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Finite asymptotic dimension for CAT.0/ cube complexes

NICK WRIGHT

We prove that the asymptotic dimension of a finite-dimensional CAT.0/ cube complex
is bounded above by the dimension. To achieve this we prove a controlled colouring
theorem for the complex. We also show that every CAT.0/ cube complex is a
contractive retraction of an infinite dimensional cube. As an example of the dimension
theorem we obtain bounds on the asymptotic dimension of small cancellation groups.

20F65, 20F69, 54F45

Introduction

CAT.0/ cube complexes are a higher dimensional analogue of trees. They are a class
of nonpositively curved spaces with useful combinatorial and geometric properties.
Many interesting classes of groups, for example small cancellation groups, act properly
on CAT.0/ cube complexes, allowing geometric properties of the groups to be deduced
from the corresponding properties of the cube complexes. Indeed by the results of
Ollivier and Wise [15], “generic” groups act on finite dimensional CAT.0/ cube com-
plexes; more precisely random groups at density less than 1

6
act freely and cocompactly

on finite dimensional CAT.0/ cube complexes with probability tending exponentially
to 1.

It is well known that 1–dimensional CAT.0/ cube complexes, ie trees, have asymptotic
dimension at most 1. A product of trees gives a higher dimensional CAT.0/ cube
complex, and by the Hurewicz Theorem for asymptotic dimension proved by Bell and
Dranishnikov [1], one again has that the asymptotic dimension is bounded above by the
dimension of the cube complex. In this paper, we show that this holds in full generality.
Note that we do not require the cube complex to be locally finite.

This paper extends the result of [3], where Brodzki et al show that finite dimensional
CAT.0/ cube complexes have property A. It also extends the result of Dranishnikov [6]
showing that the asymptotic dimension of a right-angled Coxeter group does not exceed
the dimension of its Davis complex.

Given that Thompson’s group F acts on a CAT.0/ cube complex (see Farley [9]) it is
interesting to compare the results of this paper with the results of Dranishnikov and
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Sapir [8]. The cube complex is infinite dimensional, however the dimension of the
cubes increases polynomially with the distance from an orbit, hence the results of this
paper would suggest a positive answer to Dranishnikov’s question [7] about whether
F has polynomial asymptotic dimension growth. However Dranishnikov and Sapir [8]
have recently shown that F in fact has exponential asymptotic dimension growth, thus
ruling out this attack on the question of whether or not Thompson’s group is exact (or
in metric terms has Yu’s property A). As remarked by Sapir, the question of exactness
of Thompson’s group “is considered almost as hard as amenability.”

In this paper we prove the following result.

Theorem 4.10 Let X be a CAT.0/ cube complex of dimension D . Then for all " > 0

there exists an "–Lipschitz cobornologous map from X to a CAT.0/ cube complex of
dimension at most D . Thus X has asymptotic dimension at most D .

While one certainly can have equality of the dimension and asymptotic dimension, one
could not expect to have this in general: the dimension of the cube complex can be
increased without changing the asymptotic dimension by taking a product with a finite
cube complex.

As an immediate corollary of the theorem we have:

Corollary 4.11 Let G be a group admitting a proper isometric action on a CAT.0/
cube complex of dimension D . Then G has asymptotic dimension at most D .

As an example of this, we can apply the results of Wise [20] to obtain upper bounds for
the asymptotic dimension of B.4/�T .4/ and B.6/ small cancellation groups in terms
of the presentation complex for the group; see Example 4.12. These bounds are local,
and can be determined from a presentation of the group. If G is a B.4/�T .4/ small
cancellation group then the asymptotic dimension of G is at most c=2 where c is the
maximal circumference of a cell in the presentation complex of G . In other words c is
the maximal length of a relator (or at most twice the maximal length if some relators
are of odd length). If G is a B.6/ group then the asymptotic dimension of G is at
most maxfc; lg, where c is as above and l is the maximal cardinality of a complete
graph in the generalised link of a vertex.

We remark that in the hyperbolic case, finite asymptotic dimension is well-known; see
Gromov [11] and Roe [17] (for relatively hyperbolic groups see Osin [16]). Moreover
Buyalo and Lebedeva [4] proved that the asymptotic dimension of a hyperbolic group is
the dimension of its boundary plus 1. Nonetheless, given a presentation of a hyperbolic
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group, the dimension of the boundary may not be obvious, whereas the dimension of
the cube complex provides a computable estimate of the asymptotic dimension.

To prove Theorem 4.10, the strategy is to construct a Lipschitz map from a CAT.0/
cube complex X into a quotient complex yX , with Lipschitz constant strictly less than
one. By iterating the process we obtain arbitrarily contractive maps into a cube complex
of dimension no greater than X , thus obtaining a bound on the asymptotic dimension.

In Section 2 we introduce the concept of controlled colourings on the set of hyperplanes;
these are used in Section 4 to produce the quotient complex yX . The main result of
Section 2 is an existence theorem for controlled colourings. In Section 3 we prove
a projection theorem. Specifically we prove that every CAT.0/ cube complex is a
contractive retraction of an infinite dimensional cube. The retraction is constructed as
an infinite composition of functions, and we give hypotheses under which a general
infinite composition is well-defined. In Section 4 we use the controlled colouring
to construct a large-scale contractive map from a CAT.0/ cube complex X into a
quotient yX . This map is 1–Lipschitz on small scales, and to complete the proof we
carry out an interpolation argument, using the projection theorem from Section 3, to
produce a map with Lipschitz constant strictly less than 1. The asymptotic dimension
bound then follows.

1 Preliminaries

In this section we introduce some notation and basic structure on CAT.0/ cube com-
plexes. For further information on CAT.0/ cube complexes, see Bridson and Hae-
fliger [2], Chatterji and Niblo [5], Gromov [10], Nica [14], Roller [18] and Sageev [19].

Recall that a geodesic metric space .X; d/ is CAT.0/ if all geodesic triangles are
slimmer than the corresponding Euclidean triangle. Consider a cell complexes built out
of Euclidean cubes Œ0; 1�n , and with isometric attaching maps that take faces to faces
of the same dimension. The metric on the cells extends to a path metric on the cell
complex. If the resulting metric is CAT.0/ then the complex is said to be a CAT.0/
cube complex. The CAT.0/ metric condition for a cube complex is equivalent to a
combinatorial condition on the cells (see Gromov [10]): X is a CAT.0/ cube complex
if and only if it is simply connected and the link of each vertex is a flag complex.

CAT.0/ cube complexes can also be equipped with a combinatorial metric. For x;y

vertices of X , let d.x;y/ denote the minimum number of edges required to connect
x and y . This is called the edge-path metric. We remark that this corresponds to the
path metric on X produced by equipping each cube with the l1 metric instead of the
Euclidean (l2 ) metric.
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Recall that a CAT.0/ cube complex can be equipped with a set of hyperplanes. Each
hyperplane divides the vertex set of X into two halfspaces (or sides); see Niblo and
Reeves [12] and Sageev [19]. We denote the set of hyperplanes of X by H . Given
two hyperplanes h; k , one obtains four possible intersections of halfspaces, and h; k

are said to intersect if each “quadrant” is nonempty. This occurs if and only if h and k

cross a common cube, moreover (cf [19]), given a maximal collection of pairwise
intersecting hyperplanes there is a unique cube which all of them cross. The dimension
of a CAT.0/ cube complex X is thus the maximum number of pairwise intersecting
hyperplanes.

For x;y vertices of X , the interval from x to y , denoted Œx;y�, is the subcomplex
whose vertices lie in all halfspaces containing both x and y . Given three vertices
x;y; z the intersection Œx;y�\ Œy; z�\ Œz;x� contains a unique vertex (cf [18]) called
the median of x;y; z .

