)) > 1. Now from Lemma 4.3, it follows that for n € N,
d(a,b) > nC, implies p(a, b)) > n. Hence the Lemma. a

A purely topological version of Lemma 4.5 may be obtained as follows. Let 3°G
denote the collection of distinct unordered triples of points on dG. Then it is well
known [30; 12] that G acts cocompactly on 3°G with metrizable quotient. Let p be
the pseudo-metric of Observation 1.5 which asserts that (0°G, p) is quasi-isometric
to (T',d).

We say that a translate gL € L separates closed subsets 4, B C dG if A, B lie
in distinct components of dG \ gL. Define a pseudometric p, on 3°G by defining
p2({ay,az,as},{by, by, bs}) to be the number of copies of limit sets g L € L separating

{ai,az,as},{b1, by, b3}. Then (33G, p,) is quasi-isometric to (T, p;), and hence to
(T, d) and (33G, p). We state this as follows.

Corollary 4.6 (393G, p,), (T, p1), (I',d) and (30*G, p) are quasi-isometric to each
other.

4.2 Pattern rigidity

We prove the following Proposition for which G may be any one-ended hyperbolic
group (not necessarily PD):

Proposition 4.7 Let G be a one-ended hyperbolic group and H a codimension one,
filling, quasiconvex subgroup. Then any pattern-preserving group Q of quasi-isometries
is uniform.
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Proof Assume without loss of generality that G C Q. Since Q consists of pattern-
preserving quasi-isometries, each element of Q induces a pattern-preserving home-
omorphism of dG. Since any pattern-preserving homeomorphism of dG preserves
(33G, p,) on the nose, it follows from Corollary 4.6 that Q is uniform. a

Combining Proposition 4.7 with Theorem 3.9 we get the following Theorem. (Note
that the only PD group that is not one-ended is Z, in which case codimension one
quasiconvex subgroups in our sense do not exist.)

Theorem 4.8 Let G be a PD hyperbolic group and H a codimension one, filling,
quasiconvex subgroup. Let Q be any pattern-preserving group of quasi-isometries
containing G . Suppose d is a visual metric on dG with dimp,,s < dim; +2, where
dimy,ys is the Hausdorff dimension and dim; is the topological dimension of (0G, d).
Equivalently suppose that ACD(0G) < dim; +2 where ACD(dG) denotes the Ahlfors
regular conformal dimension of dG . Then the index of G in Q is finite.

In fact more is true. Combining Proposition 4.7 with Corollary 4.6, we get:

Proposition 4.9 Let G be a one-ended hyperbolic group and H a codimension one,
filling, quasiconvex subgroup with limit set L. Let L be the collection of translates
of L under G. Then any pattern-preserving group Q of homeomorphisms of G
preserving L can be realized as the boundary values of uniform quasi-isometries.

Note that in Proposition 4.9 we do not need G to be a PD group. Combining
Proposition 4.9 with Theorem 3.9 we finally get:

Theorem 4.10 (Topological Pattern Rigidity) Let G be a PD hyperbolic group and
H a codimension one, filling, quasiconvex subgroup with limit set L. Let L be the
collection of translates of L under G. Suppose d is a visual metric on dG with
dimp,,s < dim; +2, where dimyp,y,s is the Hausdorff dimension and dim; is the topo-
logical dimension of (dG, d). Equivalently suppose that ACD(dG) < dim; +2 where
ACD(0G) denotes the Ahlfors regular conformal dimension of dG. Let Q be any
pattern-preserving group of homeomorphisms of G preserving L and containing G .
Then the index of G in Q is finite.

Theorem 4.10 is a generalization of a Theorem of Casson and Bleiler [19] and Kapovich
and Kleiner [39] to all dimensions. Casson and Bleiler [19] and Kapovich and
Kleiner [39] proved Theorem 4.10 for G the fundamental group of a surface and
H an infinite cyclic subgroup corresponding to a filling curve.
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5 Finite volume manifolds of negative curvature

Let M = M"™ be a complete finite volume noncompact manifold of pinched negative
curvature (ie —1 < y < —K for some K > 1, where y denotes sectional curvature).
Then M is homeomorphic to R” by the Cartan-Hadamard Theorem and its ideal
boundary IM is homeomorphic to S”~!. Further, by Theorem 2.12 X = M equipped
with a visual metric has the structure of an Ahlfors regular metric measure space. In
fact, if —1 < x < —(1+¢€)?, the Hausdorff dimension of the visual boundary is bounded
above by (n — 1)(1 + €) (see Remark 6.1 below).

