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Hodge theory on nearly Kähler manifolds

MISHA VERBITSKY

Let .M; I; !;�/ be a nearly Kähler 6–manifold, that is, an SU.3/–manifold with
.3; 0/–form � and Hermitian form ! which satisfies d!D3�Re� , d Im�D�2�!2

for a nonzero real constant � . We develop an analogue of the Kähler relations on
M , proving several useful identities for various intrinsic Laplacians on M . When
M is compact, these identities give powerful results about cohomology of M . We
show that harmonic forms on M admit a Hodge decomposition, and prove that
H p;q.M /D 0 unless p D q or .p D 1; q D 2/ or .p D 2; q D 1/ .

1 Introduction

1.1 Nearly Kähler 6–manifolds

Nearly Kähler manifolds (also known as K–spaces or almost Tachibana spaces) were
defined and studied by Alfred Gray [11; 12; 13; 14] in the general context of intrinsic
torsion of U.n/–structures and weak holonomies. An almost complex Hermitian
manifold .M; I/ is called nearly Kähler if rX .I/X D 0, for any vector field X

(r denotes the Levi-Civita connection). In other words, the tensor r! must be totally
skew-symmetric for ! the Hermitian form on M . If rX .!/ ¤ 0 for any nonzero
vector field X , then M is called strictly nearly Kähler.

Using deep results of Kirichenko [21] and Cleyton and Swann [7], P-A Nagy [26]
has shown that any strictly nearly Kähler manifold is locally a product of locally
homogeneous manifolds, strictly nearly Kähler 6–manifolds, and twistor spaces of
quaternionic Kähler manifolds of positive Ricci curvature, equipped with the Eels–
Salamon metric [8].

These days the term “nearly Kähler” usually denotes strictly nearly Kähler 6–manifolds.
We shall follow this usage, often omitting “strictly” and “6–dimensional”. In more
recent literature (such as Mororianu, Nagy and Semmelmann [24]), these objects are
called Gray manifolds.
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For a history of this notion, a number of equivalent definitions and a bibliography of
current work in this field, we refer the reader to Mororianu, Nagy and Semmelmann [23]
and our paper [31].

It is convenient to define nearly Kähler 6–manifolds in terms of differential forms, as
follows.

Proposition 1.1 Let .M; I; !/ be a Hermitian almost complex 6–manifold. Then the
following conditions are equivalent.

(i) The tensor rX .I/Y is skew-symmetric with respect to X , Y , and is nonzero.

(ii) The form r! 2 ƒ1.M / ˝ ƒ2.M / is nonzero and totally skew-symmetric.
Notice that in this case, by Cartan’s formula, we have d! Dr! .

(iii) There is a .3; 0/–form � with j�j D 1, and

(1-1)
d! D 3�Re�;

d Im�D�2�!2;

where � is a nonzero real constant.

Proof Refer to Gray [12]; see also Baum et al [5] or Verbitsky [31, Theorem 4.2].

Definition 1.2 An SU.3/–manifold .M; !;�; I/ is called nearly Kähler if (1-1)
holds.

The examples of compact nearly Kähler manifolds are scarce; one may hope that the
nearly Kähler orbifolds would occur more often. The results of this paper are stated
for manifolds, but they are valid for all nearly Kähler orbifolds, with the same proofs.

The most puzzling aspect of nearly Kähler geometry is a complete lack of nonho-
mogeneous examples. With the exception of 4 homogeneous cases described below
(Section 1.2), no other compact examples of strictly nearly Kähler 6–manifolds are
known to exist.

1.2 Examples of nearly Kähler manifolds

Just as the conical singularities of parallel G2 –manifolds correspond to nearly Kähler
manifolds, the conical singularities of Spin.7/–manifolds correspond to the so-called
“nearly parallel” G2 –manifolds (see Ivanov [17]). A G2 –manifold .M; !/ is called
nearly parallel if d! D c � ! , where c is some constant. The analogy between
nearly Kähler 6–manifolds and nearly parallel G2 –manifolds is almost perfect. These
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manifolds admit a connection with totally antisymmetric torsion and have weak holo-
nomy SU.3/ and G2 respectively. Hitchin [16] realized nearly Kähler 6–manifolds
and nearly parallel G2 –manifolds as extrema of a certain functional, called the Hitchin
functional by physicists.

However, examples of nearly parallel G2 –manifolds are found in profusion (every
3–Sasakian manifold is nearly parallel G2 ), and compact nearly Kähler manifolds
are rare.

Only 4 compact examples are known (see the list below), all of them homogeneous.
Butruille [6] showed that any homogeneous nearly Kähler 6–manifold belongs to
this list.

(1) The 6–dimensional sphere S6 . The almost complex structure on S6 is recon-
structed from the octonion action, and the metric is standard.

(2) S3 � S3 , with the complex structure mapping �i to � 0i , � 0i to ��i , where
�i , � 0i , i D 1; 2; 3 is a basis of left invariant 1–forms on the first and the second
component.

(3) Given a self-dual Einstein Riemannian 4–manifold M with positive Einstein
constant, one defines its twistor space Tw.M / as a total space of a bundle
of unit spheres in ƒ2

�.M / of anti-self-dual 2–forms. Then Tw.M / has a
natural Kähler–Einstein structure .IC;g/, obtained by interpreting unit vectors
in ƒ2

�.M / as complex structure operators on TM . Changing the sign of IC
on TM , we obtain an almost complex structure I� which is also compatible
with the metric g ; see Eels and Salamon [8]. A straightforward computation
insures that .Tw.M /; I�;g/ is nearly Kähler; see Muškarov [25].
As Hitchin proved, there are only two compact self-dual Einstein 4–manifolds:
S4 and CP2 . The corresponding twistor spaces are CP3 and the flag space
F.1; 2/. The almost complex structure operator I� induces a nearly Kähler
structure on these two symmetric spaces.