If x is a vertex of X , then x determines a choice of orientation for each hyperplane,
that is a selection of one halfspace for each hyperplane. Let hx denote the set of
halfspaces containing x . These halfspaces have nonempty intersection, indeed their
intersection is x . The halfspaces are, in particular pairwise intersecting. Moreover,
if we fix a basepoint x0 in X , then a choice of orientation (ie a halfspace) for each
hyperplane of X will determine a vertex x 2X if and only if the halfspaces intersect
pairwise and only finitely many1 differ from hx0

.

Given any subset yH of the set of hyperplanes of X , one can construct a CAT.0/ cube
complex yX . This construction, which is a generalisation of Sageev’s construction [19],
is discussed in detail by Chatterji and Niblo [5] and Nica [14]. A vertex of yX is defined
to be a set of halfspaces, one corresponding to each hyperplane in yH , whose total
intersection is nonempty. When yH DH one recovers the original complex X as the
sets of halfspaces each yield a single vertex of X , while in general the space yX is
a quotient of X . The set of hyperplanes of yX is (or rather is canonically identified
with) yH . On vertices the quotient map restricts the family of orientations hx to a
family of orientations of the hyperplanes in yH . This is extended affinely to cubes.

We now fix a basepoint x0 in X . This will give rise to an ordering on H , and we will
establish some basic properties.

For a hyperplane h, we denote the halfspace containing x0 by h� and denote the
halfspace not containing x0 by hC . We refer to these as respectively the inward and
outward halfspaces of h.

1If infinitely many choices differ from hx0
then one obtains a point in the combinatorial boundary.
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Definition 1.1 For h; k 2H , we say that k separates x0 from h, denoted k < h, if
kC strictly contains hC or equivalently k� is strictly contained in h� .

If k < h and there is no j in H such that k < j < h then the hyperplane k is said to
be a predecessor of h.

For h; k 2H we say that h is opposite k if hC; kC are disjoint.

Note that a hyperplane k separates x0 from h if and only if it separates x0 from all
vertices adjacent to h.

For any two hyperplanes h¤ k , exactly one of the following four conditions holds:
h intersects k , h < k , k < h or h opposite k . The conditions h < k , k < h and h

opposite k correspond to the cases where h�\ kC , hC\ k� , hC\ kC respectively
are empty, while h intersects k is the case where none of these are empty.

Lemma 1.2 For h 2H , the predecessors of h all meet. In particular h can have at
most d predecessors where d is the dimension of X .

Proof We first observe that two predecessors of a hyperplane h cannot be opposite.
Suppose k1 is a predecessor of h and consider a hyperplane k2 which is opposite k1 .
Then kC

1
contains hC but is disjoint from kC

2
. Thus hC must also be disjoint from kC

2

ie k2 is also opposite h, so it is not a predecessor of h. Now suppose that k1; k2

are predecessors of h. Then we cannot have k1 < k2 < h or k2 < k1 < h as this
would contradict the fact that k1 (resp. k2 ) is a predecessor of h. Thus if k1; k2 are
predecessors of h then k1 must intersect k2 .

We conclude this section with the following proposition, which gives an alternative
characterisation of predecessors.

Proposition 1.3 For x a vertex of X , let Hx denote the set of hyperplanes which are
adjacent to x and separate x from x0 .

(1) Let h 2H and let x be a vertex in hC . Then x is of minimal distance from x0

if and only if Hx D fhg, and there is a unique such vertex.

(2) Let h 2H , and let y be the vertex adjacent to h of minimal distance from x0 .
That is y is adjacent across h to the vertex x 2 hC of minimal distance from x0 .
Then k is a predecessor of h if and only if k 2Hy .

This proposition gives a connection between predecessors and normal cube paths
(cf [12]). The set Hx is the set of hyperplanes meeting the first cube on the normal
cube path from x to x0 . The proposition says that the set of predecessors of h is the
set of hyperplanes meeting the first cube on the normal cube path from y to x0 , where
y is the vertex adjacent to h of minimal distance to x0 ,
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Proof For (1) first suppose that x is of minimal distance from x0 . Since each k

in Hx separates x0;x , crossing any of these reduces the distance to x0 . If there were
any k ¤ h in Hx , then crossing this we would remain in hC . Hence by minimality of
d.x0;x/, and since Hx is nonempty, it follows that Hx D fhg.

Conversely suppose that Hx D fhg. Choose x0 2 hC minimising d.x0;x
0/. Let m

be the median of x;x0;x0 . Then m 2 hC since x;x0 are in hC . Since m lies on a
geodesic from x0 to x0 , minimality of x0 implies that m D x0 . Thus x0 lies on a
geodesic from x to x0 . However since Hx D fhg the first edge of every geodesic
from x to x0 crosses h. Thus we deduce that x D x0 and d.x0;x/ is minimal.

This also proves uniqueness as if x is of minimal distance then Hx D fhg, and we
have shown that for any x0 of minimal distance we then have x D x0 .

For (2) let k be a predecessor of h. As y is adjacent to h, k does not separate y

from h, thus k must separate x0;y . If k is not adjacent to y then there is some
hyperplane j adjacent to y and separating y from k . This hyperplane cannot meet h

otherwise it would also be adjacent to x contradicting Hx D fhg. Since j does not
meet h we deduce that k < j < h contradicting the fact that k is a predecessor. We
thus deduce that the predecessors of h are adjacent to y and separate y from x0 .

Conversely suppose k is adjacent to y and separates y from x0 . As above it cannot
meet h as this would contradict Hx D fhg. We have x 2 hC , and since k does not
separate x;y and kC contains y we note that kC also contains x . Thus h; k are not
opposite. On the other hand h separates x0;y while k does not, so we deduce that
k < h. If there were any j with k < j < h then j would either separate y from h or
from k . Since y is adjacent to both h; k this cannot happen. Hence we conclude that
k is a predecessor of h.

2 Controlled colourings

Let X be a CAT.0/ cube complex, and let H denote the set of hyperplanes of X .
In this section we introduce the concept of a controlled colouring of H , and prove
that if X is finite dimensional then controlled colourings exist. Throughout we fix a
basepoint x0 of X .

In this paper, colourings will always use two colours, that is, a colouring of H is a
map cW H ! f0; 1g.

Definition 2.1 A directed edge from x to y is inward if d.x0;y/ < d.x0;x/. Equiv-
alently, the hyperplane separating x;y lies in the set Hx of hyperplanes adjacent to x

and separating x from x0 . An edge geodesic is inward if each edge is inward.
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Definition 2.2 Given a colouring cW H ! f0; 1g, a geodesic is monochromatic if it
only crosses hyperplanes of a single colour.

Definition 2.3 An l –controlled colouring of H is a map cW H ! f0; 1g such that no
monochromatic inward geodesic has length greater than l .

We will construct a colouring which is l –controlled where the constant l depends only
on the dimension of the CAT.0/ cube complex X .

To construct the colouring we will introduce a collection of rank functions on the
hyperplanes. These in some sense measure the distance from a hyperplane to the
basepoint x0 . Having established various important properties of these rank functions
we will combine them into a rank-vector associated to each hyperplane, and it is this
rank-vector which will allow us to define the colouring.

Definition 2.4 Let d >1. An outward (resp. inward) d –corner in X is an intersectionTd
iD1 hCi (resp.

Td
iD1 h�i ), where all the hyperplanes hi cross.

By convention a d –corner means an outward d –corner unless otherwise specified.

