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Realising end invariants by limits of
minimally parabolic, geometrically finite groups

KEN’ICHI OHSHIKA

We shall show that for a given homeomorphism type and a set of end invariants
(including the parabolic locus) with necessary topological conditions which a topo-
logically tame Kleinian group with that homeomorphism type must satisfy, there is an
algebraic limit of minimally parabolic, geometrically finite Kleinian groups which has
exactly that homeomorphism type and the given end invariants. This shows that the
Bers–Sullivan–Thurston density conjecture follows from Marden’s conjecture proved
by Agol and Calegari–Gabai combined with Thurston’s uniformisation theorem and
the ending lamination conjecture proved by Minsky, partially collaborating with
Masur, Brock and Canary.

30F40, 57M50

1 Introduction

A Kleinian group is said to be geometrically finite when the corresponding hyperbolic
3–orbifold has a convex core which has finite volume. It was conjectured by Bers
in [3] that every b-group, ie a Kleinian group with a unique simply connected invariant
component in the domain of discontinuity, is an algebraic limit of quasi-Fuchsian
groups. The conjecture was generalised by Sullivan and Thurston to the one saying
that every finitely generated Kleinian group is an algebraic limit of quasiconformal
deformations of a geometrically finite group. This generalised conjecture is called
the Bers–Sullivan–Thurston density conjecture today. The original conjecture of Bers
was solved by Bromberg [12] using deformations of cone manifolds and Minsky’s
solution of the ending lamination conjecture for hyperbolic 3–manifolds with bounded
geometry in [34; 35] which was prior to the solution of the general case. (A hyperbolic
manifold is said to have bounded geometry if there is a positive lower bound for the
lengths of the closed geodesics.) Bromberg’s result was then generalised to freely
indecomposable Kleinian groups by Brock and Bromberg [9]. The purpose of the
present paper is to prove this density conjecture in general, including the case of freely
decomposable Kleinian groups. Before explaining what is the difficulty in the freely
decomposable case, we shall review the ending lamination conjecture and its resolution,
on which our proof of the main result depends.
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The ending lamination conjecture, which is due to Thurston and has been one of the most
famous conjectures in the modern Kleinian group theory, says that every topologically
tame hyperbolic 3–manifold is determined up to isometries by its homeomorphism type
and end invariants consisting of the conformal structures at infinity, parabolic locus and
the ending laminations. Here a hyperbolic 3–manifold is said to be topologically tame
when it is homeomorphic to the interior of a compact 3–manifold. We shall explain
what the end invariants are in more detail. Let M DH3=� be a topologically tame
hyperbolic 3–manifold, and M0 its noncuspidal part. We choose a compact core C

such that for each component T of @M0 , the intersection C\T is a core of T , and each
component of M nC is a product open-interval bundle over a component of Fr C , where
Fr denotes the frontier. We shall call such a compact core nice. For a nice compact
core C , we see that .C;C \ @M0/ has a structure of a pared manifold. The parabolic
locus of M is P D C \ @M0 which consists of annuli and tori. Each component of
@C nP faces an end of M0 . The ends of M0 have invariants as follows. If an end
of M0 is geometrically finite, ie has a neighbourhood containing no closed geodesics,
then there is a component of the quotient ��=� of the region of the discontinuity
which can be regarded as the points at infinity of the end, and its marked conformal
structure constitutes an invariant for the end. When an end is geometrically infinite,
it has an invariant called the ending lamination, which is represented by a measured
lamination contained in the Masur domain of the frontier component of C facing the
end, determined uniquely up to transverse measures if we fix a marking on the frontier
component. (The marking of Fr C is not uniquely determined by the marking of M

when Fr C has a compressible component.) The ending lamination conjecture says that
these pieces of information, the parabolic locus, the marked conformal structure for the
geometrically finite ends and the ending laminations for the geometrically infinite ends
both up to the action of the auto-diffeomorphisms of the frontier component homotopic
to the identity in C , together with the homeomorphism type, are sufficient to determine
the isometry type of the hyperbolic 3–manifold.

The first essential contribution to solving the ending lamination conjecture was due to
Minsky [34; 35] for hyperbolic 3–manifolds with freely indecomposable fundamental
groups and bounded geometry. After some work on the unbounded geometry case
in special situations as in Minsky [36; 37], the conjecture for the general case when
hyperbolic manifolds may have unbounded geometry was finally solved by Minsky [38]
and Brock, Canary and Minsky [10] based on the work on the geometry of the curve
complex developed by Masur and Minsky [31; 32]. Although Brock, Canary and Minsky
[10] only gave a proof for the freely indecomposable case, it can be generalised to the
freely decomposable case, as was written in the first section of [10], using the technique
of constructing negatively curved metrics on branched covers due to Canary [15]. This
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method in the case of manifolds with bounded geometry corresponding to [34] was
explained by the author in [48] and its generalisation to the case of manifolds having
the same end invariants as those with bounded geometry, corresponding to [37], was
sketched by Ohshika and Miyachi [51].

For the Bers–Sullivan–Thurston density conjecture in the freely decomposable case, it
is first necessary to show that every finitely generated Kleinian group is topologically
tame so that ending laminations can be defined. This is exactly what Marden’s tameness
conjecture says, which was recently solved by Agol [2] and Calegari and Gabai [14]
independently. Once Marden’s conjecture is solved, to show that every (finitely gener-
ated and torsion-free) Kleinian group is a limit of quasiconformal deformations of a
geometrically finite group, using the resolution of the ending lamination conjecture by
Brock, Canary and Minsky, what we need to do is to prove that any possible system of a
homomorphism type, a parabolic locus and end invariants can be realised in a Kleinian
group which is a limit of minimally parabolic geometrically finite groups. In the case
of freely decomposable groups, this consists of two main steps. The first step is to
provide a convergence theorem for freely decomposable groups generalising results
of Kleineidam and Souto [27], Lecuire [28] and Ohshika [50], the last of which only
dealt with Kleinian groups without parabolic elements. The second step is to show that
the limit group obtained by the convergence theorem has the desired properties. This
in particular necessitates showing that the support of an arational measured lamination
contained in the Masur domain, which we know to be unrealisable, is homotopic in M

to an ending lamination. This latter step was easy for the freely indecomposable case
by work of Thurston and Bonahon, but in our general case, the argument is rather
complicated.

We note that Namazi and Souto also have given a proof of this latter step in [43], and
have proved the Bers–Sullivan–Thurston density conjecture independently of our work.

We now state in the form of a theorem an affirmative solution of the Bers–Sullivan–
Thurston density conjecture for general (topologically tame) Kleinian groups as ex-
plained above.

Theorem 1.1 Let � be a finitely generated, torsion-free Kleinian group. Then there
is a geometrically finite Kleinian group G without infinite cyclic maximal parabolic
subgroups such that � is an algebraic limit of quasiconformal deformations of G .

Kleinian groups without infinite maximal cyclic parabolic groups are sometimes called
minimally parabolic, as in our title. It should be noted that minimally parabolic
geometrically finite groups are convex cocompact unless they have rank–2 abelian
subgroups.
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This theorem is derived as a corollary from the main theorem of the present paper, which
we shall state below, combined with the solution of the ending lamination conjecture and
Thurston’s uniformisation theorem for compact atoroidal 3–manifolds with boundary
(see for instance Morgan [39]). Before stating the theorem formally, we summarise what
the theorem says. We consider a minimally parabolic, geometrically finite Kleinian
group G and a nice core C of .H3=G/0 . We give on nontorus components of @C
a union P of disjoint nonparallel essential simple closed curves such that .C;P / is
a pared manifold, and on each nontorus component of @C n P either a conformal
structure or an arational measured lamination contained in the Masur domain, with
some conditions which are evidently necessary to make them a parabolic locus and end
invariants. Then what we shall claim in the theorem is that there is a topologically tame
Kleinian group � which is an algebraic limit of quasiconformal deformations of G

such that .H3=�/0 has P as its parabolic locus and the given conformal structures
and laminations as its end invariants under the natural marking.

Theorem 1.2 Let G be a torsion-free geometrically finite Kleinian group without
infinite cyclic maximal parabolic subgroups. Let C be a nice compact core of .H3=G/0 .
Let T denote the union of the torus components of @C . Let P be a disjoint union of
annular neighbourhoods of essential simple closed curves on @C such that .C;P [T /

is a pared manifold. Let †1; : : : ; †m be the components of @C n .P [ T /. Among
†1; : : : ; †m , suppose that on each †j with j D 1; : : : ; n (possibly nD 0), a marked
conformal structure mj making the components of the frontier punctures is given, and
that on each †j with j D nC 1; : : : ;m (possibly m D n), an arational measured
lamination �j contained in the Masur domain of †j is given. When .C;P / is a trivial
I –bundle (as a pared manifold) and nD 0, we further assume that the supports of �1

and �2 are not homotopic in C . When .C;P / is a twisted I –bundle and nD 0, we
further assume that �1 is not a lift of a measured lamination in the base space of the
I –bundle, which is a nonorientable surface.

Then there is a sequence of quasiconformal deformations Gi of G with isomorphisms
�i W G ! Gi converging algebraically to an isomorphism  W G ! � to a topologi-
cally tame Kleinian group � such that .H3=�/0 has a nice compact core C 0 with a
homeomorphism ˆW C ! C 0 inducing � between the fundamental groups, such that

(i) ˆ.P[T / coincides with the parabolic locus of C 0 regarded as a pared manifold,

(ii) the end of .H3=�/0 facing ˆ.†j / with j D 1; : : : ; n is geometrically finite
and has marked conformal structure at infinity equal to the one represented by
ˆ�.mj /,

(iii) the end of .H3=�/0 facing ˆ.†j / with j D nC 1; : : : ;m is geometrically
infinite with ending lamination represented by ˆ.�j /.
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We should note that this theorem can be also regarded as a generalisation of the main
theorem of Ohshika [47], where we generalised Maskit’s theorem in [30] on function
groups to one on general geometrically finite groups.

The proof of this theorem will proceed as follows. We shall first construct quasiconfor-
mal deformations .Gi ; �i/ of G so that the conformal structure at infinity of H3=Gi

restricted to †j converges to mj for j D 1; : : : ; n and diverges towards Œ�j � in the
Thurston compactification of the Teichmüller space for j D nC 1; : : :m, and the
length of �j with respect to the hyperbolic metric compatible with the conformal
structure mj is bounded. The first of the two main steps is to show that such a sequence
of quasiconformal structures converges algebraically after passing to a subsequence.
The proof of this fact relies on work of Otal [52], Kleineidam and Souto [27] and a
more recent result of Lecuire [28] on the extension of the Masur domain.

The second main step is to show that the limit group has properties that we wanted.
It follows from results of Ohshika [49] and Brock and Souto [11] (or the general
solution of Marden’s conjecture) that the limit � is topologically tame, and using some
geometric argument, we can show that the �j cannot be realised there. The most
difficult part of the second step is to show that (the images by a homeomorphism from
H3=G to H3=� of) the �j actually represent ending laminations (Proposition 6.5).
Section 6 will be entirely devoted to the proof of this fact.

Acknowledgements The author is grateful to the referee for his/her careful reading
and valuable comments.

2 Preliminaries

Throughout this paper, Kleinian groups are assumed to be finitely generated and
torsion free except for the case when we consider geometric limits, which may be
infinitely generated. Similarly, we always consider hyperbolic 3–manifolds with finitely
generated fundamental groups except for geometric limits. For a Kleinian group G ,
we consider the corresponding hyperbolic 3–manifold MG D H3=G . Throughout
this paper, we use the symbol M with the name of a Kleinian group added as a
subscript to denote the corresponding hyperbolic 3–manifold. For a constant � > 0

less than the three-dimensional Margulis constant, we define the noncuspidal part,
denoted by .MG/0 , to be the complement of the �–cusp neighbourhoods of MG , that
is, neighbourhoods of cusps consisting of points where the injectivity radii are less
than �=2.

Since G is assumed to be finitely generated, by Scott’s core theorem [55], there is a
compact 3–manifold CG , which we call a compact core, embedded in MG such that
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the inclusion from CG to MG is a homotopy equivalence. When G has parabolic
elements, it is more convenient to consider a relative compact core of the noncuspidal
part .MG/0 , whose existence was proved by McCullough [33]. A relative compact core
intersects the boundary of the noncuspidal part at tori corresponding to Z�Z–cusps
and annuli which are cores of open annuli corresponding to Z–cusps, one annulus for
each Z–cusp. The intersection with the boundary of the noncuspidal part induces a
structure of pared manifold on a relative compact core, which we shall explain below.

A Kleinian group G and the corresponding hyperbolic 3–manifold MG are said to be
topologically tame when MG is homeomorphic to the interior of a compact 3–manifold.
In this case, we can choose a relative compact core CG so that each component E of
MG nCG is homeomorphic to F�R, where F is the component of Fr CG contained in
the closure of E . As was mentioned in Introduction, we call such a compact core nice.

Following Thurston, we call a pair .C;P / of a compact irreducible 3–manifold and a
subsurface of its boundary a pared manifold when

(i) P consists of disjoint incompressible tori and annuli,

(ii) every incompressible (ie �1 –injective) map from a torus to C is homotopic
into P ,

(iii) every incompressible map .S1 � I;S1 � @I/! .C;P / is relatively homotopic
to a map into P .

The subsurface P above is called the paring locus. When we consider a pared manifold
which is a relative compact core of the noncuspidal part of a hyperbolic 3–manifold,
we call its paring locus the parabolic locus.

A compression body W is a connected 3–manifold obtained from finitely many product
I –bundles S1�I; : : : ;Sm�I over closed surfaces which are not spheres by attaching
1–handles to [Sk � f1g. We assume that there is at least one 1–handle; hence we do
not regard a product I –bundle as a compression body. Exceptionally handlebodies are
also regarded as compression bodies. The union of the Sk � f0g, called the interior
boundary, is denoted by @iW , and the remaining boundary component coming from
Sk � f1g, which is called the exterior boundary, is denoted by @eW . We use the
same symbols @e and @i to denote the unions of the exterior boundaries and the
interior boundaries respectively for a disjoint union of compression bodies. For a
compact irreducible 3–manifold C , there exists a submanifold V which is a disjoint
union of compression bodies such that V \ @C D @eV is the union of compressible
boundary components of C , and each component of @iV (unless it is empty) is either
an incompressible surface in Int C which is not parallel into @C or an incompressible
boundary component of C . Such a manifold is unique up to isotopy and is called
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the characteristic compression body of C . If V is a characteristic compression body
of C , then every incompressible (ie �1 –injective) map from a closed surface to C is
homotoped into .C nV /[ @iV . The closure of C nV is a (possibly empty) boundary-
irreducible manifold and none of its components are product I –bundles unless C itself
is a product I –bundle. These facts are proved by Bonahon [6], to which we refer the
reader for further details.

Let S be a hyperbolic surface, possibly with geodesic boundary. A geodesic lamination
on S is a closed set disjoint from @S consisting of disjoint simple geodesics. A
measured lamination is a geodesic lamination with a holonomy-invariant transverse
measure. We always assume that the support of the measure is the entire lamination.
For a measured lamination �, its support is denoted by j�j. The space of measured
laminations with the weak topology on transverse arcs is denoted by ML.S/. The
projective lamination space is .ML.S/ n f∅g/=RC , where the action of RC is that
of scalar multiplication of the transverse measures, and is denoted by PML.S/.
Thurston defined a compactification of the Teichmüller space T .S/ whose boundary
is identified with PML.S/. When S has boundary, we define its Teichmüller space
to be the space of marked hyperbolic structures with respect to which the lengths of
the boundary components are constant. We sometimes say that mi 2 T .S/ diverges
towards � 2 PML.S/ when fmig converges to � in the Thurston compactification.

A geodesic lamination is said to be arational when every component of its complement
is either simply connected, or an annulus around a cusp or a boundary component.
An arational measured lamination is always minimal, ie, it does not have a proper
sublamination. We say that a measured lamination is maximal when it is not a proper
sublamination of another measured lamination. Arational measured laminations are
always maximal.

Consider a compact 3–manifold C and an essential subsurface S contained in a
component of @C . We assume that no boundary components of S are meridians
(ie boundaries of compressing discs). In the measured lamination space ML.S/,
we define the following subsets. First, we set WC.S/ to be the subset of ML.S/
consisting of disjoint weighted union of meridians lying on S . Except for the case
when S has only one isotopy class of compressing discs, we define the Masur domain
of S by

M.S/D f� 2ML.S/ j i.�; �/ > 0 for any � 2WC.S/g;

where WC.S/ denotes the closure of WC.S/ in ML.S/. When S has only one
isotopy class of compressing discs, we define the Masur domain by

M.S/D f� 2ML.S/ j i.�; �/ > 0; for any � that is disjoint from a meridiang:
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We note that M.S/ coincides with the entire measured lamination space if S is
incompressible.

We need to define another domain in ML.@V /DML.@eV /[ML.@iV / larger than
the Masur domain when V is a compression body, following Lecuire [28]. For a
compression body V , we set

D.V /D f� 2ML.@V / j there exists � > 0 such that i.�; @D/ > �

for any compression disc and any essential annulus Dg:

The subspaces WC.S/, M.S/ and D.V / are all invariant under scalar multiplication.
We put P to denote their images in the projective lamination space PML.S/ or
PML.@V / .

The subgroup of the mapping class group of S consisting of classes of diffeomorphisms
homotopic to the identity in V is denoted by Mod0.V /. This group Mod0.V / acts
on PM.S/ properly discontinuously, and the limit set of Mod0.V / in PML.S/ is
equal to PWC.S/. (Refer to Otal [52].)

We let zV be the universal cover of V and zS the preimage of S lying on @ zV . We
fix a hyperbolic metric on S , which induces one on zS . Let l be a leaf of a geodesic
lamination � on S . Consider a lift zl W R! zS of l . We say that l is homoclinic if there
are sequences of points fsig; ftig on R such that jsi� ti j!1 whereas d zS .

zl.si/; zl.ti//

is bounded above.

We need to use the following lemma of Otal [52]. (This is contained in the proof of
Proposition 2.10 of [52]. Kleineidam and Souto stated this as Lemma 4 in [27].)

Lemma 2.1 The support of a measured lamination contained in M.S/ cannot be
extended to a geodesic lamination with a homoclinic leaf.

For a hyperbolic 3–manifold M , there exists a unique minimal convex submanifold
that is a deformation retract. Such a submanifold is called the convex core of M . When
the convex core of MG is compact, G is said to be convex cocompact, and when the
convex core has finite volume, G is said to be geometrically finite.

More generally, for a hyperbolic 3–manifold M , an end of M0 is said to be geometri-
cally finite when it has a neighbourhood intersecting no closed geodesics.

By the resolution of Marden’s conjecture, we can take a nice compact core C of M0

so that each end e has a neighbourhood homeomorphic to †�R for a component †
of Fr C facing e . Suppose that e is geometrically infinite. By Proposition 10.1 in
Canary [16], there is a sequence of closed geodesics c�

k
tending to e such that c�

k
is
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homotopic in †�Œ0;1/ to a simple closed curve ck on † such that frkckg converges to
a measured lamination � in M.†/ for some rk 2 .0;1/. In this situation, we say that
� represents the ending lamination of e . Actually the transverse measure is irrelevant
for the ending lamination. The geodesic lamination which is the support of a measured
lamination representing the ending lamination is called the ending lamination of e .

A pleated surface is a map f W S ! M from a hyperbolic surface to a hyperbolic
3–manifold taking a puncture or a boundary component to a cusp such that for any
point x 2S , there is a geodesic on S passing through x which is mapped to a geodesic
in M , and the length metric on S induced by f from M coincides with that induced
from the hyperbolic metric on S . When we consider a component S of @C nP for
some pared manifold .C;P /, we always assume that pleated surfaces map frontier
components of S to cusps of M . In some situation, we need to consider a pleated
surface taking each boundary component to a closed geodesic. We call such a pleated
surface a pleated surface with boundary. A geodesic lamination � on S is said to be
realised by a pleated surface f when f j� is totally geodesic.