1.3 Nearly Kähler manifolds in geometry and physics

In [31] we showed that, unless a nearly Kähler manifold M is locally isometric to a
6–sphere, the almost complex structure on M is uniquely determined by the metric.
Friedrich [9] proved this result for S6 as well. Also in [31] it was shown that the
metric on M is uniquely determined by the almost complex structure.

Denote by C.M / the Riemannian cone of .M;g/. By definition, the Riemannian cone
is a product R>0�M , equipped with a metric t2gCdt2 , where t is a unit parameter
of R>0 .
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The definition of nearly Kähler manifolds can be reformulated in terms of Riemannian
geometry, as follows.

Recall that a spinor  is called a Killing spinor if rX D �X � for all vector fields
X 2 TM and a fixed, nonzero real constant �. Any manifold which admits a Killing
spinor is Einstein [5]. The following proposition was proven by C Bär.

Proposition 1.3 [4] Let .M;g/ be a Riemannian 6–manifold. Then M admits a
strictly nearly Kähler almost complex structure if and only if one of the following
equivalent conditions holds.

(i) M admits a real Killing spinor.

(ii) The Riemannian cone C.M / has holonomy G2 .

For an in-depth study of Killing spinors, with applications to 6–dimensional geometry,
see Baum et al [5]. From (i) it is apparent that a nearly Kähler manifold is Einstein;
indeed, only Einstein manifolds can admit Killing spinors.

Nearly Kähler manifolds appear as the end result of several important classification-
type problems – in the classification of manifolds admitting a Killing spinor, in the
classification of conical singularities of G2 –manifolds, in the classification of manifolds
admitting a connection with totally antisymmetric and parallel torsion (see Cleyton
and Swann [7]), and so on. These manifolds are even more important in physics, being
solutions of type II B string theory; see Friedrich and Ivanov [10]. In that sense, nearly
Kähler manifolds are just as important as the usual Calabi–Yau threefolds.

The conical singularities of G2 –manifolds and the resulting nearly Kähler geometries
also known to have applications in physics, giving supergravity solutions which are a
product an anti–de Sitter space with an Einstein space (see Acharya et al [1]. More
recently, the conical singularities of G2 –manifolds arising from nearly Kähler geometry
were used to obtain string models with chiral matter fields by Atiyah and Witten [3]
and Acharya and Witten [2].

1.4 Local structure of nearly Kähler 6–manifolds

Let .M; I; !;�/ be a nearly Kähler manifold. Since d! D 3�Re�, the complex
structure on M is nonintegrable; indeed, a differential of the .1; 1/–form ! lies in
ƒ3;0.M /˚ƒ0;3.M /, and this is impossible if .M; I/ is integrable.

To fix the notation, we recall some well-known results and calculations relating the de
Rham differential and the Nijenhuis tensor.
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An obstruction to integrability of an almost complex structure is given by the Nijenhuis
tensor

N �W T 1;0.M /˝T 1;0.M / �! T 0;1.M /;

mapping a pair of .1; 0/–vector fields to the .0; 1/–part of their commutator. For our
purposes, it is more convenient to deal with its dual, which we denote by the same letter:

(1-2) N W ƒ0;1.M / �!ƒ2;0.M /:

From Cartan’s formula it is apparent that N is equal to the .2;�1/–part of the de Rham
differential. On the other hand, N can be expressed through rI , in the usual way:

N �.X;Y /D .rX I/Y � .rY I/X;

where X;Y are .1; 0/–vector fields. On a nearly Kähler manifold, r.I/ can be
expressed through the 3–form d! D r! . This gives the following relations (see
Kobayashi and Nomizu [22]):

(1-3) N �.X;Y /D d!.X;Y; � /];

where d!.X;Y; � /] is a vector field dual to the 1–form d!.X;Y; � /. Since d! D

3�Re�, the relation (1-3) allows one to express N through � and ! .

Let �1; �2; �3 2ƒ1;0.M / be an orthonormal coframe, such that �D �1^�2^�3 . Then
(1-3) gives

(1-4) N.x�1/D ��2 ^ �3; N.x�2/D���1 ^ �3; N.x�3/D ��1 ^ �2:

This calculation is well known; it is explained in more detail in our paper [31].

1.5 Hodge decomposition of the de Rham differential and intrinsic Lapla-
cians

The results of this paper can be summarized as follows. Let

d D d2;�1
C d1;0

C d0;1
C d�1;2

be the Hodge decomposition of de Rham differential (Section 3.1). We use the following
notation: d2;�1 DWN , d�1;2 DW xN , d1;0 DW @, d0;1 DW x@.

The usual Kähler identities have a form “a commutator of some Hodge component of
de Rham differential with the Hodge operator ƒ is proportional to a Hermitian adjoint
of some other Hodge component of de Rham differential”. We prove that a similar
set of identities is valid on nearly Kähler manifolds (Theorem 3.1, Proposition 5.1).
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These identities are used to study various intrinsic Laplacians on M . We show that the
difference

(1-5) �@ ��x@ DR

is a scalar operator, acting on .p; q/–forms as �2.p�q/.3�p�q/ (see Corollary 3.3).
For the de Rham Laplacian �d D dd�C d�d , the following formula holds:

(1-6) �d D�@�x@C�N C� xN

(see (5-6)). This formula is used to study the harmonic forms on M when M is
compact. We show that � is harmonic if and only if all Hodge components of d and d�

vanish on � (Theorem 6.2). This implies that the harmonic forms on M admit a Hodge
decomposition:

H�.M /D
M

Hp;q.M /:

Using (1-5), we obtain that Hp;q.M / D 0 unless p D q or (q D 2;p D 1) or
(qD1;pD2). We also prove that all harmonic forms �2Hp;q.M /, for (qD2;pD1)
or (q D 1;p D 2) or p D q D 2 are coprimitive, that is, satisfy �^! D 0, where ! is
the Hermitian form (Remark 6.4).