Definition 2.5 The d –rank of a hyperplane h is defined inductively as follows. Let
H d
�0 DH . Having defined H d

�n , define H d
�nC1

to be the set of hyperplanes in H d
�n

which are contained in some d –corner bounded by hyperplanes in H d
�n . Define a

hyperplane h to have d –rank n if h lies in H d
�n nH d

�nC1
, that is h 2H d

�n but h is
not contained in any d –corner of hyperplanes in H d

�n .

In other words, h has d –rank 0 if it is not contained in any d –corner; h has d –rank 1
if it is contained in a d –corner of hyperplanes of d –rank 0, but not in any d –corner
of hyperplanes which themselves are contained in a d –corner, etc. The example
in Figure 1 shows the 2–ranks of a negatively curved 2–dimensional CAT.0/ cube
complex.

As noted in Section 1, associated to a subset yH of H there is a CAT.0/ cube complex yX
which is a quotient of X , and whose hyperplanes are precisely yH . An alternative way
of formulating the definition of d –rank is to say that h has d –rank 0 if it does not lie
in any d –corner, and inductively h has d –rank n if it has d –rank 0 as a hyperplane
of the quotient X d

�n whose hyperplanes are H d
�n .

Definition 2.6 A .d; n/–corner is a d –corner bounded by hyperplanes of d –rank n.

Lemma 2.7 (1) Let h be a hyperplane of d –rank n. Then h is contained in a
.d;m/–corner if and only if m< n.

(2) The d –rank is monotonic, that is, for k < h we have d–rank k � d–rank h.
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Figure 1. 2–Ranks in the presence of negative curvature

Proof (1) It is immediate from the definition that d–rank hD n implies h lies in no
corner bounded by hyperplanes in H�n so it lies in no .d;m/ with m� n.

On the other hand if n> 0 then consider a minimal k in H d
�n with k � h. As k 2H d

�n

it must lie in a d –corner of H d
�n�1 , and h also lies in this corner. By minimality of k

the hyperplanes bounding this corner cannot lie in H d
�n , so they are all of rank n� 1.

Thus if d–rank h D n > 0 then h lies in a .d; n�1/–corner. Applying this to the
hyperplanes bounding the .d; n�1/–corner we conclude that for every m< n there is
a .d;m/–corner containing h.

(2) Using part (1) we note that the d –rank of a hyperplane is the maximal n for which
the hyperplane lies in a .d; n�1/–corner, or zero if there is no such n. If k < h then
every d –corner containing k also contains h, hence the d –rank of h is at least the
d –rank of k .

If k is a predecessor of h then d–rank k � d–rank h. In the special case that k is
the only predecessor of h then we have equality. Indeed any d –corner containing k

also contains h, but conversely, for any d –corner containing h, each hyperplane j

bounding the corner must satisfy j < k < h. Thus a d –corner contains k if and only
if it contains h.

Definition 2.8 A CAT.0/ cube complex X is d –flat if every hyperplane of X has
d –rank 0. Equivalently X is d –flat if no hyperplane of X lies in a d –corner.

The term “flat” is motivated by the observation that Rn with the standard cubing is
d –flat for all d � 2. Note also that X is d –flat for all d greater than the dimension
of X .
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Definition 2.9 The flatness of X is the least d such that X is .dC1/–flat.

If X has dimension D then it is .DC1/–flat, hence the flatness is bounded above by
the dimension.

Proposition 2.10 If X is .dC1/–flat then each hyperplane h of X has at most d

predecessors and every predecessor has d–rank at least d–rank.h/� 1.

Proof If X is .dC1/–flat then no hyperplane lies in a .dC1/–corner, so in particular
no hyperplane can have more than d predecessors.

Let nD d–rank h. If nD 0 then there is nothing to prove. Otherwise h lies in some
.d; n�1/–corner S . If k is a predecessor of h then no hyperplane j bounding S

can separate h; k . If for some j we have j < k or j D k then by monotonicity we
deduce that d–rank k � n� 1 as required. This leaves the possibility that k crosses
every j bounding S . But then intersecting S with kC we obtain a .dC1/–corner
containing h. This contradicts .dC1/–flatness.

Definition 2.11 A chain in a path s is a set of hyperplanes meeting s , which is totally
ordered by <.

Definition 2.12 An inward geodesic s is straight if the set of hyperplanes crossed by
the geodesic is a chain in s , ie the hyperplanes are pairwise disjoint.

If h has more than one predecessor, then there is an inward corner associated to h,
namely, the intersection k�

1
\ � � � \ k�p where k1; : : : ; kp are the predecessors of h.

Let ih denote this inward corner. By convention we take ih to be empty when h has at
most one predecessor.

Note that if s is a straight path then s is disjoint from ih for each h meeting s . Indeed
for s to have nonempty intersection with ih then in particular it must cross every
predecessor of h, contradicting straightness. Thus the following definition gives a
generalisation of straightness. See Figure 2.

Definition 2.13 An inward geodesic s is bound to h if it is disjoint from ih , and is
bound if it is bound to h for all h meeting s .

If s is bound to h and h has more than one predecessor then there is at least one
predecessor which s does not cross. Conceptually, s is bound to h if there is at least
one direction in which s goes no farther towards the vertex x0 than h does. For
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(a)

x0 ih3

ih2

ih1

h1h2h3h4h5

(b)

x0 ih3

ih2

ih1

ik3

ik2

ik1

h1h2h3h4h5

k1

k2

k3

k4

k5

Figure 2. Bound geodesics: (a) A straight geodesic – the hyperplanes crossed
are disjoint; (b) A bound geodesic – the geodesic crosses hyperplanes
h1; : : : ; h5; k1; : : : ; k5 , and remains disjoint from their nonempty inward
corners, ih1

; ih2
; ih3

; ik1
; ik2

; ik3
.

example in Figure 2(b) the bound geodesic cannot be extended farther, as it cannot go
below the bottom of h1 , nor to the left of the end of k1 .

Ultimately we wish to construct a colouring for which the length of monochromatic
geodesics is bounded. Our colouring will have the property that monochromatic
geodesics are bound, so we will control the length of these by first controlling the
variation in rank that can occur on a bound geodesic.

Proposition 2.14 Let X be a .dC1/–flat CAT.0/ cube complex. If s is a bound
inward geodesic and C is a chain in s then any two hyperplanes in C have d –ranks
differing by at most 2. In particular a straight inward geodesic in X crosses hyperplanes
whose d –ranks differ by at most 2.

Proof Without loss of generality we may assume that C is a maximal chain in s . Hence
enumerating C as h0 > h1 > � � �> hp , for i D 0; 1; : : : ;p�1, the hyperplane hiC1 is
a predecessor of hi . Let n be the d –rank of h0 . By monotonicity, each hi has d –rank
at most n, thus we may assume n> 2, otherwise there is nothing to prove.

If for each i D 0; 1; : : : ;p � 1, hiC1 is the unique predecessor of hi then every
hyperplane in C has rank n and we are done. Otherwise, consider the least i such
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that hi has more than one predecessor, and note that hi has d –rank n. As s is bound,
there exists a predecessor k of hi , with k not meeting s . By Proposition 2.10 the
d –rank of k is at least n� 1, hence by Lemma 2.7(1), k lies in a .d; n�2/–corner S .
We note that hi lies in kC which is contained in S , so hi also lies in the d –corner S .

Now suppose there exists a hyperplane l in C with d–rank l � n � 3. Let j be
one of the hyperplanes bounding S . We cannot have j < l by monotonicity, since
d–rank j D n� 2 and d–rank l � n� 3. On the other hand, since k does not meet s

we know that s lies in kC which is contained in jC . Hence l meets jC , but is not
contained in it, so l and j must intersect. Since this holds for every j bounding S ,
we have a .dC1/–corner S \ lC containing hi . This contradicts .dC1/–flatness, so
we conclude that every element of C has d –rank at least n� 2.