The following dichotomy for measured laminations in the Masur domain was proved
by Otal [52]. See Section 2, above all, Théorème 2.2 of [52].

Lemma 2.2 Let .C;P / be a pared manifold and S a component of @C nP . Consider
a map gW S !M to a hyperbolic 3–manifold M sending the frontier of S to cusps
of M . Let � be a measured lamination contained in the Masur domain of S . Then one
and only one of the following holds:

(i) Either � is realised by a pleated surface homotopic to g keeping the frontier
mapped to cusps, or

(ii) for any sequence of weighted simple closed curves frkckg on S converging to �,
the closed geodesics c�

k
freely homotopic to g.ck/ tend to an end of M0 after

passing to a subsequence.

For a geodesic or measured lamination � on @C , a subsurface of @C containing �
without boundary components null-homotopic on @C which is minimal up to isotopies
is called the minimal supporting surface of � and is denoted by T .�/. In a special
case when � is a (weighted) simple closed curve, we define its minimal supporting
surface to be its annular neighbourhood. The minimal supporting surface is unique up
to isotopy.

We shall next define for two geodesic laminations on the boundary of a 3–manifold
to be isotopic. In contrast to the case of simple closed curves, we need to take more
care since without specifying surfaces on which lamination lie, the meaning of isotopy
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for laminations is not so clear. Two disjoint minimal geodesic laminations �1; �2

on @C are said to be isotopic when there is a sequence of properly embedded essential
annuli Aj such that @Aj converges in the Hausdorff topology to a geodesic lamination
on T .�1/[ T .�2/ containing �1 [ �2 as j !1. In the case when no boundary
component of T .�1/ and T .�2/ are meridians, this definition of isotopic laminations
implies that they lie on homotopic minimal supporting surfaces as we shall see below.

Lemma 2.3 Let �1 and �2 be two disjoint minimal geodesic laminations on @C
which are isotopic. Suppose that no boundary component of T .�1/ and T .�2/ is
a meridian. Suppose moreover that �i is contained the Masur domain of T .�i/ for
i D 1; 2. Then the following hold.

(i) The minimal supporting surfaces T .�1/;T .�2/ of �1 and �2 are both incom-
pressible in C .

(ii) T .�1/ is homotopic to T .�2/ in C .

Proof (i) Suppose that T .�1/ is compressible seeking a contradiction. Let fAj g

be a sequence of essential annuli whose intersection with @C converge to �1 [ �2

in the Hausdorff topology. As was shown by Morgan and Shalen [42], there is an
incompressible branched surface B properly embedded in C which carries all the
annuli Ai . Moreover, it was shown there that such a branched surface can be chosen so
that B\@C � T .�1/[T .�2/, and B D � �I for some train track � such that � �f0g
carries �1 and � � f1g does �2 . By choosing a train track approximating �1 closely
enough and removing branches redundant for carrying �1 , we can make B carry no
compressing discs for T .�1/ since �1 is contained in the Masur domain. Since B

is both incompressible and boundary-incompressible, by the standard cut-and-paste
argument (which uses discs and semidiscs) starting from some compressing disc for
T .�1/, we see that we can reduce the intersection with B , and finally there must be
a compressing disc D contained in T .�1/ disjoint from B . Since �1 is arational
in T .�1/ and carried by B , this is possible only when such a disc is isotopic to a
boundary component of T .�1/. This contradicts our assumption, and we have thus
shown that T .�1/ is incompressible. The same argument works for T .�2/.

(ii) By (i), we know that both T .�1/ and T .�2/ are incompressible. We can assume
that they are disjoint by moving their boundaries slightly by an isotopy if they intersect
each other at their boundaries since �1 and �2 are assumed to be disjoint. We can then
apply the Jaco–Shalen–Johannson theory [24; 25] to .C;T .�1/[T .�2// to obtain a
characteristic I –pair .†;ˆ/ properly embedded in .C;T .�1/[T .�2// such that any
essential annulus properly embedded in .C;T .�1/[ T .�2// is properly homotopic
into .†;ˆ/. Since �1 is arational in T .�1/ and there is an essential annulus whose
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intersection with T .�1/ approximates �1 arbitrarily closely, we see that ˆ\T .�1/

must be isotopic to T .�1/. The same holds for T .�2/. Since † is an I –bundle, this
means that T .�1/ and T .�2/ cobound a product I –bundle in C .

An R–tree is a geodesic metric space in which two points are connected by a unique
simple arc. An isometric action of a group G on an R–tree T is said to have small
edge-stabilisers when for any nontrivial segment c of T , the stabiliser of c is either a
finite group or a finite extension of Z. Let S be a hyperbolic surface of finite area, and
suppose that there is an action of �1.S/ on an R–tree T by isometries. A geodesic
lamination � on S is said to be realised in T when there is an equivariant map from
the universal cover H2 of S to T which maps each component of the preimages of
the leaves of � injectively. It was proved by Otal [53] that if a measured lamination �
is realised, then there is a train track � carrying � which is realised by the same
equivariant map: that is, there is an equivariant map from the universal cover z� of �
such that every branch of z� is mapped to a nondegenerate segment and any train route
is mapped locally injectively at every switch of z� .

For a Kleinian group G , we define its deformation space to be the space of faithful
discrete representations of G into PSL2 C modulo conjugacy. We endow this space with
the induced topology as a quotient space of the representation space with the topology
of pointwise convergence, and denote it by AH.G/. We denote an element of AH.G/,
which is a conjugacy class of representations, by a representation �W G ! PSL2 C
representing the conjugacy class or by a pair .�; �/, where � is the Kleinian group
�.G/� PSL2 C . The quasiconformal deformations of G modulo conjugacy form a
subspace of AH.G/, which is denoted by QH.G/.

A sequence of Kleinian groups fGig is said to converge geometrically to a Kleinian
group H if every element of H is the limit of a sequence fgig for gi 2 Gi , and
the limit of any convergent sequence fgij 2 Gij g for a subsequence fGij g � fGig

is contained in H . If �i W G ! PSL2 C converges to � as representations, then its
images �i.G/ converge geometrically (up to extracting a subsequence) to a Kleinian
group containing �.G/. When the geometric limit and the algebraic limit coincide, we
say that the convergence is strong.

Suppose that a sequence of Kleinian groups fGig converges to H geometrically. Let
pi W H3!MGi

and qW H3!MH be universal coverings. Fix a point x in H3 . Then,
.MGi

;pi.x// converges to .MH ; q.x// in the pointed Gromov–Hausdorff topology:
that is, there exists a Ki –bi-Lipschitz map to its image �i W Bri

.MGi
;pi.x// !

BKi ri
.MH ; q.x// with Ki ! 1 and ri ! 1. In this situation, we say a map

fi W Ni ! MGi
from some Riemannian manifold Ni converges geometrically to a
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map gW N 0!MH if .Ni ; zi/ converges to .N 0; z0/ geometrically with some base-
point zi which has bounded dMGi

.pi.x/; zi/ and with approximate isometries x�i , and
�i ıfi ı x�

�1
i converges to g uniformly on every compact subset of N 0 .

3 Construction of sequences and the statement of the conver-
gence theorem

Consider a minimally parabolic, geometrically finite Kleinian group G as was given in
Theorem 1.2. Let S1; : : : ;Sp be the boundary components of C that are not tori. We
shall define a sequence of marked conformal structures fnk

i g on each component Sk .
First consider core curves of P \Sk , one on each component of P \Sk , and denote
them by ck

1
; : : : ; ck

q and their union by C k . On each component of Sk nC k , either
a marked conformal structure or a measured lamination is given in Theorem 1.2.
We denote the components of Sk n C k on which marked conformal structures are
given by †k

1
; : : : ; †k

s , and the given marked conformal structures by mk
1
; : : : ;mk

s .
Let �k

sC1
; : : : ; �k

r be the measured laminations given on the rest of the components
†k

sC1
; : : : ; †k

r , and M k their union. Sometimes it is more convenient to consider a
compact surface which is obtained by deleting a collar neighbourhood of the frontier
from †k

j than †k
j itself. Slightly abusing notation, we use the same symbol †k

j to
denote such a compact surface.

Definition 3.1 We define marked hyperbolic structures nk
i on Sk in such a way that

(i) lengthnk
i
.ck

j /D 1= i for every j D 1; : : : ; q ,

(ii) lengthnk
i
.�k

j / is bounded above independently of i for every j D sC 1; : : : ; r ,

(iii) fnk
i j†

k
j g diverges in the Teichmüller space of †k

j towards the projective lami-
nation Œ�k

j � on the Thurston boundary for j D sC 1; : : : ; r ,

(iv) fnk
i j†

k
j g converges to mk

j as i !1 for every j D 1; : : : ; s .

Lemma 3.1 Hyperbolic structures nk
i satisfying the four conditions above exist.

Proof We shall construct hyperbolic structures on each †k
j , and get structures as we

want by pasting them together. First we consider †k
j for j D 1; : : : ; s . The conformal

structure mk
j is realised by a hyperbolic structure making the frontier of †k

j cusps.
Such a structure is approximated by hyperbolic structures with respect to which every
component of @†k

j is a closed geodesic of length ı with ı! 0. Therefore we can
choose a hyperbolic structure nk

i .j / converging to mk
j on †k

j so that each component
of @†k

j is a closed geodesic of length 1= i .
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Next we consider †k
j for j D sC1; : : : ; r . For each j , take a sequence of hyperbolic

structures fn0ji g converging to a complete hyperbolic structure n0j
0

making @†k
j cusps

such that the length of each component of @†k
j with respect to n0ji is 1= i . We should

note that since fn0ji g converges to n0j
0

, the lengths of �k
j with respect to the n0ji are

bounded above. We let nk
i .j / be the hyperbolic structure obtained from n0ji by the

earthquake along i�k
j , which is a measured lamination with the transverse measure of

�k
j multiplied by i . Then we have

lengthnk
i
.j/.�

k
j /D lengthn0j

i
.�k

j /;

which is bounded above independently of i . Also, since fn0ji g converges and the
earthquake is performed along i�k

j , we see that fnk
i .j /g diverges towards the projective

lamination represented by �k
j on the Thurston boundary of T .†k

j /.

Pasting these hyperbolic structures nk
i .j / along the ck

j , we get a hyperbolic structure
as we wanted.

For a sequence satisfying the four conditions, we have the following.

Lemma 3.2 Let fnk
i g be a sequence of hyperbolic structures on Sk satisfying the four

conditions above. Then for each j D sC 1; : : : ; r , there exists a sequence of weighted
simple closed curves fricig on †k

j with the following two properties.

(i) lengthnk
i
.rici/ goes to 0 as i !1.

(ii) fricig converges to a measured lamination having the same support as �k
j .

Proof Let ci be the shortest nonperipheral closed geodesic on †k
j with respect to the

metric nk
i . By Bers’ theorem (see [4]), there is a constant K bounding the lengthnk

i
.ci/

from above. Taking a subsequence, we can assume that there is a sequence of positive
numbers ri such that fricig converges to a nonempty measured lamination �k

j on †k
j .

Note that ri goes to 0 if ci is not eventually constant. Even in the latter exceptional
case, ri is bounded above.

We shall show that �k
j and �k

j have the same support. Suppose that they do not, seeking
a contradiction. Since �k

j was assumed to be arational, then we have i.�k
j ; �

k
j / > 0.

Since nk
i j†

k
j diverges towards Œ�k

j �, this implies, by Lemma 8.II.1 in Fathi, Laudenbach
and Poénaru [21], that lengthnk

i
.rici/!1. Since ri is bounded above, it follows that

lengthnk
i
.ci/ also goes to 1. This contradicts the fact that the lengths are bounded

above by K .

Since �k
j is not a closed geodesic, neither is �k

j , and we see that ri ! 0. Hence
lengthnk

i
.rici/� riK! 0. Thus we have completed the proof.
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Let QH.G/ be the subset of AH.G/ consisting of points in AH.G/ represented by
quasiconformal deformations of G , endowed with the relative topology induced from
AH.G/. Let qW T .�G=G/! QH.G/ be the Ahlfors–Bers map, which is a (possibly
ramified) covering map. This map is obtained as follows. For any point m2T .�G=G/,
there is a Beltrami differential � on �G giving rise to a quasiconformal homeomor-
phism from the original conformal structure on �G=G to �, which is automorphic
under the action of G . We extend � to the entire Riemann sphere by setting the
value outside �G to be 0, which is obviously also automorphic. This defines a
quasiconformal deformation of G , which we set q.m/ to be.

Recall that �G=G is topologically identified with the union of nontorus components
of @C .

Definition 3.2 For n1
i ; : : : ; n

p
i defined in Definition 3.1, we let f�i D .n

1
i ; : : : ; n

p
i /g

be a sequence regarded as lying in T .�G=G/.

One of the key ingredients to show our main theorem is the following.

Theorem 3.3 The sequence fq.�i/g converges in the deformation space AH.G/, after
passing to a subsequence.

We shall prove this theorem in the following two sections. The proof is based on the
work of Kleineidam and Souto [27], Lecuire [28] and Ohshika [50]. Although there is
another way to use more general result by Kim, Lecuire and Ohshika [26] which is
still unpublished, we have chosen to use only [27; 28; 50] since the argument in [26]
is much more complicated than these three. We note that even if we invoke the main
theorem of [26], we cannot obtain Theorem 3.3 immediately and the general line of
our argument does not change, although some part can be shorten.

Let �i W G! PSL2.C/ be a geometrically finite representation corresponding to q.�i/,
and denote its image by Gi , which is a geometrically finite group. Since �i is induced
by a quasiconformal deformation, there is a homeomorphism ˆi W MG ! M�i .G/

inducing the isomorphism �i between the fundamental groups.

4 Limit laminations of the boundary-irreducible part

In [50], we first analysed the hyperbolic structures on the characteristic compression
body. In contrast, in the present argument, we begin by analysing the behaviour of the
hyperbolic structures on the complement of the characteristic compression body.
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Consider the characteristic compression body V of C . We call the closure of the
complement of V the boundary-irreducible part of C . Let W be a component of the
boundary-irreducible part. Then �1.W / injects to �1.C /ŠG by the homomorphism
induced from the inclusion. We denote its image by H W .

We recall the following lemma essentially due to Thurston. Its detailed proof can be
found in Theorem 3.1 of Ohshika [50] except for the last sentence concerning the
Hausdorff convergence. It should be also noted that although it was assumed that
the Kleinian group does not have parabolic elements in [50], the existence of rank–2

parabolic subgroups does not affect its proof at all.

We note that the codimension-one measured lamination which we get in this lemma
describes only the behaviour of the lengths of the simple closed curves on @W . It may
not capture the behaviour of the lengths of the closed curves in W in general, hence
may not be a lamination dual to the action of �1.W / on an R–tree which is a rescaled
Gromov limit of .�i ;  i/. Remark 3.2 in [50] gave such an example.

Lemma 4.1 Let H be a minimally parabolic, freely indecomposable Kleinian group.
Let W be a compact core of MH . Suppose we have a sequence f.�i ;  i/ 2 AH.H /g

which does not have a convergent subsequence. We denote a homotopy equivalence
from MH to M�i

inducing  i between the fundamental groups by ‰i . Then, after
passing to a subsequence of f.�i ;  i/g, there is a sequence of disjoint, nonparallel
unions of essential annuli fA1

i t: : :tA�i g properly embedded in W , whose number � is
independent of i , with positive weights w1

i ; : : : ; w
�
i such that w1

i A1
i t� � �tw

�
i A�i con-

verges in the measure topology to some codimension–1 measured lamination in W and
the following hold. For any two convergent sequences of measured laminations ˛i ; ˇi

lying on @W , we have

lim
i!1

length.‰i.˛i//

length.‰i.ˇi//
D lim

i!1

i.˛i ; w
1
i A1

i /C � � �C i.˛i ; w
�
i A�i /

i.ˇi ; w
1
i A1

i /C � � �C i.ˇi ; w
�
i A�i /

;

provided that either the numerator or the denominator of the second term tends to a
positive number. Here, for a measured lamination � on W , we denote by length.‰i.�//

the sum of the lengths of realisations of the components of � by pleated surfaces
in M�i

homotopic to ‰i . Moreover, if i.˛i ; w
1
i A1

i /C� � �C i.˛i ; w
k
i A�i / converges to

a positive number, then length.‰i.˛i// goes to 1. The annuli above can be chosen so
that .w1

i A1
i t � � � tw

�
i A�i / converges to a codimension–1 measured lamination whose

support is equal to the Hausdorff limit of A1
i t � � � tA�i .

Proof By Theorem 3.1 of [50], there is a sequence of essential annuli A1
i ; : : : ;A

�
i

with weights w1
i ; : : : ; w

�
i satisfying the conditions of our lemma except for the last
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sentence. We only need to show that such annuli can be chosen so that they satisfy the
last condition.

Let L be a codimension–1 measured lamination in W which is the limit in the measure
topology of w1

i A1
i t � � � tw

�
i A�i . As was shown in the proof of Theorem 3.1 in [50]

using the theorem of Morgan and Shalen [41], there is an incompressible branched
surface B carrying both L and A1

i t � � � tA�i for large i , which carries only surface
with null Euler characteristic. Consider a weight system ! on B such that .B; !/
carries L. We approximate ! by rational weight systems !i such that no coordinate of
!i goes to 0 as i !1. Recall that if B is given a rational weight system, then there
is a weighted disjoint union of essential annuli carried by it. (If B with the weight
system carries a Möbius band, we consider an annulus lying on the frontier of a twisted
regular neighbourhood of the band which doubly covers it. We then give the half of
the weight on the Möbius band to the annulus. This does not change the effect of the
transverse measure to the simple closed curves on @W .) If we let w1

i A1
i t � � � tw

�
i A�i

be weighted annuli carried by .B; !i/, then the Hausdorff limit of A1
i t � � � t A�i

coincide the support of L provided that we let the annulus covering a Möbius band
closer and closer to the band as i !1 when we need to consider the Hausdorff limit
of Möbius bands.

This implies the following corollary.

Corollary 4.2 Let f.Gi ; �i/g be a sequence as in Theorem 3.3. If the characteristic
compression body V of C is empty (ie W D C ), then f.Gi ; �i/g converges in AH.G/
after passing to a subsequence.

Before starting the proof of Corollary 4.2, we shall consider the general situation when
V may not be empty.

Suppose that every subsequence of f�i jH
W g diverges in AH.H W /. Then by the

lemma above, we get a sequence of weighted disjoint, nonparallel union of annuli
ai D w

1
i A1

i t � � � tw
�
i A�i describing the divergence. These annuli are disjoint from

the torus boundary components of W (passing to a subsequence if necessary) since
the translation length of every parabolic element is 0. By taking a subsequence, we
can assume that if we regard ai as a codimension–1 measured lamination in W , then
it converges to some nonempty codimension–1 measured lamination ƒW in W as
i !1. We call this measured lamination ƒW the limit lamination of W . The limit
lamination may depend on the choice of a subsequence which was taken in Lemma 4.1.
We fix a subsequence in the following argument.