5.1 Symmetric patterns of horoballs

The manifold M has a finite number of cusps. Lifting these to M we obtain an
equivariant collection ¢#H of horoballs. For convenience of exposition we assume
that M has one cusp. We shall denote individual elements of ¢H by ¢H or cH;.
The boundary of the horoball c¢H is called a horosphere and is denoted as H. The
collection of horospheres will be denoted by H. Let G = 71 (M) and let K denote
the fundamental group of the cusp.

The collection ¢’H will be called a symmetric pattern (of horoballs). It is a fact that
elements of ¢H are uniformly quasiconvex (see Farb [26]) and that for any two distinct
cHy,cH, € c’H, there is a coarsely well-defined “centroid”, ie the shortest geodesic
joining cHy,cH, € ¢’H is coarsely well-defined (any two such lie in a uniformly
bounded neighborhood of each other [26]) and hence its mid-point (the centroid of
cH;,cH,) is coarsely well-defined.

In [26], Farb proves that G is strongly hyperbolic relative to K. This is equivalent to
the statement that M is strongly hyperbolic relative to ¢H. Equivalently, the “neutered
space” M \ UcHeey Int(cH) is hyperbolic relative to the collection H. We refer
to [26] for background on relative hyperbolicity.

We now recast the relevant definitions and propositions of Sections 1 and 3 in the present
context. Let I', I'x, ' denote respectively the Cayley graph of G, some translate of
the Cayley (sub)graph of K and the collection of translates of I'x (assuming as usual
that the finite generating set of K used in constructing I'x is contained in the finite
generating set of G used in constructing I').

Definition 5.1 The group PP(G, K) of pattern-preserving maps for a (strongly) rela-
tively hyperbolic pair (G, K) as above is defined as the group of homeomorphisms
of X = oM preserving (as a set) the collection of basepoints of ¢ . The group
PPQI(G, K) of pattern-preserving quasi-isometries for such a (strongly) relatively
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hyperbolic pair (G, K) is defined as the subgroup of PP(G, K) consisting of home-
omorphisms /& of dG such that # = d¢ for some quasi-isometry ¢: M — M that
permutes the collection of horoballs ¢7.

The following Theorem is a special case of a Theorem which we proved in [44] using
the notion of mutual coboundedness.

Theorem 5.2 [44] Let M = M" be a complete finite volume manifold of pinched
negative curvature and let ¢c’H denote the associated symmetric pattern of horoballs.

There exist two elements cHy, cH, of ¢’H such that the following holds.

For any K, €, there exists a C such that if ¢: M — M is a pattern-preserving (K, €)—
quasi-isometry with d¢(dcH;) = dcH; fori = 1,2, then d(¢(1),1) < C.

Let M = M UM denote the Gromov compactification of M and ¢H denote the
collection of compactified horoballs, ie horoballs with basepoints adjoined. Let d,
denote a metric giving the topology on M . In this context Proposition 1.10 translates
to the following (see [44] for instance).

Proposition 5.3 The collection ¢ is discrete in the Hausdorff topology on the
space of closed subsets of M, ie for all cH € ¢H, there exists € > 0 such that
Ne(cH)NcH = cH, where N¢(cH) denotes an € neighborhood of ¢cH in the Haus-
dorff metric arising from d .

Let Q C PPQI(G, K) be a group of quasi-isometries preserving a symmetric pattern
of horoballs. Using Theorem 5.2 and Proposition 5.3, we have as in Section 3 (cf
Propositions 3.3, 3.5, 3.7, 3.8):

Proposition 5.4 The group Q has no nontrivial topologically infinitely divisible ele-
ments. More generally, Q does not contain any nontrivial infinitely divisible subgroups.
Hence Q is totally disconnected. Suppose further that dM has a visual metric d
with dimp,,s < dim; +2, where dimp,ys is the Hausdorff dimension and dim; is the
topological dimension of (8M d). Equivalently suppose that ACD(8(M )) <dim; +2
where ACD(B(M )) denotes the Ahlfors regular conformal dimension of 8(M ). If QO
is compact, then Q is finite.

Sketch of proof Proposition 3.3 and Proposition 3.5 apply directly to show that Q
does not have nontrivial topologically infinitely divisible elements.