In the case where s is straight, the set C of all hyperplanes meeting s is a chain, hence
hyperplanes crossing s have d –ranks differing by at most 2.

Let D be the dimension of X . For a hyperplane h the d –ranks for dDD;D�1; : : : ; 2

give progressively finer information about h. To make this precise, we associate to
each hyperplane a rank-vector.

Starting with X , let H.nD/ denote the set of hyperplanes of X with D–rank nD .
Associated to this is a quotient X.nD/ of X , whose hyperplanes are H.nD/ . This is
D–flat by construction, since any hyperplane lying in a D–corner of D–rank nD

hyperplanes must have D–rank greater than nD . We note that H D
F

nD
H.nD/ .

Now let H.nD ;nD�1/ denote the set of hyperplanes of X.nD/ with .D�1/–rank nD�1 ,
and let X.nD ;nD�1/ be the associated .D�1/–flat complex. We have that H.nD/ DF

nD�1
H.nD ;nD�1/ , so H D

F
nD ;nD�1

H.nD ;nD�1/ . We repeat this process to produce
H.nD ;nD�1;:::;n2/ and X.nD ;nD�1;:::;n2/ , with H D

F
nD ;nD�1;:::;n2

H.nD ;nD�1;:::;n2/ .

Definition 2.15 The rank-vector of h is r.h/D .nD ; : : : ; n2/ if h lies in H.nD ;:::;n2/ .

Figure 3 illustrates the concept of rank vectors for the example of the PGL2.Z/ CAT.0/
cube complex from [5].

We equip the set of rank-vectors with the lexicographic order.

Lemma 2.16 The rank-vector function is monotonic.

Proof If k < h then D–rank k �D–rank h. The D–rank is the first entry of the rank
vector so if the inequality is strict then the rank-vectors satisfy the same inequality. Other-
wise k; h lie in the same H.nD/ , and as k<h we have .D�1/–rank k� .D�1/–rank h
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Figure 3. Rank vectors for the PGL2.Z/ CAT.0/ cube complex from [5]

in H.nD/ . Repeating the argument we either have strict inequality at some point, giving
a strict inequality of rank-vectors, or we conclude that k; h lie in the same H.nD ;:::;n2/ ,
and we have equality of rank vectors.

Lemma 2.17 A hyperplane h has at most one predecessor with the same rank-vector.

Proof Let .nD ; : : : ; n2/ be the rank-vector of h. Then h is a hyperplane of X.nD ;:::;n2/ .
If k is a predecessor of h of the same rank then k is also a hyperplane of X.nD ;:::;n2/ ,
and indeed must be a predecessor of h in X.nD ;:::;n2/ . But X.nD ;:::;n2/ is 2–flat, so h

has at most 1 predecessor in X.nD ;:::;n2/ .

We are now in a position to define the colouring c . We will require two key properties
of the colouring.

(1) If h has a predecessor k with c.h/D c.k/ then h also has a predecessor j with
c.h/¤ c.j /.

(2) If h has a predecessor k with r.h/D r.k/ then c.h/¤ c.k/.

This is achieved by the following definitions.

Definition 2.18 A predecessor k of h is r–maximal if r.j /� r.k/ for all predeces-
sors j of h.
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Definition 2.19 The colouring c.h/ of a hyperplane h is defined inductively to be�
1 if all r–maximal predecessors of h are coloured 0;
0 otherwise:

The fact that this colouring satisfies (1) above is immediate: if all predecessors of h

are coloured 0 then h will be coloured 1, while if all predecessors of h are coloured 1
then h will be coloured 0. To see that (2) is satisfied, if h has a predecessor k with
r.h/ D r.k/ then by monotonicity this predecessor is r–maximal. By Lemma 2.17
there cannot be more than one predecessor having the same rank vector so k is the
unique r–maximal predecessor of h. Thus h is coloured 1 if k is coloured 0, and h is
coloured 0 otherwise.

We will now show that monochromatic paths for this colouring are bound in the
following strong sense.

Definition 2.20 An inward geodesic s is totally bound if s is bound, and the quotient
of s in X.nD ;nD�1;:::;nd / is bound for all d , and all nD ; nD�1; : : : ; nd .

Proposition 2.21 Let s be a monochromatic inward geodesic in X . Then s is totally
bound.

Proof We first show that s is bound. Let h be a hyperplane meeting s . As s is
monochromatic, every predecessor of h meeting s must have the same colour as h.
But by construction of the colouring, h cannot have the same colour as all of its
predecessors, hence each h meeting s has a predecessor not meeting s as required.

To see that s is totally bound, consider the quotient s0 of s in X.nD ;nD�1;:::;nd / for some
d; nD ; nD�1; : : : ; nd . Suppose h meets s0 , that is h meets s and h2H.nD ;nD�1;:::;nd / .
If h has a predecessor k meeting s0 , then the maximal rank-vector of a predecessor of h

must be between r.h/ and r.k/, hence it is of the form .nD ; nD�1; : : : ; nd ; ?; : : : ; ?/. In
particular the r–maximal predecessors of h all lie in H.nD ;nD�1;:::;nd / . By construction
of the colouring the r–maximal predecessors of h cannot all have the same colour as h,
thus as s is monochromatic there is an r–maximal predecessor of h not meeting s

and hence not meeting s0 . We conclude that for each h 2H.nD ;nD�1;:::;nd / meeting s0

there is a predecessor of h in H.nD ;nD�1;:::;nd / not meeting s0 as required.

In Proposition 2.14 we established bounds on the number of different d –ranks that can
occur on a bound geodesic. We will now prove a version of this for rank-vectors.

Proposition 2.22 Let s be a totally bound inward geodesic in X and let C be a chain
in s . Then the rank-vector function takes at most 3f�1 different values on C , where
f is the flatness of X .
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Proof We prove this by induction on the flatness of X . If X has flatness 1, ie it is
2–flat then every rank-vector is zero and there is nothing to prove.

For the induction step, if X has flatness f , then the first nonzero entry, nf , of the
rank-vector is precisely the f –rank. Since X is .fC1/–flat, nf takes at most 3 values
by Proposition 2.14. For each of these values of nf , consider the quotient s.nf / of s

in X.nf / , and let C.nf / be the intersection of C with H.nf / . Then s.nf / is a totally
bound inward geodesic in X.nf / and C.nf / is a chain in s.nf / . The quotient X.nf / is
f –flat, so has flatness at most f � 1. Hence by induction the rank-vector takes at
most 3f�2 values on each C.nf / , for each of the 3 values of nf . Hence it takes at
most 3f�1 values on C .

We are now ready to state and prove the colouring theorem. From Proposition 2.21
and Proposition 2.22 we know that monochromatic geodesics are totally bound and
that chains in these geodesics therefore have a bounded number of rank-vectors. We
combine this with an idea from [3] to prove the following.

Theorem 2.23 Let X be a CAT.0/ cube complex of dimension D and flatness f .
Then the colouring c defined above is a 3f�1D–controlled colouring of H . That is,
no monochromatic inward geodesic can have length greater than 3f�1D .

Proof Let s be a monochromatic inward geodesic. Let x;y be the initial and final
vertices of s . The set of hyperplanes meeting s is precisely the set of hyperplanes
crossing the interval Œx;y�. In [3] it is shown that an interval in a CAT.0/ cube complex
can be isometrically embedded as a subcomplex of the Euclidean space of the same
dimension. In particular the set of hyperplanes crossing an interval of dimension at
most D can be partitioned into D chains. Thus we have chains C1; : : : ;CD partitioning
the hyperplanes that meet s .