By Jaco–Shalen–Johannson theory [24; 25], all the annuli Ak
i are properly isotopic into

the union of the characteristic pairs .Xj ;Zj / of .W; @W / each of which is either an
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I –pair or a solid torus. Let ƒ0 be a component of ƒW . Then there is a characteristic
pair .X0;Z0/ containing ƒ0 since ƒ0 is approximated by weighted unions of annuli.
If X0 is an I –bundle, we can assume that the annuli approximating ƒ0 are all vertical
with respect to the I –bundle structure of X0 . Then ƒ0 is also vertical, and admits an
I –bundle structure itself whose associated @I –bundle is ƒ0\ @W . (Refer to Morgan
and Shalen [42] for a detailed account of this.) If X0 is a solid torus, then ƒ0 itself is
either a weighted annulus or a weighted Möbius band. In either case, ƒ0 admits an
I –bundle structure.

Consider an involution �W on ƒW \@W such that for a point x 2ƒW \@W , its image
�W .x/ is the other endpoint of the fibre containing x with respect to the I –bundle
structure obtained as above. Let �0 be a component of ƒW \@W . Then �W .�0/ either
coincides with �0 or is disjoint from �0 . When we talk about �W .�0/, we regard it
as having the transverse measure induced from that of �0 . Moreover, we have the
following lemma.

Lemma 4.3 The following two hold for the involution �W defined above.

(i) If �W .�0/ is disjoint from �0 , then their supports are isotopic in W .

(ii) In the case when �W .�0/D �0 , there are two possibilities:
(a) There is a twisted characteristic I –pair over a nonorientable surface S 0

in W such that �0 is homotopic in @W to a double cover of a measured
lamination on the zero-section of S 0 (where we regard I as Œ�1; 1�). If �0

is not a simple closed curve, this is the only possibility.
(b) There is a solid torus component of the characteristic pair in W such that

�0 is homotopic to a double covering of its core curve.

Proof Let ƒ0 be the component of ƒW containing �0 . As was remarked above, ƒ0

can be assumed to be vertical with respect to the I –bundle structure of the characteristic
I –pair .X0;Z0/ containing ƒ0 . Since the union of annuli A1

i t � � �tA�i converges to
the support of ƒW in the Hausdorff topology by the last sentence of Lemma 4.1, there
is a subset a0i of A1

i t � � � tA�i , which consists of annuli, converging to the support of
ƒ0 in the Hausdorff topology. If �0 is disjoint from �W .�0/, the I –bundle structure
of ƒ0 must be trivial. This means that the supports of �0 and �W .�0/ are isotopic by
our definition of isotopy between two laminations, and we are done in this case.

We should also note that if ƒ0 is contained in a characteristic pair .X0;Z0/ that is
a product I –bundle, then the I –bundle structure of ƒ0 must be trivial. Therefore,
to consider the remaining case when �0 D �

W .�0/, we can assume that .X0;Z0/ is
twisted.
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Now, suppose that �W .�0/ D �0 . Then the characteristic pair .X0;Z0/ is either a
twisted I –bundle or a solid torus. First consider the case when X0 is a twisted I –bundle.
We consider the base surface S0 of the I –bundle, which is a nonorientable surface,
and by identifying S0 with the image of its section, we regard S0 as embedded in X0

horizontally. We consider the multi-curve a0i \X0 , which is regarded as a geodesic
lamination and is denoted by ˇi . Then ˇi converges to a geodesic lamination ˇ1 over
which jƒ0j is a twisted I –bundle. The bundle must be twisted since we assumed that
�W .�0/D �0 . We can give a transverse measure to ˇ1 by identifying it with ƒ0\S0 .
This is the case corresponding to (a) of (ii).

Next suppose that X0 is a solid torus. Then, ƒ0 is either an annulus or a Möbius band.
Since �W .�0/D �0 , the latter is the case. Then obviously �0 is homotopic to a double
cover over a core curve of the Möbius band.

Now we shall start a proof of Corollary 4.2. Although this was already proved in [45],
the proof here will serve as a perspective for our general argument.

Proof of Corollary 4.2 Suppose, seeking a contradiction, that f�iD�i jH
W g diverges

and set ai D w
1
i A1

i t � � � tw
�
i A�i for weighted annuli given in Lemma 4.1. Then faig

converges to the limit lamination ƒW in the measure topology. Let � be ƒW \ @C ,
which is disjoint from T as was seen above. Suppose first that one of the laminations
�j given in the assumption of Theorem 1.2 intersects � essentially. Then, i.�j ; ai/

converges to a positive number as i!1 passing to a subsequence. It follows that the
length of ˆi.�j / in M�i .G/ goes to infinity by Lemma 4.1. On the other hand, since
the length of �j with respect to �i is bounded, by Sullivan’s theorem (see Epstein
and Marden [20]) or a generalised version of Bers’ inequality (see Lemma 2.1 in
Ohshika [45]), we see that the length of ˆi.�j / (on a pleated surface realising it) is
also bounded. This is a contradiction.

The same argument applies when � intersects a core curve of a component of P

essentially. Therefore we can assume that each component of � is contained in one
of †1; : : : ; †m , say †j . Suppose that j � n first. There is a simple closed curve c

on †j intersecting � essentially. It follows that the length of ˆi.c/ goes to infinity by
Lemma 4.1. This contradicts (using Sullivan’s theorem again) the assumption that the
marked conformal structures on †j converge to mj , which implies that the length of
every simple closed curve is bounded as i !1.

Therefore � is contained in †nC1 t � � � t†m . Since � cannot intersect �j essentially
and �j is arational in †j , the support of a component of � coincides with that of
some �j . This implies that each component �0 of � is arational in some †j ; hence in
particular, †j is the minimal supporting surface of �0 . Suppose that �0 is a component
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of � such that �W .�0/ is disjoint from �0 . Then �0 is isotopic to �W .�0/. This implies
that the minimal supporting surfaces T .�0/ and T .�W .�0//, both of which are among
†nC1; : : : ; †m , are homotopic (by (ii) of Lemma 2.3), and cobound relative to P a
product I –bundle since no two distinct components of P are homotopic. This is an
excluded case in Theorem 1.2.

Suppose next that �W .�0/ D �0 . Again the minimal supporting surface of �0 is
some †j . Then, there is a twisted I –bundle bounded relative to P by †j , and �0

doubly covers a lamination on the zero-section by Lemma 4.3, as was observed above.
This is also an excluded case in Theorem 1.2.

Thus we have shown that f.Gi ; �i/g converges in AH.G/ in this situation.

From now on until the end of the proof of Theorem 3.3, we assume that V is not
empty. Consider two distinct components W;W 0 of the irreducible part for which both
f�i jH

W g and f�i jH
W 0

g diverge in AH.H W / and AH.H W 0

/ respectively, supposing
that there are such components. Let ƒW and ƒW 0

be the limit laminations of W

and W 0 respectively. We say that W dominates W 0 if for closed curves 
 on @W
intersecting ƒW essentially and 
 0 on @W 0 intersecting ƒW 0

essentially, we have

lim
i!1

length�i.

0/

length�i.
 /
D 0;

where length denotes the translation length. Obviously this definition does not depend
on the choice of 
 and 
 0 . By taking a subsequence, we can assume that for any two
components W;W 0 of the irreducible parts unless one of them dominates the other,

lim
i!1

length�i.

0/

length�i.
 /

exists and is a positive number. It also follows from the definition that the relation of
domination is transitive: if W dominates W 0 and W 0 dominates W 00 , then W domi-
nates W 00 . Therefore we can regard this relation as ordering, and denote W 0 �dom W

if W dominates W 0 .

Let B be the set of all components of the irreducible part that are maximal with respect
to the ordering �dom . Then by definition, no component contained in B is dominated
by another component. Also, by a remark in the previous paragraph, if both W and W 0

are contained in B , then

lim
i!1

length�i.

0/

length�i.
 /

is a positive number, and if W 2B and W 0 62B then W dominates W 0 . We see that B
is nonempty if f�i jH

W g diverges for some component W of the boundary-irreducible
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part. We call components contained in B the dominating components. We define B
to be empty if there is no component W of the boundary-irreducible part such that
f�i jH

W g diverges.

5 Convergence of function groups

Take a compressible boundary component Sk of C . We denote by Vk the component
of the characteristic compression body V of C which contains Sk as its exterior
boundary. We consider a subgroup H k of G associated to the image of �1.Sk/ in
�1.C /ŠG by a homomorphism induced by the inclusion. The image of �1.Sk/ can
be identified with �1.Vk/.

Recall that we denote the union of core curves of P on Sk by C k and the union of
measured laminations �k

j on Sk by M k . The compression body Vk may have interior
boundary components contained in @C . In this case we add core curves of P and the
�j on these components to C k and M k respectively. We denote the unions by xC k

and SM k . If @iVk \ @C D∅, then we set xC k D C k and SM k DM k .

Lemma 5.1 Suppose that f�ig diverges in AH.G/ even after passing to a subsequence.
Then one of the following two conditions holds:

(i) B is empty, or

(ii) there are a dominating component W with its limit lamination ƒW , a component
Vk of V meeting W , and a component of ƒW \ @iVk whose support is not
isotopic in Vk to the support of any component of C k [M k .

Proof We assume that there is at least one dominating component, and shall show
that the second alternative holds. If ƒW is disjoint from V for some dominating
component W (ie the boundary of ƒW lies in .@C nV /), then we can argue entirely
in the same way as the proof of Corollary 4.2 and get a contradiction. Therefore, we
can assume that ƒW \V ¤∅ for every dominating component W .

Let Vj be a component of V intersecting some dominating component. Suppose
that for every dominating component W intersecting Vj , each component � of the
lamination ƒW \ @iVj has support isotopic in Vj to the support of a component �0 of
C j [M j . (Otherwise, we have only to set Vk to be Vj and get the second alternative.)

Take a component � of ƒW \ @iVj for a dominating component W intersecting Vj .
We consider the lamination �W .�/. As was observed in the previous section, either
�W .�/D � or �W .�/ is disjoint from �.

Geometry & Topology, Volume 15 (2011)



Realising end invariants 847

(a) Let us first consider the case when �W .�/D �.

Recall that we assumed that there is a component �0 of C j [M j lying on Sj whose
support is isotopic in Vj to that of �. Suppose first that �0 is contained in C j . Then
� is a simple closed curve, hence is homotopic to a double covering of either a simple
closed curve on the base surface of a twisted I –bundle or a core curve of a solid
torus, either of which is embedded in W , as was observed in Lemma 4.3. This is a
contradiction because every component of C j is a core curve of a paring locus P ,
hence represents a primitive class of �1.C /.

Suppose next that �0 is contained in M j . Again by Lemma 4.3, there is an embedded
twisted I –bundle X in W and � is homotopic to a double cover of a measured
lamination on the zero-section of the base surface. By assumption, �0 is arational
on a component †u of Sj nC j and is contained in the Masur domain of †u . Let
T .�/ be the minimal supporting surface of � on @iVj . Then T .�/ doubly covers a
subsurface T 0 on the zero-section of the base surface of X . Since � is isotopic to �0 ,
and neither @T .�/ lying on @iVj nor @†u contains a meridian, the surface T .�/ is
homotopic to †u in Vj by Lemma 2.3.

Since T .�/ doubly covers nonorientable T 0 and every boundary component of T 0

is an orientation-preserving curve on T 0 , each boundary component of T .�/ is one
of the two components of the preimage of a boundary component of T 0 , hence is
homotopic in W to another boundary component of T .�/. Therefore, each component
of c of @†u is homotopic in Vj [W to another boundary component of @†u . (The
boundary of †u cannot be empty since Sj cannot be homotopic to a surface covered by
a subsurface of a component of @iVj .) Since the boundary components of †u are all
in C j , which are core curves of the paring locus P , two of them are homotopic in C

only when they are parallel on @Vj . If this happens, then the entire Sj is obtained by
pasting annuli in P to †u , and Vj [X itself is a twisted I –bundle. This is impossible
since Vj is a compression body.

(b) Next we consider the case when �W .�/ is disjoint from �.

If �W .�/ is also contained in @iVj , then �W .�/ is also isotopic in Vj to a component
of C j [M j , and by an argument similar to the above, we are lead to a contradiction
with either the assumption that C j consists of core curves of the paring locus P and
the fact that Vj cannot be contained in a product I –bundle if W is not empty.

Suppose now that �W .�/ lies on @W n V , hence on an incompressible component
of @C . If either one of the �j or a core curve in P intersects �W .�/ essentially, then
we get a contradiction as in the proof of Corollary 4.2. Therefore, �W .�/ is contained
in a component † of @C nP , and by the same argument as in Corollary 4.2, we see
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that it is arational there (ie T .�W .�// D †). Moreover, since † lies on @W , it is
incompressible and �W .�/ is contained in the Masur domain of †, which is the entire
measured lamination space. Then † and †u are homotopic in C by Lemma 2.3. If †
and †u have nonempty boundaries, their boundaries, which lie in distinct components
of @C , consist of (simple closed curves homotopic to) core curves of P . This is
a contradiction since no two distinct components of P are homotopic in C . If †
and †u are closed surfaces, then W itself is a product I –bundle, which contradicts
the definition of the characteristic compression body.

Suppose next that �W .�/ is contained in another component Vk of V with k ¤ j . If
�W .�/ is not isotopic in Vk to a component of C k[M k , then this Vk is what we were
looking for to get condition (ii). Suppose, on the contrary, that �W .�/ is isotopic in Vk

to a component �00 of C k [M k . Then �0 and �00 are isotopic in C . If �00 is a simple
closed curve, ie, contained in C k , then this means that there are core curves of distinct
two components of P which are homotopic in C . This is a contradiction. Suppose
that �00 is contained in M k . Then �00 is arational in some component †v of Sk nC k

and †v is homotopic to the minimal supporting surface of �W .�/. (Since no boundary
component of †v or T .�W .�// is a meridian, we can use Lemma 2.3.) On the other
hand, �0 is arational in a component †u of Sj nC j which is homotopic to the minimal
supporting surface T .�/. Since T .�/ is homotopic to T .�W .�//, this implies that †u

is homotopic to †v . In particular, a boundary component of †u , which is contained
in C j , is homotopic to a boundary component of †v , which is contained in C k . (If
†u is closed, we get a contradiction as before.) This contradicts the fact that no two
core curves of distinct components of P are homotopic. Thus we have completed the
proof.

Now we start the proof of Theorem 3.3. We shall first show that for each component Vk

of V , the sequence f.�i.H
k/; �i jH

k/ 2 AH.H k/g converges if B is empty, using
Lecuire’s result on measured laminations in D . For that, we need to prove that we can
extend xC k [ SM k to a measured lamination contained in D.Vk/.

Lemma 5.2 Take an arational measured lamination on each component of the com-
plement .Vk \ @C / nP among †1; : : : ; †n , which is contained in its Masur domain
and does not have support isotopic in Vk to the support of a component of M k in
such a way that no two of them have supports isotopic to each other in Vk . (Recall
that †1; : : : ; †n are components of @C nP where the marked conformal structures
converge in the Teichmüller spaces.) Denote the union of all of these arational measured
laminations by Lk . Take also an arational measured lamination on each interior
boundary component of Vk that is not contained in @C , and let Qk be their union.
Then xC k [ SM k [Lk [Qk is contained in D.Vk/.
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Proof By the definition of D , we have only to show that there is � > 0 such that
every meridian and the boundary of every essential annulus has intersection number
greater than � with xC k [ SM k [Lk [Qk . Suppose, seeking a contradiction, that
there is a sequence of meridians f@Dlg or of boundaries of essential annuli f@Alg

such that i.@Dl ; xC
k [ SM k [Lk [Qk/ or i.@Al ; xC

k [ SM k [Lk [Qk/ goes to 0 as
l!1. Then after taking a subsequence, we can assume that @Dl or @Al is disjoint
from xC k for every l , for otherwise it has intersection number at least 1 with xC k . For
meridians, we set cl D @Dl , and for annuli, we set cl to be one of the components
of @Al . Then, passing to a subsequence, all of the cl can be assumed to be contained
in a component † of @Vk n

xC k since they are disjoint from xC k and there are only
finitely many components of @Vk n

xC k . We can also assume that the same holds
even if we choose the other boundary component of Al for each l . Since �j or a
component of Lk [Qk given on † is arational, it follows that its support coincides
with a minimal component ` of the Hausdorff limit of the cl , for both choices of the
boundary components of Al . If the cl are meridians (of †), their Hausdorff limit
contains a homoclinic leaf. (Refer to Théorème 1.8 of Otal [52].) By Lemma 2.1, this
contradicts the assumptions that any �j or any component of Lk is contained in the
Masur domain, and that Qk lies on the interior boundary of Vk .

Next suppose that the cl are boundary components of the Al . We consider first the
case when the two boundary components of Al are contained in distinct components †
and †0 of @Vk n

xC k . Let `; `0 be the Hausdorff limits of Al \† and Al \†
0 , which

are isotopic in Vk by definition. Since the Hausdorff limit of @Al does not intersect
SM k [ Lk [Qk essentially, both ` and `0 consist of a unique arational minimal

component and isolated noncompact leaves spiralling around them. Their minimal
supporting surfaces are † and †0 respectively. Also, the minimal components of
both ` and `0 carry transverse measures which give rise to measured laminations in
the Masur domains of † and †0 since they coincide with the supports of components
of SM k [Qk [Lk . Since their boundaries do not contain meridians, by Lemma 2.3,
† and †0 are homotopic. Moreover, since no two distinct components of xC k are
homotopic and no interior boundary component is homotopic to another boundary
component, this is possible only when † and †0 lie on @Vk \ @C , all the boundary
components of † are homotopic in @Vk to boundary components of †0 , and the same
holds interchanging † with †0 . This happens only when Vk is a handlebody and
homeomorphic to a product I –bundle over a compact surface as a pared manifold.
This in particular implies that the boundary-irreducible part is empty; hence Vk D C ,
and †;†0 can be assumed to be †1; †2 .

By the assumption of Theorem 1.2, if the �j are given on both of †1 and †2 , ie nD 0,
then the supports of �1 and �2 are not isotopic. This contradicts the fact that ` and `0
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are isotopic and the supports of �1; �2 are their minimal components. If �j is not
given on †1 , ie, n� 1, then by our assumption, the component �1 of Lk on †1 has
support which is not isotopic to that of �2 or �2 . This again contradicts the fact that `
and `0 are isotopic.

Next we consider the case when both of the boundary components of Al lie in the same
component † of @Vkn

xC k . We need to divide our argument into two subcases depending
on whether † is compressible or not. Suppose first that † is compressible. Let D be
a compressing disc of †. Then, since f@Alg converges to an arational lamination, Al

intersects D essentially for large l . Therefore, we can either boundary-compress Al

along an outermost semidisc on D bounded by Al \D , or get a compressing disc
intersecting Al along fewer arcs than D which is obtained by cutting D along an
arc cobounding with @Al an outermost semidisc on Al . In the former case, we get
a meridian dl of † which is disjoint from Al by boundary-compressing Al . Also
in the latter case, by repeating the same operation, we eventually get a meridian dl

of † which is disjoint from Al . Then the Hausdorff limit d 0 of the dl does not
intersect the Hausdorff limit of @Al transversely, hence neither does it a component of
SM k [Lk [Qk on †, which is an arational lamination. Then by the same argument

using the homoclinicity as for the Hausdorff limit of fDlg above, we get a contradiction.

Suppose next that † is incompressible. Then by applying the Jaco–Shalen–Johannson
theory to .Vk ; †/, we see that there is a characteristic pair X which is a union of
I –bundles and solid tori intersecting @Vk in †, into which every essential annulus with
boundary on † can be properly homotoped. Since f@Alg converges to an arational
lamination, there is an I –bundle component X0 of X into which Al can be properly
homotoped for large l , and † is isotopic in Vk to the associated @I –bundle of X0 .
This is possible only when X0 is a twisted I –bundle. We also see that Vk DX0 since
no two components of @† not homotopic on @Vk are homotopic in Vk . This implies
that Vk is a twisted I –bundle over a nonorientable surface, and contradicts the fact
that Vk is a compression body.