2 Algebraic differential operators on the de Rham algebra

The following section is purely algebraic. We reproduce some elementary results about
algebraic differential operators on graded commutative algebras. There results are later
on used to study the de Rham superalgebra.

2.1 Algebraic differential operators: basic properties

Let A� WD
Li

Ai be a graded commutative ring with unit. For a 2 Ai , we denote
by La the operator of multiplication by a: La.�/D a�. A supercommutator of two
graded endomorphisms x;y 2 End.A�/ is denoted by

fx;yg WD xy � .�1/zx zyyx;

where zx denotes the parity of x .

Speaking of elements of graded spaces further on in this section, we shall always mean
pure elements, that is, elements of pure even or pure odd degree. The parity zx is
always defined as 1 on odd elements, and 0 on even elements.

Vectors of pure even degree are called even, and vectors of pure odd degree are
called odd.
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A supercommutator of two even endomorphisms, or an odd and an even endomorphism
is equal to their commutator. We shall sometimes use the usual bracket notation Œ � ; � �
in this case.

Definition 2.1 The space Di.A�/� End.A�/ of algebraic differential operators of
algebraic order i is a graded subspace of End.A�/, which is defined inductively as
follows.

(i) D0.A/ is a space of A�–linear endomorphisms of A� , that is, D0.A�/ŠA� .

(ii) DnC1.A�/ is defined as a graded subspace of End.A�/ consisting of all endo-
morphisms � 2 End.A�/ (even or odd) which satisfy fLa; �g 2Dn.A�/, for all
a 2A.

This notion was defined by Grothendieck. Using induction, it is easy to check that
D�.A�/D

S
Di.A�/ is a filtered algebra:

Di.A�/ �Dj .A�/�DiCj .A�/;(2-1)

fDi.A�/;Dj .A�/g �DiCj�1.A�/:(2-2)

Definition 2.2 Let ıW A� �!A� be an even or odd endomorphism. We say that ı is
a derivation if

ı.ab/D ı.a/bC .�1/za
zıaı.b/;

for any a; b 2A� .

Clearly, all derivations of A� are first order algebraic differential operators and vanish
on the unit of A� . The converse is also true: if D�D1.A�/ is a first order differential
operator, D.1/D 0, then D is a derivation, as the following claim implies.

Claim 2.3 Let D 2D1.A�/ be a first order differential operator. Then

D�LD.1/

is a derivation of A.

Proof It suffices to prove Claim 2.3 assuming that D.1/=0. Let a; b 2A be even or
odd elements. Since fD;Lag is A�–linear, we have

D.ab/� .�1/za
zDaD.b/D fD;Lag.b/D fD;Lag.1/b

DD.a/bC .�1/za
zDaD.1/DD.a/b:

Remark 2.4 From Claim 2.3, it is clear that a first order differential operator on A is
determined by the values taken on 1 and any set of multiplicative generators of A.
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The following claim is also clear.

Claim 2.5 Let D 2 End.A�/ be an endomorphism of A� , and V a set of generators
of A� . Assume that for any � 2 V , we have fL� ;Dg 2 Di.A�/. Then D is an
.iC1/–st order algebraic differential operator on A.

2.2 Algebraic differential operators on ƒ�.M /

Let M be a smooth manifold, and ƒ�.M / its de Rham algebra. It is easily seen that
the differential operators (in the usual sense) and the algebraic differential operators
on ƒ�.M / coincide. However, the “algebraic order” of differential operators in the
sense of Grothendieck’s definition and in the sense of the usual definition are different.
For instance, a contraction with a vector field is C1.M /–linear, hence it has order 0
in the usual sense. However, the contraction with a vector field has algebraic order one
in the sense of Definition 2.1. Further on, we always use the term “order” in the sense
of “algebraic order”, and not in the conventional sense.

From now till the end of this Appendix, the manifold M is always assumed to be
Riemannian.

Claim 2.6 Let M be a Riemannian manifold, and � 2 ƒ1.M / a 1–form. Denote
by ƒ� the metric adjoint to L� , ƒ� D��L��. Then ƒ� is a first order differential
operator.

Proof Clearly, ƒ� is a contraction with a vector field �] dual to �. Then Claim 2.6
is clear, because a contraction with a vector field is clearly a derivation.

This claim is a special case of the following proposition, which is proved independently.

Proposition 2.7 Let M be a Riemannian manifold, and � 2 ƒn.M / an n-form.
Denote by ƒ� the metric adjoint to La , ƒ� D .�1/z� �L��. Then ƒ� is a differential
operator of algebraic order n.

Proof We use the induction on n. For nD 0 everything is clear. As Claim 2.5 implies,
to prove that ƒ� 2Dn.ƒ�.M //, we need to show that

(2-3) fƒ�;Lag 2Dn�1.ƒ�.M //;

for any a2ƒ0.M /;ƒ1.M /. For a2ƒ0.M /, (2-3) is clear, because ƒ� is C1.M /–
linear, hence fƒ�;Lag D 0. For a 2ƒ1.M /, it is easy to check that

fƒ�;Lag Dƒ� y a]

where a] is the dual vector field, and y a contraction. The induction statement imme-
diately gives (2-3).