Theorem 1.17 shows that O does not have arbitrarily small torsion elements.
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The rest of the argument is as in Proposition 3.8. The only point that needs to be
mentioned is that 3>/ minus a neighborhood of the cusps, rather than P M itself
is quasi-isometric to the Cayley graph of 7;(M). Since the quasi-isometries in Q
preserve the horoballs they naturally induce homeomorphisms of PM preserving
horoballs. Observation 1.5 therefore goes through with the above modification. |

Now, let Q, C PPQI(G, K) be a group of uniform quasi-isometries preserving a sym-
metric pattern of horoballs. Then Q, is locally compact (by Lemma 1.4) and contains
a compact open subgroup K. Suppose further that ¢ is a visual metric on 8(]\7 ) with
dimpyys < dimy +2, where dimpg,y is the Hausdorff dimension and dim; is the topo-
logical dimension of (3(1\7 ), d). Equivalently suppose that ACD(a(M )) < dim; 42
where ACD(8(]\7 )) denotes the Ahlfors regular conformal dimension of 3(]\7 ). Then
K is finite by Proposition 5.4. Hence Q,, is discrete. Thus as in Theorem 3.9 we get
the following.

Theorem 5.5 Let M = M" be a complete finite volume manifold of pinched negative
curvature and let ¢cH denote the associated symmetric pattern of horoballs. Suppose
further that d is a visual metric on 8(]\7 ) with dimp,,s < dim; +2, where dimpgyg
is the Hausdortf dimension and dim; is the topological dimension of (8(]\7 ), d).
Equivalently suppose that ACD(B(M)) < dim; +2 where ACD(8(]\7)) denotes the
Abhlfors regular conformal dimension of 8(]\7 ). Let Q be a group of uniform quasi-
isometries containing G preserving a symmetric pattern of horoballs. Then G is of
finite index in Q. In particular, Q C Comm(G), where Comm(G) denotes the abstract
commensurator of G .

5.2 Weak QI rigidity for relatively hyperbolic groups

We shall be using the following Theorem of Behrstock, Drutu and Mosher (which
follows from the proof of [1, Theorem 4.8]; see also Schwartz [56]) and Farb’s result [26]
that the fundamental group of complete finite volume noncompact manifold of pinched
negative curvature is strongly hyperbolic relative to the cusp groups.

Theorem 5.6 (Behrstock—Drutu—Mosher [1], Schwartz [56]) Let M = M" be a
complete finite volume manifold of pinched negative curvature with n > 2 (and one
cusp for ease of exposition). Let G = w{(M). Let K denote the fundamental group
of the cusp. Choose a finite generating set for G containing a finite generating set
for K. Let I', 'y, T'xc denote respectively the Cayley graph of G, some translate of
the Cayley (sub)graph of K and the collection of translates of I'x . Then for every
L >1 and C > 0 there exists R = R(L, C, G, K) such that the following holds.

For any (L, C)—(selt-)quasi-isometry q of G, the image q(I'x) is at a bounded Haus-
dorff distance R of some gl'g € I'c.

Geometry & Topology, Volume 16 (2012)



1238 Mahan Mj

Let g be a (self-)quasi-isometry of I". Elements of the collection I'xc are mapped
bijectively to bounded neighborhoods of elements of collection I'x. Identifying I with
the neutered space | (M \ UcHecy Int(cH)) we can extend g (cf [56]) to a (self-)quasi-
isometry ¢” of M where the elements of ¢7 are bijectively mapped to uniformly
bounded neighborhoods of elements of ¢ . Each element of ¢ has a unique limit
point in 9M which we shall call its basepoint. Let dg denote the induced map of 8(]\7 )
and 0 denote the collection of basepoints of ¢ in 9M . Thus a simple consequence
of Theorem 5.6 is the following.

Corollary 5.7 Let M = M™ be a complete finite volume manifold of pinched negative
curvature with n > 2 (and one cusp for ease of exposition). Let G = 7 (M). Let K
denote the fundamental group of the cusp. Let ¢’H be the associated symmetric pattern
of horoballs in M . Choose a finite generating set for G containing a finite generating
setfor K. Let I', ', 'k denote respectively the Cayley graph of G, some translate
of the Cayley (sub)graph of K and the collection of translates of I'x . Identify T’
(coarsely) with the neutered space (Z\7 \Ucrecy Int(cH)).

Then forevery L > 1 and C > 0 thereexist L1 > 1, C; >0 and R= R(L,C, G, K)
such that the following holds.