We need to use the following lemma, which was proved by Lecuire in [28].

Lemma 5.3 Let V be a compression body and S its exterior boundary. Suppose that
�1.V / acts on an R–tree T by isometries with small edge-stabilisers. Let � be a
measured lamination contained in D.V /. Then there exists a �1.S/–equivariant map
F W H2! T which realises at least one component of �. (Here we regard �1.S/ as
acting on T by pre-composing the epimorphism from �1.S/ to �1.V / induced by the
inclusion.)
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As a first step of the proof of Theorem 3.3, we shall show the following proposition.
This is a case which Lecuire’s Theorem 6.6 in [28] already covers. Still, we shall give
an outline of proof here based on Lecuire’s lemma above so that we can refer to it in
the argument for the next case when B is not empty.

Proposition 5.4 Suppose that B is empty. Then for every component Vk of V ,
the quasiconformal deformations of H k given by the �i jH

k converge after taking a
subsequence and conjugates.

Proof Suppose, seeking a contradiction, that f�i jH
kg does not have a convergent

subsequence in AH.H k/. Then, by the work of Morgan and Shalen [41], Bestvina
[5] and Paulin [54], there is an isometric action with small edge-stabilisers of H k

on an R–tree T which is a Gromov limit of the rescaled action of �i.H
k/ on �iH3

with �i ! 0. This can be regarded as an action of �1.Vk/ on T . By Lemmata 5.2
and 5.3, one of the components of xC k [ SM k [Lk [Qk , which we shall denote by �,
is realised in T .

Suppose first that � is a component of xC k . Then there is an element 
 2H k whose
conjugacy class is represented by �. Since � is realised in T , the translation length
of �i.
 / goes to infinity as i!1. On the other hand, by our construction, the length
of � with respect to the conformal structure at infinity �i goes to 0. This implies, as
was shown by Sugawa [57, Theorem 6.2] (or by the main theorem of Canary [18]), that
the translation length of �i.
 / also goes to 0. Thus we are lead to a contradiction.

Next consider the case when � is a component � of SM k . By Lemma 3.2, there is a
sequence of weighted simple closed curves frncng on a component of Sk nC k such
that rncn converges to � and length�i

.rici/ goes to 0 as i ! 0. We should also note
that for any meridian m in †, its length with respect to �i goes to1 since i.m; �/> 0.
Therefore, by the main theorem of Canary [15], ri length.�i.ci// in M�i .H

k/ goes to 0,
where length denotes the translation length. Since � is arational, the Hausdorff limit
of cn , which we denote by � , is the union of � and finitely many isolated noncompact
leaves. Since � is realised in T , by the same argument as Théorème 3.1.4 of Otal [53],
we see that � is also realised in T . Furthermore, Otal’s argument implies that there
is a train track carrying � which is realised in T . This implies that ri length.�i.ci//

in M�i .H
k/ must go to infinity as i !1 since � is mapped to a train track with

geodesic branches and small exterior angles at switches in M�i .H
k/ (see Chapitre 3

of [53]). This is a contradiction.

Next we consider the case when � is a component of Lk . Then � lies on †j on
which the conformal structure converges to mj . Therefore, the length with respect
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to nk
i of rici taken as before is bounded as i !1. Thus, by the same argument as

the previous case, we get a contradiction.

Finally, we consider the case when � is a component of Qk . Let † be the interior
boundary component not contained in @C on which � lies. There is a component W

of the boundary-irreducible part containing † as a boundary component. Since we
assumed that B is empty, �i jH

W converges, hence in particular, the length of ˆi.�/

in M�i .G/ (hence also that in M�i .H
k/ ) is also bounded. This contradicts the fact that

� is realised in T by the same argument as above.

Now we consider the case when B is not empty. By Lemma 5.1, there are a dominating
component W and a component Vk of V such that there is a component of ƒW \@iVk

whose support is not isotopic in Vk to the support of a component of xC k [ SM k . We
shall show that this will lead to a contradiction.

Proposition 5.5 In the settings of Theorem 3.3, if V is not empty, then B must be
empty.

Proof To prove this proposition, we need to analyse an action on an R–tree in the
same way as the proof of Lemma 5.3 in [28].

Suppose, seeking a contradiction, that neither V nor B is empty. Then there is a
component Vk of V intersecting ƒW as we mentioned just before the proposition.
Then f�i jH

kg must diverge in AH.H k/ since ƒW intersects @iVk . By the same
argument as Proposition 5.4, there is a limit isometric action � of H k Š �1.Vk/ on
an R–tree T having small edge-stabilisers. We first consider a special case when the
restriction of � to every interior boundary component of Vk has a global fixed point
in T . In this case, we can argue as in the proof of Proposition 5.4. We extend xC k[ SM k

by adding Lk and Qk using Lemma 5.2. By Lemma 5.3, one of the components
of xC k [ SM k [Lk [Qk is realised by � . By the same argument as the proof of
Proposition 5.4, we see that it is impossible that a component of xC k [ SM k [ Lk

is realised by � . If a component � of Qk is realised by � , then we consider the
component † of @iVk on which � lies. Then the restriction of � to �1.†/ is nontrivial.
This contradicts the assumption of our special case here.

Now, we assume until the end of the proof that there is at least one component of @iVk

on which the restriction of � is nontrivial, ie, does not have a global fixed point. Regard
� as an action of �1.Sk/ (recall that Sk D @eVk ) by pre-composing the epimorphism
from �1.Sk/ to �1.Vk/ induced by the inclusion.

Take a sequence of weighted multicurves fcng decomposing Sk into pairs of pants con-
verging to C k[M k[.Lk\Sk/ in ML.Sk/ as n!1. Since C k[M k[.Lk\Sk/
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is maximal, by approximating it by a train track with complementary regions whose
vertices correspond one-to-one to ideal vertices of the complementary regions of
C k[M k[.Lk\Sk/ and giving rational weights, we can assume that a union of some
components of jcnj (the support of cn ) converges to the support of C k[M k[.Lk\Sk/

with respect to the Hausdorff topology. As was shown by Morgan and Otal [40], there
are an action �n of �1.Sk/ on an R–tree Tn , which is dual to a measured lamination �n
on Sk , and a morphism �n from Tn to T such that the action obtained by pushing �
forward by �n , which we denote by .�n/��n , coincides with � , and the translation
length of cn , ie the weighted sum of the translation lengths of the components of cn ,
with respect to �n is equal to that with respect to � . Now we consider the Hausdorff
limit �1 of fj�njg. As was shown in the proof of Theorem 3 of Kleineidam and
Souto [27], if a component of C k [M k [ .Lk \Sk/ intersects �1 essentially, then it
is realised in T . This is a contradiction as in the proof of Proposition 5.4.

Therefore, �1 does not intersect C k [M k [ .Lk \ Sk/ essentially. We consider
the measured lamination ƒW \ @iVk for all the components W 2 B , and let y� be
the union of all such laminations on @iVk . By Lemma 5.1, there are a component F

of @iVk and a component �0 of y� having support which is not isotopic in Vk to the
support of a component of C k [M k . Moreover, we see that no component of y� is
isotopic in Vk to a component of Lk \Sk as follows.

Let �j be a component of Lk \Sk , and suppose that �j lies on †j which is among
†1; : : : ; †n . Then we can take a simple closed curve c on †j intersecting �j essen-
tially. Suppose, seeking a contradiction, that �j is isotopic in Vk to a component �0

of y� . Then the minimal supporting surface T .�0/ is homotopic to †j in Vk by
Lemma 2.3. This implies that there is a simple closed curve c0 on T .�0/ homotopic
to c intersecting �0 essentially. In particular, the translation length of �i.c

0/ goes to
infinity as i!1. By using the fact that the length of c with respect to �j is bounded,
and either Theorem 6.2 in Sugawa [57] or the main theorem of Canary [18], we get a
contradiction.

Recall that we assumed that for some component of @iVk , the restriction of � to the
component is nontrivial. Consider the component F of @iVk containing �0 as defined
above. Since all the W in B are dominating and some ƒW with W 2B intersects F , if
the restriction of � to F is trivial, then the restriction of � to every component of @iVk

is trivial. Therefore, under the present assumption, the restriction of � to �1.F / is a
nontrivial action having small edge-stabilisers since F is incompressible. By Skora’s
theorem [56], it is dual to some measured lamination � on F . By the definition of
ƒW , if we consider the restriction of �i to the subgroup corresponding to �1.F / and
its rescaled Gromov limit, we see that � must coincide with y� \ F up to a scalar
multiple. Since Vk is a compression body, there is a surface yF on Sk each of whose
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boundary component is a meridian such that the surface obtained by attaching disjoint
compressing discs to @ yF is isotopic to F in Vk . Let �1 be a measured lamination
on yF which is isotopic to �0 .

Recall that we have actions �n of �1.Sk/ on R–trees Tn , which are dual to measured
laminations �n on Sk . As was shown in the proof of Proposition 6.1 in Lecuire [28],
we see that j�nj is constant for large n, which implies that �1 is the support of a
measured lamination, which we denote by � . As was seen above, �1 cannot intersect
C k [M k [ .Lk \SK / essentially; hence we have i.C k [M k [ .Lk \SK /; �/D 0.
Since C k [M k [ .Lk \Sk/ is maximal, we see that the support of � is contained in
that of C k [M k [ .Lk \Sk/. In particular, j�j cannot contain j�1j as a component
since �1 intersects C k [M k [ .Lk \Sk/ essentially.

We shall now show that � cannot intersect �1 essentially. Suppose, on the contrary, that
there is a component �0 of � intersecting �1 essentially. We shall first consider the case
when �0 is contained in yF . Since �n is dual to �n whose support is equal to j�j for
large n, there is a �1.Sk/–equivariant map qnW H2! Tn which maps each component
of the preimage of � to a point in Tn . Then there is a train track � carrying �0 each
component of whose preimage is mapped to a point by qn , as was shown in the proof of
Theorem 4 of Kleineidam and Souto [27]. Let snkn be a sequence of weighted simple
closed curves converging to �0 which is carried by � . (Such a sequence can be taken
by approximating the weight system for �0 by rational numbers.) Then each lift of kn

in H2 is mapped to a point by qn ; hence the translation length of �.kn/D .�n/��n.kn/

is 0. On the other hand, since �0 intersects �1 , by homotoping �0 and �1 in Vk into F ,
we see that the translation length of �.kn/ must go to 1 if �0 is not a simple closed
curve, and is positive if �0 is a simple closed curve. This is a contradiction.

Next we consider the case when �0 is not contained in yF . Since � is a measured
lamination, the leaves of � intersecting @ yF cannot accumulate inside yF , and consist
of finitely many parallel families of geodesic arcs with endpoints on @ yF . By joining
geodesic arcs in parallel families and arcs on @F , we can construct essential simple
closed curves on yF with null translation length under � . Since �0 intersects �1

essentially, so does one of the simple closed curves, which we denote by 
 . This
curve 
 is homotopic to a simple closed curve 
 0 on F which intersects �0 essentially.
Since the restriction of � to �1.F / is dual to � whose support contains that of �0 , we
see that �.
 / has a positive translation length in T . This contradicts the fact that �.
 /
has null translation length in T .

Thus we have shown that � cannot intersect �1 essentially. The only remaining
possibility is that �1 is disjoint from � . In this case, we consider a complementary
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region U of � containing �1 . We note that U \ yF contains T .�1/. If �1 is not a
weighted simple closed curve, then there is a simple closed curve ı in T .�1/�U \ yF

intersecting �1 essentially. Since ı is disjoint from � , the translation length of �n.ı/,
hence also that of �.ı/, is 0. On the other hand, ı is homotopic to a simple closed
curve ı0 on F intersecting �0 essentially. Therefore �.ı/ must have positive translation
length in T as before. This is a contradiction.

Next suppose that �1 is a weighted simple closed curve. By our choice of �0 , there
is a component � of C k [M k [ .Lk \ Sk/ intersecting �1 essentially. Since � is
assumed to be disjoint from �1 , there is a complementary region U of � such that
U \ yF contains �1 [ � . If U \ yF contains a simple closed curve intersecting �1

essentially, we are done by arguing as in the previous paragraph. Otherwise, we take
a simple geodesic arc ˇ in U \ yF with endpoints at @ yF intersecting �1 essentially.
Starting from ˇ , and using arcs on @ yF and geodesic arcs in parallel families of � \ yF
intersecting @ yF , as in the previous case when �0 intersects �1 but is not contained
in yF , we can construct a simple closed curve 
 in yF which intersects �1 essentially
and has null translation length under � . So we obtain a contradiction in the same way
as before. Thus, we have a contradiction in every case, completing the proof.

Thus we have shown that either V or B must be empty. If V is empty, by Corollary 4.2,
we are done. If B is empty, then by Proposition 5.4, for every component Vk of V ,
the restriction �i jH

k converges in AH.H k/. Since B is empty, the restriction of �i

to each component W of the boundary-irreducible part also converges (after taking a
subsequence and conjugates). Then, the same argument as the proof of Lemmata 4.5
and 4.6 in [50] shows Theorem 3.3.

6 Unrealisable laminations and ending laminations

Having proved Theorem 3.3, we now know that fq.�i/g converges in AH.G/ af-
ter passing to a subsequence. Let �W G ! PSL2 C be a representation with image
� D �.G/ such that .�; �/ is the limit of (a subsequence of ) fq.�i/g in AH.G/. We
consider the hyperbolic 3–manifold M� . We use the symbol ˆ to denote a homotopy
equivalence from MG to M� induced by the isomorphism � . Let C 0 be a relative
compact core of .M�/0 . If we denote C 0\ @.M�/0 by P 0 , then the pair .C 0;P 0/ is
a pared manifold.

In this section, we shall prove that for the given laminations �j in Theorem 1.2, their im-
ages ˆ.�j / actually represent ending laminations of ends of .M�/0 (Proposition 6.5).
A similar result on the equivalence of being unrealisable and representing an ending
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lamination was given independently by Namazi and Souto [43] as we mentioned in the
Introduction (Section 1).

Before stating the main proposition, we shall show that ˆ can be homotoped to take
.C;P [T / to .C 0;P 0/ and that ˆ.�j / is unrealisable in M� , where P and T are as
given in Theorem 1.2.

Lemma 6.1 The homotopy equivalence ˆ can be homotoped so that ˆ.C;P [T /�

.C 0;P 0/ as pairs and ˆj.P [T / is an embedding into P 0 .

Proof Since C 0 is a compact core, we can homotope ˆ so that ˆ.C /� C 0 . Since
any immersed incompressible torus in C 0 is homotopic into (a component of ) the
union of torus components of P 0 , which we denote by T 0 , we can make ˆ.T /� T 0 .
Let T0 be a component of T . Then, since �1.T0/ is a maximal abelian subgroup in
�1.C /, we see that ˆjT0 induces an isomorphism from �1.T0/ to �1.T

0
0
/ for some

component T 0
0

of T 0 , hence is homotopic to a homeomorphism to T 0
0

. Thus we have
shown that ˆ can be homotoped so that ˆjT is an embedding into T 0 .

Let c be a core curve of a component of P . By the definition of �i , we have
length�i

.c/! 0. By Theorem 6.2 in Sugawa [57] or the main theorem of Canary [18],
this implies that length.�i.c//!0, hence also that �.c/ is parabolic. Therefore, ˆ can
be homotoped so that ˆ.c/� P 0 . Since c represents a generator of a maximal abelian
group, (for .C;P [T / is a pared manifold,) ˆjc is homotopic to a homeomorphism
to a core curve of an annulus component of P 0 . This completes the proof.

6.1 Unrealisability of �j

Recall that the aim of this section is to show that ˆj�j represents an ending lamination
for some end of .M�/0 . We shall first see that ˆj�j cannot be realised by a pleated
surface. Recall that �j is contained in a component †j of @C n .P [T /.

Lemma 6.2 There is no pleated surface homotopic to ˆj†j realising �j .

To prove this lemma, we need to invoke the following lemma which appeared as
Lemma 4.10 in [49]. Although we allow � to have parabolic elements here, the proof
in [49] works with only a slight refinement as we shall see below.

In the following, we say that a map f W †!M� is adapted to a tied neighbourhood N

of a train track � on † if it maps each branch of � to a geodesic segment and each tie
of N to a point.
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Lemma 6.3 Let † be a component of @C nP . Suppose that � is an arational measured
lamination in M.†/ which can be realised by a pleated surface f W †!M� . Let
fwkckg be a sequence of weighted essential simple closed curves which converges to �.
Then for any ı > 0 and t < 1, there exist a continuous map hW †!M� homotopic to
f and a subsequence fwk.l/ck.l/g of fwkckg with the following two properties.

(i) The map h is adapted to a tied neighbourhood N of a train track � which
carries � and the wk.l/ck.l/ for sufficiently large l . Moreover, N can be taken
to contain � and ck.l/ in such a way that their leaves are transverse to the ties of
N (without moving � and ck.l/ by a homotopy).

(ii) For sufficiently large l , the simple closed curve h.ck.l// represents a loxo-
dromic class. Moreover the closed geodesic c�

k.l/
in M� homotopic to h.ck.l//

has a part with length at least t length h.ck.l// which is contained in the ı–
neighbourhood of the closed curve h.ck.l//.

Proof We need to show that the argument in [49] works even if we allow parabolic
elements to exist. It is easy to see that parabolic elements corresponding to punctures
of † do not affect the argument.

We shall discuss the case when there may be a closed curve not homotopic to a
puncture of † which represents a parabolic class of � . (Such an element is called
an accidental parabolic element in some literature.) We need to show that for every
fwkckg converging to �, after passing to a subsequence, every h.ck/ represents a
loxodromic class of � . Once we prove this, the argument involving the area estimate
of piecewise geodesic annulus cobounded by h.ck.l// and c�

k.l/
, which is originally

due to Bonahon [7], works in the same way as in [49].

Now suppose that this is not the case. Then, by extracting a subsequence, we can
assume that all the h.ck/ represent parabolic elements. (It is impossible that infinitely
many h.ck/ are null-homotopic since � is contained in the Masur domain.) Then we
can construct a piecewise geodesic ideal annulus Ak cobounded by h.ck/ and a cusp.
The area of this annulus is equal to the total exterior angle ek of h.ck/. We can make
each of the exterior angles and wkek arbitrarily small and the length of the image
of each branch of � arbitrarily long by approximating a pleated surface realising �
by h closely. (See Lemma 4.8 of [49].) For each point of @Ak D h.ck/, we consider
a geodesic on Ak (with respect to the two-dimensional hyperbolic metric induced
on Ak ) perpendicular to @Ak . By the Gauss–Bonnet formula, these geodesic arcs are
disjoint and can be extended indefinitely if they start outside the �–neighbourhoods of
the vertices, where � goes to 0 as the exterior angle goes to 0. Since wk length h.ck/

converges to a positive constant, the area of Ak multiplied by wk goes to infinity
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as h approximates the pleated surface realising � closer and closer. This contradicts
the fact shown above that wkek , which is equal to wk Area.Ak/, goes to 0.

Proof of Lemma 6.2 Suppose �j is realised by a pleated surface g1W .†j ; n1/!

M� homotopic to ˆj†j . Then every measured lamination on †j with the same
support as �j is also realised by this pleated surface. Let f
kg be a sequence of
simple closed curves on †j such that fwk
kg converges to a measured lamination
with the same support as �j , and 
 �

k
the closed geodesic homotopic to ˆ.
k/. Since

wk lengthn1
.
k/ converges to lengthn1

.�j /, and length.
 �
k
/ � lengthn1

.
k/, we
see that length.
 �

k
/ grows at most in the order of w�1

k
as k!1.