Geometry & Topology, Volume 15 (2011)



Hodge theory on nearly Kähler manifolds 2119

2.3 An algebraic differential operator and its adjoint

The main result of this section is the following proposition.

Proposition 2.8 Let .M;g/ be a Riemannian manifold, and

DW ƒ�.M / �!ƒ�C1.M /

a first order algebraic differential operator. Denote by D� its metric adjoint, D�D��D�.
Then D� is a second order algebraic differential operator.

Proof Step 1 As follows from Claim 2.5, it suffices to check that

(2-4) ffD�;Lag;Lbg is ƒ�.M /–linear;

for all a; b 2ƒ0.M /;ƒ1.M /.

Step 2 We use the following lemma.

Lemma 2.9 Let D1W ƒ
�.M / �! ƒ��1.M / be a first order algebraic differential

operator decreasing the degree by 1. Then D1 D 0.

Proof This follows from Remark 2.4.

Step 3 Letting D1 WD ffD; ƒag; ƒbg, clearly,

ffD�;Lag;Lbg
�
DD�1 :

From Claim 2.6 and (2-2), we find that D1 is an algebraic differential operator of
algebraic order 1 (being a commutator of several first order operators). When a; b 2

ƒ1.M /, D1 decreases the degree of a form by 1. By Claim 2.3, D1 is a derivation.
Clearly, a derivation which vanishes on ƒ0.M / is C1.M /–linear. This shows that
D1 is C1.M /–linear.

By Lemma 2.9, the commutator of D1 with ƒc vanishes, for all c 2ƒ1.M /:

(2-5) fD1; ƒcg D 0:

The operator D�
1
D ffD�;Lag;Lbg is C1.M /–linear (being adjoint to D1 ), and

commutes with all La , as follows from (2-5). Therefore, D�
1

is ƒ�.M /–linear. This
proves (2-4) for a; b 2ƒ1.M /.

Step 4 Clearly, La Dƒa when a 2ƒ0.M /. Then

(2-6) ffD�;Lag;Lbg D ffD
�; ƒag; ƒbg D ffD;Lag;Lbg

�
D 0;
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because D is a first order algebraic differential operator. This proves (2-4) for
a; b 2ƒ0.M /.

Step 5 Since the algebra ƒ�.M / is graded commutative, fLa;Lbg D 0 for all
a; b 2ƒ�.M /. Using the graded Jacobi identity, we find that

(2-7) ffD�;Lag;Lbg D .�1/za
zb
ffD�;Lbg;Lag;

for all a; b . In Steps 3 and 4 we proved (2-4) for a; b 2 ƒ1.M /, a; b 2 ƒ0.M /.
By (2-7), to prove Proposition 2.8 it remains to show that ffD�;Lag;Lbg is ƒ�.M /–
linear for a 2ƒ0.M /; b 2ƒ1.M /.

Step 6 In this case,

fD�;Lag D fD
�; ƒag D fD;Lag

�
DL�D.a/ DƒD.a/:

ffD�;Lag;Lbg D fƒD.a/;Lbg D g.D.a/; b/;Then

because ƒD.a/ is a contraction with the dual vector field D.a/] . We proved that
ffD�;Lag;Lbg is a scalar function, hence it is ƒ�.M /–linear. Proposition 2.8 is
proved.

3 Kähler identities on nearly Kähler manifolds

3.1 The operators @ , x@ on almost complex manifolds

Let .M; I/ be an almost complex manifold, and d W ƒi.M / �! ƒiC1.M / the de
Rham differential. The Hodge decomposition gives

(3-1) d D
M

iCjD1

d i;j ; d i;j
W ƒp;q.M / �!ƒpCi;qCj .M /:

Using the Leibniz identity, we find that the differential and all its Hodge components
are determined by the values taken on all vectors in the spaces ƒ0.M /, ƒ1.M /,
generating the de Rham algebra. On ƒ0.M /, only d1;0 , d0;1 can be nonzero, and on
ƒ1.M / only d2;�1; d1;0; d0;1; d�1;2 can be nonzero. Therefore, only 4 components
of (3-1) can be possibly nonzero:

d D d2;�1
C d1;0

C d0;1
C d�1;2:

Since N WD d2;�1 , xN WD d�1;2 vanish on ƒ0.M /, these components are C1.M /–
linear. In fact,

N W ƒ0;1.M / �!ƒ2;0.M /
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is the Nijenhuis tensor (1-2) of .M; I/, extended to an operator on ƒ�.M / by
the Leibniz rule. We denote d1;0 as @W ƒp;q.M / �! ƒpC1;q.M /, and d0;1 as
x@W ƒp;q.M / �!ƒp;qC1.M /. Decomposing d2 D 0, we find

(3-2)
N 2
CfN;@gC.fx@;N gC@2/C.fN; xN gCf@;x@g/C.f@; xN gCx@2/Cf xN ;x@gC xN 2

D d2
D 0;

where f � ; � g denotes the supercommutator. The terms in brackets in (3-2) are different
Hodge components of d2 , and since d2 D 0, they all vanish:

(3-3)

N 2
D fN; @g D fx@;N gC @2

D fN; xN gC f@; x@g D f@; xN gCx@2

D f xN ; x@g D xN 2
D 0:

However, the operators @2 and x@2 can be nonzero.

The following almost complex version of the Kähler identities is quite useful further
on in our study.