As s is monochromatic, by Proposition 2.21 it is totally bound. Hence by Proposition
2.22 for any chain C in s the rank-vector function takes at most 3f�1 different
values on C . For each i we apply this to a maximal chain C 0i in s , containing Ci .
Enumerate C 0i as h0 > h1 > � � � > hp . For each j , hjC1 is a predecessor of hj , by
maximality, so as c.hi/D c.hiC1/ we know that r.hjC1/< r.hj /. Thus the rank-vector
function takes jC 0i j different values on C 0i , so jC 0i j � 3f�1 .

We conclude that there are D chains C1; : : : ;CD partitioning the hyperplanes that
meet s , and as Ci � C 0i , each chain Ci has cardinality at most 3f�1 . Hence there
are at most 3f�1D hyperplanes meeting s , that is s has length at most 3f�1D . This
completes the proof.
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3 The projection theorem

In this section we will consider coordinates on a CAT.0/ cube complex X . These will
give an embedding of X into l1.H / where H is the set of hyperplanes of X (cf [13]).
The main result of this section is a projection theorem which allows us to retract from
a cube in l1.H / onto the embedded copy of X .

Let C D CH denote the set of all finitely supported elements � D .�h/ of l1.H /

such that �h 2 Œ0; 1� for all h 2H . Viewing C as the union of the finite dimensional
cubes corresponding to finite subsets of X , we see that C is a CAT.0/ cube complex
and indeed there is a canonical bijection between the hyperplanes of C and the
hyperplanes H of X . The restriction of the metric on l1.H / to C gives the l1 path
metric on C . The vertex set of C is precisely the finitely supported f0; 1g–valued
functions on H .

The CAT.0/ cube complex X can be embedded into C as follows. For a vertex x

in X we map x to the vertex � of C defined by �h D 1 for all h separating x0;x

and �h D 0 otherwise. We extend the map affinely to give a map from X to C . The
bijection between the hyperplanes of C and the hyperplanes H of X makes this map
isometric on the vertex set (with edge-path metric) since the distance between two
vertices of X is the number of hyperplanes separating them. We will see that it is
isometric on the whole of X (equipped with the l1 path metric) as a corollary of the
projection theorem.

It is often convenient to identify X with its image in C . Indeed one can think of the
embedding as providing coordinates .�h/ associated to a point x in X .

Lemma 3.1 Let F be a finite set of hyperplanes in H . A vertex � D �F of C lies in
the image of X if and only if

(1) when k 2 F and h< k then h 2 F , and

(2) F contains no opposite pair of hyperplanes.

Proof If � D �F lies in the image of X then F is the set of hyperplanes separating
x0;x for some x 2X . Thus k 2 F and h< k implies that hC � kC 3 x , so h 2 F .
Similarly h; k 2 F implies hC \ kC is nonempty (it contains x ) so h; k are not
opposite.

Conversely suppose that F is a finite set of hyperplanes in H satisfying (1), (2). For
each h in H we choose the orientation hC if h 2F , and h� otherwise. Finitely many
of these orientations differ from hx0

Dfh� W h2H g. Moreover we will show that these
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halfspaces are pairwise intersecting. If h; k 2 F then hC \ kC is nonempty as h; k

are not opposite, while if h; k 2H nF then h�\ k� is nonempty as it contains x0 .
On the other hand if one of h; k lies in F and the other in H nF , say k 2 F and
h 2H nF then by (1) we cannot have h< k . That is hC does not contain kC so that
h�\kC is nonempty. Hence the orientations determine a vertex of X , and � D �F is
the image of this vertex.

Definition 3.2 Let h; k be opposite hyperplanes. A point � in C is .h; k/–intervalic
if one or both of �h; �k is zero. We say that � is intervalic if it is .h; k/–intervalic for
all opposite pairs h; k .

Definition 3.3 Let h; k be hyperplanes with h< k . A point � in C is .h; k/–actual
if xh D 1 or xk D 0. Otherwise we say that � is .h; k/–virtual. We say that � is
actual if it is .h; k/–actual for all pairs h< k .

In terms of these definitions, Lemma 3.1 amounts to the statement that if � 2 C is
f0; 1g–valued then � is in the image of X if and only if � is intervalic and actual. We
now extend this to general points of C .

Lemma 3.4 A point � in C lies in the image of X if and only if � is intervalic and
actual.

Proof First suppose that � in lies in the image of X . Let F D fh 2H W 0< �h < 1g.
Then � lies in an jF j dimensional subcube of C : the 2jF j vertices of this cube are
obtained by letting �h be either 0 or 1 for each h in F , and setting �hD �h for h …F .
Since � lies in the image of X , these vertices must also lie in the image of X .

If �h; �k are nonzero then there is a vertex � such that �h D �k D 1. As this vertex
is in the image of X we deduce that h; k cannot be opposite, hence � is intervalic.
Similarly if �h < 1 and �k > 0 then there is a vertex � such that �h D 0 and �k D 1.
Thus we cannot have h< k , so � is actual.

Conversely, suppose that � is intervalic and actual. Let F D fh 2H W 0< �h < 1g and
consider the vertices obtained by letting �h be 0 or 1 for each h in F , and setting
�hD �h for h…F . Once again these span a subcube of C containing � . These vertices
are intervalic and actual: if �h; �k are nonzero then the same is true of �h; �k so that
h; k cannot be opposite, and if �h D 0 and �k D 1 then �h < 1 and �k > 0 so we
cannot have h < k . We deduce that the vertices of the subcube are all in the image
of X . Moreover the correspondence between the hyperplanes of X and those of C

guarantees that the vertices in X whose images are the vertices of the subcube will
themselves span a cube in X . Hence the subcube of C , and in particular the point �
are in the image of X .
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To prove the projection theorem we will need to consider infinite compositions of
functions. Let S be a set, and .P�/�2ƒ a family of maps from S to itself. For s 2 S

we say that the ƒ–support of s , denoted ƒ–Supp.s/, is the set of � 2ƒ such that P�
does not fix s . If ƒ is equipped with a total order �, and F is a finite subset of ƒ then
define PF D P�k

ı � � � ıP�1
where F is enumerated as �1; : : : ; �k , ordered by �.

Lemma 3.5 Let S be a set, and .P�/�2ƒ a family of maps from S to itself. Suppose
that

(1) for all s 2 S the ƒ–support of s is finite,

(2) for all s in S and for � the �–least element of ƒ–Supp.s/, we have

ƒ–Supp.P�.s//�ƒ–Supp.s/ n f�g:

Then for F a finite subset of ƒ containing ƒ–Supp.s/, the ƒ–support of PF .s/ is
empty. Moreover PF .s/ does not depend on the choice of F containing ƒ–Supp.s/,
and if ƒ–Supp.s/ is empty then PF .s/D s for all F .

If S is a metric space, and each P� is contractive then the map P W S ! S defined by
s 7! PF .s/ for any F containing ƒ–Supp.s/, is also contractive.

The map P can be regarded as the infinite composition of all P� ordered by �.

Proof Enumerate F in �–order as �1; �2; : : : ; �k . Let P0.s/ D s and for i D

1; : : : ; k , let Pi.s/DP�i
.Pi�1.s//. We claim that for each i the ƒ–support of Pi.s/

is contained in Fi D f�iC1; : : : ; �kg\ƒ–Supp.s/, hence in particular when i D k we
find that the ƒ–support is empty.