Let gk W .†j ; nk/!M� be a pleated surface homotopic to ˆj†j which realises 
k

as 
 �
k

. We shall show that we can assume that the gk intersect cusp neighbourhoods
of M� only at a thin neighbourhood of the frontier of †j , ie, that gk.†j / is disjoint
from a sufficiently small cusp neighbourhood corresponding to accidental parabolic
elements for every k if we take a subsequence.

Suppose that this is not the case. Then passing to a subsequence, the image of gk outside
a neighbourhood of the frontier goes deeper and deeper into a cusp neighbourhood as
k !1, for there are only finitely many cusps in M� . Since a pleated surface can
intersect a small cusp-neighbourhood only at its thin annulus (for the diameters of the
thick parts of the pleated surfaces are uniformly bounded), there is a nonperipheral sim-
ple closed curve dk such that �.dk/ either represents an accidental parabolic element
or is null-homotopic, and gk.dk/ is contained in the �k –cusp neighbourhood U�k

of
the same cusp with �k & 0 (�k goes monotonically to 0) as k !1 after passing
to a subsequence. Furthermore, any point x such that gk.x/ is contained in U�k

is
contained in the �k –thin part of †j with respect to nk where �k ! 0 as k!1.

Take positive numbers vk so that fvkdkg converges to a nonempty measured lam-
ination � after passing to a subsequence. Suppose that i.�; �j / D 0. Since �j is
arational, this implies that the supports of � and �j coincide. Since � , which has the
same support as �j , is realised by a pleated surface homotopic to ˆj†j realising �j ,
by Lemma 6.3, �.dk/ must represent a loxodromic element. Since �.dk/ is either
parabolic or trivial, this is a contradiction. Thus we have i.�; �j / > 0. Then i.dk ; 
k/

grows in the order of w�1
k
v�1

k
.

Now, let Dk be the distance between @U�1
and U�k

. Since �k& 0, we have Dk!1

as k!1 by Brooks and Matelski [13]. For each intersection p of 
k with dk , there
is an arc ap on 
k containing p such that gk.ap/ starts from @U�1

, goes into U�k
and

comes back to @U�1
. Then gk.ap/ has length at least 2Dk . (See Figure 1.) Since each

intersection corresponds to an arc traversing the �k –thin annulus around dk , we see that
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ap \ ap0 D∅ if p ¤ p0 . It follows that the geodesic 
 �
k

has part with length of order
2w�1

k
v�1

k
Dk . Since vkdk converges in ML.†j /, we see that vk is bounded above

as k !1. Therefore v�1
k

Dk goes to 1 as k !1, which implies w�1
k
v�1

k
Dk ,

hence also length.
 �
k
/, grows in a higher order than w�1

k
. This contradicts the fact

that length.
 �
k
/ grows at most in the order of w�1

k
, which was proved above.

gk.dk/U�k

Dk

@U�1

Figure 1: Each intersection with dk contributes 2Dk to the length of 
 �
k

.

Thus, we have shown that gk.†j / does not intersect cusps outside a thin neighbourhood
of the frontier; hence there is a uniform upper bound for the diameters of the noncuspidal
parts of the pleated surfaces gk . Moreover, by Lemma 6.3, gk.†j / is within a
uniformly bounded distance from g1.†j /. Then, passing to a subsequence, fgkg

converges to a pleated surface realising �j uniformly on every compact set by the
compactness of marked pleated surfaces. (The proof of the compactness is similar to
the incompressible case proved in Theorem 5.2.18 of Canary, Epstein and Green [19].
It can be found in the proof of Théorème 2.3 in Otal [52] how to generalise this to
the compressible case.) In particular, this implies that length.
 �

k
/ grows in the same

order as w�1
k

. The closed geodesic 
 �
k

can be projected down to the geometric limit
of f�i.G/g and then can be pulled back by an approximate isometry to a .Kk ; ık/–
quasigeodesic in M�i .G/ which is homotopic to �i.
k/ for sufficiently large i , with
Kk ! 1 and ık ! 0. Then we can see that the closed geodesic 
Ci representing
the conjugacy class of �i.Œ
i �/ also has length growing in the same order as w�1

i as
i!1. (See also the argument in the proof of Lemma 6.12 in [49].) On the other hand,
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as we showed in the proof of Proposition 5.4, there is a sequence of weighted simple
closed curves rici converging to a measured lamination �0j having the same support
as �j such that ri length.�i.Œci �// goes to 0 as i !1. Since in the argument above,
wi
i could be taken to be any sequence of weighted simple closed curves converging
to a measured lamination with the same support as �j , we can let it be rici . Then we
reach a contradiction since ri length.�i.Œci �// goes to 0 whereas it was proved above
that length.�i.Œci �/ grows in the order of r�1

i . Thus, we have shown that �j cannot
be realised.

As a consequence of Lemma 6.2, the following holds. (See Lemma 4.4 and Proposition
4.14 in [49], the former of which is based on the argument of Otal [53].)

Corollary 6.4 For any sequence of weighted simple closed curves fwk
kg converging
to a measured lamination with the same support as �j , there is a sequence of pleated
surfaces fk homotopic to ˆj†j which realise the 
k and tend to an end of .M�/0 as
k!1. Moreover, if †j is not null-homologous in C relative to P , then the end to
which the fk tend is topologically tame and has a neighbourhood homeomorphic to
†j �R such that fk is homotopic within †j �R to a homeomorphism onto †j �fptg.

Even in the case when †j is null-homologous, the result of Brock and Souto [11]
implies that � is topologically tame.

In this latter case, we do not know a priori if pleated surfaces fk realising wk
k give
a product structure near the end. This makes the argument for the latter case more
complicated.

6.2 Main proposition

In the remainder of this section, we shall show that ˆ.�j / indeed represents an ending
lamination.

Proposition 6.5 In the setting of Theorem 1.2, we can homotope ˆ so that the
following holds. There is a nice compact core C 0 of .M�/0 with P 0 D C 0\ @.M�/0
such that ˆj†j is a homeomorphism to a component of @C 0nP 0 and ˆ.�j / represents
the ending lamination for the end facing ˆ.†j / for every j D nC 1; : : : ;m.

Since the proof of this proposition is rather long, taking up most of the rest of the paper,
we shall first summarise our argument before really starting it.
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Summary of Proof We shall first show that we can reduce the general case to a special
case when the compact core C is a compression body. (Lemma 6.6.) Suppose that C

is a compression body. Then, we have only to consider the cases when †j represents
a nontrivial second homology class relative to P , and when C is a handlebody and
@C nP is connected. In the former case, which is easier to deal with, a generalised
version of Bonahon’s intersection lemma (Lemma 6.7) implies that ˆ can be homotoped
to a homeomorphism for which ˆ.�j / represents the ending lamination. Most of our
discussion will be devoted to the latter case.

In the latter case, we shall first show that @C 0 nP 0 is also connected. (Lemma 6.11.)
As a corollary of this lemma, we can show that the convergence of f.Gi ; �i/g to
.�; �/ is strong. Let �i be an approximate isometry between MGi

and M� associated
to the geometric convergence of fGig to � . In the final step, we shall consider a
pleated surface gi W @C !MGi

homotopic to ˆi realising C 1[�1 . (Note that since
@C nP was assumed to be connected, there is only one �j .) We shall then show that
gi is incompressible in the complement of ��1

i .C 0/. (Lemma 6.17.) Using another
generalised version of Bonahon’s intersection lemma (Lemma 6.10), we can finally
show that ˆ can be homotoped so that ˆ.�1/ represents the ending lamination.

Now, we start the proof. First we should remark the following.

Lemma 6.6 To prove Proposition 6.5, it is sufficient to deal with the case when C is
a compression body.

Proof Let �j be one of �nC1; : : : ; �m . Take a nice compact core .C 0;P 0/ of .M�/0 ,
and homotope ˆ so that ˆ.C / is contained in C 0 . Consider the boundary component
of C on which �j , hence also †j lies, and denote it by S . Let GS be a subgroup of
G Š �1.C / corresponding to �#�1.S/, where �# denotes the homomorphism between
the fundamental groups induced by the inclusion �W S ! C , and set �S to be �.GS /.
Then MGS has a nice compact core xC to whose boundary S is lifted homeomorphically
as xS . The core xC is homeomorphic to S � I if S is incompressible, and is a
compression body if S is compressible. Let x†j and x�j be the lifts of †j and �j to xS .
We denote by x̂ a homotopy equivalence from MGS to M�S induced by �jGS .

Now, suppose that Proposition 6.5 is valid under the assumption that a compact core
of MG is a compression body. We shall then apply this for MGS . Using Lemma 6.1, we
can assume that ˆjP is an embedding into P 0 . Since we also know that Proposition 6.5
is true for the case when every boundary component of @C nP is incompressible by
the main theorem of [44], this means that there is a relative compact core . xC 0; xP 0/
of .M�S /0 such that x̂ j x†j is a homeomorphism to a component of @ xC 0 n xP 0 facing
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an end xej for which x̂ .x�j / represents the ending lamination. Now, Canary’s covering
theorem proved in [17] shows that there is an end ej of .M�/0 whose neighbourhood
is finitely covered by a neighbourhood of xej . This also implies that there is a compo-
nent †0j of @C 0 nP 0 such that ˆj†j is homotopic relative to P to a finite-sheeted
covering to †0j for every j D nC 1; : : : ;m.

For †j with j D 1; : : : ; n, we can show that ˆj†j is a homeomorphism to a boundary
component by using a result of Abikoff as follows. Recall that in Definition 3.1, the
conformal structure ni on S was taken to converge to mj if restricted to †j . Let
�S be a component of the domain of discontinuity of G such that �S=GS is the
surface at infinity corresponding to S , and G†j a subgroup of GS corresponding
to �#�1.†j /. The quasiconformal deformation .Gi ; �i/ of G is realised by a qua-
siconformal homeomorphism hi W S

2
1 ! S2

1 . By Lemma 3 of Abikoff [1], there
is an open subset � of �S invariant under G†j such that hi j� converges to an
equivariant homeomorphism to a component �0 of �� whose stabiliser is �.G†j /.
Since every frontier component of †j is mapped by ˆ to a closed curve representing
a parabolic element, the surface �0=�.G†j / is of finite type. Therefore, there is a
frontier component of .M�/0 facing �0=�.G†j /. Since C 0 is a nice compact core,
there is a component of @C 0 nP 0 isotopic to this frontier component, which we denote
by †0j . Since †0j carries a group corresponding to �.G†j / in �1.M�/Š � , we can
homotope ˆj†j to a homeomorphism to †0j .

Therefore, ˆ is homotopic to a map whose restriction to every component of @C nP

is a finite-sheeted covering. Since ˆjP is an embedding, this implies that ˆj@C
is a covering into @C 0 . Since ˆjC is a homotopy equivalence, by Waldhausen’s
theorem [59], ˆjC must be homotopic to a homeomorphism to C 0 , and in particular
ˆj†j is homotopic to a homeomorphism to †0j even for j DnC1; : : : ;m. Furthermore,
since x̂ .x�j / represents the ending lamination of xej , its projection ˆ.�j / represents
the ending lamination of the end of .M�/0 facing †0j . This shows Proposition 6.5 for
the original G and � .

We assume from now on until the end of the proof of Proposition 6.5 that C is a
compression body. Recall that we are considering a component †j of @C n P on
which �j lies. We need to divide the proof into two parts:

(1) the case when †j represents a nontrivial second homology class of H2.C;P /,

(2) the case when †j is null-homologous relative to P .

Since we are assuming that C is a compression body, (2) corresponds exactly to the
case when C is a handlebody and @C nP is connected. In both of these cases, we
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need to use the following Lemma 6.7, which is a generalisation of Proposition 3.4 in
Bonahon [7]. Before stating the lemma, we shall define some condition for a compact
core and a compressible surface, which we need to use in the statement of the lemma.

Let M be a topologically tame hyperbolic 3–manifold, and C 0 a nice compact core
of M0 . If C 0 is boundary-reducible, Proposition 5.1 in Canary [16] implies that we
can isotope C 0 so that the following holds: There is a double branched covering
pW �M !M such that �M admits a pinched negatively curved metric with respect to
which p is an isometry to its image if restricted to the complement of p�1.Int C 0/,
and such that p�1.C 0/ is a boundary-irreducible compact core of �M whose interior
contains the tubular neighbourhood of the branching locus where the metric is deformed.

We call such a compact core C 0 adequate with respect to the covering p . We also say
that an embedded surface F in M is liftable (with respect to the covering p ) when
F lies outside Int C 0 for some adequate C 0 , hence in particular is lifted isometrically
to �M .

The following is a generalisation of Bonahon’s intersection lemma in [7], adapted
to our settings. What it claims is roughly as follows. We shall consider two closed
geodesics situated far away from an adequate core, and project them to closed curves
to the boundary of the core. Then, under some condition on the closed curves, it will
be shown the intersection number of these closed curves is bounded by e�D times the
product of the lengths of the closed geodesics, multiplied by some constant independent
of the geodesics, where D is a constant bounding from below the distances from the
closed geodesics to their projections.

Lemma 6.7 Set M DM� , and consider an adequate core C 0 of M . Let M00 be the
complement of some of the cusp neighbourhoods of M . (This may be equal to M or
M0 or something in between.) Let F be a properly embedded compact surface in M00

separating U Š F �R from M00 . In the case when F is compressible, we further
assume that F is liftable. We fix a hyperbolic metric mF on F .

Let † be a component of @C nP and f W †!M a map homotopic to ˆj† taking
the components of the frontier of † to cusps of M . Let fckg be a sequence of simple
closed curves contained in the Masur domain of † whose projective classes converge to
the class represented by a measured lamination Lc in the Masur domain of †, and fdkg

either another such sequence or a sequence of simple closed curves in the Masur domain
of F , such that projective classes Œdk � converge to the projective class represented by
a measured lamination Ld in the Masur domain of either † or F . Suppose that the
closed geodesics c�

k
and d�

k
which are respectively homotopic to either f .ck/; f .dk/

or f .ck/; dk , depending on the definition of dk , are contained in U for all k . In the
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case when the dk lie on F , we further assume that a homotopy between dk and d�
k

can
be taken to be contained in U [F . Then, taking subsequences of fckg and fdkg and
denoting them by the same symbols, there exist sequences of simple closed curves fCkg

on † and fDkg on either † or F with the following properties.

(i) Let Œ�c �; Œ�d � be projective laminations to which the projective classes fŒCk �g

and fŒDk �g converge respectively. Then we have i.�c ;Lc/D i.�d ;Ld /D 0.

(ii) The closed geodesics C �
k
;D�

k
homotopic in M to f .Ck/; f .Dk/ or f .Ck/;Dk

lie in U .

(iii) In the case when the dk lie on F , a homotopy between D�
k

and Dk can be taken
to lie in U [F .

(iv) Let xCk be a closed curve on F homotopic to C �
k

in U [F . We set xDk DDk

if the dk lie on F , and define xDk to be a closed curve on F homotopic to D�
k

in U [F otherwise. Then we have an inequality

i. xCk ; xDk/�Ke�D length. xCk/ length. xDk/;

where D is minfd. xCk ;C
�
k
/; d. xDk ;D

�
k
/g, the length denotes the geodesic length

with respect to mF , and K is independent of k . To be more precise, K depends
only the pinching constant for the branched covering �M and a positive constant
bounding from below the lengths of essential simple closed curves on F with
respect to the metric induced from M .

(v) If ck D dk , we can take Ck ;Dk to be equal.

Proof This lemma was shown by Bonahon in [7] under the assumptions that F is
incompressible and that c�

k
and d�

k
can intersect �–Margulis tubes only at their core

curves for some fixed positive constant � by setting Ck D ck ;Dk D dk . (In this case,
the constant K depends only on a constant bounding the lengths of the essential simple
closed curves on F from below. See the argument in the proof of Proposition 3.4
in [7].)

To remove the assumption of incompressibility, still under the assumption that c�
k

and d�
k

intersect �–Margulis tubes only at their axes, we apply Canary’s construction
of a branched covering. Since we assumed that F is liftable, there is a branched
covering pW �M !M , and F is lifted isometrically to an incompressible surface zF
separating zF �R from �M00 (the lift of M00 to �M ), which is contained in a component
of the complement of the boundary-irreducible compact core p�1.C 0/ of �M . Then
we can apply Bonahon’s argument for the case of incompressible surface. The only
difference is that the metric is not hyperbolic in �M . (When we realise homotopies as
piecewise totally geodesic ones, they may go out of U and intersect the part where
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the curvature is not constant.) Still the argument works since the sectional curvature is
pinched between a negative constant and �1. This affects the constant K , but in such
a way that it only depends on the pinching constant of �M .

Now we shall see how to deal with the case when the closed geodesics c�
k

and d�
k

intersect Margulis tubes outside the core curves. What we are going to show is that
we can replace ck with Ck and dk with Dk in such a way that neither C �

k
nor D�

k

intersects thin Margulis tubes outside the core curves. The argument is the same for
ck and dk except for the case when dk lies on F . In the latter case, we need to show
additionally that condition (iii) is satisfied. We shall deal with only ck from now on
until the last paragraph of the proof, and shall explain how condition (iii) is satisfied in
the latter case at the end of the proof.

Since ck is a simple closed curve in the Masur domain, there is a pleated surface fk

properly homotopic to f which realises ck as c�
k

. Since we have only to consider
the case when c�

k
is far enough from xCk and the diameters of the thick parts of

pleated surfaces are uniformly bounded, we can assume that the image of fk is entirely
contained in U .

Suppose that for any small � > 0, there is some fk.S/ which intersects an �–Margulis
tube although c�

k
is not the core curve of the tube. Then, passing to a subsequence,

we can assume that fk intersects an �k –Margulis tube Tk with core curve different
from c�

k
such that �k ! 0. Let mk denote the hyperbolic metric on † induced by fk

from M . Since the diameter of the thick part of .†;mk/ is uniformly bounded, fk.†/

can intersect Tk only its thin part. Replacing �k if necessary, with the condition that
�k & 0 preserved, this implies that † contains an essential simple closed curve 
k

with length with respect to mk going to 0 such that fk.
k/ is contained in Tk .

Let L
 be a measured lamination to whose projective class fŒ
k �g converges after
passing to a subsequence. By our definition of 
k , the closed curve fk.
k/ is either
null-homotopic or homotopic to an iteration of the core curve of Tk . If i.L
 ;Lc/D 0,
then L
 cannot be contained in WC.†/ since Lc is contained in the Masur domain.
Therefore fk.
k/ is homotopic to an iteration of the core curve of Tk . By setting Ck

to be 
k , this case is reduced to the case when the c�
k

intersect Margulis tubes only at
their core curves. Note also that C �

k
lies on the core curve of Tk , hence is homotopic

to fk.Ck/ in Tk , which is contained in U for large k . Thus we are done in this case.

Suppose next that i.L
 ;Lc/ > 0. It follows that ck intersects 
k essentially for
large k . Now, we can show the following claim.

Claim 6.8 In this situation, we can find a piecewise geodesic simple closed curve ık
on .†;mk/ as follows, after taking a subsequence with respect to k . Here, we assume
that ck and 
k have been isotoped to closed geodesics with respect to mk .
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(a) ık consists of two arcs, ak on ck and bk on 
k .

(b) The free homotopy class of ık is constant with respect to k .

(c) The length of ak goes to infinity whereas that of bk goes to 0 as k!1.

(d) At the two endpoints, ak comes to bk from the opposite sides.

Proof The proof of this claim is similar to the argument which can be found in
Affirmation 2.3.4 of Otal [52]. If we fix a hyperbolic metric m0 on †, the simple
closed curves ck and 
k , realised as closed geodesics with respect to m0 , converge in
the Hausdorff topology, after passing to a subsequence, to geodesic laminations ƒc

and ƒ
 which contain the supports of Lc and L
 respectively. Since we assumed
that i.Lc ;L
 / > 0, there is a leaf �c of ƒc which is not a simple closed curve and
intersects a minimal component �
 of ƒ
 transversely. Now, take an arc a on a leaf
of �c and b on a leaf of �
 such that a meets �
 only at its endpoints, @aD @b , and
at the endpoints, a comes to b from the opposite sides of the leaf containing b .