Theorem 3.1 Let .M; I/ be an almost complex Hermitian manifold, ! 2ƒ1;1.M /

a Hermitian form, and ƒ! W ƒi.M / �! ƒi�2.M / a Hermitian adjoint to L!.�/ D

! ^ �. Consider the operators @; x@W ƒi.M / �! ƒiC1.M / constructed above, and
let @�; x@�W ƒi.M / �! ƒi�1.M / be the corresponding Hermitian adjoint operators.
Assume that d! 2ƒ3;0.M /˚ƒ0;3.M /, that is, @! D x@! D 0. Then

Œƒ! ; @�D
p
�1 x@�; Œƒ! ; x@�D�

p
�1 @�;(3-4)

ŒL! ; @
��D
p
�1 x@; Œƒ! ; @�D

p
�1 x@�:(3-5)

Proof To prove Theorem 3.1, we use essentially the same argument as used in the
proof of the conventional Kähler identities in the situation when a coordinate approach
does not work; see eg our proof of Kähler identities in HKT-geometry, obtained in [29],
and our proof of the Kähler identities in locally conformally hyperkähler geometry,
obtained in [30].

Equations (3-4) and (3-5) are Hermitian adjoint, hence equivalent. The two equa-
tions (3-5) are complex conjugate, hence they are also equivalent. To prove Theorem 3.1
it is sufficient to prove only one of these equations, say

(3-6) ŒL! ; @
��D
p
�1 x@:

The proof of such a relation follows a general template, which is given in Section 2.
There is an algebraic notion of differential operators on a graded commutative algebra,

Geometry & Topology, Volume 15 (2011)



2122 Misha Verbitsky

due to Grothendieck (Definition 2.1). In this sense, the operators @� , x@� are second
order algebraic differential operators on ƒ�.M / (see Proposition 2.8), and L! is
ƒ�.M /–linear. Then ŒL! ; @�� (being a commutator of 0–th and 2–nd order algebraic
differential operators on ƒ�.M /) is a first order algebraic differential operator. To
prove a relation between first order algebraic differential operators on an algebra, such
as (3-6), it suffices to check it on any set of generators of this algebra 2.4. To prove
Theorem 3.1 it remains to show that (3-6) holds on some set of generators, eg 1–forms
and 0–forms.

Given a function f 2 C1.M /, we have

(3-7) ŒL! ; @
��f D�@�.f!/:

However, @� D�� @� and �.f!/D xf !n�1 , where nD dimC M . Then

ŒL! ; @
��f D �.@ xf ^!n�1/D

p
�1 x@f

because for any .1; 0/–form � we have �.�^!n�1/D
p
�1 x�, and @ xf D x@f .

It is easy to check that @�–closed 1–forms generate the bundle of all 1–forms over
C1.M /. Indeed, on 2–forms we have .@�/2 D 0, and therefore, all @�–exact 1–
forms are @�–closed. A local calculation implies that @�.ƒ2.M // generates ƒ1.M /

over C1.M /.

Consider a 1–form � 2 ƒ1.M /. To prove Theorem 3.1 it remains to show that
ŒL! ; @

��.�/D
p
�1 x@�. Since @�–closed 1–forms generate ƒ�.M /, we may assume

that � is @�–closed. Then

(3-8)
.�/D�@�L!�D �@� .! ^ �/

D �@.!n�2
^ I.x�//D �.!n�2

^ @.Ix�//:

Since � is @�–closed, we have !n�1 ^ @.Ix�/D 0, and therefore the form !n�2 ^ @�

is coprimitive (satisfies .!n�2 ^ @�/^! D 0). Given a coprimitive .2n� 2/–form
˛D �^!n�2 , the form �˛ can be written down explicitly in terms of � : �˛D�I.x�/.
Then

�.!n�2
^ @I.x�//D�I@Ix�D

p
�1 x@�:

Comparing this with (3-8), we find that

ŒL! ; @
��.�/D

p
�1 x@�:

This proves Theorem 3.1.
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3.2 The Nijenhuis operator squared

Later on, we shall need the following useful identity.

Proposition 3.2 Let .M; I; !;�/ be a nearly Kähler 6–manifold, d! D �Re�, and
C WDN C xN D d2;�1Cd�1;2 the .2;�1/˚ .�1; 2/–part of the de Rham differential.
Then the following C1.M /–linear maps

ƒp;q.M / �!ƒpC1;qC1.M /

are equal:

(i) C 2 ,

(ii) �f@; x@g,

(iii) the scalar operator
p
�1�2.p� q/L! , mapping � 2ƒp;q.M / to
p
�1�2.p� q/�^!:

Proof The equivalence C 2 D�f@; x@g is clear, because the .1; 1/–part of d2 is equal
to C 2Cf@; x@g, and d2 D 0 (see (3-3)). To prove

(3-9) C 2
D
p
�1�2.p� q/L! ;

we notice that both sides of (3-9) are differentiations (C 2 being a supercommutator
of an odd differentiation with itself). Therefore it suffices to check (3-9) only on
the generators of ƒ�.M /, eg on ƒ0.M / and ƒ1.M /. On ƒ0.M /, both C and
.p � q/ vanish, hence (3-9) is clear. Let us check (3-9) on ƒ1;0.M / (a proof of
(3-9) on ƒ0;1.M / is obtained in the same fashion). Choose an orthonormal frame
�1; �2; �3 2ƒ

1;0.M /, in such a way that

! D�
p
�1 .�1 ^ x�1C �2 ^ x�2C �3 ^ x�3/; �D �1 ^ �2 ^ �3:

Let � be a .0; 1/–form, say, �D x�1 (this assumption is not restrictive, because both
sides of (3-9) are manifestly C1.M /–linear). Then N.�/D ��2^�3 , as (1-4) implies.
Similarly, the Leibniz rule and (1-4) give

(3-10) xN N.�/D �2.x�1 ^ x�3 ^ �3C �1 ^ x�1 ^ x�2/D
p
�1�2�^!:

On the other hand,

(3-11) C 2.�/D .N C xN /2�D xN N.�/;

because xN � vanishes, being a .�1; 3/–form, and N 2 D xN 2 D 0 as (3-2) implies.
Combining (3-10) and (3-11), we obtain (3-9). Proposition 3.2 is proved.