For i D 0 this is true by hypothesis. Now supposing that ƒ–Supp.Pi�1.s// is con-
tained in Fi�1 D f�i ; : : : ; �kg \ƒ–Supp.s/ then either �i is the least element of
ƒ–Supp.Pi�1.s// or �i is not in the ƒ–support of Pi�1.s/. In the first case we have

ƒ–Supp.P�i
.Pi�1.s///�ƒ–Supp.Pi�1.s// n f�ig � f�iC1; : : : ; �kg\ƒ–Supp.s/;

while in the second case P�i
.Pi�1.s//DPi�1.s/, so the ƒ–support is unchanged. By

the induction hypothesis ƒ–Supp.Pi�1.s// is contained in Fi�1 , but in this second
case �i is not in the ƒ–support, so we deduce that ƒ–Supp.Pi.s// is contained in Fi

as required.

We note that if �i is not in the ƒ–support of s , then it is not in the ƒ–support
of Pi�1.s/, and we have Pi.s/D Pi�1.s/. Hence in the composition we have

PF .s/D P�k
ı � � � ıP�iC1

ıP�i
.Pi�1.s//D P�k

ı � � � ıP�iC1
.Pi�1.s//:
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So PF .s/DPFnf�i g
.s/. Removing all such �i we deduce that PF .s/DPƒ–Supp.s/.s/,

so is independent of the choice of F . In the special case that ƒ–Supp.s/ is empty,
each P�i

fixes s and we have PF .s/D s .

Now suppose that S is a metric space and each P� is contractive. Given s; t 2S , take F

to be a finite set containing both ƒ–Supp.s/ and ƒ–Supp.t/. Then P .s/ D PF .s/

and P .t/D PF .t/, so as PF is contractive we deduce that d.P .s/;P .t// � d.s; t/.
Since this is true for any pair s; t we conclude that P is contractive.

Before we prove the projection theorem, we examine a couple of simple examples. First
consider X1 a tree of three edges emanating from the basepoint x0 . We identify H1

with f1; 2; 3g and hence l1.H1/DR3 with the l1 –metric. The space X1 is embedded
in R3 as intervals along the three axes. In this example the image of X1 is precisely
the set of intervalic points in the cube (all intervalic points are actual). We project from
the cube in R3 onto X1 (ie the set of intervalic points) by first projecting onto two
faces of the cube and then for each face projecting onto two edges of the face, as in
Figure 4(a). The choice of which direction to project in first affects the map, but each
choice will produce a retraction onto X1 .

For the second example, consider X2 a line of three edges starting from the basepoint x0 .
Again we have l1.H2/DR3 with the l1 –metric, and the space X2 is embedded in the
cube as illustrated in Figure 4(b)(i). In this case the cube is intervalic, and the image
of X2 is the actual points. For this example, the order of the projections is important.
We must first project in the .1; 3/–plane, and then do the other two projections as in
Figure 4(b)(i). Doing the projections in a different order we do not obtain the correct
range. For example, doing .1; 2/ then .2; 3/, projects onto the union of a square and
an edge on which the .1; 3/ projection is the identity; see Figure 4(b)(ii).

With these two examples in mind, we will now prove the theorem.

Theorem 3.6 (Projection Theorem) Let X be a CAT.0/ cube complex, let H be the
set of hyperplanes of X and let C be the cube of finitely supported elements � 2 l1.H /

with �h 2 Œ0; 1� for all h 2H . Embed X into C as above and let A denote the image
of X in C . Then there is a map P W C!A such that

(1) P is contractive,

(2) the restriction of P to A is the identity,

(3) if � 2C is intervalic then kP .�/k1 D k�k1 .

Proof We note that A is precisely the set of intervalic and actual points in C . Let
I denote the set of intervalic points of C . We will construct the projection P as a
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Figure 4. Two examples of the Projection Theorem

composition P DPA ıPI , where both PA;PI are contractive, PI is a retraction of C
onto I , PA is a retraction of I onto A, and PA preserves the l1 norm.

Let H op D ffh; kg W h; k 2H; h opposite k g. We define a map pop on Œ0; 1�2 by

pop.�1; �2/D

�
.�1� �2; 0/ if �1 � �2;
.0; �2� �1/ if �1 � �2:

For fh; kg in H op we then define a map Ph;k on C . Let Ph;k.�/ D � 0 where
.� 0

h
; � 0

k
/D pop.�h; �k/ and � 0j D �j for j ¤ h; k .

To show that each Ph;k is contractive it suffices to show that pop is contractive. Take
.�1; �2/; .�1; �2/ in Œ0; 1�2 . If �1 � �2 and �1 � �2 then

kpop.�1; �2/�pop.�1; �2/k1 D k..�1� �2/� .�1� �2/; 0/k1

� j�1� �1jC j�2� �2j D k.�1� �1; �2� �2/k1 :
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Similarly if �1 � �2 and �1 � �2 . Now suppose that �1 � �2 and �1 � �2 . Then

kpop.�1; �2/�pop.�1; �2/k1 D k..�1� �2/� 0; 0� .�2� �1//k1 D �1� �2C �2� �1

� j�1� �1jC j�2� �2j D k.�1� �1; �2� �2/k1 :

We conclude that pop is contractive, hence each map Ph;k is contractive.

To construct PI we apply Lemma 3.5, for the family Ph;k ; fh; kg 2 H op . We note
that the H op –support of a point � is the set of all nonintervalic pairs fh; kg for � .
This is finite, since if fh; kg is in the H op –support of � then h and k are in the usual
support of � as a function on H . Note that each Ph;k reduces coordinates, so for
any h; k , a point which is .h0; k 0/–intervalic will remain so upon applying Ph;k . In
other words applying Ph;k does not increase H op –supports. The point Ph;k.�/ is
.h; k/–intervalic by construction, hence we deduce that for any �D fh; kg,

Hop–Supp.P�.s//� Hop–Supp.s/ n f�g:

Thus choosing any ordering on H op , we can apply the lemma to obtain a map
PI W C ! C . This is a retraction onto those � such that the H op –support is empty,
that is PI is a retraction onto I . As each Ph;k is contractive we deduce that PI is
also contractive. We have thus constructed a map PI with the required properties.

We now move on to the construction of PA . Let H< D f.h; k/ W h; k 2 H; h < kg.
We define a map p< on Œ0; 1�2 by

p<.�1; �2/D

�
.�1C �2; 0/ if �1C �2 � 1;

.1; �1C �2� 1/ if �1C �2 � 1:

For .h; k/ in H< , we define a map Pk
h

on I by Pk
h
.�/ D � 0 where .� 0

h
; � 0

k
/ D

p<.�h; �k/ and � 0j D �j for j ¤ h; k .

Take .�1; �2/; .�1; �2/ in Œ0; 1�2 . If �1C �2 � 1 and �1C �2 � 1 then

kpop.�1; �2/�pop.�1; �2/k1Dk..�1C �2/� .�1C�2/; 0/k1�k.�1��1; �2��2/k1 ;

similarly if �1C�2�1 and �1C�2�1. Now suppose �1C�2�1 and �1C�2�1. Then

kpop.�1; �2/�pop.�1; �2/k1 D k..�1C �2/� 1; 0� .�1C �2� 1//k1

D .1� �1� �2/C .�1C �2� 1/

D �1� �1C �2� �2 � k.�1� �1; �2� �2/k1 :

As p< is contractive each Pk
h

is contractive.

To construct PA we again apply Lemma 3.5. In this case we must select the ordering �
with more care to ensure that hypothesis (2) of the lemma is satisfied. We will say that
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the length of a pair .h; k/ is l if l is the largest integer such that we can write hD h0<

h1 < h2 < � � �< hl D k . The length is one if and only if h is a predecessor of k . We
impose an ordering � on H< , by first declaring .h; k/� .h0; k 0/ if the length of .h; k/
is greater than the length of .h0; k 0/, and choosing any order on pairs of the same length.