Since ck converges to ƒc � �c and 
k converges to ƒ
 � �
 , there are arcs ak

on ck and bk on 
k sharing their endpoints, which converge to a and b on .†;m0/

with respect to the Hausdorff topology. We set ık D ak [ bk . Realise ck and 
k as
closed geodesics with respect to mk and we denote the arcs on them corresponding to
ak and bk by the same symbols. We shall show that these ak , bk and ık have the
required properties.

The properties (a) and (d) follow from our definition of ak and bk . Since ak and bk

on .†;m0/ converge to a and b in the Hausdorff topology, if we take a subsequence,
we can assume that the homotopy class of ık is constant, which shows (b). Since the
length of 
k with respect to mk goes to 0, the length of bk goes to 0, and the arc ak

which traverses a thick annulus around 
k must have length going to 1 with respect
to mk . This completes the proof of our claim.

Now we return to the proof of Lemma 6.7. Recall that ak is mapped geodesically
into c�

k
by fk . Since the length of bk goes to 0, we see that fk.ık/ must represent a

nontrivial free homotopy class and the closed geodesic ı�
k

homotopic to fk.ık/ stays
within a distance going to 0 as k!1 from fk.ık/, and its length goes to infinity as
k!1. This is a contradiction since ık represents a constant free homotopy class.
Thus we have shown that i.L
 ;Lc/D 0 always holds and this completes the proof
except for the case when the dk lie on F .

Now finally, we consider the case when the dk lie on F . We consider the inclusion
�W F !M0 in place of f in the argument above. All the argument works without
any modification except for the proof of condition (iii). We shall now show that

Geometry & Topology, Volume 15 (2011)



Realising end invariants 867

condition (iii) holds. There is a pleated surface �k W F !M00 realising dk which is
homotopic to �. In general, a homotopy between � and �k may not lie in U [F . Still,
since F is liftable, there is a simple closed curve Dk on F homotopic to d�

k
in U [F .

The closed curves Dk and d�
k

are lifted to a simple closed curve zdk on the lift zF
of F and a closed geodesic zd�

k
homotopic to zdk . We can see that for large k there is

a pleated surface in �M00 realising zdk as zd�
k

homotopic to the inclusion of zF . Such
a pleated surface is projected to a pleated surface in U which is homotopic to the
inclusion of F in U [F . By redefining �k to be a pleated surface obtained as this and
apply the argument as above considering �k in place of fk , we get condition (iii).

6.3 The case when †j is homologically nontrivial

Now we reformulate and prove Proposition 6.5 in case (1) on page 862.

Lemma 6.9 Suppose that either C is not a handlebody or @C nP is disconnected.
Let .C 0;P 0/ be a nice compact core of .M�/0 which is adequate with respect to a
branched covering. Then, ˆ can be homotoped so that ˆj†j is a homeomorphism to a
component of @C 0 nP 0 and ˆ.�j / represents the ending lamination of the end facing
that component for every j D nC 1; : : : ;m.

Proof By Corollary 6.4, there is a sequence ffkg of pleated surfaces which realise
wk
k converging to �j and tend to a topologically tame end e of .M�/0 with a
neighbourhood homeomorphic to †j �R. Let 
 �

k
be the closed geodesic homotopic

to ˆ.
k/ which is contained in the image of fk . By properly isotoping C 0 , we can
assume that this neighbourhood †j�.0;1/ is a component of the complement of C 0 in
.M�/0 with †j �f0g identified with a component of @C 0 nP . Let � be the projection
of †j � Œ0;1/ to †j � f0g. Since fk.†j / is homotopic to †j � fptg within †j �R
by Corollary 6.4, we see that � ı fk is homotopic to a homeomorphism, which we
shall denote by hk . Note moreover that hk can be extended to a map from C to C 0

inducing an isomorphism between the fundamental groups which is conjugate to � .

Now, since e is topologically tame and geometrically infinite (for fk tends to e ), there
is a measured lamination � on †j�f0g representing the ending lamination for e , which
is contained in the Masur domain M.†j � f0g/. This means that there is a sequence
of weighted simple closed curves fskdkg converging to � in M.†j � f0g/ such that
there are closed geodesics d�

k
in †j � .0;1/ tending to e which are homotopic to

the dk in †j � Œ0;1/. On the other hand, as was seen above, hk.
k/ is homotopic
to 
 �

k
in †j � Œ0;1/.

Since both 
 �
k

and d�
k

tend to the end of .M�/0 contained in †j�Œ0;1/ as k!1, by
Lemma 6.7, there are sequences of simple closed curves Ck on †j and Dk on †j�f0g
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such that Ck= length.Ck/ and Dk= length.Dk/ converge to measured laminations
LC ;LD on †j and †j � f0g respectively with i.LC ; �j /D 0; i.LD ; �/D 0 and

i

�
Dk

length.Dk/
;

hk.Ck/

length.hk.Ck//

�
! 0:

This implies that fhk.Ck/= length.hk.Ck//g converges to a measured lamination
with the same support as � since � is arational, hence in particular, is contained
in M.†j � f0g/ for large k . Since �j is also arational and contained in the Masur
domain, LC has the same support as �j , hence in particular is also contained in the
Masur domain. Therefore Ck lies in the Masur domain of †j for large k .

Since both fŒCk �g and fŒhk.Ck/�g converge in the projectivised Masur domains, and
the group of homeomorphisms of †j � f0g which are homotopic to the identity in C 0

acts on the projectivised Masur domain properly discontinuously, this implies that for
sufficiently large k , the homeomorphism hk does not depend on k . We denote hk for
such large k by h. Since �, hence also LD , represents the ending lamination for e , so
does h.LC /, hence also h.�j /. Since ˆj†j is homotopic to h in .M�/0 , this shows
that we can homotope ˆ near †j so that ˆj†j is a homeomorphism to †j � f0g and
ˆ.�j / represents the ending lamination for the end facing it. Since we can achieve
this only changing ˆ near †j , we can repeat the same operation for each †j , one by
one for all j D nC 1; : : : ;m, and complete the proof.

6.4 Uniform version of Lemma 6.7 for case (2)

In Lemma 6.7, the hyperbolic 3–manifold in which the closed geodesics lie is fixed.
We need to consider a sequence of hyperbolic 3–manifolds and a pair of sequences of
closed geodesics contained in them, one pair in each manifold, for the proof of case (2)
of the alternatives on page 862. We start with clarifying the setting of our situation
where we need to use the lemma.

Suppose that the nice compact core C of MG is a handlebody and @C nP is connected.
(This is equivalent to the assumption of (2) since we are assuming that C is a compres-
sion body.) Let C 0 be a nice compact core of .M�/0 as before. Since � ŠG is a free
group, C 0 is also a handlebody. We further assume that @C 0nP 0 is connected. (It will be
proved in Lemma 6.11 that this always holds in case (2).) Suppose that f�ig converges
to � strongly, ie f�i.G/ 2 AH.G/g converges to � D �.G/ also geometrically. (This
will be proved to be the case in Lemma 6.14.) Set Mi DM�i .G/ and M DM� . Fix a
branched covering p1W �M !M obtained by Canary’s construction as was explained
just before Lemma 6.7 . Since fGig converges strongly to � , we can take branched
coverings pi W

�Mi!Mi so that �Mi converges geometrically to �M and approximate
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isometries are equivariant with respect to the covering translations. (Refer to Chapter 5
of [49] for a proof of this fact.) We assume that .C 0;P 0/ is a nice compact core of M

which is adequate with respect to p1 . Let F1 be @C 0 nP 0 for this adequate C 0 sepa-
rating U ŠF1�R from M0 . We denote by �i an approximate isometry between Mi

and M , which we can assume to be C1 , and set Fi D �
�1
i .F1[P 0/D ��1

i .@C 0/.
We fix a hyperbolic metric m@C 0 on F1 , and let mFi

be its pullback ��i .m@C 0/.
Suppose that Fi is an embedded surface in .Mi/0 which is liftable with respect to pi

and separates Ui Š Fi �R from .Mi/0 . (We shall show that we can take C 0 so that
this is the case in Lemma 6.15.)

Let † be @C nP , which we assumed to be connected. Also, let fi W †!Mi be a map
taking each component of the frontier to a closed geodesic such that �i ıfi converges
uniformly on every compact set in Int† to f W †!M homotopic to ˆj† taking
each component of the frontier to a cusp.

Lemma 6.10 In this situation, suppose that fckg is a sequence of simple closed
curves on † such that frkckg converges in the Masur domain of † to a measured
lamination Lc and that fdkg is one on either † or F1 such that fskdkg converges
in the Masur domain of either † or F1 to a measured lamination Ld . Suppose that
the closed geodesics c�i and d�i which are homotopic to fi.ci/ and either fi.di/ or
��1

i .di/ respectively are contained in Ui for each i , and that both dMi
.c�i ;Fi/ and

dMi
.d�i ;Fi/ go to 1 as i ! 1. Furthermore, we assume that d�i is homotopic

to ��1
i .di/ in Ui [ Fi in the case when the dk lie on F1 . Then, after taking a

subsequence of f�ig, there exist sequences of simple closed curves fCig on † and
fDig on either † or F1 depending on where the dk lie, with the following properties.

(i) In the projective lamination space of † and that of either † or F1 respectively,
fŒCi �g converges to a projective lamination Œ�c � and fŒDi �g converges to Œ�d �

such that i.�c ;Lc/D 0 and i.�d ;Ld /D 0.
(ii) The closed geodesics C �i ;D

�
i , which are homotopic in Mi to fi.Ci/ and either

fi.Di/ or ��1
i .Di/ respectively, lie in Ui .

(iii) The closed geodesic D�i is homotopic to ��1
i .Di/ in Ui [Fi in the case when

the dk lie on F1 .
(iv) Let xCi ; xDi be the closed curves on Fi homotopic to C �i ;D

�
i in Ui [Fi . (This

implies that xDi D Di in the case when the dk lie on F1 .) Then xCi ; xDi are
disjoint from ��1

i .P 0/, and we have

i. xCi ; xDi/

length. xCi/ length. xDi/
! 0;

where length denotes the geodesic length with respect to mFi
.

(v) If ck D dk , then we can take Ck and Dk to be equal.
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Proof First we consider the case when c�i ; d
�
i do not intersect �–Margulis tubes

outside their core curves. The infimum of the lengths of essential closed curves on Fi

with respect to the metric induced from Mi converge to that of F1 with respect to
the metric induced from M , hence a lower bound of the lengths can be taken to be
independent of i . On the other hand, since �Mi converges to �M geometrically, and
since �Mi has a hyperbolic metric outside a compact set which converges to a compact
set of �M as i !1, there is a negative constant uniformly bounding the sectional
curvatures of the �Mi below. Since the constant K in Lemma 6.7 depends only on
these two, we see that we get the conclusion by setting Ci D ci ;Di D di in this case.

Now we shall consider the case when for any small � > 0, there exists i such that
the closed geodesic c�i or d�i intersects an �–Margulis tube of Mi outside the core
curve. As in the proof of Lemma 6.7, we have only to consider c�i . By extracting a
subsequence with regard to i , we can assume that there exists �i ! 0 such that, the
closed geodesic c�i , which lies in Mi , intersects an �i –Margulis tube Ti in Mi outside
the core curve for each i .

Let hi W .†; �i/!Mi be a pleated surface with boundary homotopic to fi relative to
Fr† which realises ci as c�i . Let s be a component of the frontier of †. Then hi.s/ is
a closed geodesic whose length goes to 0 as i !1 since �.s/ represents a parabolic
class whereas �i.s/ does not. Therefore, hi.s/ is the core curve of some Margulis tube
for large i . This means that each component of the frontier of † is either disjoint from
or contained in h�1

i .Ti/. By a simple computation of area using a polar coordinate, we
see that for any A 2R, there exists i0 2N such that for i � i0 , if h�1

i .Ti/ contains a
component with inessential boundary components, then one of the inessential boundary
components bounds a disc on † whose area with respect to �i is greater than A. We
let such A be greater than Area.†/, which does not depend on i by the Gauss–Bonnet
formula. Then all the components of h�1

i .Ti/ are incompressible on † for i � i0 , and
we see in particular that h�1

i .Ti/ contains a simple closed curve 
i which is essential
on †. (We regard even peripheral curves as essential here.)

Passing to a subsequence, we can assume that Œ
i � converges to a projective lamina-
tion ŒL
 � in PML.†/. If i.Lc ;L
 /D 0, as in Lemma 6.7, hi.
i/ is essential in Mi

for large i . By defining Ci to be 
i , we can apply the argument for the case when the
closed geodesics do not intersect Margulis tubes outside the core curves and get the
inequality as we wanted. On the other hand, for any core curve ı of a component of P 0 ,
the geodesic length of ��1

i .ı/ in Mi goes to 0. Therefore by the same inequality, we
see that the projection of fi.Ci/ to Fi in Fi [Ui is disjoint from ��1

i .P 0/ for large i .

Next assume that i.Lc ;L
 / > 0. Then applying Claim 6.8 in the proof of Lemma 6.7,
we get a piecewise geodesic simple closed curve ıi on .†; �i/ representing a constant
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free homotopy class with regard to i such that the closed geodesic ı�i homotopic
to hi.ıi/ lies within a distance going to 0 from hi.ıi/ and has length going to infinity.
This contradicts the fact that Gi converges algebraically.

In the case when dk lies on F1 , we define Di to be the projection of D�i to Fi in
Ui[Fi . Then Di converges to a projective lamination Œ�d � with i.Ld ; �d /D 0 since
di is homotopic to d�i in Ui [Fi , and we can use the same argument as in the proof
of Lemma 6.7 taking into account the fact that �Mi converges to �M geometrically.

6.5 Connectedness of @C 0 n P 0 and strong convergence

Now we return to the general situation of case (2) when C is a handlebody and @C nP

is connected. Since in this case, nD 0 and mD 1 in the statement of Theorem 1.2, we
denote the only one �j , which is �1 , by �, and †j by †. Also since � is free and
topologically tame, M� is homeomorphic to an open handlebody and ˆ is homotopic
to a homeomorphism. Therefore, we can assume that ˆ is a homeomorphism.

Lemma 6.11 Let .C 0;P 0/ be a nice compact core of .M�/0 which is adequate with
respect to a branched covering. Then, @C 0 nP 0 is also connected.

Proof Recall, by Lemma 6.2, we have a sequence of pleated surfaces fk W †! .M�/0
homotopic to ˆj† relative to P tending to an end e of .M�/0 , which realise fwk
kg

converging to � as k !1. Let †0 be a component of @C 0 nP 0 facing this end e .
Since C 0 is nice, the component of the complement of C 0 in .M�/0 facing †0 is
homeomorphic to †0� .0;1/ with †0�f0g identified with †0 , and the image fk.†/

is contained in †0 � .0;1/ for every k after passing to a subsequence. This implies
that fk.†/ is homotoped within †0 � .0;1/ into †0 � fptg. By a standard argument
as in Section 4.E of [49], in which a subsequence of ffkg is extended to a family of
pleated surfaces (allowed to be not constantly curved but negatively curved) realising
an half-open arc tending to �, we can show that the fk are homotopic in †0 � .0;1/
after passing to a subsequence. Since .fk/#�1.†/ carries the entire �1.C

0/Š � , this
implies that �1.†

0/ also carries the entire �1.C
0/. This means that .C 0;P 00/ is either

a relative compression body having †0 as its exterior boundary or a product I –bundle
as a pair, where P 00 is the union of the components of P 0 intersecting Fr†0 .

If .C 0;P 00/ is a relative compression body with empty interior boundary, then †0 D
@C 0 nP 0 and we are done. Therefore, we can assume that .C 0;P 00/ is either a relative
compression body with nonempty interior boundary or homeomorphic to †0 � Œ�1; 0�.
In either case, @C 0 n P 0 has a component with negative Euler characteristic other
than †0 . On the other hand, we can show the following lemma which contradicts
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this fact. Once we prove this lemma, we shall reach a contradiction and the proof of
Lemma 6.11 will be completed.

Lemma 6.12 If @C 0 nP 0 is not connected, then @C 0 nP 0 cannot have a component
with negative Euler characteristic other than †0 .

Proof of Lemma 6.12 Let � W †0 � Œ0;1/!†0 be the projection to the first factor.
Since the fk are all homotopic in †0�.0;1/, their projections �ıfk are all homotopic.
Note that fk can be extended to a map from @C to @C 0 by taking each component
of P to an annulus on Fr.M�/0 . Therefore, we can take a map pW @C ! †0 with
p.P / � P 00 whose restriction to † is homotopic to all the � ı fk relative to P 0 .
Furthermore this map can be extended to a map xp from C to C 0 since both of them
are handlebodies and ˆ is a homotopy equivalence.

Suppose first that pj† is not a degree–0 map to †0 relative to P 00 . Then fk.†/

represents a nontrivial second homology class in †0 �R relative to @.M�/0 . Recall
that ffkg extends to a continuous family of (negatively curved) pleated surfaces
�W †� Œ0;1/!†0 � Œ0;1/ such that �. ; k/D fk and �j†� ftg tends to the end e

as t !1. Then the argument in Claim 3 of Section 4.E in [49] shows that � can be
deformed so that �j†� .t0;1/ is a homeomorphism onto a neighbourhood of e , and
in particular that fk is homotopic to a homeomorphism to †0 � ftg in †0 � .0;1/
for large k . By extending the homeomorphism to P , we see that †0 [P 00 must be
a closed surface homeomorphic to @C then. This implies in particular that †0 is the
only component of @C 0 nP 0 contradicting our assumption, and we are done.

Therefore, we can assume that pj† has degree 0 relative to P 00 from now on. Since
p.P /� P 00 , the map p itself is also a degree–0 map from @C to †[P 00 . Then the
simple loop conjecture proved by Gabai [23] gives us an essential simple closed curve c

on @C such that p.c/ inessential on †0 [ P 00 . Since .C 0;P 00/ is either a relative
compression body with exterior boundary †0 or a trivial I –bundle over †0 , the union
of annuli P 00 is just a collar neighbourhood of Fr†0 . Therefore the degree–0 map p

from @C to †0[P 00 can be regarded as a map to †0 . Since ˆ is a homotopy equivalence,
in this situation, c must bound a compressing disc in C . Performing compression
of @C along this disc, we get a surface †1 which contains the complement of a thin
neighbourhood of c in † and is disconnected if the compressing disc is separating, and
a map p0W †1!†0 whose restriction to †\†1 coincides with pj†\†1 . Let P1 be
the union of annulus components among †1\P . Suppose that there is a component x†1

of †1 such that p0j x†1 has nonzero degree as a map from .x†1;P1\
x†1/ to .†0;P 00/.

Then we can also compress � to get a map �1W
x†1 � Œ0;1/!†0 � Œ0;1/ such that

�. ; t/ tends to e as t !1. Repeating the previous argument for the nonzero degree
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case, we see that �1..x†1 n Int P1/� .t0;1// is a homeomorphism to a neighbourhood
of e . This implies that p0#.�1.x†1// carries the fundamental group of †0 hence the
entire �1.C

0/. This is a contradiction since x†1 cannot carry the entire fundamental
group of C . Thus we have shown that p0 has degree 0 on each component of †1 .

Therefore, using this argument repeatedly and extending the map to compressing discs,
we can extend p to a map from C to †0 . Let � be the inclusion of @C to C . What
has been shown above implies that Ker �# � Ker p# . Since ˆ# is an isomorphism, we
see that Ker p# � Ker �# , hence Ker �# D Ker p# .