Geometry & Topology, Volume 15 (2011)



2124 Misha Verbitsky

Corollary 3.3 Let .M; I; !;�/ be a nearly Kähler 6–manifold, d! D �Re�, and
@; x@ the .1; 0/– and .0; 1/–parts of de Rham differential. Consider the corresponding
Laplacians:

�@ WD @@
�
C @�@; �x@ WD x@x@

�
Cx@�x@:

Then �@��x@ DR, where R is a scalar operator acting on .p; q/–forms as a multipli-
cation by �2.3�p� q/.p� q/.

Proof As Proposition 3.2 implies, f@; x@g D �
p
�1 .p � q/�2L! . It is well known

that H WD ŒL! ; ƒ! � acts on .p; q/–forms as a multiplication by .3�p� q/ (see eg
Griffiths and Harris [15]). Then

(3-12) fƒ! ; f@; x@gg D
p
�1 R:

Applying the graded Jacobi identity and Theorem 3.1 to (3-12), we obtain

(3-13)
p
�1 RDfƒ! ; f@; x@ggD ffƒ! ; @g; x@gCf@; fƒ! ; x@ggD

p
�1�@�

p
�1�x@:

This proves Corollary 3.3.

4 The de Rham Laplacian via �@ , �x@ , �@�x@

4.1 An expression for �d

Let M be a nearly Kähler 6–manifold, d DN C@Cx@C xN the Hodge decomposition
of the de Rham differential, and �@ , �x@ the Laplacians defined above, �@ WD f@; @�g,
�x@ WD fx@; x@

�g. Denote the usual (Hodge-de Rham) Laplacian by �d D fd; d
�g. In

addition to Corollary 3.3, the following relation between the Laplacians can be obtained.

Theorem 4.1 Let M be a nearly Kähler 6–manifold, and �@ , �x@ , �d the Laplacians
considered above. Then

(4-1) �d D�@C�x@C�NC xN �f@; x@
�
g� fx@; @�g;

where �NC xN is defined as a supercommutator of the C1–linear operator C WDNC xN

and its Hermitian adjoint:

�NC xN WD C C �CC �C:

The proof of Theorem 4.1 takes the rest of this section.
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4.2 N D �ŒL�;ƒ!�

The following linear-algebraic relation is used further on in the proof of Theorem 4.1.

Claim 4.2 Let .M; I; !;�/ be a nearly Kähler 6–manifold which satisfies d! D

�Re�, N the .2;�1/–part of the de Rham differential, and ƒ! the Hodge operator
defined above. Then

(4-2) �ŒL�; ƒ! �DN;

where L�.�/ WD�^ �.

Proof As in the proof of Theorem 3.1, we consider L�; ƒ! as algebraic differential
operators on the graded commutative algebra ƒ�.M / (see Definition 2.1). Then L� is
a 0–th order operator, and ƒ! a second order operator, as follows from Proposition 2.7.
Therefore, the commutator ŒL�; ƒ! � is a first order operator. By Remark 2.4 it suffices
to check (4-2) on 0– and 1–forms. This can be done by an explicit calculation,
using (1-4).

4.3 Commutator relations for N , xN , @ , x@

Proposition 4.3 Under the assumptions of Theorem 4.1, the following anticommuta-
tors vanish:

(4-3) fN �; x@g D f xN �; @g D fN; x@�g D f xN ; @�g D 0:

Moreover, we have

(4-4)
fx@�; @g D �fN; @�g D �f xN �; x@g;

f@�; x@g D �f xN ; x@�g D �fN �; @�g:

Proof Clearly, all relations of (4-3) can be obtained by applying the complex conjuga-
tion and taking the Hermitian adjoint of the relation

(4-5) fN �; x@g D 0:

Decomposing d2 D 0 onto Hodge components, we obtain fN; @g D 0 (see (3-3)). By
Claim 4.2, this is equivalent to

(4-6) ffL�; ƒ!g; @g D 0:

Clearly, @�D 0, hence

(4-7) fL�; @g D 0:
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Applying the graded Jacobi identity to (4-6) and using (4-7), we obtain

(4-8) 0D fL�; fƒ! ; @gg D
p
�1 fL�; x@

�
g:

Acting on (4-8) by fƒ! ; � g and using the graded Jacobi identity, we obtain

0D fƒ! ; fL�; x@
�
gg D ��fN; x@�g:

This proves (4-5) and (4-3).

It remains to prove (4-4). Taking a Hodge component of d2 D 0, we obtain

(4-9) 1
2
f@; @gC fN; x@g D 0

(see (3-3)). Using the same argument as gives (4-7), we find

fN; x@g D ���1
ffƒ! ;L�g; x@g D �

�1
ffL�; fƒ! ; x@gg��

�1
fƒ! ; fL�; x@gg

D �
p
�1��1

fL�; @
�
g:

Together with (4-9), this gives

(4-10) 1
2
f@; @g D

p
�1��1

fL�; @
�
g:

Acting on (4-10) with fƒ! ; � g, we obtain
p
�1 f@; x@�g D

p
�1��1

ffƒ! ;L�g; @
�
g D �

p
�1 fN; @�g:

We obtained the first equation of (4-4):

(4-11) f@; x@�g D �fN; @�g:

This proves Proposition 4.3.