The H<–support of a point � is the set of pairs for which � is virtual. If .h; k/ is
such a pair then k lies in the support of � as a function and h < k , so the H<–
support is finite. Now suppose that .h; k/ is the �–least element of the H< support
of � . Then in particular .h; k/ has maximal length. Suppose that � is actual for a
pair .h0; k 0/, but applying Pk

h
makes it virtual. Then one of h0; k 0 must be one of h; k .

Moreover, as Pk
h

reduces the k coordinate, and increases the h coordinate we have
either hD k 0 or k D h0 . Consider the first of these cases. We have h0 < k 0 D h< k ,
and �h0 < 1 while �k > 0. It follows that .h0; k/ is a virtual pair for � of greater length
than .h; k/, contradicting �–minimality. Similarly in the case k D h0 we deduce that
.h; k 0/ a virtual pair for � of greater length than .h; k/. Thus applying Pk

h
with .h; k/

being �–minimal cannot increase the H<–support. The point Pk
h

is .h; k/–actual by
construction, hence condition (2) of the lemma is satisfied. Thus applying the lemma
we obtain a map PAW I ! I which is a retraction of I onto those � in I such that
the H<–support is empty. In other words PA is a retraction onto A as required. As
each Pk

h
is contractive we deduce that PA is also contractive. Each Pk

h
preserves the

l1 –norm, and for each � , the point PA.�/ is the image of � under a finite composition
of the maps Pk

h
. Hence PA preserves the l1 –norm.

To conclude, taking the composition P D PA ıPI we have a contractive retraction
of C onto A, which preserves the l1 –norm on I .

Corollary 3.7 If X is equipped with the l1 –path metric, then the embedding X !

A�C is an isometry.

Proof By definition, the l1 –path metric on X is the metric obtained by taking the
infimum of path-lengths, where these path lengths are measured using the l1 –metric on
each cube of X . Identifying X with its image A in C , the l1 –path metric is precisely
the path metric induced from the l1 –metric on C , hence the statement of the corollary
amounts to the assertion that the restriction of the l1 –metric to A is a path metric.

Let d1 denote the l1 –metric on A, and dp the induced path metric. Given two points
�; � in A, the line .1� t/�C t� is a path from � to � in C of length d1.�; �/. Since
the projection P W C! A is contractive, P ..1� t/� C t�/ gives a path from � to �
of length at most d1.�; �/, and this path lies in A. Thus we have dp.�; �/� d1.�; �/.
On the other hand, given any metric the induced path metric satisfies the converse
inequality, that is dp.�; �/� d1.�; �/, hence the two metrics coincide as claimed.
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4 Asymptotic dimension

In this section we make use of the existence of controlled colourings to prove that for a
finite dimensional CAT.0/ cube complex, the asymptotic dimension is bounded above
by the dimension. We begin with the definition of asymptotic dimension.

Definition 4.1 [11] Let X be a metric space. The R–degree of a cover U of X

is the supremum over x 2 X of the cardinality of fU 2 U W BR.x/ meets U g. The
asymptotic dimension of X is the least D such that for every R> 0 there is a cover
of X by sets of uniformly bounded diameter and with R–degree at most DC 1.

The following provides a useful characterisation of asymptotic dimension.

Definition 4.2 A map � from a metric space X to a cell complex Y is uniformly
cobounded if there exists S > 0 such that ��1.�/ has diameter at most S for all
cells � of Y . A map � between metric spaces �W X ! Y is cobornologous if for all
R> 0 there exists S > 0 such that if d.�.x1/; �.x2//�R then d.x1;x2/� S .

Definition 4.3 A uniform simplicial complex is a simplicial complex Y , equipped
with the metric it inherits as a subcomplex of the infinite simplex in l2.V /, where V

is the vertex set of Y .

Lemma 4.4 [11; 1] A metric space X has asymptotic dimension D if and only if
for every " > 0 there exists an "–Lipschitz uniformly cobounded map from X into a
D–dimensional uniform simplicial complex.

Remark 4.5 Let Y be a connected uniform simplicial complex with metric du , and
let dp be the path metric agreeing with du on each simplex. Then dp is the greatest
metric which agrees with du on each simplex, so in particular du � dp . It follows
that if �W X ! Y is "–Lipschitz for dp then it is also "–Lipschitz for du . Moreover,
since simplices have bounded diameter, if � is cobornologous then it is uniformly
cobounded. Hence for the “if” direction of Lemma 4.4 one is free to use either of these
metrics, and require � to be either uniformly cobounded or cobornologous.

Lemma 4.6 If for each " > 0 there is an "–Lipschitz uniformly cobounded (or
cobornologous) map from X into a D–dimensional CAT.0/ cube complex Y then X

has asymptotic dimension at most D .
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Proof This follows from Lemma 4.4 and the above remark. Given an "–Lipschitz
uniformly cobounded map from X into an n–dimensional CAT.0/ cube complex Y ,
triangulate each cube of Y to obtain a simplicial complex. As Y is finite dimensional
the l1 –path metric on Y , and the simplicial path metric dp on its triangulation are
bi-Lipschitz equivalent, with constant � depending only on the dimension. Hence we
obtain a �"–Lipschitz map from X into a simplicial complex with the path metric dp .
As the map is uniformly cobounded for the cubical structure, it is also uniformly
cobounded for the simplicial structure as each simplex lies in a cube.

The hypothesis of being cobornologous is stronger than uniformly coboundedness, so
either hypothesis is sufficient.

Let X be a CAT.0/ cube complex and let H denote the set of hyperplanes of X . Given
cW H ! f0; 1g a colouring of the hyperplanes, let yH denote the set of 0–coloured
hyperplanes. As discussed in Section 1, by [5; 14] there is a CAT.0/ cube complex yX
whose hyperplanes are yH , and a canonical quotient map � W X ! yX . Recall that a
vertex of X provides a choice of orientation for each h 2 H , namely the set hx of
halfspaces containing x . On the other hand a vertex of yX is defined to be a set of
halfspaces, one corresponding to each hyperplane in yH , whose total intersection is
nonempty. The map � is given simply by forgetting the orientations on all 1–coloured
hyperplanes. Using the coordinates provided by embedding the complexes into l1.H /

and l1. yH / respectively, the map takes a point in X with coordinates � D .�h/h2H to
�.�/D �j yH .

Lemma 4.7 If c is an l –controlled colouring of H , then the canonical map � is
cobornologous on the vertices of X .

Proof Let x;y be vertices of X , let m be the median of x;y;x0 . If d.x;m/� lC1

then as the colouring is l –controlled and a geodesic from x to m is inward, then there
must be at least one 0–coloured hyperplane separating x;m. Indeed on any inward
geodesic at least one in every l C 1 hyperplanes is 0–coloured, hence there are at
least bd.x;m/=.lC1/c � d.x;m/=.lC1/�1 hyperplanes which are 0–coloured and
separate x;m.

A similar statement holds for the hyperplanes separating y and m, hence there are at
least .d.x;m/C d.y;m//=.l C 1/� 2D d.x;y/=.l C 1/� 2 hyperplanes which are
0–coloured and separate x;y . It follows that if the distance between �.x/ and �.y/
is at most R then d.x;y/=.l C 1/� 2�R thus d.x;y/� .l C 1/.RC 2/. The map
is thus cobornologous on the vertex set.
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The problem with the canonical map is that while it is contractive ie 1–Lipschitz, it will
not be "–Lipschitz for any " < 1. Indeed if h is a 0–coloured hyperplane, and x;y

are vertices which are adjacent across h so that d.x;y/D 1, then h lies in yH hence
�.x/; �.y/ are also separated by h and d.�.x/; �.y//D 1. On the other hand if x;y

are far enough apart then they will be separated by some 1–coloured hyperplanes,
hence � will reduce the distance between them. We therefore need to carry out an
interpolation to produce a map which is more evenly contractive. We begin by choosing
weights on pairs of hyperplanes.