Now fix a hyperbolic metric on †0 which makes each component of the frontier an
open end. We need to use the following fact.

Claim 6.13 We can define a continuous map p� from M.†0/ to the space of the
geodesic currents on †0 such that

(i) when � is a simple closed geodesic in M.†0/, its image p�.�/ is the geodesic
current corresponding to the closed geodesic homotopic to p.�/,

(ii) when p.�/ is homotopic to a measured lamination on †0 , which we denote
again by p.�/, the geodesic current p�.�/ coincides with p.�/ regarded as a
geodesic current.

Proof Consider the universal covering �W H2!†0 and let ƒ be the limit set in S1
1

of the covering translations by �1.†
0/. Recall that a geodesic current on †0 is defined

to be a measure on G D .ƒ �ƒ n�/=Z2 which is invariant under �1.†
0/, where

� denotes the diagonal and Z2 acts as the interchange of the two factors. (Refer to
Bonahon [7; 8].)

Let � be a measured lamination contained in the Masur domain of †. By Lemma 5.2,
� [ C 1 lies in D.C /. Let f@C be the covering of @C associated to the kernel of
the homomorphism �#W �1.@C /! �1.C / induced from the inclusion �. Note that
the map p is covered by a map between the coverings zpW f@C !H2 since Ker �# is
contained in Ker p# .

Moreover, since Ker �# D Ker p# , the map zp is proper and takes the ends of f@C to ƒ
injectively. Since �[C 1 lies in D.C /, by Lemmata 3.1 and 3.3 in Lecuire [29], each
lift of a leaf of � connects two distinct points of the ends. It follows that the map zp
takes a lift of each leaf of � to an open arc in H2 ending at two distinct points of ƒ.
The ends of f@C can be regarded as embedded on the Riemann sphere as the limit
set ƒ0 of a Schottky group. (See page 11 of Otal [52] and Section 4 of Kleineidam and
Souto [27].) Then the observation above shows that zp induces a continuous embedding
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from ƒ0 , identified with the set of the ends of f@C , to ƒ. The transverse measure
of � defines a measure on .ƒ0�ƒ0 n�0/=Z2 invariant under the covering translation
group, where �0 denotes the diagonal of ƒ0 �ƒ0 . We push forward this measure
to .ƒ�ƒ n�/=Z2 and takes the sum of all of its distinct translates by �1.†

0/. This
geodesic current is defined to be p�.�/. We can easily check this coincides with the
usual definition of geodesic currents corresponding to closed curves when � is a simple
closed curve in M.†/. The continuity of p� then follows from the fact that ƒ0 is
embedded into ƒ. It is obvious from our construction that in the case when p.�/ is a
measured lamination on †0 , if we regard p.�/ as a geodesic current, then it coincides
with our geodesic current p�.�/.

Now, we return to the proof of Lemma 6.12. Let � be a measured lamination rep-
resenting the ending lamination of the end e facing †0 . Let fskdkg be a sequence
of weighted simple closed curves converging to � such that the closed geodesic d�

k

homotopic to dk in †0 � Œ0;1/ tends to the end e as k!1.

Regard wkp.
k/ as a weighted closed geodesic with respect to the hyperbolic metric
as we fixed before Claim 6.13. Then wkp.
k/ converges to some geodesic current
on †0 by Claim 6.13. Since the closed geodesic fk.
k/, which is homotopic to p.
k/

in †0 � Œ0;1/, tends to the end e in †0 � Œ0;1/, by Lemma 6.7, there are sequences
of simple closed curves fCkg on † and fDkg on †0 with conditions in the statement
of Lemma 6.7 such that

lim
k!1

i

�
p�.Ck/

length.p�.Ck//
;

p�.Ck/

length.p�.Ck//

�
D 0;

lim
k!1

i

�
p�.Ck/

length.p�.Ck//
;

Dk

length.Dk/

�
D 0:

As in Lemma 6.7, Ck= length.Ck/ converges to a measured lamination �0 having
null intersection number with �. Since � is arational, this means that �0 has the
same support as �. Since �0 is also contained in the Masur domain, by Claim 6.13,
fp�.Ck/= length.Ck/g converges to the geodesic current p�.�

0/. We should also note
that there is a constant L such that length.p�.Ck//� length.p.Ck//�L length.Ck/,
where Ck is assumed to be a closed geodesic. Note that in contrast, p.Ck/ may not
be a closed geodesic and length.p.Ck// is not the geodesic length. Therefore we have

i.p�.�
0/;p�.�

0//D lim
k!1

i

�
p�.Ck/

length.Ck/
;

p�.Ck/

length.Ck/

�
�L2 lim

k!1
i

�
p�.Ck/

length.p�.Ck//
;

p�.Ck/

length.p�.Ck//

�
D 0:
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This means that p�.�
0/ is a measured lamination by Proposition 17 in Bonahon [8].

Since � has the same support as �0 , this implies that p�.�/ is also a measured
lamination with the same support as p�.�

0/ by our definition of p� . On the other
hand, fDk= length.Dk/g converges to a measured lamination �0 such that i.�; �0/D 0.
Since � is arational, this means that �0 has the same support as �. The equation above
implies that i.p�.�

0/; �0/D 0, hence i.p�.�/; �/D 0. Since � is arational, it follows
that p�.�/ has the same support as �.

Recall that we denote the union of core curves of P by C 1 . Let hW C ! C 0 be a
homeomorphism inducing � between �1.C /ŠG and �1.C

0/Š � , which we know
to exist because both C and C 0 are handlebodies. Recall that p can be extended to a
map from C to C 0 which is homotopic to h in C 0 as was shown before Claim 6.13.
By Lemma 5.2, we see that h.�[C 1/ is contained in D.C 0/.
Consider a convex cocompact hyperbolic metric on Int C 0 , and denote the convex
cocompact 3–manifold by N . Since h.� [ C 1/ lies in D.C 0/, it is realised by a
pleated surface gW @C 0!N homotopic to (a perturbation into Int C 0 of) the inclusion
such that g� embeds the lift of h.�/ into the unit tangent bundle T1.N /. (See
Theorem 5.5 of Lecuire [28].) Since p extends to a map homotopic to h, we see
that p�.�/, which has turned out to be a measured lamination, is homotopic to h.�/

in C 0 . Therefore the support of h.�/ is homotopic to that of � in C 0 , and if we forget
the transverse measures, the image of g ıh.�/ coincides with the realisation of � by a
pleated surface g0W @C 0!N homotopic to the inclusion.

We see that leaves of h.�/ isolated from one side are identified with those of � since
both g and g0 induce embeddings into the unit tangent bundle T1.N / of h.�/ and �.
Therefore the complementary regions of � correspond one-to-one to those of � with
the number of sides preserved. Recall that every complementary region of h.�/ except
for the ones containing components of h.C 1/ is simply connected. Therefore we
see that � cannot a complementary region which has negative Euler characteristic by
simply calculating the area.

By the fact which we showed just before Lemma 6.12, we are lead to a contradiction
whether pj† has degree 0 or not, if .C 0;P 00/ is a relative compression body with
nonempty interior boundary or .C 0;P 00/Š .†0; @†0/� I . Therefore, we see that the
only possibility is that @C 0 nP 0 D†0 , which is connected. We have thus completed
the proof of Lemma 6.11

The following derives from the covering theorem of Canary [17].

Lemma 6.14 In the present case (2) of the alternatives on page 862, the convergence
of f.Gi ; �i/g to .�; �/ is strong.
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Proof By taking a subsequence, we can assume that f�i.G/g converges geometrically
to a Kleinian group G1 containing � . Let qW M�!MG1

be the covering associated
to the inclusion � �G1 . Since .M�/0 has only one end by Lemma 6.11, which is
topologically tame, q must be finite-sheeted by Canary’s covering theorem [17]. This
implies that � DG1 by the argument in Section 9.3 in Thurston [58] (see Lemma 2.3
in Ohshika [46] for a detailed proof).

6.6 Proof of Proposition 6.5 for the case when † is null-homologous

Now we are ready to start the proof of Proposition 6.5 in case (2) on page 862.

Proof of Proposition 6.5 in case (2) Consider a nice compact core .C 0;P 0/ of .M�/0
which is adequate with respect to a branched covering �M ! M� by a negatively
curved manifold obtained by Canary’s construction. Then @C 0 nP 0 is liftable, and by
Lemma 6.11, is connected. We denote the complement of C 0 , which has a product
structure, by @C 0 � .0;1/ identifying @C 0 � f0g with @C 0 .

Set Mi D M�i .G/ . Let x be a point in H3 , and set its images in Mi and M�

under the universal covering projections to be basepoints xi and x1 . Since f.Gi ; �i/g

converges to .�; �/ strongly by Lemma 6.14, there is a .Ki ;Ri/–approximate isometry
�i W BRi

.Mi ;xi/ ! BKi Ri
.M� ;x1/ with Ri ! 1 and Ki ! 1, which can be

assumed to be a diffeomorphism to its image. Furthermore, ��1
i .C 0/ is a compact core

of Mi and ˆi can be homotoped so that ˆi jC is a homeomorphism onto ��1
i .C 0/

for every i if we extract a subsequence. Also, �i ıˆi jC is homotopic to ˆjC in M� .

Take a generator system g1; : : :gs of G , and for each i , let bi be a bouquet in Mi

consisting of the geodesic loops representing �i.g1/; : : : ; �i.gs/ based at xi . We
note that the boundary of the convex core of Mi is incompressible outside bi . The
sequence of bouquets fbig converges geometrically to a bouquet b1 in M� based
at x1 representing �.g1/; : : : ; �.gs/. We can choose an adequate compact core
.C 0;P 0/ which contains the bouquet b1 . Then @C 0 is incompressible outside b1 .
Also, passing to a subsequence and enlarging C 0 in its regular neighbourhood, we can
assume that ��1

i .C 0/ contains bi .

Lemma 6.15 By enlarging C 0 further within .M�/0 preserving its adequacy, we can
make ��1

i .C 0/ also an adequate compact core for any large i (with respect to the
covering pi W

�Mi!Mi ).

Proof Since C 0 is adequate, we can assume that ��1
i .C 0/ contains the branching

locus of the covering pi for every i by taking a subsequence. What remains to show
is that the complement of ��1

i .C 0/ has a product structure.
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Fix some simple closed curve d contained in D.C /. We assume that d is not contained
in C 1 . Since the bending lamination, which we denote by ˇi , of the convex core C.Mi/

of Mi is contained in D.C / and D.C / is arcwise connected [28, Proposition 4.2 ],
we can connect d and ˇi by an arc in D.C /. This gives rise to a continuous family of
pleated surfaces and negatively curved pleated surfaces in Mi realising a homotopy Hi

between a pleated surface realising d and the boundary of the convex core C.Mi/.
(This fact can be shown by the argument in Section 4.E of [49], simply replacing
the Masur domain by D since it was shown that every lamination in D is realised
in Mi by Theorem 5.1 in [28].) Since pleated surfaces realising d in the Mi converge
geometrically to one in M� realising d , there is a uniform bound for both their
diameters and the distances from them to the ��1

i .C 0/. By enlarging C 0 , we can
assume that ��1

i .C 0/ contains the pleated surface realising d for every i .

For any sufficiently large i , the homotopy Hi contains a subhomotopy H 0i between a
pleated surface touching the boundary of ��1

i .C 0/ and the boundary of the convex core
of Mi , whose image is disjoint from the bouquet bi . We can see as follows that there
is an upper bound independent of i for the diameters modulo the �–Margulis tubes
in Mi of the pleated surfaces (and negatively curved pleated surfaces) constituting H 0i .
Suppose, seeking a contradiction, that such an upper bound does not exist. Then, there
exist a (negatively curved) pleated surface fi constituting H 0i and a sequence of simple
closed curves ıi on @C such that length.fi.ıi//! 0 and fi.ıi/ is not contained in
an �–Margulis tube. Then fi.ıi/ must be null-homotopic. Since fi is homotopic to
@C.Mi/ outside bi , and any compressing disc of C.Mi/ intersects bi , we see that
fi.ıi/ bounds a singular disc with area going to 0 which intersects bi essentially. By
taking an annular neighbourhood of ıi on @C with height going to 1, consisting of
circles of small lengths all of which bound singular discs with area going to 0, we see
that the length of some arc bi has length going to 1 as i!1. (Refer to the proof of
Lemma 6.2 in [49] for a similar argument.) This is a contradiction.

In a similar way, we can show that the distance between bi and @C.Mi/ goes to 1 as
follows. We refer the reader to the proof of Theorem 2.1 in [46] for a detailed account
of the argument which we shall give briefly below. Suppose, seeking a contradiction,
that the distance is bounded after taking a subsequence. There is a positive lower
bound for the lengths of compressing curves on @C.Mi/ since any compressing disc
must intersect bi essentially, and we can argue as in the previous paragraph. Since
the total length of bi is bounded as i !1, if the distance between bi and @C.Mi/

is bounded, so is the distance from xi to @C.Mi/. Therefore, choosing a basepoint
within a bounded distance from xi , the surface @C.Mi/ converges geometrically to a
pleated surface in M� as i !1. Although the limit surface may not be embedded, it
can be approximated by an embedded surface arbitrarily closely because the @C.Mi/
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are embedded. The approximating surfaces are separating in .M�/0 since @C.Mi/ is
separating. Recall that by Lemma 6.11, .M�/0 has only one end, which is geometrically
infinite. Therefore, there are closed geodesics in a noncompact component of the
complement of an embedded surface approximating the limit surface, arbitrarily far
from the limit surface. Take such a closed geodesic c1 sufficiently far from the limit
surface. We can pull back c1 to Mi by ��1

i for large i as a quasigeodesic converging
to c1 geometrically. It follows that the closed geodesic homotopic to ��1

i .c1/ is also
far from @C.Mi/, and is not contained in C.Mi/. This contradicts the fact that every
closed geodesic lies in C.Mi/.

Since @C.Mi/ is incompressible in Mi n bi , so is every surface constituting H 0i .
By the result of Freedman, Hass and Scott [22], we can homotope in Mi n bi each
surface to an embedding preserving the upper bound of the diameter of the surface
modulo the �–Margulis tubes. Therefore, we see that H 0i gives rise to a product
structure @C � Œ0; 1� starting from a surface within a uniformly bounded distance
from ��1

i .C 0/ and ending at @C.Mi/ such that @C �ftg is incompressible in Mi n bi

and has diameter modulo the �–Margulis tubes uniformly bounded from above. To
be more precise, we can homotope H 0i in the complement of bi to an embedding
H 00i W @C � Œ0; 1�! C.Mi/ such that H 00i .@C �f0g/ lies within the R–neighbourhood
of ��1

i .C 0/, H 00i .@C � f1g/ D @C.Mi/, and the diameter of H 00i .@C � ftg/ modulo
the �–Margulis tubes is bounded by a constant independent of t and i . We can fix a
positive number K so that for every large i there exists a surface Fi.x/DH 00i .x; ti/

with x 2 @C such that Fi.@C / intersects the K–neighbourhood of ��1
i .C 0/ whereas

H 0i .@C; Œti ; 1�/ is disjoint from the K=2–neighbourhood of ��1
i .C 0/. (To show such

K exists, we use the facts that the diameters modulo the �–Margulis tubes of surfaces
constituting H 0i are uniformly bounded, which was proved above and that the distance
from xi to @Ci goes to 1.) Then for large i , its pushforward �i ıFi is contained in
@C 0 � .0;1/.

If �i ı Fi is compressible in @C 0 � .0;1/, it can be compressed in an arbitrary
@C 0 � Œa; b� containing the image of �i ı Fi ; hence Fi must be also compressible
in Minbi , which is a contradiction. Therefore, �iıFi is incompressible in @C 0�.0;1/.
Since the diameters of the �i ı Fi modulo the �–thin part are bounded above and
Fi.@C / intersects the K–neighbourhood of ��1

i .C 0/, there exists L > 0 such that
@C 0 � .0;L/ contains all the �i ıFi.@C /. Since Fi.@C / is homotopic to H 00i .@C; t/

in the complement of ��1
i .C 0/, the product structure induced from ��1

i .@C 0 � .0;L//

and that of @C � .0; 1/ are isotopic outside ��1.C 0/. This gives rise to a product
structure between @��1

i .C 0/ and the boundary of C.Mi/.

On the other hand, since Mi is convex cocompact (note that Mi does not have parabolic
elements in this case (2)), MinC.Mi/ has a product structure homeomorphic to @C�R,
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where @C.Mi/�f�1g is identified with @C.Mi/. By pasting these product structures,
we get a product structure of the complement of ��1

i .C 0/. Therefore ��1
i .C 0/ is an

adequate compact core for large i .

We isotope ˆ so that ˆ.C /D C 0 , where C 0 is enlarged as above.

Let gi W .@C;mi/!Mi be a pleated surface homotopic to ˆi j@C realising �[C 1 .

Lemma 6.16 The diameters of the pleated surfaces gi modulo the �–Margulis tubes
are bounded above by a constant depending only on � . Furthermore the distance
between ��1

i .C 0/ and gi.@C / goes to infinity as i !1.

Proof Suppose, seeking a contradiction, that the diameters of the gi modulo the
�–Margulis tubes are not uniformly bounded. Then, by the same argument as before,
there is a simple closed curve di on @C nC 1 whose length with respect to mi goes
to 0 such that gi.di/ is null-homotopic. Since � is contained in the Masur domain of
†D @C nC 1 , it must intersect a measured lamination � to whose projective class Œdi �

converges in PML.†/. Since the length of di with respect to mi goes to 0, the same
argument as in Lemma 6.2 implies that the length of � with respect to mi goes to
infinity. On the other hand, the length of � with respect to �i , which was defined in
Definition 3.2, is bounded. Recall that every meridian on @C intersects �[C 1 ; hence
its length with respect to �i goes to 1. Then by the result of Canary [15], the length
of gi.�/ in Mi is bounded as i!1. This is a contradiction, and we have shown the
first statement.

We shall next show the second statement of our lemma. As was shown in the proof of
Lemma 6.2, the image gi.�/ cannot go into �i –Margulis tubes with �i ! 0. If the
image of gi stays within bounded distance from ��1

i .C 0/, it converges geometrically
to a pleated surface realising � in M� since f�i.G/g converges to � strongly. This
contradicts Lemma 6.2. Therefore the distance between ��1

i .C 0/ and gi.@C / goes to
infinity as i !1.

This lemma implies in particular that for sufficiently large i , the image of gi is contained
in the complement Ui of ��1

i .C 0/, which has a product structure homeomorphic to
@C � .0;1/ by Lemma 6.15.

Lemma 6.17 The pleated surface gi is incompressible outside ��1
i .C 0/.

Proof Suppose that gi is compressible in the complement of ��1
i .C 0/, which has a

product structure by Lemma 6.15 as Ui Š @C � .0;1/�Mi . Then we can extend gi
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to a map from a compression body whose exterior boundary is identified with @C ,
as can be seen by homotoping the map into @C � fptg and using the simple loop
conjecture proved by Gabai [23]. Since @C 0 � .0;1/ does not contain an immersed
incompressible surface with genus less than that of @C 0 Š @C , this compression body
must be a handlebody, hence can be identified with C . (Since gi is homotopic to ˆi jC ,
any compression of gi can be done within C .) Since the compression can be performed
in any @C 0 � Œa; b� containing the image of gi , there is an extension ygi W C !Mi

of gi whose image has distance from ��1
i .C 0/ going to 1. Let � be a spine of C ,

ie a one-complex which is a deformation retract of C . Note that there is a retraction
r W C ! � such that for each nonvertex point x in � , its preimage r�1.x/ is a meridian
of C . By Lemma 6.15, we can consider the projection �i of xUi Š @C 0 � Œ0;1/

to @��1
i .C 0/. We also consider the projection of �[ C 1 under r . The transverse

measure of � [ C 1 defines a weight for each point of � . Since each nonvertex
point of � corresponds to a meridian on @C and �[C 1 is contained in D.C /, the
image r.�[C 1/ passes through every point of � with weight bounded below by a
positive constant �. Therefore, if �i ı ygi.�/ has an essential self-intersection, then
i..�i ıgi/�.�[C 1/; .�i ıgi/�.�[C 1//� �2 . See Figure 2.

r

�

�i ıgi

Figure 2: The image of a lamination in D.C / passes through every point of � .
Each self-intersection of �i ı gi.�/ contributes �2 to
i..�i ıgi/�.�[C 1/; .�i ıgi/�.�[C 1// .