For any (L, C)—(selt-)quasi-isometry g of I" (or equ1va]ent1y, (M \UeHeen Int(cH ))),
there is an (L, Cy)—(self-)quasi-isometry ¢" of M such that the image ¢"(Tk)
is at a bounded Hausdorff distance R of some gl'y € I'yy. Hence g induces a
homeomorphism dq of 8(]\7 ) preserving the basepoints of ¢H.

Combining Corollary 5.7 with Theorem 5.5 we get the following.

Theorem 5.8 Let M = M" be a complete finite volume manifold of pinched neg-
ative curvature with n > 2. Let G = m1(M). Suppose that there exists a visual
metric d on 8(1\7 ) with dimp,,s < dim; +2, where dimp,,s is the Hausdortff dimen-
sion and dim; is the topological dimension of (8(]\7 ), d). Equivalently suppose that
ACD(8(]\7 )) < dim; +2, where ACD(Z)(M )) denotes the Ahlfors regular conformal
dimension of 8(2\7 ).

Let I be a Cayley graph of G with respect to a finite generating set. Let Q be a
group of uniform quasi-isometries of I' containing G. Then G is of finite index in Q.
In particular, Q C Comm(G), where Comm(G) denotes the abstract commensurator
of G.
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6 Examples and consequences

6.1 Examples

In this subsection we list a collection of examples of hyperbolic PD(n) groups.

Rank one symmetric spaces Uniform lattices in rank one symmetric spaces are
examples of hyperbolic PD(#) groups. For lattices in real hyperbolic space H” the usual
visual metric has Hausdorff dimension dimy,,s equal to topological dimension dim;.
For lattices in complex hyperbolic space CH” the usual visual metric has dimpa,s =
dim; +1. Lattices in quaternionic hyperbolic space and the Cayley hyperbolic plane
cannot have codimension one subgroups; so Theorem 3.9 cannot apply. But these
spaces are QI-rigid by a deep Theorem of Pansu [49].

Gromov-Thurston examples Gromov and Thurston [33] construct examples of
closed negatively curved n—manifolds (n > 3) of arbitrarily pinched negative curvature,
which do not admit metrics of constant negative curvature.

Remark 6.1 For these examples the inequality dimp,,s < dim; +2 is satisfied. This is
because of the following. If —1 < y < —(1+¢)?, the rate of divergence of geodesics is
bounded by O(e('*9)®) Hence volumes of R-balls is bounded by O (e~ DU+eIRy
Therefore the Hausdorff dimension of the visual boundary is bounded above by
(n—1)(14+¢€) (see [61, Theorem 1]).

Mostow—Siu examples Mostow and Siu [47] constructed an infinite family of complex
surfaces that admit negatively curved Kahler metrics but do not admit a complex hyper-
bolic structure. Fundamental groups of these provide further examples of hyperbolic
PD(n) groups.

Davis—Januskiewicz examples A remarkable set of examples is constructed by Davis
and Januskiewicz [24], who show that there exist hyperbolic PD(n) groups G for n >4,
such that the boundary dG is not homeomorphic to the sphere S”~!. 3G need not
be simply connected or locally simply connected and hence is not even an Absolute
Neighborhood Retract.

6.2 Quasi-isometric rigidity

Let A be a graph of groups with Bass—Serre tree of spaces X — T'. Let 4 = 71 A.
Let VE(T) be the set of vertices and edges of 7. The metric on 7 induces a metric
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on VE(T), via a natural injection VE(T) — T which takes each vertex to itself and
each edge to its midpoint. Let dg denote Hausdorff distance.

We refer the reader to Mosher, Sageev and Whyte [46] specifically for the following
notions:

(1) depth zero raft

(2) crossing graph condition

(3) coarse finite type and coarse dimension
(4) finite depth

Combining Theorems 1.5, 1.6 of Mosher, Sageev and Whyte [46] with the Pattern
Rigidity Theorem 4.8 we have the following QI-rigidity Theorem along the lines of
Theorem 7.1 of [46].

Theorem 6.2 Let A be a finite, irreducible graph of groups such that for the associated
Bass—Serre tree T of spaces,

(a) the vertex groups are PD(n) hyperbolic groups for some fixed n,

(b) edge groups are filling codimension one in the adjacent vertex groups,

and such that A is of finite depth. Further suppose that each vertex group G admits
a visual metric d on 0G with dimp,,s < dim; +2, where dimy,,s is the Hausdorff
dimension and dim; is the topological dimension of (0G, d). Equivalently suppose
that ACD(0G) < dim; +2 where ACD(dG) denotes the Ahlfors regular conformal
dimension of 3G .