4.4 The Hodge decomposition of the Laplacian

Now we can finish the proof of Theorem 4.1. Decomposing d , d� onto Hodge
components, we obtain

(4-12)

�d D
�
fN �; x@gC fN; x@�gC f xN �; @gC f xN ; @�g

�
C
�
f@�; x@gC fx@�; @gC fN; @�gC f xN ; x@�gC fN �; @gC f xN �; x@g

�
C�@C�x@C�NC xN :

The first term in brackets vanishes by (4-3), and the second term is equal �f@; x@�g�
fx@; @�g as (4-4) implies. This gives

(4-13) �d D�@C�x@C�NC xN �f@; x@
�
g� fx@; @�g;

which proves Theorem 4.1.
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The relation (4-13) can be rewritten as the following relation between Laplacians.

Corollary 4.4 Under the assumptions of Theorem 4.1, denote by �@�x@ the Laplacian
f@�x@; @��x@�g. Then

(4-14) �d D�@�x@C�NC xN :

Proof As (4-13) implies, to prove (4-14) we need to show that

�@�x@ D�@C�x@ �f@; x@
�
g� fx@; @�g:

This is clear.

5 Kähler-type identities for N , xN

Further on, we shall need the following analogue of Kähler relations (Theorem 3.1),
but for the C1.M /–linear “outer” parts of the de Rham differential, N and xN .

Proposition 5.1 Let .M; I; !;�/ be a nearly Kähler 6–manifold, N , xN the .2;�1/–
and .�1; 2/–parts of the de Rham differential, N � , xN � their Hermitian adjoints
operators, and ƒ! the Hermitian adjoint to L!.�/ WD ! ^ �. Then

(5-1)
Œƒ! ;N

��D 2
p
�1 xN ; Œƒ! ; xN

��D�2
p
�1 N;

ŒL! ;N �D 2
p
�1 xN �; ŒL! ; xN �D�2

p
�1 N �:

Proof The equalities of (5-1) are obtained one from another by taking complex
conjugation and Hermitian adjoint, hence they are equivalent. Therefore, it suffices to
prove

(5-2) ŒL! ;N
��D 2

p
�1 xN :

The proof of this formula follows the same lines as the proof of Theorem 3.1. Again,
both sides of (5-2) are first order algebraic differential operators on the algebra ƒ�.M /,
in the sense of Grothendieck (Definition 2.1). Therefore, it suffices to check (5-2) only
on 0–forms and 1–forms (Remark 2.4). On 0–forms, both sides of (5-2) clearly vanish.
To finish the proof of (5-2), it remains to check that

(5-3) N �L!.�/D 2
p
�1 xN .�/;

where � is a 1–form. Since both sides of (5-3) vanish on .1; 0/–forms, we may also
assume that � 2ƒ0;1.M /.
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Let �1; �2; �2 be an orthonormal frame in ƒ1;0.M /, satisfying

! D�
p
�1 .�1 ^ x�1C �2 ^ x�2C �3 ^ x�3/; �D �1 ^ �2 ^ �3:

Since both sides of (5-2) are C1.M /–linear, we need to prove (5-2) only for � D
x�1; x�2; x�2 . Assume for example that �D x�1 . Then

L!�D�
p
�1 x�1 ^ .�2 ^ x�2C �3 ^ x�3/:

Using (1-4), we obtain

N �L!�D�
p
�1 �3 ^ �2C

p
�1 �2 ^ �3 D 2

p
�1 �2 ^ �3 D 2

p
�1 xN .�/:

This proves (5-2), completing the proof of Proposition 5.1.

Proposition 5.1 is used in this paper only once, to obtain the following corollary.

Corollary 5.2 Let M be a nearly Kähler 6–manifold, N , xN the .2;�1/– and
.�1; 2/–parts of the de Rham differential, N � , xN � their Hermitian adjoint operators,
and �N , � xN , �NC xN the corresponding Laplacians. Then

�NC xN D�N C� xN :

Proof Clearly, we have

�NC xN D�N C� xN CfN; xN
�
gC f xN ;N �g:

Therefore, to prove Corollary 5.2, it suffices to show that

fN; xN �g D 0; f xN ;N �g D 0:

One of these equations is obtained from another by complex conjugation; therefore,
they are equivalent. Let us prove, for instance, fN; xN �g D 0. As follows from
Proposition 5.1,

(5-4) fN; xN �g D �

p
�1

2
fN; fƒ! ;N gg:

However, fN;N g D 0 as follows from (3-3). Using the graded Jacobi identity, we
obtain

0D fƒ! ; fN;N gg D ffƒ! ;N g;N gC fN; fƒ! ;N gg D 2fN; fƒ! ;N gg:

Therefore, (5-4) implies fN; xN �g D 0. This proves Corollary 5.2.
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Remark 5.3 From Corollary 5.2, Corollary 4.4 and Theorem 4.1, we infer that

�d D�@C�x@C�N C� xN �f@
�; x@g� f@; x@�g;(5-5)

�d D�@�x@C�N C� xN :(5-6)

6 Harmonic forms on nearly Kähler manifolds

6.1 Harmonic forms and the @–, x@–Laplacians

For harmonic forms on a compact nearly Kähler manifold, the relation (4-1) of
Theorem 4.1 can be strengthened significantly.