We shall prove that �i ı ygi.�/ has no self-intersection, hence is embedded. For that, we
shall show that the homotopy class of �i ı�i ı ygi is independent of i for large i . We
extend the conformal structures �i defined in Definition 3.2 to a continuous family �t
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for t 2 Œ1;1/ such that �t escapes from any compact set of T .@C / and the length of
�[C 1 with respect to �t is bounded as t!1. For each t 2 Œi; iC1� with i 2N , let
.Gt ; �t / 2 AH.G/ be the convex cocompact Kleinian group corresponding to q.�t /,
and set Mt to be MGt

with homeomorphism ˆt W MG!Mt induced from �t . Now,
we shall show the existence of a homeomorphism x̂ t W MG !Mt homotopic to ˆt

which has good properties as follows.

Claim 6.18 For each t 2 Œ1;1/, there is a homeomorphism x̂ t W MG!Mt homotopic
to ˆt with the following properties.

(i) The diameters of x̂ t .C / are bounded by a constant independent of t .

(ii) When t is an integer i , we have x̂ i jC D �
�1
i ıˆjC .

(iii) As t ! t0 in Œ1;1/, the homeomorphism x̂ t converges to x̂ t0
geometrically.

Proof We can take C to be an adequate compact core. We fix a homotopy class of
simple closed curve b in M.†/. Then it is obvious that C 1[ b is “disc-busting” in
Canary’s sense, ie intersects any compressing disc of C essentially. When we consider
a branched covering pt W

�Mt !Mt , its branching locus is always assumed to be the
closed geodesic (or its perturbation if the closed geodesic is not simple) homotopic
to ˆt .b/. We take branched coverings which vary continuously with t in the geometric
topology. Let Dt be the infimum of the diameters of all compact cores in Mt that are
adequate with respect to pt . We shall first show that Dt is bounded from above by a
constant independent of t .

Suppose, seeking a contradiction, that Dt is not bounded. Let ftj g be any monotone
increasing sequence in Œ1;1/ such that Dtj !1. Then by applying our result for f�ig

in the previous section, regarding �tj as �i , we see that there is a subsequence ft 0j g
of ftj g such that .Gt 0

j
; �t 0

j
/ converges to .� 0; �0/, which is either a convex cocompact

group or a geometrically infinite group. If � 0 is convex cocompact, then ft 0j g is bounded
in Œ1;1/, � 0 DGlim tj , and the convergence is strong. If � 0 is geometrically infinite,
then t 0j goes to 1, and we can apply what we proved for � up to now in this section.
In particular, Lemma 6.14 implies that the convergence to � 0 is strong.

Set M 0 D H3=� 0 . Let x�t 0
j
W Bri

.Mt 0
j
;xt 0

j
/ ! BKi ri

.M 0;x01/ be an approximate
isometry associated to the geometric convergence of Mt 0

j
to M 0 . (We put a bar on �

to distinguish it from the approximate isometries associated to the convergence of Mi

to M� .) Take an adequate compact core . xC ; xP / of .M 0/0 . Suppose first that M 0 is
convex cocompact. Then Mtj is quasi-isometric to M 0 and x�t 0

j
can be defined on

the entire Mtj as a bi-Lipschitz homeomorphism. We consider the branched covering
of M 0 branched along the closed geodesic homotopic to ˆ0.b/ or its perturbation
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as usual. Then x��1
t 0
j
. xC / is also an adequate compact core for large j since x�t 0

j
is a

homeomorphism defined on the entire Mtj and branching loci move continuously in
the geometric topology. This shows that .Mtj /0 has an adequate core with diameter
less than Dtj for large j , contradicting the definition of Dtj .

We shall next show that ˆ0.b/ does not represent a parabolic class, whether � 0 is convex
cocompact or geometrically infinite. We can assume that ˆ0jC is a homeomorphism
to xC since both of them are handlebodies. Suppose, seeking a contradiction, that ˆ0.b/
represents a parabolic class. Then, we can assume that ˆ0.b/� xP . Since C 1[b is disc-
busting, the complement xF of ˆ0.b[C 1/.� xP / in @ xC is incompressible in xC . Also
by applying Lemma 6.11 to � 0 , we see that there is only one end of .M 0/0 . Since this
end faces an essential subsurface of xF or xF itself, which is the incompressible frontier
of xC in .M 0/0 , by Bonahon’s theorem, every unrealisable lamination is homotopic to
the ending lamination. Therefore ˆ0.�/ must be homotopic to a measured lamination
in @C n .C 1[ b/, which represents the ending lamination. By the same argument as
in the proof of Lemma 6.12, by comparing the complementary regions of � and a
measured lamination in @C n .C 1[ b/, we see that this is impossible. Thus we have
shown that ˆ0.b/ cannot represent a parabolic class, and also that we can consider the
branching covering of M 0 branched along the closed geodesic homotopic to ˆ0.b/ or
its perturbation even when � 0 is geometrically infinite.

Now, in the case when � 0 is geometrically infinite, Lemma 6.15 tells us that we can
enlarge xC so that x��1

t 0
j
. xC / is an adequate compact core for large j . This shows that

Mt 0
j

contains an adequate compact core whose diameter is less than Dt 0
j

for large j ,
which is a contradiction.

Thus we have proved that Dt is uniformly bounded from above, whether � 0 is geomet-
rically infinite or not. We have also shown above that there is a positive lower bound �
for the lengths of the closed geodesics homotopic to the ˆt .b/. Let D be a constant
which bounds from above both the Dt C 1 for all t 2 Œ1;1/ and the diameters of C 0

and the ��1
i .C 0/.

Next, we shall show that there is a constant E independent of t such that Mt has
an adequate compact core yCt with diameter less than 2D whose 4D–neighbourhood
can be isotoped into yCt passing only the E–neighbourhood of yCt . Suppose, seeking
a contradiction, that such E does not exist. Then, there is monotone increasing
sequence ftj g in Œ1;1/ such that any adequate compact core yCtj of Mtj with diameter
less than 2D has 4D–neighbourhood which cannot be isotoped into yCtj within the
Ej –neighbourhood of yCtj , where Ej goes to 1 as j !1. As before, after passing
to a subsequence, f.Gtj ; �tj /g converges strongly to .� 0; �0/ which is either convex
cocompact or geometrically infinite, and .M 0/0 has an adequate compact core xC . By
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the same argument as above, we can enlarge xC so that for sufficiently large j , the
submanifold x��1

tj
. xC / is an adequate compact core of Mtj . We can choose such an

enlarged adequate compact core to have diameter bounded by D by our definition of D .
Since xC is an adequate compact core in .M 0/0 , there is a constant E0 such that the
5D–neighbourhood of xC can be isotoped into xC passing only the E0–neighbourhood
of xC . Pulling this back to Mtj for large j , we see that the 4D–neighbourhood of
x��1

tj
. xC / can be isotoped into ��1

tj
. xC / passing only the 2E0–neighbourhood of x��1

tj
. xC /.

Since the diameter of xC is bounded by D , we see that the diameter of x��1
tj
. xC / is less

than 2D for large j . Since Ej is greater than 2E0 for large j , this is a contradiction.
Thus we have proved the existence of E as above.

For D as was given above, we take K0 2 .1; 2� so that for any K � K0 and any
K–bi-Lipschitz homeomorphism f W N !N 0 between hyperbolic 3–manifolds, if a
closed geodesic c in N has length greater than � , which was defined to be a lower
bound for the lengths of the closed geodesics homotopic to the ˆt .b/, then f .c/ is
contained in the D–neighbourhood of the closed geodesic homotopic to f .c/. The
existence of such K0 follows easily from the well-known properties of quasigeodesics.

Now, for each i 2N , we subdivide Œi; iC1� into intervals i D s0 < s1 < � � �< sm�1 <

smD iC1 in such a way that for any t; t 0 2 Œsj ; sjC1�, the quasiconformal deformation
from .Gt ; �t / to .Gt 0 ; �t 0/ induces (by extending quasiconformal maps to quasi-
isometries in H3 in the standard way) a .K0/

1=2 –bi-Lipschitz homeomorphism ‰t;t 0

from Mt to Mt 0 which is homotopic to ˆt 0 ıˆ�1
t . (The number m may depend

on i .) Since f.Gt ; �t /g is a family of quasiconformal deformations which is continuous
with respect to the parameter t , any subdivision whose maximal width is sufficiently
small serves as a subdivision as above. Now for each sj .j ¤ 0;m/, we define xCsj

to
be an adequate compact core of Msj

whose diameter is less than Dsj
C 1, which is

guaranteed to exist by our definition of Dt . For j D 0;m, we define xCsj
to be ��1

i .C 0/

and ��1
iC1

.C 0/ respectively. We define x̂ sj
jC to be a homeomorphism from C to xCsj

homotopic in Msj
to ˆsj

jC . In the case when j D0;m we choose the homeomorphism
to be ��1

i ıˆ. Since both C and xCsj
are adequate, their complements have product

structures and we can extend x̂ sj
jC to a homeomorphism x̂ sj

W MG!Msj
. Then we

see that the diameter of x̂ t .C / is bounded by D for t D s0; : : : ; sm , and (ii) in our
claim holds for x̂ t defined thus far (ie when t is a subdividing point).

We need to extend the family of homeomorphisms to all the parameters t 2 Œ1;1/. Now
we further subdivide Œsj ; sjC1� into three subintervals of the same length, Œsj ; s

0
j �; Œs

0
j ; s
00
j �

and Œs00j ; sjC1�. We consider a .K0/
1=2 –bi-Lipschitz homeomorphism ‰sj ;t for t 2

Œs0j�1; s
0
j �. Since this bi-Lipschitz homeomorphism ‰sj ;t is induced from a quasi-

conformal deformation from .Gsj
; �sj

/ to .Gt ; �t /, we can assume that it varies
continuously with respect to t in the geometric topology, and ‰sj ;t converges to the
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identity geometrically as t! sj . For each t 2 Œsj ; s
0
j �, we define x̂ t to be ‰sj ;t ı

x̂
sj

,
and for each t 2 Œs00j ; sjC1�, we define x̂ t to be ‰sj C1;t ı

x̂
sj C1

. Now, we shall fill the
gap between x̂ s0

j
and x̂ s00

j
.

Since both xCsj
and xCsj C1

have diameters bounded by D , the compact cores x̂ s0
j
.C /

and ‰sj C1;s
0
j
ı x̂ sj C1

.C / have diameters bounded by 2D (because K
1=2
0
�
p

2< 2).
Moreover, since xCsj

contains the closed geodesic b�sj
homotopic to ˆsj

.b/, and
‰sj ;s

0
j

is (K1=2
0

–, hence also) K0 –bi-Lipschitz, x̂ s0
j
.C /, which contains ‰sj ;s

0
j
.b�sj

/,
is within distance D from any point on the closed geodesic homotopic to ˆs0

j
.b/.

By considering the same for ‰sj C1;s
0
j
ı x̂ sj C1

.C / D ‰sj C1;s
0
j
. xCsj C1

/, we see that
‰sj C1;s

0
j
ı x̂ sj C1

.C / is within distance 2D from x̂
s0

j
.C /, hence is contained in

the 4D–neighbourhood of x̂ s0
j
.C /. By our definition of E , there is an isotopy

taking ‰sj C1;s
0
j
ı x̂ sj C1

.C / into x̂ s0
j
.C / which passes only the E–neighbourhood

of x̂ s0
j
.C /. Since the complement of C has a product structure, we can extend this

isotopy to an isotopy H W MG � Œs
0
j ; s
00
j � ! Ms0

j
such that each H. ; t/ is a home-

omorphism to Ms0
j

, H. ; s0j / D
x̂

s0
j

, H. ; s00j / D ‰sj C1;s
0
j
ı x̂ sj C1

, and H.C; t/ is
contained in the E–neighbourhood of x̂ s0

j
.C /. Now, for t 2 Œs0j ; s

00
j �, define x̂ t to

be ‰sj C1;t ı‰
�1
sj C1;s

0
j
ıH. ; t/. Because ‰sj C1;t ı‰

�1
sj C1;s

0
j

is K0 –bi-Lipschitz with
K0 � 2, we see that x̂ t .C / has diameter bounded by 2.2D CE/. Thus we have
completed the definition of x̂ t , which have the properties (i) and (ii). The continuity
with respect to the geometric topology is obvious from our definition of x̂ t .

Now we return to the proof of Lemma 6.17. Let gt W @C !Mt be a pleated surface
homotopic to ˆt which realises �[C 1 . Since the length of � with respect to �t

is bounded as t !1 and C 1 [� intersects every compressing curve, by the same
argument as for gi , we see the length of gt .�/ is bounded as t ! 1. Since the
diameter of x̂ t .C / is bounded as t !1 by Claim 6.18, by the same argument as
for gi , it follows that the surface gt .@C / is disjoint from x̂ t .C / for large t . Note
that both gt .�/ and x̂ t vary continuously with respect to the geometric topology. Let
Ut Š @C � .0;1/ be a parametrisation of the complement of x̂ t .C /. Let �t W Mt !

@ x̂ t .C / be the projection to the first factor in xUt Š @C � Œ0;1/, where we identify
@C � f0g with x̂ t .@C /. Since the parametrisation and the projection are unique up
to homotopy, we can assume that Ut and �t vary continuously with respect to the
geometric topology. Since gt .@C / never touches x̂ t .C /, this implies that the homotopy
class of x̂�1

t ı�t ıgt is independent of t . Recall that ��1
i jC

0D x̂ i ıˆ
�1jC 0 for every

i 2N . Therefore for i 2N , we see that the homotopy class of �i ı�i ıgi as a map from
@C to @C 0 is independent of i . Let pW @C ! @C 0 be a map homotopic to these maps.
If �i ıgi.�/ has essential self-intersection, then i.p�.�[C 1/;p�.�[C 1//� �2 for
a positive constant � independent of i as was shown before.
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Take a sequence of weighted simple closed curves frkckg on † D @C n P con-
verging to �. By taking a subsequence of frkckg, we can assume that for each i ,
there is a pleated surface g0i W @C ! Mi realising C 1 [ ci which is homotopic
to gi in Ui , whose diameter modulo the �–Margulis tubes is bounded as i !1.
We can extend g0i to yg0i W C ! Mi by the same way as for gi . By Lemma 6.10,
there is a sequence of weighted simple closed curves RkCk on @C nP converging
to �0 with i.�; �0/ D 0 such that i.Ri�i ı g0i.Ci/;Ri�i ı g0i.Ci// ! 0. Since
g0i is homotopic to gi in Ui , we get i.Rip.Ci/;Rip.Ci// ! 0, which implies
i.p�.�

0/;p�.�
0//D 0, hence also i.p�.�/;p�.�//D 0. Since �i ıg0i.Ci/ is disjoint

from ˆi.C
1/ as was shown in Lemma 6.10, we have i.p�.�

0/;p.C 1//D 0. These
show that i.p�.�[C 1/;p�.�[C 1//D 0. Thus � can be embedded on @C 0 by p if
we move p by a homotopy on @C 0 .

We have also shown that p�.�/, regarded as a geodesic current, is actually a measured
lamination on @C 0 n P 0 since it has null self-intersection. On the other hand since
pj� is embedding, p�.�/ has a large complementary region, which is contained
in @C 0 n .P 0 [ p.�//. Then by the same argument as in the proof of Lemma 6.12
considering the correspondence between the complementary regions of p�.�/ and a
measured lamination representing the ending lamination for the unique end of .M�/0
gives a contradiction. So we have shown gi is incompressible in Ui Š @C �.0;1/.

Since gi is incompressible in Ui Š @C � .0;1/, we see that �i ı gi is homotopic
a homeomorphism from @C to @ xCi D �

�1
i .@C 0/. As was shown above, the maps

�i ı �i ı gi are all homotopic, which we denote by hW @C ! @C 0 . Note that h is
homotopic in C 0 to ˆj@C , hence can be extended to a homeomorphism from C to C 0 .
Also since gi maps C 1 into Margulis tubes converging geometrically to cusps in M� ,
we can assume that h.P / D P 0 . Take a weighted simple closed curve fskdkg on
@C 0 nP 0 converging to a measured lamination � representing the ending lamination
of the unique end of .M�/0 such that the closed geodesic d�

k
homotopic to dk in

U Š .@C 0 nP 0/� Œ0;1/ tends to the end. Recall that we have a sequence of weighted
simple closed curves frkckg converging to � with a pleated surface g0i realising ci[C 1

in Mi . Then by Lemma 6.10, we have sequences of simple closed curves Ck on @C nP
and Dk on @C 0 n P 0 such that ŒCk � converges to Œ�0� with i.�; �0/ D 0 and ŒDk �

converges to Œ�0� with i.�; �0/D 0, and we have

i

�
�i ıg0i.Ci/

length.�i ıg0i.Ci//
;

��1
i .Di/

length.��1
i .Di//

�
! 0:

By pushing this forward by �i , we get

i

�
h.Ci/

length.h.Ci//
;

Di

length.Di/

�
! 0;
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hence i.h.�0/; �0/D0. Since both � and � are arational, �0 has the same support as �,
and �0 has the same one as �. It follows that h.�/ has the same support as �. Since h

extends to a homeomorphism from C to C 0 taking P to P 0 as was shown above, we
have completed the proof of Proposition 6.5 in case (2). Combining Lemma 6.9 with
this, we have completed the proof of Proposition 6.5.

7 Proof of the main theorem

We shall complete the proof of Theorem 1.2 in this section. By Proposition 6.5, we
have shown that ˆ can be homotoped so that ˆjP is an embedding into the parabolic
locus P 0 on @C 0 and ˆj†j is a homeomorphism to a component of @C 0 n P 0 for
j DnC1; : : : ;m such that ˆj�j represents the ending lamination for the end facing the
component, which is topologically tame. It remains to deal with ˆj†j for j D 1; : : : ; n.

Let † be one of the †j for j D 1; : : : ; n. Let Sk be the boundary component of C

containing †, and H a subgroup of G corresponding to the image of �1.Sk/. Let H†

denote a subgroup of H corresponding to the image of �1.†/ in �1.C /ŠG . Then by
the same argument as the proof of Lemma 6.6 using the result of Abikoff, we see that
there are an open subset �0 of �� invariant under �.H†/, and a frontier component
of the convex core of .M�/0 facing �0=�.H†/. Since C 0 is a nice compact core,
there is a component of @C 0nP 0 ambient isotopic to this frontier component. Therefore
the surface ˆj† is homotoped to this component of @C 0 nP 0 keeping ˆ.Fr†/ in P 0 .
Repeating this argument for every one of the †j .j D 1; : : : ; n/, and combining it with
Proposition 6.5, we see that ˆ is homotopic to a homeomorphism from C to C 0 , hence
from MG to M� , by Waldhausen’s theorem [59]. Moreover, the ends of .M�/0 facing
these components †1; : : : ; †n are geometrically finite and have conformal structure at
infinity m1; : : : ;mn . This completes the proof of Theorem 1.2.
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