For h 2 yH and k 2H we define a weight

w.h; k/D

8̂̂<̂
:̂

l=.l C 1/ if hD k;

1=.l C 1/ if k is 1–coloured, h< k ;

and there is no 1–coloured hyperplane separating h; k;

0 otherwise.

Let C DC yH be the infinite cube in l1. yH /. We define a map  W X !C as follows.
For x in X with coordinates .�k/k 2H we define  .x/D � where

�h Dmin
�

1;
X
k2H

w.h; k/�k

�
:

If �h D 0 then we must have �h D 0 since w.h; h/ > 0. On the other hand if �h > 0

then either �h > 0, or there exists k with h< k and �k > 0. Since � is the coordinate
vector of a point x in X we know that it is .h; k/–actual, so �h D 1. Hence �h D 0 if
and only if �h D 0. We conclude that the support of � is the restriction to yH of the
support of � , in particular it is finite, hence � lies in the cube C .

Lemma 4.8 The map  W X !C is .l=.lC1//–Lipschitz.

Proof We will show that the map taking a point x with coordinates �k to �h DP
k2H w.h; k/�k is .l=.lC1//–Lipschitz, it being clear that truncating coordinates

at 1 will only reduce distances.

Two points x;x0 with coordinates �k ; � 0k have images �h; �
0
h

with

�h� �
0
h D

X
k2H

w.h; k/.�k � �
0
k/:

Taking the l1 –norm we getX
h2 yH

X
k2H

w.h; k/j�k � �
0
k j D

X
k2H

j�k � �
0
k j

� X
h2 yH

w.h; k/

�
:

It thus suffices to show that for each k in H we have
P

h2 yH
w.h; k/� l=.l C 1/.
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If k is 0–coloured then w.h; k/ is zero except when hD k , so in this case the sum is
just w.h; h/D l=.l C 1/. If k is 1–coloured then

P
h2 yH

w.h; k/ is 1=.l C 1/ times
the number of 0–coloured hyperplanes h with h < k and such that no 1–coloured
hyperplane separates h; k . Taking y to be the vertex adjacent to k of minimal distance
from x0 , there is a 0–coloured inward geodesic crossing all of these hyperplanes h.
Hence as the colouring is l –controlled there are at most l such hyperplanes. Thus we
again have

P
h2 yH

w.h; k/� l=.l C 1/ as required.

We now combine these results to prove the existence of an .l=.lC1//–Lipschitz
cobornologous map from X to yX .

Theorem 4.9 Let X be a CAT.0/ cube complex of dimension D , with hyper-
planes H . Let c be an l –controlled colouring of H . Then there exists a cobornol-
ogous, .l=.lC1//–Lipschitz map from X to the cube complex yX with hyperplanes
yH D c�1.f0g/.

Proof Let  W X !C DC yH be as above. Identifying yX with the space of actual
intervalic coordinates in C , let P W C! yX be the projection provided by Theorem 3.6.
We define a map �W X ! yX by �.x/D P . .x//. This map is .l=.lC1//–Lipschitz
as  is .l=.lC1//–Lipschitz and P is contractive (Lemma 4.8 and Theorem 3.6). It
remains to prove that � is cobornologous.

Let x;y be points of X . Then there are vertices x0;y0 of X with d.x;x0/; d.y;y0/�D

where D is the dimension of X . As the colouring is l –controlled, following max-
imal 0–coloured inward geodesics from x0;y0 we reach vertices x00;y00 having no
0–coloured inward edges with d.x0;x00/� l and d.y0;y00/� l . As � is contractive
we note that d.�.x/; �.x00//; d.�.y/; �.y00// � l CD , hence if d.�.x/; �.y// �R

then d.�.x00/; �.y00//�RC 2.l CD/.

We consider the images of x00;y00 under the map  . Let � 00
k

be the coordinates of x00

and consider �h D
P

k2H w.h; k/� 00
k

. We have already remarked that the support of �
is the support of the restriction of � 00 to yH , in other words it is the set of 0–coloured
hyperplanes separating x0;x

00 . Moreover as x00 has no 0–coloured inward edges,
for any such h there exists a 1–coloured hyperplane k with h < k . It follows that
�h � w.h; h/Cw.h; k/D 1. Hence � D  .x/ is precisely the characteristic function
of the set of h in yH separating x0;x

00 . This is the image of x00 under the canonical
quotient map, that is  .x00/D �.x00/.

Since �.x00/ lies in yX its coordinates are intervalic and actual so we have

�.x00/D P . .x00//D P .�.x00//D �.x00/:
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Similarly �.y00/D �.y00/. We know from Lemma 4.7 that � is uniformly cobounded.
Hence given R>0 there exists S such that for d.�.x00/; �.y00//Dd.�.x00/; �.y00//�

RC 2.l CD/ we have d.x00;y00/ � S . It follows that if d.�.x/; �.y// � R then
d.x;y/� S C 2.l CD/, ie � is cobornologous.

Applying this we deduce that finite dimensional CAT.0/ cube complexes have finite
asymptotic dimension.

Theorem 4.10 Let X be a CAT.0/ cube complex of dimension D . Then for all " > 0

there exists an "–Lipschitz cobornologous map from X to a CAT.0/ cube complex of
dimension at most D . Thus X has asymptotic dimension at most D .

Proof Theorem 2.23 implies a D–dimensional CAT.0/ cube complex X admits a
3D�1D–controlled colouring, as the flatness of X is at most D . Thus by Theorem 4.9
there exists a 3D�1D=.3D�1DC 1/ contractive cobornologous map from X into yX ,
where yX is again a CAT.0/ cube complex of dimension at most D . Iterating the process
we can produce an "–Lipschitz map for any " > 0, and as this is a composition of
cobornologous maps it is again cobornologous as required. The asymptotic dimension
bound now follows from Lemma 4.6.

If G acts properly isometrically on a CAT.0/ cube complex (or indeed any metric space)
then each orbit is coarsely equivalent to the group G . Since asymptotic dimension is
monotonic, one obtains the following immediate consequence.

Corollary 4.11 Let G be a group admitting a proper isometric action on a CAT.0/
cube complex of dimension D . Then G has asymptotic dimension at most D .

As an application of this result, we examine the asymptotic dimension bound this gives
us for small cancellation groups.

Example 4.12 Wise [20] showed that if G is a B.4/�T .4/ or B.6/ small cancellation
group then G acts properly isometrically on a CAT.0/ cube complex built from the
presentation 2–complex. The presentation complex should be subdivided if necessary
to ensure cells have even circumference. In the B.4/�T .4/ case the maximal cubes
correspond to cells, and their dimension is half the circumference of the cell. Hence
the CAT.0/ cube complex has dimension c=2 where c is the maximal circumference
of a cell in the presentation complex of G . By Corollary 4.11, it follows that for a
B.4/�T .4/ group, the asymptotic dimension is at most c=2.

In the B.6/ case the maximal cubes correspond to cells, links or tricombs [20,
Lemma 9.4]. Cubes corresponding to cells again have dimension at most c=2. For
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each tricomb cube, one can find two cells in the presentation complex (a corner and a
cell on the opposite side of the tricomb), such that all hyperplanes cross one or other of
these cells. It follows that there are at most 2c=2D c hyperplanes, so these cubes have
dimension at most c . Finally, cubes corresponding to links have dimension at most l

where l is the maximal size of a complete graph in the generalised link of a vertex. For
B.6/ small cancellation groups we therefore deduce that the asymptotic dimension is
at most maxfc; lg.
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