Theorem 6.1 Let M be a compact nearly Kähler 6–manifold, and � a differential
form. Then � is harmonic if and only if

(6-1) � 2 ker�@ \ ker�x@ \ ker�NC xN :

Proof The “if” part is clear; indeed, if (6-1) is true, then @�D x@�D @��D x@��D 0,
and �d�D 0 by Theorem 4.1.

As Corollary 4.4 implies,

(6-2) �d�D 0 ”
�
�@�x@�D 0 and �NC xN �D 0

�
:

Therefore, for any �d –harmonic form �, we have �@�x@�D 0, that is, .@�x@/�D 0

and .@� � x@�/� D 0. Moreover, since d� D .N C xN /� D 0, @C x@ D d �N � xN

vanishes on � as well. Subtracting from .@Cx@/�D 0 the relation .@�x@/�D 0, we
obtain that x@�D 0. In a similar way one proves the whole set of equations

@�D x@�D @��D x@��D 0:

This gives (6-1).

6.2 The Hodge decomposition on cohomology

The main result of this paper is an immediate corollary of Theorem 6.1.

Theorem 6.2 Let M be a compact nearly Kähler 6–manifold, and Hi.M / the space
of harmonic i –forms on M . Then Hi.M / is a direct sum of harmonic forms of pure
Hodge type:

(6-3) Hi.M /D
M

iDpCq

Hp;q.M /:

Moreover, Hp;q.M /D 0 unless p D q or .p D 2; q D 1/ or .q D 1; p D 2/.
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Proof From Theorem 6.1, we find that a form � is harmonic if and only if @�Dx@�D
@��D x@��D 0 and �NC xN �D 0. From Corollary 5.2, we find that the latter equation
is equivalent to N�D xN �DN ��D xN ��D 0. We find that a form � is harmonic if
and only if all the Hodge components of d , d� vanish on �:

(6-4) @�D x@�D @��D x@��DN�D xN �DN ��D xN ��D 0:

Therefore, all Hodge components of � also satisfy (6-4). This implies that these
components are also harmonic. We proved (6-3).

To prove that Hp;q.M / vanishes unless pD q or .pD 2; qD 1/ or .qD 1;pD 2/, we
use Corollary 3.3. Let � be a nonzero harmonic .p; q/–form. Then the scalar operator
RD�@ ��x@ vanishes on �, RD �2.3�p� q/.p� q/. Therefore, either p D q or
pCqD 3. We obtain immediately that pD q or .pD 2; qD 1/ or .qD 1; pD 2/ or
.p D 3; q D 0/ or .q D 0; p D 3/. The last two cases are impossible: on ƒ3;0.M /,
ƒ0;3.M /, the operator N C xN is clearly injective (see (1-4)), hence it cannot vanish;
however, by (6-4) we have N C xN .�/D 0. This proves Theorem 6.2.

Remark 6.3 The middle cohomology of a compact nearly Kähler 6–manifold is
remarkably similar to the middle cohomology of a Kähler manifold. In particular, the
intermediate Jacobian T WDH 2;1.M /=H 3.M;Z/ is well defined in this case as well.
As in the Kähler case, T is a compact complex torus, and we have a pseudoholomorphic
map S �! T from the space of pseudoholomorphic rational curves on M to the
intermediate Jacobian.

Remark 6.4 All harmonic forms � 2Hp;q.M /, .p D 2; q D 1/ or .q D 1;p D 2/

are primitive and coprimitive, that is, satisfy L!.�/ D ƒ!.�/ D 0. Indeed, fN; xN g
vanishes on � as follows from (6-4). However, Proposition 3.2 implies that fN; xN g.�/D
.p� q/! ^ �, hence ! ^ �D 0.

Similarly, all harmonic forms � 2Hp;p.M / are primitive for p D 1 and coprimitive
for p D 2. This is implied directly by (6-4) and the local expression for N given
in (1-4). For instance, for a .1; 1/–form �, we have N.�/ D ƒ!.�/ ��, hence � is
primitive if N.�/D 0.

7 Appendix: Hodge theory on orbifolds

In the appendix, we explain how the results of this paper can be applied to compact
nearly Kähler orbifolds.
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Recall that an orbifold is a topological space equipped with an atlas of local charts,
which are isomorphic to Rn=G , where G is a finite group acting faithfully and smoothly,
and with all the gluing maps smooth and compatible with the group action.

The differential forms on an orbifold are defined in local charts as G –invariant differ-
ential forms on Rn , which are compatible with the gluing maps.

The de Rham algebra and de Rham cohomology are defined literally in the same way as
for manifolds, and they are equal to the singular cohomology. This was first observed by
I Satake, who defined the orbifolds in 1950s and called them “V –manifolds” [27; 28].
Since Satake, all the usual constructions of smooth topology, such as the Chern–Weil
theory of characteristic classes, Atiyah–Singer index formula, signature theorem and
Riemann–Roch–Grothendieck theorem, were generalized for the orbifolds (see eg
Kawasaki [18; 19; 20].

The Hodge theory identifies harmonic forms with the de Rham cohomology, using the
closedness of the image of the de Rham differential on a compact manifold. The basic
machinery here works for the orbifolds as well as in the smooth case [20].

The results of the present paper, such as Theorem 6.2, are obtained by application of
local formulas for Laplacians to the global statements about cohomology, using the
identification of cohomology and harmonic forms. These arguments are transferred to
the orbifold case word by word.

The vanishing theorems, such as Theorem 6.1, are obtained by showing that a difference
of certain second order operators is positive, which implies that a kernel of one of
these operators lies inside a kernel of another. Here the vanishing arguments are also
translated to the orbifold case, without any difficulty.
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