If H is a finitely generated group quasi-isometric to A = w1(A) then H splits as a
graph A’ of groups whose depth zero vertex groups are commensurable to the depth
zero vertex groups of A and whose edge groups and positive depth vertex groups are
quasi-isometric to groups of type (b).

Proof By the restrictions on the vertex and edge groups, it automatically follows that
all vertex and edge groups are PD groups of coarse finite type. Since the edge groups
are filling, the crossing graph condition of Theorems 1.5, 1.6 of [46] is satisfied. A is
automatically finite depth, because an infinite index subgroup of a PD(#n) groups has
coarse dimension at most n — 1.

Then by [46, Theorems 1.5 and 1.6], H splits as a graph of groups A" with depth zero
vertex spaces quasi-isometric to the vertex groups of .4 and edge groups quasi-isometric
to the edge groups of A. Further, the quasi-isometry respects the vertex and edge
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spaces of this splitting, and thus the quasi-actions of the vertex groups on the vertex
spaces of A preserve the patterns of edge spaces.

By Theorem 4.8 the depth zero vertex groups in A" are commensurable to the corre-
sponding groups in A. O

6.3 The permutation topology

In this paper we have ruled out three kinds of elements from the group PPQI(G, H)
of pattern-preserving quasi-isometries under appropriate hypotheses on G':

(a) elements that admit arbitrarily small roots (topologically divisible elements)
(b) arbitrarily small torsion elements (essentially Theorem 1.17)

(c) elements with arbitrarily large powers close to the identity (no copies of the
p—adics)

In a sense (a) and (c) are phenomena that are opposite to each other. In hindsight, the
previous works on pattern rigidity [57; 7; 6] exploited (a) in the context of an ambient
Lie group which automatically rules out (b) and (c).

We have used the fact that the group is pattern-preserving in a rather weak sense, only to
conclude that the group we are interested in is totally disconnected. In fact Theorem 3.9
generalizes readily to show that a locally compact totally disconnected group of quasi-
isometries containing G must be a finite extension of G' under appropriate hypotheses
on G. The crucial hypothesis is local compactness on PPQI(G, H) which can be
removed under hypotheses on H as in Theorem 4.8. We would like to remove the
hypothesis of local compactness in more general situations.

Remark 3.6 gives a reasonably explicit structure of K for K a compact group of
pattern-preserving quasi-isometries. K acts on the discrete set £ of patterns with finite
orbits £, L5, ... and hence K C [[; S(£;), where S(L;) denotes the symmetric
group on the finite set £; and [] denotes direct product.

To establish Theorem 3.9 without the hypothesis of local compactness, two crucial

problems remain:

Problem 1 A topological converse to Remark 3.6 which would say that a group
K C[1]; S(£;) acting with finite orbits on £ must be compact in the uniform topology
on 4G .
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As an approach to this, we propose an alternate topology on PPQI(G, H) and call it
the permutation topology. Enumerate £ = Ly, L,,.... Since the representation of
PPQI(G, H) in the symmetric group of permutations S(£) is faithful, we declare that
a system of open neighborhoods of the origin in PPQI(G, H) is given by the set Uy
of elements of PPQI(G, H) fixing L;,i = 1,..., N. Now consider an element ¢ €
PPQI(G, H) acting with finite orbits on L. Then the (closed) monothetic subgroup (¢)
generated by ¢ is locally compact and by Corollary 2.25, under certain hypotheses, it
cannot contain the p-adics. Hence it must have arbitrarily small torsion elements. We
cannot apply Theorem 1.17 right away. To be able to apply Theorem 1.17, we need to
show the following:

For € as in Theorem 1.17, there exists N such that for all k, if gbk stabilizes each L;,
i=1,...,N, then each orbit of ¢k has diameter less than €.

Thus a weak enough statement ensuring a comparison of the permutation topology with
the uniform topology is necessary. The coarse barycenter construction of [44] might be
helpful here to construct quasi-isometries coarsely fixing large balls and providing a
starting point for the problem.

Problem 2 A more important and more difficult problem is to rule out elements of
PPQI(G, H) which fix finitely many elements of £ (and hence coarsely fix the origin
in G by Theorem 1.8) but act with at least one unbounded orbit on £. We would have
to show the following:

There exists N such that if ¢ € PPQI(G, H) stabilizes each Li,i = 1,..., N, then
each orbit of ¢ is finite.
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